

DEPARTEMENT DES ENERGIES RENOUVELABLES

Mémoire de fin d'étude

Pour l'obtention du diplôme :

MASTER en Énergies Renouvelables

Option : Conversion Photovoltaïque

<u>Thème :</u>

Etude technico-économique d'une centrale photovoltaïque connectée au réseau

CAS d'ADRAR

Présenté par :

M.TOUABI Ali

M.CHAREN MOHAMED AKRAM

Mr:	BENAHMED ABDELMOUMEN	MCB USDB	President
M ^{eme} :	AMROUCHE BEDIA	MCA USDB	Examinatrice
Mr:	BOUZAKI MUSTAPHA	MCB USDB	Examinateur
Mr:	KHODJA FOUAD	MCB USDB	Encadreur

Année 2021/2022

REMERCIEMENT

Le travail faisant l'objet de ce Mémoire du Master a été réalisé au sein du « **Département Des** énergies Renouvelables. »

Ce projet a été fait sous la précieuse direction de monsieur **KHODJA FOUAD** à qui nous exprimions notre profonde gratitude et nos sincères remerciements, pour la confiance qu'il nous a accordée, pour son soutien, ses critiques constructives et ses précieux conseils.

Nous tenons tout particulièrement à remercier Monsieur **BENAHMED ABDELMOUMEN**, pour l'honneur qu'il nous a fait en acceptant d'être membre du jury.

Nous remercions sincèrement Monsieur BOUZAKI MUSTAPHA et Madame AMROUCHE BEDIA, pour l'honneur qu'ils nous accordé en acceptant d'être rapporteur pour ce travail et de le juger.

Nous remercions énormément nos chers amis, avec qui nous avons eu l'occasion de travailler, de discuter et d'échanger nos idées qui n'ont cessé de nous aider durant toute la période des études.

Je dédie ce modeste travail

A ma chère mère,

A mon cher père,

Qui n'ont jamais cessé de formuler des prières à mon égard, de me soutenir et de m'épauler pour que je puisse atteindre mes objectifs.

A mes sœurs et mes frères,

Pour ses soutiens moral et leurs conseils précieux tout au long de mes études.

A mon cher binôme,

A mes enseignants,

A tous mes amis et mes collègues,

A toute la famille du département des Energies renouvelables

Je dédie ce modeste travail à :

A l'homme de ma vie, mon exemple éternel, mon soutien moral et source de joie et de bonheur, celui qui s'est toujours sacrifié pour me voir réussir, que dieu te garde dans son vaste paradis, à toi

mon père.

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma vie et mon bonheur ; maman que j'adore

Aux personnes dont j'ai bien aimé la présence dans ce jour, à tous mes frères et mes sœurs

A mon **binôme ALI** et toute la famille **TOUABI**. Et à tous ceux qui ont contribué de près ou de loin pour que ce projet soit possible, je vous dis merci

Résumé

La production électrique est importante, mais elle est plus cher ; pour une solution économique, il faut utiliser des énergies renouvelables (propre, gratuit et économique) comme l'énergie éolienne et l'énergie photovoltaïque pour profiter le maximum de cette énergie au même temps décroit les énergies fossiles en utilisant des centrale énergies renouvelables connectées aux réseaux.

L'objectif de ce travail est de faire une étude complète sur l'impact de l'intégration de l'énergie solaire photovoltaïque dans le réseau national moyen tension (30kv) en traitant l'exemple de la centrale PV de 20 MW d'Adrar., par suite nous avons faire une étude de la faisabilité technique et économique de l'évolutivité de la centrale par 30 MW, L'adéquation du site pour le développement d'une centrale photovoltaïque est initialement examinée avec des critères d'évaluation du site. Le logiciel PVsyst est utilisé pour modéliser, simuler et estimer les performances de la centrale. L'analyse économique est effectuée sur le système PV avec le logiciel RETScreen.

Mot clés : centrale photovoltaïque, logiciel PVsyst, logiciel RETScreen, étude technico-économique

الملخص

إن إنتاج الكهرباء مهم، لكنه مكلف؛ للحصول على حل اقتصادي، من الضروري استخدام الطاقات المتجددة (النظيفة المجانية والاقتصادية) مثل طاقة الرياح والطاقة الكهروضوئية لتحقيق أقصى استفادة من هذه الطاقة في نفس الوقت تقلل الطاقات الأحفورية باستخدام محطات الطاقة المتجددة المتصلة بالشبكة

الهدف من هذا العمل هو إجراء دراسة كاملة حول تأثير تكامل الطاقة الشمسية الكهروضوئية في الشبكة الوطنية للجهد المتوسط 30 كيلو فولت من خلال معالجة مثال المحطة الكهروضوئية بقدرة 20 ميجاوات في أدرار. بعد ذلك قمنا بدراسة الجدوى التقنية والاقتصادية لتوسيع المحطة بمقدار 30 ميجاوات، يتم فحص ملاءمة الموقع لتطوير محطة كهروضوئية مبدئيًا مع معايير تقييم الموقع. يستخدم برنامج PVsyst لنمذجة ومحاكاة وتقدير أداء المصنع. يتم إجراء التحليل الاقتصادي على النظام الكهروضوئي باستخدام برنامج RETScreen

الكلمات المفتاحية: محطة كهروضوئية، برنامج PVsyst، برنامج RETScreen، الدراسة التقنية والاقتصادية

Abstract

Power generation is important, but it's more expensive; for a solution in economic terms, it is necessary to use renewable energies (clean, free and economical) such as wind energy, photovoltaic to make the most of this energy source at a low level. while reducing fossil fuels by using renewable energy on-grid power plants,

RESUME

The objective of this work is to perform a full study on the impact of photovoltaic solar integration in the national medium voltage 30kv grid by treating the example of 20 MW photovoltaic power plant in Adrar., So we did a feasibility study technical and economic scalability of the 30MW plant, the Suitability of the site for the development of a photovoltaic power plant is examined with the performant criteria. PVsyst software makes it possible to model, simulate and estimate factory performance. Economic analysis was performed on the PV system with RETScreen software

Keywords: photovoltaic power plant, PVsyst software, RETScreen software, technical-economic stud

SOMMAIRE

Remerciement	
Dédicaces	
Résumé	
Liste des figures	
Listes des tableaux	
Nomenclature	
Introduction générale	
CHAPITRE I GENERALITE SUR LE SYSTEME PHOTOVOLTAIQUE	
I.1 Introduction	21
I.2 L'énergie solaire	21
I.3 Le gisement solaire	21
I.3.1Gisement solaire en Algérie	22
I.4 Rayonnement solaire :	22
I.4.1 Le rayonnement solaire au sol :	23
I.4.1.1 Le rayonnement direct :	23
I.4.1.2 Le rayonnement diffus	23
I.4.1.3 Le rayonnement solaire réfléchi	23
I.4.1.4 Le rayonnement global	23
I.4.2 Le rayonnement extraterrestre	24
I.4.2.1 Constante solaire :	24
I.5 Aspects géométriques	25
I.5.1 Les coordonnées solaires :	25
I.5.1.1 Coordonnées équatoriales	25

ſ

I.5.2.1 La latitude φ :	
I.5.2.2 La longitude L :	
I.6 Cellules photovoltaïques	
I.6.1 Le principe de fonctionnement	
I.6.2 Les différents types des cellules photovoltaïques	
I.6.3 Modèle électrique d'une cellule photovoltaïque	
I.6.3.1 Modèle a quatre paramètres :	
I.6.3.2 Les caractéristiques d'une cellule photovoltaïque [12] :	
I.6.4 Association des cellules photovoltaïques	
I.7 Le module photovoltaïque	
I.7.1 Influence de l'irradiation et la température sur le module photovoltaïque	40
I.8 Les systèmes photovoltaïques	41
I.8.1 Les systèmes autonomes :	41
I.8.2 Les systèmes hybrides :	42
I.8.3. Les systèmes connectés au réseau :	43
I.9 Sécurité et protection des installations photovoltaïques	44
I.9.1 Mise à la terre	44
I.9.1.a Protection contre les surtensions dues à la foudre	45
I.9.1.b Protection contre les courants de fuite et décharges statiques	45
I.9.1.c Protection contre les défauts d'isolation côté AC	45
I .9.2 Les interrupteurs-disjoncteurs DC	46
I .9.3 Les fusibles DC	46
I .9.4 La protection départ du circuit électrique AC	47
I.10 conclusion	47
CHAPITRE II : LES CENTRALES PHOTOVOLTAIQUE	
II 1 Introduction	/10

	······································
II.2 Les centrales solaires	

SOMMAIRE

II.2.1 Les centrales solaires thermiques49)
II. 2. 2 Les centrales solaires thermodynamiques)
II. 2. 3 Les centrales solaires photovoltaïques)
II.3 La société SKTM	l
II.3.1 Les centrales photovoltaïques en Algérie52	2
II.3.2 Le réseau électrique national	3
II.4. Technologies des centrale PV	1
II.4.1 Technologie des panneaux photovoltaïque54	1
II.4.2 Technologie les onduleurs photovoltaïques55	5
II.4.2.1 Classification des onduleurs :55	5
II.4.2.1.1 Selon la nature de l'alimentation :	5
II.4.2.1.2 Selon la réversibilité :	5
II.4.2.1.3 Selon la nature de charge	7
II.4.3 Technologie de transformateur)
II.4.3 La technologie de support des modules)
II.5 Architectures des centrales photovoltaïques)
II.5.1 Architecture à onduleur centralisé60)
II.5.2 Architecture à onduleurs « string »61	l
II.5.3 Onduleur master/slave61	l
II.6 Impacts des systèmes photovoltaïques au réseau	2
II.6.1 Influence sur le plan de tension63	3
II.6.2 Influence sur le plan de protection	1
II.6.3 Influence sur la qualité de l'énergie64	1
II.6.4 Impact du PV sur les pertes dans les réseaux de distribution	5
II.7 Impact socio-économique de la centrale photovoltaïque	5
II.8 Impacts Positifs en phase d'exploitation	5
II.9 La centrale photovoltaïque d'Adrar	7

II.9.1 Situation géographique de la centrale photovoltaïque d'Adrar :
II.9.2 Les composants de la centrale
II.9.2.1 Panneaux Solaires Photovoltaïques
II.9.2.2 Les onduleurs
II.9.2.3 Transformateur (élévateur)70
II.9.2.4 Système électrique courant continu70
II.9.2.5 Structure porteuse / de fixation
II.9.2.6 Dispositifs de mesure environnementale72
II.9.2.7 Poste d'évacuation de 30 K73
II.9.3 Systèmes auxiliaires de la centrale75
II.9.3.1 Stockage
II.9.4 Opération d'entretien et de maintenance76
II.9.4.1 Présentation et classification de la maintenance76
II.9.4.2 Le Nettoyage76
II.10.5 La salle de contrôle77
II.11 Conclusion
CHAPITRE II : ETUDE TECHNICO-ECONOMIQUE D'UNE EXTENTION DE LA CENTRALE
PHOTOVOLTAIQUE ADRAR (30MW)
III .1 Introduction
III .2 Outils de simulation d'une centrale photovoltaïque
III.3 Étude technique
III.3.1 Présentation du logiciel PVsyst80
III.3.2 Présentation du site adrar
III.3.2.1 Coordonnées géographiques81
III.3.3 Trajectoire du soleil
III3.4 Détermination d'une configuration champ PV/onduleur83
III.3.5 Résultats de la simulation

ſ

	III.3.5.2 L'indice de performance (PR)	86
	III.3.5.3 Diagramme de pertes	87
	III.3.5.3 les principaux résultats	88
IJ	I.4 Étude économique	89
	III.4.1 Présentation de l'outil de simulation RETSCEEN	89
	III.4.2 Les paramètres techniques et données nécessaires	90
	III.4.3 Analyse d'émissions	91
	III.4.4 Analyse financière :	92
	III.4.5 Analyse de risque	94
	III.5 Conclusion	95
	Conclusion générale	
	Les références	

Annexe

LISETE DES FIGURES

LISTES DES FIGURES

Figure (I.1) : Carte du monde de l'ensoleillent moyen annuel [5]	22
Figure (I.2) : Composante du rayonnement global sur un plan horizontal	24
Figure (I.3) : évolution annuelle de la constante solaire [8]	25
Figure (I.4) : Variation annuelle de la déclinaison du soleil [9]	26
Figure (I.5) : variation de l'angle horaire en fonction de temps solaire vrai [9]	27
Figure (I.6) : Repère horizontal [9]	
Figure (I.7) : Coordonnés terrestre [8]	29
Figure (I.8) : Courbes d'ensoleillement typique par mois pour différentes latitudes	29
Figure (I.9) : Structure basique d'une cellule solaire [9]	30
Figure (I.10) : le principe de fonctionnement d'une cellule photovoltaïque	31
Figure (I.11) : le type de cellule monocristalline	32
Figure (I.12) : le type de cellule poly cristalline	32
Figure (I.13) : le type de cellule amorphe	33
Figure (I.14) : Circuit équivalent du modèle	33
Figure (I.15) : Les caractéristiques d'une cellule photovoltaïque	
Figure (I.16) : circuit ouvert d'une cellule PV	
Figure (I.17) : schéma équivalent d'une cellule PV en court-circuit	
Figure (I.18) : Caractéristiques résultantes d'un regroupement de Np cellules en parallèle	
Figure (I.19) : Caractéristiques résultantes d'un regroupement de Ns cellules en série	
Figure (I.20) : Câblage des cellules dans un module photovoltaïque	40
Figure (I.21) : courbe $Ipv=f(Vpv)$ pour différentes éclairements et une température $Tc =$	25°c 40
Figure (I.22) : courbe Ipv=f(Vpv) pour différentes températures et l'éclairement constante	41
Figure (I.23) : Les différents types de systèmes photovoltaïques autonomes	42
Figure (I.24) : Configuration du système hybride à bus continu	43
Figure (I.25) : Systèmes photovoltaïque connectés au réseau	44
Figure (II.1) : Classification des centrales photovoltaïques connectées au réseau	51
Figure (II.2) : Principe de fonctionnement de l'onduleur non autonomes	
Figure (II.3) : Principe de fonctionnement de l'onduleur autonome base fréquence	57
Figure (II.4) : Principe de fonctionnement de l'onduleur autonome Haute Fréquence	57
Figure (II.5) : Schéma d'un onduleur triphasé [25]	
Figure (II.6) : Architecture à un onduleur : Architecture à un onduleur centralisé	60

LISETE DES FIGURES

Figure (II.7) : Architecture à onduleurs « string »	61
Figure (II.8) : Architecture à onduleurs centralisés en « master/slave »	62
Figure (II.9) : Situation de la société SKTM d'Adrar	67
Figure (II.10) : Panneaux de type YL245P-29b-245utilisé dans la centrale d'Adrar	69
Figure (II.11) : La Boite de jonction	71
Figure (II.12) : La Boite parallèle	71
Figure (II.13) : Structure des panneaux	72
Figure (II.14) : Dispositifs de mesure environnementale	73
Figure (II.15) : Figure Poste d'évacuation de 30 KV	74
Figure (II.16) : Groupe diesel et batteries utilisés	75
Figure (II.17) : Classification de l'entretien et maintenance	76
Figure (II.18) : Machine mobile pour le nettoyage	77
Figure (II.19) : La salle de contrôle	78
Figure (III.1) : Méthode de dimensionnement des systèmes photovoltaïques [41]	80
Figure (III.2) : Présentation de PVsyst	81
Figure (III.3) : Trajectoire du soleil à ADRAR	83
Figure (III.4) : Choix des composants du système	84
Figure (III.5) : Principaux résultats de la simulation	85
Figure (III.6) : Productions normalisées (par <i>KWp</i> installé)	86
Figure (III.7) : L'indice de performance (PR)	87
Figure (III.8) : Diagramme de pertes	
Figure (III.9) : capture d'écran de logiciel RETscreen Expert	90
Figure (III.10) : Les données climatiques du site	91
Figure (III.11) : capture d'écran des renseignements sur l'installation	91
Figure (III.12) : capture d'écran L'équivalent de la réduction annuelle nette d'émissions de	e GES de
cas proposé en barils brut de pétrole	92
Figure (III.13) : capture d'écran de la feuille de calcul et analyse des coûts	93
Figure (III.14) : La variation annuelle des valeurs des flux de trésorerie de la centrale phot	ovoltaïque
de 30MW	93
Figure (III.15) : La variation annuelle du flux monétaire avant impôt pour la centrale phot	ovoltaïque
de 30MW	94
Figure (III.16) : capture d'écran d'impact-retour sur les capitaux propres	95

LISTE DES TABLEAUX

Tableau (II.1) : Tableau des centrales photovoltaïques en Algérie.[19]	.52
Tableau (II.2) : Domaine des tensions du réseau national [20]	.54
Tableau (II.3) : Analyse comparative des supports fixes et mobiles des modules [31]	.59
Tableau (II.4) : Caractéristiques électriques des modules PV de la centrale d'Adrar	.68
Tableau (II.5) : Caractéristiques de l'onduleur	.69
Tableau (II.7) : Caractéristiques principales du tableau MT de la centrale	.73
Tableau (III.1) : Spécifications du site d'adrar	.82
Tableau (III.2) : les données météorologiques du site d'adrar	.82
Tableau (III.3) : les paramètres techniques de la centrale PV	.84

NOMENCLATURE

- a : Azimut du soleil
- **AC** = **CA** : courant alternatif
- α : Facteur d'achèvement de la synchronisation de la tension thermique(V)

 α_{ref} =la valeur de α a la condition de référence (volt)

BF : Basse Fréquence

- **BTA/BTB** : Basse tension classe A et classe B.
- *c* : Vitesse de la lumière dans le vide (m/s).
- *CO2* : dioxyde de carbone
- **DC** = **CC** : courant continu
- $\boldsymbol{\delta}$: Déclinaison du soleil
- *E* : L'éclairement absorbé par la cellule.
- $e_{gap} = l'énergie de bandage (1.12 eV pour S_i)$
- *Eo* : La constante solaire
- *h* : Constante de Planck (J/s).
- *h* : Hauteur du soleil
- *H* :Angle horaire du soleil
- HF : Haute Fréquence
- HTA/HTB : Haut tension classe A et classe B.
- I_0 : Le courant de saturation (A)
- $I_{0,ref}$ = le courant de saturation sous condition de référence (A)
- ic : courant de circuit d'onduleur triphasé
- IGBT : transistor bipolaire à grille isolée
- I_L : Le courant photonique (A)

NOMENCLATURE

 $I_{L,ref}$: le courant photonique sous condition de référence (A)

 $I_{mp,ref}$ =courant de point de puissance maximale dans les conditions de référence (A)

 I_{pv} : Le courant fourni par la cellule (A)

Isc: Le courant de court-circuit

 $I_{sc,ref}$ =courant de court circuit dans les conditions de référence (A)

j : numéro d'ordre du jour dans l'année

L : La longitude

L_C : Perte système

 λ : longitude du lieu.

L_S : Perte de collection (champ photovoltaïque)

MPPT : Suiveur du Point de fonctionnement optimal

 $\mu_{1,sc}$ =coefficient de température du courant de court-circuit

*N*_{*P*}: Nombre de cellule en parallèle

N_s: Nombre de cellule en série

 $\boldsymbol{\varphi}$: Latitude du lieu

 ϕ : l'irradiation réel $\left(\frac{W}{m^2}\right)$

 ϕ_{ref} : l'irradiation à la condition de référence $\binom{W}{m^2}$

P_{inc} : puissance incidente

 P_m : Point de fonctionnement optimum

PME : petites et moyennes entreprises

PV: Photovoltaïque

Pw = P: puissance

q=charege d'électron (1.60217333×10⁻¹⁹)

NOMENCLATURE

- **RDA** : réseau de distribution Algérien
- *RP*: Facteur de performance
- $\boldsymbol{R}_{\boldsymbol{p}}$: La résistance parallèle (Ω)
- R_s : La résistance série (Ω)
- SKTM: Sharikat kahrabaa oua takat moutajadida
- Spa: Société par action
- SPE : Société de production de l'Electricité
- *Ta* : température ambiante
- T_{C} : température de cellule (°*c*)
- $T_{C,ref}$ =température à la condition de référence (°*c*)
- TL : Temps Légal
- *Tm* : température du module
- TSV : Temps Solaire Vrai
- **TU** : Temps Universel
- $V_{mp,ref}$ =tension de point de puissance maximale dans les conditions de référence (V)
- *V_{oc}*: tension en circuit ouvert

 $V_{oc,ref}$ =la tension de circuit ouvert (V) sous conditions de référence

- V_{pv} : La tension aux bornes de la cellule (V)
- Y_f : Energie utile produite
- Y_r : Energie incidence de référence

INTRODUCTION GENERALE

La production de l'énergie est un grand défi pour les années à venir. En effet, les besoins énergétiques des sociétés industrialisées ne cessent d'augmenter. Par ailleurs, les pays en voie de développement auront besoin de plus en plus d'énergie pour mener à bien leur développement. La consommation de ces sources donne lieu à des émissions de gaz à effet de serre et donc une augmentation de la pollution, l'épuisement rapide et l'instabilité des prix des fossiles à l'échelle mondiale ont nécessité une recherche urgente pour de nouvelles sources d'énergie pour répondre aux exigences actuelles

Aujourd'hui, les systèmes photovoltaïques connectés au réseau deviennent connus comme l'une des technologies les plus populaires autour pays. Installation et application faciles, peu d'entretien coûts de réparation, réduction des pertes de transmission et de distribution et la production d'énergie propre a été qualifiée de motivation pour cette attractivité [1].

Ces services publics ont entraîné la croissance rapide de cette technologie. À cet égard, la puissance photovoltaïque dans le monde a augmenté de près de 15 % en 2021 par rapport à l'année précédente, passant de 709,5 GW à 843,1 GW, ce qui nous confirme que la technologie PV C'est l'une des industries qui connaît actuellement la croissance la plus rapide [2].

L'Algérie est plus chanceuse que de nombreux autres pays en raison de sa situation géographique pour le potentiel d'énergie solaire. Selon le ministère de transition énergétique et des energie renouvelable, la durée d'insolation totale moyenne annuelle est identifiée à 2000 h et peut atteindre les 3900 heures hauts plateaux et Sahara [3]

Dans le cadre de ce travail, nous sommes intéressés à l'étude technique et économique d'une extension de la centrale photovoltaïque situé à Wilaya d'Adrar. Ce mémoire est composé de trois chapitres, constitués comme suit :

Dans le premier chapitre, on va donner des explications générales sur le gisement solaire et quelques notions fondamentales d'astronomie puis on mettra l'accent sur l'énergie solaire photovoltaïque qui nous intéresse particulièrement dans cette étude

Le second chapitre est consacré à la présentation des centrale photovoltaïque et leur impact sur le réseau de distribution et l'environnement. Ensuit on a fait la description générale de la centrale photovoltaïque d'Adrar à savoir : sa situation géographique, son développement, sa composition (les champs solaires, les boites de jonctions, les onduleurs, la salle de contrôle, l'armoire de communication des charges et le dispositif de mesures environnementales) et le fonctionnement de cette centrale. Une partie sur l'opération d'entretien et de maintenance a été également effectuée.

Enfin, dans le chapitre 3, nous présenterons une étude technico-économique détaillée de l'extension de la centrale photovoltaïque 20MW situé à Adrar par une autre centrale solaire PV de capacité 30 MW à l'aide des logiciels PVsyst et RETScreen

CHAPITRE I

GENERALITES SUR L'ENERGIE SOLAIRE ET LES SYSTEMES PV

I.1 Introduction

L'énergie solaire est la plus dominante de toutes les énergies renouvelables, elle est l'une des plus facilement exploitables. Comme la plupart des énergies douces, elle donne à l'usager la possibilité de subvenir sans intermédiaire à une partie de ses besoins.

La connaissance de la position du soleil dans le ciel à tout instant et en tout lieu est nécessaire pour l'étude de l'énergie interceptée. Les heures du lever et du coucher ainsi que la trajectoire du soleil dans le ciel au cours d'une journée permettent d'évaluer certaines grandeurs telles que la durée maximale d'insolation et l'irradiation globale.

Comme pour toutes les applications de l'énergie solaires, une bonne connaissance du gisement solaire est nécessaire à l'étude des systèmes photovoltaïque. L'effet photovoltaïque constitue la conversion directe de l'énergie du rayonnement solaire en énergie électrique au moyen des cellules généralement à base de silicium

I.2 L'énergie solaire

Le soleil est une source quasiment inépuisable d'énergie qui envoie à la surface de la terre un rayonnement qui représente chaque année environ 8400 fois la consommation énergétique. Cela correspond à une puissance instantanée reçue de 1 kilowatt crête par mètre carré répartie sur tout le spectre, de l'ultraviolet à l'infrarouge. Les déserts de notre planète reçoivent en 6 heures plus d'énergie du soleil que n'en consomme l'humanité en une année. L'énergie solaire est produite et utilisée selon plusieurs procédés :

• L'énergie solaire thermique : qui consiste tout simplement à produire de la chaleur grâce à des panneaux sombres. On peut aussi produire avec de la vapeur à partir de la chaleur du soleil puis convertir la vapeur en électricité.

• L'énergie solaire photovoltaïque : qui consiste à produire directement de l'électricité à partir de la lumière à l'aide de panneaux solaires. Cette forme d'énergie est déjà exploitée dans de nombreux pays, surtout dans les pays ou les régions ne disposant pas de ressources énergétiques conventionnelles tels que les hydrocarbures ou le charbon. [4]

I.3 Le gisement solaire

Le gisement solaire est un ensemble de données décrivant l'évolution du rayonnement solaire disponible au cours d'une période donnée. Il est utilisé pour simuler le fonctionnement d'un système

énergétique solaire et faire un dimensionnement le plus exact possible compte tenu de la demande à satisfaire

I.3.1Gisement solaire en Algérie

Le gisement solaire est un ensemble de données décrivant l'évolution du rayonnement solaire disponible au cours d'une période donnée.

Il est utilisé pour simuler le fonctionnement d'un système énergétique solaire et faire un dimensionnement le plus exact possible compte tenu de la demande à satisfaire.

Il est utilisé dans des domaines aussi variés que l'agriculture, la météorologie, les applications énergétiques et la sécurité publique. De par sa situation géographique, l'Algérie dispose d'un des gisements solaires les plus élevés au monde comme le montre la figure (I.1).

La durée d'insolation sur la quasi-totalité du territoire national dépasse les 2000 heures annuellement et peut atteindre les 3900 heures (hauts plateaux et Sahara). L'énergie reçue quotidiennement sur une surface horizontale de 1 m 2 est de l'ordre de 5 KWh sur la majeure partie du territoire national, soit près de 1700 KWh/m2 /an au Nord et 2263 kwh/m2 /an au Sud du pays, Ce gisement solaire dépasse les 5 milliards de GW. [5]

Figure (I.1) : Carte du monde de l'ensoleillent moyen annuel [5]

I.4 Rayonnement solaire :

Le soleil est une étoile parmi tant d'autres. Il a un diamètre de 1390000 km, soit environ 50 fois celui de la terre. Il est composé à 80% d'hydrogène, 19% d'hélium et 1% d'un mélange de 100 éléments,

soit pratiquement tous les éléments chimiques connus depuis que Langevin et Perrin, s'appuyant sur la théorie de la relativité d'Einstein, ont émis l'idée il y a une soixantaine d'années que c'est l'énergie de fusion nucléaire qui fournit au soleil sa puissance, il est aujourd'hui admis que le soleil est une bombe thermonucléaire hydrogène –hélium transformant chaque seconde 564 millions de tonnes d'hydrogène en 560 millions tonnes d'hélium; la réaction se faisant dans son noyau à la température d'environ 25 millions de degrés Celsius. Ainsi, à chaque seconde, le soleil est allégé de 4 millions de tonnes dispersées sous forme de rayonnement. [6]

Le rayonnement solaire est la matière première de l'énergie solaire. C'est une propagation d'une onde de longueur qui varie entre $4 * 10^{-6}$ m et 0.2m. Sans la nécessite d'un support physique pour se déplacer, il arrive au sol après la perte d'une grande partie de son intensité, à cause d'une partie de l'ultraviolet, qui s'absorbe

I.4.1 Le rayonnement solaire au sol :

Le rayonnement émis par le soleil est constitué d'ondes électromagnétiques dont une partie parvient constamment à la limite supérieure de l'atmosphère terrestre. Pour connaitre l'énergie reçue à un site donné, il est nécessaire de repérer ce site sur la surface terrestre, de connaitre la position et la trajectoire du soleil dans la voûte céleste et les mouvements de la terre autour du soleil.

Après sa traversée de l'atmosphère, le rayonnement solaire peut être décomposé en

I.4.1.1 Le rayonnement direct : Est reçu directement du soleil, sans diffusion par l'atmosphère. Ses rayons sont parallèles entre eux, il forme donc des ombres et peut être concentré par des miroirs. Il peut être mesuré par un pyrhéliomètre.

I.4.1.2 Le rayonnement diffus : est constitué par la lumière diffusée par l'atmosphère (air, nébulosité, aérosols). La diffusion est le phénomène qui répartit un faisceau parallèle en une multitude de faisceaux partant dans toutes les directions. Dans le ciel, ce sont à la fois les molécules d'air, les gouttelettes d'eau (nuages) et les poussières qui produisent cet(éclatement) des rayons du soleil. Cela dépend donc avant tout des conditions météorologiques.

I.4.1.3 Le rayonnement solaire réfléchi ou l'albédo du sol est le rayonnement qui est réfléchi par le sol ou par des objets se trouvant à sa surface. Cet albédo peut être important lorsque le sol est particulièrement réfléchissant (eau, neige).

I.4.1.4 Le rayonnement global : est la somme de tous les rayonnements reçus, y compris le rayonnement réfléchi par le sol et les objets qui se trouvent à sa surface. Il est mesuré par un

pyranomètre ou un Solari mètre sans écran. Les stations météorologiques généralement mesurer le rayonnement global horizontal par un Pyranomètre placé horizontalement à l'endroit requis. [7]

Figure (I.2) : Composante du rayonnement global sur un plan horizontal I.4.2 Le rayonnement extraterrestre

Le rayonnement solaire hors atmosphère ne dépend que des paramètres astronomiques, il est caractérisé par une donnée fondamentale appelée constante solaire.

I.4.2.1 Constante solaire :

La constante solaire E0 est le flux énergétique reçu par une surface unité, normale aux rayons solaires, située en dehors de l'atmosphère à une distance moyenne terre-Soleil.

La mesure de la constante solaire a fait l'objet de nombreuses expériences. Dans notre cas nous adopterons la valeur de 1353 w/m² (+- 1.5%). Ce flux, dit constante solaire varie cependant légèrement au cours de l'année, suivant les variations de la distance terre-Soleil [8].

En première approximation, on peut calculer la valeur de E en fonction du numéro du jour de l'année j par la relation suivante :

$$Eo = E[1 + 0.033cos(0.984j)]$$
(I-1)

Figure (I.3) : évolution annuelle de la constante solaire [8]

I.5 Aspects géométriques

Nous allons nous intéresser ici aux aspects géométriques du rayonnement solaire intercepté par la Terre dans le but ultérieur de calculer le flux reçu par un plan incliné placé à la surface de la Terre et orienté dans une direction fixée. La connaissance de ce flux est la base du dimensionnement de tout système solaire.

I.5.1 Les coordonnées solaires :

Pour un lieu donné, la position du soleil est repérée à chaque instant de la journée et de l'année par deux systèmes de coordonnées différents :

- Par rapport au plan équatorial de la terre (repère équatorial).
- Par rapport au plan horizontal du lieu (repère horizontal).

I.5.1.1 Coordonnées équatoriales

Le mouvement du soleil est repéré par rapport au plan équatorial de la terre à l'aide de deux angles (δ , H).

a- Déclinaison solaire :

C'est l'angle formé par la direction du soleil et le plan équatorial terrestre, on adopte la convention de compter positivement les latitudes de l'hémisphère Nord (compris entre 0° à l'équateur et +90° au pôle Nord), et négativement celle de l'hémisphère Sud (compris entre 0° à l'équateur et -90° au pôle Sud), et variée tout au long de l'année entre deux valeurs extrêmes±23.45° [9].

Les lois du mouvement relatif terre-soleil permettent de calculer les variations de la déclinaison au long de l'année. Pour la pratique, une formule d'approximation est suffisante, elle est donnée par l'équation (I-2).

$$\delta = 23.5.\sin\left(\frac{_{360}}{_{365}}(j-80)\right) \tag{I-2}$$

Ou avec plus de précision :

$$\delta = \operatorname{Arc}\operatorname{Sin}\left(0.389\sin\left(\frac{360}{356}\left(J - 82\right) + 2\sin\left(\frac{360}{356}\left(J - 2\right)\right)\right)\right)$$
(I-3)

Avec : J : le numéro du jour de l'année compté à partir du 1er janvier, c'est à dire il varie de 1à 365 ou 366 selon l'année.

 δ Varie entre deux valeurs extrêmes : $-\delta 0 \le \delta \le +\delta 0 \operatorname{avec} \delta 0 = 23,45^{\circ}$.

La variation de la déclinaison du soleil au cours de l'année est représentée par la figure (I.4).

Figure (I.4) : Variation annuelle de la déclinaison du soleil [9]

b- Angle horaire du soleil H

C'est l'angle que font les projections de la direction du soleil avec la direction du méridien du lieu, l'angle horaire du soleil varie à chaque instant de la journée selon la relation

$$H = 15(TSV - 12)$$
 (I-4)

Avec

$$TSV = TI - TU + \left(\frac{\Delta t + 4\lambda}{60}\right) = TL - \left(TU - \frac{\lambda}{15}\right) + \frac{\Delta t}{60}$$
(I-5)

$$\Delta t = 9.87 \sin^2\left(\frac{360}{365}(J-81)\right) - 7.35\cos\left(\frac{360}{365}(J-81)\right) - 1.5\sin\left(\frac{360}{365}(J-81)\right)$$
(I-6)

TSV (Temps Solaire Vrai) : Temps repéré de façon que le soleil se trouve au zénith à midi.

- *TU* (Temps Universel) : Le décalage horaire par rapport au méridien de Greenwich.
- *TL* (Temps Légal) : Temps donné par une montre.
- Δt : Correction de l'équation du temps.
- λ : longitude du lieu.
- L'angle horaire H varie de —180° à+180°

On prend :

II H > 0 a pr es midi.

III H < 0 le matin.

IV H = 0 midi TSV.

Figure (I.5) : variation de l'angle horaire en fonction de temps solaire vrai [9] I.5.1.2 Coordonnées horizontales :

Le repère horizontal est formé par le plan de l'horizon astronomique et vertical du lieu. Dans ce repère, les coordonnées sont la hauteur h et l'azimut a, figure (I.6)

Figure (I.6) : Repère horizontal [9]

a- La hauteur du soleil (h) :

C'est l'angle que fait la direction du soleil avec sa projection sur le plan horizontal. La hauteur du soleil varie à chaque instant de la journée et de l'année selon la relation suivante :

$$sin(h) = cos(\delta).cos(\varphi).cos(H) + sin(\varphi).sin(\delta)$$
 (I-7)

Avec h : varie entre -90° à $+90^{\circ}$.

On prend : h > 0 le jour, h < 0 la nuit et h = 0 aux lever et coucher

C'est l'angle que fait la projection de la direction du soleil avec la direction du Sud. L'azimut du soleil varie à chaque instant de la journée selon la relation suivante [9] :

$$\sin(a) = \frac{\cos(\delta).\sin(H)}{\cos(h)}$$
(I-8)

Avec : a : varieentre – 180° à + 180°

On prend : $a > 0 \Rightarrow$ vers l'ouest, $a < 0 \Rightarrow$ vers l'est et $a = 0 \Rightarrow$ direction du sud.

I.5.2. Coordonnées terrestres

La Terre est pratiquement une sphère qui tourne autour d'un axe passant par le pôle Nord et le pôle Sud.

Tout point sur la terre est caractérisé par sa latitude et sa longitude. Ces deux grandeurs représentent les coordonnées géographiques de ce point ainsi que par son altitude, figure (I.7)

Figure (I.7) : Coordonnés terrestre [8]

I.5.2.1 La latitude φ :

La latitude d'un lieu à la surface de la terre est l'angle entre l'équateur et le rayon de la terre passant par le lieu considéré. La latitude φ est comptée de 0° à +90° positivement dans l'hémisphère nord et négativement dans l'hémisphère sud.

La latitude a aussi un effet important : les journées estivales s'allongent à mesure qu'on s'éloigne de l'équateur, et le soleil est plus bas au midi solaire. Les journées d'hiver sont plus courtes, et le soleil encore plus bas qu'à l'équateur. Autrement dit, l'intensité maximale (à midi) et la quantité totale de rayonnement solaire (G) sur un plan horizontal diminuent à mesure qu'augmente la latitude, Figure (I.8) [8]

Figure (I.8) : Courbes d'ensoleillement typique par mois pour différentes latitudes

I.5.2.2 La longitude L :

La longitude d'un lieu correspond à l'angle formé par deux plans méridiens (passant par l'axe des pôles), l'un étant pris comme origine (méridien de Greenwich 0°) et l'autre déterminé par le lieu envisagé. On affecte du signe (+) les méridiens situés à l'est de ce méridien, et du signe (-) les méridiens situés à l'ouest. La longitude d'un lieu peut aussi être comprise entre -180°

et +180°, à tout écart de 1° de longitude correspond à un écart de 4 minutes de temps. La longitude sera désignée ici par la lettre $\lambda 0$ [8].

I.6 Cellules photovoltaïques

La cellule PV ou encore photopile est le plus petit élément d'une installation photovoltaïque. Elle est composée de matériaux semi-conducteurs et transforme directement l'énergie lumineuse en énergie électrique. Les cellules photovoltaïques sont constituées :

• D'une fine couche semi-conductrice (matériau possédant une bande interdite, qui joue le rôle de barrière d'énergie que les électrons ne peuvent franchir sans une excitation extérieure, et dont il est possible de faire varier les propriétés électroniques) tel que le silicium, qui est un matériau présentant une conductivité électrique relativement bonne,

- D'une couche anti-reflet permettant une pénétration maximale des rayons solaires,
- D'une grille conductrice sur le dessus ou cathode et d'un métal conducteur sur le dessous ou anode,

• Les plus récentes possèdent même une nouvelle combinaison de multicouches réfléchissants justes en dessous du semi-conducteur, permettant à la lumière de rebondir plus longtemps dans celui-ci pour améliorer le rendement [9]

I.6.1 Le principe de fonctionnement

Le fonctionnement de la cellule photovoltaïque est fondé sur les propriétés de semiconducteurs qui, percutés par les photons, mettent en mouvement un flux d'électrons. Les photons sont des particules élémentaires qui transportent l'énergie solaire à 300 000 km/s et qu'Albert Einstein appelait dans les années 1920 les « grains de lumière ». Lorsqu'ils frappent un élément semi-conducteur comme le silicium , ils arrachent des électrons à ses atomes . Ces électrons se mettent en mouvement, de façon désordonnée, à la recherche d'autres « trous » où se repositionner. Mais pour qu'il y ait un courant électrique, il faut que ces mouvements d'électrons aillent tous dans le même sens. Pour les y aider, on va associer deux types de silicium. La face exposée au soleil est « dopée » avec des atomes de phosphore qui comportent plus d'électrons que le silicium, l'autre face est dopée avec des atomes de bore qui comportent moins d'électrons. Cette double face devient une sorte de pile : le côté très chargé en électrons devient la borne négative (N), le côté avec moins d'électrons devient la borne positive (P). Entre les deux il se crée un champ électrique.

Quand les photons viennent exciter les électrons, ceux-ci vont migrer vers la zone N grâce au champ électrique, tandis que les « trous » vont vers la zone P. Ils sont récupérés par des contacts électriques déposés à la surface des deux zones avant d'aller dans le circuit extérieur sous forme d'énergie électrique. Un courant continu se créé. Une couche anti-reflet permet d'éviter que trop de photons se perdent en étant réfléchis par la surface. [10]

LE PRINCIPE DE LA CELLULE PHOTOVOLTAÏQUE

Figure (I.10) : le principe de fonctionnement d'une cellule photovoltaïque I.6.2 Les différents types des cellules photovoltaïques

Il existe différents types de cellules solaires ou cellules photovoltaïques. Chaque type de cellule est caractérisé par a un rendement et un coût qui lui sont propres. Cependant, quel Que soit le type, le rendement reste assez faible : entre 8 et 23 % de l'énergie que les cellules reçoivent.

Actuellement, il existe trois principaux types de cellules [11]

• Les cellules monocristallines : Elles ont le meilleur rendement (de 12 à 18% voir jusqu'à 24.7 % en laboratoire). Cependant, elles coûtent trop chers due à leur fabrication complexe

Figure (I.11) : le type de cellule monocristalline

• Les cellules poly cristallin : Leur conception est plus facile et leur coût de fabrication est moins important. Cependant leur rendement est plus faible : de 11% à 15% jusqu'à 19.8% en laboratoire).

Figure (I.12) : le type de cellule poly cristalline.

• Les cellules amorphes :

Elles ont un faible rendement (5% à 8%, 13% en laboratoire), mais ne nécessitent que de très faibles épaisseurs de silicium et ont un coût peu élevé.

Elles sont utilisées couramment dans de petits produits de consommation telle que des calculatrices solaires ou encore des montres.

L'avantage de ce dernier type est le fonctionnent avec un éclairement faible (Même par temps couvert ou à l'intérieur d'un bâtiment). [11]

Figure (I.13) : le type de cellule amorphe

I.6.3 Modèle électrique d'une cellule photovoltaïque

Il existe Plusieurs modèles mathématiques sont utilisés pour simuler le fonctionnement d'une cellule photovoltaïque. Ces modèles se différencient par la méthode de calcul et le nombre des paramètres intervenants dans la caractéristique courant-tension, dans notre travail nous avons utiliser modèle a quatre paramètres

I.6.3.1 Modèle a quatre paramètres :

Il a été étudié par Caisheng Wang [12]. Ce model traite la cellule PV comme une source de courant, dépendante de l'éclairement, connectée en parallèle avec une diode et en série avec une résistance série R_s , l'effet de la résistance parallèle R_s est très petit dans un module simple, ainsi le modèle ne l'inclut pas (Figure (I.14)). Les quatre paramètres apparaissant dans l'équation de la caractéristique I(V) sont : le courant photonique I_L , la résistance série Rs, et deux caractéristiques de la diode I_0 et α ces paramètres ne sont pas des quantités mesurables et ne sont pas généralement inclus dans les données des fabricants [12]

Figure (I.14) : Circuit équivalent du modèle

-Le courant de sortie d'une cellule photovoltaïque se met sous la forme mathématique suivante [12]:

$$I_{pv} = I_L - I_D = I_L - I_0 \left[exp\left(\frac{V_{pv} + IR_s}{\alpha}\right) - 1 \right]$$
(I.9)

D'où :

 I_L =Le courant photonique (A)

 I_0 =Le courant de saturation (A)

 I_{pv} = Le courant fourni par la cellule (A)

 V_{pv} = La tension aux bornes de la cellule (V)

 R_s =La résistance série (Ω)

 α = Facteur d'achèvement de la synchronisation de la tension thermique(V)

-Calcule de I_L :

Le courant photonique est lié à l'éclairement, à la température et au courant photonique mesuré aux conditions de référence par

$$I_{L} = \frac{\phi}{\phi_{ref}} \left[I_{L,ref} + \mu_{1,sc} (T_{C} - T_{C,ref}) \right]$$
(I.10)

 $\phi = l'éclairement réel \left(\frac{W}{m^2} \right)$

 ϕ_{ref} =l'éclairement à la condition de référence $\binom{W}{m^2}$

 $I_{L,ref}$ =le courant photonique sous condition de référence (A)

 T_C =température de cellule (°c)

 $T_{C,ref}$ =température à la condition de référence (°*c*)

 $\mu_{1,sc}$ =coefficient de température du courant de court-circuit

Calcule de I_0

-Le courant de saturation dépend de la température, son expression est sous la forme :

$$I_0 = I_{0,ref} \left(\frac{T_{C,ref} + 273}{T_C + 273} \right)^3 \exp\left[\frac{e_{gap} N_s}{q \alpha_{ref}} \left(1 - \frac{T_{C,ref} + 273}{T_C + 273} \right) \right]$$
(I.11)

D'où

 $I_{0,ref}$ =le courant de saturation sous condition de référence (A)

$$e_{gap}$$
=l'énergie de bandage (1.12 eV pour S_i)

 N_s =nombre de cellules en série

$$q$$
=charege d'électron (1.60217333× 10⁻¹⁹)

 α_{ref} =la valeur de α a la condition de référence (volt)

On peut calculer $I_{0,ref}$ à partir de cette expression :

$$I_{0,ref} = I_{L,ref} \exp\left(-\frac{V_{oc,ref}}{\alpha_{ref}}\right)$$
(I.12)

 $V_{oc,ref}$ =la tension de circuit ouvert (V) sous conditions de référence

On peu calculer α_{ref} à partir de cette équation :

$$\alpha_{ref} = \frac{2V_{mp,ref} - V_{oc,ref}}{\frac{I_{sc,ref}}{I_{sc,ref} - I_{mp,ref}} + ln\left(1 - \frac{I_{mp,ref}}{I_{sc,ref}}\right)}$$
(I.13)

D'où

 $V_{mp,ref}$ =tension de point de puissance maximale dans les conditions de référence (V) $I_{mp,ref}$ =courant de point de puissance maximale dans les conditions de référence (A) $I_{sc,ref}$ =courant de court circuit dans les conditions de référence (A)

Calcule de α :

$$\alpha = \frac{T_{C,ref} + 273}{T_C + 273} \,\alpha_{ref} \tag{I.14}$$

Calcule de *Rs* :

$$Rs = \frac{\alpha_{ref} ln \left(1 - \frac{I_{mp, ref}}{I_{sc, ref}}\right) + V_{oc, ref} - V_{mp, ref}}{I_{mp, ref}}$$
(I.15)

I.6.3.2 Les caractéristiques d'une cellule photovoltaïque [12] :

Les caractéristiques d'une cellule solaire photovoltaïque sont caractérisées par un certain nombre de paramètres extrait de caractéristique courant-tension. Ces paramètres peuvent être déterminés à partir des courbes courant-tension

Figure (I.15) : Les caractéristiques d'une cellule photovoltaïque

1-tension en circuit ouvert V_{oc} :

C'est la tension mesurée aux bornes de la cellule et pour laquelle le courant débité par la cellule solaire est nul, elle est donnée par la relation :

Figure (I.16) : circuit ouvert d'une cellule PV

$$I_{L} - I_{0} \left[exp\left(\frac{V_{oc}}{\alpha}\right) - 1 \right] = 0$$
 (I.16)
$$V_{oc} = \alpha ln\left(\frac{I_{L} + I_{0}}{I_{0}}\right)$$
 (I.17)

2-Le courant de court-circuit I_{sc} :

Figure (I.17) : schéma équivalent d'une cellule PV en court-circuit
C'est le courant pour lequel la tension aux bornes de la cellule ou du générateur PV est nul. Ce courant se confond avec le photo-courant *I* dans le cas contraire, en annulant la tension V dans l'équation (I.9), on obtient :

$$I_{SC} = I_L - I_0 \left[exp\left(\frac{IR_S}{\alpha}\right) - 1 \right] \qquad (I.18)$$

La résistance série R_s est faible donc on peut négliger le terme $I_0\left[exp\left(\frac{IR_s}{\alpha}\right) - 1\right]$

D'où $I = I_L$ (I.19)

3- La puissance-crête P_C :

La puissance qu'il délivre sous un rayonnement solaire de 1000 W/m^2 a 25C°, elle s'exprime en Watt-crête (W_c)

4- Point de fonctionnement optimum, **Pm**(**Vm**, **Im**) :

Lorsque la puissance de crête est maximum en plein soleil, Pm = Vm * Im

5- Rendement η (%) :

Le rendement, 5 des cellules PV désigne le rendement de conversion en puissance. Il est défini comme étant le rapport entre la puissance maximale délivrée par la cellule et la puissance lumineuse incidente, *Pin*

$$\eta = \frac{Pm}{P_{inc}} = \frac{FF.V_{OC}.I_{CC}}{Pin}$$
(I.19)

Ce rendement peut être amélioré en augmentant le facteur de forme, le courant de court-circuit et la tension à circuit ouvert. Le rendement de conversion est un paramètre essentiel. En effet, la seule connaissance de sa valeur permet d'évaluer les performances de la cellule.

6- Facteur de forme FF :

Il définit l'efficacité de la cellule solaire et peut également renseigner du vieillissement de la cellule, il indique aussi la puissance maximale de la cellule solaire :

$$FF = \frac{Pm}{V_{oc}.I_{SC}} - \frac{Vm*Im}{V_{oc}*I_{SC}}$$
(I.20)

I.6.4 Association des cellules photovoltaïques

L'association de plusieurs cellules photovoltaïques en série/parallèle donne lieu à un générateur photovoltaïque. Si les cellules se connectent en série, les tensions de chaque cellule

s'additionnent, augmentant la tension totale du générateur. D'une autre part, si les cellules se connectent en parallèle, c'est l'ampérage qui augmentera [7] :

1- Association des cellules photovoltaïques en parallèle

Les propriétés du groupement en parallèle des cellules sont duales de celles du groupement en série. Ainsi, dans un groupement des cellules connectées en parallèle, les cellules sont soumises à la même tension et la caractéristique résultante du groupement est obtenue par addition des courants.

L'équation (I.21) résume les caractéristiques électriques d'une association parallèle de N_P cellules.

La figure (I.18) montre les caractéristiques résultantes d'un regroupement de N_P cellules en parallèle.

$$I'_{OC} = N_P \cdot I_{SC} \tag{I.21}$$

Avec :

Isc : Courant de court-circuit

2- Association des cellules photovoltaïques en série

D'autre part un groupement en série, les cellules sont traversées par le même courant et la caractéristique résultante du groupement en série est obtenue par addition des tensions élémentaires.

L'équation (I.22) résume les caractéristiques électriques d'une association série de N_s cellules.

La figure (I.19) montre les Caractéristiques résultantes d'un regroupement de Ns cellules en série

$$V'_{OC} = N_S \cdot V_{OC} \tag{I.22}$$

Avec :

Figure (I.19) : Caractéristiques résultantes d'un regroupement de Ns cellules en série I.7 Le module photovoltaïque

La cellule photovoltaïque élémentaire constitue un générateur de très faible puissance vis-àvis des besoins de la plupart des applications domestiques ou industrielles. Une cellule élémentaire de quelques dizaines de centimètres carrés, délivre au maximum, quelques watts sous une tension inférieure au volt (tension de jonction PN). Pour produire plus de puissance, plusieurs cellules doivent être assemblées afin de créer un module ou un panneau photovoltaïque. En effet, les modules PV sont composés d'un ensemble de cellules mises en série, réalisant la conversion proprement dite de la lumière du soleil en électricité. Ils sont eux-mêmes associés en série et parallèle pour former un champ photovoltaïque d'une puissance crête définie selon des conditions spécifiques d'éclairement, de température et de spectre solaire. La plupart des modules commercialisés sont constitués de deux à quatre réseaux de cellules en silicium cristallins connectés en sériée. [13]

Figure (I.20) : Câblage des cellules dans un module photovoltaïque I.7.1 Influence de l'irradiation et la température sur le module photovoltaïque

Influence de l'éclairement

L'énergie électrique produite par une cellule dépend de l'éclairement qu'elle reçoit sur sa surface. La figure (I.21) représente la caractéristique courant-tension d'une cellule en fonction de l'éclairement, à une température constante Le courant est directement proportionnel au rayonnement, contrairement à la tension qui ne varie que très peu en fonction de l'éclairement.

Figure (I.21) : courbe Ipv=f(Vpv) pour différentes éclairements et une température $Tc=\!25^\circ c$

Influence de la température

La température est un paramètre très important dans le comportement des cellules solaires puisqu'elles sont exposées au rayonnement solaire. La figure (I.22) montre l'influence de la température, sur la caractéristique I(V) de la cellule solaire lorsque la température varie. On

observe que l'augmentation de la température provoque une augmentation du courant du court-circuit I_{sc} , en même temps on assiste à une diminution nette de la tension en circuit ouvert (V_{oc}). L'augmentation de la température entraîne une diminution de la tension (V_m) et un léger accroissement du courant (Im) et par la suite une baisse relative de la puissance maximale (P_m)

Figure (I.22) : courbe Ipv=f(Vpv) pour différentes températures et l'éclairement constante

I.8 Les systèmes photovoltaïques

On rencontre généralement trois types de systèmes photovoltaïques, les systèmes autonomes, les systèmes hybrides et les systèmes connectés à un réseau [14]. Les deux premiers sont indépendants du système de distribution d'électricité, en les retrouvant souvent dans les régions éloignées.

I.8.1 Les systèmes autonomes :

Ces systèmes photovoltaïques sont installés pour assurer un fonctionnement autonome sans recours à d'autres sources d'énergie. Généralement, ces systèmes sont utilisés dans les régions isolées et éloignées du réseau. Les différents types de systèmes photovoltaïques autonomes sont décrits sur la figure (I.23) qui traduit les différentes possibilités offertes : couplage direct à une charge adaptée ou couplage avec adaptateur d'impédance MPPT (Maximum Power Point Tracking), fonctionnement au fil du soleil ou avec stockage d'énergie électrique.

Figure (I.23) : Les différents types de systèmes photovoltaïques autonomes.

Le couplage direct implique un fonctionnement au fil du soleil, donc à puissance essentiellement variable au cours de la journée. Les charges typiques à courant continu qui peuvent satisfaire le critère (tension constante à puissance variable) sont les accumulateurs électrochimiques. Les charges alternatives sont les pompes à eau, c'est le pompage au fil du soleil, le stockage est néanmoins présent sous la forme d'eau emmagasinée (dans un réservoir) Dans la plupart des cas une adaptation d'impédance doit être réalisée en insérant entre le générateur et sa charge électrique un dispositif électronique qui permet de forcer le système à fonctionner à sa puissance maximale.

I.8.2 Les systèmes hybrides :

Les systèmes d'énergie hybride associent au moins deux sources d'énergie renouvelable aussi une ou plusieurs sources d'énergie classiques. Les sources d'énergie renouvelable, comme le photovoltaïque et l'éolienne ne délivrent pas une puissance constante, mais vu leurs complémentarités, leur association permet d'obtenir une production électrique continue. Les systèmes d'énergie hybrides sont généralement autonomes par rapport aux grands réseaux interconnectés et sont souvent utilisés dans les régions isolées. Les différentes sources dans un système hybride peuvent être connectées en deux configurations, architecture à bus continu et architecture à bus alternatif. [14]

Figure (I.24) : Configuration du système hybride à bus continu

Dans la première configuration, la puissance fournie par chaque source est centralisée sur un bus continu (voir figure). Ainsi, les systèmes de conversion d'énergie à courant alternatif (AC) fournissent d'abord leur puissance à un redresseur pour être convertie ensuite en courant continu (DC). Les générateurs sont connectés en série avec l'onduleur pour alimenter les charges alternatives. L'onduleur doit alimenter les charges alternatives à partir du bus continu et doit suivre la consigne fixée pour l'amplitude et la fréquence. La fonction spécifique du système de supervision est la commande de mise en marche et arrêt des générateurs et du système de stockage. L'avantage de cette topologie est la simplicité de commande. Dans la seconde configuration tous les composants du système hybride sont reliés à la charge alternative. [14]

I.8.3. Les systèmes connectés au réseau :

Les systèmes de production d'énergie photovoltaïque connectés à un réseau est produite plus près des lieux de consommation. Les systèmes connectés à un réseau réduisent la nécessitée d'augmenter la capacité des lignes de transmission et de distribution. Il produit sa propre électricité et achemine son excédent d'énergie vers le réseau, auprès duquel il s'approvisionne au besoin, ces transferts éliminent le besoin d'acheter et d'entretenir une batterie. Il est toujours possible d'utiliser ceux systèmes pour servir d'alimentation d'appoint lorsque survient une panne de réseau. [14]

Figure (I.25) : Systèmes photovoltaïque connectés au réseau I.9 Sécurité et protection des installations photovoltaïques

Des dispositifs de sectionnement et de sécurité doivent, comme dans toute installation électrique, être placés aux endroits adéquats, afin de pouvoir interrompre le circuit, manuellement ou automatiquement (à la suite d'un défaut). L'interruption manuelle peut être motivée par le besoin d'isoler une partie du circuit (maintenance, contrôle, mise hors circuit des consommateurs...). L'interruption automatique doit impérativement se produire en cas de défaut, et notamment de court-circuit.

La sécurité recherchée du côté DC ne concerne pas le risque d'électrisation ou d'électrocution (les tensions ne sont pas très importantes), mais surtout le risque d'incendie. En effet, sans protection, en cas de court-circuit, le courant généré par les batteries (ou même les panneaux solaires) ne sera pas coupé, et provoquera tout à la fois des arcs électriques pouvant produire un incendie, et, par échauffement, la fonte et l'embrasement des composants inflammables. Par ailleurs, la nature même du courant continu interdit l'utilisation de dispositifs de protection conçus pour le courant alternatif, du fait de l'effet d'arc, bien souvent non interrompu dans les dispositifs de coupure prévus pour le courant alternatif. La sécurité du côté AC doit bien entendu être la même que dans tous les circuits domestiques, et respecter la norme NF C 15-100.[15]

I.9.1 Mise à la terre.

La mise à terre est un moyen de protection pour maintenir les tensions de contact ou de décharge aussi faibles que possible, pour que des personnes ou installations ne soient blessées

ou endommagées. Les systèmes photovoltaïques à courant supérieur à 2 A sont considérés comme des installations à courant fort et doivent par conséquent être mis à terre.[16]

I.9.1.a Protection contre les surtensions dues à la foudre

Les panneaux solaires, généralement placés en hauteur, ainsi que leur structure métallique de fixation, sont susceptibles de se comporter comme des récepteurs vis-à-vis des charges électrostatiques au cours des orages. Il s'ensuit la production dans le câblage de courants induits pouvant atteindre des tensions bien supérieures aux tensions supportables par l'électronique des appareils (régulateur, convertisseur, moniteurs, etc...) et même par les batteries !

La protection de l'ensemble de l'installation s'effectue à l'aide d'un para-surtenseur, appelé aussi parafoudre, dont la tension nominale de service doit être, en principe sensiblement le double de la tension du système. Nos boîtiers de mise en parallèle pour installations à plusieurs modules photovoltaïques en sont pourvus. Pour les installations à un seul module, ou une seule branche de modules en série, ou encore celles où la mise en parallèle des modules n'a pas été effectuée au moyen d'un boîtier de mise en parallèle (ce qui n'est pas conseillé), il est vivement conseillé d'installer un parafoudre dans le coffret DC.

L'évacuation des courants induits par la foudre s'effectue au moyen d'un conducteur de terre 10mm² ou 16mm², d'un répartiteur de terre (barrette d'équipotentialisation), et d'un piquet de terre. [15]

I.9.1.b Protection contre les courants de fuite et décharges statiques

En principe, toutes les masses métalliques (cadres des modules photovoltaïques, structures, mât, carcasses métalliques des appareils...) doivent être interconnectées (équipotentialisées) et reliées à la terre. Ceci s'effectue au moyen de conducteurs de terre 10mm², raccordés au répartiteur, puis au piquet de terre.

I.9.1.c Protection contre les défauts d'isolation côté AC

Les appareils alimentés en AC par le convertisseur sont susceptibles de présenter des défauts d'isolation dangereux pour les utilisateurs (risque d'électrocution). Ces appareils sont en général munis d'une prise mâle « 2+T », qui comporte donc une fiche de terre destinée à évacuer les défauts d'isolation vers la terre. Il Ya donc lieu, lors de la réalisation du circuit

électrique domestique, de prévoir des prises murales femelles 2+T adéquates, afin de pouvoir ramener ces défauts à la terre par la barrette d'équipotentialisation et le piquet de terre.

I .9.2 Les interrupteurs-disjoncteurs DC

Ces appareils doivent être en mesure d'assurer, sur commande manuelle ou sur défaut (masse, court-circuit), le sectionnement complet du circuit électrique côté courant continu en charge (c'est-à-dire sous tension), ce qui signifie qu'ils doivent être capables de supprimer totalement l'arc électrique produit à l'ouverture (ce qui peut ne pas être le cas des interrupteurs-disjoncteurs à courant alternatif pourtant encore couramment utilisés dans les installations solaires en site isolé).

Position et calibrage

L'interrupteur-disjoncteur DC du champ solaire : il se place à l'entrée du régulateur. Il doit être calibré à une valeur légèrement supérieure à l'intensité de court-circuit du panneau ou du champ solaire. Il n'a pas de fonction de sécurité, puisqu'il ne réagira pas à la mise en courtcircuit des panneaux, mais par contre est très utile pour couper l'alimentation solaire lors des contrôles ou de la maintenance.

<u>L'interrupteur-disjoncteur DC du régulateur</u> : il se place à la sortie « batteries » du régulateur, et protège celui-ci contre le courant de la batterie en cas de défaut. Il doit être calibré à la même valeur que l'intensité maximale à la sortie « consommateur », mais peut, s'il n'y a pas de consommateur connecté à cette sortie, être calibré à la même valeur que l'interrupteur-disjoncteur d'entrée du régulateur.

<u>L'interrupteur-disjoncteur DC des consommateurs</u> : se place à la sortie « consommateurs » du régulateur et permet d'isoler le circuit consommateur en cas de défaut, d'intervention ou de maintenance, sans couper en même temps la charge solaire de la batterie [15]

I .9.3 Les fusibles DC

Celui-ci est destiné à protéger l'entrée DC du convertisseur. Bien souvent, ces derniers possèdent déjà un fusible interne, mais peu accessible, et comme il n'est pas recommandé d'ouvrir ces appareils en cas de défaut, il vaut mieux placer un fusible externe à l'entrée DC. Il doit être calibré à la valeur maximum du courant d'entrée, exprimé en Ampère (A) du convertisseur, soit I(A) = P(W) / U(V).

Parafoudre

Le parafoudre provoque des influences nuisibles, à éviter, si possible, sur les objets, les personnes et installations avoisinantes. Un coup de foudre, ou son champ électromagnétique associé, sur une installation photovoltaïque provoque des surtensions par couplage inductif, capacitif ou galvanique, qu'il faut conduire à la terre. Les changements d'intensité du champ électrique terrestre proche pendant un orage provoquent des surtensions par couplage capacitif, sans que survienne un coup de foudre.

Les grandes pointes transitoires de courant qui surviennent lors de coups de foudre (quelque 10 kA/ms) induisent des tensions qui peuvent atteindre plusieurs centaines de kV dans les impédances et inductivités des parties frappées. En même temps apparaît un champ magnétique qui induit des tensions par couplage magnétique dans les parties parallèles des conducteurs touchés. Un coup de foudre rayonne également un champ électrique qui peut, dans un rayon de 100 mètres, endommager des composants électroniques insuffisamment protégés. Abstraction faite de l'effet thermique direct d'un coup de foudre, un générateur photovoltaïque est endommagé par les grandes différences de potentiel qui dépassent les capacités d'isolation des matériaux utilisés et qui peuvent conduire finalement à un incendie provoqué par des arcs électriques ou des surcharges des conducteurs. [16]

I .9.4 La protection départ du circuit électrique AC

La sortie AC du convertisseur alimentant un circuit ou des appareils en courant alternatif 220 /230V, il y a lieu de se conformer aux dispositions réglementaires de sécurité stipulées dans la norme NF C 15-100.[15]

I.10 conclusion

Dans ce chapitre, nous avons pu définir la conversion photovoltaïque en introduisant le fonctionnement des cellules solaires (modules photovoltaïques). Nous avons cité ses caractéristiques électriques, qui varient en fonction de la température, de l'irradiance solaire et de trois systèmes d'installation photovoltaïque.

Nous décrivons également le potentiel de l'Algérie et on a vu les différentes protections existantes, très essentiellement du coté DC, et dans le but de protéger l'installation ainsi que les personnes.

Dans le chapitre suivant, nous donnerons un aperçu du réseau national algérien et société SKTM, et présenterons la centrale photovoltaïque d'Adrar.

CHAPITRE II

LES CENTRALES PHOTOVOLTAIQUES

48

II.1 Introduction

Les propriétés techniques des installations photovoltaïques sont à l'origine de nombreux phénomènes d'interaction, d'influence et d'influence sur le réseau public de distribution, qui font l'objet de nombreuses publications à l'international.

Ce chapitre nous commençons par la définition des centrales photovoltaïque ainsi que le principe de fonctionnement et. Puis on a parlé sur les technologies des centrales PV par la suite on a parlé sur leurs Impacts. Enfin on donne une présentation générale sur centrale photovoltaïque d'Adrar.

II.2 Les centrales solaires

Les centrales solaires sont basées sur un principe simple : produire de l'énergie à partir de l'énergie solaire, via des panneaux solaires. On capitalise ainsi sur le rayonnement solaire afin de produire de l'énergie renouvelable. Il s'agit d'une énergie propre.

On parle de centrale solaire pour qualifier les unités de production d'énergie via le rayonnement solaire, sans limite de taille. Ce terme peut donc s'appliquer à de grandes installations, mais aussi à des centrales de plus petite taille.

Il en existe principalement trois types : les centrales solaires photovoltaïques, les centrales solaires thermiques et les centrales solaires thermodynamiques.

L'énergie produite par les centrales solaires peut être utilisée sur place ou réinjectée dans le réseau de distribution d'électricité. [17]

II.2.1 Les centrales solaires thermiques

Les centrales solaires thermiques servent à produire de la chaleur, directement à partir de l'énergie thermique du soleil. La chaleur produite est généralement à une température relativement basse. Elle peut être utilisée pour le chauffage domestique ou la production d'eau chaude sanitaire.

Les trois types d'équipements les plus courants sont les chauffe-eaux solaires individuels, les systèmes solaires combinés (permettant de produire de l'eau chaude sanitaire et du chauffage pour particuliers) et les systèmes d'eau chaude solaire collective.

Un équipement solaire thermique ne permet jamais d'assurer 100 % des besoins en eau chaude ou en chauffage d'un foyer. Ainsi, il doit toujours être complété par un autre dispositif.

II. 2. 2 Les centrales solaires thermodynamiques

Les centrales solaires thermodynamiques convertissent le rayonnement solaire en énergie, thermique ou électrique, selon le dispositif mis en place. Grâce à des miroirs, elles concentrent le rayonnement solaire en un même endroit afin de chauffer un fluide caloporteur (qui transmet la chaleur), généralement des sels fondus ou de l'huile. Ce fluide atteint une haute température, autour de 400 degrés. La chaleur qu'il emmagasine peut-être utilisée directement pour des usages industriels ou utilisée pour produire de l'électricité via une turbine à vapeur.

Les centrales solaires thermodynamiques ont un avantage notoire sur les centrales photovoltaïques : la production d'énergie ne s'arrête pas lorsqu'il n'y a plus de soleil. En effet, la centrale peut continuer à fonctionner sans ensoleillement si elle possède un réservoir de stockage du liquide chauffé. Généralement, ces capacités de stockage peuvent représenter entre 7 et 15 heures de fonctionnement de la centrale solaire thermodynamique.

Pour l'instant, ces dispositifs nécessitent un fort ensoleillement. Ils sont toutefois prometteurs car leur impact environnemental est très faible.

II. 2. 3 Les centrales solaires photovoltaïques

Les centrales solaires photovoltaïques transforment le rayonnement solaire en électricité grâce à des cellules photovoltaïques intégrées à des panneaux. Ceux-ci peuvent être posés sur le sol ou installés sur des toitures. Ils vont donc capter l'énergie solaire pour la transformer en électricité. La durée de vie d'une centrale solaire photovoltaïque est au minimum de 25 ans pour les centrales neuves, pouvant aller jusqu'à 40 ou 45 ans.

Figure (II.1) : Classification des centrales photovoltaïques connectées au réseau

Une première classification des centrales PV connecté au réseau en fonction de leur taille peut être faite de la manière suivante :

a. Centrales de petite taille (Pw=1 à 10 KW) : Pour des applications sur les toits de maisons individuelles ou d'institutions publiques telles que les écoles, parkings, ... Elles se connectent au réseau basse tension [18].

b. Centrales de taille moyenne (Pw=10 à 100 KW) : Ce type de système peut se trouver installé et intégré sur un édifice, sur un toit ou une façade. Il peut être connecté à la basse ou à la moyenne tension du réseau de distribution électrique selon sa taille [18].

c. Centrales de grande taille (Pw500 KW) : Ce sont des systèmes centralisés et sont des propriétés de compagnies d'électricité. On peut également classer ces systèmes selon qu'ils soient munis de batteries de stockage ou non [18].

II.3 La société SKTM

Shariket Kahraba wa Taket Moutadjadida, SKTM., est une société de production d'électricité, dont le capital est souscrit entièrement par la holding Sonelgaz. Créée le 07 avril 2013, par scission de la société SPE et Spa, sont siège social est basé à Ghardaïa.

La société est née dans un contexte de prise de conscience généralisée des incertitudes énergétiques et de la nécessité de lutter contre le réchauffement climatique, un recours massif à l'énergie solaire sous

toutes ses formes, directes (photovoltaïque, thermique) ou indirectes (éolien, biomasse) doit s'imposer comme une priorité, une évidence.

En plus des enjeux liés au réchauffement climatique, l'épuisement des ressources énergétiques traditionnelles, le pétrole, le gaz naturel entre autres, le recours aux énergies propres, n'est plus une question de choix mais beaucoup plus une question de devenir des nations. D'autant plus que l'Algérie jouie d'un potentiel solaire des plus importants de par le monde, et d'un potentiel éolien également non négligeable, ajoutés à l'étendue de son territoire, lui permettant d'implanter les ouvrages de production d'électricité par les procédés renouvelables sans encombre. [19]

II.3.1 Les centrales photovoltaïques en Algérie

Rang	Willaya	Gestionnaire d'installation	Puissance installée en (MW)	Coordonnées géographiques
1	Oued Nechou PV (Ghardaïa)	SKTM	01.1	<u>32° 29′ N, 3° 40′ E</u>
2	Sedret Leghzel (Naama)	SKTM	20	<u>33° 16′ N, 0° 19′ E</u>
3	Oued El kebrit (Souk Ahras)	SKTM	15	35° 56′ 00″ nord, 7° 55′ 00″est
4	Ain Shouna (Saïda)	SKTM	30	<u>34° 30' 20" nord, 0° 50' 59"est</u>
5	Ain El Bel(Djelfa)	SKTM	20	34° 21′ 17″ nord, 3° 13′ 22″ est
6	Lekhneg (Laghouat)	SKTM	20	<u>33° 44' 41" nord, 2° 47' 39" est</u>
7	Télagh (Sidi-Bel Abbès)	SKTM	12	<u>34° 47′ 06″ nord, 0° 34′ 23″ ouest</u>
8	Labiodh Sidi Chikh (El Bayadh)	SKTM	23	<u>32° 53′ 55″ nord, 0° 32′ 40″ est</u>
9	El Hdjira (Ouargla)	SKTM	30	<u>32° 36′ 48″ nord, 5° 30′ 44″ est</u>
10	Ain-El-Melh (M'Sila)	SKTM	20	<u>34° 50' 54" nord, 4° 09' 40" est</u>
11	Oued El Ma(Batna)	SKTM	02	<u>35° 38' 43" nord, 5° 59' 41" est</u>
12	Adrar	SKTM	20	27° 52' 00" nord, 0° 17' 00" ouest
14	IN Salah	SKTM	05	27° 15′ nord, 2° 31′ est
13	Kaberténe	SKTM	03	28°27'0" N 0°4'0" W
15	Timimoune	SKTM	09	<u>29° 15' nord, 0° 15' est</u>
16	Reggane	SKTM	05	26° 43' 12" nord, 0° 10' 16" est

Tableau (II.1) : Tableau des centrales photovoltaïques en Algérie.[19]

17	Zaouiat Kounta	SKTM	06	<u>27° 13' 00" nord, 0° 12' 00" ouest</u>
18	Aoulef	SKTM	05	26° 58' 00" nord, 1° 05' 00" est
19	Tamanrasset	SKTM	13	22° 47′ 13″ nord, 5° 31′ 38″ est
20	Djanet	SKTM	03	<u>24° 33' 18" nord, 9° 29' 06" est</u>
21	Tindouf	SKTM	09	<u>27° 40′ 00″ nord, 8° 09′ 00″ ouest</u>
		Puissance Totale (MW)	270	

II.3.2 Le réseau électrique national

Le réseau électrique est organisé en différents niveaux de tension. En sortie des centrales de production (Centrales thermiques classiques et hydrauliques) on trouve généralement une tension qui se situe autour de 11 kV. Dès la sortie, ce niveau est augmenté à 220 kV à l'aide d'un transformateur élévateur. La raison de cette amplification réside dans le fait que pour transiter une puissance donnée, si l'on élève le niveau de tension, le courant en ligne est diminué. Ensuite lorsque l'on se rapproche des lieux de consommation, la tension est abaissée, à l'aide de transformateurs, à des niveaux de 220 kV puis 63 ou 90 kV. Cette partie du réseau électrique constitue le réseau de transport dont les tensions font partie du domaine HTB (Un > 50kV), quelques clients y sont raccordés (P > 10 MW). Les réseaux de transport de chaque région sont interconnectés formant ainsi le réseau d'interconnexion nationale géré par le Gestionnaire de Réseau de Transport de l'Electricité, GRTE, filiale du Groupe Sonelgaz qui est le Gestionnaire du Réseau de Transport en Algérie. Ensuite, au stade suivant de l'acheminement de l'électricité, on trouve le réseau de distribution publique, géré par Sonelgaz Distribution, qui est composé du réseau électrique HTA (1000V< Un \leq 50KV) et du réseau électrique BTA (50V < U \leq 500V). Le réseau HTA, qui est à un niveau de tension de 30 KV, alimente des postes privés dans une gamme de puissance de250 KW à 10 MW et des postes de distribution publique dans une gamme de puissance de 160 KVA à 1 MVA. Le réseau BTA, qui est à niveau de tension de 400 V, est l'étape finale de l'acheminent de l'électricité. Il alimente les consommateurs de faibles puissances (< 250 kW) [20]. Le tableau 3.1. Résume les domaines de tension de ce réseau.

Domaine de tension		Valeur de la tension nominale (U _n en volts)		
		Courant Alternatif	Courant Continu	
Très bass	se tension TBT	$U_n \le 50$	$U_n \le 120$	
		$50 < U_n \le 500$	$120 < U_n \le 750$	
Basse tension	BTA BTB	$500 < U_n \le 1000$	$750 < U_n \le 1500$	
Haute tension	НТА	$1000 < U_n \le 50000$	$1500 < U_n \le 7500$	
	НТВ	$U_n > 50000$	<i>U_n</i> > 75000	

Tableau (II.2) : Domaine des tensions du réseau national [20]

II.4. Technologies des centrale PV

II.4.1 Technologie des panneaux photovoltaïque

Les cellules solaires sont la base du panneau PV. La fonction de la cellules solaires est la conversion de l'énergie solaire en électricité. A nombre de cellules solaires sont connectées en série, puis encapsulées dans un cadre spécifique pour construire le panneau PV [21]. Il y a différents matériaux de cellules solaires affectant l'ensemble efficacité des panneaux photovoltaïques. Les types de base, cristallin (c-Si) et silicium multicristallin (m-Si), valeurs d'efficacité actuelles autour 20%. Autres types comme les cellules solaires à film mince utilisant amorphe silicium (a-Si) ont une efficacité d'environ 6,9 à 9 %. Les cellules solaires utilisent également d'autres matériaux comme le diselenide d'indium de cuivre (CuInSe2–CIS) et le telluride de cadmium (CdTe) avec des rendements d'environ 15 % et 12 % respectivement. D'autres matériaux sont en recherche dans le but d'améliorer l'efficacité et les coûts comme il est résumé dans [22]

Le c-Si et le m-Si ont dominé le marché des services publics au cours des dernières années en raison de leur efficacité, du terrain utilisé, de leur stabilité dans le temps, de leur fiabilité et de leur abondante ressource primaire. Le principal inconvénient de cette technologie est le prix dû à la fabrication et la quantité de matière utilisée. En revanche, les cellules solaires à couches minces présentent certains avantages tels que le prix, l'efficacité de la lumière solaire à faible rayonnement et

un faible coefficient de température. Mais le principal inconvénient de son utilisation sur les centrales PV est le terrain occupé, une efficacité moindre, une faible stabilité dans le temps [23]

II.4.2 Technologie les onduleurs photovoltaïques

L'onduleur couplé au réseau est utilisé pour les installations photovoltaïques. Il permet de transformer le courant continu, produit par les modules solaires, en un courant ondulé conforme à celui du réseau. Il adapte également le courant produit à la fréquence et à la tension du réseau. Dans les installations d'habitation, le courant solaire produit est d'abord utilisé par l'habitation elle-même, si le courant produit pour l'habitation est excédentaire, l'excédent est injecté dans le réseau.

L'installation d'un onduleur couplé au réseau électrique se fait avec l'accord de l'organisme de distributeur de d'énergie électrique.

Pour des raisons de sécurité, un onduleur couplé au réseau doit constamment surveiller ces perturbations et interrompre immédiatement l'injection en cas de défaillance ou de coupure. Ceci est absolument nécessaire pour permettre une intervention sans danger sur le réseau [24]

II.4.2.1 Classification des onduleurs :

Comme on le sait, il y a beaucoup de considérations qui note les onduleurs et que nous ne pouvons pas tous les citer. Dans ce qui suit, nous classons les onduleurs par quelques-unes des considérations : [25]

II.4.2.1.1 Selon la nature de l'alimentation :

a- Onduleur de tension :

On appelle onduleur de tension, un onduleur qui est alimenté par une source de tension continue.

b- Onduleur de courant :

On dit onduleur de courant, un onduleur qui est alimenté par une source de courant continue. [25]

II.4.2.1.2 Selon la réversibilité :

a- Onduleurs non autonomes :

Un onduleur non autonome est un montage redresseur tout thyristors qui, en commutation naturelle assistée par le réseau, auquel il est raccordé, permet un fonctionnement en onduleur (par exemple : par récupération de l'énergie lors des périodes de freinage dans les motrices électriques). À la base du développement des entraînements statiques à vitesse variable pour moteurs à courant continu et alternatif, cyclo-

convertisseurs, onduleurs de courant pour machines synchrones et asynchrones, jusqu'à des puissances de plusieurs MW, ce type de montage est progressivement supplanté, au profit de convertisseurs à IGBT.[26]

Figure (II.2) : Principe de fonctionnement de l'onduleur non autonomes b- Onduleurs autonomes

L'onduleur autonome est un système de commutation à transistors ou à thyristors, dont les instants de commutation sont imposés par des circuits externes, il n'a pas besoin le réseau électrique pour fonctionner. Ils sont de différente taille de 100W pour alimenter un ordinateur portable à 10KW, les onduleurs autonomes utilisent des batteries pour le stockage et des contrôleurs de charge pour assurer la durabilité de ces batteries, [27]. La fréquence et la forme d'onde (amplitude et phase) de la tension de sortie sont imposées à la charge, c-à-d elle sont propres à ce type d'onduleur. Dans cette catégorie, on distingue aussi :

- L'onduleur autonome à transformation Basse Fréquence

L'onduleur autonome Basse Fréquence n'est pas piloté par le réseau : Contrairement à l'onduleur assisté, il permet de commuter la puissance plusieurs fois par période, reconstituant, par l'intermédiaire de la Modulation par Largeur d'Impulsion, un signal sinusoïdal de qualité supérieur au signal de l'onduleur assisté (harmoniques et déphasage). La connexion au réseau est effectuée à travers un transformateur 50 Hz qui génère des pertes relativement importantes, et d'un filtre atténuant les harmoniques :[28]

- L'onduleur autonome à transformation Haute Fréquence :

L'onduleur autonome Haute Fréquence se distingue du précédent car il utilise un transformateur Haute Fréquence peu encombrant et diminuant considérablement les pertes de puissances. Le principe est similaire à celui de l'onduleur Basse Fréquence : Il consiste à construire un onduleur de l'ordre de 10 à 100 kHz et d'introduire un transformateur HF, qui possède intrinsèquement de bien meilleures performances qu'un transformateur BF :[28]

Figure (II.4) : Principe de fonctionnement de l'onduleur autonome Haute Fréquence

II.4.2.1.3 Selon la nature de charge

57

a- L'onduleur monophasé

Ce dispositif permet de transmettre la puissance issue d'une source de production vers le réseau électrique monophasé (réseau avec distribution du neutre).

Afin de générer (et envoyer) un courant alternatif sur le réseau électrique, il faut que la tension continue soit supérieure à la valeur crête de la tension apparaissant du côté du filtre.Pour ce convertisseur, un interrupteur idéalisé est synthétisé par la mise en antiparallèle d'un *IGBT* et d'une diode. Les différents phénomènes de commutation qui interviennent entre semi- conducteurs ont été modélisés à l'aide d'un réseau de Petri [29]

b- L'onduleur triphasé :

Un onduleur triphasé est constitué de trois onduleurs monophasés regroupés en parallèle et commander de façon à obtenir à la sortie trois tensions décalées de 120 degrés. Les interrupteurs du même bras de l'onduleur doivent être complémentaires pour que la tension de la source continue ne soit jamais en court-circuit et pour que les circuits des courants ic1, ic2 et ic3 ne soient jamais ouverts. Afin que les interrupteurs puissent donnant trois tensions de sorties déphasées de 120° degré, l'une par rapport à l'autre. Ce type d'onduleur est généralement recommandé pour des applications de grande puissance. La Figure (II.5) définie la structure d'onduleur triphasé.

Figure (II.5) : Schéma d'un onduleur triphasé [25]

II.4.3 Technologie de transformateur

Le transformateur est un dispositif statique à deux enroulements ou plus qui, par induction électromagnétique, convertit un système de tension et de courant alternatifs en un autre système de même fréquence avec des valeurs de tension et de courant généralement différentes pour transmettre l'électricité.

Il peut s'agir d'une construction triphasée, mais on peut également les trouver dans des unités monophasées facilement interchangeables pour des raisons d'encombrement (poids et dimensions), de transport et de facilité d'entretien. En conséquence, les transformateurs de puissance peuvent transmettre le courant alternatif (CA) d'une centrale électrique à ses utilisateurs finaux à différents niveaux de tension avec des pertes minimales. Un transformateur est un élément d'un réseau qui permet de faire passer une tension alternative donnée à une autre : c'est un convertisseur statique de fréquence fixe [30]

II.4.3 La technologie de support des modules

Le choix de la technologie de support des modules représente dans le tableau suivant :

Type de supports	Supports fixes	Supports mobiles
	 Nécessite des 	 Nécessite des
	pieux battus	fondations en béton
	 Nécessite des 	 Conçus pour des
	tables de 10 à 20	tables indépendantes
	mètres	pivotant
Caractéristiques	 Optimisation de 	verticalement et
techniques	la puissance	horizontalement
	installée	 Compromis
	 Meilleure 	puissance installée /
	performance	productible
	économique	 Surcoût
		d'installation et de
		maintenance
Contraintes d'ancrage	 Ancrage 	 Ancrage béton
et géotechnique	superficiel	nécessaire
	suffisant	 Importante charge
	 Faible charge au 	au sol
	sol	 Nivellement par
	 Pas de 	table
	terrassement	
	nécessaire	

Tableau (II.3) : Analyse comparative des supports fixes et mobiles des modules [31]

Impact sur les eaux	• Aucun	 Ponctuel
pluviales		
Insertion paysagère	 Influence visuelle réduite Permet un respect 	 Influence visuelle réduite Exige un
	de la topographie du site • Structure légère	nivellement donc une modification de la topographie • Structure massive

II.5 Architectures des centrales photovoltaïques

Il existe trois architectures principales pour un onduleur photovoltaïque connecté au réseau [28] :

II.5.1 Architecture à onduleur centralisé

La topologie la plus répandue consiste à utiliser un seul onduleur pour interfacer le générateur PV et le réseau électrique comme la montre en Figure (II.6). Les modules photovoltaïques sont divisés en une chaîne, générant chacune une tension suffisamment élevée pour éviter une amplification supplémentaire. Ces montages en série sont ensuite montés en parallèle pour parvenir à des niveaux de puissance élevés

Figure (II.6) : Architecture à un onduleur : Architecture à un onduleur centralisé

Le principal avantage de cette topologie est le rendement élevé (faibles pertes dans l'étape de conversion de puissance) et à faible coût grâce à l'utilisation d'un seul onduleur. Par contre, ce composant a plusieurs défauts :

- Pertes de conversion solaire (MPPT unique pour un groupe de modules)
- Pertes électriques et risques dans le câblage pas d'évolutivité
- Pas de continuité de service en cas de panne de l'onduleur

Bien que cette configuration présente de nombreux inconvénients, cette solution est encore largement utilisée. Dans les centrales photovoltaïques au sol de grande puissance.[32]

II.5.2 Architecture à onduleurs « string »

La topologie de l'onduleur string consiste à utiliser un onduleur au bout de chaque chaîne de modules Py. Les onduleurs sont ensuite connectés en parallèle au réseau électrique comme indiqué sur Figure (II.7)

Figure (II.7) : Architecture à onduleurs « string »

Cette configuration permet un MPPT séparé pour chaque chaîne, donc la fiabilité Le système est amélioré du fait que le système ne dépend plus d'un seul onduleur par rapport à la topologie de l'onduleur central. Si un onduleur string tombe en panne, l'autre Les onduleurs string peuvent continuer à être intégrés au réseau. De plus, la configuration peut Extensible en ajoutant simplement un onduleur de chaîne et en le connectant aux bornes de puissance réseau pour augmenter la puissance nominale installée.

Cependant, cet architecteur présente également des inconvénients. Premièrement, le coût Le système surpasse l'onduleur central grâce à l'onduleur supplémentaire. Exister De plus, les onduleurs sur chaque chaîne limitent les problèmes de couplage entre le module et l'onduleur et la dégradation des performances qui en résulte à travers des ombres ou des expositions différentes. De plus, lorsque l'énergie photovoltaïque Faible, l'efficacité de l'onduleur de chaîne est faible [32]

II.5.3 Onduleur master/slave

L'architecture à onduleurs « master/slave » consiste à connecter le champ photovoltaïque à un ensemble d'onduleurs couplés l'un à l'autre par une relation de « maître/esclave » : L'onduleur «

master », est sollicité en permanence pour convertir l'énergie photovoltaïque, alors que les onduleurs « slave » n'entrent en action qu'au moment où la puissance délivrée par le champ n'est plus adaptée auge travail de l'onduleur « master »

Figure (II.8) : Architecture à onduleurs centralisés en « master/slave »

Ce concept permet d'optimiser le nombre d'onduleurs en service en fonction de la puissance appelée, car chaque onduleur travaille à un niveau de puissance pour lequel son rendement est le plus élevé. L'inconvénient majeur est que l'onduleur « master » est toujours fortement sollicité, accroissant ainsi son risque de panne.[28]

II.6 Impacts des systèmes photovoltaïques au réseau

Dans le passé, les réseaux de distribution se comportaient comme des éléments passifs dans lesquels les flux de puissance s'écoulent de manière unidirectionnelle du poste source vers les consommateurs finaux. Du fait de l'insertion des productions décentralisées, les flux de puissance et les tensions sont impactés non seulement par les charges mais aussi par les sources. Par suite de ces spécificités techniques des installations photovoltaïques, le raccordement des systèmes PV au réseau peut avoir des impacts importants sur son fonctionnement. Les influences les plus significatives des systèmes PV sur le réseau de distribution sont les suivantes [33] :

II.6.1 Influence sur le plan de tension

La présence de générateur PV a une influence sur le plan de tension et sur les dispositifs de réglage du réseau. La tension varie en fonction des injections de puissance active et réactive sur le réseau [33]. En particulier pendant une période de fort ensoleillement et de faible consommation, la tension de certains nœuds du réseau peut dépasser seuil admissible. L'injection d'énergie sur le réseau fait croître la tension jusqu'à un seuil provoquant le découplage de certains dispositifs

II.6.2 Influence sur le plan de protection

La contribution des systèmes photovoltaïque au courant de défaut dans le réseau de distribution a des conséquences faibles sur le plan de protection du départ en défaut. Mais la sensibilité et la sélectivité des protections du réseau peuvent être affectées et provoquer le déclenchement de la protection du départ en défaut.

II.6.3 Influence sur la qualité de l'énergie

Injection d'harmoniques de courant : la présence d'interfaces électronique de puissance peut injecter des harmoniques de découpage au réseau si les onduleurs ne sont pas munis de filtres efficaces. Les onduleurs actuels contribuent tout de même à l'augmentation des harmoniques de courant car ils fonctionnent le plus souvent à puissance réduite (un appareil fonctionnant à puissance réduite ne peut fournir la même qualité de courant qu'à puissance nominale) [33]

Déséquilibre entre phases : l'insertion des systèmes PV engendre un déséquilibre entre phases en cas d'utilisation d'onduleurs monophasés. Si la puissance produite n'est pas correctement répartie entre trois phases d'un même système PV triphasé, alors ce système va contribuer à déséquilibré le réseau BT. Ce phénomène a été mis en évidence dans plusieurs études. [33]

Variations rapides de puissance Diverses analyses de l'éclairement solaire ont montré que les variations rapides de l'éclairement sont en général limitées : 95% des variations en moins d'une seconde sont inférieures à 5 W/m2 en Europe [34]. Une étude sur le site de tests Rokko au Japon [35]a montré que plus l'installation est de taille importante, moins les variations de puissance sont rapides. Des variations maximales de puissance de près de 30 %/s sur une installation de 2 kW (2,4 m de large), et de 10 %/s sur la puissance totale de l'ensemble des 100 installations de 2 kW (réparties sur une largeur de 85 m) ont été constatées.

Injection de courant continu au réseau les onduleurs actuels (avec transformateur haute fréquence et avec ou sans transformateur basse fréquence) du marché européen injectent une composante continue dans le réseau. La présence de courants DC dans les réseaux de distribution peut affecter le bon fonctionnement des dispositifs de coupure différentiels, créer des erreurs sur les compteurs d'énergie, affecter la durée de vie des composants du réseau, notamment à travers une augmentation de leur corrosion et enfin contribuer à une saturation des transformateurs [36]

II.6.4 Impact du PV sur les pertes dans les réseaux de distribution

Une étude d'EDF R&D [37] a montré que la production décentralisée générait une augmentation des pertes dans les réseaux de distribution. Mais lorsque l'on s'intéresse uniquement à la part du PV dans ce résultat, on peut en déduire que globalement :

Les fermes PV de plusieurs MW, généralement raccordées à partir de départs HTA dédiés, conduiraient à une augmentation des pertes

Les installations PV de type résidentiel, plus proches des lieux de consommation, permettraient de réduire les pertes.

L'explication est simple. Les fermes PV de plusieurs *MW* nécessitent des constructions de nouveaux ouvrages (départs dédiés) et augmentent ainsi la longueur totale de lignes électriques. L'étude montre que la quantité de pertes générée dans ces nouveaux ouvrages est supérieure à la réduction des pertes au niveau du poste source. Le bilan conduit donc à une augmentation globale des pertes pour RDA.

A contrario, l'énergie produite par le PV résidentiel étant consommée quasiment sur place, elle contribue à réduire le transit d'énergie dans les réseaux BT et donc à diminuer les pertes pour RDA.

Le scénario pris en compte pour cette étude est le suivant :

16 GWc De fermes éoliennes et 3.7 GW de cogénération, raccordés en HTA

4 GWc de PV résidentiel raccordés en BT.

Si l'on ne considère que la part de production décentralisée raccordée en HTA, l'étude montre que les pertes augmentent de 887 *GWh*. Mais lorsque l'on tient compte du PV raccordé en BT, les pertes n'augmentent plus « que » de 647 *GWh*, soit 240 *GWh* de moins, à mettre au bénéfice du PV raccordé en BT.

C'est pourquoi, si l'on substitue dans cette étude l'éolien à du PV (ce qui est a priori cohérent avec les projets actuels de fermes PV, étant donné les puissances des fermes éoliennes modélisées (5 *MW*) et les longueurs de départs considérés (11 *kms*), on peut en déduire que le PV raccordé en HTA aura pour effet d'augmenter les pertes pour RDA alors que le PV résidentiel contribuera à leur diminution.

II.7 Impact socio-économique de la centrale photovoltaïque

Le projet présente d'importants avantages socio-économiques pour la région car il contribuera à la sécurisation de la fourniture d'électricité. Il constitue un facteur incitatif de développement d'activités économiques nouvelles et de création de nouvelles PME. De plus, le projet requiert dans sa phase de

mobilisation une main-d'œuvre temporaire qui aura un impact positif transitoire au niveau local et sera demandeur de biens et de services locaux. L'exploitation de la centrale aura une incidence positive du fait de la diversification de la capacité de production et de l'amélioration de la fiabilité du système.[38]

En somme, la réalisation de la centrale solaire d'Adrar va permettre :

1- D'inciter les investisseurs et les développeurs à développer des activités

économiques nouvelles et de créer de nouvelles PME.

2- Dynamiser l'économie de la région :

- Les prestations d'ingénierie : l'étude et le contrôle des travaux sera confié à un prestataire de service ainsi que des laboratoires d'analyse et de contrôle spécialisés.
 - L'attribution de marché de travaux.
- La création d'emplois : les différents travaux se dérouleront sur plusieurs mois et nécessiteront une masse de main d'œuvre qui pourra être recrutée localement.
- La main d'œuvre employée par les entreprises de travaux représente une clientèle potentielle pour les petits commerces des environs.
- Augmentation du chiffre d'affaires des fournisseurs de matériaux locaux, des entreprises de mécanique et stations de service des environs.
 - 3- Impact positif direct en raison des retombées fiscales de la commune.
 - 4- Réduire les émissions de CO2.

II.8 Impacts Positifs en phase d'exploitation

Les impacts positifs du Projet seront plus perceptibles en phase de fonctionnement et d'exploitation de la centrale photovoltaïque. De prime abord, l'une des principales retombées positives du Projet demeure non pas seulement l'injection d'une production supplémentaire d'électricité dans le réseau de SONALGAZ mais aussi le relèvement de l'apport des énergies renouvelables dans la grille de production de la SONALGAZ au niveau régional et national.

Selon le ministère de la transition énergétique et des énergie renouvelable, l'Algérie pourrait générer 22 GW de sa production nette d'électricité avec du solaire photovoltaïque 2030. [3]

De surcroît, l'impact du Projet sera prévisible sur le budget de la commune avec la mobilisation de ressources financières composées de :[31]

• Une taxe ou ordre de recette calculée sur la base du nombre de parcelles

impactées et des frais de bornage ;

Et une patente annuelle fixée par le service des domaines dont l'estimation est basée sur les installations en exploitation et la surface occupée. La patente ne sera due qu'après le démarrage de l'exploitation de la centrale solaire.

La mobilisation de cette ressource devra permettre à la commune d'Adrar d'augmenter ses recettes annuelles et de renforcer ses investissements dans le domaine de ses différentes compétences régaliennes dont l'éducation, l'environnement et la santé.

Enfin, la création d'emplois permanents dans la phase d'exploitation constitue un impact positif pour le Projet bien que l'ampleur soit faible en raison du nombre limité d'emplois susceptibles d'être générés.

Les différents postes de travail pouvant générer des emplois au niveau de la population locale sont :[31]

- Le gardiennage du site ;
- Et le nettoyage des modules en cas d'encrassement exceptionnel des panneaux.

II.9 La centrale photovoltaïque d'Adrar

II.9.1 Situation géographique de la centrale photovoltaïque d'Adrar :

La centrale photovoltaïque d'Adrar (20 *MW*) est située à 10 km du centre-ville de la wilaya d'Adrar, 4 km de la route nationale N°06, Elle couvre une superficie de 40 hectares avec un coût de réalisation estimé à 3,8 milliards de DA. C'est un projet ambitieux qui s'inscrit dans le cadre de l'adoption d'une série de mesures de soutien visant la promotion des énergies renouvelables pour un développement économique durable du pays.

Figure (II.9) : Situation de la société SKTM d'Adrar

II.9.2 Les composants de la centrale

II.9.2.1 Panneaux Solaires Photovoltaïques

La centrale photovoltaïque a une puissance totale de 20 MW et couvre une superficie de 40 ha 81840 Panneau PV Type poly-Si - YL245P-29b-245. Chaque panneau Figure (II.10) est Composé de 60 cellules en série avec une puissance de crête de 245 *Wc* et des caractéristiques de Ces panneaux sont indiqués dans le tableau (II.4).

Ces panneaux photovoltaïques à la centrale d'Adrar sont répartis sur 20 (sous champ) chaque sous champs produit 1 *MWc*. 93 Matrices, chaque matrice constituée de 44 panneaux devisée en 2 strings, chaque string est constitué de 22 panneaux raccordés en série

Fabricant	Canadian Solaire / Hanwha solar
Model	YL245P-29b-245
Puissance nominale maximale (<i>Pmax</i>)	245 W
Tension au point de puissance max (Vmp)	29,6V
Courant au point de puissance max (<i>Imp</i>)	8,28A
Tension de circuit ouvert (Voc)	37,5V
Courant de court-circuit (<i>Isc</i>)	8.83A
Température de fonctionnement	-40 C°~+85 C°
Tension maximale du système	1000V
Calibre maximal des fusibles en série	15 A
Classification des applications	Class A
Tolérance de puissance	3,0%
Di	mensions
Longueur	1.64 m
Largeur	0.99 m
Poids	18.5 kg
(Cellules
Technologie de cellule polycristalline	
Nombre par module	60
Taille de cellule (carré)	(0.155*0.155) m ²
Rendement de cellule	15 %

Tableau (II.4) : Caractéristiques électriques des modules PV de la centrale d'Adrar

Figure (II.10) : Panneaux de type YL245P-29b-245utilisé dans la centrale d'Adrar

II.9.2.2 Les onduleurs

Dans une installation photovoltaïque, l'onduleur (ou inverseur de courant) appelé aussi l'appareil de conditionnement de la puissance occupe une place essentielle, il a le rôle principal de transformer le courant continu délivré par les panneaux solaires photovoltaïques en un courant alternatif.

Dans la centrale d'Adrar, il existe un nombre de 40 onduleurs de type SUNGROW-SG 500MX. Chaque onduleur possède une tension d'entrée maximum de 1000 V et avec un courant d'entré max 1120 AC 500 kW. de A. La puissance nominale de sortie est de Notant qu'il existe un dispositif de suivi du point de puissance maximum (MPPT "Maximum PowerPoint Tracking" en anglais) qui permet de contrôler la tension et le courant de sortie des rangées PV pour générer la puissance maximale possible à une irradiation et une température donnée.

Tableau (II.5) : Caractéristiques de l'onduleur

Туре	SUNGROW-SG 500MX
Quantité	40

Protection IP	IP21
Température de fonctionnement	-30°C à +55°C
	Entrée DC
Tension Max (V)	1000
I _{SC} (A)	1344
Tension Vmppmin (V)	500
Tension Vmppmax (V)	850
Courant d'entrée max (A)	1120
Catégorie de surtension	II
	Sortie AC
Puissance de sortie nominale (KW)	500
Tension de sortie nominale (V)	3315
Fréquence de sortie nominale (KW)	50
Courant de sortie Max (A)	1008
Facteur de puissance	[-0,9 -1] [0,9 1]
Catégorie de surtension	III

II.9.2.3 Transformateur (élévateur)

Chaque sous champ comporte un transformateur de type SGB VEY08266 avec des Caractéristiques électriques suivants :

Tableau (II.6) :	Caractéristiques	électriques du	transformateur
------------------	------------------	----------------	----------------

Туре	SGB VEY08266
Classe thermique	F
Valeur limitée d'augmentation de	100K
température	
Capacité nominale	1250kVA
Fréquence nominale	50Hz / 3Phases
Condition d'utilisation	Type intérieur
Poids total	4960kg
Date de fabrication	10/2014
Coté pr	rimaire
Tension nominale (V)	30000
Courant nominale (A)	24,1
Impédance de court-circuit (%)	6,28
Coté sec	ondaire
Tension nominale (V)	315/315
Courant nominale (A)	1146/1146

II.9.2.4 Système électrique courant continu

Dans chaque rangée, les modules sont électriquement câblés ensemble, en parallèle et en série, de façon à atteindre une tension nominale de 600 Volts. Les câbles sont fixés sur les châssis.

Toujours au niveau de chaque rangée, des boites de raccordement (les boites de jonction et les boite parallèle) intègrent les protections (fusibles, parafoudres, diodes anti-retour).

Figure (II.11) : La Boite de jonction

	SUNGROW
	BOITE DE PARALLELE Model PND-0125K
P P P	N/S Date de fabrication
	Pulssance nominale 125KW Tension maximum DC 1000V Max N °de l'entrée DC 4
n -	Protection IP <u>1P.65</u> Température ambiante <u>25° to +80°C</u>
	Polde not CE SUNGROW POWER SUPPLY CO., LTD. Debugney an China
THE ALL TRUE	

Figure (II.12) : La Boite parallèle

Pour passer d'une rangée à l'autre, les câbles empruntent des gaines enterrées jusqu'à un onduleur.

II.9.2.5 Structure porteuse / de fixation

Les modules photovoltaïques seront implantés au sol sur une structure porteuse dédiée à cet effet.

Les structures retenues pour le site ont été déterminées en fonction des critères suivants :

CHAPITRE II LES CENTRAL ES SOLAIRES PHOTOVOLTAIQUES

- Facilité de pose et de maintenance.
- Optimisation de la structure permettant de supporter les modules photovoltaïques pour une durée minimale de 35 ans ;
- Installation optimisée pour une production d'électricité maximum des modules.
- Impact environnemental le plus faible possible.
- Respect des contraintes liées au site (pente de la zone d'implantation).
- Quantité de vent moyenne sur la commune.

Figure (II.13) : Structure des panneaux

II.9.2.6 Dispositifs de mesure environnementale

La centrale de Adrar est équipée d'une mini station météorologique illustrée la Figure (II.14) Elle est équipée des instruments de mesures des rayonnements solaires, des capteurs de mesure de température, un capteur de mesure d'humidité, et d'un anémomètre pour la mesure de la vitesse du vent.

Figure (II.14) : Dispositifs de mesure environnementale II.9.2.7 Poste d'évacuation de 30 K

Le poste d'évacuation tableau (II.7) est situé dans un bâtiment à la limite du site, près de la clôture.

Le tableau est du type blindé, isolé en gaz SF6.

Les disjoncteurs sont du type sous vide.

A bord du tableau 30 kV il y a les relais de protection pour les départs transformateurs et pour la protection générale.

Ci-dessous une table récapitulative des caractéristiques principales du tableau MT d'Adrar :

Constructeur	ABB
Pays d'origine	Norvège
Туре	Safe plus 36
Normes de références	IEC 62271-200
Pression SF6	1,4 bar à 20°C
Tension nominale	33 KV
Fréquence	50 Hz
Tension d'essai de tenue à fréquence industrielle	70 KV
Tension de tenue au choc de foudre	170 KV
Courant nominal jeu de barres	630 A

Tableau (II.7) : Caractéristiques principales du tableau MT de la centrale

CHAPITRE II LES CENTRAL ES SOLAIRES PHOTOVOLTAIQUES

Courant nominal disjoncteurs et sectionneurs	630 A
Courant de court-circuit nominal	16 KA 1 sec
Tenue à l'arc interne	20 KA 1 sec
Tension auxiliaire	127 Vcc +10% -15%
Disjoncteurs	A vide
Sectionneurs	Air
Relais de protection	ABB REF 542plus, ABB REF 610
Classe de température	-25° C +40° C (indoor)
Degrés d	e protection
Enveloppe SF6	IP67
✤ Boites fusible	IP67
 Face antérieure du tableau 	IP2X
✤ Boite à câbles	IP3X
Epaisseur de l'enveloppe	2mm

Le rôle du poste d'évacuation est de :

• Transformer la moyenne tension en haute tension ;

• Protéger les circuits de distribution AC et les intervenants des risques électriques et atmosphériques ;

• Raccorder l'installation au réseau de distribution ou de transport

Figure (II.15) : Figure Poste d'évacuation de 30 KV

II.9.3 Systèmes auxiliaires de la centrale

La centrale photovoltaïque sera complète des services auxiliaires nécessaires à son correct fonctionnement et à la sécurité des choses et des personnes :

Eclairage intérieur (normal et de secours), éclairage extérieur, Prises de courant, HVAC (climatisation, ventilation), système télésurveillance, système protection incendie, alimentation auxiliaire pour tous les équipements électriques et de contrôle commande (400 Vac, 230 Vac, 127 Vcc).

L'alimentation des services auxiliaires est fournie à travers le transformateur auxiliaire. La tension continu 127 Vcc est créé à travers un système redresseur.

En cas de perte de l'alimentation auxiliaire (arrêt de la centrale, ou défaut), l'alimentation essentielle est garantie grâce à une batterie 127 Vcc et un groupe électrogène. En absence de soleil ou d'ensoleillement suffisant, l'énergie pour les auxiliaires est fournie par le réseau de distribution auquel la centrale sera reliée. Pour cela, au niveau du poste d'évacuation, il y a un compteur bidirectionnel.

II.9.3.1 Stockage

En cas de panne du réseau électrique, pour juguler le problème pour qu'il n'y est pas de coupure de courant, la centrale a mis en disposition un groupe diesel pour l'éclairage du poste de garde et l'alimentation de la salle de commande (Serveurs) et des batteries en cas ou y aurait un problème dans le groupe diesel

Figure (II.16) : Groupe diesel et batteries utilisés

II.9.4 Opération d'entretien et de maintenance

II.9.4.1 Présentation et classification de la maintenance

La maintenance est définie comme « la combinaison de toutes les actions techniques, administratives et de gestion pendant le cycle de vie d'un élément destiné à maintenir ou à le restaurer, un état dans lequel il peut effectuer la fonction requise ». L'entretien se divise en maintenance préventive et corrective Figure (II.17).

L'objectif du premier est de conserver la fonctionnalité d'un élément et d'éviter ainsi les échecs, alors que la maintenance corrective a lieu après la survenue d'une défaillance et rétablit la fonctionnalité de l'élément. [39]

Figure (II.17) : Classification de l'entretien et maintenance

II.9.4.2 Le Nettoyage

D'une manière générale, les méthodes de nettoyage de la surface des modules photovoltaïque n'ont pas été au centre de l'attention des chercheurs. Ce manque d'attention peut résulter de l'idée que la quantité de pluie dans la région où le système PV est installé, est suffisante pour nettoyer la surface des modules PV. Les méthodes de nettoyage des modules PV peuvent être classées comme suit :

Nettoyage par la pluie : Cette méthode de nettoyage est très volatile et dépend de la pluviométrie du site.

Nettoyage par une machine mobile : Cette méthode utilise des machines Figure (II.19) pour effectuer le nettoyage et un stockage pour l'approvisionnement en eau ou un système d'arrosage est l'une des meilleures façons de nettoyer la surface des modules PV.

Figure (II.18) : Machine mobile pour le nettoyage

II.10.5 La salle de contrôle

La salle de contrôle de la centrale photovoltaïque d'Adrar est illustrée à la Figure (II.20)

Équipé des ordinateurs, pour l'acquisition et le contrôle des données systèmes (onduleurs, connecteurs, panneaux, etc.) et pour Surveillance du réseau GRTE (Société Gestionnaire du Réseau de Transport de l'Électricité)). La salle de contrôle est conforme aux normes normalisées La CEI 60529 [13] a un indice de protection IP 54. Cet indice correspond à Protection contre l'entrée de corps étrangers (tels que les dépôts de poussière) et Effets nocifs de la pénétration de l'eau.

Le système de surveillance des données est conçu selon la norme IEC61724. Les Paramètres tels que : rayonnement solaire (G), température ambiante (Ta), température du module (Tm), vitesse du vent (v), le courant continu (DC) et le courant alternatif.

Figure (II.19) : La salle de contrôle

II.11 Conclusion

Ce chapitre est consacré sur les centrale photovoltaïque nous donnerons un aperçu sur le réseau national algérien ainsi que la société SKTM et nous avons faire une description de la centrale d'Adrar avec des données réelles obtenues pendant le stage, ou nous avons abordé les différents composants ainsi que les caractéristiques qui lui permet de produire de l'énergie électrique injectée sur le réseau national à partir du rayonnement incident sur la région d'Adrar

CHAPITRE III

ETUDE TECHNICO-ECONOMIQUE D'UNE EXTENTION DE LA CENTRALE PHOTOVOLTAIQUE ADRAR (30MW)

III .1 Introduction

L'application qui sera présenté dans ce chapitre consiste à l'étude technique et économique de l'extension de la centrale photovoltaïque 20MW situé à Adrar par une autre centrale solaire PV de capacité 30 MW.

Pour faciliter le choix des composants et leur dimensionnement on va utiliser le logiciel PVsyst, et on va utiliser aussi le logiciel RETScreen Expert qui permet d'avoir une estimation économique du système

III .2 Outils de simulation d'une centrale photovoltaïque

RETScreen et PVsyst ont été choisis pour la simulation et analyse en raison de leur avantage comparatif combiné. Cependant RETScreen fournit des outils supérieurs pour les coûts, les risques financiers et les émission. PVsyst fournit des outils pour évaluer les détails techniques des systèmes photovoltaïques connectés au réseau. Les avantages combinés de ces logiciels Fournir les détails nécessaires pour évaluer les facteurs de faisabilité du projet considéré dans cette étude. RETScreen est entièrement validé résultats en plus de données détaillées et complètes sur Centrale électrique et météorologie, assurant l'exactitude et la qualité des résultats. De plus, PVsyst est largement Utilisé pour la flexibilité et la précision dans la modélisation photovoltaïque à grande échelle plante. PVsyst également Fournit des outils pour effectuer divers calculs, y compris Pertes détaillées (pertes ohmiques, pertes de fouillis, ombrage, etc.) Non disponible en RETScreen. [40]

III.3 Étude technique

L'étude technique consiste au dimensionnement d'une installation photovoltaïque c'est-à-dire à déterminer la configuration champ photovoltaïque- onduleur qui peut satisfaire le but de l'installation. En fait le dimensionnement d'une installation connecté au réseau ne répond pas à la même problématique qu'une installation autonome. Dans le deuxième cas, il faut souvent déterminer un optimum technico-économique entre couverture des besoins énergétiques de l'utilisateur et coûts d'investissement, alors que dans le premier il s'agit plutôt de produire le maximum d'électricité au meilleur coût possible, sans préoccupation de charges à satisfaire Figure (IV.1). [41]

Figure (III.1) : Méthode de dimensionnement des systèmes photovoltaïques [41]

III.3.1 Présentation du logiciel PVsyst

PV SYST est un logiciel de dimensionnement de panneaux solaires permettant d'obtenir diverse informations telles que la production d'énergie, l'irradiation et le coût de l'installation, la surface nécessaire, ou la production annuelle d'énergie. Un mode avancé permet d'obtenir beaucoup plus

d'informations pour une étude très complète. Le logiciel comprend principalement deux modes de fonctionnement. Le premier est une application de pré dimensionnement assez simple à prendre en main et accessible au néophyte. Le deuxième permet une étude beaucoup plus approfondie et prend en compte beaucoup plus de paramètre. De plus il se base sur du matériel concret pour ses calculs, contrairement au premier mode qui effectue ses calculs pour un cas très général. Pour chacun des deux modes, le principe est le même : on donne la localisation géographique de l'installation, puis on entre les données concernant l'installation. Vien ensuite une partie résultats où l'on choisit les données qui nous intéresse [42]

Figure (III.2) : Présentation de PVsyst

III.3.2 Présentation du site adrar

Adrar est une région désertique et plus chaude dans l'Algérie et sec typique de la zone saharienne, avec une température moyenne de 25.9 degrés par jour. Pendant une longue période de l'année, les températures sont constamment supérieures à 25 degrés et peuvent atteindre 49 degrés de chaleur. Le tableau (IV.1) représente les données météorologiques du site d'adrar

III.3.2.1 Coordonnées géographiques

La centrale photovoltaïque 20MW d'adrar/Tauat se trouve à 10 Km du chef-lieu de la wilaya. Le tableau (III.1) ci-dessous donne spécification du site d'adrar

Tableau (III.1) : Spécifications du site d'adrar

Latitude	27.9
Longitude	0.31
Zone climatique	Très chaud sec
Altitude	257
Albédo	0.3
Heures d'ensoleillement	3575

Adrar est une région désertique et plus chaude dans l'Algérie et sec typique de la zone saharienne, avec une température moyenne de 25.9 degrés par jour. Pendant une longue période de l'année, les températures sont constamment supérieures à 25 degrés et peuvent atteindre 49 degrés de chaleur. Le tableau (IV.2) représente les données météorologiques du site d'adrar

Tableau (III.2) : les données météorologiques du site d'adrar

ource des données	Meteonorm 8	8.0 (1998-2010), Sa	t=100 %			
	Irradiation globale horizontale	Irradiation diffuse horizontale	Température	Vitesse du vent	Turbidité Linke	Humidite
	kWh/m²/jour	kWh/m²/jour	°C	m/s	[-]	%
Janvier	3.77	1.27	12.6	5.50	4.001	35.8
Février	4.65	1.61	15.9	6.00	4.767	28.4
Mars	5.53	2.27	21.2	6.29	6.852	21.7
Avril	6.47	2.71	25.5	6.40	7.821	18.2
Mai	6.76	3.19	31.0	6.50	8.806	13.2
Juin	7.31	3.38	34.9	6.00	9.266	12.2
Juillet	7.31	3.26	38.5	6.29	9.590	10.7
Août	6.38	3.28	37.7	6.10	9.266	12.2
Septembre	5.57	2.70	33.4	5.60	8.806	19.5
Octobre	4.64	2.19	27.5	5.50	7.421	27.2
Novembre	4.04	1.41	18.8	5.40	4.818	35.5
Décembre	3.41	1.25	13.8	5.59	4.125	41.9
Année 🕜	5.49	2.38	25.9	5.9	7.128	23.0

Irradiation globale horizontale variabilité d'une année sur l'autre 3.1%

D'après le tableau (III 2), on peut déduire que la moyenne de l'irradiation solaire globale annuel d'adrar est 5.9 KWh/ m2 .ms, avec des températures ambiantes de 25.9 C et la valeur de l'irradiation

diffus 2.38 KWh/m 2 .ms, Ce sont des paramètres qui influencent la production du panneau et du système photovoltaïque.

III.3.3 Trajectoire du soleil

Une autre donnée importante pour la conception de la centrale solaire est la trajectoire du soleil de l'emplacement. La connaissance de la trajectoire du Soleil par rapport aux modules PV est importante pour le calcul des valeurs d'éclairement et du rendement d'un système photovoltaïque

Figure (III.3) : Trajectoire du soleil à ADRAR

III3.4 Détermination d'une configuration champ PV/onduleur

A cette étape, le logiciel connaît l'énergie arrivant réellement sur la surface des capteurs. Il faut maintenant définir les paramètres du champ

On choisit d'abord les éléments de base (le panneau PV et l'onduleur) dans la bibliothèque des composants, on va utiliser le même produit que celui utilisé dans centrale PV Adrar 20MW voir les tableaux (II.4, II.5)

On définit ensuite le nombre de panneaux, et leur interconnexion en série/parallèles. Plusieurs panneaux en série et parallèle forment des groupes, on peut éventuellement connecter plusieurs groupes en série et parallèle pour former un sous-champ. Un sous-champ (produit 1MW) est connecté sur deux onduleurs. Le système peut comporter 30 sous-champs identiques (avec 60 onduleurs)

Sous-champ		Liste des sous-champs		?
Nom et orientation du sous-champ	Aide au dimensionnement			
Nom sous-champs Ordre 1	O Pas de prédim. Entrez Pnom désirée 1000.	.0 kWc 🗸	and and a	
Orient. Plan incliné fixe Azimut	28° 0° ✓ Redimens ou surface disponible(modules) ○ 6494	m² Nom	#Mod #Chair #Ond. #MPP	ле Ч
Sélection du module PV		in sous-champs		^
Disponibles V Filtre Tous les modules PV V	Modules nécessaires approx. 4082	Yingli Solar - YL245P-29b Sungrow - SG500MX	22 186 2 1	- 1
Yingli Solar V 245 Wp 25V Si-poly	YL 245P-29b Depuis 2015 Manufacturer 2015 💟	Q Ouvrir Sous-champ #2		- 1
	,	Yingli Solar - YL245P-29b	22 186	- 1
		Sungrow - SG500MX	2 1	
Dimens. des tensions : Vmp	o (60°C) 25.5 V	Sous-champ #3	22 100	
Vco	(-10°C) 41.8 V	Superow - SC500MY	22 186	
Sélection de l'onduleur		Source #4	2 1	
Disponibles		✓ 50 Hz ✓ 60 Hz	22 186	
		Sungrow - SG500MX	2 1	
		Sous-champ #5		
Nbre d'onduleurs 2 Tension de fonctionner	ent: 500-850 V Puissance globale ond. 1000 kWac	Yingli Solar - YL245P-29b	22 186	
Utilise multi-MPPT Tension entree m	aximale: 1000 V onduleur avec 8 MPPT	Sungrow - SG500MX	2 1	
V		Sous-champ #6	22 186	
Dimensionnement du champ		Suparow - SG500MX	22 100	
Nombre de modules et chaînes	Cond. de fonctionnement			~
Mod en cérie 22 ^ Ventre 20 et 23	Vmpp (60°C) 561 V Vmpp (20°C) 672 V	Résumé système global		
	Aco (-10.c) 313 A	Nombre de modules 122760		
Nb. chaînes 186 🗘 🗋 seule possibilité 186	Irradiance plan 1000 W/m ² O Max. données O ST	C Surface modules 199313 m ²		
Perte surpuissance 0.0 %	Impp (STC) 1523 A Puiss. max. en fonctionnement 89	97 kW Nbre d'onduleurs 60		
Rapport Pnom 1.00	Isc (STC) 1642 A (à 1000 W/m² et 50°C)	Puissance PV nominale 30076 KWC		
Nbre modules 4092 Surface 6644 m ²	Isc (aux STC) 1642 A Puiss, nom, champ (STC) 100	13 kWc Puissance AC nominale 30000 kWAC		
		Rapport Pnom 1.003		

Figure (III.4) : Choix des composants du système

A partir de la figure on voit que les sous champs (1MW) contient 93 matrices (186 chaines), chaque matrice constituée de 44 panneaux devisée en 2 strings, chaque string est constitué de 22 panneaux raccordés en série le nombre total de sous-champs 4092. Le tableau qui suite résume les paramètres techniques de la centrale PV complet

Nombre de sous-champs	30
Puissance nominale	30073 kW
Nombre de module PV	122760
Nombre d'onduleurs	60
Surface de la centrale	1999313 m ²
Tension max DC (20 C°)	672 V
Courant max DC (25 C°)	1523 A

Tableau (III.3) : les paramètres techniques de la centrale PV

III.3.5 Résultats de la simulation

Les principaux résultats de la simulation sur PVsyst seront présentés sous forme de graphiques et de tableaux et un rapport final sera donné par la suite (Annex2), et enfin la faisabilité du système en générale sera également discutée.

Figure (III.5) : Principaux résultats de la simulation

III.3.5.1 Energie utile produite

C'est le chiffre principal qui intéresse l'investisseur et l'exploitant de la future centrale, cette valeur absolue doit être analysée en fonction des composants installés pour avoir estimé une sorte de rapport prix / qualité. La figure (III.6) représente l'énergie utile Yf produite par la centrale photovoltaïque (à la sortie de l'onduleur) qui atteint la valeur maximum à l'heure de printemps (mars et avril), tandis qu'en mois octobre et décembre est généralement baisse. Et les pertes LS, Lc sont des pertes qui correspond respectivement au champ PV et dues à l'onduleur

Productions normalisées (par kWp installé): Puissance nominale 30.02 MWc

Figure (III.6) : Productions normalisées (par *KWp* installé) III.3.5.2 L'indice de performance (PR)

L'indice de performance (PR) est indiqué en pourcentage et désigne le rapport entre le rendement réel et le rendement théorique de l'installation photovoltaïque. Ainsi, il indique la part d'énergie réellement disponible après déduction des pertes d'énergie (par exemple pertes thermiques et pertes de conductivité) et de la consommation propre au fonctionnement pour l'alimentation.

Plus la valeur d'une installation photovoltaïque se rapproche des 100 %, plus cette installation photovoltaïque présente un fonctionnement efficace. Cependant, il n'est pas possible d'atteindre la valeur de 100 % en pratique, car le fonctionnement de l'installation photovoltaïque engendre toujours des pertes, qui sont inévitables (par exemple pertes thermiques suite au réchauffement des panneaux photovoltaïques). Les installations photovoltaïques performantes atteignent toutefois un indice de performance pouvant aller jusqu'à 80 %.

La figure (III.7) représente l'indice de performance qui est défini par le rapport de la production du système (Y_f) par l'énergie incidente de référence (Y_r) tel que :

$$PR = \frac{Y_f}{Y_r}$$

Avec

Autrement dit, il représente l'efficacité globale du système (PR = 79.3 %).

Indice de performance (PR)

Figure (III.7) : L'indice de performance (PR)

III.3.5.3 Diagramme de pertes

Les pertes totales de la centrale PV peuvent être divisées en pertes optiques et pertes du système, comme illustré à La figure (III.8). Les pertes optiques diminuent la quantité d'irradiation atteignant le générateur PV et comprennent les pertes d'horizon, d'ombrage proche, de réflexion et d'encrassement. Les pertes du système sont des pertes dans le générateur photovoltaïque causées par l'augmentation de la température, le faible rayonnement, l'ombrage électrique, la qualité, la non-concordance et la résistance du câble CC, c'est-à-dire l'énergie produite par le générateur, par rapport à la puissance nominale. Les pertes de l'onduleur, l'indisponibilité et les pertes de câblage CA sont des pertes du système

La figure (III.8) résume les pertes influençant la production du système PV

Diagramme des pertes pour "central hotovoltaique" - année

Figure (III.8) : Diagramme de pertes

III.3.5.3 les principaux résultats

Le tableau (III.3) ci-dessus représente le bilan et les principaux résultats, on voit bien que l'énergie générée par le champ photovoltaïque (E_{Array}) est proportionnelle aux Valeur énergétique incidente (G_{lobNC})

Tableau (III.3) : Bilan et résultats principaux

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
Janvier	116.8	39.4	12.62	166.9	164.2	4346	4298	0.858
Février	130.3	45.0	15.91	168.1	165.6	4275	4226	0.837
Mars	171.5	70.4	21.22	195.3	191.9	4818	4761	0.812
Avril	194.2	81.3	25.52	199.1	195.1	4794	4739	0.793
Mai	209.5	98.8	31.01	197.8	193.4	4650	4592	0.773
Juin	219.2	101.5	34.87	200.0	195.3	4579	4520	0.753
Juillet	226.6	100.9	38.52	209.8	205.0	4695	4635	0.736
Août	197.8	101.7	37.68	195.3	191.4	4430	4379	0.747
Septembre	167.1	81.1	33.36	180.9	177.4	4223	4173	0.768
Octobre	143.7	68.0	27.48	172.0	169.1	4151	4102	0.795
Novembre	121.3	42.2	18.77	167.7	165.2	4229	4181	0.830
Décembre	105.6	38.9	13.85	153.2	150.8	3978	3932	0.855
Année	2003.5	869.1	25.96	2206.2	2164.3	53168	52538	0.793

Bilans et résultats principaux

Légende :

GlobHor : Irradiation globale horizontale

DiffHor : Irradiation diffuse horizontale

- *T_Amb* : Température ambiante
- GlobInc : Global incident plan capteurs
- GlobEff : Global 'effective', corr. pour IAM et ombrage
- *E Array* : Energie effective sortie champ
- *E_Grid* : Energie injectée dans le réseau

PR : indice de performance

III.4 Étude économique

III.4.1 Présentation de l'outil de simulation RETSCEEN

Le logiciel de gestion d'énergies propres RETscreen est un logiciel, lié à l'énergie propre, élaboré par le gouvernement du Canada. RETscreen Expert était présenté lors du clean Energy Ministériel, organisé à San Francisco en 2016 [43].

RETscreen est un système logiciel de gestion d'énergies propres pour l'analyse de faisabilité de projets d'efficacité énergies renouvelables et de cogénération ainsi que pour l'analyse de la performance

énergétique en continu RETscreen Expert une version avancée du logiciel, est disponible gratuitement en Mode visionnement.

RETscreen Expert

RETscreen Expert est la dernière version du logiciel, qui est disponible en 19 septembre 2016, il comprend plusieurs bases de données, dont une Données sur les conditions climatiques mondiales provenant de 6700 stations au sol et données du produit. [44]

Il peut être utilisé partout à travers le monde pour évaluer la production et les économies d'énergies, le cout, les réductions des émissions de gaz à effet de serre (GES), la viabilité financière et le risque de différentes technologies d'énergies renouvelables et d'efficacité énergétique. [45]

Figure (III.9) : capture d'écran de logiciel RETscreen Expert

III.4.2 Les paramètres techniques et données nécessaires

Avant d'étudier économiquement un projet solaire sur logiciel RETscreen, plusieurs paramètres doivent être pris en considération tels que les données géographiques, météorologiques et technique

Tout d'abord, nous choisissons le site du projet, c'est -à-dire la zone dans laquelle se situe le projet. Nous choisissons Adrar

Figure (III.10) : Les données climatiques du site

Après de l'étape on va représenter les informations générales à propos de l'installation

RETScreen - Installation		Abonné : TEAM FFF 2016
Renseignements sur l'installation		
Type d'installation	Centrale électrique 🔹	
Туре	Photovoltaïque 🗸	Sector State Sector State Sta
Description	Extension de la centrale PV d'ADRAR par 30MW	
Préparé pour	projet fin d'étude	
Préparé par	ali touabi & akram charen	
Nom de l'installation	centrale photovoltaique 30MW	
Adresse	ADRAR	- + + + +
Ville/Municipalité	ADRAR	
Province/État	Province/État	
Pays	Algérie 🔻	
		Photo - Windwärts Energie, CC BY-NC-ND 2.0

Figure (III.11) : capture d'écran des renseignements sur l'installation

III.4.3 Analyse d'émissions

Cette analyse est considérée comme l'un des objectifs fondamentaux des projets d'énergie propre, car la plupart des pays et des réglementations nationales s'efforcent d'atteindre cet objectif et d'obtenir une énergie propre tout en réduisant autant que possible les émissions en réduisant les émissions de gaz toxiques et en protégeant l'environnement. Génère aussi des déchets L'analyse à l'aide du logiciel RETScreen Expert a déterminé la différence d'émissions entre le cas proposé (notre extension de la centrale PV) et le cas de référence (centrale de type diésel de même puissance). Calculs selon le modèle RETScreen Expert

Figure (III.12) : capture d'écran L'équivalent de la réduction annuelle nette d'émissions de GES de cas proposé en barils brut de pétrole

D'après le résultat notre étude sur d'émission GES on remarque que cette extension du central réduira le CO2 de 58828,1958 tonnes/ans et économisera l'équivalent 136809,8 de barils de pétrole brut chaque année.

III.4.4 Analyse financière :

Dans cette étape, nous avons effectué une analyse économique de notre système, y compris les coûts et les budgets du projet, sur une période moyenne estimée d'exploitation du système (25 ans) et le prix de l'électricité exportée (12 DA/KWh) [3] afin de comparer équitablement les technologies d'énergie propre aux technologies conventionnelles correspondantes. Les résultats de l'étude économique durant la période d'estimation ont été obtenus en simulant le scénario retenu pour notre projet, sans accompagnement et en tenant compte du taux d'indice carburant d'environ 2%, c'est-à-dire que le prix du carburant n'est pas fixé pour les 25 prochaines années (la vie du projet) et nous avons finalement choisi de nous baser sur une durée de remboursement de 15 ans après des informations sur les

procédures générales lors de la réalisation d'une étude d'un tel projet avec un taux d'intérêt sur la dette de 7%.

Paramètres financiers			Coûts Économies Revenus			Flux mo	nétaires annuels				
Général			Coûts d'investissement			An	Av. impôt	Cumulatif	1		
Taux d'inflation	%	2%	Coût d'investissement 100	% DZD	8 919 428 752	#	DZD	DZD	l		
Taux d'actualisation	%	9%				0	-2 675 828 6	-2 675 828 6	l		
Durée de vie du projet	an	25	Iotal des coûts d'investissement 100	% D2D	8 919 428 752	1	87 460 116	-2 588 368 5	l		
-			Frais annuels et paiements de la dette			2	102 919 593	-2 485 448 9	l		
Financement			Collts d'avalaitation at antration (économies)	DZD	50 262 250	3	118 688 259	-2 366 760 6	L		
Encouragements et subventions	DZD		Delemente de la dette 15 ene	DZD	605 513 733	4	134 772 299	-2 231 988 3	l		
Ratio d'endettement	%	70%	Palements de la dette - 15 ans	DZD	085 513 733	5	151 178 020	-2 080 810 3	l		
Dette du projet	DZD	6 243 600 127	Total des frais annuels	DZD	735 877 092	6	167 911 855	-1 912 898 4	l		
Capitaux propres investis	DZD	2 675 828 626	4				184 980 366	-1 /2/ 918 1	L		
Taux d'intérêt sur la dette	%	7%	Economies et revenus annuels			8	202 390 248	-1 525 527 8	l		
Durée de l'emprunt	an	15	Revenu d'exportation d'électricité	DZD	808 180 858	9	220 148 328	-1 305 379 5	l		
Paiements de la dette	DZD/an	685 513 733	Total des économies et des revenus annuels	070	808 180 858	11	256 737 075	-1007 117 9			
		_	Total des ceonomies et des revenus annuels	020	000 100 050	12	275 582 091	-534 798 806			
Analyse d'impôt sur le revenu			Viabilité financière			13	294 804 008	-239 994 798			
			TRI avant impôt - canitaux propres	96	10.8%	14	314 410 363	74 415 565			
evenus annuels			TPL avant impôt actife	9/	2.09/	15	334 408 845	408 824 410			
Revenu d'exportation d'électricité			The avait import - acuis	/0	2,070	16	1 040 321 029	1 449 145 438			
Électricité exportée au réseau	MWh 🔻	64 654				17	1 061 127 449	2 510 272 888			
Prix de l'électricité exportée	DZD/kWh 🔻	12,50	Retour simple	an	11,8	18	1 082 349 998	3 592 622 886			
Revenu d'exportation d'électricité	DZD	808 180 858	Retour sur les capitaux propres	an	13,8	19	1 103 996 998	4 696 619 885			
Taux d'indexation sur l'exportation d'électricité	%	2%	Valeur Actualisée Nette (VAN)	DZD	740 026 706	20	1 126 076 938	5 822 696 823			
D (1) 1 000			Économies annuelles sur la durée de vie	DZD/an	75 339 344	21	1 148 598 477	6 971 295 300			
Revenu pour reduction de GES			contraction and circs sur la dance de vie	020/01	15 555 544	22	1 171 570 447	8 142 865 747			
Réduction brute de GES	tCO₂/an	58 828	Ratio avantages-coûts		1,3	23	1 195 001 856	9 337 867 603		1	
Réduction brute de GES - 25 ans	tCO2	1 470 705	Recouvrement de la dette		1,1	24	1 218 901 893	10 556 769 4			
Revenu pour réduction de GES	DZD	0	Code de réduction de CES	D7D (4CO	1 201	25	1 243 279 931	11 800 049 4	l		
Autre revenu (coût)		m	Cout de reduction de GES	DZD/tCO2	-1 281				l		
		Danad	Prix de revient de l'energie	DZD/kWh ▼	13,85						

Figure (III.13) : capture d'écran de la feuille de calcul et analyse des coûts

A partir de ses scénarios économiques proposée de note projet les choix adaptés nous avons des résultats qui montre l'évolution économique de note projet sur la durée estimée (25ans) qui sent présentées dans les figures suivantes

Figure (III.14) : La variation annuelle des valeurs des flux de trésorerie de la centrale photovoltaïque de 30MW

Comme on peut le voir sur la figure (III.14), alors que les valeurs des flux de trésorerie sont en valeurs négatives pour la première année, elles augmentent aux valeurs positives à partir de la fin de la période de récupération du système qui est de 14 ans. Le cash-flow cumulé dépasse la valeur de 11 800 000 000 au bout de 25 ans.

Figure (III.15) : La variation annuelle du flux monétaire avant impôt pour la centrale photovoltaïque de 30MW

Nous remarquons que le cout d'investissement est représenté par le flux monétaire de l'année zéro c'est-à-dire le début de fonctionnement de la centrale, ensuite à partir de la première année le flux s'accroit lentement les quinze premières années à cause du payement des dettes. Dès la seizième année le revenu s'améliore d'une façon considérable.

III.4.5 Analyse de risque

Cette section nous permet d'effectuer une analyse de risque en spécifiant l'incertitude associée à plusieurs paramètres clés (Annexe 3) et d'évaluer l'impact qu'a cette incertitude sur le TRI avant impôt - capitaux propres, le TRI avant impôt - actifs, TRI après impôt - capitaux propres, le TRI après impôt - actifs, le temps de retour sur les capitaux propres, la Valeur Actualisée Nette (VAN) ou le Prix de revient de l'énergie. Dans la section d'analyse de risque, l'impact de chaque donnée d'entrée sur un indicateur financier est calculé en lui appliquant une régression linéaire multiple normalisée sur l'indicateur financier.

La figure (III.16.17) suivante montre l'effet relatif de la variation des paramètres clés effectués sur la variabilité de retour des capitaux propres (cout d'investissement).

Figure (III.16) : capture d'écran d'impact-retour sur les capitaux propres

Le graphique d'impact présente la contribution relative des incertitudes associées aux paramètres clés sur la variabilité de l'indicateur financier sélectionné. L'axe des abscisses au bas du graphique n'a pas d'unités puisque l'on y représente seulement les indices du poids relatif de la contribution de chaque paramètre clé.

Pour notre étude on observe que plus la barre horizontale est longue, plus l'impact de ce paramètre sur la variabilité de l'indicateur financier est grand.

III.5 Conclusion

Dans ce chapitre, nous avons fait une étude de faisabilité technique et économique ont été menées pour une extension du centrale photovoltaïque 20MW située à ADRAR par une autre centrale PV 30MW à l'aide des logiciels de calcul et de gestion d'énergies propres PVsyst & RETScreen Expert.

Dans un premier temps, le potentiel de l'énergie solaire à ADRAR a été passé en revue et il a été démontré que cette énergie est très favorable et qu'il existe de nombreuses opportunités

CHAPITRE III : ETUDE TECHNICO-ECONOMIQUE D'UNE CENTRALE PV

d'investissement dans ce domaine. Dans ce qui suit, les données météorologiques ont été extraites pour le site. Selon les résultats, il a été démontré que l'emplacement souhaité est très favorable en termes de rayonnement, de température de l'air et d'heures d'ensoleillement de la journée. Ensuite, l'extension de la centrale solaire a été techniquement examinée et les résultats du logiciel PVsyst ont été présentés et il a été démontré que la centrale aurait un très bon PR. Enfin, une étude de faisabilité économique approximative a été réalisée, qui a montré que la construction de l'extension de la centrale électrique souhaitée serait rentable en termes d'investissement.

Conclusion générale

CONLUSION GENERALE

Les propriétés intrinsèques des énergies renouvelables répondent aux diverses problématiques énergétiques qui se posent à l'humanité aujourd'hui. Ainsi, si les ressources fossiles vont commencer à manquer d'ici peu, la ressource renouvelable est, par essence, inépuisable. De même, si la combustion des produits fossiles et fissiles pose le problème de la pollution et de l'impact sur l'environnement, tant par les émissions de gaz à effet de serre que par le retraitement des déchets radioactifs, les énergies renouvelables ne nécessitent, au plus, que des systèmes de conversion très peu pollueurs en comparaison.

Ce travail est une contribution à l'étude technico-économique d'une centrale photovoltaïque de puissance (30MW) interconnectée au réseau de distribution électrique moyenne tension. Un système raccordé au réseau, non seulement permettrait de réduire le coût de l'installation, en supprimant le coût des batteries, car le stockage ne sera plus nécessaire, mais permettrait en plus d'avoir une possibilité de revendre l'énergie excédentaire au réseau et ainsi faire des profits, ce qui amortirait le prix d'investissement initial. Il s'agit donc d'une solution véritablement économique pour répondre aux besoins de base en électricité. Un autre aspect très important abordé dans cette étude est l'impact environnemental, et nous avons constaté que la centrale photovoltaïque étudiée peut réduire considérablement les émissions de gaz à effet de serre (GES) en la comparant à un cas de référence avec du diesel végétal de même puissance

Nous avons constaté que l'installation de la centrale PV interconnectée au réseau est intéressante du point de vue énergétique, à cet effet le développement du marché photovoltaïque nécessite de connaître parfaitement la production électrique de ces systèmes sur différents sites en particulier et en prenant en compte des pertes dans le système, des données météorologiques et aussi de l'état de l'art des composants afin d'estimer sa rentabilité économique et améliorer son rendement.

[1]: M.H. Balali, N. Nouri, E. Omrani, A. Nasiri, W. Otien, « An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems », Int. J. Energy Res. 41 (2017) 1948-1962.

[2] : https://www.eurobserv-er.org

[3] : https://mteer.gov.dz/

[4]: S.Belakehal, « Conception & Commande des Machines à Aimants Permanents
Dédiées aux Energies Renouvelables», thèse de Doctorat, université de Constantine,
2010

[5] : D.Benatiallah, « Détermination du gisement solaire par imagerie satellitaire avec intégration dans un système d'information géographique pour le sud d'Algérie»,

[6]: R.P. Mukund, « Wind and solar Power Systems », Ph.D, P.e U.S merchant Marine Academy, Kings Point, New York, CRC Press LLC 1999

 [7] : N.Touil et S.Ghenbazi, « Modélisation et Simulation d'un Système
 Photovoltaïque », mémoire de master, Université Echahid Hama Lakhder d'El-Oued,2015

[8] : A.Benkhelifa, « Modélisation et expérimentation d'un capteur solaire plan à eau. Influence de l'intensité de l'éclairement solaire et de l'inclinaison du capteur solaire sur le rendement du capteur ». Mémoire de Master, université de Ouargla 2012.

[9] HELALI Kamelia, « Modélisation d'une cellule photovoltaïque : Etude comparative ». Mémoire de Magister, UMMTO(Tizi-Ouzou) 2012

[10] : https://www.planete-energies.com

[11] : M. Lakhdar Louazen, « Etude technico-économique d'un système de pompage photovoltaïque sur le site d'Ouargla », Mémoire de Magister, Université EL HADJ LAKHDAR – BATNA, 2008 [12] C. Wang, « Modelling and Control of Hybrid Wind/Photovoltaic/Fuel cell Distributed Generation Systems», PhD Dissertation, Montana State University, Bozeman, 2006.

[13] : M.N.Mechalikh et H.E.Hamada, « Modélisation et simulation d'un système Photovoltaïque en fonctionnement autonome et connecté au réseau », Mémoire de Master Académique, Université Kasdi Merbah Ouargla, 2013.

[14] : Dr.B LALOUNI Sofia, « Cours Energie Solaire Photovoltaïque », UniversitéA.MIRA, BEJAIA, 2015

[15] : A.Samar et L.Ammouche, «Dimensionnement et Etude Technico-Economique d'un Système Photovoltaïque Autonome», université Mouloud Mammeri- Tiziouzou,2017

[16]: PACER, «Guide pour le dimensionnement et la réalisation de projets », Al'usage des bureaux d'ingénieurs, 1996

[17]: <u>https://blog.lendopolis.com/energies-renouvelables/energies-renouvelables-</u> <u>centrales-solaires</u>

[18]: F. Bouchtouche cherfa «Etude et réalisation d'une centrale photovoltaïque connectée au réseau de distribution électrique BT». Mémoire de magister, Ecole National Polytechnique Elharach, 2004

[19] : www.sktm.dz

[20] : N.Lounici et T.Hamour, « Etude de l'impact de l'injection de 20 MW d'énergie solaire photovoltaïque dans un réseau électrique conventionnel du sud», mémoire de master, Université Saâd Dahlab, Blida-1,2020 [21] : A. Cabrera-Tobar, E. d Bullich-Massagué, M. Aragüés-Peñalba, O. Gomis-Bellmunt, « Topologies for large scale photovoltaic power plants », Universitat Politècnica de Catalunya, 2016

[22] : Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K-O, Schock H-W, « ZnO/CdS/ CuInSe2 thin-film solar cells with improved performance ». Appl Phys Lett 1993

[23] Hussin M, Shaari S, Omar A, Zain Z, « Amorphous silicon thin-film : behaviour of light-induced degradation », Renew Sustain Energy Rev 2015

[24] : L,Abbassen, «Etude de la connexion au réseau électrique d'une centrale photovoltaïque», mémoire de magister, université Mouloud Mammeri- Tiziouzou,2011

[25] : Y.Benchida et C.Gheffour, « Etude technico-économique de l'alimentation en électricité d'un habitat isolé au sud de l'Algérie par un system photovoltaïque », mémoire de master, université Aboubaker Belkaid-Tlemcen ,2017

[26] : <u>http://for-ge.blogspot.com/2015/08/londuleur.html</u>

[27] : R.Mechouma, « Contribution à l'étude des onduleurs dans les systèmes photovoltaïques : Application pour les charges commerciales », Thèse de doctorat d'université hadj Lakhdar –Batna. Mars 2015

[28] : République du Sénégal Ministère de l'Energie et des Mines, « Etude de Faisabilité TechnicoEconomique de la Filière Photovoltaïque Raccordée Réseau Au Sénégal »,2006

[29] : D. Loriol, « Conception et réalisation d'un modulateur de largeur d'impulsion au moyen de circuits logiques programmables associé à un processeur de signal numérique », Mémoire d'ingénieur CNAM, 2000

REFERENCES

 [30] : H.Benaicha, « Analyse des stratégies de maintenance des systèmes de production industrielle », thèse Doctorat, Université des Sciences et de la Technologie d'Oran Mohammed Boudiaf,2015

[31] : Rapport EIES, « ETUDE D'IMPACT ENVIRONNEMENTAL ET SOCIAL DU PROJET DE CENTRALE »,2019

SOLAIRE IPP DE 23 MW CONNECTEE AU RESEAU EXISTANT A KAEL

[32] : L.Hassaine, « Onduleurs photovoltaïques connectés au réseau Électrique », Division Energie solaire photovoltaïque , 2011.

[33] : Thi Minh Chau le, « Couplage Onduleurs Photovoltaïque et réseau, aspects contrôle/ commande et rejet de perturbations », thèse de doctorat université de grenoble, 25 Janvier 2012.

[34] : B. Bletterie (arsenal research o Austria), « Impact of Photovoltaic GenerationOn Voltage Variations o How Stochastic Is PV », CIRED 19th InternationalConference on Electricity Distribution, Vienna, Austria, 2007

[35] : A.Kitamura, « Demonstration test results for grid interconnected photovoltaic power systems », Report IEA-PVPS T5-02.1999

[36] : JIN-WOO JUNG. PH. D, « Mechatronic systems laboratory ». Departement of electrical and computer engineering the ohio state university, 2008.

[37]: S. E. Evju « Fundamentals of Grid Connected Photovoltaic Power Electronic Converter Design ». Norwegian University of Science and Technology (NTNU)Department of Electric Engineering, January 2007

[38] : Cegelec, « Aménagement d'une centrale solaire photovoltaïque », ArticlesL122-3 et suivants du Code de l'Environnement,2009

[39] : H. Mema Babe, « Etude de la centrale photovoltaïque de Skhouna Saida », mémoire de master, Université Mohammed Boudiaf - M'sila, 2015

[40] : M. Obeng, S. Gyamf, N. Sarfo Derky F. Peprah, « Technical and economic feasibility of a 50 MW grid-connected solar PV at UENR Nsoatre Campus », 2019

[41] : N.Benbouza, «Etude Technico-économique des Systèmes Photovoltaïques pour Application dans la Région de Batna». Thèse Doctorat, Université de Batna 2, 2018

[42] : <u>www.PVsyst.com</u>

[43] : « Le Canada, le Mexique et les Etats-Unis montrent les progrès de la collaboration nord-américaines dans les dossiers énergétiques » Clean Energy Ministériel en 3 juin 2016

[44]: « NASA-NASA collaboration Benefits International Priorities of Energy Management » archive sur NASA 12 Septembre 2007.

[45] :« analyse de projets d'énergie propres : manuel d'ingénierie et études de cas RETscreen » archive de publication du gouvernement du Canada 24 Février 2016.

Annexe

Annexe I

Modélisation d'un module PV dans block Simulink

Annex II

Rapport de simulation technique sur PVSyst

	SYST	Version 7.2.1
	PVsyst - Simulation report Grid-Connected System	
	Project: l'extension de centrale PV adrar Variant: central hotovoltaique No 3D scene defined, no shadings System power: 30.02 MWp Adrar - Algérie	
byst V7.2.11 0, Simulation date: 04/22 10 32	Project: l'extension de centrale PV adrar Variant: central hotovoltaique	
Toget V7.2.11 0, Structures 0,	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary	
VY2.11 By VY2.11 By Strategic date: Disputation	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Bituation 27.90 % Project se Latitude 0.31 % Attesto Longitude 0.31 %	ttings 0.20
Syst V7.2.11 Syst V7.2.11 Supervised V7.2.11 Geographical Site Adras Adras Metro data adra Metro data	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Bituation 27.90 *N Latitude 0.31 *E Ativede Ativede UTC+1 VTC+1	tings 0.20
Syst V7.2.11 D. Borustan D. Borustan Meteorolata Advar Advar Meteorolata attar Meteorolata	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Project summary Situation Latitude 27.00 °N Attacé 257 m Jatitude 257 m UTC+1 010), Bat-100 % - Synthetisque System summary	tings 0.20
Vyst V7.2.11 D. Brownsteinn date: Vv7.2.11 Cacographical Site Advant Algens Mateomers 8.0 (1908-20 Grid-Connected site Grid-Connected site PV Field Orientation Froad planar	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Bitalande 27.00 °N Atabude 2057 m Time zone UTC+1 DID), Sat-100 % - Synthetique System summary tem No 3D scene defined, no shadings No 3D scene defined, no shadings	ttings 0.20 dis el (grid)
Appendix App	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Liettude Liettude Liettude 27.90 °N Liettude 27.90 °N Adado 27.90 °N Complete 27.90 °N Adado 29.70 °N Adado 20.70 °N Adad	ttings 0.25 ds ad (grid) 30.00 MWMac 1.001
Systev V7.2.11 0, Broutation state: 0, V7.2.11 V7.2.11 Coopyraphical Site Advances Algebra Batter Corid-Connected Site Advances and Displayed Corid-Connected Site Connected Site System Information Flood players Tel/Adimuth System Information Flood players	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Listitude 27.00 °N Attento Listitude 27.00 °N Project set Attento 29.7 0° National Set System summary No 3D scene defined, no shadings No Shadings	tlings 0.25 ds ed (grid) 30.00 MWas 1.001
V7.2.11 Decographical Site Adam Metro data afra Metro data afra Metro data afra Decographical Site Adam Metro data afra Decographical Site Adam Metro data afra Decographical Site Adam Metro data afra Decographical Site Adam Metro data afra Decographical Site Adam Metro data afra Decographical Site Adam Metro data Site Decographical Site Decographical Site Site Decographical Site Decographical Site Decographical Site Decographical Site Decographical Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Decographical Site Decographical Site Decographical Site Decographical Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Site Decographical Site Decographical Site Decograph	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Bituation Lanade 23.0 °N Attacé 23.7 °R Attacé	ttings 0.20 ds st (grid) 2000 MWae 1.001 78 79.34 %
Y 7.2.11 Source 1 sate:	Project: l'extension de centrale PV adrar Variant: central hotovoltaique Project summary Lafatule 22.05 % Cafatule 23.7 %	tings 0.20 ds sd (grid) 1.001 % 70.34 %

PVsyst V7.2.11 VC0, Simulation date: 08/09/22 15:32 with v7.2.11

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

Ordel Commented Deriver	No. 10 and the	ad as shadless	
Gnd-Connected System	No 3D scene defin	ied, no shadings	
PV Field Orientation			
Orientation	Sheds configuration	•	Models used
Fixed plane	No 3D scene defined		Transposition Perez
Tit/Azimuth 28/	0 -		Diffuse Perez, Meleonorm
			Circumsolar separate
iorizon Near Shadings			User's needs
Free Horizon	No Shadinga		Unlimited load (grid)
	PV Array Ch	aracteristics —	
PV module		Inverter	
Manufacturer	Yingli Solar	Manufacturer	Sungrow
Model	YL245P-295	Model	SG500MX
(Custom parameters definit	ion)	(Custom paramete	rs definition)
Unit Nom. Power	245 Wp	Unit Nom. Power	500 kWac
Number of PV modules	122518 units	Number of inverters	60 units
Nominal (STC)	30.02 MWp	Total power	30000 kWac
Charles Div			
Array #1 - Champ PV	4498	Number of instates	2 units
Nominal (STC)	1100 kWh	Total power	1000 Million
Norhiles	204 Strings x 22 In series	Total power	TOOD KYNIE
At operation cond. (50°C)	204 George X 22 III an Inc	Operating unitary	500-850 M
Press	084 MMM	Prom ratio (DC:AC)	1 10
LL mon	580 V	(100710)	
L mmp	1071 4		
i npp	in the		
Array #2 - Sous-champ #2			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
Umpp	589 V		
I mpp	1515 A		
Array #3 - Sous-champ #3			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #4 . Source have #4			
Array #4 - bous-champ #4	4020 units	Number of instates	2 units
Nominal (STC)	997 kWm	Total power	1000 Million
Modules	185 Strings x 22 In series	Come provide	TOOD KINGE
At operation cond. (50°C)	The second a second second	Operating unitage	500-850 M
Press	802 MMA	Prom ratio (DC:AC)	1.00
LL mon	580 V	(00 00)	1.00

08/09/22

PVsyst Licensed to

Page 3/12

PVayat V7.2.11 VC0, Structure date: 08/00/22 15:32 with v7.2.11

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

with v7.2.11			
	PV Array	Characteristics	
Array #5 - Sous-champ #5			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #6 - Sous-champ #6			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #7 - Sous-champ #7	,		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #8 - Sous-champ #8	1		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
1 mpp	1515 A		
Array #9 - Sous-champ #9			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #10 - Sous-champ #	10		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Phom ratio (DC:AC)	1.00
C mpp	589 V		
i mpp	1515 A		

08/09/22

PVsyst Licensed to

Page 4/12

PVsyst V7.2.11 VC0, Simulation date: 0809/2215:32 with v7.2.11

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

	PV Array	Characteristics	
Array #11 - Sous-champ #	11		
Number of PV modules	4070 units	Number of invertera	2 units
Nominal (STC)	997 KWb	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond, (50°C)		Operating voltage	500-850 V
Pmpp	892 KWb	Pnom ratio (DC:AC)	1.00
Umpp	589 V	(,	
Impp	1515 A		
Array #12 - Sous-champ #	12		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	SSI7 KWp	Total power	1000 KWac
Modules	185 Strings x 22 In series		F00 050 11
At operating cond. (50°C)		Operating voltage	500-850 V
Phipp	BS2 KWp	Phom ratio (DC:AC)	1.00
Umpp	589 V		
1 mpp	1515 A		
Array #13 - Sous-champ #	13		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond, (50°C)		Operating voltage	500-850 V
Pmpp	892 kWb	Pnom ratio (DC:AC)	1.00
Umpp	589 V	(,	
I mpp	1515 A		
Array #14 - Sous-champ #	14		
Number of PV modules	4070 units	Number of investors	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWb	Pnom ratio (DC:AC)	1.00
LI mon	589 V	, ,	
I mpp	1515 A		
Array #15 - Sous-champ #	15		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
Umpp	589 V		
1 mpp	1515 A		
Array #16 - Sous-champ #	16		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
Umpp	589 V		

08/09/22

PVsyst Licensed to

Page 5/12

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

	PV Array	Characteristics	
Array #17 - Sous-champ #1	17		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
Umpp	589 V		
1 mpp	1515 A		
Array #18 - Sous-champ #1	18		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 KWb	Total power	1000 KWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 KWb	Pnom ratio (DC:AC)	1.00
LI mon	589 V	,,	
Lmmo	1515 4		
Array #19 - Sous-champ #1	19		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
Umpp	589 V		
1 mpp	1515 A		
Array #20 - Sous-champ #	20		
Number of PV modules	4070 units	Number of investers	2 units
Newingt (RTC)	007 5550	Total monet	1000 55500
Madulan	185 Strings v 22 In series		
At execution could (BOTC)	Too beings a se in sector	Operating units on	500 850 M
Property in the second se	802 5550	Proming (DC-AC)	1.00
LL man	690 1/	(and (and (and)	
L mmp	1515 4		
1 mpp	1919 6		
Array #21 - Sous-champ #2	21		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #22 - Sous-champ #2	4020 units	Mumber of instation	2 units
Newsight (PTC)	COT MADE	Total second	2 Units
Normania (STG)	195 Strings v 22 la serie	Total power	TOTAL RANGE
Modules and (MARC)	100 beings x 22 In series	One of the second second	500 850 M
At operating cond. (50°C)		Operating voltage	500-650 V
Phipp	es/2 kWp	Phom ratio (DC:AC)	1.00
U mpp	od9 V		

08/09/22

PVsyst Licensed to

Page 6/12

ANNEXE

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

- PV Array Characteristics - PV Array Characteristics
 4070 units
 Number of investers
 2 units
 907 MVP
 Total power
 1000 KWa
 1000 KWa
 1000 KWa
 907 KVP
 Pnom ratio (DC:AC)
 1.00 Array #23 - Sous-champ #23 Number of PV modules Nonline (STC) Modules 1 Arepeating cond. (S0°C) U mpp I mpp 185 892 kWp 589 V 1515 A

Array #24 - Sous-champ #24			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #25 - Sous-champ #25			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #26 - Sous-champ #26			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #27 - Sous-champ #27			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #28 - Sous-champ #28			
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
Umpp	589 V		
I mpp	1515 A		

08/09/22

PVsyst Licensed to

Page 7/12

2 units 1000 kWac

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

	PV Array	Characteristics	
Array #29 - Sous-champ	#29		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)	-	Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Array #30 - Sous-champ	#30		
Number of PV modules	4070 units	Number of inverters	2 units
Nominal (STC)	997 kWp	Total power	1000 kWac
Modules	185 Strings x 22 In series		
At operating cond. (50°C)		Operating voltage	500-850 V
Pmpp	892 kWp	Pnom ratio (DC:AC)	1.00
U mpp	589 V		
I mpp	1515 A		
Total PV power		Total inverter power	
Nominal (STC)	30017 kWp	Total power	30000 kWac
Total	122518 modules	Number of inverters	60 units
Module area	198920 m ²	Pnom ratio	1.00
Cell area	178852 m ²		
	Arr	av losses	
		ay losses	
I nermai Loss factor	LID - Light Ind	1.3 % Loss F	rection .0.8 %
Lic (const)	20.0 Wimek		

Uv (wind)	0	0 Wim ² Kim/a						
Module mismatch losses Loss Fraction 2.0 % at MPP			Strings Mis Loss Fraction	Itrings Mismatch loss one Fraction 0.1 %				
IAM loss fact Incidence effect	tor t (IAM): User del	fined profile						
0*	20*	40*	60*	70*	75*	80"	85*	90"
1.000	1.000	1.000	0.980	0.880	0.800	0.670	0.430	0.000

DC wiring losses

_

08/09/22		PVsyst	Licensed to	Page 8/	12
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC	
Array #7 - Sous-cham Global array res.	ip #7	6.5 mQ	Array #8 - Sous-champ #8 Global array res.	6.5 mQ	
Loss Fraction 1.5 % at STC		Loss Fraction	1.5 % at STC		
Array #5 - Sous-cham Global array res.	p #5	6.5 mQ	Array #6 - Sous-champ #6 Global array res.	6.5 mD	
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC	
Array #3 - Sous-cham Global array res.	ap #3	6.5 mQ	Array #4 - Sous-champ #4 Global array res.	6.5 mD	
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC	
Array #1 - Champ PV Global array rea.		5.9 mQ	Array #2 - Sous-champ #2 Global array res.	6.5 mQ	
Global wiring resistance Loss Fraction	0.22 mD 1.5 % at STC				

ANNEXE

PVs VC0 08/0 with 17 2 11

6.5 mΩ 1.5 % at STC

Project: l'extension de centrale PV adrar Variant: central hotovoltaique

	DC wi	ring losses	
Array #9 - Sous-champ #9		Array #10 - Sous-champ #10	
Global array res.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #11 - Sous-champ #11		Array #12 - Sous-champ #12	
Global array res.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #13 - Sous-champ #13		Array #14 - Sous-champ #14	
Global array res.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #15 - Sous-champ #15		Array #16 - Sous-champ #16	
Global array res.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #17 - Sous-champ #17		Array #18 - Sous-champ #18	
Global array res.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #19 - Sous-champ #19		Array #20 - Sous-champ #20	
Global array res.	6.5 mΩ	Global array res.	6.5 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #21 - Sous-champ #21		Array #22 - Sous-champ #22	
Global array rea.	6.5 mΩ	Global array res.	6.5 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #23 - Sous-champ #23		Array #24 - Sous-champ #24	
Global array res.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #25 - Sous-champ #25		Array #26 - Sous-champ #26	
Global array rea.	6.5 mQ	Global array res.	6.5 mQ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #27 - Sous-champ #27		Array #28 - Sous-champ #28	
Global array rea.	6.5 mΩ	Global array res.	6.5 mΩ
Loss Fraction	1.5 % at STC	Loss Fraction	1.5 % at STC
Array #29 - Sous-champ #29		Array #30 - Sous-champ #30	

ia Fr

6.5 mΩ 1.5 % at STC

Page 10/12

08/09/22	PVsyst Licensed to
ANNEXE

08/09/22 PVsyst Licensed to Page 12/12

Annex III

L'impact de chaque donnée d'entrée sur un indicateur financier

Impact - Valeur Actualisée Nette (VAN)

Impact - TRI avant impôt - capitaux propres

Impact - TRI avant impôt - actifs

