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GENERAL INTRODUCTION 

Among the important quantities in astronomy and astrophysics there is the Sun 
diameter. From this quantity, the ephemeredes are established, the dates of contacts for the 
solar eclipses are calculated, and the standard solar models are elaborated. In parallel with the 
astrophysical studies of the Sun, astrometric observations may lead to improved values for 
this particular reference. The measurement of the solar diameter is not as simple as may be 
thought. During the last centuries and years a big discussion and disputation about its 
constancy and variation took place. 

Following the suggestions of Newcomb (1835-1909) during the "Conference 
internationale des étoiles fondamentales" held in Paris in 1896, a set of astronomical constants 
was adopted [1]. Astronomers were asked to use it in order to ensure an easy comparison of 
measurements made in different observatories. The adopted solar parallax was equal to 8".26. 
For the semi-diameter of the Sun, the value 959".63 was given, based on a study made by 
Auwers (1838-1915) in Berlin [1]. In 1891, Auswers gave two values of Sun diameter in his 
conclusion. The first one is the above-adopted value, which is obtained from a large set of 
Heliometer observations. The second one, which is obtained from observations made with 
transit instruments, is 962".73 The difference of 3".10 in diameter (1".55 in the radius) 
between them was considered as due to a so-called irradiation. From that time, the 
ephemeredes (Nautical Almanac, Connaissance des Temps, American Ephemeris,) use the 
second value under the form of Sun semi-diameter 16' 1".18 (961".18) for the eclipses and the 
value 15'59".63 (959".63), with the corresponding variations due to the changes in the 
distance between the Earth and the Sun, for the ephemeredes [1]. 

Many authors, mainly since the beginning of the 19 century, have studied the 
problem of Sun diameter variations using a long series of Sun diameter data. Among them, we 
can mention Sofia et al, who found a decrease of 0".010 per year over the period 1925-1979 
[2] and a decrease of 0".019 per year between 1700 and 1990 [3]. In contrast, other authors 
have found irregularities, for example Leone (1973)[43] and Dunham (1980)[44] gave values 
of Sun diameter variations between 1" and fractions of it. At Calem observatory in France, 
Laclare.F has been fortunate enough to be able to obtain a long series of solar diameter 
measurements. He has found relatively short-term variations by using Fourier analysis [1]. 
Such variations and discrepancies in the solar diameter are not a new phenomenon; they can 
be seen from modem analysis of observations in the past. An example is to be found in a 
preliminary work by Smith and Messina [4] from which the following values for the 
horizontal diameter of the Sun were given [1], 

• At Capetown the Sun semi-diameter is 961".21 ± 0".10 for 10 annual means from 1837 

to 1887 
• At Paris the value is 961".89 ± 0".16 for 25 annual means from 1837 to 1906. 

The annual means of these 19th century observations, given by the authors, are based 
on a total number of transits, which are 798 for the Capetown and 2461 for Paris. But, as 
noticed by Smith and Messina, the long series have not been performed with the same 
instrument and, of course, due to their length, by the same observer. 

The usage of early measurements to investigate long-term trends in the solar diameter 
started with the pioneering work of Eddy and Boornazian [45]. These authors deduced from 
the Greenwich meridian circle observations between 1936 and 1953 that the solar diameter 



had shown a secular decrease at a mean rate of 0.8" per century. However, this result was 

disputed by Pakinson et al. [46] who criticized Eddy and Boornazian's interpretation of the 

Greenwich data and demonstrated that different observers obtained discordant results with the 
same instrument [5]. They also shown that series analysis of timing of both Mercury transits 

and the total solar eclipses since 1715 revealed no evidence of a secular decrease in the solar 
diameter. Soon afterwards. Gilliland (1981)[47], by combining circle measurements since 
1836 with mercury transit data since 1715, suggested that a secular decrease in the solar 

diameter by 0.1"/century was "likely". Débarbat (1982) deduced that measurements of the 
horizontal Sun diameter at noon between 1666 and 1673 revealed irregularities of periodical 

nature. Subsequently, Ribes et al. made an analysis of 50 year measurements using Picard 

and La Hire between 1666 and 1718 and their results indicated that around 1700 the solar 

diameter was some 4" greater than it is now [1]. Selections of the ancient and recent values of 

Sun semi-diameter are summarized in Table 1. 

fl Author Date of 
publication 

Radius of 

Sun(") 

Used Method Number of 
 measurements/period 

Mouton 1660 959.4±3.3 pp 86 

Auzout 1666 965.2±0.2 MI 2 

Picard 1670 964.6±0.2 MI 304 

Richer 1672 961.9±5.2 DP 26 

Picard 1674 962.9±3.5 DP 154 

La Hire 1683 963.2±2.8 MI 14 

La Hire 1684 965.4±3.8 DP 304 

La Hire 1701 963.6±3.8 DP 6980 

Louville 1724 962.4±2.0 DP 10 

Bouguer 1753 957.3±2.0 DP 105 

Lalaude 1764 961.4±1.5 HE 12 

Lalaude 1764 961.4±1.5 HE 12 

Bessel 1824 960.9±1.4 ME 92 

(Airy) 1837 960.9±1.4 ME 92 

Goujon 1842 962.2±0.7 ME 1575 

(Smith —M) 1877 961.5±0.7 ME 1363 

Auwers 1880 959.6±0.5 HE 2840 

(Gething) 1895 961.04±0.44 ME 10302 

Schur 1896 960.07±0.55 ME 760 

Ambronn 1897 959.9±0.6 HE 920 

(Cimino) 1907 961.34±0.54 ME 27249 

(Smith-M) 1946 961.34±0.20 ME 3468 

Wittman 1973 960.24±0.16 DTIL Year 1972 

Wittman 1973 960.013±0.16 DP 20 

Wittman 1974 960.0±0.8 DP 246 

Wittman 1978 960.29±1.8 Pp 2159 

Duvall&al 1980 959.50±0.10  Year 1979-1980 

Sofia,Dunham, 
Fiala 

1980 959.77±0.06 SE 

 _______________ 

Year 1978 

Wittman 1981 960.26±0.04 DTIL May-June 1981 

(Ribes) 1981 961.2±0.5 ME 349 
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Leister 1984 9594±0.8 AS 804 
Journet 1984 959.03±0.4 AS 1170 
Laclare 1978 959.4±0.3 AS 8000 
Leister 1988 958.84±0.07 AS 1982.5-1986 
Laclare 1988 959.45±0.02 AS 2679(1975-1987) 
Joumet 1988 959.03±0.02 AS 1176 

Wan Laj&Zhao 1989 959.65±0.02 
Jun -Liang  

AS Year 1989 

Sato &Soma 1989 959.64±0.02 SE Year 1987 
Leister&Benevi 

des Soares 
1990 959.03±0.02 SE Year 1989 

Noel 1991 960.8±0.6 AS 189 
Ribes 1991 959.32±0.02 PHJvI 1981-1991 

Wittman 1991 960.66±0.02 LDO 1986-1990 
Maiev,Twigg& 1992 959.60±010 

Sofia  
SDSBF 

Kubo 1993 959.82±0.02 SE 1980 
Akimov 1993 959.82±0.04 SE 1991 
Wittman 1993 960.66±0.02 DTIL 1993 

Sofia,Heaps&T 1994 959.53±0.06 
wi gg  

SDSBF 1994 

Bode,Buchner 1995 959.66±0.04 
&Musharot  

SE 1985 

Noel 1995 960.64±0.10 AS 1990-1994 
Neckel 1995 960.64±0.03 LDS 72 

Wittman 1997 959.73±0.05 
960.53±0.02 

DS CCD 126/1996 
 427/1996 

Brown&Christe 1998 959.68±0.02 
nsen Dalsgaard  

SDM 1998 

Kliliç 1998 959.33±0.05 SA(2prismes) 170/1998 
Sanchez 1998 959.33±0.04 SCCDA 100/1998 

Noel 1998 959.85±0.03 
960.50±0.03 
960.39±0.13 

SA 
(2 prismes) 

123/1996 
120/1997 

822/1990-1997 

Sato &Soma 1998 959.64±0.02 SE 1987 
Jilinki 1998 959.20±0.02 SCCDA 3500/1996-1997 

Sinceac 1998 959.45±0.01 SA 349/1996-1997 

Jilinski et at. 1999 959.14±0.03 SCCDA 2600/1996-1997 
Laclare et al. 1999 959.60±0.01 SA 418/1996-1998 

Delmas 2000 959.52±0.01 DORaySol 266/1999 
Table I. Solar Diameter Observations. PP: Projected transit lime, MI: ,nicron,eter, HE: helio,neter, 

ME: transit time at meridian circle. AS: solar astrolabe, SDM: solar diameter monitor. SCCD: solar astrolabe 

with CCD. DTIL: c/rift timing in Izana & lacarno, SE: solar eclipse, SDSBF: solar disk sextant on balloon flight. 

PHM: Photoelectric measurement, LDO: limb darking obsen'ation. DS CCD: drift scan CCD. LDS: Limb 

darking Scans. 



The observed variations of solar diameter in the past based on classical techniques 
have given inconclusive results [6]. The principle of these classical methods is based on 

timing the meridian transits of Sun borders. However, since the interval of data is more or less 

9 years, they are not useful to disclose eventual variations of Sun diameter that is connected 

with 11 years, the period of solar activity [6,7]. In addition the observation of meridian 
transits gives individual results of relatively low precision. Nevertheless, its accuracy can be 
improved by accumulating many observations in a short time period making them comparable 
with more precise techniques such as solar eclipses. However, all these methods are strongly 
affected by several types of systematic errors [6]. Many instruments may be adopted to 
measure the Sun radius. The one that has shown its performance and permitted collections of 
a huge set of data is the solar astrolabe [8,9]. 

The solar astrolabe, which is a modified version of Danjon astrolabe. has some 
advantages over the meridian circle [10]. For instance, the later can give only two 
measurements during a day (horizontal and vertical radius), where the astrolabe gives a 
number of measurements that is twice the number of observing zenithal distances. 
Furthermore, the astrolabe provides a compact and a more stable local reference defined by 
the mercury mirror and the angle of the prism (see chapter II). The meridian circle is a more 
complicated instrument. Its precision depends on three instrumental parameters that are not 
easily controlled, especially in the quite critical environmental conditions that are prevalent 
during Sun observations [ii]. In the other hand and according to Cullen, the effect of 
irradiance on meridian observations of the Sun is variable, since it depends on the Sun 
zenithal distance. For the astrolabe and for a given zenithal distance this effect should be 

constant [6]. 

The experiment of visual measurement of Sun diameter using an adapted Danjon 
astrolabe has been initiated in 1975 by F.Laclare at Calem observatory (Prance). Since this 
date. and during more than two solar cycles, diameter measurements were regularly recorded. 
These visual observations revealed evidence of oscillations in the solar data; see Figure 1(a) 
[9,11]. The same experiment has begun at Sao Paulo (Brazil) in 1974 and more lately at 
Santiago (Chile), in 1990. Oscillations of Sun semi-diameter were always noticed. 

The mean error source in visual measurement of Sun diameter is the observer's 
estimation of the Sun transit instant. This is due of course of the fact that each observer has 
his way of observation and his own eye spectrum. In 1989, in order to eliminate this error and 
improve the diameter measurement accuracy, some modifications were brought to the solar 
astrolabe. The main ones are the introduction of a CCD camera and a system of acquisition 
[11]. A comparison of the two measurement sets of Sun diameter (visual and CCD) made 
during the same time period have shown good agreement between them [12]. From that time, 
the two methods of measurement are operating together. A CCD astrolabe of the same type 
as that of the Calern instrument but equipped with a variable prism started operating at the 
National Observatory of Rio de Janeiro in January 1997, and the recent values still show 

variation; see Figure 1(b). 
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Figure 1. (a) So/ar radius measurement obtained with Ca/en, obsen'atorv astro/obe. rb) So/ar radius 

measurement obtained with Rio de Janeiro asfro/abe during 199710 2000 (West observation). 

The principal cause of the variability of the Sun is its magnetic field. The theoretical 
studies have shown that its predominant effect is a surface effect [14]. The theory of the 
stellar structure foresees that the variations of the radius associated with magnetic activity are 
of the order of 10, a non-measurable quantity [14]. According to the theory, the solar radius 

is a quantity that, at the actual level of observation precision, depends only on the basic 
physics, while the apparent variations of the observed radius are very high, about 0". 4 over a 
magnetic cycle [12]. It is very difficult to interpret these results, since we do not know if these 
observed variations reflect real variations of the Sun radius, or are the effects of other 
phenomena less known. The variations may also come from the fact that the real observed 
radius belongs to the solar atmosphere, a fluid medium, that is subjected to a big density 
variations, temperature changes and tide effect. But, if real variations of the radius, or one 
portion, are original variations, serious constraints will be subjected to the theory of the stellar 
structure. So, it is absolutely necessary to ameliorate the observation techniques in order to 
understand more precisely the origin of Sun diameter variations. Conjointly, the other 
phenomena that can have an effect on the measurement of the Sun radius must be well 
studied. These complex phenomena whose effects remain poorly known are the terrestrial 
atmosphere variability, solar atmosphere and the instruments used. 

In 1966, results were announced of a measurement series of the solar flattening done at 
Princeton, that implicated the theory of the general relativity of Einstein. These measurements 
showed a difference Ar=0".0866±O".0066 between the polar radius and the equatorial radius, 
with a quadrupolar moment .11 2.47±0.23.l0 -  [15]. The advance of the perihelia of 

Mercury's orbit, which is also related to Sun flattening, is one of the most interesting tests of 
the general relativity. Now then, the quadrupolar moment found by the observations found 
out an acceleration of the perihelia different of that general relativity might explain. [16]. The 
big discussion launched by these results has opened the way to other experiments, intended to 
measure the Sun flattening. These experiences have found values more and well moderated 
for the flattening, confirming the first results. So, the observations done with the Solar Disk 
Sextant have given a value J. = 1. 8.10-1,  with all uncertainties taken into account, which 

remain compatible with the estimations of the general relativity [14]. A recent analysis of the 

5 



a 

I I 
MIS  1 -. 

95.., 
3000 

19Th 

ox 

—.—atst.OAUTfl 1 
_T 

00 	 7000 

'U' 
	

1st 	 Ilk 

heliosismological data obtained by the satellite SOIlO (Solar Heliospheric Satellite) confirms 

the last values obtained by direct measurement of Sun flattening [14]. 

The analysis of all flattening data showed also a variation with the solar cycle and 
the method of measurement The variations of Sun flattening seemed to be conforming to 
those of the observed solar radius with the astrolabe [16]. Measurements with the solar 
astrolabe have also put in evidence a radius dependent on the heliographic latitude, be the Sun 
flattening. Still, to have a good measurement of the variation of the Sun flattening, it is 
necessary to do a dense series of observations during a long period of time and with many 
methods and instruments. 

The various studies oriented to the ancient and recent measurement have shown that 
the solar variability has an influence on the terrestrial climate [18]. A good correlation was 
found between the variation of the period of the solar cycle and the anomalies of the 
temperature of the north hemisphere. In addition, between the variations of the measured 
values of Carbon 14 and the number of sunspots [14]. A relation has been found between the 
variability of the solar diameter and the stratospheric wind! to a period of 1000 days. This 
shows that the solar variability induces in one part the variations of the observed radius, and 
in the other part it forces the circulation of the stratospheric winds [17]. The data of Sun 
semi-diameter obtained at Calern observatory extends during 24 years was compared to some 
solar activities and measurements. Figure 2 shows Sun semi-diameter variations and sunspot 
numbers. We notice that there exists an anticorrelation between them . This result confirms 

the work of Gilliland [12,13], which was established using observations from Washington and 
Greenwich. The same anticorrelation is naturally found with the irradiance data [13], since the 
solar activity and the irradiance are correlated [13]. Figure 3(a) represents a best 

anticorrelation between Calem semi-diameter data and the shifts of low-degree 
heliosismological pressure p-modes observed during the cycle [12,13]. In 1984, Delache 
linked the variations of the observed diameter with the neutrino flux measurements [8], and in 
1988 Gough mentioned an eventual connection between sunspot number, solar neutrino, and 
the Sun diameter. This connection between the observed diameter and the neutrino flux is 

seen to be correlated; see Figure 3(b) 

I69.9 

Figure 2. Semi-diameter variations and Sunspot numbers. 
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Figure 3. (a) Semi-diameter and p-modes frequency shfts [13]. () Semi-diameter variation and neutrino flux [13]. 

It is for the objective to respond to the problematic imposed by the solar diameter 
measurement along the time and the observed variations, that a solar experiments are realized 
and others in progress to perform the measurement in a high angular resolution of this 
parameter. Between these experimentations we have, 

• The astrolabe network distributed in latitude. 

• DORaySols (Definition et Observation du Rayon Solaire): They are a new generation of 
automatic solar astrolabes. They are equipped with an acquisition system, a CCD camera 
and a prism of variable angle. These prisms allow performing several measurements 
during a day (3000 measurements a year) [13]. 

o Picard (The name given to this mission to rend homage to the French astronomer who 
has effectuated measurements of Sun diameter): This spatial micro-satellite will be 
launched in 2005-2007 for 3 to 4 years. Its main objectives are the measurement of Sun 
diameter and the solar irradiance. These measurements will permit the comparison of the 
results deduced from space and the ground as well as the evaluation of the atmospheric 
turbulence. 

• Sodism H: it is a replica of the Picard's telescope on the ground. It will be installed at 
Calern observatory (France). 

• M.I.SoI.F.A. (Monitor d'Images Solaires Franco-Algérien). It is a monitor of image 
quality, which will give the information of the Earth atmosphere state at the moment of 
observation. This instrument will be installed just near DORaySoI an Sodism II at Calern 
observatory. 

Picard, Sodism II, and Misolfa will all observe at the same time. They will be used to 
define the effects induced by the Earth's atmosphere on ground measurements done by the 
astrolabes that will continue to observe for a long period of time. 

To validate the semi-diameter variations observed with astrolabes, we must have a 
huge data sets record under good conditions, during a long period of time and with a 
minimum period of discontinuities. So, it is necessary to have, 

7 



• A site where the meteorological conditions and the atmospheric turbulence are favorable 
for this type of experiment. 

• A location where the Sun is always so high on the sky during all the year to limit the 
effects of atmospheric refraction. 

• Automatic instruments that permit the collection of huge data sets of Sun diameter 
measurement. 

For that reason, a grouni network of solar astrolabes (DORaySol) installed at different 
latitudes is necessary. The actual ground astrolabe network contains two DORaySols 
currently in operation, the one of Calern (France) and Rio de Janeiro(Brazil) observatories. 
The third one will be that of Tamanrasset observatory, which will be installed soon. Figure 4 
presents the ground DORaySol network. 

Figure 4. The ground network solar astrolabes. 

A preliminary meteorological study of Tamanrasset observatory, where the astrolabe 
will be installed, has been done over the last 3 years. This study has shown a mean humidity 
of 20.5%, a mean atmospheric pressure of 866.4 hp, a mean nebulosity of 2 octas, a mean 
temperature of 22.8 °C, and a mean wind speed of 3.7 m/s (see Annex 1). This preliminary 
study supports that Tamanrasset observatory would be a favorable place for this type of 
observation. In addition, its location allows the collection of a huge data sets of Sun diameter 
measurements. With DORaySol installed it will permit collections more than 4000 diameters 
per year. This can be deduced from Figure 5 that represents the Sun trajectory for 
Tamanrasset observatory. 

I 



The Sun trajectory of the Sun for Ta man Ms set observatory 
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Figure 5. Sun trajectory for Tainanrasset observatory. 

The present work is oriented, after the study of the astrolabe, its principle of operation 
and the theory behind the Sun diameter measurement, to: 

Look for the suitable method to process the Sun images, develop the necessary ,  
techniques to extract the Sun edge and build the procedures to calculate the Sun 
diameter. 

Study of the measurement quality with the CCD astrolabe and the effect of the 
atmospheric turbulence on Sun diameter measurement. 

Chose and build the acquisition system that will be installed around the solar 
astrolabe of Tamanrasset and provide the necessary programs for its operation. 

In chapter I we present the theory behind the principle of Sun semi-diameter 
measurement. All the parameters that enter in Sun diameter calculation and all the necessary 
corrections that must be taken into consideration are introduced. In addition, the reduction 
procedure will be given. 

Chapter II describes the astrolabe and the different transformations to which it is 
subjected. It presents the experimental principles of Sun diameter measurement and the 
related problems. 

The object of chapter III consists in presenting the wavelet transform and its 
characteristics that are suitable for Sun images, which present non-stationary defects. In 
addition, it describes the two algorithms (the Mallat's algorithm and the a trous algorithm) 
used to implement this processing method. Finally, it presents the different steps to extract the 
Sun image edge and the way to determine the transit instants of the Sun through the defined 
height circles. 

Chapter IV is an application of the wavelet transform to two sets of Sun images 
acquired by the solar astrolabe of Calern. A comparison between the two algorithms to 
implement the wavelet transform of is presented. Also the methods to calculate the error on 
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the Sun semi-diameter measurement and the error on the transit instants determination are 
given. Finally the relation between these two types of errors with the atmospheric turbulence 
characterized by the Fried parameter are discussed. 

In chapter V, the main work is oriented to select the acquisition system and to 
implement the software that pilots the astrolabe of Tamanrasset. The different elements of the 
proposed acquisition system are tested in the laboratory for future installation around the 
astrolabe. 
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CHAPTER I SUN RADIUS MEASUREMENT THEORY 

After a brief describing of some aspects of celestial mechanics that introduce the different coordinate systems 
on the sky and on the Earth, this chapter gives the principle of Sun diameter measurement. The necessary 
corrections that must be applied to this measurement are presented. Finally, the steps details to calculate the 

Sun diameter will be given. 

1.1 Celestial sphere 

The Celestial sphere is an imaginary spherical surface. It is centred on the observer on 
which the stars and planets have apparently been placed. Its radius is infinite. The boundary 
between the visible and invisible portions of the celestial sphere is called the Horizon. The 
poles of the horizon, those points directly overhead and beneath, are called the Zenith and the 

Nadir. 

Figure!-]. Celestial sphere with principal great circles (ecliptic, celestial equator, celestial meridian) indicated, NCP marks 

the North Celestial Pole, Z the astronomical zenith and C is the obliquity of the ecliptic. 

The celestial sphere appears to rotate around a fixed axis. This point is known as the 
North Celestial Pole (NCP) in the northern terrestrial hemisphere and South Celestial Pole 
(SCP) in the southern terrestrial hemisphere. The axis of the Earth's rotation pierces the 
celestial sphere in these two points. The great circle passing through the celestial poles and the 
Zenith is called the celestial meridian. Clearly, it also passes through the Nadir. The celestial 
meridian intersects the horizon at the north and south points. The great circle passing through 
the astronomical Zenith and Nadir and orthogonal to the celestial meridian at the Zenith, is 

called the prime vertical; see Figure I-i. 

The Sun and planets move in a nearly coplanar fashion on the celestial sphere. This 
plane is approximately that of the ecliptic (the intersection of the instantaneous mean orbital 
plane of the Earth with the celestial sphere). The angle between the ecliptic and the celestial 
equator is known as the obliquity of the ecliptic. It is about 23°.5. The two intersections of the 
ecliptic with the celestial equator are known as the equinoctial points. 
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1.2 Celestial coordinate systems 

Celestial coordinates fix the location of an object on the sky. There are various 
systems suitable for different purposes. Each needs a fundamental circle and a fixed point; see 
Figure 1-2. 

2 

---- 

k\~ X 

(b) (a) (c) 

(d) 

Figure 1-2. (a) Definition of the horizontal coordinate systern.(b) Definition of The HA-dec coordinate system.(c) Definition 
of the RA-dec coordinate system. (d) Definition of the ecliptic coordinate system. 

(1) Horizontal or "alt-az" system: The horizontal or alt-az system depends on a 
place (because the sky appears different from different points on Earth) and on time (because 
the Earth ro.tates, and each star appears to trace out a circle centred on the North Celestial 
Pole). The altitude (a) of an object X is the angular distance along the vertical circle from the 
horizon to X. It is measured from -90° at Nadir to +90 0  at Zenith. Alternatively, the zenithal 

distance (z) of X is (900 
- 

altitude). Any two objects with the same altitude lie on a small 
circle called a parallel of altitude (Almucantar, or the small circle). The azimuth (A) of an 
object X is the angular distance around the horizon from the north cardinal point to the 
vertical circle through X. It is measured from 0° to 360° westwards (clockwise), see Figure I- 

2(a). 

• 	(2) Equatorial or "HA-dec." system: It is a system of celestial coordinates which is 
fixed on the sky and independent of the observer's time and place. The fundamental circle for 
this system is changed to the celestial equator. To fix the coordinates of an object X on the 
celestial sphere, we draw the meridian through X. The declination ((5) of X is the angular 
distance from the celestial equator to X. It is measured from -90° at the SCP to +90 0  at the 

NCP. Any point on the celestial equator has declination 00. Alternatively, the North Polar 

Distance of X is "90° - declination". Any two objects with the same declination lie on a parallel 
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of declination. The Hour Angle (H) or HA of object X is the angular distance between the 
meridian of X and the celestial meridian. It is measured clockwise in hours; see Figure 1-2(b). 

Equatorial or "RA-dec." system: The first equatorial system (HA and 
declination) is still tied to the observer's here-and-now. For this system, a fixed point is chosen 
on the celestial equator called the vernal equinox or the First Point of Aries. The declination (8) 
of object X is measured in the same way as before. The Right Ascension (a) or RA of object X 
is the angle along the celestial equator measured counter clockwise from the vernal equinox to 
the meridian of X. Like HA, RA is measured in hours 0-24h but it goes in the opposite 
direction. The relationship between the hour angle and right ascension is given by: 

H=ST-ct 	 (Li) 

Where IS is Sidereal Time and at the same time the hour angle of the vernal equinox. 
Ecliptic coordinate system: The apparent path followed by Sun is called the 

ecliptic. In the ecliptic system , the fundamental great circle is the ecliptic. The zero-point is 
still the vernal equinox. K is the northern pole of the ecliptic and K' is the southern one. To 
fix the ecliptic coordinates of an object X on the celestial sphere, we draw the great circle 
from K to K' through X. The ecliptic (or celestial) latitude of X (13) is the angular distance 

from the ecliptic to X, measured from -90° at K' to +900  at K. Any point on the ecliptic has 

ecliptic latitude 00.  The ecliptic (or celestial) longitude of X (X) is the angular distance along 
the ecliptic from the vernal equinox to the great circle through X. It is measured eastwards 
(like R.A.) but in degrees, 0°-360°. 

1.3 Conversion between system coordinates 
To convert between the horizontal and equatorial coordinates for an object X, we use 

the Astronomical Triangle XPZ, see Figure 1-3 (a), with help of cosine and sine rules (see 
Annex 2). To convert between ecliptic and equatorial coordinates we use the Astronomical 
Triangle KPX (Figure 1-3(b)) and the equations of the sine and the cosine rules. 

(a) 
	

(b) 

Figure 1-3. (a) The Astronomical triangle to con yen between horizontal and equatorial coordinates. Z is 
the zenith. P is the North Celestial Pole. X is the object. H the hour angle, a the right ascension. 5 the 

declination and S the parallactic angle(b). The astronomical triangle to convert between ecliptic and 

equatorial coordinates, K is the ecliptic pole, P the NPC, S the declination, /3 the ecliptic latitude, A the 
ecliptic longitude and e the obliquity, 

For the transformation from horizontal and equatorial coordinates, the following 
equations are deduced, 

cos z = + sin p sin S + cos p cos S cos H 
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sin z cos A = - cos (p 5fl 6 + sin p cos 6 cos H 	 (1.2) 

sin z sin A = cos 6 sin H 

sin z cos S = + sii ( cos 6- cos (p sin 6cos H 

sinzsinS = cospsinH 	 (13) 

sin 6 = + sin (p COS Z - COS (p sin z cos A 

cos 6 cos H = + cos p cos z + sin p sin z cos A 	(1.4) 

cos 6 sin H = sin z sin A 

cos 6 cos S = + sing) sin z+ cos (p cos z cos A 	(1.5) 

cosösinS = cospsinA 

wheie A is the azimuth, z the zenithal distance, p is the observer latitude, 6 is the declination, 
S the parallactic angle and H the hour angle. 

1.4 Geographic coordinate systems 
There is quite a variety of local and global coordinate systems that may be used to 

describe locations on the surface of the Earth. The most important geographic coordinate 
systems are: Geodetic coordinates system, Astronomical coordinates system and the 
Geocentric coordinates system. 

1-4.1 Geodetic coordinates 

It is based on a model for the size and the shape of the Earth. The Earth's surface is 
nearly that of an oblate spheroid. Two independent parameters uniquely specify such an 
ellipsoid. It is important to realise that the definitions of the geodetic coordinates are 
independent of the numerical values of the parameters of the ellipsoid. The difference 
between the Jong and short axes of this ellipse is about 0.3%. The value of flattening f, 

adopted by the WRS in 1989 is: 
f=(a-b)/a = 1.0/298.275 	 (1.6) 

Where a is the equatorial axis, and b is the polar axis of the ellipsoid [40]. 

1.4.2 Astronomical coordinates 

The observatory coordinates that can be measured with only local information are 
astronomical or geographic longitude and latitude. The local gravity vector and the direction 

of the celestial pole define them. 
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1.4.3 Geocentric coordinates 

The position of a point relative to a terrestrial reference frame may be expressed in 
three ways: 

Geocentric equatorial rectangular coordinates, x, y, z 

Geocentric longitude, latitude and radius, A, 4)', p 

Geodetic longitude, latitude and height, A, 4), p 

The relationship between the geodetic and the geocentric latitudes of a point is 
illustrated in Figure 14(a) which represents a meridional section through the reference 
spheroid. The geocentric radius p is usually expressed in units of the equatorial radius of the 
reference spheroid. The following relationships hold between the geocentric and the geodetic 
coordinates: 

x = apcos(4)') cos(A) = (aC + Ii) cos4) cosA 	 (1.7) 

y= apcos4)'sinA = (aC + Ii) cos$ sinA 	 (1.8) 

z = ap sin$ = (aS + h) sin4) 	 (1.9) 

Where a is the equatorial radius of the spheroid, C and S are auxiliary functions that 
depend on the geodetic latitude and on the flatteningfof the reference spheroid. The polar 
radius b and the eccentricity e of the ellipse are given by: 

b=a(l—f) 	 (1.10) 

e2 =2f-f or 1—e 2 =(1--f) 	 (Lii) 

It follows from the geometrical properties of the ellipse that: 

C = {cos 2 4) + ( 1 _j)2  sin24)) - "2 	 (1.12) 

S = (1 —J) 2C 	 (1.13) 

Geocentric coordinates may be calculated directly from geodetic coordinates. The 
reverse calculation of geodetic coordinates from geocentric coordinates can be done in closed 
form [19] but it is always done by iterative procedure. An iterative procedure for calculating 
A4, h from x, y, z is as follows: 

Step 1: we calculate 	A = tan'(y/x) r = (x 2  + y2) 1/2  e2  = 2f—f 

Step 2 : we calculate the first approximation to 4) from:  4) = tan'(z/r) 

Step 3 : we perform the following iterations until 4) is unchanged to the required 
precision. 

2 
4)' = 4) 	C = (I - e 2  sin 0) 112 	4) =tan'(z + aCe2  sin4),)/r) 

Step 4: we calculate h = r/cos4) - aC 
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The quantity 4) - 4? is some time known as the "reduction of the latitude" or "the angle 
of the vertical"; Its value is of the order of 10' in mid-latitudes. The maximum departure of 
from $'is tari'{e2/[2(1-e2)"2]} when sin$ = 11(2 - 

z-axi 

$jth 

(a) 	 (1) 

Figure 1-4. (a) Relation between geodetic and geocentric coordinates. 0 is the centre of Earth. 04 is the equatorial 

radius, OB is the polar radius, 01' is the geocentric radius. PQo is the normal to the reference spheroid. Q°Q, = aS. QQ, = 

aC. 0 = Geodetic latitude. çó = Geocentric latitude. (1') The station error. 

There is again a third definition of latitude. Geodetic measurements on the Earth's 
surface show local irregularities in the direction of gravity, due to variations in density and 
shape in the Earth's crust. The direction in which a plumb line hangs is affected by such 
anomalies and these are referred to as station error. The geodetic or geographic latitude 4)" of 
the observer is the astronomical latitude corrected for station error; see Figure 1-4 (b). 

L5 Heliographic coordinates 

Figure 1-5 (a) represents the heliocentric celestial sphere, K is the pole of the ecliptic 
and P0 is the Sun's rotational pole. The great circle UNV is the solar equator, N denoting its 
ascending node on the ecliptic. The rotation axis (the solar equator), is specified by two 
parameters I and 0. These are respectively the inclination of the equator to the ecliptic and the 
longitude of the node N. The adopted values are, 

I = 7 0 .25 	 (1.14) 
Q= 730 40' + 50".25 ( t- 1850) 	 (1.15) 

where t is the time expressed in years. 

The variation in 0 is due to precession (see Annex 2), and secular changes in the 
ecliptic is ignored. The prime meridian is shown as P00. It cuts the equator at the point 0, 
which is assumed to rotate with sidereal period of 25.38 days. This reference point was 
originally chosen to coincide with the node of 1854 January 1 at 12h  UT. The position of the 
point 0 is given by the arc NO. It is denoted by W and given by, 

W = (360°/25.38) (JD —2398220.0) 	 (1.16) 

Where ID is the Julian Date. 
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Now suppose that X is any point on the solar surface. Its heliographic latitude and 
longitude are defined as B = 90° - P0X, and L = OP0X. Let E be the center of the apparent 
solar disc called the subearth point. This point lies on the ecliptic at longitude To - 1800, 
where Jo  is the geocentric longitude of the Sun. So, EN = Q - k +180 0 . If (L0, B0) are the 
heliographic coordinates of the center of the disc, then P0E = 90° - B0, EP0N = 360° -W -La. 
P0NE = 90° - I, and P0N = 90°. Applying the sine and cosine formula (see Annex 2) to the 
triangle P0NE we get, 

Sin B0 = sin (I - Q) sin I 

cos B0cos (La + W) = cos I sin (Q - 1) 	 (1.18) 

cos B0 cos (L0+ W) = -cos (Q - 1)  

These equations are sufficient to determine (Las Bo) for any time once W is calculated. 

If P 1  in Figure 1-5(a) represents the celestial pole, then the position angle may be computed as 
the sum of the angles P 1 EK and KEP0, 

Consider first, the spherical triangle KP,E, in which KE = 90° and KP 1  = c (the 

obliquity of the ecliptic). The spherical angle EKP 1  is the ecliptic longitude of P1 minus the 

ecliptic longitude of E. So EKF1 = 270° - lo. From this spherical triangle, we get: 

tan P 1 EK = - cos Jo  tan C 	 . 	(I.20a) ,  

where P1KE c [- C, +E] for Joe [0°, 360°] 

Consider the triangle KEP0, we have again, KE = 90°, P0K = I, and P 0KE = Jo - Q - 

90 1 . Applying the cosine and sine formulae we get, 

tan KEP0 = - tan I cos (I•2 - 1) 	 (I.20b) 

where KEP0 e [-I, +11 for Jo e  [ 00, 36001 

Hence, the position angle of the axis is given by 

P= -tan 1 [ tan I cos (Q - 1)] - tan[ cos Jo tan c] 	 (1.21) 

17 



7 p 

Pati. 

S 

•N!. 	 - - 

Prn.t. E 

I . 

(ii) 
ta) 

Figure 1-5. (b) Heliographic coordinates, (b) Heliographic latitude. 

In our case, the vertical diameter that is measured by the astrolabe is aligned with the 

great circles c1z and c2z. Its heliographic latitude is given by, 

L= 900 - (P+S) 	
(1.22) 

 

Where S is the parallactic angle computed positively toward the east; see Figure 1-5(b) 

1.6 Solar radius determination 

1.6.1 Classical method 
The average distance of the Earth from the Sun is called the astronomical unit. Modern 

methods, using radar, have greatly simplified the task of finding this distance [40]. However, 
if a radar signal were directed toward the Sun, its echo would be very difficult to detect 
against the background of other radio signals that the Sun itself emits. Therefore, an indirect 
approch is used. A radar signal is directed toward a given planet or asteroid, and the time 
required foF the echo of that signal to be heard is noted. Since we know the speed with which 
the radar signal travels, we may then compute the distance to the object. Knowing both the 
distance and period of an object that orbits the Sun, we can calculate the astronomical unit 

using Kepler's third law, 

(1.23) 
2 	2 Inn 

For the case of Mars we have, 	
(1 .88) 2  ()c+78,3 89,294) 

(1) 2  

x = 149,597,890 Km (The astronomical unit) 

Where p is the period of Mars and p2 
is that of the Earth. r1 is the average distance of Mars 

from the Sun and r2 is the average distance of the Earth from the Sun. 

it 
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The approximate determination of the diameter of the Sun follows directly from the 
knowledge of its distance from the Earth as well as the apparent angle that its diameter makes 
with our eye. 

pg 

Figure 1-6. Classical Sun diameter measurement. 

0.532°_ d 
3600  21r(149,598,000Km) 

d = 1,390,000 Km 

To seek an accurate Sun diameter that can be used for scientific purposes, we must 
look for more methods using precise instruments. The ground instrument that recently shows 
efficiency is the modified Danjon astrolabe for Sun diameter measurement. 

1.6.2 Astrolabe measurement principle 

Figure 1-7 shows the principle of the measurement. P stands for the celestial pole and 
Z for the zenith. p is the latitude and H = ST - a is the hour angle of the Sun. The Almucantar 
is the parallel of altitude. z 1  and z2 are the zenithal distances computed at the time of crossing 
of the same Almucantar by the upper edge (Sun in c 1 ) and lower edge (Sun in c2). For the two 
instants, the center of the Sun in c1 and c2 is located on two close parallels of declination, 8 
and 52 
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Figure 1-7. Measurement principle. 

Figure 1.7 is simplified as shown in Figure 1.8 by neglecting the curvature of the 
parallels of the altitude and of the diurnal trajectory.. of the Sun located between the two 

parallels of declination designated by 8 1  and 82. 

ii p-nM 	 pnith 

Figure 1-8 Measurement principle of the Sun semi-diameter with the astrolal.'e neglecting the curvatures of the parallels of 

	

declination and Almucantar. 	- 

If t1 and t2 are the recorded times of the transits T1 and T2 respectively of the solar 

borders through Almucantar, and if z1 and z2 are the zenithal distances of the center of the 
Sun computed with t1 and t2 respectively, the Sun semi-diameter R is given by[12]: 

	

R = 1/21z1 - z2 1 	 (1.24) 

So, all that we need is a precise instrument that can measure the two transit instants at 

T1 and T2. From Figure 1-8 it is apparent that the measured diameter will have always a 
vertical direction with respect to the local frame and the transits of the borders of the Sun are 
observed always at the same zenithal distance. This is a great advantage, since the results 
should be free from the effects of errors on the refraction and an eventual effect of irradiance 
should be constant [20]. 

Since the solar diameter is a function of zenithal distance, so, this must later be 
corrected for the effects of the parallax, the atmospheric refraction and the instrumental 

effects. 
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1.7 Parallax 

The difference between the geometric directions to a celestial body from two points in 
space is denoted in general by the term parallax. Because of parallax, the directly observed 
positions of celestial bodies relative to the reference circles depend upon the point of 
observations. 

1.7.1 Geocentric parallax 

The geometrical direction for a celestial body from an observer on the surface of the 
Earth, and from the center of the Earth, lie in a plane that passes through the geometric zenith. 
The angle P between these directions, which is the geometric parallax, is therefore the 
difference between the observed angular distance from the geocentric zenith Z'S and the 

geocentric distance Zg from the geocentric Zenith, 

P = Z'tcZg 
	 (1.25) 

where z'g ~!zg; see Figure 1-9. 

(a) 	 (1') 

Figure 1-9. Geocentric parallax. (a) C is the center of the Earth. 0 is the observer. C is the geocentric zenith, S is the 

geocentric direction and S is the topocentric direction. (b) Z is the geodetic zenith, P is the celestial pole, and G Is the 
geocentric zenith. 

The angle P is the angle subtended at the body by the radius p from the center of the 
Earth to the observer. The geocentric parallax vanishes at the geocentric zenith, and it is a 
maximum at the horizon where Z'g is 900. 

The displacement P on the celestial sphere by geocentric parallax is entirely a 
displacement in geocentric zenithal distance and therefore very nearly in a vertical circle In 
accordance with equation 1.25, the geocentric parallax depresses a celestial body toward the 
horizon. However, since the geocentric zenith does not coincide with geodetic zenith, the 
topocentric position will in general be displaced both in azimuth and altitude from the 
geocentric position. 

To determine the exact values of the effects of geocentric parallax, the geographic 
location of the observer must be expressed in geodetic terms. Therefore, when high accuracy 
is required and the parallax is large, astronomical coordinates should be corrected for local 
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deflection of the vertical, and the elevation above the spherical should be included in the 
geodetic coordinates. From the law of sines for plane triangles, we have, 

sin P = 2-5lflZ'R 
r 

(1.26) 

where r is the geocentric distance of the body. The value of P at zR = 900  is called the 

horizontal parallax; denoting it by w, we have, 

sin P = sin w sin z'g 	 (1.27) 

From this equation and equation 1.25, 

sin P = sin m sin (P + zg) 	 (1.28) 

Expanding and dividing by cos P gives, 

tanP=_sinrusinzo 	 (1.29) 
1—sin wcosz 

The solution of 1.29 is, 

	

1 	3 = 	13. 	12 
P (ru 	tu )sinz +—ux sin2z +— 	sin3z 8  +... 	(1.30) 

6 	82 	83 

The value of w when p is the equatorial radius a of the standard spheroid, is the equatorial 
hoHzontal parallax mo. Its value is given by sin(zm) = air or hr when a is the unit distance. 

The equatorial horizontal parallax ZUo of the Sun is defined as sin(ruo )= a/1AU or Wb = 

8.794'. The equatorial horizontal parallax of a body at its mean geocentric distance r0 is 
called the mean equatorial horizontal parallax,m [40]: 

sin it = air0, 

it = sin m+ 1 sinOr)+ 

sin P = 22sinmsinz' 8 	 (1.31) 

If the Earth were spherical, the horizontal parallax would be the angular semi-diameter 
that the Earth would appear to have if viewed from the body. Since the direction to the body 
from any point on the Earth where P=m would then be tangent to the surface of the Earth. But 
because of the nonspherical form of the Earth, a tangent to the surface does not in general 

coincide with the direction ZR =90° at the point of tangency. The difference depends both on 
the latitude of the point and on the azimuth of the tangent. Hence the angle subtended by p at 
an external point when Zg =90° is not strictly the same as the angle subtended by the radius 
of the Earth at this external point. 

Ordinarily it is sufficiently accurate to put p = sin p, and neglect the parallax in 

azimuth. Then zg=z'_OP—(p')COsA, where z is the topocentric zenithal distance from the 

geodetic zenith, and A is the angle in azimuth measured westward from the meridian. 
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Disregarding deflections of the vertical, z' is the observed zenithal distance from the 
astronomical zenith. To this approximation, the parallax in altitude, in terms of the equatorial 
horizontal parallax tUo expressed in seconds of arc, is 

pI=_vJJIos i n [z t_(cocoI',bosAI 	 (1.32) 

which is to be added to the observed altitude in order to obtain the geocentric altitude above 
the astronomical horizon. Since &/cuo = p/a, and 

p/ar 1_f s i n 2 ()+f 2 s i n 2 (29)+ ...  

the horizontal parallax at any latitude is [40], 

tu=zuo(1 —fsin2p + f 2sin 
2 
 2q +...) 	 (1.33) 

where f is the flattening of the Earth. Neglecting flattening in addition to the other 
approximation gives p ' =d'sinz ' . 

The horizontal parallax w at latitude p  is sometimes called the reduced parallax for 
this latitude. The difference tuo.-zu=[1_(p1a)}m is known as the reduction of the equatorial 
parallax, sometimes as the augmentation of the horizontal parallax, for the latitude. It isthe 
correction required to w for the flatting of the Earth in order to obtain the equatorial 
horizontal parallax zuo . From equation 1.33 we have: 

ri 	5 
- =o Ljf(l_cos2ø)_f ( l—cos4øj+... 	(1.34) 
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From the plane triangle of figure 1-9, we have 

sinpsinzx _SIflZ8 
p - r' - r 

sin p = p/r sin z 5 ' = wo p sin z. 	 (1.35) 

where ruo = i/r if a is the unit distance. From the equation 1.25, we obtain the relation 
between the topocentric zenithal distance (z'g)  and the geocentric zenithal distance (z g) as 
follows, 

	

z'g zg +tuopsinzx 	 (1.36) 
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1.8 Astronomical refraction 

Refraction is the bending of the path of the light when it passes through a medium of 
changing index of refraction 

1.8.1 Dispersion by refraction 

Since the angle of refraction depends upon the wavelength of light, a phenomenon that 
occurs simultaneously with refraction is that of dispersion. The general effect of atmospheric 
refraction is normally to increase the altitude of a celestial body without altering the azimuth. 
Its amount depends upon the state of the atmosphere at every point on the path of ray at the 
time. So, its determination is a difficult proposition. Because of continual variation and 
irregularities throughout the atmosphere, the refraction is subject to irregular fluctuations and 
anomalies, especially near the horizon, that cannot be determined by theory [40]. 

On the hypothesis that the atmosphere is horizontally stratified, that is the index of 

refraction lt is radially symmetric, jiz j4r) where r is the distance from the centre of the 
Earth; and from the law of refraction we have, 

hr sin = const 	 (1.37) 

hence, C is the angle that the direction of the ray makes with r, and is therefore equivalent to 
the angle of incidence on each stratum Figure 1-10(a). 

7 

(a) 
	 (b) 

Figure 1-10. (a) The astronomical refraction. (b) The approximate refraction. 

The angle, which the direction of the ray at any point P makes with the radius vector 

m to the observer is 

hence,O is the geocentric zenithal distance of P from the zenith of the observer. 
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At the observer, where r = r0, j.t = j.lo and 0 = 0, the apparent zenithal distance is z0 = o. 
The constant in equation 1.37 is equal to 

jl r0 sin = 
and hence 

tan = kI(,.t3 r3  - k2)"2 
	

(1.39) 

The change in the direction of the ray, i.e., the total amount of refraction from any point P on 
the path, to the observer is 

Y=z — zo 
and therefore 

dy = dz 
= dO +dE 	 (1.40) 

Differentiating Equation 1.40 and dividing by rj.i sin , we have 

and from differential geometry 

- 	d(rji) 

nu dF,--tan 

dO = tan th  
r 

Therefore by Equation 1.39 and 1.40, we get 

dy=+tan F,d(log 	) 	 (1.42) 
Ja 

dO = k (r2g2 — k2 "2  dr (1.43) 
r 

The integration of equation 1.43 gives the path of the ray and the integration of equation 1.42 
gives the astronomical refraction 

f 	
-1/2 

6z = f 	) — 1
J 	

(1.44) 
) 	

' 

The integration requires kt( r) to be knowh. The index of refraction for a given 
wavelength depends almost entirely on density, since the composition of the atmosphere up to 
great heights is virtually uniform and constant except for variation of the relativity small 
water vapour content. From the distribution of the density with height, and laboratory 
determination of the relation of g  to density, the function j.t r) may be derived. However, it is 
not to be expected that this function is of a form that will enable a rigorous analytical theory 
of refraction to be constructed. Several different empirical laws have been formulated that 
represent more or less closely the relation of j.t to the density p; among them are the Dale-
Gladstone law [40], 

4 -1 = cp 	 (I.45a) 
and the Clausius-Mosotti equation 
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/1 
2_i 	

(1.45b) 
2 

ji +2 

where c is a constant 

1.8.2 Approximate refraction 

Different approximations are given for refraction. A first approximation may be 
derived by putting [40]: 

(1.46) 
70 

and expanding equation 1.44 into a series. The quantity s is only about 0.01 at a height of 40 
miles, beyond which the atmosphere is ineffective in producing appreciable approach 

refraction. Neglecting 
2, we have, 

	

2 2 	2 -1/2 	U 2 	2 	2 	2fU2 
(r /.z —k ) 	=- 	—po sin zop-2sR j 	 (1.47) 

ID 

We next Expand by the binomial theorem for values of z0 that are small enough to keep 

2—po2sin 2zo) large compared with 2k 2s. Under this condition, by equation 1.42, we get 

PG sjudy 
oz=R0sinzof 	2 	

dp 	—0sinz0f 	2 	2 	3/2 +...(L48) 
2 	2 	/2 

i [K/t — /i 	sin z0 	 i ( ji —/1 o  sin z0  ) 

Retaining only the first term of the development, we have 

	

özsin (posinzo-zo 
	 (1.49) 

Putting jo = 1+ x and developing in powers of x by Maclauran's theorem by neglecting 
powers higher than the first, we get 

= (.to - 1) tan z0 	 (1.50) 

To this approximation, the refraction is independent of the structure of the atmosphere, and is 
entirely determined by the local conditions at the observer. Physically, this approximation is 
equivalent to neglecting the curvature of the Earth Figure 1.10(b). 

We notice from Figure 1.10(a) that, 

	

E=z=zo+y 	 (1.51) 

From the law of refraction, when a ray passes through a parallel-stratified medium, the final 
direction is the same as if the entire medium had the density of the last medium. Hence, the 
result can be obtained directly, 

sin = p.o sin z0 	 (1.52) 
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or, by equation 1.51, taking cosy = 1 and siny =y: 

y=(.t0_ 1) tan zo 
	 (1.53) 

Adopting 1.0002927 for the index of refraction at the standard conditions (0°C and 
760 mm) and the Dale-Gladstone law, we have from the formula and the ideal gas law, in 
terms of the temperature tin degrees Centigrade and the mercury level of the barometer B in 
millimetres at the observer, 

8z=40.6.*273.0.00O2927*206264 8B_ tanzo 
273+t 

=21 .7*
27

tanzo 	 (1.54) 

At standard conditions we have 

oz=60 	 (1.55) 

This approximation is very close at small zenithal distances, because near the Zenith 
the curvature of the atmosphere has less effect on the path of the ray, as there is less total 
change in the direction of r; but it becomes useless at altitude below 30 ° . 

The approximation obtained by retaining the two terms of equation 1.48 is of theform 

öz=Atanzo+Btan 3 zo 
	 (1.56) 

The constants A and B may be expressed in terms of physical constants, or separately 
determined from the observation. We can write equation 1.55 as, 

Sz=(po-1 )( 1—Hotan zo—(po—1 )[Ho-112(po-1)]tan 3 zo 	(1.57) 

In which H0 is the ratio of the height of the homogeneous atmosphere to the radius of the 
Earth. This expression is a common element of all expressions for refraction, and is the 
fundamental refraction formula for many practical purposes, but it is not sufficiently precise 
for astronomical purposes at very low altitudes. H0 and p - 1 are given by dreadful empirical 
formulae that include, the air index, the atmospheric pressure, the air absolute temperature, 
the wavelength of the light involved, the barometer's mercury height and temperature, the 
hygromecry percentage, the partial pressure of the water vapor at the given temperature, the 
latitude of the station, the altitude of the station and the curvature of the radius of the Earth at 
the place of the observation [40]. 

With H0 = (7.990.105cm)/(6.3709.10 8  cm) and .to. 1 = 0.0002927, we have 

= 60 .29tanzo-0 .06688tanzo 	 (1.58) 

The model of atmospheric refraction chosen is the model of Laplace. It is deduced 
from the equation 1.48 by retaining its first three terms: 

8z=(po-1 )(1—Ho)tan zo—(po-1 )[Ho-1/2(po-1 )]tan 	 1o) —Ho) 2 tan 5 zo 	(1.59) 
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With 	 YO
-1 = (-1) 273.16 P 5510 273.16 (1.60) 

760 T 

	

	 T  

16.288 0.136 
And 	 10 '(ff—l)= 2876.04+ 	2 + 	4 	 (1.61) 

P=H(1_26.4*10 S cos2(p_19.6*10 8h_16.3*10 5o 	(1.62) 

P the reduced atmospheric pressure (mm col.Hg). 
T the absolute temperature of the air. 
P the partial pressure of the water vapor. 
X the wavelength in .tm. 
H the read barometric height 
q the latitude of the station 
h the altitude of the station (m) 
B the barometer temperature (°C) 

With the error on H0, which induces a very small error in R, we can take: 

Ho=4.5054*10T 
	

(1.63) 

For a recorded value f from the hygrometer, in humidity percentage, the relation 
calculates the partial pressure of the water vapor for the temperature t of the air is given by, 

With 

(1.64) 

F(t)=4.58lExp(0.07292N0.000284t 
2) 	 (1.65) 

Equation 1.65 is an interpolation formula of the saturated vapor pressure of the water. 
It is given according to the data published by "Bureau des longitudes" [14]. Replacing Ho 
and po—lby their expressions in Laplace formula, we obtain the atmospheric refraction that 

affects the zenitha! distance. 

1.9 Topocentric and Geocentric solar radius 

There is a differnce between the radius of the Sun seen from the observer's 
location(topocentric) and the center of the Earth (geocentric). Let 0 be the point of 
observation, C the center of the Earth and R s  the Sun radius seen by the angles s and s', see 

Figure I-li, in this case we can write, 

R5 = rsin 5 = r' sin s 	 (1.66) 

pAI 



Hence 
s' rs/r' or 

s'—s=(r— r')s/r' 	 (1.67) 

As 
r E P + PCOSZg 	 (1.68) 

then 
S' S E tTh PSCOSZ 9 	 (1.69) 

SE 5' + tUo PS COSZg 	 (1.70) 

r being measured in Astronomical Units, the geocentric radius is given by 

= r sin SE r( S - Wo pscoszg) 	 (1.71): 

fl 

Figure I-il. Geocentric Sun radius vs Topocentric one. 

1.10 Data reduction procedure of solar radius 

It was shown from section 1.6.2 that the vertical solar semi-diameter is given by 
equation 1.24., where z 1  and z2 are the zenithal distances computed at the successive crossing 
times t1 and t2. The resolution of the spherical triangle at the time of observation yields the 
geocentric zenithal distance of the Sun center z. We have from equation 1.2, replacing z by f 
,that: 

cos = sin (p sin S + cos p  cos S cos (H) 	 (1.72) 

The topocentric zenithal distance after the necessary corrections is written as: 

Z= Z(ST)= arccos{sin p sin S +cos Scos p cos (ST - ( X)} + 

p&o sin z + R MC ± Pj 	 (1.73) 
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where ST is the sidereal time at the moment of observation, p  is the latitude of the instrument, 

a and S are the equatorial coordinates of the Sun computed at the time of observation, p&o 

sin zt is the altitude parallax correction where p is the geocentric radius of the instrument, 

tuo is the equatorial horizontal parallax, z' is the geocentric zenithal distance at the time of 

observation, and R the correction due to the atmospheric refraction. AF is the correction to 

the focal plane position, AC is a correcting term dealing with the curvature of the declination 
and altitude parallels. The P stands for the personal error in the visual case, since each 

observer has a personal way of appreciating the contact of both images and will consequently 
choose a time of crossing either earlier or later than the accurate one. This error has an 

opposite sign for both edges and of course it disappears in the case of CCD acquisitions. 

From Figure I-li the angles' that gives the topocentric angular semi-diameter is equal 

to 1/2(Izi - z21). It must be decreased by the amount (pwo s cos z*)  to give the angular 

geocentric semi-diameter. It remains to multiply that last one by the heliocentric radius vector 

r of the Earth measured in AU to get the value of the solar radius at one AU, 

Rs { 4 Iz I _z? Ptuosc0sz*}1+1)i 	 (1.74) 

The following relation gives the local sidereal time ST at the moment of observation, 

ST = i?+TcL+Ncos (1.75) 

Where TTJ is the observed universal instant deduced from the Coordinated Universal Time 
(UTC) instant related to the International Atomic Time (TAT) (see Annex 3), K is the ratio 

between the universal time and the sidereal time (K=0.997269566, see Annex 3). L is the 

longitude of the station, N is the nutation of longitude, e is the ecliptic obliquity, and T. is the 
Greenwich Mean Sidereal Time (GMST). In conformity with IAU conventions for the motion 
of the Earth's equator and equinox, GMSTis linked directly to UT1 through the following 

equation 

GMST(in seconds at UTI=0)= 24110.54841 + 8640184.812866 * T+0.093104 * 

T A  2 - 0.0000062 * T'3 (1-76) 

Where T is in Julian centuries from 2000 Jan 1 at 12h UT1 

T=d/36525 
	

(1.77) 

Where d = 3D -2451545.0. 

The observations using the solar astrolabe are dated in IXFC. They are transferred to 

UTO as follow (see Annex 3), 

UT1 = UTO - [sink+f .cosiao]tan4o 	 (1.78) 
15 

Rearranging we find that 

UTO - UTC = UT1 - UTC + [sincosAo}anoo 	 (1.79) 
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The difference UTI - UTC, x and y are given by the International Earth Rotation Service 

(IERS) at the time of observation. Qo 
and Ao are the geographic coordinates of the station, 

which can'be corrected and known exactly using the following equatiOflS( see Annex 3), 

(
P =(Po + x cosXo— y sinAo 

	 (1.80) 

2=Xo+(xsinAo+Yc0s?o)th1P0 	
(1.81) 

Knowing UT1, we can calculate Terrestrial Time (TI') used to calculate the Sun 
ephemeredes (see Annex 3). It is defined as, 

fl = UTC + (number of leap seconds) + 32.184 	(1.82) 

The number of leap seconds is given by the Bulletin A of the hERS. The calculation of fl 
gives access to the Sun ephemeredes which provide a, 8, r, s and w . Having the 
ephemere des , we can calculate the topocentric zenithal distance, and finally using equation 

corrections. The following 
1.74 to! calculate the semi-diameter after applying the necessary  
steps summarise the method of reduction, 

Step 1: - Reading of UTC 1 and UTC2, the true instants of Sun transit. 
- Reading of the station geographic coordinates and the date of observation. 
- Reading of the parameters of atmospheric conditions at the moment of 

observation. These parameters are: the atmospheric pressure, the air temperature, 

the barometer temperature and the humidity. 
- Reading of the instantaneous coordinates of the celestial pole, UT1-UTC, and TAI- 

UTC from the IERS bulletins that correspond to the moment of observation. 

Step 2: - Computation of the vector radius to the station according to the chosen ellipsoidal 

model for the Earth. 
- Correction of the station latitude for station error and altitude effect. 
- Correction of the station longitude and latitude for polar motion. 

Step 3: - Computation of the Julian date and the Greenwich Mean Sidereal Time (GMST). 

Step 4: - Computation of UTO and the ephemeredes time TDT or fl (Terrestrial 

DynamicTime). 

Step 5: - Computation of the Sidereal Time (ST). 

Step 6: - Computation of the Sun ephemeredes at the true time of observation. 

Step 7: - Computation of the geocentric zenithal distance. 
- Computation of the topocentric zenithal distance (correction for the geocentric 

Parallax). 

Step 8: - Correction of the topocentric zenithal distance for the atmospheric refraction. 
- Computation of the topocentric diameter. 
- Computation of the geocentric diameter. 
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The precision of the above procedure depends mainly on the acuracy of the two 
measured instants. UTC1 and UTC2. A small error on them will affect the complete 
procedure. So, it is imprtant to have a precise and stable reference system. 
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CHAPTER II THE SOLAR ASTROLABE AT CALERN OBSRVATORY 

This chapter presents a detailed description of the solar astrolabe and the different modifications \indergone 
duriñjthè lãtyeath:Thè ne* gene ration oflo1afMthilãhàftpSehtéd along with th6thethOdolbgyOf Sun 
observation and the pnnciple of measurement Finally, the accuracy of Sun diameter measurement with the 
astmlabewiljbec1iscussed 

- 

11.1 History of the astrolabe 
The astrolabe is believed to have been a Greek instrument invented by Hipparchus of 

Biythynia (150 B.C.). The astrolabe has played an important part in the history of civilization. 
Its earliest known description due to John Philoponus from Alexandria dating from the VI 
century. Aiexandrian knowledge seems to migrate through the Christian abbeys of Syria after 
the Arab conquest of Egypt. With the Abbasids, Islamic science became acquainted with Greek 
sources as well as Indian and Persian, and through them those of the ancient Babylonians and 
Egyptians. Following the Muslim conquest of Spain the Astrolabe entered Europe. One of the 
medieval sources was the XIth century manuscript "Mensura Astrolabi" by Hernianus 
Contractus. It describes the use and design of the astrolabe. This manuscript was brought to 
the knowledge of his fellow abbots of Reims, Chartes, Liege and Reichman and Gerbert 
dAurillac who studied the mathematics in the school of Cordoba, before becoming Pope 
Silvester II. Since the XlTllth century, the astrolabe started.spreading throughout Europe from 
the Iberian Peninsula and Sicily into the great university cities of Europe. The astrolabe has 
remained one of the most important tools of astronomers until the end of the XVTHth century. 
The A.strolabe is a multiple—purpose istronomical instrument. It can be used to solve numerous 
problems involving the position of celestial objects, simple surveying, and time determination. 
There are three distinct types of astrolabes: planispheric, universal and mariners [21]. 

In its most usual form, the astrolabe consists of an evenly balanced circle or disk of 
metal. It is hung by a ring and provided with a rotating alidade or diametrical rule with sights. 
It turns within a circle of degrees for measuring the altitudes of the Sun or stars. On its face it 
displays a circular map of the stars, the retie. It is cut from a sheet of metal with pointers to 
show the position of the brighter stars relative to one another, and to the zodiacal circle 
showing the Sun's position for every day of the year. Lying below the retie are one or more 
interchangeable plates engraved with circles of altitude and azimuth. To obtain the time, the 
user first measured the altitude of the Sun, then having noted the Sun's position for the day in 
the zodiacal circle, he rotates the retie until the Sun's position matches with the circle on the 
plate that corresponds to the observed altitude. A line drawn through this point of coincidence 
and the centre of the instrument, given by the edge of the alidade, to a marginal circle of hours 
showed the time. All the stars positions can then be referenced to the local celestial coordinates 
engraved on the tyrant that stays below the retie. Among the accessories often found in the 
back plates of astrolabes were shadow scales for simple surveying and finding heights or 
distances, a calendar scale showing the Sun's position in the zodiac for every day of the year 
and a diagram to convert equal to unequal hours and vice-versa. The measurement of altitude 
could be measured with an accuracy of about I degree. The first serious use of this instrument 
was in October of 1092. It was used to determine the time of a lunar eclipse [21]. 
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The astrolabe was the most widely used astronomical instrument of the Middle Ages. It 
was also perhaps the astronomical instrument used over the longest period of time. The 
astrolabe served at least three purposes: (i) as observing device, it could be employed to find 
altitudes of celestial objects above the horizon, to determine the heights of towers or 
mountains, or for surveying in general; (ii) as computing devices, it could be used to find the 
directions to a specific region;(iii) as time keeping device, it could be used to tell time by day 
or by night.. Figure (I-I) shows some ancient astrolabes: 

ilahermal Astro/abe (ca. 1500). Small Astrolabe (Ca. 1500). 

Al-Sn rraf Astrolabe(1328). 

Elgun I-I Some tmcienl astrolabes. 

From the XIX rh - Century when Gauss and Delambre conceived the equal heights 
method, the astronomical instruments evolution become spectacular. Toward 1880 Chandler 
had the idea of an instrument that he called Almucantar that used the method of Gauss-
Delambre. At nearly the same time, Beck designed the Nadir instrument and imagined the 
principle of the prism astrolabe. Between 1900 and 1905, Claude and Driencourt designed the 
prototype of the prism astrolabe, which was studied then and modified by several astronomers 
such as: NusI and Money in 1901, Reevs in 1921, Backer in 1930 and Svoboda in 1935. In 
1921, Baillard imagined also an astrolabe of a prism used to register the solar passages on a 
photographic beach [14]. 
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11.2 Prism astrolabe and its principle 

The prism astrolabe in use since 1900 under its simple shape. Figure (1-2), which is 
supposed to be drawn on the vertical of a star, recalls its principle. 

Figure I-2.Principie of the prism as: rolabe. 

An equilateral glass prism P is placed in front of a horizontal telescope of objective L. 
Its rear face is perpendicular to the optical axis. A mercury bath M is placed in front of the 
incident rays. If a star is at a zenithal distance of 300  (defined by the prism), two images are 
formed. One is a direct image, and the other is a reflected one by the mercury bath. The two 
star images move toward each other until they become tangent in the focal plane of the 
astrolabe telescope. Then they move away from each other beyond this position. If the zenithal 
distance is different from 30° the two images are distinct [14]. The observer estimates the 
instant where the two images are tangent. The necessary condition that an object crosses the 
height circle defined by the instrument is, 

(11.1) 

Where 4) represents the latitude of the observation place, z the zenithal distance and S the 
declination of the observed star [22]. 

11.3 Danjon astrolabe 

The old astrolabes suffer of the same defect due to their optics. Several studies are 
dedicated to solve this problem. Some of them are those of Conderc, Dungeon, Chandon and 
Gougenhein. Finally, the astronomer Danjon and from the prism astrolabe of Claude and 
Driencourt has imagined since 1938 an instrument endowed of a "biréfringent" Wollaston. 
Prism. This prism constitutes an impersonal micrometer. It has eliminated the optical defects 
and minimised the personal errors [14,22]. This astrolabe became one of the best instruments 
for the positional astronomy since 1953 [23,24]. It permits in a very precise way to measure 
the instant of passage of a star under the effect of the diurnal rotation of the Earth through a 
height circle defined by the characteristics of the prism. Since its operation, the Danjon 
astrolabe has been subjected to several transformations in order to be adapted to the 
observations of objects other than stars. The possibility to observe objects of the solar system 
and stars makes the astrolabe a good instrument for dynamic reference adjustment. 

A.Danjon made of the astrolabe a first-class instrument. It has eliminated many 
systematic errors that affect the time measurement. Figure 11-3 shows the prototype of the new 
impersonal astrolabe of A.Danjon and its principle components [14]. It is achieved by 
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J.Texereau in 1951 at the observatory of Paris and entered in regular service in 1953. The 
obtained results (a standard deviation of 0.009 sec on time measurement and 0 ' .10 on latitude 
measurement) proved the quality of the instrument. Following the numerous demands of 
astrolabes, the Optical society and Precision of Levallois (OPL) was in charge of 
manufacturing a perfect set of several instruments. Observations with the first OPL astrolabe 
began at the observatory of Paris in 1956, and B.Guinot announced excellent results after one 
year and a half of observations. He has reached a standard deviation of 0.0043 sec in time and 

0" .050 in latitude [24]. 

The instrument consists of mobile horizontal glasses in azimuth. They are preceded 
by an equilateral glass prism, whose back face is perpendicular to the optical axis. Ahead and 
below the prism is the mercury bath. The prism and the mercury bath are protected from the 
surrounding turbulence by a cover that has an open-type screen on its higher part to let the 
passage of the incident rays. For a star passing through a zenithal distance of 30°, one part of 
the incident rays penetrates through the glasses by internal reflection on the upper face of the 
glass prism. The other one penetrates after a first reflection on the mercury bath and a second 
internal reflection on the other face of the prism. The two resulting images are formed in the 
field of the glasses, one going down while the other going up. 

Figure 11-3. OPL. type of Danjon Astrolabe. 
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11.4 Solar astrolabe 

F.Laclare achieved in 1974 at the observatory of Calern (Nice, France), the first 
observations of the Sun with a Danjon astrolabe. In order to protect the original glass prism, the 
brightness of the Sun is reduced to a value similar to that of the moon with the help of a solar 
filter. This filter is constituted with a shield in silica covered by a dielectric of multiple layered 
coating that has an optical density around 5.5. 

At first, F.Laclare has used the above original equilateral prism that allowed the 
observation for a zenithal distance of 300.  Installed at an altitude of 44°N, the instrument 
endowed by this prism at the beginning, had a major handicap. It permitted the observation of 
the Sun only for declinations superior to 14°. That is less than three months per year. In 
addition, only one complete passage of the Sun can be observed during a day. 

The advancement of the technology has permitted the use of other materials to design 
prisms. Several ceramic prisms working in reflection enriched the astrolabe of Calern 
observatory, and the choice of using different zenithal distances became possible. Currently, 
the solar astrolabe of Calern uses II prisms made of zerodur material that maintains a very 
high angular stability during a long time. These prisms permit the observation of 22 passages 
of the Sun by height circles defined by the following zenithal distances 300,  34°, 37.5°., 41.5 0 

, 

45°, 49 0 , 52.5 0 , 56.5°, 60°, 65°, 70°. Figure 11-4 gives the synoptical schema of the solar 
astrolabe as it was operating in CERGA since 1978. 

Figure 11-4. The solar as: rolabe used for solar observatory at Calern observatory 
i-equilateral prism 2- 135 0  reflector prism 3- 1500  reflector prism 4- solarfilte. 

5 removable protector 6- mercury bath 7- platinum 8-tube of incident rays. 
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11.4.1 Prisms 

11.4.1.1 Equilateral classical prism 

This kind of prism worked in transmission and was used for a zenithal distance of 300. 
It has been studied for a long time by various authors [22,25]. In the case of the Sun 
observation, the entry face of this prism has been treated by a coating of multiple dielectric 
layers in order to permit the observation of stars and the Sun. The fact that the dilatation 
coefficient of the borosilicate with which the prism was made is not negligible, it induced a 
variation of zenithal distance. This disadvantage of its thermal instability was the object of 
several studies [14]. 

11.4.1.2 Zerodur prisms 

These prisms has been proposed since 1967 by D.V.Thomas. They operate in reflection 
and assure higher stability of the instrumental zenithal distance due to their dilatation 
coefficients which are practically zero[14]. The shape of these prisms and their optical 
installation showed the best linkage between the angle of the prism and the zenithal distance of 
observation. Presently, the astrolabe of Calern is provided with 11 prisms of this type. 

[i 

Figure I/-S Zerodur reflector prism. 

11.4.1.3 Variable angle reflector prism 

In 1986 F.Laclare imagined this type of prism, which is initially destined to a new CCD 
astrolabe. This prism works by a system of coil compensation and can be adapted easily to 
automation. While using this prism, measurement showed a good stability of its angle between 
the passage of the two Sun edges [14]. This characteristic made it recommended in the case of 
solar diameter measurement where the zenithal distance of observation need not to be known, 
but must be stable [27]. 

Made with zerodur, the two reflecting faces of this prism can revolve around an axis as 
shown in Figure 11-6. The support of this prism is of the same type as the one of the fixed angle 
prisms. It assures a good stability and a simple regulating procedure. Several models have been 
tested and the problem of coils remains the most critical one. The mercury bath must advance 

NJ 



back and forth according to the angle of the prism. In addition, it must have a big enough 
surface to cover the observation bench of zenjthal distances. The visual observations since 
1986 and the CCD observations since 1989 have shown the performance of this prism. 

3 

(
.2  3 

6 	- 	r- 4 

Figure 11-6 . Prism of variable angle. 
1-reflecting blade 2-pushing jack 3- spring of tension 4-support 5- rotation axis 6-mercury bath. 

11.4.2 Solar filters 

The use of an optical instrument to observe the Sun, requires the attenuation of the 
incident rays without changing their spectrum, this is the role of the solar filter (neutral 
density filter). In the case of the Danjon astrolabe, the prism that defines the zenithal distance 
of the observation and the micrometer of Wollaston are the main optical pieces that mustbe 
protected from Sun's rays. There are two possible locations for the solar filter: either in front of 
the objective of the telescope or in front of the prism. 

F 	 \ 	!\ 

'IS 	p,lur. 	 •. 

°H 'L+  

8JMft.WM  

C \_____ 
Is nvt.s. 

Figure 11-7. Solar filters. 
a- Setting in front of the prism b- setting in front of the objective c- setting in front of the prism of variable angle. 



The solar filters designed with adopted silica are made of parallel planes whose outside 
faces carry Chrome - Nickel coatings of 5.5 optical density. Such planes must be perfectly 
parallel . Otherwise, they would change the zenithal distance of observation if the filter is 
positioned in front of the prism. Without influence on the measurement of solar diameter, this 
defect makes more uncertain the measurement of Sun position . The forward installation of the 
prism is so difficult to achieve technically because of the large dimension of the filter. 
Moreover, it must be perpendicular to the two images, which are in certain cases relatively 
distant from each other. On the other hand, if one places the filter rightly forward the objective, 
the defect of non parallelism of its faces does not affect the measurement anymore. At Calern 
Observatory, F.Laclare opted for a thick rectangular solar filter in silica placed in front of the 
prism [14,22,27]. 

11.4.3 Mercury bath 

The mirror of mercury constitutes with the prism the instrumental reference of the 
astrolabe. If the prism defines the zenithal distance of observation, the mercury bath 
materializes the horizontal plane. 

11.5 DORaySol instrument 

Figure H-8 represents the diagram of the new generation of solar astrolabes named 
DORaySol (Definition et Observation du Rayon Solaire). The principle of Sun diameter 
measurement is the same as that of the solar astrolabe. In this instrument, the optical system of 
the solar astrolabe (refracting telescope) is replaced by a reflecting telescope. The acquisition is 
done via a CCD camera and a system of acquisition. The prism used is a prism of variable 
angle that permits the observation through a wide range of zenithal distances. 

The rotating shutter permits the acquisition of an image each 250 ms, either direct or 
reflected on the mercury bath (only one image of the two Sun images appears at a given 
instant in the field of the objective, the rotating shutter masks the other). F.Laclare and 
G.Merlin designed the rotating shutter in 1991. It is composed of a half disc in rotation around 
the optical axis and a photoelectric cell that detects the position of the rotating sector and 
launches the acquisition process each 250 ms. Figure 11-9 presents the possible reflecting 
telescope configurations. The DORayS0I instrument is equipped with a reflecting telescope of 
a Cassegrain focus configuration. 

11.6 Observational methodology of the solar radius 

The basic principle of the astrolabe is shown in Figure 11-10. An equilateral glass 
prism with one of its faces vertical is in front of a horizontal telescope. Two star images are 
formed from light passing through the prism. Direct rays internally reflected by its lower 
face produce one, and rays reflected by the horizontal mercury surface and then internally by 
the upper face produce the other. These two images will coincide when the zenithal distance 
of the star is equal to that defined by the prism; a zenithal distance of 30° in Figure 11-10 is 
given as an example. A star can be observed with the astrolabe if it crosses the defined 
parallel (Almucantar) some time during its diurnal motion. Each star will make two transits 
through the parallel of latitude, one east and one west the observer's meridian. The time 
transition of the observed star through the defined height circle is automatically recorded. 
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(a) Prime focus. (b) Newtonian focus, (c) Casseg rain focus, (4) Coudé focus. 

41 



In the Danjon astrolabe, through the ocular we see a reticule, four horizontal threads 
and four verticals. These threads represent a practical reference system during observation. 
Figure Il-li shows the typical aspect of observation in the case of stars. The sense of 
movement is given by the arrows direction. When the images are on one parallel of the 
horizontal threads, the observer launches the micrometer and maintains the two images on this 
parallel with the help of a differential corrector. A chronograph records the instants of 
electrical contacts. The mean instant calculated after twenty contacts represents the transition 
instant [14]. 

Figure/I-JO. Basic principle of an astrolabe. 

Figure/i-il. Observation of a star transit. 

I Horizontal reticule wire 2 vertical reticule wire 3 Direct image 4 reflected image. 

42 



In the case of solar observation, the observed image is not point-like as in the case of 
stars. Therefore, the entire image cannot be observed and the centre of the Sun disc in any 
case is not accessible. The observation consists then to record the transition instant by 
Almucantar of particular points of the edge of the solar disc, which are chosen to be 
diametrically symmetric. The transit instant of the Sun centre is the same as its edge. When 
the solar edge passes through a zenithal distance z0 defined by the instrument, that of the 
centre passes through a zenithal distance of zo ± d (d is the apparent semi-diameter of the Sun) 
at the same instant. 

The solar diameter is obtained from the transit instants of the solar borders through 
Almucantar, which is fixed automatically by means of the mercury minor and the reflecting 
prism. The astrolabe gives two images of the same part of the solar limb, one direct and the 
other reflected by the mercury surface. Each of them moves in the astrolabe focal plane due to 
the diurnal motion of the Earth (Figure 11.12). The instant when these two images become 
adjacent corresponds to the instant when the Sun's edge crosses the parallel of atitude. The 
precision of the results depends mainly on the stability of the Almucantar and the time 
reference. 

Figure 11-12. Aspects of direct and reflected Sun edge images in the plane of the astrolabe. 

11.7 Visual observations 

In the case of visual observation, the tangency principle of Sun borders is the same as 
that of stars, if we assimilate the tangency points of the two Sun images to that of the two star 
images. Figure 11.13 shows the solar astrolabe as used for the visual observation at Calern 
observatory [13]. 

The solar astrolabe uses as reference a parallel of altitude, which is defined by the 
angle above the horizon. A mercury surface provides a horizontal mirror. The constant angle is 
defined by a zerodur reflector prism (a set of 11 in the OCA" Observatoire de Ia Cote d'Azur" 
in France, two in OAM " Observatorio Abrahao de Moraes" in Brazil, and two for the 
astrolabe of Santiago in Chile), instead of the equilateral prism. After the protecting filter, the 
image is split by the reflector prism and mercury minor to two images. After that they are 
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focused by a refracting telescope (whose focal length is 3.50 m). A Wollaston prism gives the 
possibility to maintain the focusing in the case of a zenithal distance variation. A micrometer 
screw in translation compensates for the vertical shift of both images in order to extend the 
apparent duration of tangency. As for stars, the tangency of the two images of the observed 
Sun edges must be maintained parallel to the horizontal threads of the reticule. 
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Figure 11-13. Solar as: rolabe for visual observations. 

Atmospheric blurring of images is constantly fluctuating, but the human eye and the 
brain system are able to select and memorize the sharper images, provided enough time is 
available. Therefore, during the Sun transit, the observer keeps both images in tangential 
contact. In this instant the Sun's edge crosses the defined parallel of altitude (Almucantar). In 
practice, as the two images enter in the field of the instrument, and before the instant of their 
tangency, the observer has a few seconds to align the two images in relation to the system 
defined by the reticule of the ocular. The three necessary fine adjustments for a correct 
symmetry of the two images are presented in Figure 11-14 [14]. 

Figure IL 14. The three fine adjustments for the solar observation. 
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A small rotation in azimuth, to displace the whole picture in relation to the vertical 

axis. 
A tilt of the telescope in the vertical plane to displace the whole picture in relation to 

the horizontal axis. 
Inclining the edge of the prism to move the two images symmetrically in relation to 

the horizontal axis. 

In solar observations, a thermal variations in the interior of the astrolabe are created, 
inducing a displacement of the focal plane, and thus a variation of the instrumental zenithal 
distance. So, a stable focal point length is necessary for the quality of the measurements. The 
control of the variation of the focal distance is carried out by a dated autocollimation before 
and after each measurement. By setting a mirror in front of the objective and doing two 
autocollimations on the system of cross-wires, this gives a change in micrometer's units. Then 

an interpolation gives the value of the focal length at the time of contact. The average 
variation of the focal length during the few minutes between the crossings of both solar edges 

induces an error on the zenithal distance never bigger than 0.05 arcsecond [13]. 

The solar astrolabe has shown its quality in a series of visual observations done in 

France, Brazil, Turkey, Chili and Spain. The long series of visual observation done by 
F.Laclare during more than twenty years is the reference basis for the other series. The visual 
observations done by many observers can not be analyzed in the same way, since each 
observer has its manner to observe the Sun and his way to estimate the instant of tangency. In 

addition, each observer's eye has his own spectral response. So, it happens that two observers 

observe two different diameters. 

The principal problem with visual observations is related to the definition of the 

observed edge. It is very difficult to respond to many questions such as: does the way of 
observation of the observer remain constant with time? Which solar edge do is the human eye 
sensitive to? and in addition, do we always observe the same point of the solar edge. Each bad 

interpretation of the solar edge or the tangency of the two images results in a false transition 

instant and consequently a bad result [28]. 

In spite of the impersonal micrometer devised by Danjon, the personal biases to the 
observations remain one of the main unknowns. The legitimacy of visual observations for 
measuring the solar diameter has been disputed. The personal equation is extremely difficult 
to estimate. Therefore, the absolute value of the solar diameter obtained from visual 
observations can be strongly affected by personal biases. Nevertheless, for solar physics the 
eventual variations of the Sun semi-diameter are far more interesting than its actual value 

[28,29]. 

11.8 CCD observations 

Since 1989, the use of a CCD camera has removed all personal bias and provided an 

improved definition of the observed solar limb. The measurement principle remains the same 
as that of visual observation, with some particularities. The ocular is replaced by a CCD 
camera, which transmits the acquired images to a video monitor and to a system of 
acquisition. In order to record the tangency instant of the two images (incident and reflected), 
a set of direct and reflected solar images is recorded and saved alternatively. A rotating 
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shutter in front of the objective eliminates one of the two images at a given a time. The shutter 
takes 500 ms to make one turn, so, each image has 250 ms to be acquired and analyzed. 

Each solar image gives the distribution of the apparent solar intensity I(x,y) in the 
CCD frame. The CCD camera lines and columns define this frame. For each image the solar 
edge is detected by determining the image line inflection point. The position of these points is 

adjusted by an parabolic arc (Figure 11-15). The subsequent analysis is done in order to obtain 
the successive positions of the extremity of the vertical solar diameter in the same CCD 
frame. The sets of these positions, one for each successive direct and reflected image obtained 

during the limb transit, show the trajectories of the extremity of the vertical solar radius 
(Figure 11-16). These coordinates are functions of times xd(t) and yd(t) (direct images), and 

xr(t) and y0 (reflected images) relative to the CCD frame. The instant of crossing of 

Almucantar is obtained when the two coordinates yd(t) of the direct image and yr(t) of the 

reflected image are equal. 
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Figure 11-15. Trajectories of the direct and reflected images on the CCD frame. 

Figure 11-16. The trajectories of the extremity of the vertical solar radius. 

In the case of DORaySol, the necessary adjustments before each measurement to get 

symmetrical images are done by the bias of step-by-step motors; see Figure 11-17 [14]. 
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Figure Ii-!?. The DORaySol instrument used for CCD observations in OCA. 
Mi-Azimuth Motor 
M2: Filter Motor 
Mj: Prism Motor 

M4: Prism Edge Inclination Motor 
A15: Optical Axis Tilt Motor. 

When the best acquisition method and the best reduction procedure are used, the 
homogeneity of CCD measurements permits the expectation of a better precision than that of 
visual measurements. With the information quantity, the CCD observations gives us the 
opportunity to test several processing methods: cleaning of the images, deconvolution and 
specially the definition of the solar edge. Once the best processing method is chosen, it will be 
applied to the archived images. In addition, the CCD observations give access to certain 
parameters that help evaluate the atmospheric turbulence. 

11.9 Accuracy of observations 

The precision of the results depends on the stability of the instrumental zenithal 
distance and on the stability of the time reference clock, in addition to the precise knowledge 
of the atmospheric refraction variation during the short time interval of observation( -3 
minutes). Another source of accidental or systematic effects are the variations of the 
instrumental zenithal distance induced by minute variations of the solar filter residual angle. 
These variations may be produced by temperature gradients inside the filter material. 
However, since the solar filter is made of a transparent type of CERVIT, such effects must be 
considered as negligible [6]. 

The atmospheric turbulence, refraction, Earth's motions and the impossibility of 
viewing the entire sky with a single instrument, are the limitation of ground-based astrometry. 
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The atmospheric refraction is generally computed for a given wavelength using the values of 
temperature, pressure, water vapor pressure at the instant of observation, using a standard 
model. These models are not perfect and there existence of systematic and random anomalies 
[20]. The random errors, which are time dependent, may amount to few hundredths of an 
arcsecond [20]. Even if unknown refraction parameters are determined at the same time as 
other observation reduction parameters, errors still exist. It is not possible to compute the 
modeled refraction more better than ± 0".02 tan z [20). So, whatever the detector, and before 
the space techniques could possibly take over, the Earth's atmosphere is a major source of error 
in the measurement. 



CHAPTER ifi SUN IMAGES PROCESSING 

The introduction of the new generation ofsolar astrolabes based on CCD observations the processing method 
of extracting the Sun edge from the acquired images, is the fundamental step in Sun semi-diameter 
measurement Sun images present sunspots that must be localized and eliminated before edge detection 
These non-stationary defects must be eliminatedfrom the images without reducing the image resolution, since 
the principle of Sun. semi4iameter measurement .isbased on'the point of tangencyof the Sun to the height 
circle defined by the astrolabe This chapter presents the wavelet transform a processing method that is 
suitable for this type of non-stationary signaLs The algorithmttoimplement.the prUcessing method and phe 
developed techniques to.extract theSunedgi are kiven. Flhálfjc Ae different steps töextractthetwotransit 
instants necessary to calculate the Sun diameter and the corrections to be taken into consideration are 
pre cented 

ffl. 1 Fourier Transform 

The most popular transformation is the Fourier Transform that can also be used for 
non-stationary signals if we are only interested in what spectral components exists but not 
where they occur in the signal. However, if we want to know what spectral component occur 
and at what time (interval), then the Fourier transform is not the right transform to use. 

Fourier Transform decomposes a signal to complex exponential ftinctions of 
frequencies. The way it is done is defined by the following two equations [29]: 

X(f)=Jx(I)e 	di 	 (Till) 

r(I)=f X(J) 
2jjØ

.e 	df  

I stands for time or space, f for frequency, r denotes the signal at hand and X denotes the 
signal in frequency domain. The signal x(t), is multiplied by an exponential term, at some 
certain frequency 7", and then integrated over all times. 

The information provided by the integral corresponds to all time instances, since the 
integration is from minus infinity to plus infinity over time. It follows that no matter where in 
time the component frequency of '7' appears, it will affect the result of the integration 
equally as well. This is why the Fourier Transform is not suitable if the signal has time 
varying frequency. The Fourier Transform tells whether a certain frequency component exists 
or not. This information is independent of where in time this component appears. So, there is 
no information of frequency localization. To overcome this disadvantage of the FT and 
introducing the time business into the frequency plot, the Short Term Fourier Transform 
(STFT) was introduced. 
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I112 Short Term Fourier Transform 

The Short Term Fourier Transform comes from the approach of assuming that some 
portion of a non-stationary signal is stationary. In STFT, the signal is divided into small 
enough segments, where these latter can be assumed stationary. For this purpose, a window 
function "w" is chosen. The width of this window must be equal to the segment of the signal 
where its stationarity is valid. This window function is first located at the beginning of the 
signal, and then shifted to different locations along the processed signal until its end. At each 
location, the FT is taken as taking the FT of any signal. 

The STFT is defined by the following equation: 

STFTx "')(t,J)=Jfx(1).w 	.e J27ftid1 	 (111.3) 

Where x(t) is the signal itself, w(t) is the window function, and * is the complex conjugate. As 
it can be seen, the STFT of the signal is nothing but the FT of the signal multiplied by a 
window function. The STFT principle is shown in Figure Ill-I. 
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Figure III-i .Principle of SThT 

The problem with the STFT has something to do with the width of the window 
function used. In the case of FT there is no resolution problem in the frequency domain, since 
the existing frequencies are exactly known. Similarly there is no time resolution problem in 
the time domain, since we know the value of the signal at every instant of time. Conversely, 
the time resolution in the FT, and the freqoency resolution in the time domain are zero. What 
gives the perfect frequency resolution in the FT is the fact that the window used in the FT 
lasts at all times from minus infinity to plus infinity. Now, in STFT, the window is of finite 
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length. Thus, it covers only a portion of the signal that causes the frequency resolution to get 
poorer. If a window of infinite length is used, we get the FT that gives perfect frequency 
resolution but no time information. Furthermore, to obtain the stationarity, we must have a 
short enough window in which the signal is stationary. The narrower we make the window, 
the better the time resolution is and the best the assumption of stationarity would be, but 
weaker the frequency resolution would become. 

The effect of the window length on the STFT is illustrated in Figure 111-2(a). The 
window used is a Gaussian fUnction of the form: 

(-at'/2) 
wQ)=e 	 (111.4) 

Where a is the window's length and I is the time. The signal used is a non-stationary signal; 
see Figure 111-2(b). It contains four frequency components at different times. The interval 0 to 
250 ms is a simple sinusoid of 300 Hz, and the other 250 ms intervals are sinusoids of 200 
Hz, 100 Hz, and 50 Hz, respectively. 
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Figure 111-2. (a) The window functi on for different values of a. (b) The analyzed non-stationary signaL 
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Figure 111-3. Tire SiFT of the signaL Four pea/cs are located at different time interval along tire time axis corresponding to 

four dIJerent frequency components. 

Figure ffl-3(a) represents the STFT of the signal using the above-defined gaussian with an 
a equal to 0.01. We notice that we have a very good time resolution, but relatively poor 
frequency resolution. 

Figure 1111-3(b) shows the STFT of the signal with a equal to 0.001. The resolution in 
frequency increases where the resolution in time decreases. 

Figure IH-3 (c) represents the STFT of the signal with a equal to 0.0001. The peaks are not 
well separated from each other in time, unlike the previous case. However, in frequency 
domain the resolution is much better. 

Figure 111-3 (d) represents the STFT of the signal with a equal to 0.00001. The resolution 
in time is very poor or the frequency resolution is now better. 

The above example illustrates the implicit problem of the STFT. The problem is not 
resolved by choosing a window function and using it in the entire analysis, since this later is 
application dependent. The Wavelet transform (WT) solves this dilemma of resolution. 
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111.3 Wavelet Transform (WT) 

The WT was developed as an alternative to the STRI' in order to overcome some 
resolution related problems of this later. The WT works as follow: we pass the time-domain 
signal from various highpass and low pass filters that filter out either high or low frequency 
portions of the signal. This procedure is repeated and each time some portions of the signal 
correspond to some frequencies is removed from the signal. The STVI' gives a fixed resolution 
at all times, whereas WT gives variable resolution as shown in Figure 111-4. 

Frequency 

Continuous 
* * * * * * * * * * * * * * * 	 WaveletTransforrn 
* 	* 	* 	* 	* 	* 	* 
* 	 * 	 * 	 * 
* 	 * 

---------------------------------------------- > time 
 

frequency 

* * * * * * * * * * * * * * * * * 	Discrete Time 
Wavelet transform 

* 	* 	* 	* 	* 	* 	* 	* 	* 

* 	 * 	 * 	 * 	 * 
* 	 * 	 * 

----------------------------------------------- > time 
 

Figure 111-4. Variable resolution of the WT. (a) Continuous wavelet transform (b) discrete time wavelet transform. 

In Figure 111-4(a), the top row shows that at higher frequencies we have more samples 
corresponding to smaller intervals of time. So higher frequencies can be resolved well in time. 
The bottom row shows less number of points that characterize the signal. Therefore, low 
frequencies are not resolved well in time. 

Where in Figure 111-4(b), the time resolution of the signal works the same as above, but 
now, the frequency information has different resolutions at every stage too. Lower frequencies 
are better resolved in frequency whereas higher frequencies are not. 

111.3.1 Continuous Wavelet Transform (CWT) 

The fundamental idea of the wavelet analysis is to break the signal down into its 
components and to follow their evolution in the time domain. The wavelet analysis is based 
on the integral [21]: 

= ff(t)Wab(t)dt 	 (m-5) 
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The convolution between the function to be analyzed fix), and the wavelet functions 
Waji (t). The set of wavelets 	(i) forms a wavelet family where each family member is 
generated through translation and dilatation of a mother wavelet W(t): 

I 
0') = -v'( -----

t—b  

The dilatation parameter (the scale), a, changes the size of the wavelet and the 
translation parameter, b , shifts the wavelet on the time axis. Consequently all wavelets of a 
family have the same shape but their scale and localization in the time domain are different. 
Both parameters, a and b are reel numbers. 

The parameter scale in the wavelet analysis is similar to the scale used in maps. High 
scales correspond to a non-detailed global view (of the signal), and low scales correspond to a 
detailed view. Similarly, in terms of frequency, low frequencies (high scales) correspond to 
global information of a signal, whereas high frequencies (low scales) correspond to detailed 
information of a hidden pattern in the signal (that usually lasts a relatively short time). 

The normalization factor 	ensures that the wavelet of a family has the same norm 

as their mother wavelet, that is, 

fIvtfl,bHt = fIwI 2 dt  

Putting equation (IH-6) into equation (111-5) the wavelet transform finally reads which 
maps the function onto a 2 dimensional field. 

CO b 
	ff(t)vf(!-_-_E)dt  

a 

Which maps the functionfit) onto a 2 dimensional field CO b. 

The wavelet functions must obey the admissibility condition, 

(t)dt = o 	 (111-9) 

which assures the reversibility of the wavelet analysis. That means, the function fit) can be 
retrieved from COb  without loosing information . The Inverse Wavelet Transform (IDWT) in 
this case is, 
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— (t) 

	

a2 	
dadb 	 (111-10) 

where 

dw  

and iflw) is the Fourier transform of yi(t). 

111.3.2 Discrete Wavelet Transform (DWT) 

To be practically computed by using computing devices the CWT must be discretized 
As in the FT and STFT, the most intuitive way of doing this is simply sampling the time-
frequency (scale) plane. Again intuitively, sampling the plane with a uniform sampling rate 
sounds like the most natural choice. However, in the case of WT, the scale change can be 
used to reduce the sampling rate. 

At higher scales (lower frequencies), the sampling rate can be decreased according to 
Nyquist's rule. In other words, if the time-scale plane needs to be sampled with a sampling 
rate of Ni at scale a 1 , the same plane can be sampled with a sampling rate of N2, at scalea,. 

The actual relationship between Ni and N2 is, 

N, = 2 -N 	 (111.12) 
a, 

At lower frequencies the sampling rate can be decreased which will save a considerable 
amount of computation time [29]. 

The scale parameter a is discretized first on a logarithmic grid. The time parameter is 
then discretized with respect to the scale parameter. The most common value of the base of 
the logarithm is 2 because of its convenience. If 2 is chosen, only the scales 2, 4, 8, 16, 32, 
64,etc. are computed. The time axis is then discretized according to the discretization of the 
scale axis. Since the discrete scale changes by factors of 2, the sampling rate is reduced for the 
time axis by a factor of 2 at every scale. 

Expressing the above discretization procedure in mathematical terms. The scale 

discretization is a = a 0  where translation isb = ka0 b0 . In this case the continuous wavelet 

function defined by equation (111-6) becomes: 

	

V'j.k (t) = a0 -i12 
 iy(a0 t - 00 ) 	 (111.13) 

which represents the Discrete Wavelet Transform (DWT). 
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111.4 Multiresolution signal decomposition 

Although the time and frequency resolution problems are results of a physical 
phenomenon (the Heisenberg uncertainty principle) and exist regardless of the transform used, 
it is possible to analyse any signal by using an alternative approach called the Multiresolution 
Analysis (MRA). The MIRA analyses the signal at different frequencies with different 
reolutions [30]. 

Multiresolution analysis [49] results from the embedded subsets generated by the 
interpolations at different scales. A function f(x) is projected at each step j onto the subset 
V. This projection is defined by the scalar product c(k)of f(x) with the scaling function 
which is dilated and translated: 

c(k) =c f(x),2Ø(2x—k)> 	 (111-14) 

where <> denotes the scalar product. 

As 0(x) is a scaling function which has the property 

1 x 
= Ehn0(x — n) 	 (111-15) 

or 

	

0(2v) = h(v)Ø(v) 	 (111-16) 

where h(v) is the Fourier transform of the function 	h(n)S(x - n), we get 

	

h(n)e 2'°' 	 (111-17) 

Equation (111-14) permits to compute directly the set c141  (k) from c, (k). If we start from the 
set c0 (k) we compute all the sets c(k), with j>0, without directly computing any other 
scalar product: 

c 1  (k) = Y,  h(n - 2k)c 1  (ii) 	 (111-18) 

At each step, the number of scalar products is divided by 2. Step by step the signal is 
smoothed and information is lost. The remaining information can be restored using the 
complementary subspace WjH of Vj, l  in V. This space can be generated by a suitable 
wavelet function w(x) with translation and dilation. 

lx 
= 	g(n)Ø(x—n) 	 (111-19) 

or 

ifr(2v) = ,(v)Ø(v) 	 (111-20) 

We compute the scalar products <f(x),2 	w(2' x - k)> with: 
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y'1, (Ic) = 	g(n - 2k)c 1  (n) 	 (111-21) 

With this analysis, we have built the first part of a filter bank [51]. In order to restore the 
original data, Mallat uses the properties of orthogonal wavelets, but the theory has been 
generalized to a large class of filters by introducing two other filters h and j named 
conjugated to h and g. The restoration is performed with: 

c1  (Ic) = 2 [c1, (l)h(k + 21) + ct' 141  (1)j(k + 20] 	 (111-22) 

In order to get an exact restoration, two conditions are required for the conjugate filters: 

Dealiasing condition: 

h(v+1)h(k +2+i(v+1 0 	)(v) = 0 	 (111-23) 

Exact restoration 

h(v)h(v) + (v)(v) = I 	 (111-24) 

The principle of multiresolution is sketched in Figure 111-5. 

H 	 2 	 __ 

Put one zero betwee each sample 	Keep on sample out of 2 	Convolution with the filter x 

Figure 111-5. Theft//er bank associated with the multireso/ution analysis. 
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In the decomposition, the function is successively convolved with the two filters H 
(low frequencies) and G (high frequencies). Each resulting function is decimated by 
suppression of one sample out of two. The high frequency signal is left, and we iterate with 
the low frequency signal (upper part of Figure 111-5) . In the reconstruction, we restore the 
sampling by inserting a 0 between each sample, then we convolve with the conjugate filters 
II and G, we add the resulting functions and we multiply the result by 2. We iterate up to the 
smallest scale (lower part of Figure 111-5). 

Orthogonal wavelets correspond to the restricted case where: 

j(v) = e2flh(v+I) 	 (111-25) 

	

h(v) = K (v) 	 (111-26) 

	

(v) = 1(v) 	 (111-27) 

and 

Jkll)l 	2 [ 
+ h(v + 	=1 	 (111-28) 

We can easily see that this set satisfies the two basic relations (111-23) and (111-24) 
Daubechies wavelets are the only compact solutions. For biorthogonal wavelets [51] we have 
the relations: 

k(v) = e2i(v±i) 	 (111-29) 

(v) = e 2" (v + -L) 	 (111-30) 

and 

h(v)h(v) ± /1 '  (v + -1-)h'( v  + 1) = 1 	 (111-31) 

Many sets of filters were proposed, especially for coding. It was shown [52] that the 
choice of these filters must be guided by the regularity of the scaling and the wavelet 
fbnctions. 

The 2D algorithm is based on separate variables leading to a prioritizing of x and y 
directions. The scaling function is defined by: 

W. 



Ø(x, y) = Ø(x)Ø(y) 	 (111-32) 

The passage from a resolution to the next one is done by: 

+Q 	+ 

f+ (k , k) = 	X 	- 2k )h(1 - 2k )f 1  (l , 14 	 (111-33) 

The detail signal is obtained from three wavelets: 

a vertical wavelet: 

v"(,y) =Ø(x)(y) 	 (111-34) 

a horizontal wavelet: 

2 (x,y) = w(x)ø(y) 	 (111-35) 

a diagonal wavelet 

1y 3 (x,y) =41(x)ig(y) 	 (111-36) 

which leads to three sub-images: 

C, (k r  k) = 	g(1 - 2k 1 )h(l - 2k )f (1,1Y) 	 (111-37) 

CJ+i(krkv) = 	h(1 —2k)g(l - 2k3f(1,1) 	 (11138) 

C 1  (k k) = 	 - 2k 1  )g(l - 2k )f (l ,14 	 (m39) 

The process of decomposition in the case of two dimension is represented by the Figure 111-6. 
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App H.D 
J=2 J=2 

Horizontal Detail 

V.D D.D 
J=2 J=2 

Horizontal Detail (nD) 
J=o 

7Vericja=IDetafl Diagonal Detail 
 J=I 

Verical Detail (V.D) Diagonal Detail (D.D) 
J=o J=o 

Figure 111-6. Wavelet transform representation of an image. 

The wavelet transform can be interpreted as the decomposition on frequency sets with 
a spatial orientation. 

I1I.5 Wavelet examples 

The research and theory applied to wavelets, permitted the definition of several base 
wavelets, each one is adapted to a specified applications. Between these wavelets we can 
state, Monet wavelet, Haar wavelet, Daubechies wavejet, Meyer wavelet, Mexican Hat 
wavelet, Coiflets wavelet. Symlets wavelet, Biorthogonal wavelet,,. In our case, we will 
present the wavelet of Daubechies and the Mexican Hat that are used in the present work to 
process the Sun images. 
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111.5.1 Daubechjes's wavelet 

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, 
invented what are called compactly supported orthonormal wavelets, thus making discrete 
wavelet analysis practicable. Different members of Daubechies of wavelets exist, the first 
wavelet is the Ham -  wavelet. It is a discontinuous function and resembles to a step function, 
see Figure 111-7. It is defined by: 

W(X)1 x€[0,0.5] 

W(X)-1 xe[O.5,1] 

'V(X) 0  x40 , 1 ] 

The associated scaling function is defined as 

JØ(r)rr1_k x€[—i,+i] 

x[—i,+iJ 

Wave baen psr 

Figure 111-7. The l-iaar wave/es, 

Figure Ill-S shows the next nine members of Daubechies's wavelet family. 

	

-I 	 F 

'i 

	

db2 	 db3 
	

db4 
	

db5 

(ffl-40) 

(111-41) 

db6 

db7 	 db8 	 db9 	 db 10 
Figure 111-8. Some members olDaubechies s wave/es. 
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m.5.2 Mexican Hat wavelet 

It is defined by: 

=2 
7CII4(i - x2 )e 2' 	 (111-42) 

a 

Figure 111-9. jSfaican Hat wavelet. 

This ifinction is proportional to the second derivative function of the Gaussian 
probability density flinction. This wavelet has no scaling function and it is derived from w(x). 

111.6 Algorithms to build wavelets 

Two algorithms used in this work will be presented, the Mailat algorithm and the ci 
frosts algorithm. 

111-6.1 Mallat's Algorithm 

Given a signal s of length N the DWT consists of 1092N  stages at most. Starting from s, the 
first step produces two sets of coefficients: approximation coefficients cA 1 , and detail 
coefficients cD 1 . These vectors are obtained by convolving s with the low-pass filter H for-
approximation, and with the high-pass filter G for detail, followed by dyadic decimation, as 
shown in Figure 111-10. 

low-pass filter 	 (lowusalnplln(j 

H 	
Fl

CAI 

G 	
.( ]--- 

 cDI 

high-pass filter 	 (IOWIlSalDh)hiIl(J 

Where 	

II CouMove with fdter X. 

2 	Keep the evesi indexed ehemeuts 

Figure 111-10. Decomposition of a signal to approximations and details. 

62 



Precisely the process of decomposition works as follow: 

The first step which is illustrated by Figure 111-10, where, 

The length of each filter is equal to 2N. If,; = length(s), the signals FT and GI, are of length,; 
+ 2N- 1, and then the coefficients cA 1  and cl)1 are of length 

The second is: 

(n–fl 
I— i+N 

2) 
(111-43) 

The approximation coefficients cA1 is splitted in two parts using the same scheme, 
replacing s by cu 1  and producing cA 2  and cl)2, and so on. 

111.6.1.1 Decomposition algorithm in one dimension 

The algorithm is illustrated by the Figure 111-Il 

One-Dimensional DWT 

Decomposition Step 

Inc / 

where F x Convolve with filter K. 

[21 Downsample. 

Figure rn-i i.Decomposition procedure. 

Initialization cAo=s 

So the wavelet decomposition of the signal s analyzed at level j has the following structure: 
[cA1, cD .....cD 1 ]. 
This structure contains for J = 3, the terminal nodes of the following tree represented by the 
Figure 111-12. 
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cA 1 	cD 2  

cA3 	cD3 

Figure 111-12. The structure of decomposition forj3. 

IH.6.I.2 Reconstruction algorithm in one dimension 

Conversely, starting from cAj and cDi , the IDWT reconstructs cA 1 , inverting the 
decomposition step by inserting zeros and convolving the results with the reconstruction 
filters. The reconstruction procedure is represented by Figure 111-13. 

One-Dimensional IDWT 

econslruetion Slep 

-pan 

cAr LIiIIIIJ- k 
wiceep 	cA 

CDJ 

cti'! j Mp.7mpd! 

where: 2 	j Insert 2eros at odd-indexed eiements. 

I X Convolve with filter X. 

wkcep Take the central part with the 
convenient length. 

Figure 111-13. Reconstruction procedure. 



111.6.1.3 Decomposition and reconstruction algorithms in two dimensions 

For images, a similar algorithm is possible for two-dimensional wavelets and scaling 
functions obtained from one-dimensional wavelets by tensorial product. 

This kind of two-dimensional DWT leads to a decomposition of approximation 
coefficients at level j in four components: the approximation at level j + i and the details in 
three orientations (horizontal, vertical, and diagonal). 

Figure III- 4 and Figure 111-15 describe receptively the basic decomposition and 
reconstruction steps for images: 

Two-Dimensional DWT 

Decomposition Step 

COlWfl?LS 

10 ti•S i-'IIiIIIiIIF--' IiiIi—'- 
r-r  H .2Lkl 

cot 

Hori:ontat 

(L) 

cA  3 c0/wwIs  
cD1 i—ITI------IHI------ 

I G I 
I 

i— 
initia/ 

-[ - I cotwmis 

—LKIJ--[IEJ--- diavo)ia l 

Where: F2, I Downsample columns; keep the even indexed columns. 

2 Downsample rows: keep the even indexed rows. 

tows 
x Convolve with filter X the rows of the entiy. 

eô1unin 

X 	
] 

Consvlve with filter X the columns of the entry. 

Irillia I izali on CA© = s for the decomposition initialization. 

Figure 111-14. Decomposition steps in two dimensions. 
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Two-Dimensional IDWT 
Reconstruction Step 

cc lunvn 

cAi rj—tj__T ft 
Columas TH 

rafl .3 

_____ 	
FS 

EIIJ1- LIIJ-i fh) 

-r_J- I?oriod,(a/ 
cAj  

iv) 	 cofuiIvis 
cDji 	

rrI H 
1CFUCQ? 

	

COñIFWIS 	 2 

€iHP__H diawnal 

Where: 	2 ijj Upsample c01Um115: insert zeros at odd-indexed columns. 

FL  2 Upsample rows: insert zeros at odd-indexed rows. 
it) tb's 

Fx_1  Convolve with filter X the rows of the entry. 

eel urnn.s 

FT Convolve with filter X the columns of the eithy. 
Figure rn-I 5. Reconstruction steps in two dimensions. 

111.6.2 The a trous algorithm 

The discrete approach of the wavelet transform can be done by a simple version of the 

so-called a trozis algorithm (with holes). It is assumed that the waveet coefficients ( co(k)) 
are the scalar products at pixels k of the analyzed function /(x) with a scaling function 
Ø(x)which correspon4s to a low pass filter [31,32]. 

The first filtering is then performed by a twice-magnified scale leading to the { (c 1  (k)} 

set. The signal difference {c 0  (k ) - (C (k)} contains the information bpjween these two scales 

and is the discrete set associated with the wavelet transform corresponding to $(x). The 

associated wavelet is therefore v(x). It is given by, 

	

Ix 	I 	x 
—çv(—) = Ø(x)--Ø(--) 	 (111-44) 
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The distance between samples increasing by a factor of 2 from the scale (i-i) (1>0) to 
the next one. The coefficients cj(k) are given by, 

c(k)= h(l)c-i(k+2'-1 1) 	 (ffl.45) 

and the discrete wavelet transform çv 1  (Ic) by: 

cit1  (Ic) = c_ 1  (Ic) - c 1  (Ic) 	 (11146) 

The coefficients {h(k)} derive from the scaling fUnction $(x) are related by, 

(111.47) 

The reconstruction process is done by simple summation of the last approximation 
with the signal details of each resolution step. I mean, the last smoothed array c is added to 

the differences y'1. 

CO  (Ic) = c (Ic) +v-'1  (Ic) 	 (111-48) 

The decomposition algorithm with wavelet is summarized as follow: 

we initialize Ito zero, and we start wit the data c1  (Ic). 

we increase i and we evaluate the discrete convolution of the data c1_ 1  (Ic) with filter h(n) 
which gives the approximation signal. 

The wavelet coefficients at the point k and at the scale i are given by: 

çv.(k) = C 1 _ 1 (k)-C,(k) 

Two scaling fUnctions 0(x) are tested with the a Irons algorithm, the linear interpolation 
and the B3-spline interpolation. 
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ffl.6.2J The linear interpolation: 

The scaling function in this case is shown in Figure 111-16. its mathematical expression is 

given by. 

fØ(x)=I—N xe[-1,+]] 

1Ø@)=o 	xE[— L± 1] 
(111-49) 

1.5 

I  N 
0.5 

 -

.'t'.-------- 

I 	/ 	I 

1. 	 .1 	 .nc 	0 	05 	I 

Figure 111-16. Linear interpolation 0. 

We have from equation 111-47, 

Ix 	I 
= 	+ 1) + 10(1) + 1 Ø(x 	—1) 	 (IH-50) 

c 1  is obtained by 

c 1 (k) = —'c0 (k —1) + ! c0 (k) + 	+1) 	 (111-51) 

and c, is obtained from c using, 

	

)+ 
I  
—c(k+2') 	 (111-52) 

2 	4) 

The associated wavelet w with this scaling ffinction calculated using equation 111-44 is 

shown in Figure ffl-1 7. This wavelet is the Mexican FIat wavelet. 



0.8 

0.6 

0.4 -- _i - 

:"V: H- 
Figure 111-1 7. The wavelet 

The wavelet coefficients at the scalej using equation 111-46 are: 

I 
4 	 2 

W+1(k)=— 
I  
—c (k-2)+—c. 	 (111-53) 

The above a Irons algorithm is easily extensible to the two dimensional space. At each 
scale j, we obtain a set 1w1 (k, l)J which has the same number of pixels as the image, it is the 
advantage of the a Irons algorithm, except that the wavelet used must be isotrope. 

111.6.2.2 The fi-spline interpolation 

The 8-splinc interpolation of order 1(1 is odd) is written in general case as [33]: 

21 
-I 

(-1 )kC4Jx-1+kl
21 	

(111-54) 
) k=0 

with s=21-1. The filter coefficients h(n) associated are given by: 

ctm-. n 
h(n) = 	with m= -

1+1 
	 (111-55) 

2'' 	 2 

We choose the B-spline fi.inction of order 2 for the scaling function, it is given: 

I YC 4 x-2+k 3 	 (111-56) 

IM 



02 

Figure HI-IS shows this 0(x) thnction. 

1/12 ((abs(x-2)) 3-4 (ab*x-1 ))6 (absCxflt4 (abs(x+ 1 ))3+(abs(x+2))) 

0.7- 	 - 	 - 

06-  

/ 
0.5-  

0.4  

\- 
0_s  

:1  
o 	 — -- 

-2 	 -1.5 	 -; 	 -0.5 	 - 	0.5 	 1 	 1:5 	 2 

Figure 111-18 The scaling function 0(x) - 

The associated wavelet V(x) with this scaling frmnction calculated using equation 111-44, is 
shown in Figure 111-19. It is the wavelet of Mexican Hat. 

1fl4 ,o141.1 o.29'..V12 

15 

- 	- 	- 0 	I 	I 	; 

Figure 111-19. The wavelet 

Even though the two interpolations for the scaling ffinction are tested, the one that will 
be presented and used in the present - work is the 133..spline interpolation. 
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1H.7 Filters used to calculate the DWT and IDWT 

The process of Sun images with wavelet transform is performed by using two 
algorithms, the a Irous algorithm and Mallat's algorithm. Each one is implemented with a 
chosen set of fi!ters(wavelets). 

ffl.7.1 Filters with the a trims algorithm 

In the case of B 3  -spline interpolations for the scaling function, the associated wavelet is 
the Mexican Hat wavelet. The coefficients of the one dimensional filter h calculated from 
Ø(x)are ( 1/16,1/4, 3/8,1/4,1/16) and in two dimensions are: 

1/256 1/64 3/128 1/64 1/256 
1/64 1/16 3/32 1/16 1/64 

h(n)= 3/128 3/32 9/64 3/32 3/128 
1/64 1/16 3/32 1/16 1/64 

1/256 1/64 3/128 1/64 1/256 

The filter h is a triangular low pass filter as shown in Figure 111-20. Its transfer 
modulus is represented in Figure 111-21. 

e 

e 

tarnpien&mib.n 

Figure 111-20. The filter 5(n). 

ranafef InodLlkn 

a 

a 

0. 

S 0. 

0. 

0. 

0. 

0 

0- 

nnnnal,,.d frsqusncy 

Figure 111-2 1. The tmnsfer modulus. 
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For the coefficients of the filter in the case of linear interpolation for the scaling 
function, see annex 7. 

111.7.2 Filters with Mallat's algorithm 

The wavelet used with the Mallat's algorithm is the Daubechies of order 3. For an 
orthogonal wavelet, in the multiresolution framework, we start with the scaling function 0 
and the wavelet function v' One of the fundamental relations between 0 and  w is the twin-
scale relation (dilation equation or refinement equation): 

I 	x 
= wØ(x—n) 

2 	2. 	n€Z 

(111-57) 

if 0 is compactly supported, the sequence (w) is finite and can be viewed as a filter. The. 
filter W which is called the scaling filter (nonnormalized), is: 

• Finite Impulse Response (FIR) 
• oflength2N 
• ofsuml 
• of norm 

I 
I- 

a low-pass filter 

For our case the scaling filter is 

)4'=(0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249) 

From filter W, four filters are defined of length 2N and of norm 1. They are organized as 
follow: 

Filters Low-pass High-pass 
Decomposition 11 G 
Reconstruction 

The relation between these filters is given by, 

{

G(k) = (_1)kH(2N+1 -K), fork =1,2.....2N 	
(111-58) 

G(k)= (_1)kH(2N+1K), fork=I,2,...,2N 

The four filters are computed using the scheme shown in Figure 11I-22 with the help 
of equation 111-5 8. 
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	 ll=inverse( H) 

Figure 111-22. Decomposition and reconstruction low pass filters. 

Figure 111-23 shows the four filters and their transfer modulus. 

Original scaling filter 
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Figure 1II-23. The four wavelet filters for Daubechies of order 3. 
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ffl.8 Sun image processing 

The Sun images are processed by the wavelet transform to remove the sunspots, 
artificial defaults and noise. The implantation of wavelet is done by using two algorithms, the 

a trous algorithm and Mallats algorithm. The decomposition by the two algorithms shows 
that the signature of the sunspots appears clearly in the detail images. To clarify this we use a 
real image acquired by the solar astrolabe of Calem that presents sunspots, see Figure 111-24. 

10 

20 

:3J 

40 

50 
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aJ 

70 
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50 	100 	15Lj 	41W 

pixel 

Figure 111-24. A real Sun image acquired by the solar astrolabe of Caleni observatoiy. 

In the case of a Irous algorithm the used wavelet is the Mexican Hat Wavelet and the 

interpolation of the scaling function is done by the B 3-spline function. Figure 111-25 
represents the decomposition process of the Sun image shown in Figure 111-24. As it can be 
seen from Figure 111-25 that, at each resolution step we have one approximation and one 
detail. In addition, the resolution of the original image is maintained along the process of the 

decomposition. 

For the Mallat's algorithm the used wavelet is Daubechies's wavelet of order 3. Figure 
IH-26 illustrates the decomposition at level 2. We notice that each step of resolution we have 
one approximation and three details; the horizontal detail, the vertical detail and the diagonal 
detail. In addition, the resolution of the original detail, is reduced along the process of 

decomposition. 
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Figure 111-26. Decomposition of the sun image with the Alallats algorithm using the wavelet ofDaubechies of order 3. Both 
the x axis and they axis are in pixels. 

The processing steps of the Sun images are: 

Step I : Elimination of the sunspots. 
Step 2: Reducing the noise of the resulting image by increasing the signal to noise ratio. 
Step 3: Edge extraction. 
Step 4: Determination of the tangency point. 

The four steps are the same for the two algorithms, with one exception that, instead of 
processing one detail using the a Irous algorithm, we process the three details with Mallat's 
one. The above steps will be presented using the a trous algorithm with the 13 3 -spline 

interpolation for the scaling function. 

ifi. 8.1 Sunspot elimination 

The mean aberration of the Sun images is the existing of the sunspots . These non 
stationary effects are localized and eliminated by an iterative procedure. The localization is 
performed by decomposing the Sun images to details and approximations. As shown in 
Figure 111-25 and 111-26, the signature of the sunspots is present in the details images. The 
procedure then consists of eliminating them by applying a thresholding on the wavelet 
coefficients of the first detail. The threshold value is adjusted so that the coefficients are 
reduced to the noise level. Its value is equal to ± 3 sigma, where sigma is the standard 
deviation of the coefficients calculated on the whole detail image. Figure 111-27 illustrates the 
thresholidng process on a profile of the first detail image. We can see from Figure 111-28 the 
effect of the thresholding on the sunspot elimination. The steps of the algorithm are: 

step 1- We decompose the image to detail and approximation to level 1. 

Step2. We threshold the detail image. 

Step 3. We reconstruct the image 
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Step 4. We test if all the detail coefficients image are between + 3 sigma and -3 sigma. 

Step 5. If is not the case, the steps ito 4 are repeated, if yes the algorithm is stopped. 

Figure ffl-29 represents the image obtained from the original image after sunspots 
elimination.. 

5 

C 	 0 

C 	 Igi / 

m 	in 	liii 	I' 	 1 	In 	Ri 	Ri 	liii 	Ii 
pixel 	 pixel 

(a) 	 (b) 

Figure 111-2 7. Sunspot elimination. (a) profile from an original image that passes through a sunspot. (b) Thresholding profile 
detail 

(-) superposed to the original detail (—). 
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Figure 111-28. Profile obtained after thresholding (-) superposed to the original profile (—). 
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Figure 111-29. The image obtained from the original image after sunspots elimination. 

ffl.8.2 Reducing the noise in Sun images 

The CCD images of the Sun are affected by noising spots (optical origin) and parasitic 
noises ( photons noise, thermal noise). In order to increase the signal to noise ratio after 
sunspots elimination and noising spots, the residual noise in the images must be reduced. The 
wavelet analysis shows that the noise is localized in the first two detail images. So, these 
details are processed before reconstruction of the image from approximations and details. 
The noise reduction may be done by thresholding or filtering the details. 

The first method is based on choosing a threshold value to be applied to detail images. 
Figure 111-30(a) and Figure 111-30(b) show the effect of thresholding on a profile of a Sun 
image after the elimination of the sunspots. The thresholding value in Figure ffl-30(a) is 1.5 
sigma and in Figure 111-30(b) is 0.5 sigma. The choice of the threshold value is delicate 
since the thresholding process modify simultaneously the coefficients that intervene in the 
edge definition if the threshold value is not adequately chosen. 

The second method, based on the filtering process to attenuate the noise in the detail 
images, is the appropriate method to use in order to prevent the effect induced by a non 
appropriate threshold value. 
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Figure 111-30. Noise reduction(thresholding method), sigma is the standard deviation 
of the whole detail image. 

Several types of filters are tested on the detail images. Between them we have tested 
the following 

the filter with the coefficients (1/4 1/2 1/4). 

the filter with coefficients (1/16 1/4 3/8 1/4 1/16). 

the filter with coefficients (1/64 3/32 15/64 5/16 15/64 3/32 1/64). 

All these filters are low pass filters, there characteristics are given in annex 7 

The comparison between these three filters using a profile of a Sun image after 
sunspots elimination is shown in Figure 111-3 1; sigma represents the fluctuations between the 
obtained profile after the filtering process and the original one. The filter with best 
performance according to the others in case of time execution and best noise reduction is the 
filter (a). So, this filter will be used along this work to reduce noise in Sun images. Figure III-
32 shows the final cleaned and filtered image. 
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Figure 111-3 1. Obtained profile afterfilteringprocess(-) superposed to the original profile (.). (a) the jesuits withfihtera, (Ii) 
the results with filter b, (c) the resdts with filter c. 
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Figure 111-32. The final cleaned and filtered image. 

ffl.8.3 The Sun edge 

111.8.3.1 Parabolic approximation 

Even though if the solar flatness exists, the observed portion of the Sun image can not 
put it in evidence (it is about some thousandths of arcsecond). The Sun edge can be 
approximated for a first time by an arc of circle on the CCD images, but the apparent figure 
seamed to be close to a conical form, and this is for many reasons [14], 

The form of the diffiaction spot of the astrolabe, which, for a point source is elliptic, 
gives a parabolisation of the image of the disc solar, see Figure 111-33 

The optical defects of the objective toward the periphery of the focal plane, combined 
with the atmospheric turbulence, give the same effect. 

The sections taken to determine the inflection points are not radial, but parallel to the 
CCD lines. 

The integration time is 20 ms and the effect of the smearing is not zero along the 
azimuthal component ( about 0.222 arcsecond). 
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all these reasons conduct us to approximate the Sun edge by a parabola [14]. The CCD 
matrix covers less than 5% of the Sun disc circumference and the Sun edge presents a 
curvature far from marked. Figure 111-34 shows the real portions that exist between the Sun 
image given by the optic of the astrolabe, the Field of the ocular and the CCD matrix; the 
camera is the COHU 4710. 

I 
dittloction spot 

Figure 111-33. hput pupils and the diffraction spot. 

Figure 111-34. The solar disc and the field of the CCD camera ,(1) is the ocular, (2) is the direct image,(3) is the reflected 
image. 
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ffl.8.3.2 Edge detection 

The edge detection of the Sun image is the •  important step in Sun diameter 
measurement, since it includes the information of Sun transition point by the defined 
Almucantar. For this reason several methods are tested to determine the edge with high 
accuracy. The comparison between these methods is based on the cleaned real image 
acquired by the solar astrolabe shown in Figure 111-32. After the detection of the edge, it is 
filtered by a median filter. The characterizations of the non-linear signal enhancement 
technique ( Image Enhancement) performed by the median filter are: the smoothing of 
signals, the suppression of impulse noise and preservation of edges. In the one-dimensional 
case, the median filter consists of sliding a window of an odd number of elements along the 
signal and replacing the center sample by the median of the samples in the window. 

Three methods are used to detect the edge of Sun image. These methods are presented 
in the following sections. 

ffl.3.3.2.1 The first method 

For this method, the steps to detect the Sun edge are as follow 

We compute the first derivative of the Sun image, be imgl. 
We look for the index of the maximum points in imgl , be Pmax. 
We compute the second derivative of the image, be img2. 
We take an interval of points in img2, be Pmax-n Pmax+n, n number of points. 
We fit this interval of points by a straight line, y=ax+b: 
The points where r° are the edge points. 
We filter the extracted edge by a median filter of order 3. 
The resulting edge is fined by a parabola. 

Figure 111-35(a) represents the extracted edge before and after filtering, where Figure III-
3 5(b) shows the edge fitted by a parabola. The standard deviation of edge points fluctuations 
aroUnd the parabola is 0.43 arcsecond, less than the pixel dimension (0.74 arcsecond). Figure 
111-36 represents the image and its extracted edge. 

IFI 

pa 

(h) 

P7gm-c 111-35. (a) The extracted edge before (dots) and afierJihtering(solid), (1,) The extracted edge fitted by a parabola. 
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Figure 111-3 6. The Sun image and its extracted edge. 

ffl.8.3.2.1 The second method 

It is summarized by the following steps, 

- We compute the first derivative of the Sun image, be imgl. 
We look for the index of the maximum points in imgl , be Pmax. 
We take an interval of points in imgl, be Pmax-n Pmax+n, n number of points. 
We fit this interval of points by a parabola. 
The inflection points of these parabolas are the edge points. 
We filter the extracted edge by a median filter of order 3. 

The resulting edge is fined by a parabola 

Figure 111-37(a) represents the extracted edge before and after filtering, where Figure III-

3 7(b) shows the edge fitted by a parabola. The standard deviation of edge points fluctuations 
around the parabola is 0.59 arcsecond, less than the pixel dimension (0.74 arcsecond). Figure 
111-3 8 represents the image and its extracted edge. 
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FIgure 111-58. Tl,e Sun image and as extiaclecI cc/ge. 

111.8.3.2.3 The third method 

The following steps summarize the method. 

I- We compute the first derivative of the Sun image, be imgl. 
2- We took for the index of the maximum points in imgl , be Pmax. 
3-We take an interval of points in the original image, be Pmax-n Pmax±n. 
4-We fit this interval of points by a polynomial of degree three. 

The point where the second derivative of this polynomial is zero, are the edge points. 
We filter the extracted edge by a median filter of order 3. 



7- The resulting edge is fitted by a parabola 

Figure 111-39(a) represents the extracted edge before and after filtering, where Figure 

111-39(b) shows the edge fitted by a parabola. The standard deviation of edge points 
fluctuations around the parabola is 0.79 arcsecond, more than the pixel dimension (0.74 
arcsecond). Figure 111-40 represents the image and its extracted edge 
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Figure 111-3 9. (a) The extracted edge before (dots) and after filtering (solid). (1') The extracted edge fitted in' a parabola. 
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Figure 111-40. The Sun image and its extracted edge 



Due to the atmospheric turbulence and no correction of the diurnal motion using the 
solar astrolabe, in addition to the long integration time of the CCD camera (20 ms), the edge 
of the acquired images is not sharp and extends over more than 10 arcsecond. The classical 
methods of edge detection are applied to Sun images and the results showed that the standard 
deviation of the fluctuations, with some corrections, around parabola approximation are more 
than those found by the three methods. For example, the Sobel method gives a standard 

deviation of 3.28 arcsecond, that of Laplacian a sigma of 7.69 arcsecond and those of Derich 
and Canny give a close sigma value of 1 .26 arcsecond. So according to the present study, 
the first method is the best one and it is it that will be used to detect the edge of Sun images. 

The application of the first method of edge detection to a sequence of Sun images 
acquired by the solar astrolabe shows the results illustrated in Figure 111-41. Figure 111-41(a) 
shows the way that the direct and reflected Sun images move toward each other on the CCD 
frame for the first Sun transit (east), where Figure 111-41(b) represents the way that the direct 
and reflected Sun images move toward each other on the CCD frame for the second Sun 

transit. (west). 
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Figure 111-41. (a) a sequence acquired by  the solar astrolabe of Ca/em i/rat defines the upper transition point oft/re Si,,, (east 

transition). h) The associated sequence that defines the lower transition instant oft/ic Sun (east transition). 

After the edge detection step, it comes the most important one which is the 
determination of the two tangency points where the upper and the lower Sun edges cross the 
defined height circle, see chapterl section 1.6.2. 

ffl.8.4 Tangency point determination 

After the ,  step of approximating the inflection points, defining the Sun edge, by a 
parabola, it comes step of determining the instant where the Sun crosses the defined height 
circle. The tangency to the summit of the parabola is parallel to the CCD columns which in 
their turns are parallel to the Almucantar defined by the set of the prism and the mercury bath. 
This parallelism is handled by the instrumental settings (see chapter II, section 11.7). The 
chosen points to represent one of the two extremities of the diameter on the Sun edge are the 
summits of the parabolas. The equation of the parabola gives access, with high precision to 
the position of each summit in the coordinate system of the CCD matrix, in x(the lines) and in 

y(columns). 
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The variations of y reflects the variations of the zenithal distance of the Sun. the 
the only coordinate taken into account in tangency point 

measured quantity, and it is  
determination. That of x, denotes the displacement in azimuth of the Sun, it is only used to 
calculate the corrections due to the nonparalielism of the CCD lines and colunms with the 
instrumental plane defined by the instrument as it will be seen later. A third coordinate the 

C time of the Sun acquisition, is associated to each image, so to each summit. The set of 
the summits, located in x, y and time of each observation, are used to reconstruct the 

trajectories of the Sun on the CCD field. 

Two independent equations xx(t) and 
y =ry ) are obtained and thus obviously the 

relation y=y(x). 
By instrumental definition, the variation of y according to the time represents 

the position variation of the solar edge in zenithal distance. So the trajectories y(t) will permit 
the definition of the transit instant. The equation of the trajectories can be always written 

under the form of series development, 

y =ak 
	 (111.59) 

where ak 
are the unknowns and n is an integer number selected in advance. 

The coefficients of equation 111.59 can be obtained with high precision, since we 
dispose of 50 points (summits of the parabolas) to define the trajectories of each image (directthe two 
and reflected). in practice, the computation of the effect of the curvature of  

order are negligible, the test are done by 
trajectories shows that the terms of the second  
modeling the trajectories with parabolas. The field of the CCD is approximatelY two times 
less than that of the ocular and the curvature of the trajectories can not be determined 
practically. Therefore, the Sun trajectories are approximated by a strait lines. 

For each passage we obtain two trajectories, a direct trajectory related to the direct 
image and a reflect trajectory related to the reflected image. These trajectories are given by 

the following system of equations, 

J Y = Yu + a1.(t - t0) 	 (111.60) 

where the yd refers to direct trajectory and Yr to the reflected trajectory. 

The equality in absolute value of the t coefficients in the equation 111.60 are valid only 
in the ideal case; where the CCD matrix is perfectly positioned (columns parallel to the 

horizon). With this permission at the instant to. 
the summits of the direct and reflected images 

are situated respectively at the ordinates ya et y ,. The instant t m . where the two summits have 

the same ordinate, is calculated simply by. 

Y r Yd  

2.a 

Figure 111A2 and FIgÜtC 111-43 illustrate thç image trajectories y(t) and x(t) 
materialized by he summits of the Sun images for a sequence acquired by the solar astrolabe 
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of Calern after image processing and edge detection . We remark the high dispersion of the 
points on the x(1) trajectories due to the weak precision of the x coordinates of the parabolas 
summits. The spacing between the images is also highlighted (for a null spacing, the two 
trajectories would be superposed). 
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Figure 111-42. (a) trajectories of the Sun image along the zenithal ordinate,(b) the trajectories fitted by a straight lines. 
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Figure 111-43.Trajectories of the Sun images along the azimuth direction. 



111.9 Inclination correction of the CCD 

Since in practice the ccilumns of the CCD are never perfectly horizontals, so, we must 
determine the slope of its inclination and consequently make the necessary correction. For 
this, the trajectories x(t), that represent the displacement in azimuth of the Sun image, are also 
computed. This computation furnishes the correction to be applied to the transition time 
calculated above, and at the same time correct the effect produced by the vertical non 
alignment of the direct and the reflected images, see Figure 111-44. 
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Figure 111-44. The geometrical acquisition on the CCD reference. 

Dots refers to the image trajectories, C and C' (lie center of the direct and reflected images, 'xy,) the tnstntn,e,,tal reference. 

(C1) the CCD reference, 6 the CCD rotation angle, & the spacing between the two images, Al andA'I' the tongeiicr 

points of the images on die CO.) reJerence and N and N' the tangency points in the instrumental t -efitrence. 

The theoretical expression that gives the variation of the zenithal distance of a celestial 
object in function of time can be written as (the terms of order I are taken into consideration), 

= 15.sina.cosØ.(l —l)= 15.cosS.sin SQ —i a ) 

	

(111.62) 

where a is the azimuth of the object computed from east to weast , 0 is the latitude of the 

observation place, 8 the declination of the object and S the parallactic angle. The parameters 
are computed in seconds of the degree for z and in seconds for the time t. Reduced to the first 

term, this relation implies that (1 - i) remains small. It is the case of the solar astrolabe, since 



the period of Sun transition doesn't exceed 40s and the quantity (t-t 0 ) doesn't exceed 20 

second, be 5'5 or 1.5.10 radians. The corresponding equation in azimuth is written as, 

1 5.cosS.cos S.(t - t 0 ) 
a - a0  = 	 (111.63) 

sin z 

Returning back to a coordinate system x,y On the CCD frame, supposed perfectly stetted, the 

above relations become, 

Ie r  (x—x0 ) = 15.cosS.coss.(t -t 0 ) 
(111.64) 

tey .(y - y0 ) = 15.cosS.sin S.(t - t 0 ) 

where e and e are the space sampling frequencies of the horizontal and vertical pixels of the 

CCD in arcsecond/pixel. 

The same relations can be written for the reflected image by changing S by -S. 

Introducing the vertical non-alignment of the images, we can write that the summit of the 

direct image is situated at The point (x 0  +Ax,y0 ), where the summit of the reflected image 

will be at the point (x0  —a.x,y 0 ) . This parameter setting implies that t0 is the looked for 

transition point, since when t = to, the ordinates of the two summits are equal. 

If in contrary, the CCD columns are inclined by an angle 0 on the horizon, a rotation 

of the same angle applied to the above coordinates gives the coordinates of the summits 
relative to the real CCD (X,Y) reference. In this case, the summit coordinates of the direct 

image are written as: 

JX = 15(t—t0 ).cos8.cos(S —/3)+e(x0  +Ax)+ y 0 .e.sin /3 +bpsin 0 	
65 

l =15.(t —t0).cosSsin(S - /3) — e(x0  +Ax)sin j3 ± y 0 .e.cos/3 ±bp.R(cos/3 —1) 

The parameters band prefer by their values (-1 or +1) to the observed edge and at the east or 
west passage. The equations for the summit coordinates of the reflected image are, 

X = 15(t —t 0 ).cosS.cos(S + $)+ e(x0  - &)+ y0 .e.sin 0 —bpsin /3 

Y = —15.(t—t 0 ).cosSsin(S +/3)—ejx0  —Ax)sin/3 + y 0 .e.cos/3 —bp.R(cosfl-1) 

The slope r, according that we consider the direct or the reflect image, is equal to 

±15.cos6 sin(S—/3) or —15.cos6.sin(S+/3). So, knowing the value of the angleS, it is 

possible to find the value of 0. 
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Equalizing the ordinates of the direct and reflect images we get, 

to 	
tan/i 	 1—cos 

= 1,,, - AX.C,y 	 - bp.R. 	
fl 	 (11167) 

15.cosS.sinS 	15.cos8.sinS 

the expression (111.67) gives the true instant to in function of the measured instant 'm and the 
error terms. The first error term is due to the spacing & between the images and the second 
one is a term that dependents on the Solar Semi-diameter. 

Knowing the value of the angle 8, we can apply a rotation of - /3 to equation 111.65 
and equation 111.66 which permits to replace the points of the two trajectories in an horizontal 
system. In this case, the coordinates (x,y) of the direct and reflected images become 
respectively as, 

Jx.e = (x 0  + Ax).e + bp.R.sin /3 + 15(1 - ç ).cos(5.cosS 

= y 0 .e + bp.R.(1 - cosfi) + 15.Q — i ).cosS sinS 	
(H1.68) 

Jx.e = (x0 - Ax).e - bp.R.sin /3 ± 15(1 - 1 0 ).cosS. cosS 
(111.69) 

= y 0 .e - bp.R.(1 - cos )6) —1 S(1 - 1 0 ).cos8 sinS  

The transit instant is always defined as the point when the ordinates of the direct and 
reflected images are equal, but in this time, in an horizontal plane. Therefore the instant 1 

that we computed from the corrected time 4,,  is given by, 

/i 
+ b.R. 	

1—cos 	
(111.70) 

115.cos5.Isin S 

After the determination of the angIe /3, the correction above is systematically applied 
to transition instant given by 4,, in order to obtain a correct evaluation of the true transition 
time. This correction is generally small, it is of the order of 4 to 5 ms for an mean inclination 
of the CCD lines of 20 arcminute and a mean separation in x of 20 pixels. 
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CHAPTER IV SOLAR DIAMETER MEASUREMENT WITH THE SOLAR 
ASTROLABE 

This chapter presents an application of the developed met/rods to process the Sun images and the developed 
procedures to calculate the Sun diameter. The application is done using two selected sets of Sun images 
acquired by the Solar CCD .4strolabe of Calern during the year 1997. One set is dated to 10109197 and the 
other one to 09109197. These sets contain an even number of sequences. Each one is a series of one hundred 
images of l01x256 pixels in dintension( 50 reflected images, and 50 direct images). Finally, the effects of the 
atmospheric turbulence on Sun dia,neter measurement will be presented. 

IV.1 Diameter measurement procedure 

Typical direct and reflected images are shown in Figure IV.1. 

Figure IV-1, A direct and a reflected Sun images acquired by Calern CCD ast mo/abe. 

The Sun diameter measurement is a function of the difference between the two transit 

instants of the Sun through the defined height circle, see chapterl, section 1.6.2. The following 

steps illustrate the complete procedure to calculate it: 

Step 1: - Reading of an acquired Sun image with the astrolabe (either direct or reflected). 

Step2: - Initialisation parameters of the processing method. 

- Decomposition of the image signal by the wavelet transform to details and 

approximation signals (images). 

- Threshold the details to eliminate the sunspots and noisy spots. 

- Reconstruction of the Sun image. 

- Test if the residual noise in the current processed image and the preceding 

one is the same. If not, the second step is repeated from the beginning. 

Step 3: - Filtering the image for eliminating the residual noise. 

- Extraction of the Sun edge. 

- Fit the extracted edge points by a parabola. 

Determination of the summit point of this parabola (its coordinates ). 

Saving the result in a vector (the coordinate of the summit point, for the direct 

and reflected images, the direct summit points represent the direct trajectory, the 

reflected summit points the reflected trajectory). 

Test if the 100 images that correspond to one sequence are read. If not, the upper 

Steps are i -epeated. 
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Step 4: - Line adjustment of the direct and the reflected trajectories defined by the above 

vector of summit points. 
- Determination of the intersection point of the adjusted direct and reflected 

trajectories. This point is the transit instant ( UTC1 stands for the first Sun 
transition instant and UTC2 for the second one through the defined height 

circle). 
- Steps ito 3 are repeated to determine the second transition point. 

Step 5: - Correction of UTCi and UTC2 to find the true instants of Sun transition. 
- Reading of the station geographic coordinates and the date of observation. 
- Reading of the parameters of atmospheric conditions at the moment of observation. 

These parameters are: the atmospheric pressure, the air temperature, the barometer 

temperature and the humidity. 
- Reading of the instantaneous coordinates of the celestial pole, UT1 -UTC, and TAI-

UTC from the IRES bulletins that correspond to the moment of observation. 

Step 6: - Computation of the vector radius to the station according to the chosen ellipsoidal 
model for the Earth. 

- Correction of the station latitude for station error and altitude effect. 
- Correction of the station longitude and latitude for polar motion. 

Step 7: - Computation of the Julian date and the Greenwich Mean Sidereal Time (GMST) at 

the moment of observation. 

Step 8: - Computation of tJTO and the ephemeredes time TI (Terrestrial 

Dynamic Time). 

Step 9: - Computation of the Local Sidereal Time (LST). 

Step 10: - Computation of the Sun ephemeredes at the true time of observation. 

Step 11: - Computation of the geocentric zenithal distance. 
- Computation of the topocentric zenithal distance (correction for the geocentric 

Parallax). 

Step 12: - Correction of the topocentric zenithal distance for the atmospheric refraction. 
- Computation of the topocentric diameter. 

- Computation of the geocentric diameter. 

IV.2 Error on tangency instant determination 

Sun Diameter measurement with the solar astrolabe depends critically on a good 

determination of the transition instants of the solar edge by the small circle (Almucantar) 

defined by the instrument. Each instant is the intersection of the direct and the reflect 
trajectories of one Sun passage. Because of the temporal fluctuations observed on the two 

trajectories, the point of their intersection is not well defined. Ti is the error on this time 
determination, which induces the error on the diameter measurement . In our case, straight 
lines are used to approximate the two trajectories using a least-square fit, the error on their 

point of intersection is given by [28], 



1/2 

A(tO) = C T TV ,. C/ , 	K(I0)C r 	(lvi) IV  
—1) 

2  

Where crz-  is the standard deviation of the temporal fluctuations observed on the solar 
trajectory, TN.2.S.2  the student's distribution, 1-c the confidence interval, t0 the intersection 
time and N the number of images taken at the t, instant relatively to the mean time 1. 

IV.3 Choice of the implementation algorithm 

The two algorithms described in chapter III (section 111.6) are tested on the two 
sequences of Sun images acquired by the solar astrolabe of Calern stated at section IV. 1. The 
first set, dated to 10/09/1997, contains 22 Sun image sequences (11 diameters), where the one 
dated to 09/10/1997, contains 28 Sun image sequences. Each image is a window of 101x256 
pixels associated to its time of acquisition and the coordinates of the upper left corner of its 
window. The ci Irons algorithm is implemented using the B 3-spline interpolation for the 
scaling functions and the wavelet of Mexican Hat. For the Mallat algorithm the wavelet used. 
is the wavelet of Daubechies of order 3. For each algorithm we determine the instants of Sun: 
transition and the error handled to its determination using equation IV-1. Since each extracted 
edge is approximated by a parabola, the histogram of the fluctuations of the edge points 
around the parabolas are calculated. Finally the fluctuations of the summit points defining the 
two trajectories around the lines used for their adjustments are also given. 

IV.3A The a trous algorithm 

Figure IV-2(a) represents the histogram of the error made on tangency point 
determination for the two sets of Sun image. We notice that the error is not constant and. 
varies from a minimum value of 0.71 msecond to a maximum value of 4.83 msecond. The 
mean error for the two sets is 1.81 msecond. 

Figure IV-2(b) shows the histogram of the fluctuations of the edge points around the 
parabola used for approximation. These fluctuations varies from a minimum value of 0,35 
arcsecond (less than 1 pixel) to maximum value of 2.52 arcsecond (more than three pixels). 
The mean value of these fluctuations for the two sets is 1.36 arcsecond (less than two pixels). 

Figure TV-2(c) illustrates the histogram of the fluctuations of the summit points that 
define the two Sun trajectories, around the two lines of adjustment. For the two sets, the 
minimum value of these fluctuations is 0.58 arcsecond (less that I pixel), where the maximum 
value is 2.44 arcsecond ( more than three pixels). The mean value for these two sets is 1.27 
arcsecond(less than 2 pixels). 

E 
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Figure JE'T2.  (a) The histogram of the error made on tangen cv point determination. (b) histogram of the extracted edge points 
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JV.3.2 Mallat's algorithm 

Figure IV-3(a) represents the histogram of the error made on tangency point 
determination for the two sets of Sun images. We notice that the error is not constant and 
varies from a minimum value of 0.72 msecond to a maximum value of 4.66 msecond. The 
mean error for the two sets is 1.80 msecond. 

Figure IV-3(b) shows the histogram of the fluctuations of the edge points around the 
parabola used for approximation. These fluctuations varies from a minimum value of 038 
arcsecond (less than 1 pixel) to maximum value of 233 arcsecond (more than three pixels). 
The mean value of these fluctuations for the two sets is 1.07 arcsecond (less than two pixels). 

Figure lV-3(c) illustrates the histogram of the fluctuations of the summit points 
defining the two trajectories, around the two lines used for adjustment . For the two sets, the 
minimum value of these fluctuations is 0.61 arcsecond (less that I pixel), where the maximum 



value is 2.38 arcsecond ( more than three pixels). The mean value for these two sets is 1.28 
arcsecond(less than 2 pixels). 
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Figure IV-3. (a) The histogram of the error made on tan genre point detenninatzon.q'h) histo ram of the exrraeted edge points 

liuctuations around the parabola ol approximation. fr) histogram of/he fluctuation of/lie summit points defining  the two 

uajeciuries around the two hues used jar 1/jell approxitli U/loll. 

Table 1 summarizes the statistical comparison between the results of application of two 
algorithms on the two sets of Sun image sequences. 

Table I shows that the two processing methods reveals approximately the same 
results. Even though that to come with a precise conclusion we have to apply them for a long 
series of images. At the present case we have to say that there is a big difference between the 
?vtailat algorithm and the t lions algorithm in the case of time execution and the simplicity of 
the process. With Mallat's algorithm we have to process the three details at each stage of the 
decomposition, where in the a Uvus algorithm we have to process only one detail at each step. 
Also with Mallat algorithm the decomposition and the reconstruction are effectuated with four 
lifters, in the case of ti traits algorithm only one lilter intervenes. In addition the image 
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resolution using the Mallat algorithm decreases with the increasing number of the resolution 
levels, in contrary to the c erau.s algorithms where the resolution remains always the same 
along the decomposition steps. 

For simplicity and time execution consideration we will use the a Irons algorithm with 
linear interpolation for the scaling function and the Mexican Hat as wavelet type. 

The a traits algorithm 	Mallat's algorithm 
Mean Max Mm 	Mean Max Mm 
value value value 	value value value 

Error made on tangency point (msec) 1.81 4.83 0.71 1,80 4.66 0.72 

Fluctuations around parabolas (arcsecond) 1.36 2.52 0.35 1.07 2.38 0.38 

Fluctuations around trajectories (arcsecond) 1.27 2.45 0.58 1.28 2.38 0.61 

Table I The comparison between thea trous algorithm and Mallal's algorithm. 

IV.4 Solar diameter measurement 

Having got the transit instants (UTC1 and UTC2) using the a Irons algorithm , the 
steps between the step 5 and the step 11 of the procedure described in section IV. I are used 
to calculate the Sun diameter. Table 2 and Table 3 give the results for the two chosen sets 
with their corresponding one found at Calern observatory. R is the semi-diameter found by 
the present method and & is that found at Calern observatory. 

Calculated semi-diameter (R) 
(arcsecond) 

Calern Sun semi-diameter (Re) 
(arcsecond) 

959.76 959.57 
960.10 959.66 
960.03 959.41 
959.91 959.68 
959.75 959.38 
959.13 	' 959.76 
958,37 959.70 
958.55 959.50 
959.41 959.44 
959.81 959.60 
960.10 , 	 959.18 
959.35 959.66 
960.41 959.98 
960.57 959.57 

Mean: 959.66 	. Mean: 959.58 

Tab/c 2. Sun diameter of the set of 09109197. 



959.93 95939 
959.86 959.66 
.959.73 959.69 
959.33 959.64 

958.95 959.66 

958.05 959.51 

959.97 959.80 

959.62 958.96 
959.92 	. 959.14 
960.09 959.94 
960.27 959.33 

Mean: 959.61 Mean: 959.52 

Table 3. Sun diameter of the set of 10109197. 

The difference between the mean values of Sun semi-diameter measurements (IR-LI), 
is 0.09 arcsecond for the set of 10/09/97 and 0.08 arcsecond for the set of 09/09/97. Where 

the relative error is 4 . 69*105 for the set of 10/09/97 and 5. 16*l015 for the set of 09/09/97. 
The small difference between the mean values is due meanly to the planetary theory used to 
calculate the Sun ephemeredes. At Calern, they use the VSOP87 planetary theory, where the 
present work uses low accuracy formulae (the accuracy is 0 . 010 in longitude). In addition to 
that, the methods used to process the Sun images are not the same. Figure P1-4 and P1-5 
present the results of the two sets and their deviation from their corresponding mean values. 

The diameter measUrement using the astrolabe is subjected to different error sources. 
One is due in a large part to the fluctuations on the image trajectories that are in one part 
instrument dependent. Fore example the reflected image is more degraded than the direct 
image. Thus, the reconstructed trajectory is less well defined. Mother cause of the magnitude 
of the fluctuations is the small size of the astrolabe pupil. Indeed, the image motion is due to 
the angle formed by the pupil plane with the w..vefront slope all over the pupil [36]. The 

average angle of arrival will cause then a displacement of the image which can be more 
important when the pupil is small [36]. According to the evolution time of the atmosphere 

turbulence [36] and the integration of time of the CCD camera, these effects could be more 
notable for the astrolabe than for other instruments with large pupil. The last effect which can 
be noted is the displacement of the solar image during the acquisition of the data. In fact, the 
astrolabe does not compensate for the diurnal motion of the Earth and so, the solar image 
moves during the integration time of the CCD camera. Consequently, the solar limb function 
is smoothed and then, the inflection point is not very well defined [36]. 
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Figure IJC5. Sun semi-diameter results for the set of 10109197. 

The huge data of visual observations at Calern observatory showed a variation of the 
Sun semi-diameter with the heliographic latitude. This variation has revealed that the semi-
diameter is bigger at the royal zone(around 450)  and smaller toward 75° [14]. This effect is 
not up to know put in evidence in the case of CCD observations for the small data that exist. 
Even though, the heliographic latitude for the two sets is calculated and Figure IV-6 and P/-7 
show the obtained results. 
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Figure IV-7. Sun semi-diameter vs heliographic latitude for the set of 1010911997. 

W.5 Error on diameter measurement 

According to the measurement principle, the vertical Sun diameter is a ftinction of the 
difference between the two zenithal distances at the two points of tangency, see Figure J-& In 
this case we cane write, 

= Ji -Idt 	 (IV.2) 
it 

dt) 
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where I) is the vertical diameter, 	is the vertical speed of the Sun, and L and I. are the 
\J!J 

two instants when the Sun crosses the defined Aimucantar. 

The transition instants for the set of 09/09/1997 and the their corresponding vertical 
Sun speeds are summarised in Table 4. Figure IV-8(a) shows the variation of this later along 

the period of measurement. We notice that the vertical speed 	varies between the two 
"WI 

instants of tangency and the interval time between them is not constant. The variation period 
between the two instants is represented by Figure JV-8(b). Table 5 and Figure IV-9 illustrate 
the same thing for the set of 10/09/1997. 

The tangency instant(F1T4:MIM:SS,SSS) The vertical Sun speed (arcsecondlsecond) 

6:59:04.340 9.566 
7:02:04,490 .9.504 
7:27:48,206 8.872 
7:30:53,116 8.783 
7:57:22,011 7.897 
8:00:34,622 7.774 
8:19:01,000 6.998 
8:22:21,776 6.844 
8:45:00,700 5.695 
8:48:35,854 5.496 
9:09:36,963 4.241 
9:13:32,660 1990 
9:41:25,668 2.101 
9:46:06,444 1.771 
13:12:36,557 1.752 
13:17:17,369 2.082 
13:45:09,590 3.970 
13:49:05,092 4.221 
14:10:05,387 5.476 
14:13:40,426 5.675 
14:36:18,420 6.825 
14:39:39,038 6.979 
14:58:04,508 7.756 
15:01:16,960 7.880 
15:27:44,242 8.767 
15:30:49,014 8.856 
15:56:30,808 	 . 9.491 
15:59:30,709 9.553 

Table 4. The vertical Sun speed variation during the period o,fn,easurernent, 
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Figure JV-8. (a) Vertical speed variation during measurement. (b) Variation of the time penS between the two instants of 
tangency. 

The tangency instant(HH:MM:SS,SSS) The vertical Sun speed (arcsecondlsecond) 

7:00:14,307 9.529 
7:03:14,815 9.466 
7:29:02,748 8.822 
7:32:08:360 8.732 
7:58:44,076 7.833 
8:01:57,737 7.708 
8:46:43,364 	. 5.602 
8:50:20,792 5.400 
9:11:37,334 4.129 
9:15:36,586 3.875 
9:44,02,718 1.963 
9:48:51,162 1.629 
13:42:23,580 3.855 
13:46:22,680 4.109 
14:07:38,582 5.380 
14:11:15,683 5.581 
14:34:05,170 6.745 
14:37:27,217 6.902 
14:55:59,333 7.690 
14:59:12,853 7.815 
15:25:47,219 8.716 
15:28:52,575 8.806 

Table 5. The vertical Sun speed variation dun'ng the period of measurement. 
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From the spherical triangle equations we can get the expression of c/t. It is given by, 

dz 
- = sin(a)cosØ 
dt 

(IV3) 

where a is the azimuth and 0 is the latitude of the measurement place. So the diameter is 

given by replacing 	by its expression given by JV-3 in the equation TV-2, we get, 
di 

Dr = —cosØ(cosa(/.,) - cos(aQ3) 
	

(JV.4) 

The error on the diameter measurement is, 

AD = cos(Ø)[sin aQ,)A14 + sin(a(1 1  )Ai 1 
	

(IV.5) 

For the sequence of 09/09/1997 the mean error on diameter measurement is found to 
be equal to 0.0345 arcsecond that is 0.0172 arcsecond for the semi-diameter, and 0.0341 
arcsecond on the Sun diameter for the set of 10/09/1997, that is 0.0170 arcsecond for the 
semi-diameter. From the two result sets the value of the Sun semi-diameter is: 

959.64 ± 0.02" 

IV.6 Measurement quality with CCD astrolabe 

in visual observations it was not easy to observe the atmospheric effects at the moment 
of observation. With the introduction of CCD astrolabe, it becomes possible to estimate this 
effect using the numerical data. 
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IV.6.1 Atmospheric effects: r0  measurement 

The parameter that describes the seeing atmospheric quality is the Fried parameter 
noted generally rO. D.L. Fried introduced it in 1966 [28]. This parameter is based on the size 
of the coherence areas of the disturbed wavefront arriving at the entrance of the instrument 
pupil. Its expression integrates the constant of the structure fluctuation of the air refraction 

index C 2 (h) of the atmosphere thickness traversed by the incident rays. It is written as 

—3/5 1 

	

ro =[16 . 72 2(cosn 'JCn° (h)dh 	 (IV.6) 
U 	 J 

Where X is the wavelength of observation and ' is the zenithal distance [28]. 

Another similar formula for 10 directly related to the angle-of-arrival fluctuations Cs IS 

given by the following expression [33,34], 

rO =8.2510 5 D "2 
6 15 ( 2 )  -3/5 

=K(a5 2 ) 	 (IV.7) 

where Cs IS the spatial fluctuations presented on the solar trajectory images averaged 
over the astrolabe pupil D. It interprets the angle-of-arrival fluctuations. X is the wavelength of 
observation. 

For each passage the Fried parameter is calculated using equation IV.7. Table 6 gives 
the Fried's values found from the two sequences for each passage. 

Sequence Number Fried parameter in mm for the 
set of 10/09/1997 

Fried parameter in mm for the 
set of 09/09/1997 

79.69 21.73 
2 80.79 27.03 
3 61.56 53.92 
4 62.76 37.10 
5 48.05 48.84 
6 4137 42.72 
7 18.89 62.58 
8 29.64 25.99 
9 23.34 40.78 
10 17.35 31.22 
11 23.86 36.30 
12 37,35 
13 36.03. 
14 46.05 

Mean r0  is 44.3 mm Mean 10 is 33.48 mm 

Table 6: The Friel parameter for the two sets of Sun image.c. 

From table 6 we notice that at the morning of the day of 10/09/1997, the condition of 
observations was good the mean value of the Fried parameter exceed 50 mm. At the 
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afternoon the conditions became less favourable, a value of 17,35 mm of Fried parameter is 

attended. For the set of the day 09/09/97, the atmospheric conditions are stable, and the mean 

Fried parameter is 38.89 mm. Even though , its a small set of data to make a final conclusion 
about the condition of observation at Calern observatory, but the study done by A.lrbah et al 

[36] using the numerical data of the CCD Calern astrolabe between 1989 and 1992 revealed a 

value of 4 cm for the Fried parameter. The situation that reflects the bad conditions of 

observation. 

The Fried parameter value qualifies the quality of observation of a site. Bigger is the 
value of the Fried parameter better are the conditions of observation and consequently precise 
results are obtained. Figure IV-10 and TV-I 1 represent the variation of the error on tangency 
point determination with the Fried parameter for the two sets of Sun images. 
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Its is clear that the error made on tangency point determination decreases with good 
seeing conditions. The error is equal to 0.7 msecond for r 0  equal to 79.69 mm and increases 
up to 2.8 msecond for r0 equal to 1889 mm for the set of 10/09/1997. For the set of 
09/09/1997, the error is equal to 0.95 msecond for to equal to 62.58 mm and increases up to 
4.82 msecond for r0  equal to 15.8 mm. So the error made on tangency point determination is 
strongly linked to observation conditions. From the two sets the mean Fried parameter is 
38.89 mm, which reflects the bad conditions when the observation took place. 

The same result is noticed between the error on diameter measurement and Fried 
parameter. Figure IV-12 and IV-1 3  illustrates this relation for the two sets. We notice that the 
error on diameter measurement with the astrolabe increases with decreasing values of the 
Fried parameter. For example it is equal to 0.02 arcsecond for r 0  equal to 79.7 mm and 
increases up to 0.06 arcsecond for r 0  equal to 17.3 mm for the set of 10/09/1 997. For the set of 
09/09/1997 , the error for example is equal to 0.02 arcsecond for r 0  equal to 62.58 mm and 
increases up to 0.05 arcsecond for r0 equal to 21.73 mm. 
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Figure v-I 3. Variation of the error made on diameter measurement with Fried parameter (the set of 1010911997) 

The error that we make on diameter can be less than that obtained from these two sets, 
if the conditions of observation, characterised by the meteorological state and the 
atmospheric turbulence are more favourable. The last one is a phenomena that is site 
dependent and very complex to model. The idea is to dispose of the observation conditions at 
the moment of measurement in order to moderate the diameter values during their analysis. 
In addition, to be able to make a correlation between the seeing parameters and the diameter 
variations. This is the role of Misolfa that will be installed near the DORaySol of Calern 
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observatory. The operation of the two instruments at the same time will qualify the Solar 
astrolabe measurement by taking into account the transfer function of the atmosphere in the 
image processing. 

At Tamanrasset observatory, there will be no seeing monitor of Misolfa type installed 
near the astrolabe. But, using a powerful acquisition card and an adapted programming of the 
whole acquisition system of the astrolabe could supply the necessary seeing parameters. 
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CHAPTER V ACQUISITION SYSTEM FOR TAMANRASSET OBSERVATORY 

in order to prepare theAlgiers's astrolabeforfuture integration in the ground network astrolabes and to be 

ready for calibration when the microsatellite Picard will be launched in 2006, the old astrolabe, winch is an 
OPL type of Danjon, is currently at Ca/em observatory (France) where it is being transformed to DORaySol 
instrument. After describing theoperation of the global system, this chapter presents the tested methods for 

image acquisition. The selected elements to build the acquisition system and the developed algorithms to 

operate them are presented followed by a description of the global operation of the acquisition system. 

Finally, the results obtained at. the;laboratory, using a simulated Sun image, .from testing the whole system 

are given. 

V.1 The solar astrolabe for Tamanrasset observatory 

The old Algiers's astrolabe is currently in phase of transformation that will touch its 
optical system and its mechanism. The main optical transformation is the replacement of the 
refracting telescope with a reflecting one of a Cassegrain focus configuration of 3.5 m in focal 
distance. In addition it will be equipped with a prism of variable angle. This prism made of 
Zerodur material and with high temperature stability will enrich the data of diameter 
measurement during a day. To be completely automated, the necessary adjustments before 
launching the acquisition will be done via step motors. So, mechanical transformations will be 
effectuated to fix the necessary motors that control the rotation in azimuth, the solar filter 
displacement, the variable angle prism positioning and the optical axis tilt. After the 
necessary transformations, the modified instrument , named DORaySol, that will be installed 
atTamanrasset observatory is shown Figure V.1. 

I 

Figure V.1 DORavSol Instrunienl 

i -Solar f tIter 2- CCD camera 3- Reflecting telescope 4-fired plate 5-Rotating p/are 6- Alercun  bail: 7- prism of variable 

angle 

The proposed instrumental set that will control the acquisition of the Sun images is 
shown in Figure V-2. 



The acquisition of the Sun image is done via the video EureCard Primo piloted by a 
computer. The shutter in rotation permits to acquire one Sun image, either direct image or 
reflected one So, one image of the two appears at a given instant in the field of the objective. 
it is possible to observe the two images simultaneously on the CCD field. This can be done 
by eliminating the rotating shutter. Even though, this method has the advantage of eliminating 
the rotating shutter (the only mechanical piece in movement during the acquisition) and gives 
access to more information, it causes a problem in tangency point determination. Since at the 
moment of tangency, the variation of the contrast is higher so that the saturation of the CCD 
can be reached and consequently the image quality is influenced [N]. 
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Figure 14-2. The instrumental set around TAM astrolabe, 
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The principle of the measurement is to maintain the trace of the direct and the reflected 
images on the field of the objective. This must be done in such a way that the tangency line to 
each one of these two images at their summits is parallel to the horizon (the horizon is 
represented by the columns of the CCD after some adjustments and corrections). When this 
condition is verified, the acquisition process is launched for a set number of direct and 
reflected images.. The time period of this acquisition process must covers the tangency instant 
of the two acquired images. 

V.2 The acquisition method 

The rotating shutter permits to acquire one solar image at a time, either direct image 
or reflected image on the mercury bath each 250 ms. Therefore, we have 250 ms to acquire 
the Sun image, to process it and finally to store it. For this reason, we have to look for the 
method of acquisition that takes the lowest time and use the smallest space memory. So, to 
optimize the acquisition we, 

- Acquire only a window inside the whole image by maintaining only the effective part. 

Since only the displacement of the image along the zenithal distance is important (CCD 
columns), one line over two can be stored. 

One field of the video signal is digitized by controlling the camera mode (one field is 
acquired in 20 ms, and the whole image (two field) in 40 ms). By doing this, the scale 
along X is divided by two, and so, this will increase the curvature of the solar edge. 

The acquired window inside the whole image can be defined by two methods, 

The first method: 

Before the acquisition, four lines are acquired from the whole image presented in the 
image memory. The maximum intensity on each line is determined by derivation and sorting. 
The maximum intensities founded are recorded with their corresponding column numbers. 
From these maximums, we define a window around the point that has the maximum column 
number. After that, the acquisition is launched. 

This method sometimes does not work because it happens that one of the arbitrary 
selected lines fall on a sunspot presented in the Sun image; see Figure V-3. In this case, the 
resulting window is inappropriate and consequently the acquisition will not be the right one. 
In addition, the derivative calculation and the sorting algorithm take an important time, which 
slow the acquisition process. F,laclare and G.merlin have used this method with the CCD 
astrolabe and it was soon abandoned 
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Figure V-3 .A solar image containing sunspots. 

The second method: 

The relation between the horizontal coordinate system and the equatorial one is given 
by the following equations, 

sin 8=sin qcos:—cosçsin zcoa 
cosösinH=sinzsina 	 (V.7) 

=coswcosz+sin Q,sln :cosa 

cosz=sin wsin 8±c6sqcos5cosH 
sinzsina=cosSsinH 	 (V.8) 

sin zcosa=—cossin 8+sinçcos8cosH 
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coss=cosacosH+sinasinHsinw 
sinzcosS=sinQ7cos8—cosqlIsinöcosH 

sinzsins=coswsinff 	 ('.9) 
cosScosS=sinqsinz+cos4coszcosa 

cos45sinS=cos9sina 

Where S is the declination, p the latitude, z the zenithal distance, a the azimuth, H the hour 
angle, and S the parallactic angle. 

Given TH-cz (where a is the right ascension ant T is the sidereal time), we have by 
derivation, 

i dH=dT 

	

&8=da=O 	 (V.10) 

Where a is the right ascension ant T is the sidereal time. 
The equations V.10 assumes that the displacement of the poles and the vernal point 

are negligible. In this case the diurnal motion is reduced to a uniform rotation. 
Differentiating V.8 relations, we get 

I 	sinzdz=cosçocos8sinHdH 

	

sinzcosada±coszsinacfr=cosScosj-JdH 	 (V.11) 
1_si sinada+coszcosadz=sinqcos5sinJJcJH 

The first relation in V-10 with the help of V.8 and V.9 relations can be written as: 

j =cosqsina=cosssins 	. 	 (V.12) 

The two last relations in V-I 1 give daldT by eliminating dzldT 

sinz=coscosacosH+sinasinq,sinR) 	 (V. 13) dT 

The expression between parentheses is cos S that lets us writing, 

(V.14) OF sinz 

The zenithal distance z and the azimuth a are calculated from the ephemeredes and the 
coordinates of the astrolabe. 

Since the acquisition of each image is done each 0.25 sec, we can calculate then the 
trajectory of the two images in the field of the matrix CCD during this period of time. The 
acquisition of the direct and the reflected images is realized alternatively. Two successive 
positions of the same image are separated by an interval of 0.50 sec. So, the necessary time 
for a Sun image to cross the CCD matrix can be deduced and the starting position and the 
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ending one of the solar edge on each trajectory can be foreseen. We can then position the first 
image in such a way that the intersection of the two trajectories is situated as close as possible 
to the center of the CCD matrix. Figure V4 shows a trajectory details of one of the two 
acquired Sun images during each Sun transition. The method consists to acquire alternatively 
two symmetrical windows each 0.25 sec. 

- - - Figure V-I. Apparent mo'emeni of the Sun on the CCLI frame. 
da the displacement in azimuth in 0.5 sec, dr the displacement in zenithal distance in 0.50 sec. DA the total displacement in 

azimuth. DZ the total displacement in zenithal distance, 1,2,3, positions of successive images. 

This method is faster than the first one and it is not affected by the image 
characteristics. The only thing that we need to have is a program that calculates the Sun 
ephemeredes in real time. For these reasons, this method is chosen to be used for Sun image 
acquisition. The Sun displacement on the CCD frame depends on the daily Sun speed variation 
that governs the number of measurements per day. Faster the Sun displacement greater the 
number of Sun diameter measurement. The Sun speed variation depends on the day time, on 
the seasons and on the geographic coordinates of the astrolabe. 
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Figure V-S. Zenithal distance variation of the fist day of Mars 2001. 
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For all the days, the variation of Sun zenithal distance during a day looks like Figure 
V-S that represents the zenithal distance variation of the first day of Mars 2001 using the 
equation V.6. For example, the mean variation of zenithal distance is 1 1".24 per second of 
time in Mars and 11".18 per second of time in July. 

The Sun moves on the CCD frame in azimuth and height. The variation of the azimuth 
looks like Figure V-6 that shows the variation of the azimuth of the first day of Mars 2001 
using the equation V.7. The mean variation of the azimuth is 9".29 per second of time in 
Mars and 9".97 per second of time, in July. 
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Figure V-6. Azimuth variation of the fist day of Mars 2001. 

V.3 The CCD camera 

The solar astrolabes are up to now equipped with black and white CCD cameras. These 
Cameras are selected for their easy use and their low cost. The selected camera for 
Tamanrasset astrolabe is the COHU 4710. It is a Frame Transfer mode camera with 699(H) x 
576(V) pixels. Each pixel is of 9.2x8.4 lun in dimension. Its output video is digitized on 8 
bits by an analog to digital converter that gives a digitized images on 256 gray levels. 

The field covered by the CCD camera is function of its dimension and the focal 
distance of the telescope on which it is mounted. Its expression is given by the following 
formula, 

sidesofC D(mm) 10. 
Field =arctan[ 	 I 	. 	 (VI) 

Jbacl(m) 

Using this equation, the field covered by the COI-[U 4710 CCD is - 6'.3 on the 
horizontal direction and - 4' .8 on the vertical one. 

The resolution limit that we can attend with an astrolabe is determined by the telescope 
diameter, the intrinsic quality of the image and the sampling frequency [41]. The first 
limitation is due to diffraction phenomena, the second one to the atmospheric turbulence and 
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the third one to the sampling rate of the CCD detector. The sampling step represents 

the angular portion of the sky seen by the CCD pixel, its expression is given h \.  

Sampling 
= 	{pixe/(um).l0 o\ 

foca/(m) J 
If the sampling step is in arcsecond per pixel. the pixel dimension in microns and the focal 
length in millimetres, the formula of the sampling step is written as, 

Sampling (seconds arc/pixel) 206 	 (V.3) 

Where P is the pixel dimension in jim and F the focal length of the telescope in mm. 

The resolution limit imposed by a telescope of diameter D and a wavelength of 

observation X is given by, 

R m  —AID 	 (V.4) 

1ff is the focal length of the telescope, the resolution limit in this case is given by, 

R rnas  =f.AID 	 (V.5) 

To recover the optical signal , 
we have to verify the Shannon condition. So, the 

optical signal must be sampled by a sampling rate Ae such that the following condition is 

satisfied, 

Ae:~ RmaxI2 	 (V.6) 

The astrolabe of Tamanrasset will be equipped with a telescope of 10 cm in diameter 
and 3.5 m in focal distance. in addition, since the same optical system as that of Calerri 
astrolabe will be used, the wavelength of observation is 550 run . Using these characteristics, 

the resolution limit is 1.14 arcsecond (38.5 pm). in this case, the sampling step must be less 

or equal to 0.57 arcsecond (19.25 pm). 

Using equation V.2, the sampling step is 0.5421 arcsecond along the vertical direction 
of the CCD and 0.495 arcsecond along the horizontal one. The characteristics that justify the 

choice of the COHU CCD camera. 

V.4 Time reference system 

The time accuracy in the experiment is the most important factor, since any error or 
instability will affect all the experiment. At Calern observatory, the solar astrolabe uses the 
Universal Time Coordinate provided by the time service to date the acquired Sun images. 
Since this kind of service does not exist at Tamanrasset observatory, we have to find a 

118 



solution to overcome this lack. For this, we have selected a time reference system based on 

Navigation System Satellite, the GPS (Global Positioning System). Its is a GPS ISA TIME 
that furnishes time with a precision of 130 ns with respect to the universal time. Figure V-7 
shows its block diagram. 

An active antenna with an RG58 type cable is used to receive the GPS carrier (1575,42 

Mhz). The card is equipped with a real time clock and the geographical data (latitude, 
longitude) are stored in an FEPROM memory. According to these geographical and temporal 
data, the card chooses the best situated satellites and shorten its time of calculation. In case of 

losing the GPS signals, the time base of the card varies according to the stability of its 
oscillator. This stability is 173 ms during 24 hours. The meteorological conditions have only a 
weak irifluence on the delays of the propagation of the GPS signals. A software program 

written in C language is used to detect the GPS card and to access the stored data in real time. 

Figure V-7. The time reference for Tamanrasset Observatory Astrolabe. 

The following steps illustrate the algorithm of the software program, 

Stepi: Reading of the base address according to the switch setting on the GPS card. 

Step2: -Test the operating mode as follow: 
Timetest=Port[base address];if bitl=1, the time is valid (the GPS is working), if 0 the 
card works on its internal base time. 
-Reading the date, 

Year=Port[base address]. 
Month=Port[base address+1]. 

Day of the month and the day of week=Port[base address±2]. 

Step3: Reading the time-of day, 
Hour=Port[base address+3]. 
Minute=Port[base address-i-41. 
Second=Port[base address+5]. 

Thousandths of second=Port[base address+6]+Port[base address+7] 
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V.5 The System Timing Controller 

The atmospheric refraction measurement is necessary in Sun semi-diameter 

determination. So. the humidity. the atmospheric pressure and temperature must be measured at 
the moment of observation For this a PC-Tb- 10 board is chosen to get for the first time the 

day time with high precision and to provide a future interface for the humidity, pressure and 

temperature sensors. 

The PC-TI0-10 is a timing and a digital 110 board around two System Timing 

Controllers (STC, Am9513A and the Am95I3B integrated circuits) and one MC6821 
integrated circuit. The Am9513A is a general-purpose counter/timer with five 16-bit, 
individually controlled counters and a 4-bit frequency-scaler output. The MC6821 is a 16-bit, 
bit-configurable, digital I/O device with two interrupt inputs that are edge-programmable. The 
STCs are the hearth of the PC-Tb-b. These chips have five individually controlled 16-bit 
counters. The STCs have independently controlled frequency-scaler outputs. They are clocked 

by an onboard 1 MHz crystal oscillator to give 1 psec timing resolution. In addition, 

SOURCES and SOURCE10 are clocked at 5 MBz to give a resolution of 200 nsec [37]. 

Figure V-8 presents the block diagram of PC-TIO-10 that illustrates its key functional 
components [37]. 
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Figure VS. The PC-TIO-10 block diagram. 
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V.5.1 Time of day generation with the Am9513A 

For Tamanrasset Observatory Astrolabe (TOA), the Am95I3A is used to get the time-
of day with a precision of 1/1000000 of sec. The bits MMO and MMI of the master mode 
register control the time counting of the day in the Am9513A [37]. When these bits are set to 
01, 10, or 11, logic on the counters 1 and 2 are enabled to cause the counters to roll over at the 
counts required for time-of day accumulation. 

Figure V-9 represents the configuration used to get the time-of day for TOA. 

Figure V-9 The time-of day coujiguration for Tan,anrasser Observaton'. 

The time-of day circuitry requires a special initialization sequence. The following steps must 
be performed: 

Set the Master Mode register and then the Counter Mode registers to the desired values. 

Initialize the used counters to zero. 

Set the Load registers of the used counters to the current time. 
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4-Start the counting process by writing the arm control word to the Am9513's Command 

register. 

In the current application where high precision of time is required, the initialization 

time is loaded somewhat later than the current time. In addition, the arming process of the 
Counters is delayed until the current time matches the loaded one from the GPS card. The 
reading of time from the registers used in the configuration (Figure V-7) can be done each 
time by issuing a save word command to the three counters. This result in a transfer of their 

contents to the corresponding holds registers. The time can be then read without disturbing the 
time-of day process. For a speed reason, a software program written in assembly language is 

performed to initialize and read the current time. 

V.6 The acquisition card 

Figure V-10 presents the block diagram of the Eurecard Primo hardware structure used 

for Tamanrasset Observatory Astrolabe [38]. 
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Figure V-JO. EureCard Prima Block Diagram. 

The EureCard Primo's main processor is a Graphic System Processor (GSP). Its main 
features are: 60 MHz clock frequency, 16 bits local data bus, 30 32-bit internal registers, 
instruction cache memory, pipelining. It provides direct access from the PC to the 

EureCard Primo. 

A 512-Kbytes system memory is used to store programs and data used by the GSP. 

A 512-Kbytes image memory ( one 8-bit, 512 x 10124 plane) used to store images 

acquired and processed by the EureCard Primo. 

The video input samples and digitizes the signal coming from one of the four cameras. 

122 



ii .  

- The video mixer mixes the image generated by the EureCard Primo with the image 
coming from the PC. 

- The video output is a triple digital to analogue converter and a set of associated circuits. It 
processes the video signal send to the VGA monitor. 

TOA: The following algorithm illustrates the EureCard Primo configuration used for the 

EureCard Primo detection. 

Set the monitor configuration to dual mode. 

Set the trigger event output to a logical positive edge. This input line is connected to 
the output line of the rotating shutter. 

Initialize the acquisition to continuous mode. 

Set the first input channel to which the COHU camera is connected. 

Set the antialiasing filter, the gain, the offset and the Input Look Up Table of the input 
module to the appropriate values (see Annex 6). 

Set the first input channel for input synchronization. 

Set the pause time waited for after the trigger signal to 0 sec. 

Set the number of fields to skip before grabbing starts to zero, and the number of field 
to grab to 1. This step is illustrated by the following timing: 

video field 

--L* ---- 
I 

 - 

	

f 	I- 
delay: 

VIN GRAB PAUSE 	 VIN GRAS DELAY 	 VIN GRAB DURATION 

	

Trigger Event 
	7IN

_____
AB SYNC

xt field 
xt even field 
xt odd field 

Figure V-Il. Steps of Grab Process. 

The logical steps of the acquisition program is shown bellow, 

I- Initialization of the three cards (EureCard Primo, GPS card, PC-TIO-10 card). 

2- Set the PC-TIO-I0 to the current time using the GPS card. 
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Position calculation. Wait for a top signal from the rotating shutter. 

Read the time and acquire the presented image in the image memory(direct or 
reflected). Wait for a top signal from the rotating shutter. During this waiting state, we 

process the image by the a irous algorithm, calculate the summit of the parabola used 

for approximation and finally store the whole in the ramdrive . When the top signal 

of the rotating shutter is presented , this step is repeated from the beginning to acquire 

the second image. 

Step 4 is repeated 100 times. 

Stop the acquisition (the acquired image sequence defines the first passage). 

Position calculation. Wait for a top signal from the rotating shutter. 

Read the time and acquire the presented image in the image memory(direct or 
reflected). Wait for a top signal from the rotating shutter. During this waiting state, we 

process the image by the a trous algorithm, detect its edge, calculate the summit of 

the parabola used for approximation and finally storethe whole in the ramdnve. 
When the top signal of the rotating shutter is presented , this step is repeated from the 

beginning to acquire the second image. 

Step 8 is repeated 100 times (the acquired image sequence defines the second 

passage). 

Stop the acquisition and store the acquired image sequences and the corresponding 
edges in the hard disk. Preparation for the next diameter measurement. 

When the proposed instrumental set will be installed around the astrolabe, it will permit 
us to, test the overall system in operation. According to the tests done in laboratory, the 

acquisition time of a window image of 101x256 pixels is 50 msec. Since the rotating shutter 

that launches the acquisition makes 250 ms to complete one turn, so we have 250 ms to 
process the image, to detect the Sun edge and to calculate the summit point of the parabola 

used for the approximation. The laboratory test, using a computer of 350 Mhz, shows that the 

necessary time to perform these functions is 125 ms. This time can be decreased if we use a 
faster computer, since the acquisition process depends on the used grabbing card in one way 
and on the speed of the computer in the other way. After each complete Sun transition and 
before starting the next semi-diameter measurement, the steps to calculate the Sun semi-

diameter can be performed. 
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CHAPTER VI CONCLUSION AND PERSPECTIVES 

VI.1 Conclusion 

Sun semi-diameter is one of the important quantities in astrophysics and astronomy 
domains. It is measured since 1666 by many astronomers and using different instruments. 
L'astrolabe with its principle, is one of the precise instruments in astrometry. In its solar 
configuration, it has furnished the most lengthy series of Sun diameter measurement at 
Calern observatory. These measurements were the object of many studies. The interpretation 
of the obtained results are always difficult. This difficulty is at least due to two main reasons, 

. The observed solar edge has not a precise definition and the stability of the 

observer response was not stable. 

• The study of the effects of different phenomenon (atmospheric, instrumentals) 

on the measurement was not well known due to the lack of information. 

In order to improve the Sun diameter measurement, a new generation of Solar 
astrolabe. named DORaySol, is designed. This automatic instrument provides the observation: 
in different wavelengths. In addition, the introduction of the prism of variable angle permits 
the acquisition of a huge data set per day, if the methodological conditions were favorable. 
The use of a CCD camera permits also the estimation of the atmospheric effects on Sun 
diameter measurement at the moment of observation. After a precise and an automatic 
instrument exists, the next step is to observe the Sun at lower latitudes and having the best 
site where the conditions of observation are favorable. To be integrated in the international 
network of astrolabes, the ancient solar astrolabe of Algiers observatory (Centre de 
Recherche en Astronomie Asrophysique et Geophysique) is currently in phase of 
transfOrmation to DoraySol instrument. 

In the present work, after the presentation of the principle of Sun diameter 
measurement, the methodology of observation using the ancient and the new generation of 
solar astrolabes, several techniques and algorithms are developed and tested in order to be 
ready for their installation around the solar instrument of Tamanrasset observatory. 

VI.1.1 Meteorological study of the site of Tamanrasset observatory 

Meteorological conditions are important where the solar astrolabe is installed. For this 
reason a meteorological study of Tamanrasset site has bee done. This study consisted in 
evaluating the variations of the atmospheric pressure, temperature, nebulosity, humidity, 
and wind speed. These quantities are important to qualify the site for the present and future 
astronomical observations. The study used the data gathered during 1998, 1999 and 2000. 

The results have shown a mean humidity of 20.5%, a mean atmospheric pressure of 
866.4 lip, a mean nebulosity of 2 octas, a mean temperature of 22.8 °C. and a mean wind 
speed of 3.7 rn/s. This preliminary study showed that Tamanrasset observatory would be a 
favorable place for this type of observation. In addition, the study of the Sun trajectory over 
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the site showed that the location of Tamanrasset observatory allows the collection of huge 
data sets of Sun diameter measurements that can exceeds 4000 diameter per year. 

V1.1.2 Sun image processing 

The principle of Sun diameter measurement with the CCD observation is based on the 

best method to extract the solar edge from the acquired digital images. Since the main 
information is contained in the Sun edges, the techniques used to process the Sun images 
must be capable to maintain this information during the whole image processing. Generally 
the Sun images present sunspots, the non-stationary defects, that must be localized and 

eliminated before edge detection and without affecting the Sun edge resolution. The chosen 
method is the wavelet transform, the technique that permits the analysis of a signal 
simultaneously in time and frequency. 

VI.1.2.1 Algorithms to implement the wavelet transform 

Two algorithms to process the Sun images are used to implement the wavelet 
transform. These two algorithms are. 

The "a trous" algorithm using the wavelet of Mexican Hat. Since this wavelet has 
not an associated scaling function, two interpolations of this later are tested, the 
linear interpolation and the B-spline interpolation. 

The Maltat algorithm using the wavelet of Daubechies of order 3. 

The comparison between the two algorithms, using a real Sun image acquired by the 
CCD astrolabe of Calem, showed that the obtained results from the two are comparable. The 
main difference between the two algorithms is the execution time. With the "a trous" 
algorithm, one filter is used for image decomposition, there is one approximation image and 
one detail image at each resolution step and the dimension of the processed image remains 
the same during the decomposition process. With Mallat algorithm, two filters are used for 

decomposition and the reconstruction of the processed image, at each step of decomposition 
there is one approximation image and three detail images and the dimension of the processed 
image decreases with the number of the resolution steps. Since at the solar astrolabe, we 
acquire one image each 250 ms, we have to look for the algorithm that takes less time, since 
our objective is to work in real time. So, the chosen algorithm is the "a trozis" algorithm that 
uses the Mexican Hat wavelet ant the B3-spline interpolation for the scaling function. 

VI.1.2.2 Edge extraction of the Sun image 

Before the edge extraction , the Sun images are processed in order to locate and 
eliminate the sunspots and the optical defaults. The elimination method is done by processing 

the detail images where the signatures of these spots are present. The process consists to 
apply a thresholding on the wavelet coefficients of the first detail. The threshold value is 
chosen so that the wavelet coefficients of the detail image are reduced to the noise leveL 
This value is chosen equal to ± 3sigina, where sigma is the standard deviation of the detail 
wavelet coefficients. 
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Even after the spots elimination, there are always a residual noise and a residual 

signatures of the eliminated spots in the image. In order to increase the signal to noise ratio, 

the detail images must be filtered before the final reconstruction of the processed Sun image. 

For that reason, two methods are tested, the method of thresholding and the method based on 

filtering. Concerning the fist method, tests have shown that the choice of the threshold value 

is delicate, since, if the threshold value is not adequately chosen, the thresholding process will 

modify simultaneously the coefficients that intervene in the edge definition. So, to overcome 

this difficulty, we have decided to use the second method and several filters are tested. All 

the filters are of rectangular low pass types. The comparison between the tested filters 

showed that the low pass filter with coefficients ( ¼ ½ ¼ ) in one dimension is the most 

appropriate one. 

Due to the 

> Atmospheric turbulence. 

> No correction of the diurnal motion using the solar astrolabe. 

> Long integration time of the CCD camera (20 ms). 

the edge of the acquired images is not sharp and extends over more than 10 arcsecondk at 

Calern observatory. The classical methods of edge detection are applied to extract the edge of 

the processed and the cleaned Sun images. The results have showed that the edge is not well 

detected and fluctuations of the extracted edge, with some corrections, around the parabola 

used for its approximation are considerable. For example, the Sobel in et/zod gives a standard 
deviation of 3.28 arcseconds, that of Laplacian a sigma of 7.69 arcseconds and those of 
Dericli and Canny give a close sigma value of 1.26 arcseconds. For that reason three 
methods are developed to extract the edge with high precision. The comparison between the 

three methods, using a real and a cleaned Sun image, revealed that the method based on the 
second derivative is the appropriate one. With this method, the fluctuations of the extracted 

edge points after being smoothed by a median filter and approximated by parabola, is 0.43 
arcseconds, a value that is less than the pixel resolution (0.74 arcseconds). 

VI.1.2.3 Tangency point determination 

The tangency point determines the transition instant where the upper edge or the 

lower edge of the Sun crosses the defined height circle. It is defined by the intersection of the 

two Sun trajectories (direct trajectory and reflected trajectory) on the CCD frame. The CDD 

lines (X) define the displacement of the Sun azimuth and the CCD columns (Y) define the 

displacement of the Sun zenith. In practice, the CCD is never well positioned and there is 

always an inclination with respect to the horizon. This inclination must be evaluated and the 

value of the transit instants corrected. The computation showed that this correction is 

generally small. It is found to be of the order of 4 to S ins for a mean inclination of the CCD 

lines of 20 arcsecond and a mean separation in X of 20 pixels (22 arcseconds). 
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\'I.1.3 Sun diameter measurement 

The developed programs to process the Sun images and the procedures to calculate 

the Sun diameter are tested. This test is done using two selected sets of Sun images acquired 

by the Solar CCD Astrolabe of Calern (France) dunng the year of  1997. One is dated to 

09/09/97 and the other one to 10/09/97. These sets contain an even number of sequences. 

Each one is a series of one hundred images of 101x256 pixels in dimension( 50 reflected 

images, and 50 direct images). 

The results of the measured apparent Sun semi-diameter, showed a mean value of 

959".66 for the set of 09/09/97 with an error equal to 0.02" and 959'61 for the set of 

10/09/97 with an error Of 0.02" The difference between the found mean values and those of 

Calem is 0.09 arcseconds for the set of 10/09/97 and 0.1 arcseconds for the set of 09/09/97. 

This difference is mainly due to the planetary theory used to calculate the Sun ephemeredes. 

At Calern , they use the \'SOP87 planetary theory, where the present work uses a low 

accuracy formulae (the accuracy is 0.01° in longitude), in addition, the methods used to 

process the Sun images are not the same. - 

The mean value of Sun semi-diameter ( R) from the two sets is: 

R= 959'64±0.02 ' 

VI .1.4 Atmospheric effect measurement 

The study of the atmospheric turbulence, characterized by the Fried parameter using 

the two sets showed a mean value of r0 equal to 38.89 mm , the value that reflects the bad 

seeing conditions at Calem observatory. Also, a systematic decrease of the error thade on 
diameter measurement and on the transit instants determination with the best seeing 

conditions (Fried parameter) is observed. The error on diameter can be less than that obtained 

from these two sets, if the conditions of observation, characterised by the meteorological 

state and the atmospheric turbulence were more favorable. 

VI.1.5 instrumentation 

The studied and the selected instrumentation that will be installed around Tamanrasset 

astrolabe is made of an EureCard Primo for acquinng the Sun images, a GPS card for time 

reference and the PC-TIO-10 card for dating the acquired images. The developed programs 

that pilot these cards are tested in laboratory. using a computer of 350 Mhz and a simulated 

Sun image. The tests showed that the required time to acquire an image of 101x256 pixels in 

dimension , to process it (elimination of sunspots and filtenng the residual noise), to detect its 

edge and to calculate the summit point of the parabola used for approximation is 175 inset. 

This allow us to work in real time, since each 250 ms we have one Sun image present at the 

focal plane, either direct or reflected. 
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VI.2 Perspectives 

The Sun is currently one of the most studied celestial body in astrometry Due to the 

technical advancement and scientific developments during the last years, many 

measurements with high resolution will be available to response to various questions that the 

results of the measurement ask. The simultaneous studies of all the solar parameters, that the 

observation can access, are necessary. 

Many ground CCD astrolabe measurements are operating in different regions in the 

world, we can name that of Calern (France), Feira de Santana(Brésil), Malatya (Turquie), 

Rio de Janeiro (Brésil), and San Fernando (Espagne). With ground measurement , the 

knowledge of the seeing parameters is primordial to improve the accuracy of the solar 

diameter. The optimum solution up to know is to perform this type of measurement out of the 

atmosphere. It is why the French Agency CNES scheduled the launch of a microsatellite 

(PICARD) in 2006 with its own program of measurements. In addition to its measurement of 

the solar diameter with an accuracy of a hundred times better than what is done on the ground, 

the differential rotation, the irradiance and its variations will be measured. So, with Picard 

and its replica on the ground, Sodism II and the seeing monitor (Misolfa) , all operating 

simultaneously, will permit the calibration of the ground astrolabes. 

At Tamanrasset observatory, there will be no seeing monitor of Misolfa type installed 

near the astrolabe. But, using a powerful acquisition card and adapted programming could 

supply the necessary seeing parameters. Finally, the installation of the designed 

acquisition system around the astrolabe of Tamanrasset, the whole automation of the 

instrument, will permit to integrate our astrolabe in the ground network and calibrate it when 

the Picard microsatelite will be launched. 
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ANNEX 1 

Meteorological study of Tamanraset Observatory 

Tamanrasset observatory is built in 1932, and it is 2000 km far from the capital of 
Algeria. Its geographic coordinates are 22.792 ° N in latitude and 5.527 ° E in longitude, and 
it has an altitude of 1370 m. It is considered as one of the important International 
Observatories in the world. Its emplacement makes it an important site for many geophysical 
and astronomical applications. For the case of astronomy, Tamanrasset site is chosen as one 
point of the solar diameter measurement network. 

The present meteorological study of Tamanrasset site consists in studying the 
variations of the atmospheric pressure, the temperature, the nebulosity, the humidity and the 
wind speed. These quantities are important to qualify the site for the present and ifiture 
astronomical observations. The study extends over three years 1998, 1999 and 2000. 

1.1 Humidity 

It is defined as the quantity of the water in the air. It is measured in percentage (%):,. 
a dry air corresponds to 0 %, and a saturated air corresponds to 100%. 

1.2 Atmospheric pressure 

It is defined as the weight of an air column from the top of the atmosphere to the 
Earth surface. It is measured in hecto-pascal. 

1.3 Nebulosity 

The total nebulosity is defined as the fraction of the celestial globe covered by a set 
of the visible clouds. The nebulosity is estimated visually and measured in Octas, a sky 
which is three fourth covered by the clouds have a total nebulosity of 6 octas. A clear sky 
corresponds to a nebulosity of o octas, and a sky totally covered corresponds to a nebulosity 

of 8 octas. 

1.4 Wind speed 

It is measured in meter per second (mlsec). 

1.5 Temperature 

The temperature is measured in Celsius degrees (°C). 

1.6 Recording data process and comparison 

The parameters, the pressure, the humidity, the temperature, the nebulosity, the 
direction and the wind speed are recorded eight times each day (at 00 hr, 03 hr, 06 hr, 09 hr, 
12 hi, IS hr, 18 hr, 21hr). The comparison between these parameters for the three years is 

given bellow. 



1.6.1 Humidity 
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Figure 1.1. Daily mean humidity of each vear.(a) 1998(h) 1999. (c) 2000. 

The year 1998: The maximum humidity is 8 1 % and the minimum one is 
9%. The mean value is 21.18%. 
31.23% of the days have humidity less than 15%. 

The year 1999: The maximum humidity is 85 % and the minimum is 9 %. 
The mean value is 20.56 %. 
35.68 % of the days have humidity less than 15 %. 

The year 2000: The maximum humidity is 87% and the minimum is 9%. 
The mean value is 19.76%. 

48.56% of the days have humidity less than 17%. 
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1.6.2 Nebulosity 
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Figure 12. Daily mean nebulositv of each year. (a) 1998, 'b) 1999. (c) 2000. 

The year 1998: The maximum nebulosity during all the year is 8 octas and the 
minimum is 0 octas. The mean value is 2.84 octas. 
60.96 % of the days have nebulosity less or equal to 3 octas and 29.90 % 
with zero octas. 

The year 1999: The maximum nebulosity during all the year is 8 octas and the 
minimum is 0 octas. The mean value is 2.45 octas. 
66.92% of the days have nebulosity under or equal to 3 octas and 34.38 % 
with zero octas. 

The year 2000: The maximum nebulosity during all the year is 8 octas and the 
minimum isO octas. The mean value is 2.71 octas, 
4.25 % of the days have a nebulosity more than 6 octas and 28.46% with 
zero nebulosity. 
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1.6.3 Atmospheric pressure 
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Figure 1.3. Daily mean atmospheric pressure of each year. (a) 1998, (b) 1999, (c) 2000. 

The year 1998: The maximum atmospheric pressure is 874.4 hp and minimum is 
858.8 hp. The mean value is 966.67 hp. 

The year 1999: The maximum atmospheric pressure is 872.3 hp and the minimum 
is 858.1 hp. The mean value is 966.00 hp. 

The year 2000: The maximum atmospheric pressure is value is 874.3 hp and the 
minimum is 857.7 hp. The mean value is 966.54 hp. 
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1.6.4 Temperature 
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Figure 1.4. Daily mean temperature of each year. (a) 1998,(b)  1999, (c) 2000. 

The year 1998: The maximum temperature value is 38 °C and the minimum is 1.5 °C. The 
mean value is 23.00 °C. 

The year 1999: The maximum temperature is 36.6 °C and the minimum is -I °C. The 
mean value is 22.69 °C. 

The year 2000: The maximum temperature is 38.5 °C and the minimum value is 0.5 °C. 
The mean value is 22.60 °C. 
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1.6.5 Wind speed 
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Figure 1.5. Daily mean wind speed of each year. (a) 1998, (b) 1999, (c) 2000. 

The year 1998: The maximum wind speed is 17 m/s. The mean value is 3.78 mIs. 
35.03 % ofthe days have a wind speed less than 3 m/s and 33.22 % 
of days with no wind. 

The year 1999: The maximum wind speed is 18 m's. The mean value is 3.74 m/s. 
49.42 % of the days have a wind speed less or equal to 3 m/s and 
31.99 % ofthe days with no wind. 

The year 2000: The maximum value is 21 m/s. The mean value is 3.44 m/s. 
52.84% of the days have a wind speed less than 3 m/s and 36.17% with 
no wind. 
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ANNEX 2 

2.1 Spherical trigonometry 

A great-circle arc is the analogue of a straight line. Where two such arcs intersect, we 
can define the spherical angle. A spherical triangle is made up of three arcs of great circles all 
less than 1800.  The sum of the angles is not fixed, but will always be greater than 180°. 
Consider a triangle ABC on the surface of a sphere with radius = 1 [39]. 

Let OXYZ be a system of rectangular axes, 

o is at the centre of the sphere; 
OZ passes through A; 
OX passes through arc AB (or the extension out); 
OY is perpendicular to both. 

Figure 2- / Celestial sphere. 	 Figure 2-2. Celestial sphere after pole movement. 

The coordinates of C in this system are, 

x = sin(b) cos(A) 
y = sin(b) sin(A) 	 (2.1) 
z = cos(b) 

Now we create a new set of axes by keeping the y-axis fixed and moving the 'pole" from A to 
B; see Figure 2.2. 

The new coordinates of C are 

= sin(a) cos(180-B) = - sin(a) cos(B) 
= sin(a) sin(l80-B) = sin(a) sin(B) 	 (2.2) 
= cos(a) 

The relation between the old and new system is simply a rotation of the x,z-axes through the 
angle c, 

= x cos(c) - z sin(c) 
y'=y 	 (2.3) 
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z '=  x sln(c) + z cos(c) 

That is: 

sin(a) cos(B) = sin(b) cos(A) cos(c) - cos(b) sin(c) 
sin(a) sin(B) = sin(b) sin(A) 	 (2.4) 

cos(a) = sin(b) cos(A) sin(c) + cos(b) cos(c) 

The first relation in (2.4) is the transposed cosine rule. 

The second relation gives the sine rule. Rearrange this later, we have: 

sin(a)/sin(A) = sin(b)/sin(B) 
	

(2.5) 
Similarly, 

sin(b)/sin(B) = sin(c)/sin(C), etc. 	 (2.6) 

So the sine rule is usually expressed as: 

	

sin(a)/sin(A) = sin(b)/sin(B) = sin(e)/sin(C) 	 (2.7) 

The third relation gives the cosine rule: 

	

cos(a) = cos(b) cos(c) + sin(b) sin(c) eos(A) 	 (2.8) 
and similarly: 

	

cos(b) = cos(c) eos(a) + sin(c) sin(a) eos(B) 	 (2.9) 

	

cos(c) = eos(a) cos(b) + sin(a) sin(b) cos(C) 	 (2.10) 

2.2 Earth rotation and the equatorial coordinates 

By the standards of modem astrometry, the Earth is quite a wobbly platform from 

which the sky is observed. The Earth's rotation rate is not uniform. Its axis of rotation is not 

fixed in space, and even its shape and relative positions of its surface locations are not fixed. 

For the purposes of pointing a telescope to one-aresecond accuracy, we need not worry about 

shape and surface feature changes, but changes in the orientation of the Earth's rotation axis 

are very important. In a sense, equatorial sky coordinates are a compromise between an earth-

based system and one fixed with respect to distant stars. Right ascension and declination are 

quite analogous to longitude and latitude on the Earth's surface. They share the same polar 

axis and equator, but the sky coordinate grid does not rotate with the Earth's daily spin. 

However, apparent right ascension and declination are not fixed with respect to the stars 

because their coordinate frame follows the motion the Earth's pole and equator. 

In practice, celestial coordinates are tied to observed objects because the location of 

the vernal equinox is hard to measure directly. The B 1950 coordinate grid location is defined 

by the publish positions of stars in the Fourth Fundamental-Katalog (FK4). The J2000 system 

is based on FK5. These catalogs list mostly nearby stars, so any definition of coordinates tied 

to these catalogs is subject to errors due to motions of the stars on the sky. The FK4 equinox 
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is now known to drift with respect to the FK5 equinox by about 0.085 arcseconds per century. 

Currently, the most stable definition of J2000 coordinates is one based on about 400 
extragalactic objects in the Radio Optical Reference Frame. This is heavily biased toward 

VLBI radio sources, but it will soon be tied to many more optical objects by the HIPPARCOS 
satellite. The RORF is stable to at least 0.020 arcseconds per century, and this is improving 
with better observations and a longer time base. The positional accuracy of the set of 400 

objects is about 0.0005 arcseconds. 

For partly historical and partly practical reasons, the time variability of the direction of 

the Earths rotation axis and an observatory's relation to it are divided into four components: 

precession, nutãtion, celestial pole offset, and polar motion. By definition, precession and 
nutation are mathematically defined through the adoption of the best available equations. 
Celestial pole offset and polar motion is observed offsets from the mathematical formulae and 

are not predictable over long periods of time. 

2.3 Precession 

Neither the plane of the Earth's orbit (the ecliptic), nor the plane of the Earth's equator 
is fixed with respect to distant objects. The dominant motion is the precession of the Earth's: 

polar axis around the ecliptic pole. The Earth's axis sweeps out a cone of 23.5 degrees half 

angle in 26,000 years. 

The ecliptic pole moves more slowly. If we imagine the motion of the two poles with 

respect to very distant objects, the Earth's pole is moving about 20 arcseconds per year and 

the ecliptic pole is moving about 0.5 arcseconds per year. The combined motion and its effect 

on the position of the vernal equinox are called general precession. The predictable short-term 
deviations of the Earth's axis from its long-term precession are called nutation. Equations, 
accurate to one arcsecond, for computing precession corrections to right ascension and 

declination for a given date within about 20 years of the year 2000 are: 

RA = RA(2000) + (3.075 + 1.336 * sin(RA) * tan(Dec)) * y 	 (2.11) 

Dec = Dec(2000) + 20.04 * cos(RA) * y 
	

(2.12) 

Where y is the time from January 1,2000 in fractional years, and the offsets in RA and Dec 

are in seconds of time and arcseconds, respectively. 

2.4 Nutation 

Predictable motions of the Earth's rotation axis on time scales less than 300 years are 

combined under nutation. This can be thought of as a first order correction to precession. The 
currently standard nutation theory is composed of 106 non-harmonically-related sine and 

cosine components, mainly due to second-order torque effects from the sun and moon, plus 85 
planetary correction terms. The four dominant periods of nutation are 18.6 years (precession 

period of the lunar orbit), 182.6 days (half a year), 13.7 days (half a month) and 9.3 years 
(rotation period of the moon's perigee). The following approximation for nutation is good to 

about an arcsecond 

delta PA = (0.9175 + 0.3978 sin(R.A) * tan(Dec)) * dL. cos(RA)*tan(Dec)*dE 	(2.13) 

delta Dec = 0.3978 * cos(RA) * dL + sin(RA) * dE 	 (2.14) 
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Where delta RA and delta Dec are added to mean coordinates to get apparent coordinates. The 
nutalions in longitude (dL) and obliquity of the ecliptic (dE) may be computed from the two 
largest terms in the general theory with 

dL = -17.3 * sin(125.0 - 0.05295 * d)- 1.4 * sin(200.0 + 1.97129 * d 	(2.15) 

dE = 9.4 * cos(125.0 - 0.05295 * d)+ 0.7 * cos(200.0 + 1.97129 * d) 	(2.16) 

Where d = Julian Date - 245 1545.0.The sine and cosine arguments are in degrees. dL and dE 
are in arcseconds. 

2.5 Celestial pole offset 

The celestial pole offset is the unpredictable part of nutation. These offsets are 
published in IERS Bulletin as offsets in dL and dE. For telescope, pointing they are not 
important since they are of the order of 0.03 arcseconds. 

2.6 Polar motion 

Because of internal motions and shape deformations of the Earth, an axis defined by 
the locations of a set of observatories on the surface of the earth is not fixed with respect to 
the rotation axis that defines the celestial pole. The movement of one axis with respect to the 
other is called polar motion. For a particular observatory, it has the effect of changing the 
observatory's effective latitude as used in the transformation from terrestrial to celestial 
coordinates. The International Earth Rotation Service definition of the terrestrial reference 
frame axis is called the IERS Reference Pole (IRP). 

The dominant component of polar motion called Chandler wobble is a roughly circular 
motion of the IRP around the celestial pole with amplitude of about 0.7 arcseconds and a 
period of 14 months. Shorter and longer time scale irregularities, due to internal motions of 
the earth, are not predictable and must be monitored by observation. The sum of Chandler 
wobble and irregular compcnents of polar motion are published weekly in IERS Bulletin 
along with predictions for a number of months into the future. 
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ANNEX 3 

Systems of time 

There are two widely used time standards. One is the rotation of the earth, and the 
other is the frequency of atomic oscillations (mainly the cesium-133 atom). The Earths 
rotation is not uniform. Its rate exhibits both periodic changes and long term drifts on the 
order of a second per year. Atomic standards are the closest approximations we currently have 
to a uniform time with accuracies on the order of microseconds per year. 

Since the advent of atomic time in 1955 there was a steady transition from reliance on 
the Earth's rotation to the use of atomic time as the primary standard. Before atomic time, the 
closest approximation to a uniform time was Ephemeris Time (ET), which used the best 
available theory of the Earth's rotation to remove its known changes in rotation rate. The use 
of Ephemeris Time continued until 1984. 

Several important time scales still follow the rotation of the Earth. The most notably 
are, civil and sidereal time. Actually, they are derived from atomic time through a 
combination of earth rotation theory and actual measurements of the Earth's rotation and 
orientation. 

In basing the measurement of time upon the rotational motion of the Earth the ideal:. 
dnit of time would be the period of one complete rotation around the instantaneous axis. The 
sidereal time, defined by the apparent diurnal motion of the equinox, is therefore adopted as 
the empirical intermediary. Mean solar time, determined in principle by diurnal motion of the 
conventional mean Sun and obtained in practice from its relation to sidereal time, is the 
practical measure of the time defined by the rotation of the Earth. 

3.1 Atomic times 

3.1.1 TA! - International Atomic Time 

International Atomic Time (TAI) is the primary time standard in the world today. It is 
the combined input of many clocks around the world, each corrected for known 
environmental and relativistic effects. In relativistic terms, TA! is an Earth-based time since it 
is defined for a gravitational potential and inertial reference on the surface of the Earth. TA! is 
the standard for the SI (System International) second. The zero point of TA! was somewhat 
arbitrarily defined by early atomic clocks. Its offset from Ephemeris Time was precisely 
defined as 32.184 seconds for Januaryl, 1977. 

The difference between Ephemeris Time and atomic time AT(A) provides a first 
approximation to AT = E.T. - UT, 

AT(A) = TA! ± 325 . 1 84— UT1 	 post - 1972. 	 (3.1) 

3.1.2 UTC - Coordinated Universal Time 

By definition, UTC and TA! have the same rate, but UTC stays close to Mean Solar 
Time by adding integer numbers of seconds, called leap seconds, from time to time. This 
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keeps solar noon at the same UTC (averaged over the year), even though the rotation 

of the Earth is slowing down, The offset is changed as needed to keep UTC within about 0.7 

seconds of Earth rotation time, UT!. Leap seconds are typically added once per year at the 

end of December or June, but they can be added (or subtracted) at other designated times 
throughout the year. 

UTC = TAI - (number of leap seconds) 	 (3.2) 

3.1.3 TDT or TT - Terrestrial Dynamic Time 

Before atomic clocks, Ephemeris Time (ET) was the closest available approximation 

to a uniform time for planetary motion calculations. Terrestrial Dynamic Time, which is tied 

to atomic time by a constant offset of 32.184 seconds, replaced ET at the beginning of 1984. 

The purpose of the offset is to maintain continuity between ET and TDT at the transition. 

Planetary motions are now computed using Barycentric Dynamic Time (1DB), which is more 

uniform than TI because it accounts for relativistic corrections due to the Earth's motion in 
the gravitational potential of the solar system. 

TT = TA! 4- 32.184 = UTC + (number of leap seconds) + 32.184 	(3.3) 

There is a subtle relativistic distinction between coordinate time and dynamic time, 

which is not significant for most practical purposes. The counterpart to TI is Geocentric 

Coordinate Time (TCG), which differs in rate from TT by about 0.7 parts per billion. TT and 

TCG were coincident on January 1, 1977 and now differ by 0.42 seconds. The rate difference 

from TT can be important to long term measurements. 

3.1.4 TDB - Barycentric Dynamic Time 

Barycentric Dynamic Time (TDB) is the same as Terrestrial Dynamic Time (TI) 

except for relativistic corrections to move the origin to the solar system barycentre. These 

corrections amount to as much as about 1.6 milliseconds and are periodic with an average of 

zero. The dominant terms in this correction are have annual and semi-annual periods: 

1DB = TT + 0.001658 sin( g ) + 0.000014 sin( 2g) seconds 	(3.4) 

Where 

g = 357.53 + 0.9856003 (JD -2451545.0) degrees 	 (3.5) 

and JD is the Julian Date. 

There is a subtle relativistic distinction between coordinate time and dynamic time, 

which is not significant for most practical purposes. The counterpart to TDB is Barycentric 

Coordinate Time (TCB), which differs in rate from TDB by about 15.5 parts per billion. TDB 

and TCB were coincident on January 1, 1977 and now differ by 9.3 seconds. The rate 
difference from 1DB can be important to long term measurements. 
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3.2 Earth rotation times 

3.2.1 UTI - Universal Time 

Universal Time (UTI) is a measure of the actual rotation of the Earth. It is 
independent of observing location. UTI is essentially the same as the now discontinued 
Greenwich Mean Time (GMT). It is the observed rotation of the Earth with respect to the 
mean sun corrected for the observers longitude with respect to the Greenwich Meridian and 
for the observer's small shift in longitude due to polar motion. 

Since the Earths rotation is not uniform, the rate of UTI is not constant, and its offset 
from atomic time is continually changing in a not completely predictable way. As of 
December 1995, UT1 was drifting about 0.8 seconds per year with respect to atomic time 
(TM or UTC). Since UTC is intentionally incremented by integer seconds (leap seconds) to 
stay within 0.7 seconds of UTI. The difference between UT1 and UTC is never greater than 
this. The difference, DUTI UTI - UTC is monitored by the International Earth Rotation 
Service and published weekly in IERS Bulletin A along with predictions for a number of 
months in the fi.iture. 

	

UT1 = UTC + DUTI (from the IERS bulletin A) 	 (3.6) 

Note that when a leap second is added to or subtracted from UTC, the value of DUTI is 
discontinuous by one second. UTI is continuous, and UTC is incremented or decremented by 
integer seconds to stay within 0.7 seconds of UTI. 

3.2.2 The UTO 

UTO (UT-zero) is an observatory-specific version of UTI in the sense that UTO 
contains the effect of polar motion on the observed rotation of the Earth. Polar motion is 
equivalent to a change in latitude and longitude of points on the Earths surface with respect to 
the Earths instantaneous rotation axis. The conversion from UTI to a local observatory time 
with respect to the mean sun or stars is now done as a set of coordinate rotations that do not 
explicitty use UTO as an intermediate step. 

UT1 = UTO - [sin+f cosio]tancai 	 (3.7) 
15 

Where 4 and (p0 are the mean geographic coordinates for a given instrument, referring to a 
mean position Po of the geographic North Pole. x and y are the coordinates of an 
instantaneous pole of rotation in a horizontal frame centered at Po and oriented at the 
Greenwich meridian. These coordinates are computed a posteriori when the polar motion is 
exactly known and published at the end of the year by the IERS (International Earth Rotation 
Service, Bulletin A). The observation, which is made at the point of coordinates, (X,p) can be 
exactly known this way: 

	

= p0 + x cosXo — y sinX0 	 (3.8) 

2 = X + (x sinAn  + y cos ) 0 
 ) 

tan p 	(3.9) 
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3.2.3 The UT2 

UT2 appears to be of mostly historical interest. Before 1972 the time broadcast 
services kept their time signals within 0.1 seconds of UT2, which is UT I with annual and 
semi-annual variations in the Earth's rotation removed. The formal relation between UTI and 
UT2 is 

UT2 = UTI + 0.022 * sin(2 * Pi * t) - 0.012 * cos(2 * Pi * - 
0.006 * sin(4 * Pi * t) + 0.007 * cos(4 * Pi * t) 	(3.10) 

Where 

= 2000.0 + (MiD -51544.03) I 365.2422 	 (3.11) 

is the Besselianday fraction, and MID is the Modified Julian Date (Julian Date - 2400000.5). 

3.2.4 Sidereal Time 

Sidereal time is the time derived from the Earth's rotation with respect to the stars. 
Apart from small effects of rapid fluctuations in the Earth's rotation rate and polar motion, 
local sidereal time is the hour angle of the true sidereal equinox. Because of precession and 
nutation, the equinox is not fixed on the celestial sphere. In addition, the motion of the 
geographic poles and the lunisolar variations of the vertical, the local meridian plane is not 
fixed relative to the Earth. The motion of the equinox in hour angle is the resultant of the 
separate motions of the meridian and the equinox on the celestial sphere. The measure of the 
time by diurnal motion of the true equinox is known as the apparent sidereal time. The 
expression for the hour angle of the true equinox, referred to the instantaneous local celestial 
meridian, in terms of the uniform dynamical measure of time t is given as, 

r=rb+5uxit 	 Rotation of the Earth 

+ wicosc ° -a General precession in right ascension 

• A wcosL-4E asintt Equation of equinoxes 

• ai 	 Polar motion 
+Sh 	 Variation of vertical 	(3.12) 

Where e is the mean obliquily of the epoch, s o  the mean obliquity of the date, w the angular 

rate of rotation and Eup i  the hinisolar nutation in longitude referred to the ecliptic epoch. The 
apparent inequality in apparent sidereal time is the equation of the equinox. The measure of 
the time defined by the diurnal motion of the mean equinox is the mean sidereal time. It is the 
apparent sidereal time minus the equation of the equinoxes. 

The mean sidereal day is the duration of the time interval between two successive 
upper transits of the mean equinox of date relative to a fixed meridian. An apparent sidereal 
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day is simply defined with respect to transit of the true equinox of date. It follows from 
definition that the mean sidereal day is shorter than the Earth's sidereal period of rotation (P®) 

by the daily precession in right ascension, 0s . 008412 +5S . l x  10 T 1 , 

(1 mean sidereal day)! P® =0.999999902907 - 5.9 x 10' TE 	 (3.13) 

Here T 1 : is the time interval measured in Julian centuries since 12h Jan.0, 1900 E.T= Jan .0.5, 

1900.
24  (1 mean solar day! 1 mean sideeal day) = [24h + 36525 dTh p 

= 1.002737909265 + 5.89 x 10 Tu 	(3.14) 

Alternatively, apart from the negligible secular term, the ratio of sidereal day of 86400 mean 

sidereal seconds to this interval is, 

(Mean sidereal day! mean solar day) = 0.997269566414 	(3.15) 

The universal time at any instant is obtained by multiplying the sidereal interval since 
0h  U.T. by this fixed conversion factor. Inversely, the ratio of the mean solar day to the mean: 

sidereal day is 1.002737909265 [40]. 

3.2.5 GMST - Greenwich Mean Sidereal Time 

By convention, the reference points for Greenwich Sidereal Time are the Greenwich 

Meridian and the vernal equinox (the intersection of the planes of the Earth's equator and the 
Earth's orbit, the ecliptic). The Greenwich sidereal day begins when the vernal equinox is on 
the Greenwich Meridian. Greenwich Mean Sidereal Time (GMST) is the hour angle of the 
average position of the vernal equinox, neglecting short-term motions of the equinox due to 

nutation. 

In conformance with IAU conventions for the motion of the Earth's equator and 

equinox, GMST is linked directly to UTI through the equation 

GMST(in seconds at UT1O) = 24110.54841 + 8640184.812866 * T+ 0.093104 * 
T"2 - 0.0000062 * T"3 	 (3.16) 

Where T is in Julian centuries from 2000 Jan. 1 12h UTI 

T=d!36525 
	

(3.17) 

d = JD - 2451545.0 	 (3.18) 

3.2.6 CAST - Greenwich Apparent Sidereal Time 

Greenwich Apparent Sidereal Time (CAST) is Greenwich Mean Sidereal Time 
(GMST) corrected for the shift in the position of the vernal equinox due to nutation. The 
smoothly varying pan of the change in the Earth's orientation (precession) is already 
accounted for in GMST. The right ascension component of nutation is called the "equation of 

the equinoxes 

CAST = GMST + (equation of the equinoxes) 
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3.2.7 LMST - Local Mean Sidereal Time 

Local Mean Sidereal time is GMST plus the observers longitude measured positive to 
the east of Greenwich. This is the time commonly displayed on an observatory's sidereal 
clock. 

LMST = GMST + (observer's east longitude) 	 (3.19) 

3.2.8 LST - Local Sidereal Time 

The definition of Local Sidereal Time given in the glossary of the Explanatory 
Supplement to the Astronomcal Almanac is "the local hour angle of a catalog equinox." This 
fits the common textbook definition 

Hour Angle = LST - Right Ascension 	 (3.20) 

Where the right ascension can be specified in one of the catalog coordinate systems B 1950 
(FK4) or J2000 (FK5), 
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ANNEX 4 

The CCD camera 

In the years 80, to shoot one sunset was an impracticable operation with a video 
camera. The tubes of the camera did not resist. With the apparition of the CCD sensors, the 
operators could finally use the video camera as the film cameras, to record some stages to high 
contrasts. A Charge Coupled Device (CCD) is a semiconductor device in which finite isolated 
charge-packets are transported from one position in the semiconductor to the adjacent one by 
sequential clocking of an array of gates [411. 

4.1 CCD geometric features 

The present CCDs are matrixes of two dimensions. The sizes are given in numbers of 
pixels that define the resolution of images For an optical data. The most current matrixes have 
sizes typical of 340 x280 pixels. The biggest can present matrixes up to 4000 x 4000 pixels. 
The pixels themselves have variable sizes according to the models. They can go from 6 to 40 
R (distances between centres of the pixels). The photosensitive area of a CCD depends on 
whether the chip is interline-transfer or frame transfer. Full frame transfer chips frequently 
offer the best sensitivity since the photosensitive area is virtually 100% of the entire CCD 

4.2 Reading of the CCD matrixes 

The exposition of the CCD matrix to light causes the accumulation of the electric 
charges in its photosites. The Reading process consists in bringing these charges in sequence 
toward the output of the CCD, where an electric current can be measured. 

The accumulated charges are displaced toward the output with the help of clock signals 
produced by a control circuit. There are two types of clock signals: 

VerticaL clocks: these clocks shift all lines by one row. 

Horizontal clocks: these clocks shift the content of the horizontal register toward 
the output of the CCD. 

Output 
Horizontal Register Pyotecled 	pin 

Figure 4-1. Reading of a CCD 4/az rLr. 
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Cflronogrern 

—I 	CCDb• 	 I— 	 C',gby.l.'. 	I 

8 

lb 

Image 

Figure 4-2 CCD output comrol circuit. 

The output signal is read and amplified by an analog stage, then converted to a digital 
signal. Figure 4-2 shows the elements that control the output of the image from a CCD 
camera. 

4.3 Image integration 

When no clock signal is active, no pixel is transferred. In this state all the received 
light on the pixels generate the electronic image. When the integration of an image is 
finished, the totality of pixels are transferred to the output. Depending on how the storage 
CCD arrays are configured, different methods have been developed to read the light intensity 
values from the storage array. These modes are: 

Frame Mode: it is the standard interlace mode of horizontal line transfer. For each frame, 
the odd lines are transferred first followed by the even lines. In this mode, every line of 
sensors is read separately each 0.04 sec. 

Field Mode: in this mode, two adjacent lines are combined together and shifted out during 
each transfer. 

Enhanced Vertical Definition Mode: it is used to establish a compromise between the 
advantages and the disadvaniages of the two above operation modes. In this mode, each line 
is read separately during 50 sec. 
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Even Mode 0.02 sec 	 Field Mode 
	

Odd Frame 002 sec 

Even Mode 0.04 sec 	Frame Mode 	 Odd Mode 0.04 sec 

Figure 4-3. Reading modes of the CCD sensors. 

During the exposure operation, the clock cycles are stopped and the charges are 

accumulating in the CCD. At the end of exposition, the clock cycles are launched to transfer 

and to measure the accumulated charges. This process can be long enough that parasitic 

charges continue to accumulate on the image. This parasitic signal is more important for the 

lines situated at the bottom of the image than those situated on top. If the exposure time is 

shorter compared to the time of reading, a trail upwards on the image is produced (smearing). 
This problem can be resolved by two ways: 

The placement of an electronic shutter in front of camera. The shutter is opened at the 

beginning of the exposition and closed before the reading process is started. 

The transfer of the useful part of the matrix in a protected area on the CCD [42]. 

The transfer itself can be done by several ways: 

(a) Full frame transfer 

The Full Frame Transfer is a mode where all the CCD lines are exposed to the light 

and participate in the image formation. The problem with this kind of matrices is that, during 

the reading process the photosites remain exposed to light. Since the reading time is not 

negligible, an important trail is produced on all the image pixels. To prevent this problem, a 

Full Frame CCD must be provided with an electromagnetic control shutter. Figure 4.4(a) 
shows the CCD of the Full Frame Transfer mode [42]. 
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(li) Half frame transfer 

Cameras working in this mode are full frame CCDs without electromagnetic control 
shutter. The matrix of this type is divided in two equal parts. The upper half is used for image 

integration and the lower one is protected. At the end of integration time, the charges in 
photosites of the upper half of the CCD matrix are transferred quickly to the protected lower 
half. 

(c) Frame Transfer 

In this mode of operation, the entire CCD sensors contents are shifted to a protected 
area in the chip before being read out. One half of the CCD area is used for detecting the 
image while the other is used for readout. Images acquired in the sensing region are 
transferred in a few milliseconds to the readout region. This process occurs concurrently with 
the subsequent exposures. This approach allows the detection to continue almost completely 
without interruption. Figure 4-4 (b) shows the CCD of the Frame Transfer mode [42]. 

hi 

h2 

H. 

- 

h2 

Norizootit CCO 

ml 
JJiJ111l-j Output 

— Protected memory area 

-. 

CC vo mere, 
Exposed image area 

I I II I' '—ccophotosites 

CCD votlical 'opictes 
Fm 	frisIer 

Storing of one Frame 
inthe image area + 

Reading of the memory .,..LL. 
area (the preceeding) 

20 ms 

(a) 
	

(b) 

Figure 4-4 (a) The Full Frame Transfer, (h) The Frame transfer. 

(d) Interline transfer 

In this mode, each active pixel of the CCD sensor is transferred to an adjacent 
shielded one. Then it is shifted to an output register for final readout. So, the electronic 
shuttering is not needed in this mode of operation. Figure 4.5 shows the CCD of Interline 
Frame Transfer mode. 
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Figure 4-5. The Inter/use Frame Traiisfrr. 
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ANNEX S 

S I Qeoktpr mn nf the PC-110-1 A 

Register Offset Adresse (Hex) Size - 	Type 
Arn95 I 3A Register Group 
STCA 

Data Register 00 8 bits Read and write 
Command Register 01 8 bits Write only 
Status Register 01 8 bits Read only 

STCB 
Data Register 02 8 bits Read and write 
Command Register 03 8 bits Write only 
Status Register 03 8 bits Read only 

MC6821 Register Group 
PEA 

Port A Data Register 04 8 bits Read and write 
Port A Control Register 05 8 bits Read and write 
Port B Data Register 06 8 bits Read and write 
Port B Control Register 	- 07 8 bits Read and write 

Table 1.1 The register map of the PC-i/O-/U. 

5.2 Register description 

- 
CONTROL OMMAND  C I 

DATA 
PORT REGISTER a 

POINTER 	I 
/ REGISTER 

STATUS H I DATA BUS I 	H RP.C,TSTF. - - Group and Element 
M ULTIPLEXE H / 

_______________ 
Adresss 

Byte pointer 4, 
DATA I PREFETCH 	I DATA 

Counter 1 mode H-i ________________ 
PORT 	H ____  

PORT 
LATCH  Ll 

MUX  Counter I load register 

' 8/16 
Counter I hold register Counters2345  

Load andholdRegisters 

Master Mode Register 

Counter I Alarm 

Counter 2 Alarm 
tIIIIrL' .5 /. I/sc ;I,n95/J4 /?clvsicr itcc.'s. 
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5.3 The Data Pointer Register 

Command Retister 
C7 	CoC5 	C4 	1C3 	1C2 	ClI 	CO 	I 

000 	

I 	Jr 	it 	J' 	Jr 
DataPointer 	E2 	El 	G4 	G2 	Gi 
Register 

Element pointer 

JSRO 

3e llointer 
transfer next 

3 transfer nex 

pointer 

00=Mode Register 
01=Load Register 
I OHold Register 
I 1=Hold Register 

00= Arm Register I 
01= Alarni Register 2 
I 0=Master Mode Register 
I lStatus Register 

000= illegal 
001= Counter Group I 
010= Counter Group 2 
011= Counter Group 3 
100= Counter Group 4 
101= Counter Group 5 
11 0= illegal 

II IControl Group 

Figure 5.2. The Data Pain/cr Register. 

XXVI 



5.4 The Master Mode Register 

FOUT Divider 

0000 = Divide by 16 
0001 = Divide by I 
0010 = Divide by2 
0011 =Divideby3 
0100 = Divide by 4 
0101 =Dividebys 
0110 = Divide by 6 
0111 = Divideby7 
1000 = Divide by 8 
1001 =Divideby9 
1010 = Divide by 10 
1011 = Divide by Ii 
1100 = Divide by 12 
1101 =Divideby 13 
I110=Divideby 14 
lii! = Divideby 15 
1111 = Divideby 15 

FOIJT Source 

0000= El 
0001 = SRC 1 
0010 = SRC 2 
001! =SRC3 
0100 = SRC 4 
0101 =SRC5 
0110 = GATE' 1 
0111 = GATE 2 
1000 = GATE 3 
1001 =GATE4 
1010 = GATE 5 
1011 =F1 
1100 = F2 
1101 =F3 
1110 = F4 
1111 = F5 

EEEEMM12 MMII MMI0 MM9 MM8 MM7 MMÔ MMO MM5 MM4 MM3 MM2 MMI 

FOOT Gate 
o = FOOT On 

= FOOT Off (Low ito GND) 
- Data Bus Width 

o = Sbus Bus 

= lóbiIs Bus 
- Data Pointer Control 

o = Enable Increment 

I = Disable Increment 

- Source Control 

I 	Binary Division 
o = BCD Division  

Compare 2 Enable 
o Disabled 

1= Enabled 

Compare I Enable 
o = Disabled 

I = -Enabled 

Time of Day Mode 

00 = TOD Disabled: p5 input 

UI = lCD Enabled: p6 input 

TOD Enabled: p I Oinput 

I gure 5.3 Jiw .tlasler ;tlode RegLwcr. 
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5.5 The Frequency Scaler Ratios 

xl 

x2 

FREQUENCY SCALER 

BCD Binary 
Scaling Scaling 

Frequency MMI5=1 MM15=0 

Fl USC USC 
F2 Fl 	ilO Fltplô 
F3 FltplOO Fl 90256 
F4 Fl9;l000 El 94,096 
F5 F19;l0,000 F1965,536 

figure 5.4. I/ic Frequency Scaler Railux. 
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Count Control 

- 0 =Disable Special Gate 
1= Enable Special Gate 

0 = Reload from Load 
I = Reload from Load or hold 

0 = Count Once 
= Count Repetively 

0 = Binary Count 
= BCD Count 

0 = Count Down 
= Count Up 

5.6 The Counter Mode Register 

Count Source Selection 

0000 = TCN-1 
0001 =SRC I 

0010 = SRC 2 
00ll=SRC3 

0100 = SEC 4 

0101 =SRC5 

0110 =GATE I 

0111 =GATE2 

1000 = GATE 3 
1001 =GATE4 
1010 = GATES 

loll =Fl 
1100 = F2 
1101 =F3 
1110 = F4 
1111 = F5 

CMI5 CMI4 CMI3 CMI2 CMII CMIO CM9 CMS CM7 CMo CMO CMS CM4 CM3 CM2 CMI 

Source Edge 

0 = Count on Rising Edge 

I = Count on Fulling Edge 

Gaiing Control Uutput Control 

imp 

000 = No Gating 

001 = Act:ve High TCN-1 
010 = Actve High Level GATE N-Fl 

Oil = Active High Level GATE N-I 

IOU = Acuve High Level GATE N 

101 = Acive Low Level GATE N 
110 = Acltve High Level GATE N 

Ill = Act;ve Low Edge GATE N 

000 = Inactive, Output Low 

001 = Active High TC Pulse 
010 = TC Toggled 

OIl = Illegal 
100 = Inactive, Output High 

101 = Active Low TC Pulse 

110 = Illegal 

I I I = illegal 

figure 55. The (on flier 1 lode Register, 

It exists 25 modes of.operation according to bits state of the counter mode register. 

5.7 The Am95I3A Data Register 

The data Registers are used to read from or write to any of the 18 internal registers of 
teharn95I3A. The Am9513A Command Registers must be written to in order to select the 
register to be accessed by the Am95I3A Data Registers. The internal registers accessed by the 
Am95 I 3A Data Rcgisters are as follow: 
- Counter Mode Registers for Countcrs 1,2,3,4, and 5. 
- 	Counter Load Registers for counters I, 2, 3, 4, and 5. 
- 	Counter Hold Registers for counters I, 2, 3, 4, and 5. 
- Compare Registers for counters I and 2. 
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Master Mode Register. 

AU these registers are 16-bit registers that must be accessed through an 8-bit port, least 

significant byte first. 
Address: Base address + OO(hex) for the Am95 13A STCA. 

Base address ± 00( cx) for the Am95 I 3B STCB 
Figure 5.7 shows the internal an19513 registers and their logic counter logic groups. 

	

Input 	 1 	16 bit load 

I 
freq 5 	Select 	 register 

teN. I I 	Logic  

Counter 	 lobit 	 I 	Out 
Control 	 compter 	'1 control 

Out n 

logic 

	

16bit 	 lôbithold 

	

mode 	 register 
register 

16 bit 
comparator 

16 bit alam 
register 

srQ.21 	Input 	 16 bit load 

	

gatQ I Select 	 register 

	

freqj4 Logic 	
I tc NI IF 

I 
I 	16 bit 

Control  

	

counter 	contro 	
Outn 

	

logic 	 S 	
I  

	

6 bit 	 16 bit hold 

	

mode 	 I 	register 

Figure 5.6 The Coumer Logic Groups. 

xxx 



5.8 The Am9513A Command Register 

The Am95 1 3A command registers are 8-bit registers. They control the overall 
operation of the Am95 13A Counter/Timer and the selection of the internal registers that are 
accessed through the Am95 13 A Data Registers. 
Address: 

Base address + 01(hex) for the Arn95I3 STCB. 

Base address + 03(hex) for the Am95 13 STCB. 

The possible commands are summarized on the following table: 

Command Code Command Description 
______________________ C7CoC5IC4 CJC2CIT& ° 0 0 E2 El G4 G2 GI Load Data Pointer with contents of F et G fields 

o 0 I IS5 54 53 IS2 SI Ann counting for all selected counters 
o I 0 55 54 S3 52 SI Load counting of specified source into all selected 

counters 
o i I 55 54 S3 52 SI Load and Arm all selected counters 
I 0 0 S5 54 S3 S2 SI Disarm and save all selected counters 
I 0 1 S5 34 53 S2 SI Save all selected counters 
I I 0 55 S4 S3 52 SI Set Toggle out (HIGH) for counter N(001<=Nc=l01) 

I I 55 54 S3 S2 SI Clear Toggle out (LOW) for counter N N(00l<=Nc=l01) 
I ii 0 	1 I it N2 NI Step Counter NN(O01c=Nc=10l) 
I II 0 0 N4 N2 NI Set MMI4 (Disable Data Pointer Sequencing) 
I I 

il 

I I 0 N4 N2 NI Set MMI2 (Gate off FOUT) 
I 0 I 0 0 0 Set MMI3 (Enter 16 bits bus mode) 

I I I 0 I I I 0 Clear MMI4 (Enable Data Pointer Sequencing) 
I I I 0 I I I I Clear MMI2 (Gate on FOUT) 
I I 1 0 0 0 0 0 Clear MM13 (Enter 8 bits bus mode) 

1 0 0 I I 0 1 Enable Prefetch for operations 

lab/c 2.2. The word co,,:,,,ands of Command Register. 

5.9 The Status Registers 

The Am9513A Status registers give information about the output pin of each counter 
in the Am95 I 3A. In addition, these registers indicate the current setting of the Byte pointer, 
which indicates whether the next byte to be accessed is in the most significant byte or the least 
significant byte. 
Address: 

Base address + 01( cx) for the Arn9513 STCB. 

Base address + 03(hex) for the Arn95 13 STCB. 
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ANNEX 6 

6.1 Images in the EureCard Prirno 

The flow of images in the EureCard Primo is shown in Figure 6-I [38]. 

Video Input Tintig 	
Video Output TiniEng 

Pis9Is going Pixois Coff*Jg 	 Image Me.roy 
ft7,the 	

' J. w tr,C~j oucplJi v wloo Input LL::.. ~ :::..... 	 ..- .......................................... 

Video Input 	r----i Video Output runing I 
Gone rat, 

tiTling 

4 Generator at 

- I
__

csp 

Figure 6-1. "rages flow in the EureCcjrd Prima. 

The image memory is dedicated to contain images. Three devices have got access to this. 
memory: 

- The video input, which writes images into the memory. 
- The video output, which reads stored images to display them. 
- The GPS, which is able to read and write the image memory at any time in order to 

process and analyze stored images. 

6.2 Data transfer 

The digitized pixels are stored in the video memory by the DMA machine through the 
memory random access bus. During an acquisition, this bus is shared by the GPS and the 
acquisition machine; see Figure 6-2. 

Video Input 

Random 

Arthirahon 
	Video 

logic 
	Memory 

Video 
port 

t Video output 

Random 
bus 

P 

 J 
•j _' 	

r: :t/. 4 VT LS vstern 

ligure 6-2. LZuu t'anaj&r h1aA diii 4rrzm. 
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6.3 Input video to the EureCard Prinio 

Figure 6-3 shows the block diagram of the video input module structure [38]. 

	

Video 	 Video 

	

Selector 	AntlabasinQ 	Gain/Offset Video Speed 

	

Cell 	AID Converter 
Videolrjti 	I 	I 

	

I 	I Vtdeolnput2  

	

I 	I 	 ____ 

	

Videolnpta I 	°- I 

	

I 	 U1PUI .o I Sync Signals w 
I 

I  Ii VIdeoInpuI4  
I 	_ 

	

Sync 	
Sync 	 ¶1 8 bit pixels 

Proce sso. 
Selecto, 

	

I 	InputBus 	I 
Figure 6-3. The input I ideo Afociule. 

The video signal enters by one of the four inputs. The first path processes the video 
signal: 

a- Selection of one of the four input channels; [0.3]. 

b- Antialiasing filter bank ranges from [0.5]: 
0: no filter. 

5 MHz cut off frequency. 
2.5 MHz cutoff frequency. 
Pal filter. 

5: NTSC filter. 

c- Gain and offset control, [0.255]. 

d- Analogue to digital conversion and input look Up table. 

The second path deals with the synchronization information: 

a- Selection of one of the four input channels for synchronization; [0.5]: 
0: synchronize on channel 0. 

synchronize on channel 1. 
synchronize on channel 2. 
synchronize on channel 3. 

5: internal synchronization. 

b-Extraction of the synchronization signals (horizontal and vertical) and the level of the sync 
detector selection [0.3]: 

0: 50 mV 
75 mV 
100 mV 
125 mV 
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6.4 Image acquisition and visualisation 

The EureCard Primo has a special devices dedicated to acquire images. Video 
memories are associated with busses that carry images between processing devices. The video 
output deceives digital images and generates a video signal suitable for driving a VGA 
monitor. In all case, a hardware device is very important: the mapper. 

The mapper manages in a proranimab1e way the memory, the input and output video buses. 

The 
8 bit pixds 	Mapper 
corning  
from the 	 8 bit pixels to  
Video 	 the video 
Input 	 ___________ 

Image 
Memory 

I igure 6-4. The S/upper. 

Several modes of acquisition can be selected: 

1- Normal acquisition: 

It is represented by the waveforms shown in Figure 6-5 [38]. 

Acquisition in normal mode 
video held 

M

l  

hgurc 6-5 -tequisuwit in :Vor,,iu .5 lode. 

2- Continuous Mode 

Itis described by the waveforms shown in Figure 6-6. 
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Acquisition in continuous mode 

video field 

Grabbed fields 

FIV 
/-igut-e 6-6. A cquisilion in C 'onunuous /.Iode. 

3- Background Mode 

This mode allows easy parallel processing between the acquisition process and the 
GSP. This acquisition is automatically stopped after the specified number of fields. It 
is represented by the waveforms shown in Figure 6-7. 

Acquisition in background mode 

video held 

Grabbed fields 

II 	Acquisition is 
automatically 

map_12 II cal 	niap_12 II exit 	 stopped here 

Figure 6-7 The A cquisif ion in Background Mode. 

6.5 Video output 

The EureCard Primo supports two display configurations: 

Single monitor configuration: in this mode the monitor is connected to the PC's VGA 
card. The image stored in the EureCard Primo memory is mixed with the PC's image 

to go to a single VGA monitor. 

Dual monitor configuration: in this mode the EureCard Primo uses its own VGA 
monitor to display its images. The principle of output operation is shown in Figure 6-8 

[38]. 
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Figure 6-8. The Video Output Principle. 

The pixels coming from the VGA card are read through the VGA feature connector. 
They are sent with pixels coming from the EureCard Primo image memory to the VGA mixer. 
The VGA mixer is responsible for the selection of pixels that will come either from the VGA 
card or from the EureCard Primo image. Its output is fed to the video Digital to Analog. 
Converter, which includes a triple 8-bit look up table. Inside the VGA mixer, the pixels 
coming from the VGA card are continuously compared with a Key color. An 8-bit value 
restricts the comparison to some bits; see Figure 6.9. 

The result is mixed with the blanking signal coming from the GSP to generate the final 
selection signal. 

VGA Uixor 
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Figure 6-9. The VGA Mixer. 

6.6 Output Look Up Table 

The Eurecard Primo output LUT is used to display both the pixels coming from the 
Eurecard Primo image and the PC's image. Its 256 entries niust be shared between these two 
sources. The mapping LUT>, which maps every gray level of the EureCard Primo image into 
a valid entry of the output LUJ, performs this operation; see Figure 6-10. 
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sed by the PC 

_sed by the Primo 

Output LUT 

Mapping LIlT 	 R C B 
Envy 00 
Envy Cl 

Envy 13 

Envy 1254 
Envy 1255 

Figure 6-10. The Output Look Up Table. 

 

6.7 inputs and outputs control 

The EureCard Primo provides a set of digital input and output lines These states 
control the generation of trigger and strobe events used by grabbing operations. The trigger 
event specifies a combination of the input signals used to trigger an acquisition operation. It 
informs the EureCard Primo that the object to be grabbed is in position. The strobe event 

specifies a state to be imposed to the output signals during an acquisition operation. 

6.7.1 Trigger event 

Trigger 

event 
Trigger event 

fl2  

Figure 6-11. The trtgger even!. 

The trigger event is computed from the status of Dl and D2 signals. The effect of each 
signal on the trigger event can be controlled, and therefore controlling the acquisition process. 
The input lines Dl and D2 can be programmed for a certain type of input signals. Those that 

exist on the EureCard Primo are: 

- Check for a logical 'zero' state. 
- Check for a logical 'one' state. 

- Wait for a logical positive edge. 

- Wait for a logical negative edge. 
- Wait for a logical positive or negative edge. 

- Don't care condition. 
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ANNEX 7 

7.1 The filter associated with the linear interpolation 

In the case of linear interpolation, the coefficients of the one dimensional filter h 
calculated from 0(x) are (1/4 1/2 1/4). In two dimension they are: 

1/16 1/8 1/16 

h(n)= 1/8 1/4 1/8 

1/16 1/8 1/16 

The filter h is a triangular low pass filter as shown in Figure 7.1. Its transfer modulus is 
represented in Figure 7.2. 

U.S 

0.45 

0.4 

03s 

0.3 

025 

0.2 

0.15 

01 

0.05 I 2 111 1.6 1.5 	2 L 'A 
camle 

Figure 7.1. Thefilter/,(n). 
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Figure 7.2. The transfer modulus. 
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7.2 Filters to reduce the noise in Sun images 

Three types of low pass filters are tested on the detail images to reduce the residual noise 
in the processed Sun images. These filters are, 

a The first filter 

its coefficients in one dimension are (1/4 1/2 1/4). In two dimension, they are, 

1/16 1/8 1/16 

h(n) = 1/8 1/4 1/4 

1/16 1/8 1/16 

its characteristics are shown in Figure 7.1 and 7.2. 

b. The second filter 

Its coefficients in one dimension are (1/16 1/4 3/8 1/4 1/16). In two dimension, they 

are, 

1/256 1/64 3/128 1/64 1/256 

1/64 1/16 3/32 1/16 1/64 

h(n)= 3/128 3/32 9/64 3/32 3/128 

1/64 1/16 3/32 1/16 1/64 

1/256 1/64 3/128 1/64 1/256 

The filter h is a low pass filter as shown in Figure 7.3. Its transfer modulus is represented in 

Figure 7.4. 
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Figure 7.3. The filter hz). 
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6.7.2 Strobe event 

Strobe event 	

Strobe event 

0 I 	
generation 

 machine 01 - 

Figure 6-12. ihe Sfrobe event 

The output Strobe signal generation can also be controlled by programming the output 

lines QI and Q2. The possible programming states supplied by the EureCard Primo are: 

Immediately imposes a logical zero at this output. 

Immediately imposes a logical one at this output. 

The strobe machine controls the output; output a positive pulse during the strobe event. 

The strobe machine controls the output; output a negative pulse during the strobe event. 
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Figure 7.4. The transfer modulus. 

c. The third filter 

This filter is characterized in one dimension by the coefficients (1/64 3/32 15/64 5/16 
15/64 3/32 1/64). In two dimension its coefficients are, 

0.0002 0.0015 0.0037 0.0049 0.0037 0.0015 0.0002 

0.0015 0.0088 0.0220 0.0293 0.0220 0.0088 0.0015 

0.0037 0.0220 0.0549 0.0732 0.0549 0.0220 0.0037 

0.0049 0.0293 0.0732 0.0977 0.0732 0.0293 0.0049 

0.0037 0.0220 0.0549 0.0732 0,0549 0.0220 0.0037 

0.0015 0.0088 0.0220 0.0293 0.0220 0.0088 0.0015 

0.0002 0.0015 0.0037 0.0049 0.0037 0.0015 0.0002 

The filter his always a triangular low pass filter as show'n in Figure 7.5. Its transfer 
modulus is represented by Figure 7.6. 
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Figure 7.5. The filter h(n). 
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Résumé 

Ce sit/ct s 'inscrit dans Fe cadre de / 'astronomic de position ci comprend tm/s objectft. Le 

premier cons/ste en / étude dc / 'iizstrwncii/ uti/isé pour ohser.'er Fe so/cd a/nM quc Ic 

développeinent des programmes néce&yaires pour Fe ca/cul dii diamètre solaire. Le deuxiéme 

coinprend Fe dCve/oppement des inCthodes dc traiteinent des images dii So/c/F acquise ii 

F 'as/rn/abc so/a/re. Le troisiC;ne élan! / 'étude de / 'instrumentation c/lois/c qui se/n insta//é 

au/a/tide / 'astro/ahe dc Tainanrasset ahisi £/UC Ic dée/oppeineizt desprogiannncs nCcessaire 

pout son operation. 

111ots c/es: So/elI, as/ru/abc so/aire, dia,nCtre so/cure, distance zen/i/ia/c, Fes onde/ettes, 

pwan;c!ic de 1-i -lcd. 
4 

t- I' 

I 
/ 	 Abstract 

77/1.1 work deals ii'it/i positiona/ astronomy and with three objectives in sight. The first 

objective is 10 study the ins/lu/nwif used for Sun observation tuid provide the ncccsswy 

programs to ca/cu/ate the Sun diameter. 1/ic second objective is to dei'c/op the appropriate 

inet/zods to process the acquired Sun images with the so/ar as/ia/abc. 1/ic i/i/rd one is 

oriented to study the se/ected instrumentation that will he insta//ed around the solar 

as/ru/abe of Tanianrasset ciiid to c/eve/op the nccessa;y softii'arc progranis that conlro/ its 

opera! ion. 

Keywords: Si,,,, so/ar cistro/abe, so/ar diameter, zenithaF distance, wave/ets, 	Fried 

parameter. 
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