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Abstract 

Since the end of 2019, the COVID19 virus has appeared in the world. This virus 

has left and still leaves behind thousands of deaths. Several security measures 

have been adopted to limit the spread of the latter among the world's 

populations. Following scientific research, in April 2021, American researchers 

proposed a formula that estimates and limits the risk of contagion by COVID19. 

One of the peculiarities of COVID19 is that it is a virus that continues to evolve 

and mutate. A theme aimed at developing an application based on the formula 

proposed by [1] to design and production of a tool for estimating and evaluating 

the risk of contamination by the COVID-19 virus in closed areas. 

Keywords:COVID-19, Machine Learning, Artificial Intelligence, 

Reinforcement Learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Résumé 

Depuis la fin de l’année 2019, le virus COVID-19 a fait son apparition dans le 

monde. Ce virus a laissé et laisse encore derrière lui des milliers de morts. 

Plusieurs mesures de sécurité ont été adoptées afin de limiter la propagation de 

ce dernier au sein des populations mondiales. Suite à une recherche scientifique, 

en Avril 2021, des chercheurs américains ont proposé une formule qui permet 

d’estimer et de limiter le risque de contagion par le COVID19. Une des 

particularités du COVID19 est que c’est un virus qui ne cesse d’évoluer et de 

muter. Un thème visant à développer une application qui se base sur la formule 

proposée par [1] pour concevoir et réaliser un outil d'estimation et d'évaluation 

du risque de contamination par le virus COVID-19 en milieu fermé. 

Mots-clés :COVID-19, machine Learning, Intelligence Artificielle, 

Apprentissage par Renforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ملخص 

 

اءه آلاف في العالم. لقد خلف هذا الفيروس ولا يزال ور COVID19، ظهر فيروس 2019منذ نهاية عام 

عد لعالم. بكان اسالوفيات. وقد تم اتخاذ العديد من الإجراءات الأمنية للحد من انتشار هذا الأخير بين 

ى بواسطة ، اقترح باحثون أمريكيون صيغة تقدر وتحد من خطر العدو 2021البحث العلمي ، في أبريل 

COVID19ى خصائص . تتمثل إحدCOVID19  في أنه فيروس يستمر في التطور والتحول.فإن

تاج أداة [ لتصميم وإن1الموضوع الذي يهدف إلى تطوير تطبيق بناءً على الصيغة المقترحة بواسطة ]

 في المناطق المغلقة. COVID-19لتقدير وتقييم مخاطر التلوث بفيروس 

 الكلماتالمفتاحية:كوفيد -19 ، التعلم المعزز ،التعلمالآلي،الذكاءالاصطناعي
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GENERAL INTRODUCTION 

 

The COVID19 virus has appeared in the world this virus has left and still leaves 

behind thousands of deaths one of the peculiarities of COVID19 is that it is a 

virus that continues to evolve and mutate spreads primarily through droplets of 

saliva or discharge from the nose when an infected person coughs or sneezes. 

[32] 

The problematic is that the Six-Foot Rule, a guideline that offers little protection 

from pathogen-bearing aerosol droplets sothe importance of airborne 

transmission of COVID-19 is now widely recognized. While tools for risk 

assessment have recently been developed, no safety guideline has been proposed 

to protect against it. Which is known to be transported by respiratory droplets 

exhaled by an infected person other problematic isThe Six-Foot Rule, a 

guideline that offers little protection from pathogen-bearing aerosol droplets, No 

safety guideline has been proposed to protect against airborne transmission of 

COVID-19, also there is another problematic which is the difficulty of 

Prediction and estimation of the risk of contamination by the COVID19 virus in 

closed areas. [1] 

In this thesis, we will propose an original approach to design and produce a tool 

for estimating and evaluating the risk of contamination by the COVID19 virus in 

closed areas. 

In Chapter 1, we present an introduction to the terms “Artificial Intelligence” 

and a brief definition of COVID-19.  

In Chapter 2, we explain the concept of reinforcement learning and some basics 

and the downsides of reinforcement learning. Next, we take a tour of 

Reinforcement Learning-based algorithms, finally a comparison of the discussed 

algorithms. 
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In Chapter 3, we present the proposed solution the conception and our 

contribution to the proposed solution and the integration of Reinforcement 

Learning in the solution, and the steps taken to realize all this. 

In Chapter 4, we give the results obtained from the tests and the scenarios 

tested. 
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Chapter 1 General Concepts 

 

1. Introduction 

Concurrent advances in information technology infrastructure and mobile 

computing have raised hopes that artificial intelligence (AI) might help to 

address challenges unique to the field of global health and accelerate 

achievement of the health-related sustainable development goals. AI-driven 

health interventions fit into four categories: diagnosis, patient morbidity or 

mortality risk assessment, disease outbreak prediction and surveillance, and 

health policy and planning. [33] 

 

2. Covid-19 

Coronavirus disease (COVID-19) is an infectious disease caused by a newly 

discovered coronavirus. 

Most people infected with the COVID-19 virus will experience mild to 

moderate respiratory illness and recover without requiring special treatment.  

Older people and those with underlying medical problems like cardiovascular 

disease, diabetes, chronic respiratory disease, and cancer are more likely to 

develop serious illness. 

The best way to prevent and slow down transmission is to be well informed 

about the COVID-19 virus, the disease it causes and how it spreads. 
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There are thought to be three possible routes of human-to-human transmission 

of COVID-19: large drop transmission from the mouth of an infected person to 

the mouth, nose or eyes of the recipient; physical contact with droplets deposited 

on surfaces (fomites) and subsequent transfer to the recipient’s respiratory 

mucosae; and inhalation of the micro droplets ejected by an infected person and 

held aloft by ambient air currents [9–10]. They subsequently refer to these three 

modes of transmission as, respectively, “large-drop,” “contact,” and “airborne” 

transmission, while noting that the distinction between large-drop and airborne 

transmission is somewhat nebulous given the continuum of sizes of emitted 

droplets [11]. They build on models of airborne disease transmission in order to 

derive an indoor safety guideline that would impose an upper bound on the 

“cumulative exposure time,” the product of the number of occupants and their 

time in an enclosed space. theydemonstrate how this bound depends on the rates 

of ventilation and air filtration, dimensions of the room, breathing rate, 

respiratory activity and face mask use of its occupants, and infectiousness of the 

respiratory aerosols. 

2.1 A guideline to limit indoor airborne transmission of 

COVID-19 

The pathogen responsible for COVID-19, severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), is known to be transported by respiratory droplets 

exhaled by an infected person [12–13]. There is now overwhelming evidence 

that indoor airborne transmission associated with relatively small, micron-scale 

aerosol droplets plays a dominant role in the spread of COVID-19 [17, 18, 19, 

20–21, 22], especially for so-called “super-spreading events” [23–24], which 

invariably occur indoors [25]. 
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2.1.1 The Well-Mixed Room 

They assume that the droplet-borne pathogen remains airborne for some time 

before being extracted by the room’s ventilation system, inhaled, or sedimenting 

out. The fate of ejected droplets in a well-mixed ambient is determined by the 

relative magnitudes of two speeds: the settling speed of the drop in quiescent air 

and the ambient air circulation speed within the room, they consider a well-

mixed room of area A, depth H, and volume V =HA with ventilation outflow 

rate Q and outdoor air change rate (typically reported as air changes per hour, or 

ACH) _a =Q=V. Mechanical ventilation imposes an additional recirculation 

flow rate 𝑪𝒓 that further contributes to the  well-mixed state of the room, but 

alters the emergent drop size distributions only if accompanied by filtration. It is 

noteworthy that, even in the absence of forced ventilation, there will generally 

be some mixing in an enclosed space: Natural ventilation will lead to flows 

through windows and doors, as well as leakage through construction materials 

and joints. Moreover, occupants serve to enhance airflow through their motion 

and respiration. [1] 

2.1.2 Indoor Safety Guideline 

The concentration of infection quanta or “infectiousness” of exhaled air, 𝑪𝒒the 

latter is the key disease-specific parameter in their model, which can also be 

expressed as the rate of quanta emission by an infected person, they thus arrive 

at a simple guideline, appropriate for steady-state situations, To minimize risk of 

infection, one should avoid spending extended periods in highly populated areas. 

One is safer in rooms with large volume and high ventilation rates. One is at 

greater risk in rooms where people are exerting themselves in such a way as to 

increase their respiration rate and pathogen output, for example, by exercising, 

singing, or shouting. Since the rate of inhalation of contagion depends on the 

volume flux of both the exhalation of the infected individual and the inhalation 

of the susceptible person, the risk of infection increases as𝑄2. [1] 
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2.1.3 Application to COVID-19 

They proceed by making rough estimates for 𝑪𝒒for different respiratory 

activities on the basis of existing epidemiological data gathered from early 

super-spreading events of COVID-19. Their inferences provide a baseline value 

for𝑪𝒒, relevant for elderly individuals exposed to the original strain of SARS-

CoV-2, an inference of 𝑪𝒒=970 quanta/m3 was made by Miller et al. [23] in 

their recent analysis of the Skagit Valley Chorale super-spreading incident [26], 

on the basis of the assumption that the transmission was described in terms of 

the Wells–Riley model [27, 28, 20, 29] for a mean breathing rate. This inference 

is roughly consistent with studies of other related viral diseases. For example, 

Liao et al. [30] estimated 𝑪𝒒=28 quanta/𝑚3 from the rate of indoor spreading of 

SARS-CoV-2, in a hospital and an elementary school. Estimates of 𝑪𝒒for H1N1 

influenza fall in the range 15 to 128 quanta/𝑚3 [31]. For SARS-CoV-2, 

Buonanno et al. [20] estimate a 𝑪𝒒range of 10.5 to 1,030 quanta/𝑚3, on the 

basis of the estimated infectivity and note that the precise value depends 

strongly on the infected person’s respiratory activity, as it shown in Figure 13 

below. 
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Figure 13: Estimates of the “infectiousness” of exhaled air, 𝑪𝒒, defined as the peak concentration of COVID-19 

infection quanta in the breath of an infected person, for various respiratory activities, obtained from the experiments 

on hundreds of people .[1] 

 

2.1.4Discussion and Caveats 

They have focused here primarily on airborne transmission, for which infection 

arises through inhalation of a critical quantity of airborne pathogen, and 

neglected the roles of both contact and large-drop transmission [14]. While 

motivated by the COVID-19 pandemic, their theoretical framework applies quite 

generally to airborne respiratory illnesses, including influenza. Moreover, they 

note that the approach taken, coupling the droplet dynamics to the transmission 

dynamics, allows for a more complete description. For example, consideration 

of conservation of pathogen allows one to calculate the rate of pathogen 

sedimentation and associated surface contamination, consideration of which 

would allow for quantitative models of contact transmission and so inform 

cleaning protocols. Respiration rates Q have been measured to be 0.5 𝑚3/h for 

normal breathing, and may increase by a factor of 3 for more strenuous activities 

[20]. Other parameters, including room geometry, ventilation, and adherence to 

the Six-Foot Rule would limit large-drop transmission, and adherence to their 
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guideline. Above all, their study makes clear the inadequacy of the Six-Foot 

Rule in mitigating indoor airborne disease transmission, and offers a rational, 

physically informed alternative for managing life in the time of COVID-19. If 

implemented, their safety guideline would impose a limit on the CET in indoor 

settings, violation of which constitutes an exposure for all of the room’s 

occupants. Finally, while their study has allowed for an estimate of the 

infectiousness of COVID-19, it also indicates how new data characterizing 

indoor spreading events may lead to improved estimates thereof and so to 

quantitative refinements of their safety guideline. [1] 

2.1.5 Modes of Contamination 

First theymentioned the transmission of COVID by air a form of transmission 

in which you will see that it is largely based on physical principles and the 

project objective it's to see at best how to limit this mode of transmission, at 

the present hour they mainly distinguish 3 modes of transmission of Sars-Cov-

2, the virus responsible for COVID, first of all there is the mode that they 

could call "large droplets" the idea is known: when we cough, sneeze or spit 

we will project droplets that contain the virus, if these droplets land in the 

mouth, nose or eyes from another person, we are likely to infect them, they 

know that these droplets have sizes that can reach a millimeter and as they are 

relatively big they will fall under the effect of gravity they therefore estimate 

on the basis of various visualizations that these droplets wind to be projected 

at most about 2m, this is the reason why they generally recommend this 

minimum distance As a barrier gesture and of course also an important 

motivation for wearing the mask which blocks the jet of droplets. Another 

possible mode of contamination: via surfaces, if droplets land for example on 

a table that I then come to touch, I will bring back the virus on my hands and 

if I put them in my mouth, nose or eyes, I will contaminate myself, the barrier 

gesture for this mode of contamination as we know it: washing your hands 
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regularly with soap, using hydro-alcoholic gel it doesn't get any better and 

disinfect surfaces likely to be contaminated. This mode of transmission by 

surfaces, which had been envisaged very early, they think today that it is 

certainly not a very active mode that there is a lack of direct evidence that it 

acts in a truly meaningful way. On the other hand, with the evolution of their 

understanding of the mechanisms it is now believed that a major or even 

dominant mode of transmission it is transmission by air, by aerosol, they 

talked about the big droplets, but it's not just that, when we cough, but also 

when we speak and even just our breathing we emit a whole set of much 

smaller droplets the size of which can range from a hundred microns to less 

than one micron these droplets come from our saliva and the mucous 

membranes of the lungs and respiratory tract and even if you don't have 

symptoms like rate or sneezing. You will naturally emit these droplets. 

However, unlike the large droplets they talked about just before these can, if 

they are small enough, they can stay suspended in the air. The ambient air 

movements are sufficient to compensate for their fall under the effect of 

gravity. For these micro-droplets suspended in the air, the term aerosols is 

used, and these suspended aerosols can diffuse freely in a closed room, and 

contaminate a person, even if he is more than two meters from the carrier of 

the virus. Obviously, there is no strict border between the droplets they talked 

about and the aerosols. The larger the droplets, the faster they will fall to the 

ground, the smaller they are, the more likely they are to stay in suspension. In 

a closed room, the diffusion of contaminated aerosols to the whole room can 

be quite fast. The natural movements of the air, the movements of people, 

make that after a few minutes at best, they can almost consider the aerosol 

concentration to be homogeneous all over the room. This would mean that for 

this mode of contamination, the distance does not matter. Whether you are 

close enough to the carrier or across the room, the risk will be similar. [1] 
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3. Artificial intelligence (AI)  

Is a technical science that studies and develops theories, methods, 

technologies, and applications for simulating and extending human 

intelligence. The purpose of AI is to enable machines to think like people and 

to make machines intelligent. Today, AI has become an interdisciplinary 

course that involves various fields, as it shown in Figure 1 below.[2] 

 

Figure1: AI [2] 

 

 

Artificial intelligence (AI) is being used as a tool to support the fight 

against the viral pandemic that has affected the entire world since the 

beginning of 2020. The press and the scientific community are echoing 

the high hopes that data science and AI can be used to confront the 

coronavirus. [34] 

China, the first epicenter of this disease and renowned for its 

technological advance in this field, has tried to use this to its real 

advantage. Its uses seem to have included support for measures restricting 

the movement of populations, forecasting the evolution of disease 

outbreaks and research for the development of a vaccine or treatment. 
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With regard to the latter aspect, AI has been used to speed up genome 

sequencing, make faster diagnoses, carry out scanner analyses or, more 

occasionally, handle maintenance and delivery robots. [34] 

Its contributions, does not eliminate the need for clinical test phases nor 

does it replace human expertise entirely. [34] 

3.1 The contribution of artificial intelligence to the search for 

a cure 

The first application of AI expected in the face of a health crisis is 

certainly the assistance to researchers to find a vaccine able to protect 

caregivers and contain the pandemic. Biomedicine and research rely on a 

large number of techniques. [34] 

The predictions of the virus structure generated by AI have already saved 

scientists months of experimentation. AI seems to have provided 

significant support in this sense. The American start-up Moderna has 

managed to significantly reduce the time required to develop a prototype 

vaccine testable on humans thanks to the support of bioinformatics, of 

which AI is an integral part. [34] 

Similarly, Chinese technology giant Baidu, in partnership with Oregon 

State University and the University of Rochester, published its Linear-fold 

prediction algorithm in February 2020 to study the same protein folding. 

This algorithm is much faster than traditional algorithms in predicting the 

structure of a virus secondary ribonucleic acid (RNA) and provides 

scientists with additional information on how viruses spread. Deep-Mind, 

a subsidiary of Google's parent company, Alphabet, has also shared its 

predictions of coronavirus protein structures with its Alpha-Fold AI 

system. IBM, Amazon, Google and Microsoft have also provided the 

computing power of their servers to the US authorities to process very 

large datasets in epidemiology, bioinformatics and molecular modeling. 

[34] 
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3.2 Artificial intelligence, a driving force for knowledge 

sharing 

Indeed, in the weeks following the appearance of the new coronavirus in 

Wuhan, China, in December 2019, nearly 2,000 research papers were published 

on the effects of this new virus, on possible treatments, and on the dynamics of 

the pandemic. [34] 

Microsoft Research, the National Library of Medicine and the Allen Institute for 

AI (AI2) therefore presented their work on 16 March 2020, which consisted of 

collecting and preparing more than 29,000 documents relating to the new virus 

and the broader family of coronaviruses, 13,000 of which were processed so that 

computers could read the underlying data. [34] 

 

3.3 Artificial intelligence, observer and predictor of the evolution 

of the pandemic 

The Canadian company BlueDot is credited with the early detection of the virus 

using an AI and its ability to continuously review over 100 data sets. BlueDot 

detected what was then considered an outbreak of pneumonia in Wuhan, China 

on 31 December 2019 and identified the cities most likely to experience this 

outbreak. 

A team of researchers working with the Boston Children's Hospital has also 

developed an AI to track the spread of the coronavirus. Called Health-Map, the 

system integrates data from Google searches, social media and blogs, as well as 

discussion forums.[34]  

The International Research Centre for Artificial Intelligence (IRCAI) in 

Slovenia, under the auspices of UNESCO, has launched an "intelligent" media 

https://bluedot.global/products/explorer
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watch on coronavirus called Corona Virus Media Watch which provides updates 

on global and national news based on a selection of media with open online 

information. [34]  

3.4 Artificial intelligence to assist healthcare personnel 

For their part, two Chinese companies have developed AI-based coronavirus 

diagnostic software. The Beijing-based start-up Infer-vision has trained its 

software to detect lung problems using computed tomography (CT) scans. 

Originally used to diagnose lung cancer, the software can also detect pneumonia 

associated with respiratory diseases such as coronavirus. At least 34 Chinese 

hospitals are reported to have used this technology to help them screen 32,000 

suspected cases. [34] 

The Alibaba DAMO Academy, the research arm of the Chinese company 

Alibaba, has also trained an AI system to recognize coronaviruses with an 

accuracy claimed to be 96%. According to the company, the system could 

process the 300 to 400 scans needed to diagnose a coronavirus in 20 to 30 

seconds, whereas the same operation would usually take an experienced doctor 

10 to 15 minutes. The system is said to have helped at least 26 Chinese hospitals 

to review more than 30,000 cases. [34] 

In South Korea, AI is reported to have helped reduce the time needed to design 

testing kits based on the genetic make-up of the virus to a few weeks, when it 

would normally take two to three months. The biotech company Seegene used 

its automated test development system to develop the test kit and distribute it 

widely. This has equipped 118 medical establishments with this device and 

tested more than 230,000 people. [34] 

3.5 Artificial intelligence: an evaluation of its use in the aftermath 

of a crisis 

http://coronaviruswatch.ircai.org/?country=All&dashboard=news
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Digital technology, including information technology and AI, are therefore 

proving to be important tools to help build a coordinated response to this 

pandemic. The multiple uses also illustrate the limits of what can currently be 

achieved by this very technology. [34] 

4. Conclusion 

 

In this chapter we discussed the terms of AI, COVID 19, different modes of 

contamination the facters helping the super spreading of this virus and the 

problems faced to protect against these modes of contamination so the 

conclusion here is that we must start paying more attention to the airborne 

transmission which is the number one factor to the super spreading events 

due to the less knowledge of this dangerous mode of contamination.   
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Chapter 2 Reinforcement Learning 

1. Introduction 

People from different backgrounds have started to wonder how to learn 

intelligent behavior in complex dynamic environments, so for this chapter we 

are going to answer this question by diving into the term of Reinforcement 

Learning by covering terminologies algorithms and the difficulties of the ladder.  

2. Reinforcement Learning 

Reinforcement learning it’s like teaching your dog to do tricks:if your pet 

performs the trick you desirethere will a reward, otherwise a penalty. [3-4] 

RL deals with learning via interaction and feedback, learning to solve a task by 

trial and error, or in other words acting in an environment and receiving rewards 

for it. Essentially an agent (or several) is built that can perceive and interpret the 

environment in which is placed, furthermore, it can take actions and interact with 

it. [3-4] 

3. Terminologies 

As it shown in Figure 3 belowthe terminologies used in the field of RL are:  

 

 

Figure 3:Agent-environmentinteractions [3] 
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Agent  

The learner and the decision maker. [3] 

Environment  

Where the agent learns and decides what actions to perform. [3] 

Action  

A set of actions which the agent can perform. [3] 

State  

The state of the agent in the environment. [3] 

Reward  

For each action selected by the agent the environment provides a reward usually 

a scalar value. [3] 

Policy 

The decision-making function (control strategy) of the agent, which represents a 

mapping from situations to actions. [3] 

 

4. RL in Depth 

There are two significant downsides to this approach so on the one hand if you 

want to do supervised learning you have to create a data set to train on which is 

not always a very easy thing to do and on the other hand if you train your neural 

network model to simply imitate the actions of the human player well then by 

definition your agent can never be better at playing the game than that human 

gamer for example if you want to train a neural net to be better at playing the 

game of gold and the best human then by definition we can't use supervised 

learning so is there a way to have an agent learn to play a game entirely by itself 
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well fortunately there is and this is called reinforcement learning so the 

framework and reinforcement learning is actually surprisingly similar to the 

normal framework in supervised learning so we still have an input frame we run 

it through some neural network model and the network produces an output 

action but the only difference here is that now we don't actually know the target 

label so we don't know in any situation because we don't have a data set to train 

on and in reinforcement learning the network that transforms input to output 

actions is called the policy network now one of the  simplest ways to train a 

policy network is a method called policy gradients so the approach in policy 

gradients is that you start out with a completely random network you feed that 

network with an input it produces a random output action and the network in this 

case it could be a fully connected network but you can obviously apply 

convolution there as well and now in reality the output of your network is going 

to consist of two numbers and what will you do while training is actually sample 

from the distribution so that you're not always going to repeat the same exact 

actions and this will allow your agent to sort of explore the environment a bit 

randomly and hopefully discover better rewards and better behavior now 

importantly because we want to enable our agent to learn entirely by itself the 

only feedback that we're going to give it is the reward so whenever our agent 

manages to score a goal it will receive a reward of +1 and if he doesn't then our 

agent will receive the penalty of minus 1 and  the entire goal of the agent is to 

optimize it's policy to receive as much reward as possible so in order to train our 

policy network the first thing is we're going to do is collect a bunch of 

experience so you're just going to run a whole bunch of those game frames 

through your network select random actions, as it shown in Figure 5 below 
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Figure 5: policy training[5] 

and now obviously since our agent hasn't learned anything useful yet it's going 

to lose most of the games but the thing is sometimes our agent might get lucky 

sometimes it's going to randomly select a whole sequence of actions that 

actually lead to scoring a goal and in this case our agent is going to receive a 

reward and a key thing to understand that for every episode regardless of 

whether we want a positive or a negative reward we already compute the 

gradients that would make the  actions that our agent has chosen more likely in 

the future and this is very crucial and so what policy gradients are going to do is 

that for every episode where we've got a positive reward we're going to use the 

normal gradients to increase the probability of those actions in the future but 

whenever we got a negative reward we're going to apply the same [5] gradient 

but we're going to multiply it with a minus and this minus sign will make sure 

that in the future all the actions that we took in a very bad episode are going to 

be less likely in the future, as it shown in Figure 6 below 

 

Figure 6: the rewards dynamiques[5] 
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And so the result is that while training our policy network the actions that lead 

to negative rewards are slowly going to be filtered out and the actions that leads 

to positive rewards are going to become more and more likely so in a sense our 

agent is learning. [5] 

 

 

 

5. The significant downsides to using reinforcement 

learning 

5.1 Credit Assignment Problem 

The problem with policy gradients is that our policy gradients when it makes a 

mistake and gets a negative penalty so it's going to assume that since we lost that 

episode all of the actions that we took there must be bad actions and is going to 

reduce the likelihood of taking those actions in the future but the most part of 

that episode we were doing really well so we don't really want to decrease the 

likelihood of those actions [5] , as it shown in Figure 7 below 

 

Figure 7: actions taken by agent in Ping-Pong game[5] 



Chaptre 2 

 
20 

and in Reinforcement learning this is called the "Credit Assignment Problem" 

it's where if you get a reward at the end of your episode well what are the exact 

actions that led to that specific reward and this problem is entirely related to the 

fact that we have what we call a “Sparse Reward Setting”.[5] 

5.2 Sparse Reward Setting 

 so instead of getting a reward for every single action we only get a reward after 

an entire episode and our agent needs to figure out what part of its actions 

sequence we're causing the reward that it eventually gets and  so the result of 

this sparse reward setting is that in Reinforcement Learning algorithms are 

typically inefficient which means that you have to give them a ton of training 

time before they can learn some useful behavior now it turns out that in some 

extreme cases the sparse reward setting actually fails completely in the same 

case [5] whereas in reinforcement learning setting you're having to deal with this 

very big problem of sparse reward setting and so the traditional approach to 

solve this issue of sparse rewards has been the use of "Rewards Shaping".[5] 

5.3 Rewards Shaping 

so reward shaping is the process of manually designing a reward function that 

needs to guide your policy to some desired behavior by adding extra rewards to 

guide your policy to some desired behavior and while this makes it easier for 

your policy to converge to desired behavior there are some significant 

downsides to reward shaping so firstly reward shaping is a custom process that 

needs to be redone for every new environment you want to train a policy well 

you would have to craft a new reward function for every single environment 

that's just not scalable the second [5] problem is that reward shaping suffers 

from what we call "The Alignment Problem". [5] 
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5.4 The Alignment Problem 

so it turns out that reward shaping is actually surprisingly difficult in a lot of 

cases when you shape your reward function your agent will find some very 

surprising way to make sure that it's getting a lot of rewards but not doing at all 

what you wanted to do and in sense the policy is just over fitting to that specific 

reward function that you designed while not generalizing to the intended 

behavior that you had in mind and there's a lot of funny cases where reward 

shaping goes terribly wrong so for example the agent was trained to do jumping 

and the reward function was the distance from its feet to the ground and what 

this agent has learned is to simply grow a very tall body and do some kind of 

backflip to make sure that its feet are very far from the ground. [5] 

To give you one final idea of how hard it can be to the reward shaping in some 

cases like Alpha go for example by definition you don't want to do any reward 

shaping because this will constrain your policy the behavior of humans which is 

not exactly optimal in every situation.[5] 

 So the situation that we're now is that we know that it's really hard to train in a 

sparsely setting but at the same time it's also very tricky to shape a reward 

function and we don't always want to do that. [5] 

6. Model-Free VSModel-Based Reinforcement 

Learning 

Model-based RL uses experience to construct an internal model of the transitions 

and immediate outcomes in the environment. Appropriate actions are then 

chosen by searching or planning in this world model. The model stands for the 

simulation of the dynamics of the environment. That is, the model learns the 

transition probability T (s1| (s0, a)) from the pair of current state s0 and action a 



Chaptre 2 

 
22 

to the next state s1. If the transition probability is successfully learned, the agent 

will know how likely to enter a specific state given current state and action. [6] 

Model-free RLuses experience to learn directly one or both of two simpler 

quantities (state/ action values or policies) which can achieve the same optimal 

behavior but without estimation or use of a world model. Given a policy, a state 

has a value, defined in terms of the future utility that is expected to accrue 

starting from that state. [6] 

Model-free methods are statistically less efficient than model-based methods, 

because information from the environment is combined with previous, and 

possibly erroneous.[6] 

Model-free algorithms rely on trial-and-error to update its knowledge. As a 

result, it does not require space to store all the combination of states and actions. 

[6] 

So Model-based learning attempts to model the environment then choose the 

optimal policy based on its learned model; In Model-free learning the agent 

relies on trial-and-error experience for setting up the optimal policy. [6] 

7. On-policy vs Off-policy 

An on-policy agent learns the value based on its current action a derived from the 

current policy, whereas its off-policy counterpart learns it based on the action a* 

obtained from another policy. In Q-learning, such policy is the greedy policy. [6] 

8. Illustration of Various Algorithms 

8.1 Q-Learning 

Q-Learning is an off-policy, model-free RL algorithm,Q-learning learns the 

action-value function Q(s, a): basically a scalar value is assigned over an action a 
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given the state S. The following chart provides a good representation of the 

algorithm. [6] 

As it shown in Figure 8 below 

 

 

Figure8:Q-learning steps[6] 

8.2 State-Action-Reward-State-Action (SARSA) 

SARSA very much resembles Q-learning. The key difference between SARSA 

and Q-learning is that SARSA is an on-policy algorithm. It implies that SARSA 

learns the Q-value based on the action performed by the current policy instead of 

the greedy policy. [4] 

8.3 Deep Q Network (DQN) 

Although Q-learning is a very powerful algorithm, its main weakness is lack of 

generality. Q-learningresembles dynamic programming as updating numbers in a 

two-dimensional array (Action Space * State Space). This indicates that for states 
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that the Q-learning agent has not seen before, it has no clue which action to take. 

[4] 

Q-learning agent does not have the ability to estimate value for unseen states. [4] 

To solve this problem, DQN get rid of the two-dimensional array by introducing 

Neural Network. [4] 

DQN leverages a Neural Network to estimate the Q-value function. The input for 

the network is the current, while the output is the corresponding Q-value for each 

of the action, as it shown in Figure 9 below. [4] 

 

Figure9:Atari Example In 2013, Deep Mind applied DQN to Atari game, as illustrated in the above figure. The input is 

the raw image of the current game situation. It went through several layers including convolutional layer as well as 

fully connected layer. The output is the Q-value for each of the actions that the agent can take.[6] 

 

https://arxiv.org/pdf/1312.5602.pdf
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8.4 Deep Deterministic Policy Gradient (DDPG) 

Although DQN achieved huge success in higher dimensional problem, such as 

the Atari game, the action space is still discrete. However, many tasks of interest, 

especially physical control tasks, the action space is continuous. If you discretize 

the action space too finely, you wind up having an action space that is too large. 

For instance, assume the degree of free random system is 10. For each of the 

degree, you divide the space into 4 parts. You wind up having 4¹⁰ =1048576 

actions. It is also extremely hard to converge for such a large action space. [4] 

DDPG relies on the actor-critic architecture with two eponymous elements, actor 

and critic. An actor is used to tune the parameter 𝜽 for the policy function, i.e. 

decide the best action for a specific state. [4] 

A critic is used for evaluating the policy function estimated by the actor 

according to the temporal difference (TD) error, as it shown in Figure 10below. 

[4] 
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Figure10:Actor-critic Architecture[6] 

 

8.5 Trust Region Policy Optimization (TRPO) 

Deep Deterministic Policy Gradient (DDPG) was a break through that allows 

agent to perform actions in a continuous space while maintaining a descent 

performance. However, the main issue of DDPG is that you need to pick the step 

size that falls into the right range. If it is too small, the training progress will be 

extremely slow. If it is too large, conversely, it tends to be overwhelmed by the 

noise, leading to tragic performance. Recall that the target for calculating the 

Temporal Difference (TD) error is the following: 

If the step size is selected inappropriately, the target yi derived from the networks 

or function estimators will not be good, leading to an even worse sample and 

worse estimate of the value function. [4] 
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Therefore, what we need is a way to update parameters that guarantees policy 

improvement. Namely, we want the expected discounted long-term reward 

η to be always increasing. [4] 

8.6 Proximal Policy Optimization (PPO, OpenAI version) 

Although TRPO has achieved great and consistent high performance, the 

computation and implementation of it is extremely complicated. In TRPO, the 

constraint imposed on the surrogate objective function is the KL divergence 

between the old and the new policy. [4] 

Fisher Information Matrix, a second-order derivative of KL divergence, is used 

to approximate the KL term. This results in computing several second-order 

matrixes, which requires a great amount of computation. In the TRPO paper, 

Conjugate Gradient (CG) algorithm was used to solve the constrained 

optimization problem so that the Fisher Information Matrix does not need to be 

explicitly computed. Yet, CG makes implementation more complicated. [4] 

PPO gets rid of the computation created by constrained optimization as it 

proposes a clipped surrogate objective function. [4] 

rt(𝜽) denotes the ratio between the new and the old policy. [4] 

The idea of TRPO’s constraint is disallowing the policy to change too much. [4] 

 Case 1: When the advantage Ȃt is greater than 0 

If Ȃt is greater than 0, it means that the action is better than the average of all the 

actions in that state. Therefore, the action should be encouraged by increasing rt 

(𝜽) so that this action has a higher chance to be adopted.  
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 Case 2: When the advantage Ȃt is smaller than 0 

By contrast, if Ȃt is smaller than 0, then that action should be discouraged. As a 

result, rt (𝜽) should be decreased. As it shown in Figure 12 below.[4] 

 
Figure12:Illustration of the Clip[6] 

 

Essentially, it restricts the range that the new policy can vary from the old one; 

thus, removing the incentive for the probability ratio rt(𝜽) to move outside the 

interval. [4] 

In practice, loss function error and entropy bonus should also be considered 

during implementation. [4] 

9. Model-based RL 

Model-based RL has a strong influence from control theory, and the goal is to 

plan through an f(s,a) control function to choose the optimal actions. Think of it 

as the RL field where the laws of physics are provided by the creator. The 

drawback of model-based methods is that although they have more assumptions 
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and approximations on a given task, but may be limited only to these specific 

types of tasks. There are two main approaches: learning the model or learn given 

the model.[6] 

10. Comparison of Discussed Algorithms 

Algorithm 
Model Policy Action 

Space 

Observation 

Space 

Operator 

Q-Learning 
Model-

Free 

Off-Policy Discrete Discrete Q-Value 

SARSA 
Model-

Free 

On-Policy Discrete Discrete Q-Value 

DQN 
Model-

Free 

Off-Policy Discrete Continuous Q-Value 

DDPG 
Model-

Free 

Off-Policy Continuous Continuous Q-Value 

TRPO 
Model-

Free 

Off-Policy Continuous Continuous Advantage 

PPO 
Model-

Free 

Off-Policy Continuous Continuous Advantage 

Table 1: Comparison Table[6] 

 

 

All the discussed RL algorithms are model-free. That is, none of them are trying 

to estimate the objective function. Instead, they update their knowledge based on 

trial-and-error. Among all of them, only SARSA is on-policy, learning value 

based on its current action. DQN was a huge improvement from a discrete 

observation space to a continuous one, allowing the agent to handle unseen state. 

DDPG was another break through that enables agent to perform continuous 

actions with policy gradient, broadening the application of RL to more tasks such 

as control. TRPO improves the performance of DDPG as it introduces a 
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surrogate objective function and a KL divergence constraint, guaranteeing non-

decreasing long-term reward. PPO further optimizes TRPO by modifying the 

surrogate objective function, which improves the performance as well as 

decreasing the complexity of implementation and computation. [4] 

The solution we chose is so much simpler than the ones mentioned above it 

requires a simple knowledge of math algebra and the basics of python, no data-

set needed with a policy network so we don't need to go through the time 

consuming collecting the experience and training with sparse rewards which is 

really hard or the reward shaping which is also not an optimal solution by doing 

this we also got rid of the issues such as "Credit Assignment Problem" and "The 

Alignment Problem". 

The main reason why not using any of the algorithms mentioned earlier is that 

they are basically used to train the agent how to play video games their functions 

procedures are specially made for video games even the data set contain a 

caption of video games movement made by human player.   

11. Conclusion 

This chapter we addressed “Reinforcement Learning” we discussed everything 

from definition all the different algorithms with the comparison of these 

discussed algorithms, the downsides the challenges facing RL so the reality is 

that most of these breakthroughs in "Reinforcement Learning" are actually the 

work of some of the brightest minds alive today and there is a lot of very hard 

engineering going behind the scenes.       
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Chapter 3 Conception and Implementation   

 

1. Introduction 

In the previous chapter we talked about RL in detail, in this one we are going 

how we integrated and modeled RL in the formula proposed by [1]. 

2. Proposed Solution 

What [1] proposed was a formula for the risk of contamination by COVID-19 

virus which is as follows
𝐍∗𝐭∗ 𝑄2∗𝑓2∗𝑪𝒒

𝛌𝐕
 

First we have 

Exhaled air flow: Qwhich has a double effect due to the inhaling and exhaling 

Fraction that crosses the mask: fa well-worn mask only has 10% of the virus 

passing through each time which also has a double effect due to the inhaling and 

exhaling 

Room volume: V 

Air Renewal rate: λor ventilation rate or in other words how many times the air 

is renewed in one hour 

Exposure time: t 

Number of persons: N 

Quantum concentration of infection in exhaled air:𝑪𝒒the concentration of 

infection quanta or “infectiousness” of exhaled air, 𝑪𝒒the latter is the key 

disease-specific parameter in our model, which can also be expressed as the rate 
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of quanta emission by an infected person or in simpler words the number of the 

viruses exhaled by an infected person. 

 

3. A Case for Study 

Whether you are close enough to the carrier or across the room, the risk will 

be similar.Under these conditions, what can we do? 

To answer the question above they will take a concrete case that we should be 

talking about. Imagine a class of college students, of which one of the students 

is carrying without knowing it. That it is not very symptomatic, or that he has 

not yet been diagnosed, they can imagine that he will stay a few days in class, 

being contagious. Question: how many comrades will he infect in his 

classroom, and how to make it so that it is if possible 0? To answer this 

question, they are going to do some small calculations from simple physical 

principles.There are going to be some formulas. 

 

3.1 Exhaled Air 

The first thing to know is that because of its simple breathing, our infected 

student will reject about 0.5𝑚3 of air per hour. If he talks a lot or sings, the 

values will be higher, up to 1𝑚3 of exhaust air per hour. They will call Q the 

flow of exhaled air. Now the question is how many viruses are there in that 

exhaled air? So it's pretty hard to know, and they'll presume a value. They will 

say that there are 1000 copies of the virus per 𝑚3 of exhaled air.Obviously 

they have to keep in mind that these copies of the virus are not in the open air, 

they are in micro-droplets, aerosols, but their hypothesis is that in all the 

aerosols contained in 1𝑚3  of exhaled air, that's 1000 copies of the virus.They 

will note that𝑪𝒗, the virus concentration in the exhaled air.  
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3.2 The Mask 

Then there is a super important thing: the mask. If it is well put on, it will 

absorb a good part of the droplets, therefore copies of the virus. A surgical 

mask has an efficiency of about 90%, that is to say that only 10% of the 

viruses passing; they will denote this fraction f, so 0.1. By the way they will 

notice two things: first, it is important that it is a mask and a visor. A visor can 

capture big droplets that are projected when you sneeze, but aerosols in 

suspension are not stopped by the visor. The other thing is that the mask must 

be worn well, positioned on the nose. They are talking about droplets 

contained in the breath, breathing is through the nose a lot, so if the mask is 

under the nose, all that contaminated air will come out without a problem. So 

for their students, they can assume that the mask is not always worn perfectly, 

and that in total there are 15% of viruses passing, so f = 0.15. If they make the 

product of these 3 quantities: 0.5𝑚3/ h, 1000 viruses per 𝑚3 and 15% of 

passing viruses, they obtain the quantity of virus released into the ambient air 

by their patient each hour. Here Q times f times𝑪𝒗, that's about 75 expired 

viruses per hour. 

3.3 The Micro-Droplets 

Then they must take into account that the micro-droplets which contain the 

viruses, once rejected, they will quickly diffuse throughout the room. So the 

75 viruses will end up diluted throughout the volume of the room. If the 

classroom is 50𝑚2 and has a ceiling height of 3m, these 75 viruses will be 

diluted in a volume V of 150𝑚3 of air. So the average concentration once 

diluted, it's going to be 0.5 virus per𝒎𝟑. It doesn't seem like a lot. Except 

remember, that's what's added to the air every hour. So in theory the virus 

concentration in the ambient air should increase continuously: 0.5, 1,and 2 etc. 

Hour after hour. Finally that would be if the classroom were a perfectly 
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airtight jar, fortunately a room is never airtight, there are air vents, maybe 

even mechanical ventilation which extracts the air and rejects it to the room. 

Outside and probably those we ventilate from time to time by opening the 

windows.  

3.4 Air Renewal Rate 

There are several ways to quantify all these phenomena; a simple way is to 

look at the rate of renewal of the air in the room: how many times the air in 

the room is renewed each hour. Suppose it takes two hours to renew 

everything, that means the renewal rate is 0.5 times per hour. They will note 

that lambda. Basically this means that each hour, the viruses released do not 

dilute in 150𝑚3  of fresh air, but in 0.5 times this value. By doing the 

calculation well, they can show that between what is rejected by the patient 

and what is renewed; the concentration of virus in the ambient air will reach 

an equilibrium which is equal to Q × f ×𝑪𝒗, divided by lambda × V. With the 

figures they have chosen, that puts us at 1 virus per𝑚3. So how much is 1 

virus per𝑚3?  

3.5 A Simple Scenario 

Well now they're going to try to estimate how many infections it's going to 

cause. Let's put ourselves in the shoes of another student located elsewhere in 

the classroom. He will also breathe the ambient air, and he will inhale and 

exhale at the same rate as what they assumed earlier: a Q rate of 0.5 𝑚3/ h. If 

the contagious student stays, say, 3 days in class before being tested and 

isolated, that means that at 7 hours of class per day, their healthy student will 

be exposed to the ambient virus for about twenty hours in total. They will 

write "tau" this exposure time. About twenty hours at 0.5𝑚3  per hour, that's 

10𝑚3  of inhaled air.If they multiply that by the concentration of virus in the 

ambient air, there is one virus per 𝑚3 , so it’s makes 10 copies of the virus 
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which will be inhaled by this student over the 3 days of exposure. And except 

that they forgot something, the mask! Yes it also works in this sense, the mask 

will filter 90% of the incoming viruses, so only one out of the 10 will pass, 

that makes only one inhaled virus. The complete formula of all their 

calculations, the number of viruses inhaled in total is: tau𝑸𝟐𝒇𝟐 

𝑪𝒗 divided by lambda V.  

So an inhaled virus, but is it serious? Is that enough to nab the COVID? Well 

probably not! With each copy of virus, there is a certain probability "p" that it 

really infects you. How much is this probability worth? They will say 10%: 

only one risk in 10 for each copy of the virus. They will therefore multiply 

their formula by P, and that will give themtheir probability of being infected. 

Their poor student, who has inhaled on average one virus during these 20 

hours of exposure, has only a 10% chance of getting sick. Frankly it's okay! 

It’s okay, except that there are 30 in the class, to be just as exposed to this 

mode of contamination, so if each student has a 10% chance, they are pretty 

sure to recover one, or even several cases. Basically for simplicity, they can 

multiply their formula by N, N: number of people present. And this big 

formula, it roughly gives the probability that there is a transmission of the 

virus. And they remind you, even if there is only one transmission, in fact it is 

a lot. If each patient transmits it to more than one person, the number of 

reproduction, the famous "R0" will be greater than 1, and therefore the 

epidemic will continue exponentially.  

3.6 The Effectof other Factors  

What they want is to bring that below 1. They want on average less than one 

transmission per patient. And since they are just reasoning about the time 

spent in class, they would like to bring this figure really below 1. So for that 

let's look at this formula together, it tells us some interesting things about 
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aerosol transmission. First, it's proportional to the cumulative exposure time 

tau, It's pretty logical, if you stay twice as long, the risk doubles. Then the 

filtration coefficient f appears squared, because there is a double effect of the 

masks. They limit the viruses expired by the carrier, and those inhaled by the 

recipient. A well-worn mask only has 10% of the virus passing through each 

time, so that in total reduces transmission by a factor of 100. The effect of is 

enormous.  

In the denominator, they see that they have the volume of the room and the air 

renewal rate the larger the room and the more air is renewed, the less risks 

they take, it is logical, but it is good to see it. And then here they have two 

terms left. The concentration of virus in the exhaled air:𝑪𝒗, and the probability 

of contamination P when inhaling a copy of the virus. They have given you 

values, which are credible, but about which they actually have great 

uncertainty. It's pretty hard to know that. So does that discredit the whole 

analysis? Well no, because what really matters, you see, is the product of 

these two quantities. 1000 viruses per 𝑚3expired, and 10% probability of 

contamination, is the same as 10,000 viruses per 𝑚3and 1% probability. 

Imagine that it is 10%, this probability, that means that it takes on average an 

exposure to 10 copies of virus to be contaminated, therefore 1000 viruses per 

𝑚3, it is 100 times this quantity, this "dose", this dose they will call it: a 

quantum of infection. They say "quantum" but nothing to do with quantum 

mechanics; it's just the typical amount it takes to get infected. And their 1000 

viruses per𝒎𝟑, thus representing 100 quantum of infection per𝒎𝟑. And if it 

had been 10,000 viruses with a probability of 1%, it would have been the same 

thing, it would also have made 100 quantum of infection per𝒎𝟑. So in their 

analysis, they will forget the virus concentration and the probability of 

infection, they are going to replace by the product of the two, the 



Chaptre 3 

 
37 

concentration in quantum of infection, they will note it 𝑪𝒒, and why is it 

better? 

 

3.7 Concentration in quantum of infection𝑪𝒒 

Because it is something that can be more easily estimated. Martin Bazant and 

John Bush, the physicists who wrote the article, took data from various 

contamination events, and were able to estimate the mean values for the 

quantum concentration of infection emitted by a patient. The typical value 

obtained for normal activity is around 70 quantum per 𝑚3of exhaled air. But 

for the case of the choir, where people were singing, the value would be closer 

to 900 quantum per𝑚3. They can easily imagine that when we sing loudly, we 

expel more droplets, which may come from different regions of the lungs, and 

that this greatly increases the concentration of infection quantum in the 

exhaled air. Obviously this estimate will depend on a whole bunch of factors: 

the patient's symptom state, the target population and of course, the strain of 

the virus. While some variants, such as the famous English variant, are more 

contagious, this will result in higher quantum concentrations. Note that they 

do not necessarily know if with the English variant the aerosol droplets are 

more concentrated in virus, or if it is the probability of infection associated 

with a copy of the virus which is higher, but the effect on the infection 

quantum concentration is the same, it will increase it maybe by 50%. In any 

case, you can see that the value of 100 quantum per 𝑚3was quite reasonable, 

they don't have a super precise value, but it is essentially the only parameter of 

the analysis on which they have an uncertainty.  

By taking a good safety margin it can allow us to advance in the reasoning. So 

let's come back to our formula, they said that they wanted to limit the 

reproduction of the virus, and therefore to lower this value sufficiently below 
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1. To be broad with their uncertainties, they will say that they set their selves a 

tolerance threshold at 10%, they will note it epsilon and so here is what they 

want: all that less than epsilon. What can they do to meet this threshold?  

3.8 The Measures needed  

They can ask their selves the question for each situation where people are 

brought together in the same room. There they will look with the 

characteristics that they gave for the classroom. First, they can limit the 

number of people present N and the exposure time tau. From this point of 

view, the practice of the half-gauge is obviously going in the right direction. 

Another essential thing, you have to wear the mask well, they remind you that 

the factor f which has a squared effect. It is also necessary to avoid activities 

such as singing or sport which increases the rate of respiration Q. For sport, it 

can add a factor of 10 to the rate, squared that makes 100. So indoor sport and 

worse, without a mask, it’s a no! The volume of room V, a priori they cannot 

change it too much. But they still have lambda, the air renewal rate. They 

have been quite pessimistic, they have taken 0.5: a renewal every 2 hours. 

This is a typical value for residential premises, but in collective premises, with 

a good ventilation system or periodic ventilation, much better can be done. 

They can multiply this value by 5 or even 10, and therefore reduce the risk 

accordingly. If you have your hand on a mechanical ventilation system, a 

typical benchmark is to impose a ventilation rate of about 30𝑚3 per hour and 

per person. With 30 students, that's 900 𝑚3per hour, so 150 𝑚3of classroom 

will be renewed 6 times per hour. 6 times for lambda instead of 0.5 the risk 

was reduced by a factor of 12. That's good if there is mechanical ventilation 

whose flow is controlled, but it is likely that in many situations this is not the 

case. [1] 
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Exhaled air flow: Q 

Fraction that crosses the mask: f 

Room volume: V 

Air Renewal rate:λ 

Exposure time: t 

Number of persons: N 

Quantum concentration of infection in exhaled air:𝑪𝒒 

Total probability of transmission:
𝐍∗𝐭∗ 𝑄2∗𝑓2∗𝑪𝒒

𝛌𝐕
 

 

4. Explanation 

          In order to create a tool of estimation we are going to incorporate and 

shape reinforcement learning around the formula proposed by [1]. 

So what was our contribution? What we did was we took that formula and we 

added the 3 past weeks estimation plus the current week to estimate the risk for 

the next month and the month after that. And by doing that we are teaching our 

agent to change the value of 𝑪𝒒depending on the progress of the estimation 

during the monthso how it works: 

In reinforcement learning we have a decision maker called an agent that 

interacts with the environment that it's placed in these interactions occur 

sequentially over time at each time step the agent will get some representation of 

the environment state and given this representation that agent select an action to 

take the environment is then transitioned into some new state and the agent is 

getting a reward as a consequence of its previous action so to summarize the 

components of the reinforcement learning model include the environment the 
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agent all the possible states of the environment all the action that the agent can 

take in the environment and all the rewards that the agent can receive from 

taking actions in the environment so the environment for our agent are the 

inputs: 

Number of persons: N 

Exposure time: t 

Exhaled air flow: Q 

Fraction that crosses the mask: f 

Quantum concentration of infection in exhaled air:𝑪𝒒 

Air Renewal rate:λ 

Room volume: V 

And then the past three weeks estimation transmission (S1,S2,S3) plus current 

week estimation rp. 

The agent will receive these inputs and then calculate the estimation of 

transmission pc and the total probability of transmission tp, then the difference 

between the past three weeks and the current week. By doing all this 

calculations the agent now will have the state of the environment as it shown 

in the caption below (I is the number of weeks in the month) 

s1=input("First Week Transmission Estimation: ") ; s1=float(s1) 

s2=input("Second Week Transmission Estimation: ") ; s2=float(s2) 

s3=input("Third Week Transmission Estimation: ") ; s3=float(s3) 

rp=input("Current Week Transmission Estimation: ") ; rp=float(rp) 

n=input("Number of persons: ") ; n=float(n) 

t=input("Exposure time: ") ; t=float(t) 

q=input("Exhaled air flow: ") ; q=float(q) 

f=input("Fraction that crosses the mask: ") ; f=float(f) 

cq=input("Quantum concentration of infection in exhaled air: ") ; cq=float(cq) 

λ=input("Air Renewal rate: ") ; λ=float(λ) 
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v=input("Room volume: ") ; v=float(v) 

pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

print("The Old Total Transmission Estimation befor the RL Algorithm:",pc) 

print("The Old Total probability of transmission befor the RL Algorithm:",tp) 

i=1 

 

The states are pc(Total Transmission Estimation) and tp(Total probability of 

transmission) depending on these states the agent will select an action and the 

action for our agent is to decide 𝑪𝒒  is positive or negative if positive there will 

be a reward if negative a penalty as it shown in the caption below 

whilei<= 4: 

 iftp<=-0.03: 

    cq=cq-0.3 

    pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

    tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

    print("Total Estimation of transmission For The",i,"Week After Adjusting is:",pc) 

    print("Total probability of transmission For The",i,"Week After Adjusting is:",tp) 

    s1=s2 

    s2=s3 

    s3=pc 

 eliftp>-0.03andtp<=-0.02: 

        cq=cq-0.2 

        pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

        tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

        print("Total Estimation of transmission For The",i,"Week After Adjusting is:",pc) 

        print("Total probability of transmission For The",i,"Week After Adjusting is:",tp) 

        s1=s2 

        s2=s3 

        s3=pc 

 eliftp>-0.02andtp<=0: 

    cq=cq-0.1 

    pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

    tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

    print("Total Estimation of transmission For The",i,"Week After Adjusting is:",pc) 

    print("Total probability of transmission For The",i,"Week After Adjusting is:",tp) 
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    s1=s2 

    s2=s3 

    s3=pc 

 eliftp>0andtp<=0.02: 

    cq=cq+0.1 

    pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

    tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

    print("Total Estimation of transmission For The",i,"Week After Adjusting is:",pc) 

    print("Total probability of transmission For The",i,"Week After Adjusting is:",tp) 

    s1=s2 

    s2=s3 

    s3=pc 

 eliftp>0.02andtp<=0.03: 

    cq=cq+0.2 

    pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

    tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

    print("Total Estimation of transmission For The",i,"Week After Adjusting is:",pc) 

    print("Total probability of transmission For The",i,"Week After Adjusting is:",tp) 

    s1=s2 

    s2=s3 

    s3=pc 

 eliftp>0.03: 

    cq=cq+0.3 

    pc=(n*t*(q*q)*(f*f)*cq)/(λ*v) 

    tp=((((s1+2*(s2)+3*(s3))/6)+(4*rp))/5)-pc 

    print("Total Estimation of transmission For The",i,"Week After Adjusting is:",pc) 

    print("Total probability of transmission For The",i,"Week After Adjusting is:",tp) 

    s1=s2 

    s2=s3 

    s3=pc 

 else: 

    print("null") 

 i = i + 1 

 

This process of selecting an action from a given state transitioning to a new state 

and receiving a reward happens sequentially over and over again (until i=4 witch 

means a whole month) which creates something called a trajectory that shows 
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the sequence of state actions and rewards throughout the process, so there are a 

set of states S, a set of actions A, a set of rewards R. 

At each time step t=0,1,2,......, the agent receives some representation of the 

environment's state 𝑺𝒕. Based on this state, the agent select an action 𝑨𝒕. This 

gives us the state-action pair (𝑺𝒕,𝑨𝒕). Time then is incremented to the next time 

step t+1 and the environment is transitioned to a new state St+1. 𝑨𝒕this time the 

agent receives a numerical reward Rt+1 for the action 𝑨𝒕taken from the state 𝑺𝒕. 

So in simpler way  

Step 1  

At time t the environment is in state  𝑺𝒕. 

Step 2 

The agent observes the current state and select action  𝑨𝒕. 

Step 3 

The environment transitions to state 𝑺𝒕+1 and grants the agent reward 𝑹𝒕+1. 

This process then starts over for the next time step T+1 until i=4 

 

So the policy for this agent is plain and simple calculate the estimation and 

then the difference depending on the difference there will be either a reward or 

a penalty.Also at the same time by using the estimation of the previous month   

we’ll be able to estimatethe probability oftransmissionfor the next 4 weeks. 

 

5. Integration of RL 

Begin 
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Read(S1,S2,S3,n,t,q,f,𝐶𝑞,λ,v,rp);// read the inputs entered by the user 

Pc= (n*t*(q*q)*(f*f)*𝐶𝑞)/(λ*v);// calculate the estimation of transmission  

Tp= ((((S1+2*(S2)+3*(S3))/6)+(4*rp))/5)-pc;// calculate the total probability of 

transmission or in other words the difference between past 3 weeks and 

currensst 

Write (“The transmission estimation:”,pc); 

Write (“The total probability of transmission:”,tp); 

i=1; 

while i<=4// depending on the value of tp our agent is learning how to chang the 

value 𝐶𝑞 

Begin 

If tp<=-0.03// in this case our agent will get 0.3 penalty for𝐶𝑞 

Begin  

then cq=cq-0.3; recalculate pc and tp; s1=s2; s2=s3; s3=pc; 

    Write (“The transmission estimation:”,pc); 

    Write (“The total probability of transmission:”,tp); 

Else If tp>-0.03 and tp<=-0.02// in this case our agent will get 0.2 penalty for𝐶𝑞 

then cq=cq-0.2; recalculate pc and tp; s1=s2; s2=s3; s3=pc; 

    Write (“The transmission estimation:”,pc); 

    Write (“The total probability of transmission:”,tp); 

Else If tp>-0.02 and tp<=0// in this case our agent will get 0.1 penalty for𝐶𝑞 

then cq=cq-0.1; recalculate pc and tp s1=s2; s2=s3; s3=pc; 
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    Write (“The transmission estimation:”,pc); 

    Write (“The total probability of transmission:”,tp); 

Else If tp>0 and tp<=0.02// in this case our agent will get 0.1 reward for𝐶𝑞 

then cq=cq+0.1 recalculate pc and tp; s1=s2; s2=s3; s3=pc; 

    Write (“The transmission estimation:”,pc); 

    Write (“The total probability of transmission:”,tp); 

Else If tp>0.02 and tp<=0.03// in this case our agent will get 0.2 reward for𝐶𝑞 

then cq=cq+0.2; recalculate pc and tp; s1=s2; s2=s3; s3=pc; 

    Write (“The transmission estimation:”,pc); 

    Write (“The total probability of transmission:”,tp); 

Else If tp>0.03// in this case our agent will get 0.3 reward for𝐶𝑞 

then cq=cq+0.3 recalculate pc and tp; s1=s2; s2=s3; s3=pc; 

    Write (“The transmission estimation:”,pc); 

    Write (“The total probability of transmission:”,tp); 

Else Write (“Null”); 

Endif; 

i=i+1 

End; 

 

6. AlgorithmOrganizational chart 
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     Read Inputs 

Calculate the estimation pc and the total probability of transmission tp 

 

 i=1   i<=4 

 

cq=cq-0.3 

recalculate pc and 

tp then s1=s2 

s2=s3 s3=pc 

 

tp>-0.03 and 

tp<=-0.02 

 
cq=cq-0.2 

recalculate pc and 

tp then s1=s2 

s2=s3 s3=pc 

 

tp>-0.02 and 

tp<=-0 

 cq=cq-0.1 

recalculate pc and 

tp then s1=s2 

s2=s3 s3=pc 

 

tp>0 and 

tp<=0.02 

 
cq=cq+0.1 

recalculate pc and 

tp then s1=s2 

s2=s3 s3=pc 

 

tp>0.02 and 

tp<=0.03 

 
cq=cq+0.2 

recalculate pc and 

tp then s1=s2 

s2=s3 s3=pc 

 

tp<=-0.03 

Begin 
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7. Conclusion 

In this chapter we discussed the integration of RL and the implementation 

and now remain the tests and results which we will do in the next chapter. 

tp>0.03 

 

cq=cq+0.3 

recalculate pc and 

tp then s1=s2 

s2=s3 s3=pc 

 

Write Null 

        i=i+1 

End 
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Chapter 4 Tests and Results 

1. Development Enviroment 

1.1 Choice of Language: PYTHON 

Our choice of programming language fell on PYTHON 3.7.2, and that's because 

Python is the most popular language in the world of artificial intelligence. 

Python is object oriented and is meant to be relatively easy to access. It is widely 

used within the scientific community and particularly in the field of artificial 

intelligence. 

1.2 ANACONDA 

Anaconda is a free and open source distribution of the Python and R 

programming languages applied to the development of applications for data 

science and machine learning. 

Anaconda will simplify our task since it installs all the packages necessary for 

machine learning, for example: NumPy, panda, scikit-learn. 

1.3 Visual Studio Code (VS code) 

Visual Studio Code is an extensible code editor developed by Microsoft. 

 

 

 

2. Tests and Scenarios 

We start by testing four COVID-19 spreading events by using existing estimates 

of relevant physical parameters that caused the super-spreading  
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scenario N t Q f 𝑪𝒒 𝛌 V 

Skagit Church 

Choir 

61 2.5 1.0 0.1 870 0.65 810 

Ningbo Tour Bus 68 1.7 0.5 0.1 90 1.25 45 

Diamond Princess 3711 288 0.5 0.1 30 8 291900 

Wuhan City 

Outbreak 

3.03 132 0.5 0.1 29 0.34 216 

Table 2 : Scenarios Table 

 

 

NisNumber of persons (3.03 in the table above is the average family number that 

lives in each appartment) 

t isExposure time 

Exhaled air flow: Q 

f isFraction that crosses the mask 

𝑪𝒒IsQuantum concentration of infection in exhaled air 

λisAir Renewal rate 

VisRoom volume 

 

 

 

Scenario 1: skagit Church Choir 

The Skagit Valley Choir event we use existing estimates of relevant 

physical parameters. 
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Results  

We notice that the estimation of transmission of the previous month is: 2.51 

which mean that each person will spread the virus to another 2.51 people so if 

we have a group of 10 people they’ll contaminate another 25 people, and the 

probability of transmission is 0.19 in other words there is a chance of 19% of 

contamination. 

Also the estimation of transmission of the 1 week is: 2.52 

The probability of transmission of the 1 week is: 0.194 

The estimation of transmission of the 2 week is: 2.521 

The probability of transmission of the 2 week is: 0.186 

The estimation of transmission of the 3 week is: 2.522 

The probability of transmission of the 3 week is: 0.178 

The estimation of transmission of the 4 week is: 2.523 

The probability of transmission of the 4 week is: 0.172 

 

Results Discussion 

We also notice that for the next 4 weeks the estimation is getting higher while 

the opposite for the probability because our agent is adding to 𝐶𝑞  which means 

0
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1
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3
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The estimation of transmission
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higher transmission rate all this that the difference between the estimation and 

the probability of previous month is not that big. 

We also notice that the risque in this scenario is so high due to the outstanding 

𝐶𝑞  value because of all the singing and the shouting.   

 

Scenario 2: ningbo Tour Bus 

A tour bus transported 68 people (including the driver) on a 100 minute round-

trip journey to a Buddhist ceremony in Ningbo, China. One index case infected 

23 fellow passengers, three of which are assumed to have been infected at the 

ceremony. 

Results  

We notice that the estimation of transmission of the previous month is: 0.462 

which mean that each person will spread the virus to another 0.46 people so if 

we have a group of 10 people they’ll contaminate another 4.6 people and the 

probability of transmission is 0.051 in other words there is a chance of 5.1% of 

contamination. 

Also the estimation of transmission of the 1 week is: 0.463 

The probability of transmission of the 1 week is: 0.05 

The estimation of transmission of the 2 week is: 0.465 

The probability of transmission of the 2 week is: 0.046 

The estimation of transmission of the 3 week is: 0.467 

The probability of transmission of the 3 week is: 0.043 

The estimation of transmission of the 4 week is: 0.468 

The probability of transmission of the 4 week is: 0.04 
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Results Discussion 

We also notice that for the next 4 weeks the estimation is getting higher while 

the opposite for the probability because our agent is adding to 𝐶𝑞  which means 

higher transmission rate all this that the difference between the estimation and 

the probability of previous month is not that big. 

We also notice that the risque in this scenario is high due to the small space in 

the bus.   

 

Scenario 3: diamond Princess 

The Diamond Princess cruise ship during where passengers and crew mainly 

occupy 14 floors of living space of beam width 38 m, an average length equal to 

90% of the ship’s length 290 m. 
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Results  

We notice that the estimation of transmission of the previous month is: 0.343 

which mean that each person will spread the virus to another 0.343 people so if 

we have a group of 10 people they’ll contaminate another 3.43 people and the 

probability of transmission is 0.0112 in other words there is a chance of 5.1% of 

contamination. 

Also the estimation of transmission of the 1 week is: 0.344 

The probability of transmission of the 1 week is: 0.0111 

The estimation of transmission of the 2 week is: 0.345 

The probability of transmission of the 2 week is: 0.0105 

The estimation of transmission of the 3 week is: 0.346 

The probability of transmission of the 3 week is: 0.010 

The estimation of transmission of the 4 week is: 0.347 

The probability of transmission of the 4 week is: 0.009 

 

Results Discussion 

We also notice that for the next 4 weeks the estimation is getting higher while 

the opposite for the probability because our agent is adding to 𝐶𝑞  which means 
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higher transmission rate all this that the difference between the estimation and 

the probability of previous month is not that big. 

We also notice that the risque in this scenario is not that high even with the 

enormous number of the people aboard and the exposer time (288 hours) it’s 

because the space was too big and the higher air renewal rate.   

Scenario 4: wuhan City Outbreak 

Initial outbreak in Wuhan City, Hubei Province, China. We assume that the 

population-level spreading is dominated by indoor aerosol transmission with 

slow incubation in single-family apartments with a mean family size of 3.03, in 

mean apartment area of 216𝑚3. 

Results  

We notice that the estimation of transmission of the previous month is: 0.394 

which mean that each person will spread the virus to another 0.394 people so if 

we have a group of 10 people they’ll contaminate another 3.94 people and the 

probability of transmission is 0.0594 in other words there is a chance of 5.1% of 

contamination. 

Also the estimation of transmission of the 1 week is: 0.398 

The probability of transmission of the 1 week is: 0.0554 

The estimation of transmission of the 2 week is: 0.403 

The probability of transmission of the 2 week is: 0.0485 

The estimation of transmission of the 3 week is: 0.407 

The probability of transmission of the 3 week is: 0.0424 

The estimation of transmission of the 4 week is: 0.411 

The probability of transmission of the 4 week is: 0.0376 
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Results Discussion 

We also notice that for the next 4 weeks the estimation is getting higher while 

the opposite for the probability because our agent is adding to 𝐶𝑞  which means 

higher transmission rate all this that the difference between the estimation and 

the probability of previous month is not that big. 

We also notice that the risque in this scenario is high because of the low air 

renewal rate and the relatively small apartment with the exposure time of 132 

hours and another factor not mentioned the fact that the ventilation system of 

this apartment is connected to all other apartment which means that one person 

will contaminate entire building. 

 

 

 

Scenario 5: University Of Saad Dahleb Blida 

For the next test we'll go to a familiar place to our own department of computer 

science more specifically to the SIR students of which am one of them. 

We'll have two cases  
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CASE 1 

For the lessons they'll have us all studying in a relatively larger room then usual 

so V=120𝑚3 the students present plus the teacher N=62, Q=0.5, t=4 hours 

(during pandemic), f=0.1, λwe’ll set it for 0.5, 𝐶𝑞= most of the students will be 

doing nose to nose breathing only the teacher will be explaining the lesson so 

we'll set it to 10.9 

 

 

Results  

We notice that the estimation of transmission of the previous month is: 0.112 

which mean that each person will spread the virus to another 0.112 people so if 

we have a group of 10 people they’ll contaminate another 1.12 people and the 

probability of transmission is 0.00063 in other words there is a chance of 

0.063% of contamination. 

Also the estimation of transmission of the 1 week is: 0.111 

The probability of transmission of the 1 week is: 0.0003 

The estimation of transmission of the 2 week is: 0.112 

The probability of transmission of the 2 week is:-0.0011 

The estimation of transmission of the 3 week is: 0.111 

The probability of transmission of the 3 week is: -0.0008 

The estimation of transmission of the 4 week is: 0.110 

The probability of transmission of the 4 week is: -0.0001 

Results Discussion 

As we can see the risk isn’t that big at all because of the big volume of the class 

so the bigger the room the more air is renewed the lower the risk. 

 

CASE 2 

For the TD it's pretty much the same only 
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V=60𝑚3, 𝐶𝑞=14.5, with N=23. 

Results  

We notice that the estimation of transmission of the previous month is: 0.111 

which mean that each person will spread the virus to another 0.111 people so if 

we have a group of 10 people they’ll contaminate another 1.11 people and the 

probability of transmission is 0.026 in other words there is a chance of 2.6% of 

contamination. 

Also the estimation of transmission of the 1 week is: 0.112 

The probability of transmission of the 1 week is: 0.024 

The estimation of transmission of the 2 week is: 0.114 

The probability of transmission of the 2 week is: 0.022 

The estimation of transmission of the 3 week is: 0.115 

The probability of transmission of the 3 week is: 0.020 

The estimation of transmission of the 4 week is: 0.117 

The probability of transmission of the 4 week is: 0.018 

Results Discussion 

As we can see the risk is bigger because of the smaller class with a 

higherQuantum concentration of infection in exhaled air.  
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3. Conclusion  

From the scenarios above the measures needed are simple, we can limit the 

number of people present N and the exposure time tau. From this point of 

view, the practice of the half-gauge is obviously going in the right direction. 

Another essential thing, you have to wear the mask well, I remind you that the 

factor f which has a squared effect. It is also necessary to avoid activities such 

as singing or sport which increases the rate of respiration Q. For sport, it can 

add a factor of 10 to the rate, squared that makes 100. So indoor sport and 

worse, without a mask, it's a no! The volume of room V, a priori we cannot 

change it too much. But we still have lambda, the air renewal rate. They have 

been quite pessimistic, they have taken 0.5: a renewal every 2 hours. This is a 

typical value for residential premises, but in collective premises, with a good 

ventilation system or periodic ventilation, much better can be done. We can 

multiply this value by 5 or even 10, and therefore reduce the risk accordingly.
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General conclusion 

Nowadays, it is observed that this mode of transmission of the virus indoor 

airborne disease transmission plays a very important role in the virus 

breakthrough.we have the number of people present N and the exposure time 

tauQuantum concentration of infection in exhaled air𝑪𝒒Exhaled air flow: Q 

which they all have a significant influence in this mode of transmission. 

We have managed, through this project, to provide a quantitative analysis of 

the phenomenon, in order to have guides on the attitude to adopt. The goal is 

to limit in a reasonable way this mode of transmission of the virus based on 

Reinforcement learning which consists of an state  𝑺𝒕 layer action  𝑨𝒕 layer, an 

reward 𝑹𝒕layer. Our model has allowed for an estimate of the infectiousness of 

COVID-19, it also makes clear the inadequacy of the Six-Foot Rule in 

mitigating indoor airborne disease transmission, and offers a rational, physically 

informed alternative for managing life in the time of COVID-19. For each 

situation where people are brought together in the same room. 

This work was an opportunity for me to complete my computer skills in a 

transversal way and to broaden and deepen my knowledge of artificial 

intelligence. However, prospects for improving our model remain conceivable to 

be enriched by to creating an app not only to estimate of the infectiousness of 

COVID-19 also to have guides on the attitudes to adopt in each situation. 
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