الجمهورية الجزائرية الديمقر اطية الشعبية République Algérienne démocratique et populaire

وزارة التعليم السعسالي و البحث العسامي Ministère de l'enseignement supérieur et de la recherche scientifique

> جسامعة سعد دحلب البليدة Université SAAD DAHLAB de BLIDA

> > كلية التكفولوجيا Faculté de Technologie

قسم الإلكترونيك Département d'Électronique

Mémoire de Projet de Fin d'Etude

présenté par

TAIB HADJER

Pour l'obtention du diplôme MASTER en Electrotechnique option machine électrique

Théme

Contrôle d'un Convertisseur DC/DC Haute Performance Basé Sur Xilinx Système Generator

Proposé par : Mr. TADRIST R

Année Universitaire 2016-2017

ملخص: يتركز هذا العمل على الطاقة الكهروضوئية فهي واحدة من أهم الموارد المتوفرة لدينا و في اغلب أركان العالم وليست منتهية يتم استخدام تتبع أقصى نقطة لطاقة (MPPT) في الوحدات الضوئية لتعظيم إنتاج الطاقة من خلال الألواح الشمسية لمختلف تغيرات في درجة الحرارة و الإشعاع هذا العمل مركز على مراقبة نقطة الطاقة القصوى MPPT لمحول يدعى STEP-UP باستعمال نظام المحاكاة هذا العمل مركز على مراقبة نقطة الطاقة القصوى MPPT على الهدف FPGA

كلمات المفاتيح: MATLAB/SIMULINK, MPPT,XSG, P&O, STEP-UP

Résumé : Ce travaille s'intéresse à l'énergie photovoltaïque (PV); l'une des ressources les plus importantes vue son abondance sur notre glob, la disponibilité sur la majorité du coin du monde et non épuisable .De plus elle propose le Maximum Power Point Tracking (MPPT) est utilisé dans le photovoltaïque afin de maximiser la puissance à la sortie des panneaux solaires pour des variations météorologique de la température et du rayonnement.

Ce travail est consacré au contrôlé par un MPPT (P&O) d'un convertisseur appelé STEP-UP. Après une simulation du système dans l'environnement SIMULINK, l'algorithme MPPT est implémenté sur cible FPGA.

Mots clés : Convertisseur, MATLAB/SIMULINK, MPPT,XSG, P&O.

Abstract : This work focuses on photovoltaic energy(PV); One of the most important resources. The Maximum Power Point Track (MPPT) is used in photovoltaics to maximize the output power of solar panels for weather variations in temperature and radiation.

In this work we will make a comparison between the STEP-UP converter controlled by the P&O algorithm simulated under the MATLAB / SIMULINK environment and on FPGA target, XILINX SYSTEM GENERATOR (XSG).

Keywords: STEP-UP converter, MATLAB / SIMULINK, MPPT, XSG, P & O.

Keywords :

Introduction générale

Introduction générale	Erreur ! Signet nor	défini.
-----------------------	---------------------	---------

Chapitre I

I.1. Introduction :	Erreur ! Signet non défini.
I.2. L'énergie solaire :	Erreur ! Signet non défini.
I.3. Cellule photovoltaïque :	Erreur ! Signet non défini.
I 3.1. L'effet photovoltaïque :	Erreur ! Signet non défini.
I.3.2. Les différentes technologies :	Erreur ! Signet non défini.
I.3.3. Caractéristique électrique – Modélisation :	Erreur ! Signet non défini.
I.4. Le module PV :	Erreur ! Signet non défini.
I.4.1. Mise en série :	Erreur ! Signet non défini.
1.4.2. Mise en parallèle :	Erreur ! Signet non défini.
I.4.3. Paramètres d'une cellule photovoltaïque :	Erreur ! Signet non défini.
I.4.4. Caractéristique courant-tension, puissance-tension:	Erreur ! Signet non défini.
I.4.5. Influence de l'éclairement et de la température sur les caractérist	iques I=f(V) et P=f(V) : Erreur ! Signet non défini.
I.5. Avantages et inconvénients du photovoltaïque :	Erreur ! Signet non défini.
I.5.1. Avantages :	Erreur ! Signet non défini.
I.5.2. Inconvénients :	Erreur ! Signet non défini.
I.6. Conclusion :	Erreur ! Signet non défini.

Chapitre II

II.1. Introduction :	Erreur ! Signet non défini.
II.2. Introduction d'un étage d'adaptation :	Erreur ! Signet non défini.
II.3. Le Convertisseurs DC-DC (hacheurs) :	Erreur ! Signet non défini.
II.4. Différents de types d'hacheurs :	Erreur ! Signet non défini.

II.4.1. Convertisseur Buck :	Erreur ! Signet non défini.
II.4.2. Convertisseur Buck-Boost :	Erreur ! Signet non défini.
II.4.3. Convertisseur STEP-UP :	Erreur ! Signet non défini.
II.5. Principe de la recherche du point de puissance Maximal :	Erreur ! Signet non défini.
II.5.1.Généralités :	Erreur ! Signet non défini.
II.5.2. Perturbations du PPM :	
II.5.3. Synthèse des différentes MPPT rencontrées dans la littérature :	
II.5.4. Les Différents commandes MPPT :	
II.6. Conclusion :	

Chapitre III

III.1. Introduction :	. Erreur	! Signet non défi	i ni.
III.2. L'outil Matlab/Simulink :	.Erreur	! Signet non défi	i ni.
III.3. Module solaire PV :	.Erreur	! Signet non défi	i ni.
III.4. Connexion direct entre la source et la charge :	.Erreur	! Signet non défi	i ni.
III.5. Simulation sous SIMULINK	.Erreur	! Signet non défi	i ni.
III.5.1.Etage d'adaptation convertisseur STEP-UP	.Erreur	! Signet non défi	i ni.
III.5.2.Convertisseur STEP-UP contrôlé par P&O	.Erreur	! Signet non défi	i ni.
III.5.3.Simulation du convertisseur STEP-UP controlé par l'algorithme P& défini.	80	Erreur ! Signet n	on
III.5.4.Simulation du système solaire avec l'algorithme P&O	.Erreur	! Signet non défi	i ni.
III.6. Implémentation du système sur XSG :	.Erreur	! Signet non défi	i ni.
III.6.1. Introduction :	.Erreur	! Signet non défi	i ni.
III.6.2. Le logiciel Xilinx System Generator :	.Erreur	! Signet non défi	i ni.
III.6.3. Définition du bloc system Generator :	.Erreur	! Signet non défi	i ni.
III.6.4. Modélisation du contrôleur MPPT (P&O) sous System Generator défini.	·:	Erreur ! Signet n	on

III.6.5. Simulation du convertisseur STEP-UP sous System Generator :.... Erreur ! Signet non défini.

Liste des tableaux

Tableaux	Titre	Page
Tableau 3.1	Caractéristiques électrique du panneau ATERSA.	36
Tableau 3.2	Valeur des composants pour convertisseur boost.	39
Tableau 3.3	Ressources utilisées de l'algorithme P&O	50

Listes des acronymes et abréviations

С	Conductance
Iph	Le photo-courant (A)
lpv	Courant du module ou panneau PV (A)
lsat	Le courant de saturation (A)
Rs	La résistance série
Rp	La résistance shunt
Q	La charge de l'électron
PV	Photovoltaïque
PPM	Point de puissance maximale
Ν	Le facteur d'idéalité de la jonction.
MPP	Maximum power point
MPPT	Poursuite du point de puissance maximale (maximum power point tracking)
P&O	Perturbation et Observation
GPV	Générateur photovoltaïque
I	Courant d'un générateur PV (A)
V	Tension à la sortie d'un module solaire (V)
Vco	Tension en circuit ouvert d'un module solaire (V)
Vppm	Tension au point de puissance maximale (V)
ns	Nombre de cellules en série.
np	Nombre de cellules en parallèle.
Vpv	La tension aux bornes de cette même cellule
Vopt	Tension Optimale d'un générateur ou d'une cellule PV (V)
lpv	Le courant fourni par la cellule lorsqu'elle fonctionne en générateur
lcc	Courant de court-circuit d'une cellule ou d'un module solaire (A)
Ippm	Intensité maximale
lopt	Courant Optimal d'un générateur ou d'une cellule PV (A)
К	La constante de Boltzmann
т	Température absolue en K (T(K)=273+T (°C))
Pmax	La puissance maximale
E	L'éclairement (W/m2)
FF	Facteur de Forme (Fill Factor)

Listes des acronymes et abréviations

DC-DC	Conversion continu-continu.
D	Rapport cyclique
Ррv	Puissance du panneau Photovoltaïque
P(D)	La puissance en fonction du rapport cyclique
F	La fréquence
Vout=	Vo Tension à la sortie du convertisseur
Vin=	Vi Tension à l'entrée du convertisseur
L	L'inductance
ΔD	Variation du rapport cyclique.
IL	Courant de la bobine
Pout	La puissance de sortie
Pin	La puissance d'entrée
lout	Courant à la sortie du convertisseur
ILmoy	Courant moyen de la bobine
lin	Courant à l'entrée du convertisseur
VL	Tension de la bobine
RL	La charge
ΔIL	Variation du courant de l'inducteur
ID	Courant dans la Diode
IS	Courant dans le switch
Cout	Le condensateur de sortie
ICout	Courant dans le condensateur de sortie
Cin	Le condensateur d'entrée
G	L'ensoleillement PV photovoltaïque
MPPT	maximum power point traching
FPGA	field programmable gate array
VHDL	very hardware description language
PWM	pulse width modulation
GPV	Générateur photovoltaïque
XSG	Xilinx Système Generator

Chapitre I

Figure	Titre	Page
Figure 1.1	Coupe transversale d'une cellule PV	05
Figure 1.2	Evolution de la production mondiale des différentes technologies de cellules PV [4]	06
Figure 1.3	Photos de cellules monocristalline et multi-cristalline	07
Figure 1.4	Caractéristique I-V d'une cellule photovoltaïque	08
Figure 1.5	Circuit équivalent complet d'une cellule PV	09
Figure 1.6	Caractéristique résultantes d'un regroupement de Ns cellules en série	10
Figure 1.7	Caractéristique résultantes d'un regroupement de Np cellules en parallèle	11
Figure. 1.8	Facteur de forme pour une cellule PV	13
Figure. 1.9	Caractéristique I =f (V) d'un module photovoltaïque	13
Figure. 1.10	L'influence de l'éclairement sur la caractéristique I=f(V)	14
Figure. 1.11	L'influence de l'éclairement sur la caractéristique P=f(V)	15
Figure. 1.12	L'influence de la température sur la caractéristique I=f(V	15
Figure. 1.13	L'influence de la température sur la caractéristique P=f(V)	16

Chapitre II

Figure	Titre	Page
Figure 2.1	Schéma synoptique du système PV contrôlé par MPPT	18
Figure 2.2	Principe de base d'un hacheur	19
Figure 2.3	Circuit électrique de base du hacheur dévolteur	20
Figure 2.4	Circuit électrique de base du convertisseur Buck-Boost	21
Figure 2.5	Schéma équivalent du convertisseur STEP-UP	21
Figure 2.6	STEP-UP avec interrupteur Q1 fermé	22
Figure 2.7	STEP-UP avec interrupteur Q1 ouvert	22
Figure 2.8	Formes d'ondes courant/tension dans un convertisseur STEP-UP	23
Figure 2.9	Schéma bloc d'un algorithme de recherche du PPM	25
Figure 2.10	Recherche du PPM suite à une variation d'irradiation, de la charge et de la température	26
Figure 2.11	Organigramme de l'algorithme de contrôle adaptif	28
Figure 2.12	Caractéristique P-D	29
Figure 2.13	Organigramme de l'algorithme Hill Climbing	29
Figure 2.14	PPM en fonction de ΔP et ΔV	30
Figure 2.15	Organigramme de l'algorithme d'une commande P&O	31
Figure 2.16	Divergence de la commande P&O lors de variations d'irradiation	32

Chapitre III

Figure	Titre	Page
Figure 3.1	Bibliothèque SIMULINK	36
Figure 3.2	Circuit équivalent du module PV ATERSA	37
Figure 3.3	Système solaire simple	38
Figure 3.4	Architecture du convertisseur STEP-UP adoptée sous Matlab/Simulink	39
Figure 3.5	Tensions d'entrée et de sortie du convertisseur STEP-UP	40
Figure 3.6	Valeur moyenne du courant de sortie du convertisseur STEP-UP	40
Figure 3.7	Système globale dans l'environnement SIMULINK	41
Figure 3.8	Schéma detaillé du contrôleur MPPT P&O simple sous Matlab Simulink.	42
Figure 3.9	Puissance à la sortie du convertisseur STEP-UP contrôlé par un MPPT (P&O)	42
Figure 3.10	Architecture générale du FPGA.	44
Figure 3.11	Les blocs de Xilinx pour Simulink	44
Figure 3.12	Le bloc system generator	45
Figure 3.13	Les paramètres du bloc système generator	45
Figure 3.14	Architecture de l'algorithme P&O sous XSG	46
Figure 3.15	Tableaux du choix de nombre de bit de Vpv et Ipv	47
Figure 3.16	convertisseur STEP-UP controlé pa P&O sous XSG	48
Figure 3.17	Puissance de sortie pour une insolation variable et température constante	48
Figure 3.18.	Puissance de sortie pour une insolation constante et température constante	

Figure 3.19 Schéma RTL et RTL détaillée de MPPT P&O

Le travail qu'on a présenté dans ce mémoire est consacré à l'étude d'un convertisseur appelé STEP-UP contrôlé par l'algorithme MPPT (P&O).

Dans le premier chapitre, on a donné des généralités sur les systèmes PV, principe de l'effet PV, cellule PV. Ainsi le générateur photovoltaïque et leurs performances.

On a étudié, dans un deuxième chapitre, quelques types de convertisseurs DC-DC, utilisés dans les systèmes photovoltaïques. Comme l'hacheur dévolteur, l'hacheur STEP-UP et l'hacheur mixte (dévolteur-survolteur). Ainsi, on a décrié le mécanisme de la poursuite pour l'extraction de la puissance maximale sous différentes conditions de fonctionnement. On a présenté les méthodes MPPT basées sur contre réaction de puissance, comme l'algorithme de perturbation et observation. Cette méthode est utilisée dans ce travail à cause de sa simplicité, et son exigence seulement des mesures de tension et du courant du panneau photovoltaïque.

Le troisième chapitre est le plus important dans notre travaille, nous avons fait une simulation de notre système photovoltaïque sous MATLAB/SIMULINK et sur le cible FPGA pour comparer les puissances de sortie d'un convertisseur STEP-UP contrôlé par P&O et XSG, nous avons trouvé que la puissance de sortie contrôlé par XSG est plus grande par rapport à celle contrôlé par SIMULINK.

L'utilisation de l'outil de conception haut niveau « System Generator » est très bénéfique pour la vérification du comportement de l'algorithme sur Simulink. Les simulations effectuées permettent de concevoir un algorithme efficace avec un minimum possible de porte logique.

I.1. Introduction :

Cent ans après la découverte de l'effet photovoltaïque par Edouard Becquerel (1839), la première cellule capable de transformer l'énergie solaire en courant électrique fut mise au point par un groupe de chercheurs américains de Bell Labs [1]. Resté très longtemps comme une curiosité de laboratoire, l'effet photovoltaïque a d'abord connu une utilisation dans le domaine spatial, avant d'être utilisé comme source d'énergie en site isolé et de connaître le développement qu'on lui connaît aujourd'hui en application connectée au réseau. Cette pénétration du marché s'est accompagnée d'une augmentation du rendement, 4% pour la cellule de Bell Labs près de 42% pour le record mondial dans le laboratoire.

Cette énergie solaire est disponible en abondance sur toute la surface terrestre, et malgré une atténuation importante lorsqu'elle traverse l'atmosphère, la quantité qui reste est encore assez importante quand elle arrive au sol. On peut ainsi compter sur 10 000 w/m² crête dans les zones tempérées et jusqu'à 14 000 W/m² lorsque l'atmosphère est faiblement polluée [2-3].

Pour comprendre le fonctionnement de cette énergie et en optimiser son utilisation, nous effectuons dans ce chapitre un bref rappel sur le principe de l'effet photovoltaïque, la cellule photovoltaïque et ses performances ainsi le générateur solaire photovoltaïque et leurs performances.

I.2. L'énergie solaire :

L'énergie solaire photovoltaïque est une énergie électrique produit à partir du rayonnement solaire. L'énergie produite par une centrale solaire photovoltaïque est dite renouvelable, car sa source est considérée comme inépuisable à l'échelle de temps humaine.

Cette énergie n'est cependant pas totalement renouvelable, car la fabrication des panneaux photovoltaïques, leur installation et leur exploitation consomment de l'énergie issue en grande partie de sources non renouvelables; mais un système photovoltaïque produit entre 20 et 40 fois plus d'énergie que ce qui a été utilisé pour le fabriquer.

Chapitre1 Etat de l'art : générateurs photovoltaïques

La cellule photovoltaïque est le composant électronique de base. Elle utilise l'effet photoélectrique pour convertir les ondes électromagnétiques émises par le soleil en électricité. Plusieurs cellules reliées entre elles forment un module solaire photovoltaïque. Plusieurs modules regroupés forment une installation solaire. L'électricité est soit consommée ou stockée sur place, soit transportée par le réseau de distribution et le réseau de transport.

L'énergie solaire ou photovoltaïque est une énergie qui provient des rayons solaires, soit pour produire l'électricité à travers les panneaux électriques photovoltaïques (solaire photovoltaïque) ou pour produire la chaleur à partir de la lumière du soleil (solaire thermique). Dans ce dernier cas, l'énergie peut être passive, par le biais des surfaces vitrées, ou active, par le biais de panneaux solaires ou capteurs solaires thermiques.

I.3. Cellule photovoltaïque :

Une cellule solaire est un élément semi-conducteur qui convertit l'énergie solaire en une énergie électrique. Une cellule photovoltaïque est une diode constituée d'un matériau semi-conducteur absorbant l'énergie lumineuse et la transformant directement en courant électrique. Le principe de fonctionnement de cette cellule fait appel aux propriétés d'absorption du rayonnement lumineux par des matériaux semi-conducteurs.

La lumière du soleil, qui brille sur une cellule (*PV*), peut être réfléchie, absorbée, ou passe à travers la cellule, mais seulement la lumière absorbée génère de l'électricité par l'effet photovoltaïque. L'énergie de la lumière absorbée, est transférée aux électrons dans les atomes de la cellule. Avec leur nouveau gain en énergie, ces électrons quittent leur bande énergétique initiale pour atteindre la bande de conduction et participent au flux électrique, ou au courant, dans un circuit électrique préétabli. Une propriété particulière électrique de la cellule *PV*, appelé «Champs électrique interne : built-in electric field», fournit la force ou la tension nécessaire pour véhiculer le courant à travers une charge externe connectée au panneau.

I 3.1. L'effet photovoltaïque :

Le fonctionnement de la cellule PV est basé sur un phénomène physique appelé l'effet photovoltaïque. La figure (1.1) illustre la coupe d'une cellule PV.

Figure 1.1. Coupe transversale d'une cellule PV

Une cellule PV est réalisée à partir d'un matériau semi-conducteur (par exemple le silicium). Sa réalisation est comparable à une diode classique. La cellule est composée de deux différentes couches. La couche supérieure est dopée N et la couche inférieure est dopée P créant ainsi une jonction PN. Cette jonction PN crée une barrière de potentiel. Lorsque les grains de lumière (les photons) heurtent la surface de ce matériau, ils transfèrent leur énergie aux atomes de la matière.

Ce gain d'énergie libère des électrons de ces atomes, créant des trous et des électrons.

Ceci engendre donc une différence de potentiel entre les deux couches. Cette différence de potentiel crée un champ E qui draine les porteurs libres vers les contacts métalliques des régions P et N. Il en résulte alors un courant électrique et une différence de potentiel dans la cellule PV. Le courant et la tension fournis par une cellule PV dépendent de différents paramètres que nous allons expliciter dans la suite de l'exposé.

I.3.2. Les différentes technologies :

Une cellule photovoltaïque peut être réalisée avec de nombreux semi-conducteurs. En réalité il existe aujourd'hui trois principales filières technologiques : le silicium cristallin, les couches minces et les cellules organiques. Ces filières se partagent inégalement le marché comme le montre la Figure (1.2).

Figure 1.2 .Evolution de la production mondiale des différentes technologies de cellules PV [4]

Ces technologies existent sur le marché dans des proportions équivalentes depuis de nombreuses années malgré des prix et des rendements très différents figure (1-2).

I.3.2.1. Le silicium cristallin :

Le silicium cristallin domine le marché à plus de 80%. La fin de cette technologie gourmande en matière première est annoncée depuis de nombreuses années mais les progrès technologiques réalisés par cette filière aux cours des 10 dernières années lui ont permis de garder sa place prédominante sur le marché. Cette filière, de part de son très fort développement actuel, semble partie pour garder cette place encore quelques années. Cette filière comporte deux technologies : le silicium monocristallin et le silicium multicristallin. Le silicium monocristallin est difficile à obtenir. En effet, il nécessite un taux de pureté très élevé et donc plusieurs étapes de purification. Ces étapes sont délicates et donc coûteuses. Le rendement du silicium monocristallin est le plus élevé, il est compris entre 12 et 20% pour les cellules industrielles. Son coût élevé est aujourd'hui un handicap et le silicium monocristallin perd du terrain devant le silicium multi-cristallin.

Mono-cristallin

Multi-cristallin

Figure 1.3. Photo de cellules monocristalline et multi-cristalline

Le silicium multi-cristallin est devenu aujourd'hui la technologie la plus utilisée. A elle seule elle représente près de 50% du marché. Ces cellules sont obtenus par coulage de cristaux de silicium ce qui rend sa structure hétérogène figure (1.3). Son rendement est légèrement inférieur au silicium monocristallin il est compris entre 10 et 14% selon les fabricants.

En revanche sa fabrication est beaucoup plus simple, les coûts de production sont donc plus faibles.

L'un des points faibles de ces deux technologies est la quantité de matière utilisée, même si actuellement la taille des lingots et des cellules augmentent continuellement. Les lingots de silicium, mono ou multi-cristallin, sont sciés en tranche de 150 à 300 microns, par des scies à fils. Le diamètre du fil de découpe étant de 180 microns d'épaisseur, il entraîne une perte en matière première de près de 50%.

Notre étude se consacrera à des générateurs PV utilisant la technologie cristalline qui reste aujourd'hui la technologie dominante.

I.3.3. Caractéristique électrique – Modélisation :

La cellule photovoltaïque possède une caractéristique I(V) non linéaire figure (1.4). La caractéristique d'une cellule photovoltaïque balaie 3 quadrants sur les 4 existants [5]. Une cellule PV est un récepteur dans le quadrant 2 et dans le quadrant 4. Le fonctionnement

dans ces deux quadrants est à proscrire car un risque de destruction par phénomène d'échauffement local est possible. Le fonctionnement dans le quadrant 1 est le fonctionnement normal, en effet dans ce cas la cellule est un générateur, elle produit donc de l'énergie. L'objectif est donc de faire travailler *la cellule dans ce quadrant*.

Figure 1.4. Caractéristique I-V d'une cellule photovoltaïque

La tension en circuit ouvert (Vco) d'une cellule PV est comprise entre 0,3V et 0,7V selon le matériau utilisé, la température et son état de vieillissement. Son courant de courtcircuit (Icc) varie principalement selon le niveau d'éclairement et selon les technologies et les tailles de cellules (entre 5 et 8A pour le silicium cristallin). Une cellule PV peut être modélisée par les schémas présentés sur la figure (1.5).

La figure (1.5a) modélise la cellule PV dans les 1er et 4ème quadrants. Pour simuler la caractéristique de la cellule dans le 2ème quadrant une quatrième branche est rajoutée en parallèle la figure (1-5b). Cette branche est constituée d'un générateur de tension Ubo (Ubo tension d'avalanche) et d'une diode mise en série. Elle simule le fonctionnement de la cellule PV lorsqu'elle est polarisée en inverse.

Figure 1.5 .Circuit équivalent complet d'une cellule PV

Dans le cas où la cellule PV fonctionne en générateur (quadrant 1) elle produit un courant de court-circuit (i_{cc}) proportionnel à l'éclairement. L'équation du courant de sortie dans la zone I (zone génératrice) en statique est :

$$I_{pv} = i_{cc} - i \left[e^{\frac{V_{pv} + I_{pv} * R_s}{a}} - 1 \right] - \frac{V_{pv} + I_{pv} * R_s}{R_{sh}}$$
(1.1)

Cette expression est directement liée au circuit équivalent de la cellule dans le quadrant 1. Avec $\alpha = \frac{K.T}{e}$ où K est la constante de Boltzma (1,381 x 10⁻²³ J.K⁻¹), T la température de la cellule PV et e la charge de l'électron. Dans l'expression ci-dessus Ipv représente le courant fourni par la cellule dans le quadrant 1, Vpv est la tension aux bornes de cette même cellule PV, i_0 le courant de saturation et i_{cc} le courant de court-circuit de la cellule PV. La résistance série Rs illustre les différentes pertes de connectiques et de contacts et la résistance shunt R_{sh} caractérise les courants de fuite de la cellule [6].

Cette modélisation statique d'une cellule PV polarisée est très simple et peut être facilement mise en œuvre dans les outils de simulation. Les limites de ce modèle sont

l'absence de modélisation de la dynamique de la cellule et des phénomènes d'échauffement au sein de la cellule.

Néanmoins ce modèle permet de reproduire les principaux comportements d'une cellule PV dans les conditions réelles de fonctionnement et ses interactions avec les autres éléments du système [7].

I.4. Le module PV :

Un module PV est le plus petit ensemble de cellules solaires interconnectées et complètement protégées contre l'environnement. Généralement il contient également des protections pour protéger les cellules PV d'un fonctionnement qui peut être destructif. Les connexions peuvent être réalisées en parallèle ou en série. Nous allons présenter le comportement de cellules PV lors de ces différentes connexions.

I.4.1. Mise en série :

Dans un groupement en série, les cellules sont traversées par le même courant et la caractéristique résultante du groupement en série est obtenue par addition des tensions à courant donné. La caractéristique d'un groupement de ns cellules PV identiques est présentée sur la figure (1.6).

Figure 1.6. Caractéristique résultantes d'un regroupement de Ns cellules en série

1.4.2. Mise en parallèle :

Les propriétés du groupement en parallèle des cellules sont duales de celles du groupement en série. Ainsi, dans un groupement de cellules connectées en parallèle, les cellules sont soumises à le Photovoltaïque et les convertisseurs statiques la même tension et la caractéristique résultante du groupement est obtenue par addition des courants à tension donnée. La caractéristique résultant d'une mise en parallèle de n_p cellule PV identiques en série est présentée sur la figure (1.7).

Figure 1.7. Caractéristique résultantes d'un regroupement de Np cellules en parallèle

I.4.3. Paramètres d'une cellule photovoltaïque :

Ces paramètres peuvent être déterminés à partir des courbes courant-tension, ou de l'équation caractéristique.

Les plus usuels sont les suivantes:

> Tension de circuit-ouvert (Vco) :

C'est la tension Vco pour laquelle le courant débité par le générateur photovoltaïque est nul (c'est la tension maximale d'une photopile ou d'un générateur photovoltaïque).

Le courant en court-circuit lcc :

Il s'agit du courant lorsque le potentiel appliqué à la cellule est nul. C'est le plus grand courant que la cellule peut fournir, celui-ci est fonction de la température, de la longueur d'onde du rayonnement, de la surface active de la cellule, de la mobilité des porteurs. Ce courant est linéairement dépendant à l'intensité lumineuse reçue.

Rendement énergétique :

C'est le rapport entre la puissance électrique maximale fournie par la cellule P_{max} (I_{opt} , V_{opt}) et la puissance solaire incidente. Il est donné par :

$$\eta = \frac{P_{\text{max}}}{P_{\text{inc}}} \tag{1.2}$$

Avec P_{inc} est égale au produit de l'éclairement et de la surface totale des photopiles. Ce paramètre reflète la qualité de conversion de l'énergie solaire en énergie électrique.

Facteur de forme :

On appelle facteur de forme FF, dit aussi facteur de courbe ou facteur de remplissage, le rapport entre la puissance maximum fournie par la cellule P_{max} (I_{opt} , V_{opt}) et le produit du courant de court-circuit lcc par la tension de circuit-ouvert V_{co} (c'est-à-dire la puissance maximale d'une cellule idéale) il est illustré sur la figure (1.8). Le facteur de forme indique la qualité de la cellule, plus il s'approche de l'unité plus la cellule est performante, Il est de l'ordre de 0.7 pour les cellules performantes, et diminue avec la température, il est défini par :

$$FF = \frac{P_{max}}{I_{cc}*V_{co}} = \frac{I_{opt}*V_{opt}}{I_{cc}*V_{co}}$$
(1.3)

Figure. 1.8. Facteur de forme pour une cellule PV

I.4.4. Caractéristique courant-tension, puissance-tension :

La figure (1.9) représente la courbe I = f(V) d'un module photovoltaïque typique dans des conditions constantes d'irradiation et de température.

L'irradiation standard adoptée pour mesurer la réponse des modules photovoltaïques est une intensité rayonnante de 1000 W/m² et une température de 25°C.

Figure. 1.9. Caractéristique I = f (V) d'un module photovoltaïque

Il est difficile de donner un caractère source de courant ou de tension à un module photovoltaïque sur toute l'étendue de la caractéristique courant-tension. Par conséquent, le module photovoltaïque est considéré comme une source de puissance avec un point *Pm* où la puissance se trouve être maximale. Il est donc intéressant de se placer sur ce point pour tirer le maximum d'énergie et ainsi exploiter au mieux la puissance crête installée.

Il est important de noter que certains régulateurs solaires réalisent une adaptation d'impédance afin qu'à chaque instant on se trouve proche de ce point P_m [8].

I.4.5. Influence de l'éclairement et de la température sur les caractéristiques I=f(V) et P=f(V) :

La figure (1.10) montre l'influence de l'éclairement sur la caractéristique I=f(V). A une température constante (T=25°C), on constate que le courant subit une variation importante, mais par contre la tension varie légèrement. Car le courant de court circuit est une fonction linéaire de l'éclairement alors que la tension de circuit ouvert est une fonction logarithmique.

Figure. 1.10. L'influence de l'éclairement sur la caractéristique I=f(V)

La figure (1.11) illustre la variation de la puissance délivrée par le générateur en fonction de la tension pour différentes valeurs d'éclairement, ce qui nous permet de déduire l'influence de l'éclairement sur la caractéristique P(V).

Figure. 1.11. L'influence de l'éclairement sur la caractéristique P=f(V)

La figure (1.12) représente la courbe I=f(V) pour différentes températures de fonctionnement du panneau PV ATERSA.

Le courant dépend légèrement de la température Par contre la température influe négativement sur la tension de circuit ouvre. En effet quand la température augmente la tension de circuit ouvert diminue. Par conséquent la puissance maximale du générateur subit une diminution [9].

Figure. 1.12. L'influence de la température sur la caractéristique I=f(V)

La figure (1.13) illustre la variation de la puissance délivrée par le générateur en fonction de la tension pour différentes valeurs de la température.

Figure. 1.13. L'influence de la température sur la caractéristique P=f(V)

I.5. Avantages et inconvénients du photovoltaïque :

I.5.1. Avantages :

- Le photovoltaïque est une technologie sûre et sans risque. En général, les panneaux photovoltaïques sont garantis 25 ans (et peuvent fonctionner 40 ans quasiment sans diminuer leur rendement).
- Ce sont des systèmes simples et rapides à installer qui nécessitent très peu de maintenance (d'où des frais de maintenance relativement faibles).
- Les matériaux employés (verre, aluminium) résistent aux pires conditions climatiques (notamment à la grêle).
- La mise en place d'une installation photovoltaïque donne de la valeur au logement qui en est équipé car sa classe énergétique augmente.

 Ce système produit de l'électricité sur place ; il peut donc être installer là où on en a besoin, sans être raccordé à un quelconque réseau.

I.5.2. Inconvénients :

- Les panneaux solaires coûtent excessivement cher, du fait de la haute technicité qu'ils requièrent.
- Le rendement actuel des cellules photovoltaïques reste assez faible (environ 10% pour le grand public) et donc ne délivre qu'une faible puissance.
- Les panneaux solaires ne peuvent pas s'installer n'importe où, ni n'importe comment, sous peine de voir le gain d'énergie divisé par deux par rapport aux valeurs théoriques.
- Production d'énergie qui dépend de l'ensoleillement, toujours variable.
- Le recyclage des cellules photovoltaïques en fin de vie pose des problèmes environnementaux. Les batteries utilisés par les panneaux photovoltaïques sont composées de plomb, de zinc, de cadmium, et donc ont un impact sur l'environnement.
- La transformation du silicium de sa forme naturelle (non exploitable) à sa forme traitée (exploitable) nécessite une très haute température (donc beaucoup d'énergie).
- S'il faut stocker l'énergie avec des batteries, le cout de l'installation augmente.

I.6. Conclusion :

Dans ce chapitre nous avons fait des descriptions générales sur l'énergie photovoltaïque, tous les éléments ont été introduits (cellule, module, panneau, champ PV) afin de permettre une bonne compréhension du fonctionnement des systèmes PV.

Ce chapitre nous a permis d'explorer le principe de la conversion photovoltaïque ainsi que les différentes technologies utilisées pour y parvenir. Des aspects aussi bien technologiques qu'électriques on été abordés afin de mieux comprendre l'ensemble du mécanisme de conversion photovoltaïque.

II.1. Introduction :

Comme on a vu dans le chapitre précédent, les caractéristiques d'un module solaire montrent bien que la puissance maximale générée dépend fortement de l'intensité des radiations solaires ainsi que de la température.

En plus de ces dépendances, le module solaire ne peut générer sa puissance maximale que pour une certaine tension et courant de fonctionnement, la position de ce point de fonctionnement dépendant à son tour de l'ensoleillement et de la température ainsi que de la charge. Pour que le module fournisse sa puissance maximale disponible il faut une adaptation permanente de la charge avec le générateur photovoltaïque.

Cette adaptation pourra être réalisée par l'insertion d'un convertisseur DC-DC (hacheur) contrôlé par un mécanisme de poursuite «Maximum Power Point Tracking» (MPPT) [2, 11, 12, 13].

Le but de ce chapitre est l'étude de quelques types de convertisseurs DC-DC, utilisés dans les systèmes photovoltaïques. Comme l'hacheur dévolteur, l'hacheur STEP-UP et l'hacheur mixte (dévolteur-survolteur). Enfin on décrit la commande MPPT.

Figure 2.1. Schéma synoptique du système PV contrôlé par MPPT

II.2. Introduction d'un étage d'adaptation :

Le raccordement d'un générateur photovoltaïque à une charge quelconque nécessite une adaptation adéquate entre le générateur PV et la charge pour qu'il délivre le maximum de puissance.

II.3. Le Convertisseurs DC-DC (hacheurs) :

Les hacheurs sont des convertisseurs du type continu-continu permettant de contrôler la puissance électrique dans des circuits fonctionnant en courant continu avec une très grande souplesse et un rendement élevé [12]. Le but est d'assurer la fluence d'énergie entre une source de tension continue et une source de courant continu.

Pour ce type de convertisseur statique, la gamme de puissance que l'on peut « traiter» s'étend de quelques watts, à une trentaine de kilowatts environ. Cependant, l'apparition de composants de puissance sans cesse plus performants, tout comme la définition de nouvelles structures (multi niveau en particulier), permettent d'envisager le traitement de puissances plus élevées. Nous distinguons deux types de convertisseurs continus/continus :

- les convertisseurs appelés (hacheurs), qu'ils soient abaisseurs, élévateurs ou bien dévolteurs, survolteurs, qui correspondent aux applications moyennes et fortes puissances,
- les alimentations à découpages, qui correspondent aux applications petites puissances de la conversion DC/DC [14].

Figure 2.2. Principe de base d'un hacheur

II.4. Différents de types d'hacheurs :

Selon la position du commutateur et du hacheur, différents types de convertisseurs de tension peuvent être réalisés :

- abaisseur de tension «Buck »
- élévateur de tension « Boost »
- > abaisseur élévateur de tension « Buck-Boost »

II.4.1. Convertisseur Buck :

L'hacheur série est un convertisseur direct *DC–DC*. La source d'entrée est de type tension continue et la charge de sortie continue de type source de courant. L'interrupteur S peut être remplacé par un transistor puisque le courant est toujours positif et que les commutations doivent être commandées (au blocage et à l'amorçage) [15].

Figure 2.3. Circuit électrique de base du hacheur dévolteur

II.4.2. Convertisseur Buck-Boost :

Un convertisseur Buck-Boost est une alimentation à découpage qui convertit une tension continue en une autre tension continue de plus faible ou plus grande valeur. Un inconvénient de ce convertisseur est que son interrupteur ne possède pas de borne reliée au zéro, compliquant ainsi sa commande. Dans ce type de convertisseurs figure (2.4), la tension de sortie peut être supérieure ou inférieure à la tension d'entrée [16].

Figure 2.4. Circuit électrique de base du convertisseur Buck-Boost

II.4.3. Convertisseur STEP-UP:

Le convertisseur DC-DC STEP-UP proposé est représenté sur la figure (2.5) Le circuit n'utilise qu'un seul commutateur actif Q1 et une très faible inductance résonante Lr qui est utilisée pour limiter le pic de courant provoqué par le condensateur C1 lorsque le commutateur Q est mis en circuit. Les deux composants de stockage d'énergie C1 et L1 sont alternativement connectés en parallèle et en série selon différents états de commutation.

Figure 2.5. Schéma équivalent du convertisseur STEP-UP

II.4.3.1. Principe de fonctionnement :

L'étude se fait en deux parties selon l'état de conduction de l'interrupteur Q1.

a) De 0 à dt :

Pendant la phase de conduction, Q1 est en état passant (ON), la fonction de L1 est de transférer de l'énergie tandis que Lr est juste utilisé pour limiter le pic de courant provoqué par le condensateur C1. La figure (2.6) illustre le fonctionnement du hacheur pendant la fermeture de l'interrupteur Q1.

Figure 2.6. STEP-UP avec interrupteur Q1 fermé

b) De dt à T:

Lorsque l'interrupteur Q1 est en état bloqué (OFF) le courant passant par la diode D2 est le même que le courant d'inducteur II1. La figure (2.7) illustre le fonctionnement du convertisseur pendant l'ouverture de l'interrupteur Q1.

Figure 2.7. STEP-UP avec interrupteur Q1 ouvert

Les formes d'ondes de tension et de courant du convertisseur (STEP-UP) sont montrées dans la figure (2.8) ci-dessous :

Figure 2.8. Formes d'ondes courant/tension dans un convertisseur STEP-UP

II.4.3.2. Dimensionnement du convertisseur DC/DC STEP-UP :

Les valeurs fixées par le cahier des charges sont résumées dans le tableaux suivant :

Paramètre	Vin	Vout	fréquence	Resistance
Valeur	30V	90V	102Khz	45 Ω

a) Le rapport cyclique :

Le rapport cyclique est un coefficient important lors du dimensionnement des éléments de n'importe quel convertisseur sa relation est donnée par l'équation :

$$D = \frac{V_0 - 2V_{in}}{V_0 - V_{in}} = \frac{90 - 2*30}{90 - 30} = 0.5$$
(2.1)

b) Le condensateur 1 :

$$C_1 = \frac{I_{0max} * T_s}{\Delta_{\nu c1}} = \frac{2 * 9.8 * 10^{-6}}{4.17} = 4.7 \mu F$$
(2.2)

Avec I_{0max} , le courant de sortie maximal et Δ_{vc1} est l'exigence de conception de l'amplitude d'oscillation de tension.

b) Le condensateur 2 :

Le condensateur C_2 à la sortie du convertisseur STEP-UP permet de filtrer la tension. Sa valeur est donnée par cette relation :

$$C_2 = \frac{I_0 * D}{0.09 * f} = \frac{2 * 0.5}{0.09 * 102 * 10^3} = 100 \,\mu\text{F}$$
(2.3)

d) Les inductances :

$$L_1 = \frac{v_{in}}{\Delta_{IL1}} * D * T_s = \frac{30}{1.54} * 0.5 * 9.8 * 10^{-6} = 95 \mu H$$
(2.4)

$$L_r = \frac{1}{4\pi^2 * f^2 * C_1} = \frac{1}{4 * (3.14)^2 * (102 * 10^3)^2 * 4.7 * 10^{-6}} = 0.5 \mu H$$
(2.5)

II.5. Principe de la recherche du point de puissance Maximal :

II.5.1.Généralités :

Des lois de commandes spécifiques existent pour amener des dispositifs à fonctionner à des points maximums de leurs caractéristiques sans qu'à priorité ces points soient connus à l'avance, ni sans que l'on sache à quel moment ils ont été modifiés ni qu'elles sont les raisons de ce changement. Pour le cas de sources énergétiques, cela se traduit par des points de puissance maximum. Ce type de commande est souvent nommé dans la littérature

« Recherche du Point de Puissance Maximum » ou bien « *Maximum Power Point Tracking* » en anglo-saxon (MPPT). Le principe de ces commandes est d'effectuer une recherche du point de puissance maximal (PPM) tout en assurant une parfaite adaptation entre le générateur et sa charge de façon à transférer le maximum de puissance. La figure (2.9) représente une chaîne élémentaire de conversion photovoltaïque associée à une commande MPPT. Pour simplifier les conditions de fonctionnement de cette commande, une charge DC est choisie. Comme nous pouvons le voir sur cette chaîne, la commande MPPT est nécessairement associée à un quadripôle possédant des degrés de liberté qui permettent de pouvoir faire une adaptation entre le GPV et la charge.

Dans le cas de la conversion solaire, le quadripôle peut être réalisé à l'aide d'un convertisseur DC-DC de telle sorte que la puissance fournie par le GPV corresponde à la puissance maximale (P_{max}) qu'il génère et qu'elle puisse ensuite être transférée directement à la charge.

La technique de contrôle communément utilisée consiste à agir sur le rapport cyclique de manière automatique pour amener le générateur à sa valeur optimale de fonctionnement qu'elles que soient les instabilités météorologiques ou variations brutales de la charges qui peuvent survenir à tout moment.

Il existe plusieurs principes de fonctionnement des commandes MPPT plus ou moins performantes basées sur les propriétés du GPV.

Figure 2.9. Schéma bloc d'un algorithme de recherche du PPM

Dans ce chapitre nous allons illustrer les différents types des perturbations qui peuvent agir sur le PPM. Nous allons présenter les différents algorithmes utilisés pour la recherche du PPM, puis nous allons décrire en détail l'algorithme le plus utilisé «Perturbe et Observe».

II.5.2. Perturbations du PPM :

Durant le fonctionnement du GPV, plusieurs perturbations peuvent modifier le PPM. La figure (2.10) illustre trois cas de perturbations. Le point de fonctionnement optimal change du PPM1 vers un nouveau point non optimal, selon le type de perturbation observée.

Dans le premier cas (a), lorsque l'ensoleillement varie à température et charge constantes, PPM1 tombe vers P1. Pour revenir au fonctionnement optimal et monter vers PPM2, nous avons donc besoin d'une variation du rapport cyclique et de même pour les deux autres cas illustrés (b) et (c).

Figure 2.10. Recherche du PPM suite à une variation d'ensoleillement, de la charge et de la température

En conclusion, la poursuite du PPM est réalisée en modifiant le rapport cyclique du convertisseur DC-DC pour assurer un fonctionnement optimal de GPV.

II.5.3. Synthèse des différentes MPPT rencontrées dans la littérature :

Divers publications sur des commandes assurant un fonctionnement de type MPPT apparaissent régulièrement dans la littérature depuis 1968, date de la publication de première lois de commande sur ce type, adaptée à une source d'énergie renouvelable de type PV [17].

Etant donné le grand nombre de publications dans ce domaine, nous ne présentons que le principe de base des principaux types de commande, ensuite décrire la commande que nous avons adopté.

II.5.4. Les Différents commandes MPPT :

Dans la littérature, nous pouvons trouver différents types d'algorithmes effectuant la recherche du PPM [18, 19]. Les trois méthodes les plus couramment rencontrées sont communément appelées respectivement Algorithme « Hill Climbing », Algorithme de contrôle adaptif et Perturbe & Observe (P&O) [20].

Il existe encore d'autres algorithmes qui peuvent être utilisés dans la recherche du Point de Puissance Maximale. Nous pouvons par exemple citer les méthodes basées sur des relations de proportionnalité (Mesure de VOC, Mesure de ICC), les commandes MPPT basées sur le principe de la logique floue et les commandes MPPT de réseaux de neurones artificiels sans oublier la méthode «Incrémentation de Conductance» [20].

La méthode que nous avons choisi est l'algorithme de perturbation et observation (P&O) est le plus utilisé parmi les autres commandes.

II.5.4. 1. Algorithme de contrôle adaptif :

Cet algorithme est élaboré par A.F. Boehringer [21]. Il permet de maintenir le système au PPM. La figure (2.11) illustre le fonctionnement de cet algorithme.

Figure 2.11. Organigramme de l'algorithme de contrôle adaptif

Cet algorithme consiste à calculer la puissance à l'instant t_i à partir des mesures de I_{PV} et V_{PV} , et de la comparer à celle stockée en mémoire. Par suite, et selon la variation de la puissance, un rapport cyclique D est calculé et est appliqué au convertisseur statique.

II.5.4. 2. Algorithme «Hill Climbing»

Cette méthode est basée sur la relation qui existe entre la puissance et le rapport cyclique illustrée par la figure 2.12 [22]. La variable *P* dans la figure 2.13 correspond à une valeur « -1 » ou « 1 » selon le signe de la pente $\frac{dp}{dD}$ et d symbolise la variation du rapport cyclique désirée. Le PPM est atteint lorsque $\frac{dp}{dD}$ atteint zéro comme indique la figure (2.12).

Figure 2.13. Organigramme de l'algorithme Hill Climbing

II.5.4. 3. Algorithme «Perturbe et Observe P&O» :

Le principe de ce type de commande, et comme indique son nom est basé sur la Perturbation de la valeur de la tension du GPV et l'observation du comportement de la puissance qui en résulte [23].

L'exemple dans la figure (2.14) illustre ce principe d'une façon simple. Nous pouvons remarquer de la courbe caractéristique P-V, que si une incrémentation de la tension entraîne une incrémentation dans la puissance, cela signifie que nous sommes à gauche du PPM et nous avons besoin d'incrémenter en plus la tension. Si au contraire, la puissance décroit, cela implique que nous avons dépassé le PPM donc nous avons besoin de décrémenter la tension.

D'après l'analyse de ce comportement, il est devenu facile de présenter un algorithme qui fait converger le point de fonctionnement vers le PPM dans n'importe qu'elle situation.

Figure 2.14. PPM en fonction de ΔP et ΔV

En quelques mots, lorsque la puissance augmente suite à une perturbation de la tension, la direction de cette perturbation est maintenue, si non elle est inversée pour reprendre la convergence vers le nouveau PPM.

La figure (2.15) présente l'algorithme associé à une commande P&O. On note que nous avons besoin de deux capteurs pour mesurer la puissance du GPV en fonction du temps.

Figure 2.15. Organigramme de l'algorithme d'une commande P&O

Aujourd'hui, l'algorithme P&O est largement utilisé à cause de sa simplicité et de la facilité de son implémentation. Mais dans un autre sens, il présente quelques inconvénients, par exemple selon la courbe caractéristique P-V du GPV nous ne pouvons jamais atteindre $\Delta P=0$.

Chaque fois que V augmente ou diminue la puissance va être modifiée ce qui rend l'implémentation de l'étape $P_{pvn} = P_{pvn-1}$ dans l'algorithme sans profit. Cette instabilité dans la valeur de P va conduire à une instabilité autour de la valeur optimale de la puissance. Cependant, une faible valeur d'incrément ralentit la recherche du PPM, il faut donc trouver un compromis entre précision et rapidité. Ce qui rend cette commande difficile à optimiser. En effet, il est connu que ce type de commande permet d'obtenir un rendement plus important durant une journée relativement ensoleillée, où le PPM évolue lentement et proportionnellement au soleil.

Par contre pour une journée présentant de forts changements d'irradiations très fréquents, cette commande présente plus de pertes, engendrées par le temps de réponse de la commande pour atteindre le nouveau PPM.

En effet, si on analyse en détail ce mode de recherche, il présente des erreurs d'interprétation au niveau de la direction à suivre pour atteindre le PPM lorsque des variations brusques des conditions climatiques ou/et de charge apparaissent, comme cela est décrit sur la figure (2.16).

Figure 2.16. Divergence de la commande P&O lors de variations d'irradiation

Pour plus de clarté, prenons l'exemple d'un éclairement donné, noté E1, avec un point de fonctionnement se situant en A. Suite à une perturbation de tension de valeur ΔV , ce dernier bascule en B, impliquant, dans un fonctionnement sans variation d'éclairement, une inversion du signe de la perturbation due à la détection d'une dérivée de la puissance négative entrainant en régime d'équilibre, des oscillations autour du PPM causées par la trajectoire du point de fonctionnement entre les points B et C. On peut noter que des pertes de transfert de la puissance seront plus ou moins importantes en fonction des positions respectives des points B et C par rapport à A. Lors d'un changement d'irradiation (évolution des caractéristiques P(V) d'E1 à E2), le point de fonctionnement se déplace alors de A vers D, qui est interprété dans ce cas là, par une variation positive de la puissance. Le système n'ayant pas la possibilité de voir l'erreur de trajectoire lié au changement de caractéristique, le signe de la perturbation ne change pas et le système s'éloigne momentanément du PPM en direction du point E. Au mieux, ceci occasionne une non-optimisation de la puissance momentanée. Cependant, dans le pire des cas, le système de recherche peut se perdre et se retrouver en butée, soit en circuit ouvert soit en court-circuit entraînant une perte définitive du PPM. Ceci entraînant, en cas de conditions météorologiques défavorables, de fortes lacunes au niveau de la commande.

Ce cas de figure est d'ailleurs illustré par D. SERA [24], à l'aide de simulations. Pour mettre en évidence ce désagrément, il analyse le comportement de la commande P&O lorsqu'une variation d'ensoleillement, correspondant à une évolution linéaire de l'irradiation de 125 W/m² à 800 W/m², se produit sur une durée de 25 secondes. Contrairement à la perturbation, la recherche du PPM ne se fait pas linéairement, la commande a tendance à s'éloigner momentanément du PPM, pour converger par la suite vers ce dernier. Dans cet essai, le temps de recouvrement de la commande MPPT s'effectue au bout de 40 secondes, soit 15 secondes après que l'éclairement se soit stabilisé. Durant cet essai, le rendement de la commande MPPT est estimé à 94,5% pour une durée de fonctionnement de 100 secondes [24]. Ici, comme précédemment, aucune indication n'est formulée sur la valeur de la variable d'incrément utilisée ; il est donc difficile d'évaluer les performances réelles de cette commande. Pour remédier aux différents problèmes liés à la commande P&O, on a introduit d'autres types de commandes.

II.6. Conclusion :

Dans ce chapitre, nous avons étudié le principe de la poursuite du point de puissance maximale d'un panneau solaire pour différent algorithme a été envisagé. Un rappelle sur différent type de convertisseur DC/DC avec le fonctionnement détaillé du hacheur (STEP-UP).

III.1. Introduction :

Ce chapitre est consacré à une étude permettant d'évaluer le comportement de la puissance d'un système photovoltaïque adapté par une commande MPPT numérique « perturbation et observation ». Ce système comprend un générateur photovoltaïque, un convertisseur STEP-UP une commande MPPT « perturbation et observation » ainsi qu'une charge.

III.2. L'outil Matlab/Simulink :

MATLAB (« matrix laboratory ») est un langage de programmation de quatrième génération émulé par un environnement de développement du même nom ; il est utilisé à des fins de calcul numérique. Développé par la société The MathWorks, MATLAB permet de manipuler des matrices, d'afficher des courbes et des données, de mettre en œuvre des algorithmes, de créer des interfaces utilisateurs, et peut s'interfacer avec d'autres langages comme le C, C++, Java.

SIMULINK est une plate-forme de simulation multi-domaine et de modélisation des systèmes dynamiques.

Il fournit un environnement graphique et un ensemble de bibliothèques contenant des blocs de modélisation qui permettent le désigne précis, la simulation, l'implémentation et le contrôle de systèmes de communications et de traitement du signal [25].

Simularies Most Frequently Used Blocks Commonly Used Blocks Continuous Discrete Continuous Lookup Tables Discrete Model Verification Model Model Verification Model Ports & Subsystems Subsystems Signal Routing Sinks Signal Routing Sinks Signal Routing Sinks Acrospace Blockset Sinks Communications Blockset Sinks Signal Routing Sinks Signal Routing Sinks Subsystems Sources User-Defined Functions Model Verification Acrospace Blockset Operations Communications Blockset Sinks Subsystems Sources User-Defined Functions Model Verification Acrospace Blockset Operations Continuities Sources Sinks Sources Control System Foolbox Sources Control System Foolbox Sources Control System Foolbox Sources Stacoget Blockset Coolbox		» Enter search term 💌 🍻	<u>a</u>						
Simularity Simularity Commonly Used Blocks Discontinuities - Continuous Discontinuities Discontinuities Discontinuities - Discontinuous Discontinuities Discontinuities Discontinuities - Logic and Bit Operations Discontinuities Discontinuities Discontinuities - Meth Operations Math Operations Model Wiles - Model-Wertfication Ports & Subsystems Discontinuities Discontinuities - Signal Attributes Sinks Sinks Sources Disconte Ports & - Signal Routing Sinks Sources Disconte Disconte Disconte - Signal Routing Sinks Sources Disconte Disconte Disconte - Signal Routing Sinks Disconte Sources Disconte Disconte - Control System Toolisox <	.ibra	ries	Libr	ary: Simulir	nk Search Re	sults: (none)	Most Frequenti	y Used Block	(S
		Simulink Commonly Used Blocks Commonly Used Blocks Continuous Discrete Lockup Tables Math Operations Model Verification Model Verification Model Verification Model Verification Model Verification Signal Routing Signal Routing Sinks Sources Laerospace Blockset Communications Blockset Communicat		単ムは酸素文	Commonly Used Blocks Discrete Math Operations Ports & Subsystems Sinks Additional Math & Discrete	≦ ഈ ❷ 望 葵	Continuous Logic and Dit Operations Model Verification Signal Attributes Sources		Discontinuities Lookup Tables Model-Wilde Utilities Signal Routing User-Defined Functions

Figure 3.1. Bibliothèque SIMULINK

III.3. Module solaire PV :

Dans le domaine de l'énergie solaire photovoltaïque en dénombre plusieurs types de panneaux, parmi eux nous avons choisi un module ATERSA composé de 60 cellules en silicium connectées en série. Il délivre une puissance crête de 250 W dans les conditions standards (G=1000w/m², T=25°C).Ces conditions sont mentionnées avec les caractéristiques du panneau dans le (tableau 3.1).

ATERSA				
Puissance Maximale (P _{MAX})	250W			
Tension Maximale (V _{MPP})	29.53V			
Courant Maximale (I _{MPP})	8.45A			
Tension de circuit ouvert (V _{OC})	37.6V			
Courant de circuit ouvert (I _{SC})	8.91A			
Nombre de cellule	60			
Voltage Maximum du système	1000V			
Coefficient de température de (V _{OC})	-0.132V/°C			
Coefficient de température de (I _{SC})	0.04A/°C			
Irradiation	1000W/m2			
Température de la cellule	25°C			

Tableau 3.1. Caractéristiques électrique du panneau ATERSA.

Pour réaliser la modélisation de ce module, nous avons utilisé MATLAB comme outil de tests et de simulation, nous avons connecté 60 cellules PV obtenues depuis la bibliothèque Simscape en série comme il est représenté dans la figure (3.2).

Figure 3.2. Circuit équivalent du module PV ATERSA

III.4. Connexion direct entre la source et la charge :

Le système le plus simple que l'on puisse concevoir se compose d'un générateur photovoltaïque GPV et d'une charge qui utilise directement l'énergie produite du GPV, voir (Figure 3.3). Cette énergie est dépendante fortement de l'éclairement, de la nature de la charge et de la température.

La connexion directe est surtout utilisée en raison de sa simplicité de mise en œuvre, son coût minimal dû fondamentalement à l'absence d'électronique, sans parler d'un faible coût.

Figure 3.3. Système solaire simple

L'inconvénient de cette configuration, c'est qu'elle n'offre aucun type de 'réglage' de fonctionnement. Le transfert de la puissance optimale disponible aux bornes du GPV vers la charge n'est pas non plus garanti. La connexion directe du générateur photovoltaïque à une charge reste actuellement le principe de fonctionnement le moins cher et le plus répandu. Il faut s'assurer, auparavant, que la charge accepte bien la connexion directe au générateur photovoltaïque: c'est le problème de dimensionnement.

III.5. Simulation sous SIMULINK

III.5.1.Etage d'adaptation convertisseur STEP-UP

Le convertisseur DC/DC qu'on a choisi est composé de deux bobines, deux diodes, deux condensateurs, et un Switch qui est commandé par un signal externe PWM. La figure (3.4) représente le modèle de convertisseur STEP-UP dans MATLAB/SIMULINK.

Figure 3.4. Architecture du convertisseur STEP-UP adoptée sous Matlab/Simulink

Selon les caractéristiques du panneau solaire photovoltaïque ATERSA qu'on a précédemment cité, nous avons calculé les composants du convertisseur STEP-UP comme il est dressé dans le tableau (3.2) ci-dessous.

Description	Calcul
Inductance (L ₁)	95µH
Inductance (Lr)	0.5µH
Condensateur(C ₁)	4.7 μF
Condensateur(C ₂)	100 µF
Charge Résistive (RLoad)	45 Ω
Fréquence de coupure	102kHz
Rapport cyclique D	0.5

Tableau 3.2. Valeur des composants pour convertisseur STEP-UP.

Les résultats de simulation du convertisseur STEP-UP sont illustrés par les figures (3.5) et (3.6). Ces figures représentent les tensions d'entrée et de sortie de notre convertisseur

(SETP-UP) ainsi le courant de sortie. Ces résultats montrent que la tension de sortie du convertisseur est supérieure à celle d'entrée. Donc le convertisseur STEP-UP assume correctement la multiplication de la tension d'entrée par un coefficient de (03).

Figure 3.5. Tensions d'entrée et de sortie du convertisseur STEP-UP

Figure 3.6. Valeur moyenne du courant de sortie du convertisseur STEP-UP

III.5.2.Etage d'adaptation convertisseur STEP-UP pilote par une commande MPPT (P&O)

Figure 3.7. Système globale dans l'environnement SIMULINK

Nous avons vu lors du chapitre 2, le principe de fonctionnement d'une commande MPPT, et comme nous l'avons déjà mentionné, nous allons dans notre travail faire une comparaison de la commande MPPT (P&O) implémentée sous SIMULINK et XSG.

III.5.3.Simulation du convertisseur STEP-UP piloté par l'algorithme P&O

Nous allons étudier, l'algorithme Perturber et Observer « P&O » sous MATLAB/SIMULINK, montré dans la figure(3.8).

Figure 3.8. Schéma detaillé du contrôleur MPPT P&O simple sous Matlab Simulink.

Le résultat obtenu est représenté dans la figure (3.9).

Figure 3.9. Puissance à la sortie du convertisseur STEP-UP contrôlé par un MPPT (P&O)

Dans un premier cas nous avons testé le convertisseur pour différents scénarios de fonctionnement. Pour une température constante de T=25°C et quatre niveaux de l'irradiation. Nous remarquons que notre système réagis aux variations d'insolation.

III.6. Implémentation du système sur XSG :

III.6.1. Introduction :

Les FPGA (Field Programmable Gate Arrays ou "réseaux logiques programmables") sont des composants entièrement reconfigurables ce qui permet de les reprogrammer a volonté afin d'accélérer notablement certaines phases de calculs. L'avantage de ce genre de circuit est sa grande souplesse qui permet de les réutiliser à volonté dans des algorithmes différents en un temps très court.

Le progrès de ces technologies permet de faire des composants toujours plus rapides et a plus haute intégration, ce qui permet de programmer des applications importantes. Cette technologie permet d'implanter un grand nombre d'applications et offre une solution d'implantation matérielle à faible cout pour des compagnies de taille modeste pour qui, le cout de développement d'un circuit intégré spécifique implique un trop lourd investissement.

La compagnie Xilinx (1984), introduit en 1985 sur le marché le premier FPGA, le XC2064, et offrent ainsi une alternative aux précédentes approches. La première approximation de la FPGA est un CPLD avec un très grand nombre de macro-cellules et une grande souplesse d'interconnexion entre les macro-cellules. En plus du niveau d'intégration, la différence entre CPLD et FPGA réside dans la maitrise du temps de propagation dans les couches logiques du circuit. Ce temps est prédictif dans les CPLD car les chemins parcourus par les signaux sont connus alors dans les FPGA ce temps dépend de l'organisation et de la distance entre les macro-cellules interconnectées.

Figure 3.10. Architecture générale du FPGA.

III.6.2. Le logiciel Xilinx System Generator :

System Generator est un outil de conception DSP de Xilinx qui permet l'utilisation de Math works basé sur des modèles Simulink pour la conception FPGA. Les schémas sont capturés dans la modélisation de l'environnement DSP Simulink à l'aide de blocs spécifiques de Xilinx. Toutes les étapes en aval de la mise en œuvre FPGA y compris la synthèse sont automatiquement effectuées en vue de créer un fichier de programmation.

Plus de 90 blocs de construction DSP sont fournis dans le jeu de blocs DSP de Xilinx pour Simulink Figure (3.11).Ces blocs comprennent les blocs de construction commune DSP tels que des additionneurs, des multiplicateurs et des registres.

File Edit View Help		
D = - + +		
System Generator: System Generator		
🔹 🖬 SimPowerSystems 🦟 🖪	Sustain Convertation	-
+ Senecape		
Sen Ark Extras	Addessable Shitt Register	
Sendak Excanator Estimation		
Smulink Response Optimization	Assert	
Smulink Ventication and Validation	Second Contractor	
Stateflow	0#0-scher	
🕡 🚂 System Identification Toolbox		
+ Target for Preescale MPCSixx	Black Box	
a Target for Infineon C166		
Invget for ti C2000	Clock Enable Probe	
When and image Processing Blockast		
 Writial Reality Toolbox 	Concat	
- W Max Blochset		
2> Basic Elements	1 Constant	
25-3 Communication		
22 Control Logic	said Convert	
2E Data Types		
that note	and the second sec	

Figure 3.11. Les blocs de Xilinx pour Simulink

III.6.3. Définition du bloc system Generator :

Le bloc System Generator permet de contrôler les paramètres du système et de la simulation. Tous les modèles Simulink contenant les blocs de Xilinx doit contenir au moins un bloc System Generator. Une fois ce dernier ajouté à un modèle, il est possible de spécifier la manière dont la génération de code et de simulation doivent être manipulée Figure (3.12).

Figure 3.12. Le bloc system generator

La figure (3.13) représente les paramètres du bloc système generator.

ompilation Clocking Gene	ral	11	Compilation Clocking General	and the stand of the
Compilation :		-		
		Settings	FPGA clock period (ns) :	Clock pin location :
Part:			10	ADS
Synthesis tool :	Hardware description language		Multirate implementation :	DCM input clock period (ns) :
xst 💌	VHDL		Clock Enables	100
Target directory :				
C:/Users/ABDELOUAHAB/Desktop/ch	apitre 3 promo 2015/simulation FPGA/Sy	Browse	Provide clock enable clear pin	
Project type :				
Project Navigator			Simulink system period (sec) :	
Synthesis strategy :	Implementation strategy :		1	
XST Defaults* *	ISE Defaults* ~			
Create interface document	Create testbench			
menet as configurable subsurtem				

Figure 3.13. Les paramètres du bloc système generator

III.6.4. Architecture adoptée du contrôleur MPPT (P&O) sous System Generator :

La figure (3.14), représente le schéma architecturale du contrôleur MPPT P&O sous System Generator de Xilinx, ce contrôleur utilise directement la tension et le courant du panneau photovoltaïque pour chercher le point de fonctionnement correspondant à la puissance maximale produit par la génératrice photovoltaïque.

Figure 3.14. Architecture de l'algorithme P&O sous XSG

Pour implémenter la commande (MPPT) sur FPGA, le nombre de bits utilisés pour la quantification des signaux d'entrée et sortie de système est *très important*, l'utilisation de trop de bits dans la conception peut avoir de lourdes conséquences sur les caractéristiques de contrôleur. Par exemple, trop de bit pourrait entraîner une diminution importante de la vitesse de fonctionnement de contrôleur (MPPT).

Gateway in block. Converts inputs of type Simulink integer, single, double and fixed-point to Xilms fixed-point or floating-point data type. Hardware notes: In hardware these blocks become top level input ports. Basic Implementation Output Type Boolean Boolean Fixed-point Fixed-point Precision Binary point Ploating-point Precision Binary point Boolean Fixed-point Precision Boolean Fixed-point Precision Boolean Fixed-point Precision Boolean Fixed-point 12 Floating-point Precision Binary point 12 Cuantization: Truncate Rumber of bits Praction width 24 Quantization: Truncate Wirap Saturate Flag as error Sample period 1 Simulation Override with doubles			
Basic Implementation Output Type Boolean Boolean Fixed-point Arithmetic type Signed (2's comp) Binary point Fixed-point Precision Binary point 12 Floating-point Precision Binary point 12 Guantization: Truncate Round (unbiased: +/- Inf) Overflow: Wrap Saturate Flag as error Sample period 1 Simulation Override with doubles Simulation	uble and orts.		
Output Type Output Type Boolean Fixed-point Arithmetic type [Signed (2's comp) Fixed-point Precision Number of bits 21 Binary point 12 Floating-point Precision Fixed-point Precision Single Double Custom Exponent width Exponent width Fraction width 24 Quantization: Truncate Truncate Round (unbiased: +/- Inf) Override with doubles Flag as error Sample period 1 Simulation			
Boolean Proced-point Precision Fixed-point Precision Fixed-point Precision Single Double Custom Exponent width B Fraction width 24 Quantization: Orruncate Round (unbiased: +/- Inf) Overflow: Override with doubles Override with doubles Override with doubles			
Arithmetic type Signed (Zs comp) Fixed-point Precision Number of bits 21 Binary point 12 Floating-point Precision Single Double Custom Exponent width Fraction width 24 Quantization: Truncate Round (unbiased: +/- Inf) Overflow: Wirap Saturate Flag as error Sample period 1 Sinulation Override with doubles			
Fixed-point Precision Number of bits 21 Binary point 22 Floating-point Precision Binary point Binary point 22 Floating-point Precision Binary point Binary point 24 Quantization: Custom Truncate Round (unbiased: +/- Inf) Overflow: Truncate Wrap Saturate Flag as error Sample period Sample period Simulation Override with doubles Override with doubles			
Number of bits 21 Binary point 12 Floating-point Precision Image: Single Double Custom Syngle Double Custom Image: Single Double Custom Syngle Double Custom Image: Single Double Custom Syngle Double Custom Image: Single Double Custom Quantization: Image: Single Round (unbiased: +/- Inf) Image: Single single Round (unbiased: +/- Inf) Overflow: Image: Single single Sample period 1 Image: Single single single Flag as error Simulation Image: Single single single single single single Image: Single single single single Image: Single single single single			
Number of bits 21 binary point 12 Floating-point Precision Floating-point Precision © Single Double Custom Exponent width Praction width 24 Exponent width Quantization: Truncate Round (unbiased: +/- Inf) Overflow: Truncate Flag as error Sample period Saturate Flag as error Sample period Simulation Override with doubles Override with doubles			
Floating-point Precision Single Single Single Single Single Single Quantization: Single Quantization: Single Quantization: Single Single Quantization: Single			
Exponent width & Praction width 24 Quantization: Truncate Round (unbiased: +/- Inf) Overflow: Truncate Round (unbiased: +/- Inf) Overflow: Truncate Round (unbiased: +/- Inf) Sample period 1 Smulation Wrap Saturate Flag as error Sample period 1 Simulation Override with doubles Override with doubles			
Quantization: Quantization:			
Truncate Round (unbiased: +/- Inf) Overflow: Wrap Saturate Flag as error Sample period 1 Simulation Override with doubles Override with doubles			
Overflow: Overflow: Wrap Saturate Sample period 1 Simulation Override with doubles			
Sample period 1 Smultion Override with doubles			
Simulation Override with doubles Override with doubles			
Override with doubles Override with doubles			
ET overvoe with dordnes			
OK Carrel Heb Arriv			

В

Figure 3.15. Tableaux du choix de nombre de bit de Vpv et Ipv

Pour le output type (type de variable de sortie), le system generator nous donne la possibilité de choisir entre ces trois types de variables:

- ✓ Boolean.
- ✓ signed: les valeurs peuvent être de signe positif ou négatif;
- ✓ Unsigned: les valeurs sont de type positif.

Les cases Number of bits et Binary point représente:

Number of bits: c'est le nombre de bits total que peu prendre la variable;

Binary point : c'est le nombre de bits après la virgule.

Α

III.6.5. Système globale sous System Generator :

Figure 3.16.convertisseur STEP-UP contrôlé par P&O sous XSG

Pour s'assurer de l'efficacité de notre architecture de l'algorithme P &O implémenté dans l'environnement XSG. Les résultats obtenus sont comparés à ceux obtenus dans l'environnement SIMULINK ci-dessous

Figure 3.17. Puissance de sortie pour une insolation variable et température constante

Figure 3.18. Puissance de sortie pour une insolation constante et température constante

Nous remarquons que l'extraction de la puissance est plus grand dans le cas de XSG que dans le cas de SIMULINK. Cette remarque est valable pour le cas d'une température et insolation constante. Ceci explique l'efficacité de notre architecture sous XSG.

C'est-à-dire le PPM est atteint le plus rapidement possible avec des pertes très réduites.

III.6.6.Présentation du logiciel ISE

Le logiciel Xilinx ISE (Integrated Software Environnment) est un logiciel de description, de simulation et de programmation de circuits et systèmes numériques sur des composants programmables. C'est un logiciel qui possède dans son soft différents outils permettant la création des systèmes ou circuit numériques. D'une manière générale, le Xilinx ISE permet de réaliser toutes les étapes de conception et de programmation des circuits FPGA de Xilinx et même pour d'autres circuits programmables tel que les CPLDs, Spartan, Verilog... :

• La description de circuits numériques sous forme de schémas logiques, de machines à état finis ou en langages de description matérielle (VHDL, Verilog, ABEL).

- La compilation, la simulation comportementale.
- La synthèse, le placement routage et l'implémentation.
- La simulation temporelle et l'analyse de timing.

• La programmation sur les circuits programmables de Xilinx (CPLD et FPGA).

Le tableau (3.3) ci dessous représente les ressources utilisées de l'algorithme P&O

Logic Utilization	Used	Available	Utilization
Number of Slices	106	122880	6%
Number of slices flip flop	46	122880	0%
Number of fully used LUT-FF-	1	151	5%
pairs			
Number of bonded IOBs	64	960	6%
Number of BUFG/BUFGCTRLs	1	32	3%

Tableau 3.3. Ressources utilisées de l'algorithme P&O

Figure 3.19. Schéma RTL et RTL détaillée de MPPT P&O

Les deux figures présentent le circuit de connexion de notre MPPT sur FPGA

III.7.Conclusion

Dans ce chapitre nous avons testé notre système dans deux environnements différents à savoir le SIMULINK et XSG.

Pour une comparaison rigoureuse les deux cas sont plotés dans même axes et cela pour une température constante et une variation d'insolation de 1000W/m² à 400W/m². Nous remarquons que l'extraction de la puissance est plus grand dans le cas de XSG que dans SOMULINK.

Introduction générale

La production d'énergie est un défit de grande importance pour les années à venir. En effet, les besoins énergétiques des sociétés industrialisés ne cessent d'augmenter. Par ailleurs, les pays en voie de développement auront besoin de plus en plus d'énergie pour mener à bien leur développement. De nos jours, une grande partie de la production mondiale d'énergie est assurée à partir de source fossiles. La consommation de ces sources donne lieu à des émissions de gaz à effet de serre et donc une augmentation de la pollution. Le danger supplémentaire est qu'une consommation excessive du stock de ressources naturelles réduit les réserves de ce type d'énergie de façon dangereuse pour les générations futures.

Par opposition, une énergie dite renouvelable doit se régénérer naturellement et indéfiniment à l'échelle temporelle de notre civilisation. Parmi ces énergies, l'énergie issue du soleil répond actuellement à ces critères à la fois d'abondance à la surface terrestre et de régénération infinie à notre échelle. Elle peut ainsi être utilisée directement sous forme thermique et depuis la découverte de l'effet photovoltaïque, convertie en énergie électrique cette dernière, bien qu'elle soit connue depuis de nombreuses années, comme source pouvant produire de l'énergie allant de quelques milliwatts au mégawatt, reste à un stade anecdotique et ne se développe pas encore dans de grandes proportions, notamment à cause du cout trop élevé des capteurs mis en œuvre [1].

La conversion de la lumière en électricité. Appelée effet photovoltaïque, a été découverte par E. Becquerel en 1839. Cette conversion d'énergie peut s'effectuer par le biais d'un capteur constitué de matériaux sensible à l'énergie contenue dans les photons. Ce capteur se présente à l'échelle élémentaire sous forme d'une cellule nommée cellule photovoltaïque (PV). La quantité d'énergie électrique ainsi générée peut varier en fonction du matériau utilisé. Des paramètres d'énergie géométriques du capteur et de sa capacité à collecte les électrons avant qu'ils ne se recombinent dans le matériau. L'association possible de plusieurs cellules PV en série/parallèle permet d'adapter théoriquement la production d'énergie photovoltaïque à la demande. Ces associations constituent un générateur

photovoltaïque (GPV) avec des caractéristiques courant-tension I(V) spécifiques. Nonlinéaires et présentant des points de puissance maximale (PPM) dépendant du niveau d'éclairement, de la température de la cellule ainsi que du vieillissement de l'ensemble [2, 5].

En effet, le développement des systèmes de conversion rentables et économiquement viables, passe nécessairement par la compréhension des différents composants des systèmes à leur tête le panneau solaire. Ce dernier est composé de plusieurs cellules solaires qui nécessitent étude et compréhension. Plusieurs modèles ont été présenté dans la littérature pour étudier le comportement d'une cellule solaire et déterminer ses caractéristiques en particulier la caractéristique courant-tension et la caractéristique puissance-tension. Ces modèles peuvent être classés en deux groupes : les modèles à deux diodes et les modèles à une diode. De plus, le point donnant la puissance maximale à suscité un intérêt supplémentaire car l'obtention de modèles simplifiés modélisant le comportement de la photocellules en fonction des conditions climatiques (température, éclairement) s'avère nécessaire surtout lors de l'étape de dimensionnement.

Le travail présenté dans ce mémoire porte sur le contrôle d'un convertisseur DC/DC haute performance basé sur xilinx système generator. Pour se faire nous avons présenté ce manuscrit de la façon suivante :

Dans le premier chapitre, nous présentons des généralité sur les systèmes photovoltaïques. Nous présentons ainsi le principe de l'effet photovoltaïque, la cellule PV et ses paramètres le panneau photovoltaïque.

Dans le second chapitre, on étudie dans un premier temps de quelques types convertisseurs DC-DC et leur modèle mathématique. Dans un deuxiéme temps nous présentons les méthodes plus populaires de la commande MPPT.

Dans le troisième chapitre nous présentons des généralités sur le système generator, suivi de la simulation de notre convertisseur DC/DC sous simulink/matlab et ainsi dans l'environnement Xilink System Generator (XSG)

Nous terminerons ce travail par une conclusion générale et quelques perspectives.

[1] Energy Efficiency and Renewable Energy, U.S. Departement of Energy - *The history of solar* - U.S.A., 2001

[2] S. M. Ait-Cheikh, *«Etude, Investigation et conception d'algorithmes de commande appliqués aux systèmes photovoltaïques»*, Thèse de Doctorat d'état, Ecole Nationale.

[3] M. Adouane, «Etude et conception d'une stratégie de commande d'un onduleur connecté au réseau électrique», Mémoire de magistère, Ecole Nationale Polytechnique,

Alger, Algérie, 2008.

[4] Energy Efficiency and Renewable Energy, U.S. Departement of Energy - 2008 solar

technologies market Report- U.S.A., 2008

[5] A. Abete et al. - Analysis of photovoltaic modules with protection diodes in presence of

mismatching - 21st IEEE Photovoltaic Specialists Conference, 1990

[6] Ryan C. Campbell - A Circuit-based Photovoltaic Array Model for Power System Studies - IEEE 2007

[7] Atsushi Kajihara, Tetsumi Harakawa - *Model of Photovoltaic Cell Circuits under Partial Shading*. IEE 2005

[8] F. Chekired, « *Etude et implémentation d'une commande MPPT neuro-floue sur FPGA*», mémoire de magister, Ecole Nationale Polytechnique, Alger, Algérie, 2008.

[9] M. Adouane, «Etude et conception d'une stratégie de commande d'un onduleur connecté au réseau électrique», Mémoire de magistère, Ecole Nationale Polytechnique, Alger, Algérie, 2008.

[10] S. Bellakehal, *«Conception & Commande des Machines à Aimants Permanents Dédiées aux Energies Renouvelables»,* thèse de Doctorat, Université de Constantine, Algérie, 2010.

[11] S. Issaadi, « *Commande d'une poursuite du point de puissance maximum* (*MPPT*) par les Réseaux de Neurones », Mémoire de magister, Ecole Nationale Polytechnique, Alger, Algérie, 2006.

[12] N. Abouchabana, « Etude d'une nouvelle topologie buck-boost appliquée à un *MPPT »,* Mémoire de Magistère, Ecole Nationale Polytechnique, Alger, Algérie, 2009.

[13] M. Moulay-Amar et M. Loghouini, *«Etude et réalisation d'un système de poursuite de point de puissance maximale à base de microcontrôleur destiné a une installation photovoltaïque »,* Mémoire d'ingéniorat, université de Ouargla, Algérie, 2005.

[14] Nordine MAHERZI, « Etude, conception et réalisation, dun convertisseur d'énergie DC/DC associe à des supercondensateurs », mémoire d'ingénieur, Conservatoire National des Arts Et Metiers, Lyon, 2010.

[15] A. Rufer, P. Barrade, « Cours d'électronique de puissance Conversion DC/DC », , octobre 2001, EPFL, 90 pages. Ecole Polytechnique Fédérake de Lausanne.

[16] Badia AMROUCHE :' CONTRIBUTION AU DEVELOPPEMENT D'UNE NOUVELLE METHODE MPPT BASEE SUR LES CONCEPTS DE L'INTELLIGENCE ARTIFICIELLE POUR LES SYSTEMES PHOTOVOLTAIQUES', THESE DE DOCTORAT Spécialité, Communication. Blida, mars 2013.

[17] A. F. Boehinger, "Self-adaptive DC converter for solar spacecraft power supply", IEEE Transactions On Aerospace and Electronic Systems, pp. 102-111, 1968.
[18] F.Z. Zerhouni, M. Zegrar et A. Boudghène Stambouli, "Amélioration de l'adaptation d'un générateur photovoltaïque à une charge avec implémentation pratique", Revue des Energies Renouvelables Vol. 10 N°4 (2007).

[19] T. Mrabti, M. El Ouariachi, K. Kassmi, F. Olivié et F. Bagui, "Amélioration du fonctionnement des systèmes photovoltaïques suite aux brusques variations des conditions météorologiques et de la charge", Revue des Energies Renouvelables Vol. 11 N°1(2008).

[20] Cédric CABAL, "Optimisation énergétique de l'étage d'adaptation électronique dédié à la conversion photovoltaïque", Thèse de doctorat soutenue le 15 décembre 2008.

[21] A. F. Boehinger, "Self-adaptive DC converter for solar spacecraft power supply", IEEE Transactions On Aerospace and Electronic Systems, pp. 102-111, 1968. [22] W. J. A. Teulings, J. C. Marpinard, A. Capel, and D. O'Sullivan, "A new maximum power point tracking system", IEEE Power Electronics Specialists Conference 1993, PESC'93, pp. 833-838, June 1993.

[23] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, "Optimization of Perturb and Observe Maximum Power Point Tracking Method", IEEE Transactions On Power Electronics, Vol. 20, No. 4, pp. 16-19, March 2004.

[24] D. Sera, T. Kerekes, R. Teodorescu, F. Blaadjerg, "Improved MPPT Algorithms for rapidly

Changing Environmental Conditions", Power Electronics and Motion Control
Conference, 2006, EPEPEMC 2006. 12th International, pp. 1614-1619, Aug. 2006.
[25] A. Meflah, « Modélisation et commande d'une chine de pompage

photovoltaïque», Mémoire de Magistère, Université de Tlemcen, Algérie, 2011.