
People's Democratic Republic of Algeria

Ministry of Higher Education and Scienti�c

Research

University of Saad Dahlab Blida 1

Faculty of Science

Department of Mathematics

Dissertation

For the degree of

MASTER

Domain : Mathematics and Computer Science

Branch : Mathematics

Option : Analysis and Applied Mathematics

Image Fusionn
using a joint-variational Osmosis model

Presented by :

Lakraa Redouane

In 20th Jully 2022 infront of the following Jury :

Mr. Benbachir Maamar Professor, USD-BLIDA1  

Mr. Hachama  Mohammed Professor,   USD-BLIDA1  

Presedent of jury 

Superviser 

Mr. Boudjemaa   Redouane Doctor,     USD-BLIDA1      Examiner

2021/2022





i

Image Fusion

using a joint-variational Osmosis model

Lakraa Redouane

Abstract

The main purpose of this work is the fusion of multiple images to a single composite that 
offers more information than the individual input images. We focus the approach within 
a variational framework. First, we present the most basic variational model which is the 
Poisson editing and follow it up by Osmosis. Osmosis is a transport phenomenon that 
is omnipresent in nature. It differs f rom d iffusion by  th e fa ct that it  al lows nonconstant 
steady states. Then we study a proposed modification to this model that i s called joint-
variational Osmosis that makes the overall term non-convex. The minimization of this 
new non-convex model gives plausible image data fusion.

We minimize it using the inertial Porixmal algorithm for non convex optimization al-
gorithm (iPiano), we apply the resulting minimization scheme to solve multi-modal face
fusion, color transfer and cultural heritage conservation problems.
Comparing this result with famous models visualy or quantitatively using error mesures
shows the superiority and flexibility of this method.

Keywords: Image fusion, Variational image fusion, Osmosis model, drfit-diffusion,
non-convex optimization, gradient descent algorithms, proximal algorithms
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Chapter 1

Introduction to mage fusion

1.1 Image fusion

In the late 1970s, with the emergence and development of image sensors, image fusion
emerged as a new research field in the intersection of sensors, signal and image processing,
and artificial intelligence. Image fusion combines the image information about the same
scene obtained either by multiple image sensors or by the same image sensor in different
working modes to obtain a new and more accurate description of the scene as illustrated
on Figure (1.1).

Figure 1.1: Image fusion principle

Using complementary images allows to construct a more complete image and improve
reliability by exploiting redundant information.. Albeit this is just one type of fusion where
we fuse a selected region, other methods can fuse different exposures from multiple images
or multiple color channels from one single image as will be shown in the next sections.

Significant research efforts have accordingly been dedicated to the development of
image fusion, with a great number of image fusion algorithms having been proposed in
the literature. Figure (1.2) shows that the number of scientific journals, conferences and
papers published on the topic of image fusion has increased dramatically since 2010.
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Figure 1.2: Statistics on Web of Science from 2000 to 2019. Statistics of 2020 are not full.

1.2 Applications of image fusion

1.2.1 Underwater image enhancement

Underwater imaging is challenging due to the physical properties existing in such en-
vironments. There have been several attempts to restore and enhance the visibility of
such degraded images but each of them has a drawback. The enhanced image version is
obtained by fusing some inputs. Next figure shows a comparison against the standard
Histogram equalization method.

(a) Original image (b) Histogram equalization (c) Fusion result

Figure 1.3: Enhancing underwater image using a fusion method

1.2.2 Exposure Fusion

Exposure Fusion is a simple and practical alternative to High Dynamic Range Photography
(HDR). It fuses multiple exposures into a high-quality, low dynamic range image. Guided
by some quality measures proposed we select the ‘good’ pixels from the sequence and
combine them into the final result. With standard consumer cameras is it not always
possible to capture all the bright and dark details of a real-world scene with a single
acquisition. Taking several images with a standard camera while changing the exposure
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settings allows to produce an overall well-exposed image in a post-processing step. Figure
(1.4) shows the result of the fusion approach proposed by Mertens et al. [15].

(a) under-exposed (b) poorly exposed (c) over-exposed (d) Result

Figure 1.4: Exposure Fusion

1.2.3 Image and Video Decolorization by Fusion

Although color plays an important role in images, applications such as compression, vi-
sualization of medical imaging, aesthetical stylization, displaying data on monochrome
devices such as electronic book readers and printings require reliable decolorized image
versions. Decolorization is the conversion of a color image to its greyscale representation.
The main challenge of decolorization is to preserve as much information as possible.

(a) Color image (b) I1 Red channel (c) I2 Green channel

(d) I3 Blue channel (e) I4 Helmholtz-Kohlrausch (f) The fusion method result

Figure 1.5: Color, input images and fused decolorized image

1.2.4 Focus Fusion

A typical problem in small scale photography and optical microscopy is the restricted
depth of field of common cameras and microscopes. Objects only appear sharp at a certain
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distance range to the imaging device. Hence, it is often not possible to capture a single
image that is sharp everywhere. A common remedy is to take several photographs while
varying the focal settings. Focus fusion describes the task of combining the acquired focal
stack to an all-in-focus composite that is desirably sharp in every image region. Figure (1.6)
shows different focus distances and the obtained sharpness from focus stacking. Fusing
this focal stack results in a composite image that provides the desired sharpness.

(a) Near focus (b) Middle focus (c) Far focus (d) Focus stacking

Figure 1.6: Different focus distances and focus stacking
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Chapter 2

PDEs and variational models

2.1 Inputs and Notations

The goal of variational fusion is to obtain an optimal image u as a to an PDE or the
minimization of an energy functional. The observed (initial) image we look to improve
will be refereed as f . Both f and u are functions defined on S ∈ R2 with values in R. We
also note b the background image ; we are partially interested in its domain S, which we
will fuse with image f . This part of S we note Ω ( See Figure(2.1)). We will use a drift

(a) Image f (b) Image b has better soil Ω (c) Fused image u

Figure 2.1: Image fusion example

vector field, noted d. After establishing our PDE, descretizing it is the next step. So S
and Ω become finite point sets defined on an discrete grid, we note them Sd and Ωd.

2.2 Calculus of Variations and Numerical Solution

Often we have that our operations such as cloning, shadow removal or inpainting are
performed by applying partial differential equations, that are the solution of a minimization
problem. So how did we converge from a minimization problem such as (min

u

∫
∥∇u∥22 dx)

to a PDE. And how do we implement these linear PDEs to our images that are discrete
objects.
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Variational Framework Because images are two-dimensional functions, we will restrict
ourselves to functions of x = (x1, x2)

⊺ ∈ Ω ⊂ R2. Also, we consider vector-valued functions
u = (u1, ..., un)

⊺. The energy functional is given by

E(u) =

∫
Ω
F (u1, ..., un,∇u1, ...,∇un) dx , (2.1)

where u is the desired solution from minimizing E(u).
According to the calculus of variations, the necessary conditions for a minimiser of the
energy (2.1) are given by the so-called Euler-Lagrange equations

Fui − ∂x1F∂x1ui
− ∂x2F∂x2ui

= 0 (i = 1, ..., n) (2.2)

Whith n as the outer normal vector on the boundary ∂Ω, the corresponding boundary
conditions read

n⊺
(
F∂x1ui

F∂x2ui

)
= 0 (i = 1, ..., n) (2.3)

2.3 Poisson editing

2.3.1 Motivation

The gradient of images could be directly modified to perform useful operations; this oper-
ation is called gradient-based image processing or Poisson editing. For example operations
such as seamless cloning, contrast enhancement or shadow removal can be performed in
an efficient way by modifying the image gradients. The idea was proposed by Perez et al.
[20] and proved to be a turning point in image processing. Lets say we want to clone part
of image b ( region Ω) on an image f seamlessly (see Figure(2.2)).

� The eye is more sensitive to color differences than absolute color values.

� We thus try to find image u that preserves gradients difference:

min
u

∫
Ω
∥∇u−∇b∥22 dx

� This leads to the equation: ∆u = ∆b in Ω and u = f on ∂Ω. Its a PDE called the
Poisson equation with Dirichlet boundary conditions.

Figure 2.2: Poisson editing components: from left to right we have f , b and Ω.
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2.3.2 Poisson editing using guidance

Guided Interpolation In this method of image editing, a guided interpolation frame-
work is proposed, with the guidance being specified by the user. Figure(2.3) shows an
unknown function u interpolates in domain Ω the destination function f , under guidance
of vector field d, which might be or not the gradient field of a source function b. For
poisson editting. The vector field is indeed chosen as the gradient of b.

Figure 2.3: Guided interpolation notation

We are going to take a look at image interpolation using a guidance vector field. As it
is enough to solve the interpolation problem for each color component separately, Figure
(2.2) illustrates the notations. Let S, a closed subset of R2, be the image definition do-
main, and let Ω be a closed subset of S with boundary ∂Ω.
Let f be a known scalar function defined over S minus the interior Ω of and let u be an
unknown scalar function defined over the interior of Ω. Finally, let d be a vector field
defined over Ω. The simplest interpolant u of f over is the membrane interpolant defined
as the solution of the minimization problem:

min
u

∫
Ω
|∇u|2dΩ with u

∣∣
∂Ω

= f
∣∣
∂Ω

(2.4)

The minimizer must satisfy the associated Euler-Lagrange equation over Ω:

∆u = 0 with u
∣∣
∂Ω

= f
∣∣
∂Ω

(2.5)

This simple method produces an unsatisfactory result, as it does nothing but solve the
Laplace equation in Ω which produces blurred images, see Figure (2.4).
This can be overcome in a variety of ways. One way is to use a guidance field, a vector
field we note d used in an extended version of the minimization problem (2.4) above:

min
u

∫
Ω
|∇u− d|2dΩ with u

∣∣
∂Ω

= f
∣∣
∂Ω

(2.6)

whose solution is the unique solution of the following Poisson equation with Dirichlet
boundary conditions, over Ω we have:

∆u = div(d) with u
∣∣
∂Ω

= f
∣∣
∂Ω

(2.7)
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Figure 2.4: A simple case of Poisson editing

When the guidance field d is conservative, meaning it is the gradient of some function b, a
helpful alternative way of understanding what Poisson interpolation does is to define the
correction function f̃ on Ω such as u = b+ f̃ .

The Poisson equation (2.7) then becomes the following Laplace equation with boundary
conditions, we have over Ω:

∆f̃ = 0 with f̃
∣∣
∂Ω

= (f − b)
∣∣
∂Ω

. (2.8)

Therefore, inside Ω. The additive correction f̃ is a membrane interpolant of the mismatch
(f − b) between the source and the destination along the boundary ∂Ω. This particular
instance of guided interpolation is used for seamless cloning in the next subsection.

2.3.3 Seamless cloning

Importing gradients The basic choice for the guidance field d is a gradient field taken
directly from a source image. Denoting by b this source image, the interpolation is per-
formed under the guidance of:

d = ∇b, (2.9)

and (2.7) now reads over Ω :

∆u = ∆b over Ω with u
∣∣
∂Ω

= f
∣∣
∂Ω

. (2.10)

The seamless cloning tool thus obtained ensures the compliance of source and destination

Figure 2.5: Concealment of objects by importing a piece of the background.

boundaries. It can be used to conceal undesirable image features or to insert new elements
in an image.
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2.4 Image Osmosis

Osmosis filters [25] are based on drift–diffusion processes using a drift vector. They offer
nontrivial steady states with a number of interesting applications. The drift vector field
introduces an active transport mechanism in the diffusion model. Apart from the average
grey value, the steady state is fully determined by the drift vector field.

2.4.1 Continuous Linear Osmosis Filtering

We consider a rectangular image domain Ω ∈ R2 with boundary ∂Ω, and a positive
greyscale image f : Ω → R+. Moreover, assume we are given some drift vector field
d : Ω → R2. Then a (linear) Osmosis filter computes a processed version u(x, t) of f(x)
by solving the drift-diffusion PDE :

∂tu = ∆u− div(du) on Ω× (0,T], (2.11)

With f as initial condition,

u(x, 0) = f(x) on Ω, (2.12)

and homogeneous Neumann boundary conditions.

⟨∇u− du,n⟩ = 0 on ∂Ω× (0,T]. (2.13)

Here ⟨., .⟩ denotes the Euclidean inner product, and n is the outer normal vector to the
image boundary ∂Ω.

When setting the drift vector to satisfy d:= ln(∇v) = ∇v
v for a given reference image

v > 0, then the steady state equation :

∆u− div(du) = 0 (2.14)

is equivalent to the Euler-Lagrange equation of the energy functional

E(u) =

∫
Ω
v(x)

∣∣∣∣∇(
u(x)

v(x)

)∣∣∣∣2dx (2.15)

Indeed, the energy functional (2.15) can be rewritten as

E(u) =

∫
Ω
F (u,∇u) dx. (2.16)

Using the following gradient property (∇(ab ) =
b∇a − a∇b

b2
) on F we get

F (u,∇u) =
|v∇u− u∇v|2

v3
(2.17)

which can be simplified to

F (u,∇u) =
v2∇u.∇u− 2u.v∇u.∇v + u2∇v.∇v

v3
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with this abuse of notation

∇u.∇v = ∇u⊺.∇v = ∇u.∇v⊺ = ∇v.∇u

From variational calculus, we know that any minimizer of E(u) satisfies the Euler-Lagrange
equation:

Fu − ∂xFux − ∂yFuy = 0 (2.18)

Now we compute the components of (2.18):

Fu =
−2v.∇u.∇v + 2u.∇v.∇v

v3

Fux =
2v2.ux − 2u.v.vx

v3
, Fuy =

2v2.uy − 2u.v.vy
v3

We know that Euler-Lagrange equation can be written as Fu−div(Fux , Fuy) = 0 so (2.18)
becomes :

−2v.∇u.∇v + 2u.∇v.∇v

v3
− 2div

(
v.
v.∇u− u.∇v

v3

)
= 0 (2.19)

Using this divergence identity
(
div(AB⃗) = (∇A).B⃗ + A. div(B⃗)

)
on the second part of

(2.19) to get :

−2v.∇u.∇v

v3
+

2u.∇v.∇v

v3
− 2∇v.

(v.∇u− u.∇v

v3
)
− 2v.div

(v.∇u− u.∇v

v3
)
= 0

=⇒ −2v.∇u.∇v

v3︸ ︷︷ ︸
(1)

+
2u.∇v.∇v

v3︸ ︷︷ ︸
(2)

− 2v.∇v.∇u

v3︸ ︷︷ ︸
(3)

+
2u.∇v.∇v

v3︸ ︷︷ ︸
(4)

−2v.div
(v.∇u− u.∇v

v3
)
= 0

Combining (1)+(3) with (2)+(4) we finally get:

−2v.div
(v.∇u− u.∇v

v3
)
− 4∇v(v.∇u− u.∇v)

v3
= 0 (2.20)

By using this equation which we will prove later

div

(
v.∇

(
u

v

))
= v2.div

(
v.∇u− u.∇v

v3

)
+

2∇v(v.∇u− u.∇v)

v2
(2.21)

we can see that equation (2.21) multiplied by
(−2

v

)
is equal to our Euler-Lagrange equation

(2.20), therefore (2.20) becomes:

−2

v
div

(
v.∇

(
u

v

))
= 0

=⇒ div

(
v.∇

(
u

v

))
= 0
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and using again the gradient property (∇(ab ) =
b∇a − a∇b

b2
) we get

div

(
v.∇

(
u

v

))
= div

(
v.∇u− u.∇v

v

)
Because the divergence operator is linear and div(∇u) = ∆u, and by recalling that
d:= ∇v

v it results in (2.14) :
∆u− div(du) = 0

The equation (2.21) we used can be proven by putting div

(
v.∇

(
u
v

))
= div

(
v2
(
v.∇u−u.∇v

v3

))
and applying the divergence identity

(
div(AB⃗) = (∇A).B⃗ +A. div(B⃗)

)
. Thus we got the

steady state (2.14).
Straightforward computations also show that one obtains (2.13) as boundary condition

on ∂Ω. Its also clear that v ( and k.v) is a solution of the steady state (2.14) because

∆v − div(
∇v

v
.v) = ∆v −∆v = 0

The solution of the steady state is a function w where w = k.v and k =
µf

µv
(µf and µv

are the average of f and v over Ω respectively), its easly proven :

kµv =
1

|Ω|

∫
Ω
k.v(x)dx =

1

|Ω|

∫
Ω
w(x)dx =

1

|Ω|

∫
Ω
f(x)dx = µf .



12

Chapter 3

The joint variational Osmosis
model

3.1 Inputs of the model

Our main objective is to smoothly fuse two images, one image for the foreground noted
f and one background image b. To force the fusion in the boundary of the foreground
image A ⊂ Ω, suh as A represents the domain of f which we want to fuse (its a face in
our first example). We use an α-map associated to A. Let Ω = Af ∪ Ab ∪ Amix, with
Af be a region where the foreground data is desired, (u(x) = f(x) on Af ), Ab where the
background data is desired (u(x) = b(x) on Ab), and Amix the uncertain zone, i.e. where
f(x) and b(x) are mixed.

We can choose the α-map as follows:

α(x) =


1 if x ∈ Af

α ∈ (0, 1) if x ∈ Amix

0 if x ∈ Ab

(3.1)

An alternative choice of the α-map is defined as the convolution of the indicator func-
tion with a compactly supported kernel φ ∈ C∞

c (Ω) as follows:

α(x) = (φ ∗ Id)(x). (3.2)

and our indicator function is defined as

Id(x) =


0 if x /∈ A

1/2 if x ∈ ∂A

1 if x ∈ A

(3.3)
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This ensures a smooth transition from 0 to 1 in the boundary ∂A.
However, in this work we use a manual user-supplied α-maps to identify the source images
f and b.

The following Figure (3.1) gives an example of each image with a user made α-map and
identical size f and b images. From the left to the right. Foreground f , background b and
α-map.

Figure 3.1: Portraits of Leonhard Euler and Louis Lagrange

3.2 The new fusion term

Based on Osmosis varriational energy montioned in the previous chapter, we propose the
new fusion model witch aims to smoothly fuse the information contained in f and b in a
new image v.

The first change we make is for the drift vector in (2.11), by choosing v whose associ-
ated drift contains informations from both f and b.
Noted d̃ such as :

d̃ = ∇ log(fα. b1−α). (3.4)

Note that if α(x) ≡ α ∈ [0, 1] then this choice of d̃ is simply the convex combination of
the drifts associated to f and b.
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And to enforce v to stay locally close to such reference image fα.b1−α, a penalisation
term is added, weighted by a parameter µ > 0.

Combining this altogether, the osmosis-driven fusion term, witch now depends on u and
v reads :

O(u, v) =
1

2

∫
Ω
v(x)

∣∣∣∣∇(
u(x)

v(x)

)∣∣∣∣2dx+
µ

2

∥∥v − (fα. b1−α)
∥∥2
2

(3.5)

While the original Osmosis fusion term reads:

E(u) =

∫
Ω
v(x)

∥∥∥∥∇(
u(x)

v(x)

)∥∥∥∥2
W

dx (3.6)

The new proposed model (3.5) combines the original Osmosis term (3.6) with a quadratic
term which acts as a fidelity term that forces v to stay consistent with the foreground and
background images f and b.

NB: Although the quadratic term has a convex combination, the general term O(u, v)
is non-convex. Its also important to montion that (3.5) is the base fusion term, however
its not final. Additional terms will be added to control the fusion in the next part.

3.3 Fidelity and regularisation

After we established the fusion term, we add two further terms. The first term is a fidelity
term imposing u to stay close to f in the foreground, for each x ∈ Ω and α(x) > 0:

D(u) =
1

2

∫
Ω
α(x)

(
u(x)− f(x)

)2
dx (3.7)

Note that we can write D along with the L2 norm in (3.5) because the integral operator
is linear, but the term is written separately to highlight the importance of the quadratic
regularisation term. Therefore this decomposition will be respected in numerical schemes.

Whilst the combination of these two terms gives good results, an inhancing term is added
for further regularisation acting on v denoted as R(v) such as:

R(v) =

∫
Ω
|∇v(x)|dx (3.8)

This is called Total variation regularisation. We could alternatively use smooth reg-
ularisation function like Tikhonov-type regularisation which uses L2 norme:
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R(v) =
1

2
∥∇v(x)∥2 = 1

2

∫
Ω
|∇v(x)|2dx (3.9)

These three terms are merged in the final proposed model along with two more weights γ
and ϵ. By varring them aswell as the weight µ of O(u, v), the term reads:

min
u,v

E(u, v) = O(u, v) + γD(u) + ϵR(v). (3.10)

These weights as well as the initial condition play a huge role in the behaviour of the final
images in a way that we will discover in the numerical part of this thesis. The solution of
the model is computed as the minimising of this energy functional.
We summarize our framework with this flowchart: Note that kNN matting is a method

Figure 3.2: Flowchart of the proposed model for image fusion

to automaticly compute the α-map and (Alg. 1) is the algorithm which we will use to
fuse the faces of f and b. Now we move to minimising the energy whilst we don’t have
the luxury we had in chapter (2) of using the Euler-Lagrange equation (2.2) which is the
standard in most variational models.

3.4 Numerical resolution: The iPiano algorithm

The Inertial Proximal Algorithm for Non-convex Optimization [18] is an algorithm pro-
posed for solving a minimization problem composed of a differentiable (possibly non-
convex) and a convex (possibly non-differentiable) function. We have established that our
Osmosis energy we ought to minimize (3.10) is composed of a differentiable non-convex
term and convex non-differentiable term. That makes our approach ideal. Let’s recall our
general problem (??) {

min : F (x) = f(x) + g(x)

st : x ∈ X

where g is a convex (possibly non-smooth) and f is a smooth (possibly non-convex) func-
tion. Arbitrarily, the main update of our algorithm is

xt+1 = proxηg

(
xt − η∇f(xt)

)
+ ζ(xt − xt−1) (3.11)
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We recall that the proximal operator proxh : Rn → Rn of h is defined by
proxh(v) = argmin

x

(
h(x) + (1/2)∥x− v∥22

)
, where ∥.∥22 is the usual Euclidean norm.

3.5 Computing algorithm components

The iterative scheme of (3.10) for t ≥ 0 reads{
ut+1 = proxη1,tγD(ut − η1,t∂uO(ut, vt)) + ζ1(ut − ut−1),

vt+1 = proxη2,tϵR(vt − η2,t∂vO(ut, vt)) + ζ2(vt − vt−1).
(3.12)

3.5.1 Gradient of Osmosis term

The gradient of this term is given by ∇O(u, v) = (∂uO(u, v), ∂vO(u, v))⊤ , the derivatives
of O(u, v) are computed next.

� Deriving ∂vO(u, v)

∂vO(u, v) =
∂

∂v

(
1

2

∫
Ω
v(x)

∣∣∣∣∇(
u(x)

v(x)

)∣∣∣∣2dx)+
∂

∂v

(
µ

2

∥∥v − (fα. b1−α)
∥∥2
2

)
.

Using the same gradient property (∇(ab ) =
b∇a − a∇b

b2
) we previously used in (2.17)

to get

∂vO(u, v) =
∂

∂v

1

2

(∫
Ω

|v∇u− u∇v|2

v3
dx

)
+

∂

∂v

(
µ

2

∥∥v − (fα. b1−α)
∥∥2
2

)
,

with the same abuse of notation

∇u.∇v = ∇u⊺.∇v = ∇u.∇v⊺ = ∇v.∇u.
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We get

∂vO(u, v) =
1

2

∫
Ω

∂

∂v

(
v2∇u.∇u− 2u.v∇u.∇v + u2∇v.∇v

v3

)
dx︸ ︷︷ ︸

(a)+(b)+(c)

+
∂

∂v

(
µ

2

∥∥v − (fα. b1−α)
∥∥2
2

)
,

(a) =
∂

∂v

1

2

∫
Ω

∇u.∇u

v
dx = −1

2

∫
Ω

∇u.∇u

v2
dx = − 1

2v2
|∇u|2,

(b) = −1

2

∂

∂v

∫
Ω

2u

v2
∇u.∇v dx

= −1

2

∫
Ω

∂

∂v

(
2u

v2
∇u.∇v

)
+

2u

v2
∂

∂v

(
∇u.∇v

)
dx

= −1

2

∫
Ω
−4u

v3
∇u.∇v +

2u

v2
∇u.∇I dx (Neumann B.C and Green furmula)

=

∫
Ω

2u

v3
∇u.∇v + div

(
u

v2
∇u

)
dx,

(c) =
1

2

∂

∂v

∫
Ω

u2

v3
∇v.∇v dx

=
1

2

∫
Ω

∂

∂v

(
u2

v3

)
∇v.∇v +

u2

v3
∂

∂v

(
∇v.∇v

)
dx

=

∫
Ω
−3u2

2v4
∇v.∇v − v

2
div

(
u2

v3

)
dx.

Finally, we have

∂vO(u, v) = − 1

2v2
|∇u|2 + 2u

v3
∇u.∇v + div

(
u

v2
∇u

)
− 3u2

2v4
|∇v|2 − v

2
div

(
u2

v3

)
+ µ(v − fαb1−α).

The same way we have

∂uO(u, v) = −(∆u− div(d̃u))

v

where d̃ is the drift vector from (3.4), i.e d̃ = ∇ log(v) = ∇ log(fα. b1−α).



18

3.5.2 Proximal operator of the fidelity and regularisation terms

The iPiano scheme (3.12) requires the computation of two proximal operators.

� Proximal operator of D(u)

proxη1,tγD(x) = argmin
u

γ

2

(
∥
√
α(u− f)∥22) +

1

2η1,t
(∥u− x∥22).

From the optimality condition, u is the optimal solution if and only if

0 ∈ ∇
(γ
2

(
∥
√
α(u− f)∥22)

)
+∇

( 1

2η1,t
∥u− x∥22

)
⇐⇒ 0 ∈ γ(

√
α(u− f)) +

1

η1,t
(u− x)

then optimal solution u∗ is obtained by

γ(
√
α(u∗ − f)) +

1

η1,t
(u∗ − x) = 0 ⇐⇒ u∗ =

(
γαf − 1

η1,t

)
.
(
γα+

1

η1,t
x
)−1

and finally

proxη1,tγD(x) =
(
γαf − 1

η1,t

)
.
(
γα+

1

η1,t
x
)−1

.

� Proximal operator of R(v)

The Total Variation regularization (∥∇v∥1) has a singularity when v = 0, one way
arround this is the classical choice

∥∇v∥1 =
∫
Ω

√
δ2 + (ux)2 + (uy)2 dx ,

so when deriving there would be no singularity when the denominator equals 0, as
we always have the small positive constant (0 < δ ≤ 1) we added.
However, for numerical stability a better choice was given in the work of Chambolle
and Pock [3] where it is better to consider a smooth version of the TV. Which is
obtained by replacing TV with its Huberised version (Huber regularization). Let

Hδ(x) =

{
x2

2δ if x ≤ δ

|x| − δ
2 else.

(3.13)

This promotes quadratic regularisation for areas where ∥∇v∥1 ≤ δ and L1 regular-
ization when ∥∇v∥1 > δ. The proximal step is given by

proxη2,tϵR(x) = argmin
v

ϵHδ(∇v) +
1

2η2,t
(∥v − x∥22).
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3.6 Algorithm

Applying our model min
u,v

E(u, v) := O(u, v) + γD(u) + ϵR(v) to fuse two given images f

and b for different purposes. Another input we need is the α−map we defined in chapter
3. The resulting algorithm dubbed Alg 1 is given by

Algorithm 1 Iterative scheme for the joint osmosis model (Alg 1)

� Input image f , b and the α−map;

� Output fused image u;

� Parameters tolerance (tol), maximum number of iterations (max-it), weights
(µ, γ, ϵ) and step-sizes η1,0 = 0.99(1− 2ζ1)/β1,0.
η2,0 = 0.99(1 − 2ζ2)/β2,0 and ζ1 = ζ2 = 0.4, β1,0 = β2,0 = 1, algorithm’s function
name (fun-iPiano).

Function fun-iPiano

Require: u0 = f and v0 = fαb−1−α ▷ Initialisation
for t = 0, ...,max-it do

u∗0 = ut − η1,t∂uO(ut, vt) + ζ1(ut − ut−1)
v∗0 = vt − η2,t∂vO(ut, vt) + ζ2(vt − vt−1)
for t = 0, ...,max-it do

p1 = proxη1,tγD(u
∗
0);

p2 = proxη2,tϵR(v
∗
0);

gap-u=O(p1, vt)−O(ut, vt)− < ∂uO(ut, vt), (p1 − ut) > −(β1,t/2)∥p1 − ut∥22;
gap-v=O(ut, p2)−O(ut, vt)− < ∂vO(ut, vt), (p2 − vt) > −(β2,t/2)∥p2 − vt∥22;
if gap-u < 0 and gap-v < 0 then

ut+1 = p1; vt+1 = p2; break; ▷ accept and update the variabl
end if
update η1,t, η2,t, β1,t, β2,t

end for
if |E(ut+1, vt+1)− E(ut − vt)|/|E(ut+1, vt+1)| <tol then

break; ▷ Exit condition
end if

end for

This algorithm is based on a trial and error strategy, its easier to code as the gradi-
ent can be numerically computed explicitly. Thus, one can try to estimate a numerical
Lipschitz constant and then check if that is a good estimate or not (and in case adapt /
reject).
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3.6.1 Results

Before we look at the different applications of ( Alg 1) to imaging problems, let’s check
our choice of the weight. For the Huber term we choose the constant δ = 0.005, while the
exit condition could be either max-it=10000 iterations or the relative error on the energy
|E(ut+1, vt+1)− E(ut − vt)|/|E(ut+1, vt+1)| is less then a given value (tol). A a reasonable
choice for µ according to tests is the value 100 whilst 0.1 and 1 are taken for γ and ϵ
respectively. The weight µ is taken very large with respect to γ and ϵ to force the effect
of regularisation and preserve structural information at every iteration. Last, ϵ controls
the amount of the foreground information to be preserved.

Results in face fusion

Using the inputs from Figure (3.1). We can plot the result and compare it with previ-
ous methods used in chapter 2, the Osmosis and Poisson models. The proposed joint-
variational mode with (ϵ, µ, γ)=(0.01, 10, 1) shows similar result to the Osmosis model
but has better color contrast. From left to right, Seamless Poisson editing, Osmosis,
Joint-variational Osmosis.

Figure 3.3: Joint-variational Osmosis

Results in editting and cloning

For this application we use the inputs of Figure(5.2), the result is shown in Figure(3.5)
with (ϵ, µ, γ)=(0.5, 100, 1).

(a) Foreground (b) Background (c) α−map

Figure 3.4: Inputs of the fusion
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Figure 3.5: Seamless cloning with joint-variational Osmosis

Cultural heritage

One way to improve old decayed cultural heritage images with invisible text is to take an
infrared image and use this model to fuse them. Figure (5.4) shows a manuscript from
Biblioteca Capitolare (Italy), where the text is only visible after infrared inspection. Ap-
plying this model with a constant α−map and (ϵ, µ, γ)=(0.1, 10, 0.1) gives a good result.

(a) Original (b) Infrared (c) α−map=0.5

Figure 3.6: Inputs of the fusion

Figure 3.7: Seamless cloning with joint-variational Osmosis
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Error

We will use two error mesures to see the difference between input image f and output
image u, for the first mesure let’s recall the definition of the e Geometric Chromaticity
Mean of an image u. GCM(u) = 3

√
uRuGuB with uR, uG, uB the values of u in each color

channel.
Therefore, the so called chromaticity error between two given images u1 and u2 is defined
as

err(u1, u2) =

∣∣∣∣ u1

GCM(u1)
− u2

GCM(u2)

∣∣∣∣. (3.14)

The second error mesure is called Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [14]. We use the two errors to compare the result of this model with the
models from chapter 2.

error table (smaller is better)

Models ∥err(u, f)∥ BRISQUE [14]

Poisson [20] 0.0111 30.2
Osmosis [25] 0.0452 30.2
This model 0.0062 30.1

Using these two types of errors metrics, we can see that the joint variational Osmosis
model result shows the most consistency with the original image f while imporving it.
Ploting error (3.14) of the input image f from Figure (3.1) and the output image u of our
model from Figure (5.1) gives the following result.

Figure 3.8: Error (3.14)
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Chapter 4

Conclusion

In this thesis, we have looked at image fusion using variational methods. We started
with the most basic and important model called Poisson editing, then we studied the
Osmosis model presented in [25] which is s a novel concept for visual computing. Its
an important process in nature that is as occurring as heat diffusion but widely ignored.
It creates nonconstant steady states that can be controlled in a transparent way by the
drift vector field. This offers many application areas, we have seen mainly face fusion
but it can be expanded to other applications like shadow removal [2] and image editing.
Afterward, we focused our work on Parisotto et al. [19]’ modification. It took this consept
further by proposing a convex combination for the drift vector proposed in [25] and adding
two terms of fidelity and regularization, the later being the non-smooth Total Variation
regularization. The resulting model was over all non convex. Mininmizing it was not
possible using conventional methods due to the non convexity barrier, this barrier was
broken with the exceptional work of Ochs et al. [18] and the algorithm iPiano that allowed
us to minimize our model. Finally, we saw some real life results in face fusion, cloning and
cultural heritage.
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