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GENERAL INTRODUCTION

Among the important quantities in astronomy and astrophysics there is the Sun
diameter. From this quantity, the ephemeredes are established, the dates of contacts for the
solar eclipses are calculated, and the standard solar models are elaborated. In parallel with the
astrophysical studies of the Sun, astrometric observations may lead to improved values for
this particular reference. The measurement of the solar diameter is not as simple as may be
thought. During the last centuries and years a big discussion and disputation about its
constancy and variation took place.

Following the suggestions of Newcomb (1835-1909) during the “Conférence
internationale des étoiles fondamentales” held in Paris in 1896, a set of astronomical constants
was adopted [1]. Astronomers were asked to use it in order to ensure an easy comparison of
measurements made in different observatories. The adopted solar parallax was equal to 8”.26.
For the semi-diameter of the Sun, the value 959”.63 was given, based on a study made by
Auwers (1838-1915) in Berlin {1]. In 1891, Auswers gave two values of Sun diameter in his
conclusion. The first one is the above-adopted value, which is obtained from a large set of
Heliometer observations. The second one, which is obtained from observations made with
transit instruments, is 9627.73 . The difference of 3”.10 in diameter (1”.55 in the radius)
between them was considered as due to a so-called irradiation. From that time, the
ephemeredes (Nautical Almanac, Connaissance des Temps, American Ephemeris,) use the
second value under the form of Sun semi-diameter 16”1718 (961”.18) for the eclipses and the
value 15°59”.63 (959”.63), with the corresponding variations due to the changes in the
distance between the Earth and the Sun, for the ephemeredes [1].

Many authors, mainly since the beginning of the 19" century, have studied the
problem of Sun diameter variations using a long series of Sun diameter data. Among them, we
can mention Sofia et al, who found a decrease of 0”.010 per year over the period 1925-1979
[2] and a decrease of 0”.019 per year between 1700 and 1990 {3]. In contrast, other authors
have found irregularities, for example Leone (1973){43] and Dunham (1980)[44] gave values
of Sun diameter variations between !” and fractions of it. At Calern observatory in France,
Laclare.F has been fortunate enough to be able to obtain a long series of solar diameter
measurements. He has found relatively short-term variations by using Fourier analysis [1].
Such variations and discrepancies in the solar diameter are not a new phenomenon; they can
be seen from modem analysis of observations in the past. An example is to be found in a
preliminary work by Smith and Messina [4] from which the following values for the
horizontal diameter of the Sun were given [1],

e At Capetown the Sun semi-diameter is 9617.21 + 0”.10 for 10 annual means from 1837
to 1887
e At Paris the value is 9617.89 * 0”.16 for 25 annual means from 1837 to 1906.

The annual means of these 19 century observations. given by the authors, are based
on a total number of transits, which are 798 for the Capetown and 2461 for Paris. But, as
noticed by Smith and Messina, the long series have not been performed with the same
instrument and, of course, due to their length, by the same observer.

The usage of early measurements to investigate long-term trends in the solar diameter
started with the pioneering work of Eddy and Boornazian [45]. These authors deduced from
the Greenwich meridian circle observations between 1936 and 1953 that the solar diameter



had shown a secular decrease at a mean rate of 0.8” per century. However. this result was
disputed by Pakinson ef al. [46] who criticized Eddy and Boomazian's interpretation of the
Greenwich data and demonstrated that different observers obtained discordant results with the
same instrument [5]. They also shown that series analysis of timing of both Mercury transits
and the total solar eclipses since 1715 revealed no evidence of a secular decrease in the solar
diameter. Soon afterwards, Gilliland (1981)[47], by combining circle measurements since
1836 with mercury transit data since 1715, suggested that a secular decrease in the solar
diameter by 0.17/century was “likely”. Débarbat (1982) deduced that measurements of the
horizontal Sun diameter at noon between 1666 and 1673 revealed irregularities of periodical
nature. Subsequently, Ribes er al. made an analysis of 50 year measurements using Picard
and La Hire between 1666 and 1718 and their results indicated that around 1700 the solar
diameter was some 4” greater than it is now [1]. Selections of the ancient and recent values of
Sun semi-diameter are summarized in Table 1.

Author Date of Radius of Used Method Number of
publication Sun(”) measurements/penod
Mouton 1660 959.413.3 PP 86
Auzout 1666 965.2+0.2 MI 2
Picard 1670 064.610.2 Ml 304
Richer 1672 961.935.2 DP 26
Picard 1674 962.913.5 DP 154
La Hire 1683 963.2+2.8 MI 14
La Hire 1684 965.413.8 DP 304
La Hire 1701 963.613.8 DP 6980
Louville 1724 962.4+2.0 DP 10
Bouguer 1753 957.312.0 DP 105
Lalaude 1764 961.4%1.5 - HE 12
Lalaude 1764 961.411.5 HE 12
Bessel 1824 960.9t1.4 ME 92
(Airy) 1837 060.9+1 .4 ME 92
Goujon 1842 062.2+0.7 ME 1575
{Smith —M) 1877 961.5+0.7 ME 1363
Auwers: 1880 959.620.5 HE 2840
(Gething) 1895 961.04+0.44 ME 10302
Schur 1896 060.07+0.55 ME 760
Ambronn 1897 959.940.6 HE 920
{Cimino) 1907 961.3410.54 ME 27249
(Smith-M}) 1946 961.34+0.20 ME 3468
Wittman 1973 960.24+0.16 DTIL Year 1972
Wittman 1973 960.013+0.16 DP - 20
Wittman 1974 960.01:0.8 DP 246
Wittman 1978 960.29+1.8 PP 2159
Duvall&al 1980 959.50%0.10 Year 1979-1980
Sofia,Dunham, 1980 959.7710.06 SE Year 1978
Fiala
Wittman 1981 960.26::0.04 DTIL May-June 1981
(Ribes) 1981 961.2+0.5 ME 349




Leister 1984 959.440.8 AS 804
Journet 1984 859.03104 AS 1170
Laclare 1978 959.410.3 AS 8000
Leister 1988 858.8410.07 AS 1982.5-1986
Laclare 1988 959.4510.02 AS 2679(1975-1987)
Journet 1988 959.0310.02 AS 1176
Wan Lai&Zhao 1989 959.6510.02 AS Year 1989
Jun-Liang
Sato &Soma 1989 959.64+0.02 SE Year 1987
Leister&Benevi 1990 959.0310.02 SE Year 1989
des Soares

Noel 1991 960.810.6 AS 189

Ribes 1991 959.32+0.02 PHM 1981-1991
Wittman 1991 960.6620.02 LDO 1986-1990

Maiev, Twigg& 1992 959.60+010 SDSBF

Sofia .

Kubo 1993 959.82+0.02 SE 1980
Akimov 1993 959.821+0.04 SE 1991
Wittman 1993 960.6610.02 DTIL 1993

Sofia,Heaps&T 1994 959.5310.06 SDSBF 1994
wigg
Bode,Buchner 1995 959.66+0.04 SE 1985
&Musharot

Noel 1995 960.64+0.10 AS 1990-1994
Neckel 1995 960.64+0.03 LDS 72
Wittman 1997 959.73+0.05 DS CCD 126/1996

960.53+0.02 427/1996
Brown&Christe 1998 959.68+0.02 SDM 1998
nsen Dalsgaard

Klili¢ 1998 059.33+0.05 | SA(2prismes) 170/1998
Sanchez 1998 959.3310.04 SCCDA 100/1998

Noel 1998 059.85+0.03 SA 123/1996

960.50:0.03 (2 prismes) 120/1997
960.39+0.13 822/1990-1997
Sato &Soma 1998 959.64+0.02 SE 1987

Jilinki 1998 859.20+£0.02 SCCDA 3500/1996-1997

Sinceac 1998 859.4540.01 SA 349/1996-1997
Jilinski et ai. 1999 059.14+0.03 SCCDA 2600/1996-1997
Laclare et al. 1999 959.60+0.01 SA 418/1996-1998

Delmas 2000 059.521£0.01 DORaySol 266/1999

Table 1. Solar Diameter Observations. PP: Projected rransit time, Mi: micrometer, HE: heliometer,
ME: transit time at meridian circle, AS: solar astrolabe, SDM. solar diameter monitor, SCCD: solar astrolabe
with CCD, DTIL: drift timing in lzana & lacarno, SE: solar eclipse, SDSBF: solar disk sextant on balloon fligh:,
PHM: Plotoelectric measurement, LDO: limb darking observation. DS CCD: drift scan CCD. LDS: Limb
darking Scans.



The observed variations of solar diameter in the past based on classical techniques
have given inconclusive results [6]. The principle of these classical methods is based on
timing the meridian transits of Sun borders. However, since the interval of data is more or less
9 years, they are not useful to disclose eventual variations of Sun diameter that is connected
with 11 years, the period of solar activity [6,7]. In addition the observation of meridian
transits gives individual results of relatively low precision. Nevertheless, its accuracy can be
improved by accumulating many observations in a short time period making them comparable
with more precise techniques such as solar eclipses. However, all these methods are strongly
affected by several types of systematic errors {6]. Many instruments may be adopted to
measure the Sun radius. The one that has shown its performance and permitted collections of
a huge set of data is the solar astrolabe [8,9].

The solar astrolabe, which is a modified version of Danjon astrolabe. has some
advantages over the meridian circle [10]. For instance, the later can give only two
measurements during a day (horizontal and vertical radius), where the astrolabe gives a
number of measurements that is twice the number of observing zenithal distances.
Furthermore, the astrolabe provides a compact and a more stable local reference defined by
the mercury mirror and the angle of the prism (see chapter II). The meridian circle is a more
complicated instrument. Its precision depends on three instrumental parameters that are not
easily controlled, especially in the quite critical environmental conditions that are prevalent
during Sun observations {11]. In the other hand and according to Cullen, the effect of
iradiance on meridian observations of the Sun is variable, since it depends on the Sun
senithal distance. For the astrolabe and for a given zenithal distance this effect should be
constant [6].

The experiment of visual measurement of Sun diameter using an adapted Danjon
astrolabe has been initiated in 1975 by F.Laclare at Calern observatory (France). Since this
date. and during more than two solar cycles, diameter measurements were regularly recorded.
These visual observations revealed evidence of oscillations in the solar data; see Figure 1(a)
[9.11]. The same experiment has begun at Sao Paulo (Brazil) in 1974 and more lately at
Santiago (Chile), in 1990. Oscillations of Sun semi-diameter were always noticed.

The mean error source in visual measurement of Sun diameter is the observer’s
estimation of the Sun transit instant. This is due of course of the fact that each observer has
his way of observation and his own €ye spectrum. In 1989, in order to eliminate this error and
improve the diameter measurement accuracy, some modifications were brought to the solar
astrolabe. The main ones are the introduction of a CCD camera and a system of acquisition
[11]. A comparison of the two measurement sets of Sun diameter (visual and CCD) made
during the same time period have shown good agreement between them [12]. From that time,
the two methods of measurement are operating together. A CCD astrolabe of the same type
as that of the Calern instrument but equipped with a variable prism started operating at the
National Observatory of Rio de Janeiro in January 1997, and the recent values still show
variation; see Figure 1(b).
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Figure 1. {a) Solar radius measurement obtained with Calern observatory astrolabe. (b) Solar radius
measurement obtained with Rio de Janeiro astrolabe during 1997 to 2000 (West abservation).

The principal cause of the variability of the Sun is its magnetic field. The theoretical
studies have shown that its predominant effect is a surface effect [14]. The theory of the
stellar structure foresees that the variations of the radius associated with magnetic activity are
of the order of 10-7, a non-measurable quantity [14]. According to the theory, the solar radius

is a quantity that, at the actual level of observation precision, depends only on the basic
physics, while the apparent variations of the observed radius are very high, about 0”. 4 over a
magnetic cycle [12]. It is very difficult to interpret these results, since we do not know if these
observed variations reflect real variations of the Sun radius, or are the effects of other
phenomena less known. The variations may also come from the fact that the real observed
radius belongs to the solar atmosphere, a fluid medium, that is subjected to a big density
variations, temperature changes and tide effect. But, if real variations of the radius, or one
portion, are original variations, serious constraints will be subjected to the theory of the stellar
structure. So, 1t is absolutely necessary to ameliorate the observation techniques in order to
understand more precisely the origin of Sun diameter variations. Conjointly, the other
phenomena that can have an effect on the measurement of the Sun radius must be well
studied. These complex phenomena whose effects remain poorly known are the terrestrial
atmosphere vanabulity, solar atmosphere and the instruments used.

In 1966, results were announced of a measurement series of the solar flattening done at
Princeton, that implicated the theory of the general relativity of Einstein. These measurements

showed a difference Ar=0".0866+0".0066 between the polar radius and the equatorial radius,
with a quadrupolar moment J,=2474+0.23.10° [I5]. The advance of the perhelia of

Mercury's orbit, which is also related to Sun flattening, is one of the most interesting tests of
the general relativity. Now then, the quadrupolar moment found by the observations found
out an acceleration of the perihelia different of that general relativity might explain. [16]. The
big discussion launched by these results has opened the way to other experiments, intended to
measure the Sun flattening. These experiences have found values more and well moderated
for the flattening, confirming the first results. So, the observations done with the Solar Disk

Sextant have given a value J,=1.8.10"7, with all uncertainties taken into account, which
remain compatible with the estimations of the general relativity [14]. A recent analysis of the



heliosismological data obtained by the satellite SOHO (Solar Heliospheric Satellite) confirms
the last values obtained by direct measurement of Sun flattening [14].

The analysis of all flattening data showed also a variation with the solar cycle and
the method of measurement. The variations of Sun flattening seemed to be conforming 10
those of the observed solar radius with the astrolabe [16). Measurements with the solar
astrolabe have also put in evidence a radius dependent on the heliographic latitude, be the Sun
flattening. Still, to have a good measurement of the variation of the Sun flattening, it 18
necessary to do a dense series of observations during a long period of time and with many
methods and instruments.

The various studies oriented to the ancient and recent measurement have shown that
the solar variability has an influence on the terrestrial climate [18]. A good correlation was
found between the variation of the period of the solar cycle and the anomalies of the
temperature of the north hemisphere. In addition, between the variations of the measured
values of Carbon 14 and the number of sunspots [14]. A relation has been found between the
variability of the solar diameter and the stratospheric wind'to a period of 1000 days. This
shows that the solar variability induces in one part the variations of the observed radius, and
in the other part it forces the circulation of the stratospheric winds [17]. The data of Sun
semi-diameter obtained at Calern observatory extends during 24 years was compared to some
solar activities and measurements. Figure 2 shows Sun semi-diameter variations and sunspot
numbers. We notice that there exists an anticorrelation between them . This result confirms
the work of Gilliland [12,13], which was established using observations from Washington and
Greenwich. The same anticorrelation is naturally found with the irradiance data [13), since the
solar activity and the irradiance are correlated [13]. Tigure 3(a) represents a best
anticorrelation between Calern semi-diameter data and the shifts of low-degree
heliosismological pressure p-modes observed during the cycle [12,13]. In 1984, Delache
linked the variations of the observed diameter with the neutrino flux measurements [8], and in
1988 Gough mentioned an eventual connection between sunspot number, solar neutrino, and
the Sun diameter. This connection between the observed diameter and the neutrino flux is
seen 1o be correlated; see Figure 3(b)
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It 1s for the objective to respond to the problematic imposed by the solar diameter

measurement along the time and the observed variations, that a solar experiments are realized
and others in progress to perform the measurement in a high angular resolutlon of this
parameter. Between these experimentations we have,

The astrolabe network distributed in latitude.

DORaySols (Definition et Observation du Rayon Solaire): They are a new generation of
automatic solar astrolabes. They are equipped with an acquisition system, a CCD camera
and a prism of variable angle. These prisms allow performing several measurements
during a day (3000 measurements a year) [13].

‘Picard (The name given to this mission to rend homage to the French astronomer who

has effectuated measurements of Sun diameter): This spatial micro-satellite will be
launched in 2005-2007 for 3 to 4 years. Its main objectives are the measurement of Sun
diameter and the solar irradiance. These measurements will permit the comparison of the
results deduced from space and the ground as well as the evaluation of the atmospheric
turbulence.

Sodism II: it is a replica of the Picard’s telescope on the ground. It will be installed at
Calern observatory (France).

ML.LSolL.F.A. (Monitor d’Images Solaires Franco-Algérien). It is a monitor of image
quality, which will give the information of the Earth atmosphere state at the moment of
observation. This instrument will be installed just near DORaySol an Sodism II at Calern
observatory.

Picard, Sodism I, and Misoifa will all observe at the same time. They will be used to

define the effects induced by the Earth's atmosphere on ground measurements done by the
astrolabes that will continue to observe for a long period of time.

‘To validate the semi-diameter variations observed with astrolabes, we must have a

huge data sets record under good conditions, during a long period of time and with a
minimum period of discontinuities. So, it is necessary to have,



» A site where the meteorological conditions and the atmosphenc turbulence are favorable
- for this type of expenment

e A location where the Sun is always so high on the sky during all the year to limit the
effects of atmospheric refraction.

e Automatic instruments that permit the collection of huge data sets of Sun diameter
measurement.

For that reason, a grouna network of solar astrolabes (DORaySol) installed at different
latitudes is necessary. The actual ground astrolabe network contains two DORaySols
currently in operation, the one of Calern (France) and Rio de Janeiro(Brazil) observatories.
The third one will be that of Tamanrasset observatory, which will be installed soon. Figure 4
presents the ground DORaySol network.

Figure 4. The ground network solar astrolabes.

A preliminary meteorological study of Tamanrasset observatory, where the astrolabe
will be installed, has been done over the last 3 years. This study has shown a mean humidity
of 20.5%, a mean atmospheric pressure of 866.4 hp, a mean nebulosity of 2 octas, a mean
temperature of 22.8 °C, and a mean wind speed of 3.7 m/s (see Annex 1). This preliminary
study supports that Tamanrasset observatory would be a favorable place for this type of
observation. In addition, its location allows the collection of a huge data sets of Sun diameter
measurements. With DORaySol installed it will permit collections more than 4000 diameters
per year. This can be deduced from Figure 5 that represents the Sun trajectory for

Tamanrasset observatory.
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The Sun trajectory of the Sun for Tamanrasset obsarvatory
90

''''''

80 |-
0L ’ / Tﬁﬁ\\\
50 | / £ / r__“\ .
50

40 b

The altitude in *

30k

20 3+

s P
150 170 180 2710
The azimuth in *

Fiigure 5. Sun trajectory for Tamanrasset observatory.

The present work is oriented, after the study of the astrolabe, its principle of operation
and the theory behind the Sun diameter measurement, to:

1- Look for the suitable method to process the Sun images, develop the necessary:
techniques to extract the Sun edge and build the procedures to calculate the Sun
diameter.

2. Study of the measurement quality with the CCD astrolabe and the effect of the
atmospheric turbulence on Sun diameter measurement. .

3. Chose and build the acquisition system that will be installed around the solar
astrolabe of Tamanrasset and provide the necessary programs for its operation.

In chapter I we present the theory behind the principle of Sun semi-diameter
measurement. All the parameters that enter in Sun diameter calculation and all the necessary-
corrections that must be taken into consideration are introduced. In addition, the reduction
procedure will be given. '

Chapter 1I describes the astrolabe and the different transformations to which it is
subjected. It presents the experimental principles of Sun diameter measurement and the
related problems.

The object of chapter III consists in presenting the wavelet transform and its
characteristics that are suitable for Sun images, which present non-stationary defects. In
addition, it describes the two algorithms ( the Mallat's algorithm and the a trous algorithm)
used to implement this processing method. Finally, it presents the different steps to extract the
Sun image edge and the way to determine the transit instants of the Sun through the defined
height circles. :

Chapter IV is an application of the wavelet transform to two sets of Sun 1mages
acquired by the solar astrolabe of Calern. A comparison between the two algorithms to
implement the wavelet transform of is presented. Also the methods to calculate the error on



the Sun semi-diameter measurement and the error on the transit instants determination are
given. Finally the relation between these two types of errors with the atmospheric turbulence
characterized by the Fried parameter are discussed.

In chapter V, the main work is oriented to select the acquisition system and to
implement the software that pilots the astrolabe of Tamanrasset. The different elements of the
proposed acquisition system are tested in the laboratory for future installation around the
astrolabe.

10



CHAPTERI SUN RADIUS MEASUREMENT THEORY

After a brief describing of some aspects.of celestial mechanics that introduce the different coordinate systems
on the sky and on the Earth, this chapter gives the principle of Sun diameter measurement. The necessary
corrections that must be applied to this measurement are presented. Finally, the steps details to calculate the
Sun diameter will be given. S o : L '

1.1 Celestial sphere

‘The Celestial sphere is an imaginary spherical surface. It is centred on the observer on
which the stars and planets have apparently been placed. Its radius is infinite. The boundary
between the visible and invisible portions of the celestial sphere is called the Horizon. The
poles of the horizon, those points directly overhead and beneath, are called the Zenith and the
Nadir.

CELESTIAL
MERIDIAN

EARTH “
EQUATOR

CELESTIAL
. EQUATOR

ECLIPTIC

CELESYIAL
SPHERE

Figure I-1. Celestial sphere with principal great circles (eclipiic, celestial equator, celestial meridian) indicated, NCP marks
the North Celestial Pole, Z the ustronomical zenith and € is the obliguity of the ecliptic. ’

The celestial sphere appears to rotate around a fixed axis. This point is known as the
North Celestial Pole (NCP) in the northern terrestrial hemisphere and South Celestial Pole
(SCP) in the southern terrestrial hemisphere. The axis of the Earth’s rotation pierces the
celestial sphere in these two points. The great circle passing through the celestial poles and the
Zenith is called the celestial meridian. Clearly, it also passes through the Nadir. The celestial
meridian intersects the horizon at the north and south points. The great circle passing through
the astronomical Zenith and Nadir and orthogonal to the celestial meridian at the Zenith, is
called the prime vertical; see Figure I-1.

The Sun and planets move in a nearly coplanar fashion on the celestial sphere. This
plane is approximately that of the ecliptic (the intersection of the instantaneous mean orbital
plane of the Earth with the celestial sphere). The angle between the ecliptic and the celestial
equator is known as the obliquity of the ecliptic. It is about 23°.5. The two intersections of the
ecliptic with the celestial equator are known as the equinoctial points.
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1.2 Celestial coordinate systems

Celestial coordinates fix the location of an object on the sky. There are various
systems suitable for different purposes. Each needs a fundamental circle and a fixed point; see
Figure I-2.

W pA, b

- (d)

Figu}'e 1-2. {a)} Definition of the horizontal coordinate system.(b) Definition of The HA-dec coordinate sysiem.(c) Definition
of the RA-dec coordinate system. (d} Definition of the ecliptic coordinate systent.

(1) Horizontal or "alt-az" system: The horizontal or alt-az system depends on a
place (because the sky appears different from different points on Earth) and on time (because
the Earth rotates, and each star appears to trace out a circle centred on the North Celestial
Pole). The altitude (a} of an object X is the angular distance along the vertical circle from the
horizon to X. It is measured from -90° at Nadir to +90° at Zenith. Altermatively, the zenithal
distance (z) of X is (90° - altitude). Any two objects with the same altitude lie on a small
circle called a paralle! of altitude (Almucantar, or the small circle). The azimuth (A) of an
object X is the angular distance around the horizon from the north cardinal point to the
vertical circle through X. It is measured from 0° to 360° westwards {clockwise), sec Figure I-
2(a).

(2) Equatorial or "HA-dec." system: It is a system of celestial coordinates which is
fixed on the sky and independent of the observer's time and place. The fundamental circle for
this system is changed to the celestial equator. To fix the coordinates of an object X on the
celestial sphere, we draw the meridian through X. The declination ( d) of X is the angular
distance from the celestial equator to X. It is measured from -90° at the SCP to +90° at the
NCP. Any point on the celestial equator has declination 0°. Alternatively, the North Polar
Distance of X is “90° - declination”. Any two objects with the same declination lie on a parallel
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of declination. The Hour Angle (H) or HA of object X is the angular distance between the
meridian of X and the celestial meridian. It is measured clockwise in hours; see Figure I-2(b).

(3) Equatorial or "RA-dec." system: The first equatorial system (HA and
declination) is still tied to the observer's here-and-now. For this system, a fixed point is chosen
on the celestial equator called the vernal equinox or the First Point of Aries. The declination {6)
of object X is measured in the same way as before. The Right Ascension () or RA of object X
is the angle along the celestial equator measured counter clockwise from the vernal equinox to
the meridian of X. Like HA, RA is measured in hours 0-24h but it goes in the opposite
direction. The relationship between the hour angle and right ascension is given by :

H=ST -« 1D
Where TS is Sidereal Time and at the same time the hour angle of the vernal equinox.

(4) Ecliptic coordinate system: The apparent path followed by Sun is called the
ecliptic. In the ecliptic system , the fundamental great circle is the ecliptic. The zero-point is
still the vernal equinox. K is the northern pole of the ecliptic and K' is the southern one, To
fix the ecliptic coordinates of an object X on the celestial sphere, we draw the great circle
from K to K' through X. The ecliptic (or celestial) latitude of X (B) is the angular distance
from the ecliptic to X, measured from -90° at K' to +90° at K. Any point on the ecliptic has
ecliptic latitude 0°. The ecliptic (or celestial) longitude of X (M) is the angular distance along
the ecliptic from the vernal equinox to the great circle through X. It is measured eastwards
(like R.A.) but in degrees, 0°-360°.

1.3 Conversion between system coordinates

To convert between the horizontal and equatorial coordinates for an object X, we use
the Astronomical Triangle XPZ, see Figure I-3 (a), with help of cosine and sine rules (see
Annex 2). To convert between ecliptic and equatorial coordinates we use the Astronomical
Triangle KPX (I*;igurc [-3(b)) and the equations of the sine and the cosine rules.

calestlal equetor

(a) {b)

Figure I-3. {a) The Astronomical triangle io convert between horizonial and equatorial coordinates. Z is
the zenith, P is the North Celestial Pole, X is the object, H the hour angle, a the right ascension, & the
dectination and S the parallactic angle(b). The astronomical triangle to convert berween ecliptic and
equatorial coordinates, K is the ecliptic pole, P the NPC, & the declination, B the eclipric latitude, A the
ecliptic longitude and € the obliquity,

For the transformation from horizontal and equatorial coordinates, the following
equations are deduced,

cosz=+sin@sind+cos@cosdcosH
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sin z cos A = - cos @ sin & + sin @ cos § cos H (1.2)

sinzsin A= cosdsinH

sin z cos S = + sin @ cos & - cos @ sin d'cos H
sinzsinS= cos @sin H (1.3}

sin &=+ sin ¢ cos Z - cOs P sin Z cos A

cos & cos H = + cos ¢ cos z + sin @ sinz cos A 14)
cos dsinH= sinzsin A

cos & cos S = + sing sin z+ cos @ cos Z Cos A 1.5
cosdsinS= cos@sin A

where A is the azimuth, z the zenithal distance, @ is the observer latitude, & is the declination,
S the parallactic angle and H the hour angle.

1.4 Geographic coordinate systems

There is quite a variety of local and global coordinate systems that may be used to
describe locations on the surface of the Earth. The most important geographic coordinate
systems are: Geodetic coordinates system, Astronomical coordinates system and the
Geocentric coordinates system.

I-4.1 Geodetic coordinates

It is based on a model for the size and the shape of the Earth. The Earth’s surface is
nearly that of an oblate spheroid. Two independent parameters uniguely specify such an
ellipsoid. It is important to realise that the definitions of the geodetic coordinates are
independent of the numerical values of the parameters of the ellipsoid. The difference
between the long and short axes of this ellipse is about 0.3%. The value of flattening f,
adopted by the IERS in 1989 is :

f=(a-b) a=10/298.275 : (1.6)

Where a is the equatorial axis, and b is the polar axis of the ellipsoid [40].

1.4.2 Astronomical coordinates

The observatory coordinates that can be measured with only local information are
astronomical or geographic longitude and latitude. The local gravity vector and the direction
of the celestial pole define them. '
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1.4.3 Geocentric coordinates

The position of a point relative to a terrestrial reference frame may be expressed in
three ways:

(1) Geocentric equatorial rectangular coordinates, X, y, z
(i) Geocentric longitude, latitude and radius, A, ¢°, p
(i1i})  Geodetic longitude, latitude and height, A, ¢, p

The relationship between the geodetic and the geocentric latitudes of a point is
illustrated in Figure I-4(a) which represents a meridional section through the reference
spheroid. The geocentric radius p is usually expressed in units of the equatorial radius of the
reference spheroid. The following relationships hold between the geocentric and the geodetic
coordinates:

x = apcos(¢’) cos(A) = (aC + h) cosd cosA : %)
y= apcosd’sinA = (aC + h) cosd sinA (1.8)
2 = ap sind = (aS + h) sing 1.9

Where a is the equatorial radius of the spheroid , C and § are auxiliary functions that
depend on the geodetic latitude and on the flattening f of the reference spheroid. The polar
radius b and the eccentricity e of the ellipse are given by:

b=a(l-f) (1.10)
E=2ff or I~ =(1-F) ' (L11)

It follows from the geometrical properﬁes of the eilipse that:
C= {coszq) + (1 = sin*p) 2 (1.12)
S=(1-pkc (1.13)

Geocentric coordinates may be calculated directly from geodetic coordinates. The
reverse calculation of geodetic coordinates from geocentric coordinates can be done in closed
form [19] but it is always done by iterative procedure. An iterative procedure for calculating

A9, h from x, y, z is as follows:
Step 1: we calculate h=tan\(y/x) r=(x"+ yz)”2 el = 2f—-f2
Step 2 : we calculate the first approximation to ¢ from: ¢ = tan™ (2/r)

Step 3 : we perform the following iterations until ¢ is unchanged to the required
precision.

o= 0 C = (1 - e’ sin%))"? ¢ =tan’'(z + aCe® sind;)/r)

Step 4: we calculate h = ricos¢ - aC
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The quantity ¢ - ¢’ is some time known as the “reduction of the latitude” or “the angle
of the vertical”. Its value is of the order of 10’ in mid-latitudes. The maximum departure of ¢
from ¢'is tan {€*/[2(1-¢")'*]} when sing = 1/(2 - e,

Aatronomicel
Tenith
zZ-axis ‘ Geodelic hortzon Geodatic zenlth
Nod i
Glservet
Astranamicol
= horlzen
. + ¢
Equator Diteclion of
El +° plumb-iine
Q; South
(a} ®)

Figure I-4. (a) Relation between geodetic and geocentric coordinates. O is the centre of Earth. OA is the equatorial
radius, OB is the polar radius, OP is the geocentric radius, PQo is the normal to the reference spheroid. .0, = aS. Qo =
aC. ¢ = Geodetic latitude. $° = Geocentric latitude. (b) The station error.

There is again a third definition of latitude. Geodetic measurements on the Earth’s
surface show local irregularities in the direction of gravity, due to variations in density and
shape in the Earth’s crust. The direction in which a plumb line hangs is affected by such
anomalies and these are referred to as station error. The geodetic or geographic latitude ¢” of
- the observer is the astronomical latitude corrected for station error; see Figure I-4 (b).

L5 Heliographic coordinates

Figure I-5 (a) represents the. heliocentric celestial sphere, K is the pole of the ecliptic
~ and P, is the Sun’s rotational pole. The great circle UNV is the solar equator, N denoting its
ascending node on the ecliptic. The rotation axis (the solar equator), is specified by two
parameters I and Q. These are respectively the inclination of the equator to the ecliptic and the
longitude of the node N. The adopted values are,

1=7°25 (1.14)
Q= 73° 40" + 50”.25 ( t- 1850) (1.15)

where t is the time expressed in years.

The variation in Q is due to precession (see Annex 2), and secular changes in the
ecliptic is ignored. The prime meridian is shown as PoO. It cuts the equator at the point O,
which is assumed to rotate with sidereal period of 25.38 days. This reference point was
originally chosen to coincide with the node of 1854 January 1 at 12" UT. The position of the
point O is given by the arc NO. It is denoted by W and given by,

W = (360°/25.38) (JD — 2398220.0) (1.16)

Where JD is the Julian Date.
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Now suppose that X is any point on the solar surface. Its heliographic latitude and
longitude are defined as B = 90° - PgX, and L = OPX. Let E be the center of the apparent
solar disc called the subearth point. This point lies on the ecliptic at longitude I — 180°,
where Ig is the geocentric longitude of the Sun. So, EN = Q - [, +180°. If (Lo, Bo) are the
heliographic coordinates of the center of the disc, then PoE = 90° - By, EPgN = 360° -W Lo,
P,NE = 90° - I, and PoN = 90°. Applying the sine and cosine formula (see Annex 2) to the
triangle PoNE we get,

SinBg=sin I - £) sin ] (LE7)
cos Bgcos (Lg + W) =cos I sin (& - Ip) (1.18)
cos By cos (Lo + W) =-cos (Q - Ip) (I1.19)

These equations are sufficient to determine (Lo, Bo) for any time once W is calculated.
If P, in Figure I-5(a) represents the celestial pole, then the position angle may be computed as
the sum of the angles P)EK and KEP,y,

Consider first, the spherical triangle KP,E, in which KE = 90° and KP, = ¢ (the
obliquity of the ecliptic). The spherical angle EKP, is the ecliptic longitude of P, minus the
ecliptic longitude of E. So EKP,; = 270° - Io. From this spherical triangle, we get:

tan P\EK =-cosIptan ‘ (I.IZOa)‘

where P\KE €[- ¢, +¢ ] for I € [0°, 360°)

Consider the triangle KEPy we have again, KE = 90°, PoK=1,and PGKE=1p- €2 -
90°. Applying the cosine and sine formulae we get,

tan KEPy = - tan [ cos (Q - [p) (1.20b)
where KEPg € (-1, +1] for Iy € [ 0%, 360°]
Hence, the position angle of the axis is given by

P=-tan’'[ tan I cos (Q - Io)] — tan"'[ cos I tan €] (1.21)
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(a} (&)
Figure I-5.(a} Heliographic coordinates, (b) Heliographic latitude.

‘ In our case, the vertical diameter that is measured by the astrolabe is aligned with the
great circles ¢z and c;z. Its heliographic latitude is given by,

L=90° - (P+S) (1.22)
Where S is the parallactic angle computed positively 1oward the east; see Figure 1-5(b} .

1.6 Solar radius determination

1.6.1 Classical method

The average distance of the Earth from the Sun is called the astronomical unit. Modern
methods, using radar, have greatly simplified the task of finding this distance [40]. However,
if a radar signal were directed toward the Sun, its echo would be very difficult to detect
against the background of other radio signals that the Sun itself emits. Therefore, an indirect
approch is used. A radar signal is directed toward a given planet or asteroid, and the time
required fot the echo of that signal to be heard is noted. Since we know the speed with which
the radar signal travels, we may then compute the distance to the object. Knowing both the
distance and period of an object that orbits the Sun, we can calculate the astronomical unit
using Kepler’s third law,

p__nr (1.23)

For the case of Mars we have,
(1.88) *_(x+78,389,294) :
(1) 2 x 3

x = 149,597,890 Km (The astronomical unit)

‘Where p; is the périod of Mars and pz is that of the Earth. T, is the average distance of Mars
from the Sun and r is the average distance of the Earth from the Sun.
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The approximate determination of the diameter of the Sun follows directly from the
knowledge of its distance from the Earth as well as the apparent angle that its diameter makes
with our eye.

Sun

—

Farth ()

0.532

Figure [-6. Classical Sun diameter measurement.

0.532°_ d
360°  27(149,598,000Km)

d = 1,390,000 Km

To seek an accurate Sun diameter that can be used for scientific purposes, we must
look for more methods using precise instruments. The ground instrument that recently shows
efficiency is the modified Danjon astrolabe for Sun diameter measurement.

1.6.2 Astrolabe measurement principle

Figure 1-7 shows the principle of the measurement. P stands for the cetestial pole and
Z for the zenith. ¢ is the latitude and H = ST - & is the hour angle of the Sun. The Almucantar
is the parallel of altitude. z; and z, are the zenithal distances computed at the time of crossing
of the same Almucantar by the upper edge (Sun in ¢;) and lower edge (Sun in c;). For the two
instants, the center of the Sun in ¢, and c; is located on two close parallels of declination, §,

and &,
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Figure I-7. Measurement principle.

Figure 1.7 is simplified as shown in Figure 1.8 by neglecting the curvature of the
parallels of the altitude and of the diurnal trajectory. of the Sun located between the two
parallels of declination designated by 5 and &,

Qiurnal demth
Motion
\_ ¥Zg
PN
N z,
n“ “. l \
[ ('. | {
T
X Kk
™, P T Al mucaniar
\M._ _(’1/1_ o L_
T, % \
ri VAR
/ B

Figure I-8. Measurement principle of the Sun semi-diameter with the astrolabe neglecting the curvatures of the parallels of
declination and Almucantar.

If t z;nd t, are the recorded times of the transits T, and T, respectively of the solar
borders through Almucantar, and if z, and z, are the zenithal distances of the center of the
Sun computed with t; and t respectively, the Sun semi-diameter R is given by[12]:

R = 1/2|z) - 22| (1.24)

So, all that we need is a precise instrument that can measure the two transit instants at
T, and T, From Figure I-8 it is apparent that the measured diameter will have always a
vertical direction with respect to the local frame and the transits of the borders of the Sun are
observed always at the same zenithal distance. This is a great advantage, since the results
should be free from the effects of errors on the refraction and an eventual effect of irradiance

should be constant {20].

Since the solar diameter is a function of zenithal distance, so, this must later be
corrected for the effects of the parallax, the atmospheric refraction and the instrumental

effects. :
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1.7 Parallax

The difference between the geometric directions to a celestial body from two points in
space is denoted in general by the term parallax. Because of parallax, the directly observed
positions of celestial bodies relative to the reference circles depend upon the point of
observations.

1.7.1 Geocentric parallax

The geometrical direction for a celestial body from an observer on the surface of the
Earth, and from the center of the Earth, lie in a plane that passes through the geometric zenith.
The angle P between these directions, which is the geometric parallax, is therefore the

difference between the observed angular distance from the geocentric zenith z'¢ and the
geocentric distance zy from the geocentric Zenith,

P= 72 . (L.25)
where z's2>7, ; see Figure 1-9.

(a (b)

Figure 1-9. Geocentric parallax, (a) C is the center of the Earth, O is the observer, G is the geocentric zenith, 5 is the
geocentric direction and S is the topocentric direction. (b) Z is the geodetic zenith, P is the celestial pole, and G is the
geocentric Zenith.

The angle P is the angle subtended at the body by the radius p from the center of the
Earth to the observer. The geocentric parallax vanishes at the geocentric zenith, and it is a

maximum at the horizon where z'¢ is 90°.

The displacement P on the celestial sphere by geocentric parallax is entirely a
displacement in geocentric zenithal distance and therefore very nearly in a vertical circle In
accordance with equation 1.25, the geocentric parallax depresses a celestial body toward the
horizon. However, since the geocentric zenith does not coincide with geodetic zenith, the
topocentric position will in general be displaced both in azimuth and altitude from the

geocentric position.
To determine the exact values of the effects of geocentric parallax, the geographic

location of the observer must be expressed in geodetic terms. Therefore, when high accuracy
is required and the parallax is large, astronomical coordinates should be corrected for local
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deflection of the vertical, and the elevation above the spherical should be included in the
geodetic coordinates. From the law of sines for plane triangles, we have,

sin P = %sinz',z (1.26)

where 1 is the geocentric distance of the body. The value of P at zx= 90° is called the
horizontal parallax; denoting it by @, we have,

sin P = sin @ sinz's (1.27)
From this equation and equation 1.25,
sin P = sin @ sin (P + zg) (1.28)

Expanding and dividing by cos P gives,

tan P=-SINESINZ0 (1.29)
I—sIncosz
The solution of 1.29 1s,
_ i i 1 2, | -
P-(w——6—w )sinz, +§w sin2z, +§w sin3z, +... (1.30)

The value of @ when p is the equatorial radius a of the standard spheroid, is the equatorial
horizontal parallax @o. Its value is given by sin(@o ) = a/r or 1/r when a is the unit distance.
The equatorial horizontal parallax @oof the Sun is defined as sin{wo )= a/1AU or @o=
8.794". The equatorial horizontal parallax of a body at its mean geocentric distance rg 18
called the mean equatorial horizontal parallax,n [40].

sin 7T = alry,

. 1.
M=sinm+ Esm"(ﬂ)+ ........

sin P = LRginmsinzs (1.31)

ar

If the Earth were spherical, the horizontal parallax would be the angular semi-diameter
that the Earth would appear to have if viewed from the body. Since the direction to the body
from any point on the Earth where P=@ would then be tangent to the surface of the Earth. But
because of the nonspherical form of the Earth, a tangent to the surface does not in general
coincide with the direction ze =90° at the point of tangency. The difference depends both on
the latitude of the point and on the azimuth of the tangent. Hence the angle' subtended by p at
an external point when z; =90° is not strictly the same as the angle subtended by the radius

of the Earth at this external point.

Ordinarily it is sufficiently accurate to put p = sin p, and neglect the parallax in
azimuth. Then zg=7—(@-@)cosA, where 7' is the topocentric zenithal distance from the
geodetic zenith, and A is the angle in azimuth measured westward from the meridian.
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Disregarding deflections of the vertical, z' is the observed zenithal distance from the
astronomical zenith. To this approximation, the parallax in altitude, in terms of the equatorial

horizontal parallax o, expressed in seconds of arc, is
p"z%m"osin[z’—((o—(p')cosA] (1.32)

which is to be added to the observed altitude in order to obtain the geocentric altitude above
the astronomical horizon. Since @w/we = p/a, and

pla= l—fsinz((p)a-gfz sin2(2¢) + ...
the horizontal parallax at any latitude is [40],
@=wo(l - fsin’Q + -Z- £ Psin P20 +.) ' (1.33)

where f is the flattening of the Earth. Neglecting flattening in addition to the other '
approximation gives p"=w’'sinz'. ‘

The horizontal parallax w at latitude @ is sometimes called the reduced parallax for
this latitude. The difference mo-w:[l—(p/a)}ao is known as the reduction of the equatorial
parallax, sometimes as the augmentation of the horizontal parallax, for the latitude. It is the
correction required to @ for the flatting of the Earth in order to obtain the equatorial
horizontal parallax @wo . From equation 1.33 we have: |

@, -@ =;HD[%f(l—0032¢)—%f *a —cos4¢}+ (1.34)

From the plane triangle of figure 1-9, we have

sinp _sinz, _sinz,'
=202

p r r
sinp=p/rsinzg = @Wo Psin Z'e (1.35)
where @o = 1/r if a is the unit distance. From the equation 1.25, we obtain the relation

between the topocentric zenithal distance (z'¢ ) and the geocentric zenithal distance (z,) as
follows,

Ze=zx HToPSINZy (1.36)
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1.8 Astronomical refraction

Refraction is the bcﬁding of the path of the light when it passes through a medium of
changing index of refraction

1.8.1 Dispersion by refraction

Since the angle of refraction depends upon the wavelength of light, a phenomenon that
occurs simultaneously with refraction is that of dispersion. The general effect of atmospheric
refraction is normally to increase the altitude of a celestial body without altering the azimuth.
Its amount depends upon the state of the atmosphere at every point on the path of ray at the
time. So, its determination is a difficult proposition. Because of continual variation and
irregularities throughout the atmosphere, the refraction is subject to irregular fluctuations and
anomalies, especially near the horizon, that cannot be determined by theory [40].

On the hypothesis that the atmosphere is horizontally stratified, that is the index of
refraction W is radially symmetric, p= u(r) where r is the distance from the centre of the
Earth; and from the law of refraction we havg,

ur sin § = const (1.37)

hence, { is the angle that the direction of the ray makes with r, and is therefore equivalent to
the angle of incidence on each stratum Figure [-10(a).

Figure I-10. (a) The astronomical refraction, (b) The approximate refraction.

The angle, which the direction of the ray at any point P makes with the radius vector
n to the observer is

(z)=0+E : (1.38)

hence,d is the geocentric zenithal distance of P from the zenith of the observer.
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At the observer, where r = 1y, i = Jo and 0 = 0, the apparent zenithal distance is zg= o,
The constant in equation .37 is equal to

urosin & =k,
and hence .
tan £ = k/(W’r’ - k)" (1.39)

The change in the direction of the ray, i.e., the total amount of refraction from any point P on
the path, to the observer is
Y=2-2
and therefore
dy=dz
=d0 +d& ( L.40)

Differentiating Equation 1.40 and dividing by ru sin &, we have

dE_' =-tan Y; ____,dg:‘:‘t) ;

and from differential geometry
d0 =tan & %t . (1.41)

Therefore by Equation 1.39 and .40, we get

dy=+tan £d (log% ) (1.42)

d6 = k (Pul - k3?2 % (1.43)

The integration of equation 1.43 gives the path of the ray and the integration of equation 1.42
gives the astronomical refraction

0 2 -Ilzd ,
52 = I{[[%coseczo} 4} e (L44)

The integration requires p( r) to be known. The index of refraction for a given
wavelength depends almost entirely on density, since the composition of the atmosphere up to
great heights is virtually uniform and constant except for variation of the relativity small
water vapour content. From the distribution of the density with height, and laboratory
determination of the relation of p to density, the function w ( r) may be derived. However, it is
not to be expected that this function is of a form that will enable a rigorous analytical theory
of refraction to be constructed. Several different empirical laws have been formulated that
represent more or less closely the relation of W to the density p; among them are the Dale-
Gladstone law [40],

u-l=cp (I.45a)
and the Clausius-Mosotti equation



-1
£ = - (145b)
uoo+2
where ¢ is a constant

1.8.2 Approximate refraction

Different approximations are given for refraction. A first approximation may be
derived by putting [40]:

I - .
L=lts (1.46)

and expanding equation 1.44 into a series. The quantity s is only about 0.01 at a height of 40
miles, beyond which the atmosphere is ineffective in producing appreciable approach
refraction. Neglecting s?, we have,

o 2=k ) =L - psin 2o pasp ] 1.47)

n
We next Expand by the binomial theorem for values of zg that are small enough to keep
(u 2 p’sin 2zo) large compared with 2u’s. Under this condition, by equation 1.42, we get

o du . . e s
Oz = My 5in zof 3 5,7 " HosIm zof " 2M#2 o7+ (1.48)
- P u{p — T sin 7, V(U Ty Tsin zg )

Retaining only the first term of the development, we have
Sz=sin ~(Hosinzo-zo (1.49)

Putting o = 1+ x and developing in powers of x by Maclauran’s theorem by neglecting
powers higher than the first, we get

Sz = (Up— 1) tan zg (1.50}
To this approximation, the refraction is independent of the structure of the atmosphere, and is

entirely determined by the local conditions at the observer. Physically, this approximation is
equivalent to neglecting the curvature of the Earth Figure 1.10(b).

We notice from Figure 1.10(a) that,

E=z=2zp+Y - (1.51)
From the law of refraction, when a ray passes through a paraliel-stratified medium, the final
direction is the same as if the entire medium had the density of the last medium. Hence, the

result can be obtained directly,

sin§ = W sinzo (1.52)
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or, by equation .51, taking cosy=1 and siny=v:
'Y=(Uo_ 1) tan zg (1.53)

Adopting 1.0002927 for the index of refraction at the standard conditions (0°C and
760 mm) and the Dale-Gladstone law, we have from the formula and the ideal gas law, in
terms of the temperature t in degrees Centigrade and the mercury level of the barometer B in
millimetres at the observer,

=1 %773 * v gz p lanzo
Oz 7€0 273.0.0002927*206264".8 3273+t

=21 7+ 8B 1.54
21 .7 5o tanzo , (L.54)

At standard conditions we have
5z=60 4*tanzo (1.55)

This approximation is very close at small zenithal distances, because near the Zenith
the curvature of the atmosphere has less effect on the path of the ray, as there is less total
change in the direction of r; but it becomes useless at altitude below 30°.

The approximation obtained by retaining the two terms of equation 1.48 is of the form

Sz=Atanzo+Btan 'z (1.56)

The constants A and B may be expressed in terms of physical constants, or separately
determined from the observation. We can write equation [.55 as,

Sz=(uo—1)(1—Hoytan zo—(o~1)[Ho—1/2(to—1) Jan 20 (1.57)

In which Hp is the ratio of the height of the homogeneous atmosphere to the radius of the
Earth. This expression is a common element of all expressions for refraction, and is the
fundamental refraction formula for many practical purposes, but it is not sufficiently precise
for astronomical purposes at very low altitudes. Ho and yo ~ 1 are given by dreadful empirical
formulae that include, the air index, the atmospheric pressure, the air absolute temperature,
the wavelength of the light involved, the barometer’s mercury height and temperature, the
hygrometry percentage, the partial pressure of the water vapor at the given temperature, the
latitude of the station, the altitude of the station and the curvature of the radius of the Earth at
the place of the observation {40].

With Ho = (7.990.10°cm)/(6.3709.10° cm) and glo - 1 = 0.0002927, we have

&z = 60 .29tanzo—0 .06688tan 2o ' (1.58)

The mode! of atmospheric refraction chosen is the model of Laplace. It is deduced
from the equation [.48 by retaining its first three terms:

Sz=(pia—1)(I—Hoytan zo—(pio—1 Y Ho—1/2(pio~1) an 3zo+3(m—1)(9'2ﬂ—m) Zan Sz (L59)
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273.16 P 5 273.16

With —1=(-1 £ .55.10 1.60

i Ho (m-1) 260 T p (1.60)

And . 10 (77 —1) = 2876.04 + 16'2,88 + 0'13’6 (L61)
A° A

P=H(1-26.4%10 ~cos2¢—19.6*10 *h~16.3*10 ~°6 (1.62)

P the reduced atmospheric pressure (mm col.Hg).
T the absolute temperature of the air.

P the partial pressure of the water vapor.

) the wavelength in pum.

H the read barometric height

¢ the latitude of the station

h the altitude of the station (m)

g the barometer temperature (°C)

With the error on Hy, which induces a very small error in R, we can take:

Hy=4.5054*10°T (1.63)

For a recorded value f from the hygrometer, in humidity percentage, the relation
calculates the partial pressure of the water vapor for the temperature t of the air is given by,

_f =
p=155F®) (1.64)
With
F()=4.58 lExp(0.07292t—0.000284t 2) (1.65)

Equation 1.65 is an interpolation formula of the saturated vapor pressure of the water.
It is given according to the data published by “Bureau des longitudes” [14]. Replacing Hp
and po—1by their expressions in Laplace formula, we obtain the atmospheric refraction that

affects the zenithal distance.

1.9 Topocentric and Geocentric solar radius

There is a differnce between the radius of the Sun seen from the observer's
location(topocentric) and the center of the Earth (geocentric). Let O be the point of
observation, C the center of the Earth and R the Sun radius seen by the angles s and s, see
Figure I-11, in this case we can write,

R,=rsins= r'sin s (1.66)
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Hence

s'=rs/r or

s'—s=(r—-r)s/r (1.67)
As

r=r +pCosz, (1.68)
then

§'—§ = o PSCOSZg (1.69)

s= § + WoPs COSZy (1.70)

r being measured in Astronomical Units, the geocentric radius is given by

Ri=rsins=r1{ s’ — Do pscoszy) ' (171}

G

Figure I-11. Geocentric Sun radius vs Topocentric one.

1.10 Data reduction procedure of solar radius

It was shown from section 1.6.2 that the vertical solar semi-diameter is given by
equation 1.24., where z; and z; are the zenithal distances computed at the successive crossing
times t; and t;. The resolution of the sphencal triangle at the time of observation yields the

geocentric zenithal distance of the Sun center z. We have from equation 1.2, replacing z by z"
,that:

cos z_ = sin @ sin & + cos @ cos & cos (H) 1.72)
The topocentric zenithal distance after the necessary corrections is written as:

Z = Z(ST) = arccos{sin ¢ sin & + cos & cos ¢ cos (ST - W)} +
p@o sin z*¥ + R +AC * P (1.73)
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where ST is the sidereal time at the moment of observation, @ is the latitude of the instrument,
o and & are the equatorial coordinates of the Sun computed at the time of observation, pwo
sin z* is the altitude parallax correction where p is the geocentric radius of the instrument,
@o is the equatorial horizontal parallax, z* is the geocentric zenithal distance at the time of
observation, and R the correction due to the atmospheric refraction. AF is the correction to
the focal plane position, AC is a correcting term dealing with the curvature of the declination
and altitude parallels. The P; stands for the personal error in the visual case, since each
observer has a personal way of appreciating the contact of both images and will consequently
choose a time of crossing either earlier or later than the accurate one. This error has an
opposite sign for both edges and of course it disappears in the case of CCD acquisitions.

From Figure I-11 the angle s’ that gives the topocentric angular semi-diameter is equal
to 1/2(z1 — za)). It must be decreased by the amount (p@os cos z*) to give the angular
geocentric semi-diameter. It remains to multiply that last one by the heliocentric radius vector
t of the Earth measured in AU to get the value of the solar radius at one AU,

R;-{ % |z — 22| - p @o s cos z*¥}r + P (1.74)

The following relation gives the local sidereal time ST at the moment of observation,
=TU 7 £

ST= % +7T L+Ncos15 (1.75)

Where TU is the observed universal instant deduced from the Coordinated Universal Time
(UTC) instant related to the International Atomic Time (TAI) (see Annex 3), K is the ratio
between the universal time and the sidereal time (K=0.997269566, see Annex 3). L is the
longitude of the station, N is the nutation of longitude, € is the ecliptic obliquity, and Ty is the
Greenwich Mean Sidereal Time (GMST). In conformity with IAU conventions for the motion
of the Earth's equator and equinox, GMST is linked directly to UT1 through the following

equation
GMST (in seconds at UT1=0) = 24110.54841 + 8640184.812866 * T+ 0.093104 *
T72 - 0.0000062 * T3 (I-76)

Where T is in Julian centuries from 2000 Jan 1 at 12h UT1
T=d/36525 _ 177
Where d=JD -2451545.0.

The observations using the solar astrolabe are dated in UTC. They are transferred to
UTO as follow (see Annex 3),

UT1=UTO0 - [%sinﬁﬁ%cosﬂn]tancpo | (1.78)
Rearranging we find that
UTO-UTC =UT! -UTC + [%sinlo'-}-%cosﬁo}tanqoo (1.79)
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The difference UT1 — UTC, x and y are given by the International Earth Rotation Service
(IERS) at the time of observation. goand A are the geographic coordinates of the station,
which can be corrected and known exactly using the following equations( see Annex 3),

@ =@o + X Coshg— Y sindo ’ (1.80)
A= Ao+ (x sinhg + ¥ COS Ag ) tan @o (1.81)

Knowing UT], wecan calculate Terrestrial Time (TT) used to calculate the Sun
ephemeredes (see Annex 3). Itis defined as, :

TT = UTC + (number of leap seconds) + 32.184 (1.82)

The number of leap seconds is given by the Bulletin A of the IERS. The calculation of TT
gives access to the Sun ephemeredes which provide a, &, r, s and w . Having the
ephemeredes, we can calculate the topocentric zenithal distance, and finally using equation
174 to calculate the semi-diameter after applying the necessary corrections. The following
steps summarise the method of reduction,

Step 1: - Reading of UTCI and UTC2, the true instants of Sun transit.
. Reading of the station geographic coordinates and the date of observation.
- Reading of the parameters of atmospheric conditions at the moment of
observation. These parameters are: the atmospheric pressure, the air temperature,
the barometer temperature and the humidity.
- Reading of the instantaneous coordinates of the celestial pole, UT1-UTC, and TAI-
UTC from the IERS butletins that correspond to the moment of observation.

Step 2: - Computation of the vector radius to the station according to the chosen ellipsoidal
model for the Earth.
_ Correction of the station latitude for station error and altitude effect.
- Correction of the station longitude and latitude for polar motion.

Step 3: - Computation of the Julian date and the Greenwich Mean Sidereal Time (GMST).

Step 4: - Computation of UTO and the ephemeredes time TDT or TT (Terrestrial
DynamicTime).

Step 5: - Computation of the Sidereal Time (ST).
Step 6: - Computation of the Sun ephemeredes at the true time of observation.
Step 7: - Computation of the geocentric zenithal distance.
_ Computation of the topocentric zenithal distance (correction for the geocentric
Parailax).
Step 8: - Correction of the topocentric zenithal distance for the atmospheric refraction.

- Computation of the topocentric diameter.
- Computation of the geocentric diameter.
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The precision of the above procedure depends mainly on the acuracy of the two
measured instants. UTC1 and UTC2. A small error on them will affect the complete
procedure. So, it is imprtant to have a precise and stable reference system.
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CBAPTERII THE SOLAR ASTROLABE AT CALERN OBSRVATORY

This chapler presents i detalled descrlpuon of thg solar astrolabe and thc different mod1ﬁcat10ns undergone
durifig the last years The ‘new ‘generation of solar astrolabes are presented along wnh the methodology of Sun

EaN- Sy

1L.1 History of the astrolabe

The astrolabe is believed to have been a Greek instrument invented by Hipparchus of
Biythynia {150 B.C.). The astrolabe has played an important part in the history of civilization.
Its earliest known description due to John Philoponus from Alexandria dating from the VI
century. Alexandrian knowledge seems to migrate through the Christian abbeys of Syria after
the Arab conquest of Egypt. With the Abbasids, Islamic science became acquainted with Greek
sources as well as Indian and Persian, and through them those of the ancient Babylonians and
Egyptians. Following the Muslim conquest of Spain the Astrolabe entered Europe. One of the
medieval sources was the XIth century manuscript "Mensura Astrolabi" by Hermanus
Contractus. It describes the use and design of the astrolabe. This manuscript was brought to
the knowledge of his fellow abbots of Reims, Chartes, Liége and Reichman and Gerbert
d'Aurillac who studied the mathematics in the school of Cordoba, before becoming Pope
Silvester II. Since the XIIIth century, the astrolabe started.spreading throughout Europe from
the Iberian Peninsula and Sicily into the great university. cities of Europe. The astrolabe has
remained one of the most important tools of astronomers until the end of the XVIIIth century.
The Astrolabe is a multiple—purpose astronomical instrument. It can be used to solve numerous
problems involving the position of celestial objects, simple surveying, and time determination.
There are three distinct types of astrolabes: planispheric, universal and mariners [21].

In its most usual form, the astrolabe consists of an evenly balanced circle or disk of
metal. It is hung by a ring and provided with a rotating alidade or diametrical rule with sights.
It turns within a circle of degrees for measuring the altitudes of the Sun or stars. On its face it
displays a circular map of the stars, the retie. It is cut from a sheet of metal with pointers to
show the position of the brighter stars relative to one another, and to the zodiacal circle
showing the Sun's position for every day of the year. Lying below the retie are one or more
interchangeable plates engraved with circles of altitude and azimuth. To obtain the time, the
user first measured the altitude of the Sun, then having noted the Sun's position for the day in
the zodiacal circle, he rotates the retie until the Sun's position matches with the circle on the
plate that corresponds to the observed altitude. A line drawn through this point of coincidence
and the centre of the instrument, given by the edge of the alidade, to a marginal circle of hours
showed the time. All the stars positions can then be referenced to the local celestial coordinates
engraved on the tyrant that stays below the retie. Among the accessories often found in the
back plates of astrolabes were shadow scales for simple surveying and finding heights or
distances, a calendar scale showing the Sun’s position in the zodiac for every day of the year
and a diagram to convert equal to unequal hours and vice-versa. The measurement of altitude
could be measured with an accuracy of about 1 degree. The first serious use of this instrument
was in October of 1092. It was used to determine the time of a lunar eclipse [21].

33



The astrolabe was the most widely used astronomical instrument of the Middie Ages. It
was also perhaps the astronomical instrument used over the longest peniod of time. The
astrolabe served at least three purposes: (i) as observing device, it could be employed to find
altitudes of celestial objects above the horizon, to determine the heights of towers or
mountains, or for surveying in general; (i) as computing devices, it could be used to find the
directions to a specific region;(iii) as time keeping device, it could be used to tell time by day
or by night.. Figure (I-1) shows some ancient astrolabes:

Iélabemral Astrolabe (ea. 1500). Small Astrelabe (ca.]300).

Al-Sarraj Astrolabe(1328).

Figure I-1. Some uncient astrolabes.

From the XIX"” - Century when Gauss and Delambre conceived the equal heights
method, the astronomical instruments evolution become spectacular. Toward 1880 Chandler
had the idea of an instrument that he called Almucantar that used the method of Gauss-
Delambre. At nearly the same time, Beck designed the Nadir instrument and imagined the
principle of the prism astrolabe. Between 1900 and 1905, Claude and Driencourt designed the
prototype of the prism astrolabe, which was studied then and modified by several astronomers
such as: Nusl and Money in 1901, Reevs in 1921, Backer in 1930 and Svoboda in 1935. In
1921, Baillard imagined also an astrolabe of a prism used to register the solar passages on a
photographic beach [14].
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I1.2 Prism astrolabe and its principle

The prism astrolabe in use since 1900 under its simple shape. Figure (I-2), which is
supposed to be drawn on the vertical of a star, recalls its principle.

Figure [-2.Principle of the prism astrolabe.

An equilateral glass prism P is placed in front of a horizontal telescope of objective L.
Its rear face is perpendicular to the optical axis. A mercury bath M is placed in front of the
incident rays. If a star is at a zenithal distance of 30° (defined by the prism), two images are
formed. One is a direct image, and the other is a reflected one by the mercury bath. The two
star images move toward each other until they become tangent in the focal plane of the
astrolabe telescope. Then they move away from each other beyond this position. If the zenithal
distance is different from 30° the two images are distinct [14]. The observer estimates the
instant where the two images are tangent. The necessary condition that an object crosses the
height circle defined by the instrument is,

0-258<¢+z (IL.1)

Where ¢ represents the latitude of the observation place, z the zenithal distance and & the
declination of the observed star {22].

I1.3 Panjon astrolabe

The old astrolabes suffer of the same defect due to their optics. Several studies are
dedicated to solve this problem. Some of them are those of Conderc, Dungeon, Chandon and
Gougenhein. Finally, the astronomer Danjon and from the prism astrolabe of Claude and
Driencourt has imagined since 1938 an instrument endowed of a “biréfringent” Wollaston.
Prism. This prism constitutes an impersonal micrometer. It has eliminated the optical defects
and minimised the personal errors [14,22]. This astrolabe became one of the best instruments
for the positional astronomy since 1953 {23,24]. It permits in a very precise way to measure
the instant of passage of a star under the effect of the diurnal rotation of the Earth through a
height circle defined by the characteristics of the prism. Since its operation, the Danjon
astrolabe has been subjected to several transformations in order to be adapted to the
observations of objects other than stars. The possibility to observe objects of the solar system
and stars makes the astrolabe a good instrument for dynamic reference adjustment.

A.Danjon made of the astrolabe a first-class instrument. It has eliminated many

systematic errors that affect the time measurement. Figure II-3 shows the prototype of the new
impersonal astrolabe of A.Danjon and its principle components [14]. It is achieved by
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J Texereau in 1951 at the observatory of Paris and entered in regular service in 1953. The
obtained results (a standard deviation of 0.009 sec on time measurement and 0 * .10 on latitude
measurement) proved the quality of the instrument. Following the numerous demands of
astrolabes, the Optical society and Precision of Levallois (OPL) was in charge of
manufacturing a perfect set of several instruments. Observations with the first OPL astrolabe
began at the observatory of Paris in 1956, and B.Guinot announced excellent results after one
year and a half of observations. He has reached a standard deviation of 0.0043 sec in time and
0" .050 in latitude [24].

The instrument consists of mobile horizontal glasses in azimuth. They are preceded
by an equilateral glass prism, whose back face is perpendicular to the optical axis. Ahead and
below the prism is the mercury bath. The prism and the mercury bath are protected from the
surrounding turbulence by a cover that has an open-type screen on its higher part {0 let the
passage of the incident rays. For a star passing through a zenithal distance of 30°, one part of
the incident rays penetrates through the glasses by internal reflection on the upper face of the
glass prism. The other onc penetrates after a first reflection on the mercury bath and a second
internal reflection on the other face of the prism. The two resulting images are formed in the
field of the glasses, one going down while the other going up.
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Figure 11-3. OPL type of Danjon Astrolabe.
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I1.4 Solar astrolabe

F.Laclare achieved in 1974 at the observatory of Calemm (Nice, France), the first
observations of the Sun with a Danjon astrolabe. In order to protect the original glass prism, the
brightness of the Sun is reduced to a value similar to that of the moon with the help of a solar
filter. This filter is constituted with a shield in silica covered by a dielectric of multipie layered
coating that has an optical density around 5.5.

At first, F.Laclare has used the above original equilateral prism that allowed the
observation for a zenithal distance of 30°. Installed at an altitude of 44°N, the instrument
endowed by this prism at the beginning, had a major handicap. It permitted the observation of
the Sun only for declinations superior to 14°. That is less than three months per year. In
addition, only one complete passage of the Sun can be observed during a day.

The advancement of the technology has permitted the use of other materials to design
prisms. Several ceramic prisms working in reflection enriched the astrolabe of Calern
observatory, and the choice of using different zenithal distances became possible. Currently,
the solar astrolabe of Calern uses 11 prisms made of zerodur material that maintains a very
high angular stability during a long time. These prisms permit the observation of 22 passages
of the Sun by height circles defined by the following zenithal distances 30°, 34°, 37.5°, 41.5°,
45°, 49°, 52.5° 56.5° 60°, 65°, 70°. Figure H-4 gives the synoptical schema of the solar
astrolabe as it was operating in CERGA since 1978.

Figure [1-4. The solar astrolabe used for solar observatory at Calern observaiory
1-equilateral prism 2- [35° reflector prism 3- 150° reflector prism 4- solar filte.
5- removable protector 8- mercury bath 7- platinum 8-tube of incident rays.
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11.4.1 Prisms

11.4.1.1 Equilateral classical prism

This kind of prism worked in transmission and was used for a zenithal distance of 30°.
It has been studied for a long time by various authors [22,25]. In the case of the Sun
observation, the entry face of this prism has been treated by a coating of multiple dielectric
layers in order to permit the observation of stars and the Sun. The fact that the dilatation
coefficient of the borosilicate with which the prism was made is not negligible, it induced a
variation of zenithal distance. This disadvantage of its thermal instability was the object of

several studies [14].

11.4.1.2 Zerodur prisms \

These prisms has been proposed since 1967 by D.V.Thomas. They operate in reflection
and assure higher stability of the instrumental zenithal distance due to their dilatation
coefficients which are practically zero[14]. The shape of these prisms and their optical
installation showed the best linkage between the angle of the prism and the zenithal distance of
observation. Presently, the astrolabe of Calern is provided with 11 prisms of this type.

N
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Figure {I-5 . Zerodur reflector prism.

11.4.1.3 Variable angle reflector prism

In 1986 F.Laclare imagined this type of prism, which is initially destined to a new CCD
astrolabe. This prism works by a system of coil compensation and can be adapted ecasily to
automation. While using this prism, measurement showed a good stability of its angle between
the passage of the two Sun edges [14]. This characteristic made it recommended in the case of
solar diameter measurement where the zenithal distance of observation need not to be known,

but must be stable {27].

Made with zerodur, the two reflecting faces of this prism can revolve around an axis as
shown in Figure II-6. The support of this prism is of the same type as the one of the fixed angle
prisms. It assures a good stability and a simple regulating procedure. Several models have been
tested and the problem of coils remains the most critical one. The mercury bath must advance
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back and forth according to the angle of the prism. In addition, it must have a big enough
surface to cover the observation bench of zenithal distances. The visual observations since
1986 and the CCD observations since 1989 have shown the performance of this prism.

~ S
~ .
________ -~ .. 3
e e N :
~
S
~. 1
- N
~ ~.
— e ee— e o _ -
\\
3 < 3
T
N T T T e e e ’
-~ -~ -
- ~. -
e ™o e
S S -7 ! 3
~. P
e e e e e L -
e
~. // yd
~ 8 ~ -
— — N
Y

Figure 11-6 .Prism of variable angle.
I-reflecting blade 2- pushing jack 3- spring of tension 4- support 5- rotation axis 6-mercury bath.

11.4.2 Solar filters

The use of an optical instrument to observe the Sun, requires the attenuation of the
incident rays without changing their spectrum, this is the role of the solar filter (neutral
density filter). In the case of the Danjon astrolabe, the prism that defines the zenithal distance
of the observation and the micrometer of Wollaston are the main optical pieces that must be
protected from Sun's rays. There are two possible locations for the solar filter: either in front of
the objective of the telescope or in front of the prism.

————

Objecat

Qorjeg ut

Figure [i-7. Solar filters.
a-  Selting in front of the prism b- setting in front of the objective ¢- setting in front of the prism of variable angle.
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The solar filters designed with adopted silica are made of parallel planes whose outside
faces carry Chrome - Nickel coatings of 5.5 optical density. Such planes must be perfectly
parallel . Otherwise, they would change the zenithal distance of observation if the filter is
positioned in front of the prism. Without influence on the measurement of solar diameter, this
defect makes more uncertain the measurement of Sun position . The forward installation of the
prism is so difficult to achieve technically because of the large dimension of the filter.
Moreover, it must be perpendicular to the two images, which are in certain cases relatively
distant from each other. On the other hand, if one places the filter rightly forward the objective,
the defect of non parallelism of its faces does not affect the measurement anymore. At Calern
Observatory, F.Laclare opted for a thick rectangular solar filter in silica placed in front of the
prism [14,22,27].

11.4.3 Mercury bath

The mirror of mercury constitutes with the prism the instrumental reference of the
astrolabe. If the prism defines the zenithal distance of observation, the mercury bath
materializes the horizontal plane.

I1.5 DORaySol instrument

Figure 1I-8 represents the diagram of the new generation of solar astrolabes named
DORaySol (Definition et Observation du Rayon Solaire). The principle of Sun diameter
measurement is the same as that of the solar astrolabe. In this instrument, the optical system of
the solar astrolabe (refracting telescope) is replaced by a reflecting telescope. The acquisition is
done via a CCD camera and a system of acquisition. The prism used is a prism of variable
angle that permits the observation through a wide range of zenithal distances.

The rotating shutter permits the acquisition of an image each 250 ms, either direct or
reflected on the mercury bath (only one image of the two Sun images appears at a given
instant in the field of the objective, the rotating shutter masks the other). F.Laclare and
G.Merlin designed the rotating shutter in 1991. It is composed of a half disc in rotation around
the optical axis and a photoelectric cell that detects the position of the rotating sector and
launches the acquisition process each 250 ms. Figure II-9 presents the possible reflecting
telescope configurations. The DORaySol instrument is equipped with a reflecting telescope of
a Cassegrain focus configuration.

I1.6 Observational methodology of the solar radius

The basic principle of the astrolabe is shown in Figure [I-10. An equilateral glass
prism with one of its faces vertical is in front of a horizontal telescope. Two star images are
formed from light passing through the prism. Direct rays internally reflected by its lower
face produce one, and rays reflected by the horizontal mercury surface and then internally by
the upper face produce the other. These two images will coincide when the zenithal distance
of the star is equal to that defined by the prism; a zenithal distance of 30° in Figure II-10 is
given as an example. A star can be observed with the astrolabe if it crosses the defined
paratlel (Almucantar) some time during its diurmal motion. Each star will make two transits
through the parallel of latitude, one east and one west the observer’s meridian. The time
transition of the observed star through the defined height circle is automatically recorded.
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Figure [1-8. DORaySol Instrument.
1-Solar filter 2- CCD camera 3- Reflecting telescope 4-fixed plate 5-Rotating plate 6- Mercury bath 7- prism of variable

angle .
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Figure II-9. Four reﬂecring telescopes using different focal poinis.
{a) Prime focus, (b) Newtonian focus, (c) Cassegrain focus, (d) Coudé focus.
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In the Danjon astrolabe, through the ocular we see a reticule, four horizontal threads
and four verticals. These threads represent a practical reference system during observation.
Figure 1I-11 shows the typical aspect of observation in the case of stars. The sense of
movement is given by the arrows direction. When the images are on one paralle] of the
horizontal threads, the observer launches the micrometer and maintains the two images on this
paralle] with the help of a differential corrector. A chronograph records the instants of
electrical contacts. The mean instant calculated after twenty contacts represents the transition
instant [14].

Figure 11-10. Basic principle of an astrolabe.

Figure 1i-11. Observation of a star transit.
1 Horizontal reticule wire 2 vertical reticule wire 3 Direct image 4 reflecied image.
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In the case of solar observation, the observed image is not point-like as in the case of
stars. Therefore, the entire image cannot be observed and the centre of the Sun disc in any
case is not accessible. The observation comsists then to record the transition instant by
Almucantar of particular points of the edge of the solar disc, which are chosen to be
diametrically symmetric. The transit instant of the Sun centre is the same as its edge. When
the solar edge passes through a zenithal distance zq defined by the instrument, that of the
centre passes through a zenithal distance of z + d (d is the apparent semi-diameter of the Sun)
at the same instant.

The solar diameter is obtained from the transit instants of the solar borders through
Almucantar, which is fixed automatically by means of the mercury mirror and the reflecting
prism. The astrolabe gives two images of the same part of the solar limb, one direct and the
other reflected by the mercury surface. Each of them moves in the astrolabe focal plane due to
the diurnal motion of the Earth (Figure I1.12). The instant when these two images become
adjacent corresponds to the instant when the Sun’s edge crosses the parallel of atitude. The
precision of the results depends mainly on the stability of the Almucantar and the time
reference,

AT

\

A
T

N\

Figure II-12. Aspects of direct and reflected Sun edge images in the plane of the astrolabe.

/

I1.7 Visual observations

In the case of visual observation, the tangency principle of Sun borders is the same as
that of stars, if we assimilate the tangency points of the two Sun images to that of the two star
images. Figure II.13 shows the solar astrolabe as used for the visual observation at Calern
observatory [13].

The solar astrolabe uses as reference a parallel of altitude, which is defined by the
angle above the horizon. A mercury surface provides a horizontal mirror. The constant angle is
defined by a zerodur reflector prism (a set of 11 in the OCA” Observatoire de la Cote d’ Azur ©
in France, two in OAM “ Observatorio Abrahao de Moraes” in Brazil, and two for the
astrolabe of Santiago in Chile), instead of the equilateral prism. After the protecting filter, the
image is split by the reflector prism and mercury mirror to two images. After that they are

43



focused by a refracting telescope (whose focal length is 3.50 m). A Wollaston prism gives the
possibility to maintain the focusing in the case of a zenithal distance variation. A micrometer
screw in translation compensates for the vertical shift of both images in order to extend the
apparent duration of tangency. As for stars, the tangency of the two images of the observed
Sun edges must be maintained parallel to the horizontal threads of the reticule.
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Figure II-13. Solar astrolabe for visual observations.

. Atmospheric blurring of images is constantly fluctuating, but the human eye and the
brain system are able to select and memorize the sharper images, provided enough time is
available. Therefore, during the Sun transit, the observer keeps both images in tangential
contact. In this instant the Sun’s edge crosses the defined parallel of altitude (Almucantar). In
practice, as the two images enter in the field of the instrument, and before the instant of their
tangency, the observer has a few seconds to align the two images in relation to the system
defined by the reticule of the ocular. The three necessary fine adjustments for a correct
symmetry of the two images are presented in Figure II-14 [14].

Figure I1.14. The three fine adfustments for the solar observation.

44



a- A small rotation in azimuth, to displace the whole picture in relation to the vertical
axis. '

b- A tilt of the telescope in the vertical plane to displace the whole picture in relation to
the horizontal axis.

c- Inclining the edge of the prism to move the two images symmetrically in relation to
the horizontal axis.

In solar observations, a thermal variations in the interior of the astrolabe are created,
inducing a displacement of the focal plane, and thus a variation of the instrumental zenithal
distance. So, a stable focal point length is necessary for the quality of the measurements. The
control of the variation of the focal distance is carried out by a dated autocollimation before
and after each measurement. By setting a mirror in front of the objective and doing two
autocollimations on the system of cross-wires, this gives a change in micrometer’s units. Then
an interpolation gives the value of the focal length at the time of contact. The average
variation of the focal length during the few minutes between the crossings of both solar edges
induces an error on the zenithal distance never bigger than 0.05 arcsecond [13].

The solar astrolabe has shown its quality in a series of visual observations done in
France, Brazil, Turkey, Chili and Spain. The long series of visual observation done by
F.Laclare during more than twenty years is the reference basis for the other series. The visual
observations done by many observers can not be analyzed in the same way, since each
observer has its manner to observe the Sun and his way to estimate the instant of tangency. In
addition, each observer’s eye has his own spectral response. So, it happens that two observers
observe two different diameters.

The principal problem with visual observations is related to the definition of the
observed edge. It is very difficult to respond to many questions such as: does the way of
observation of the observer remain constant with time? Which solar edge do is the human eye
sensitive to? and in addition, do we always observe the same point of the solar edge. Each bad
interpretation of the solar edge or the tangency of the two images results in a false transition
instant and consequently a bad result [28].

In spite of the impersonal micrometer devised by Danjon, the personal biases to the
observations remain one of the main unknowns. The legitimacy of visual observations for
measuring the solar diameter has been disputed. The personal equation is extremely difficult
to estimate. Therefore, the absolute value of the solar diameter obtained from visual
observations can be strongly affected by personal biases. Nevertheless, for solar physics the
eventual variations of the Sun semi-diameter are far more interesting than its actual value
{28,29].

I1.8 CCD observations

Since 1989, the use of a CCD camera has removed all personal bias and provided an
improved definition of the observed solar limb. The measurement principle remains the same
as that of visual observation, with some particularities. The ocular is replaced by a CCD
camera, which transmits the acquired images to a video monitor and to a system of
acquisition. In order to record the tangency instant of the two images (incident and reflected),
a set of direct and reflected solar images is recorded and saved alternatively. A rotating
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shutter in front of the objective eliminates one of the two images at a given a time. The shutter
takes 500 ms to make one turn, so. each image has 250 ms to be acquired and analyzed.

Each solar image gives the distribution of the apparent solar intensity I(x,y) in the
CCD frame. The CCD camera lines and columns define this frame. For each image the solar
edge is detected by determining the image line inflection point. The position of these points is
adjusted by an parabolic arc (Figure II-15). The subsequent analysis is done in order to obtain
the successive positions of the extremity of the vertical solar diameter in the same CCD
frame. The sets of these positions. one for each successive direct and reflected image obtained
during the limb transit, show the trajectories of the extremity of the vertical solar radius
(Figure 11-16). These coordinates are functions of times xq4(t) and yq(t) (direct images), and
x:{t) and yyy (reflected images) relative to the CCD frame. The instant of crossing of
Almucantar is obtained when the two coordinates yq(t) of the direct image and y(t) of the
reflected image are equal.
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Figure 11-16. The trajectories of the extremity of the vertical solar radius.

In the case of DORaySol, the necessary adjustments before each measurement to get
symmetrical images are done by the bias of step-by-step motors; see Figure 11-17 [14].
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Lanaly

Figure I1-17. The DORaySol instrument used for CCD observations in OCA.
M. Azimuth Motor
My Filter Motor
M;: Prism Motor
My Prism Edge Inclination Motor
Ms: Optical Axis Tilt Moior.

When the best acquisition method and the best reduction procedure are used, the
homogeneity of CCD measurements permits the expectation of a better precision than that of
visual measurements. With the information quantity, the CCD observations gives us the
opportunity to test several processing methods: cleaning of the images, deconvolution and
specially the definition of the solar edge. Once the best processing method is chosen, it will be
applied to the archived images. In addition, the CCD observations give access to certain
parameters that help evaluate the atmospheric turbulence.

IL.9 Accuracy of observations

The precision of the results depends on the stability of the instrumental zenithal
distance and on the stability of the time reference clock, in addition to the precise knowledge
of the atmospheric refraction variation during the short time interval of observation( ~3
minutes). Another source of accidental or systematic effects are the variations of the
instrumental zenithal distance induced by minute variations of the solar filter residual angle.
These variations may be produced by temperature gradients inside the filter material.
However, since the solar filter is made of a transparent type of CERVIT, such effects must be
considered as negligible [6].

The atmospheric turbulence, refraction, Earth’s motions and the impossibility of
viewing the entire sky with a single instrument, are the limitation of ground-based astrometry.
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The atmospheric refraction is generally computed for a given wavelength using the values of
temperature, pressure, water vapor pressure at the instant of observation, using a standard
model. These models are not perfect and there existence of systematic and random anomalies
[20]. The random errors, which are time dependent, may amount to few hundredths of an
arcsecond [20]. Even if unknown refraction parameters are determined at the same time as
other observation reduction parameters, errors still exist. It is not possible to compute the
modeled refraction more better than = 0”.02 tan z [20]. So, whatever the detector, and before
the space techniques could possibly take over, the Earth’s atmosphere is a major source of error

in the measurement.
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CHAPTER III SUN IMAGES PROCESSING

The mtroducf.ron of Ihe new genemnon of so!ar aslro!abes based on CCD observarmns the processmg method

“of -extracting: the Sun’ edge Jrom the: acquired- images: is. ‘the - fundamental’ step:.in .Sun sem:-dmmeter-:
measurement;: Szm ;mages present’ mnspots that must be localized and eliminated before edge: detechon ;.-
These non-siationary defects must be eliminated. fram the images without réducing the i ‘image resolution, | since:
the prmc:ple of Sun. semi-diameter measurement .is based on'the point of rangency of the Sun to the height '
circle defined. by the-astrolabe. This chapler presents.the wavelet transform, a processing method that is.
suitable for this type of non-stationary signals. The algorithms-to-implement.the processing method and the- |
developed. techniques to.extract the Sur edge. are given. Finally; the different steps to.extract the two fransit

instants necessary. to calculate the Sun- d:ameter and Ihe carrect:ons to be taken mto cons:deratxon are
presented.. :

HI.1 Fourier Transform

The most popular transformation is the Fourier Transform that can also be used for
non-stationary signals if we are only interested in what spectral components exists but not
where they occur in the signal. However, if we want to know what spectral component occur
and at what time (interval), then the Fourier transform is not the right transform to use.

Fourier Transform decomposes a signal to complex exponential functions of
frequencies. The way it is done is defined by the following two equations {29]:

-2fnft

X(H)= I :x(r).e dr (IH..I)

2

<

s(={"X(e df (I11.2)

¢ stands for time or space, f for frequency, x denotes the signal at hand and X denotes the
signal in frequency domain. The signal x(t), is multiplied by an exponential term, at some
certain frequency "f", and then integrated over all times.

The information provided by the integral corresponds to all time instances, since the
integration is from minus infinity to plus infinity over time. It follows that no matter where in
time the component frequency of "/ appears, it will affect the result of the integration
equally as well. This is why the Fourier Transform is not suitable if the signal has time
varying frequency. The Fourier Transform tells whether a certain frequency component exists
or not. This information is independent of where in time this component appears. So, there is
no information of frequency localization. To overcome this disadvantage of the FT and
introducing the time business into the frequency plot, the Short Term Fourier Transform
(STFT) was introduced .
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i11.2 Shori Term Fourier Transform

The Short Term Fourier Transform comes from the approach of assuming that some
portion of a non-stationary signal is stationary. In STFT, the signal is divided into small
enough segments, where these latter can be assumed stationary. For this purpose, a window
function “w” is chosen. The width of this window must be equal to the segment of the signal
where its stationarity is valid. This window function is first located at the beginning of the
signal, and then shifted to different locations along the processed signal until its end. At each
location, the FT is taken as taking the I'T of any signal.

The STFT 1s defined by the following equation:

STFL ™, p=xyw “(e-t))e ~2 (111 3)
{

~ Where x(t) is the signal itself, w(t) is the window function, and * is the complex conjugate. As
it can be seen, the STT'T of the signal is nothing but the FT of the signal multiplied by a
window function. The STIT principle is shown in Tigure 1II-1.

Figure [1I-1 Principle of STFT.

The problem with the STFT has something to do with the width of the window
function used. In the case of FT there is no resolution problem in the frequency domain, since
the existing frequencies are exactly known. Similarly there is no time resolution problem in
the time domain, since we know the value of the signal at every instant of time. Conversely,
the time resolution in the FT, and the frequency resolution in the time domain are zero. What
gives the perfect frequency resolution in the I'T 1s the fact that the window used in the FT
lasts at all times from minus infinity to plus infinity. Now, in STFT, the window is of finite
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length. Thus, it covers only a portion of the signal that causes the frequency resolution to get
poorer. If a window of infinite length is used, we get the FT that gives perfect frequency
resolution but no time information. Furthermore, to obtain the stationarity, we must have a
short enough window in which the signal is stationary. The narrower we make the window,
the better the time resolution is and the best the assumption of stationarity would be, but
weaker the frequency resolution would become.

The effect of the window length on the STFT is illustrated in Figure III-2(a). The
window used is a Gaussian function of the form:

w()=e"""? (I0.4)

Where a is the window’s length and 7is the time. The signal used is a non-stationary signal,
see Figure III-2(b). It contains four frequency components at different times. The interval 0 to
250 ms is a simple sinusoid of 300 Hz, and the other 250 ms intervals are sinusoids of 200
Hz, 100 Hz, and 50 Hz, respectively.
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Figure I1I-2. (a) The window function for different values of a. (b) The analyzed non-stationary signal.
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F'igurc H1-3. The STFT of the signal. Four peaks are located at different time interval along the time axis corresponding to
Jour different frequency components.

Figure ITI-3(a) represents the STFT of the signal using the above-defined gaussian with an
a equal to 0.01. We notice that we have a very good time resolution, but relatively poor
frequency resolution.

Figure ITI-3(b) shows the STFT of the signal with a equal to 0.001. The resolution in
frequency increases where the resolution in time decreases.

Figure ITI-3 (c) represents the STFT of the signal with a equal to 0.0001. The peaks are not
well separated from each other in time, unlike the previous case. However, in frequency
domain the resolution is much better.

Figure ITI-3 (d) represents the STFT of the signal with a equal to 0.00001. The resolution
in time is very poor or the frequency resolution is now better.

The above example illustrates the implicit problem of the STFT. The problem is not

resolved by choosing a window function and using it in the entire analysis, since this later is
application dependent. The Wavelet transform (WT) solves this dilemma of resolution.
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IIL.3 Wavelet Transform (WT)

The WT was developed as an altemmative to the STFT in order to overcome some
resolution related problems of this later. The WT works as follow: we pass the time-dornain
signal from various highpass and low pass filters that filter out either high or low frequency
portions of the signal. This procedure is repeated and each time some portions of the signal
correspond to some frequencies is removed from the signal. The STFT gives a fixed resolution
at all times, whereas WT gives variable resolution as shown in Figure II1-4.

Frequency
fal
l*****************************i***i*t**t**** Continuous
I* * * * * * * 1 * * * * * * * Wavelet Transform
I* * * * * * ®
E* * * *
[ * *
_________________________________________________________ > time
(a}
frequency
~
! R EEREREEEEEEREE AR ER AR RERE EE ERE SRR R R RS EEREREREREESER]
1 * * * * * * * * * * * * * * * * * Discrete Time
i Wavelet transform
I * * * * * * * * *
l * * *
| i
I et e et > time
(b)

Figure 1{1-4. Variable resolution of the WT. {a) Continuous wavelet rransform (b} discrete time wavelet transform.

In Figure II-4(a), the top row shows that at higher frequencies we have more samples
corresponding to smaller intervals of time. So higher frequencies can be resolved welil in time.
The bottom row shows less number of points that characterize the signal. Therefore, low
frequencies are not resolved well in time.

Where in Figure III-4(b), the time resolution of the signal works the same as above, but
now, the frequency information has different resolutions at every stage too. Lower frequencies
are better resolved in frequency whereas higher frequencies are not.

I11.3.1 Continuous Wavelet Transform (CWT)
The fundamental idea of the wavelet analysis is to break the signal down into its

components and to follow their evolution in the time domain. The wavelet analysis is based
on the integral {21]:

Cou = [ W, (0ar (I-5)
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The convolution between the function to be analyzed f{x), and the wavelet functions
¥,,(t). The set of wavelets y_, (1) forms a wavelet family where each family member is

generated through transiation and dilatation of a mother wavelet wit):

v, @)= —Lw(’—;—b) (I11-6)

a

The dilatation parameter (the scale), a, changes the size of the wavelet and the
translation parameter, b , shifts the wavelet on the time axis. Consequently all wavelets of a
family have the same shape but their scale and localization in the time domain are different.
Both parameters, a and b are reel numbers.

The parameter scale in the wavelet analysis is similar to the scale used in maps. High
scales correspond to a non-detailed global view (of the signal), and low scales correspond to a
detailed view. Similarly, in terms of frequency, low frequencies (high scales) correspond to
global information of a signal, whereas high frequencies (low scales) correspond to detailed
information of a hidden pattern in the signal (that usually lasts a relatively short time).

o 1 :
The normalization factor T ensures that the wavelet of a family has the same norm
P ,
as their mother wavelet, that is,

f

-0

vl dt= [l dr (I1-7)

Putting equation (III-6) into equation (III-5) the wavelet transform finally reads which
maps the function onto a 2 dimensional field .

Cop == [ FOW (=S ya (1I1-8)
N :

Which maps the function f{7) onto a 2 dimensional field C,, .
- The wavelet functions must obey the admissibility condition,
[v., =0 ‘ (111-9)

which assures the reversibility of the wavelet analysis. That means, the function f{t) can be
- retrieved from C,, without loosing information . The Inverse Wavelet Transform (IDWT) in

this case is,
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£ _—jj Md b (ITI-10)

where

1 ]V7(W)|z
—_— s ere— HI._].
= I aw ( 1)

and y (w) is the Fourier transform of y(¢).

111.3.2 Discrete Wavelet Transform (DWT)

To be practically computed by using computing devices the CWT must be discretized
As in the FT and STFT, the most intuitive way of doing this is simply sampling the time-
frequency (scale) plane. Again intuitively, sampling the plane with a uniform sampling rate
sounds like the most natural choice. However, in the case of WT, the scale change can be
used to reduce the sampling rate.

At higher scales (lower frequencies), the sampling rate can be decreased according to
Nyquist's rule. In other words, if the time-scale plane needs to be sampled with a sampling
rate of N1 at scale a,, the same plane can be sampled with a sampling rate of N2, at scalea, .
The actual relationship between N1 and N2 s,

N, =21y, (IL12)

2

At lower frequencies the sampling rate can be decreased which will save a considerable
amount of computation time {29].

The scale parameter a is discretized first on a logarithmic grid. The time parameter is
then discretized with respect to the scale parameter. The most common value of the base of
the logarithm is 2 because of its convenience. If 2 is chosen, only the scales 2, 4, 8, 16, 32,
64.etc. are computed. The time axis is then discretized according to the discretization of the
scale axis. Since the discrete scale changes by factors of 2, the sampling rate is reduced for the
time axis by a factor of 2 at every scale.

Expressing the above discretization procedure in mathematical terms..The scale
discretization is a =a,” where translation isb= ka,’ by . In this case the continuous wavelet
function defined by equation (III-6) becomes:

W, () =a, Pwla, 't - kby) (II1.13)

which represents the Discrete Wavelet Transform (DWT).
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I11.4 Multiresolution signal decomposition

Although the time and frequency resolution problems are results of a physical
phenomenon (the Heisenberg uncertainty principle) and exist regardless of the transform used,
it is possible to analyse any signal by using an alternative approach called the Multiresolution
Analysis (MRA). The MRA analyses the signal at different frequencies with different
resolutions [30].

Multiresolution analysis [49] results from the embedded subsets generated by the
interpolations at different scales. A function f(x)is projected at each step j onto the subset

V,. This projection is defined by the scalar product c;{k)of f(x)with the scaling function
which is dilated and translated:

c,(k)=< f(x}.2779(27 x—k) > (111-14)

where <> denotes the scalar product.

As ¢{x)1s a scaling function which has the property :

%gb(g—) = h(m)p(x - n) (I11-15)

n

or
$(2v) = A(v)d(v) (I11-16)

where P;(v) is the Fourier transform of the function Zh(n)é‘(x—— n), we get

n

h(v) = Y hnye™ (II-17)

Equation (III-14) permits to compute directly the set ¢, (k) from ¢, (k). If we start from the
set ¢, (k) we compute all the sets ¢, (k), with />0, without directly computing any other

scalar product:

¢, (k) =Y h(n=2k)c,(n) (T1-18)

At each step, the number of scalar products is divided by 2. Step by step the signal is
smoothed and information is lost. The remaining information can be restored using the

complementary subspace ¥, of V,, in V,. This space can be generated by a suitable

wavelet function y(x) with translation and dilation.

W)= X gmot—n) (10-19)

or _
W (2v) = g(»P(v) (111-20)

We compute the scalar products < f(x),2"*Pw (279" x — k) > with:
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v, k) =3 g(n—2k)c, (n) (LL-21)

With this analysis, we have built the first part of a filter bank [51]. In order to restore the
original data, Mallat uses the properties of orthogonal wavelets, but the theory has been

generalized to a large class of filters by introducing two other filters % and g named
conjugated to h and g. The restoration is performed with:

¢;(ky =23 [c, DAtk +2) +y . (DE(k +2D)] (I11-22)

In order to get an exact restoration, two conditions are required for the conjugate filters:

. Dealiasing condition:

f:(w%)ii (k+2D)+ (v + %)g(v) =0 (I11-23)

. Exact restoration
R () + g(MFV) = | © (I11-24)

The principle of rhultiresolution i1s sketched in Figure I1I-5.
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Figure {[I-3. The filter bank associated with the multiresolution analysis.
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In the decomposition, the function is successively convolved with the two filters H
(low frequencies) and G (high frequencies). Each resulting function is decimated by
suppression of one sample out of two. The high frequency signal is left, and we iterate with
the low frequency signal (upper part of Figure III-5) . In the reconstruction, we restore the
samphnﬁ by inserting a 0 between each sample, then we convolve with the conjugate filters

Hand G, we add the resulting functions and we multiply the result by 2. We iterate up to the
smallest scale (lower part of Figure II1-5 ).

Orthogonal wavelets correspond to the restricted case where:

S = e ™k (v + ;_) (I11-25)
W)= i () (IT1-26)
gV =g (v) | (Im1-27)
and
'f;(v) b+ %)’ =1 (111-28)

We can easily see that this set satisfies the two basic relations (III-23) and (I11-24) .
Daubechies wavelets are the only compact solutions. For biorthogonal wavelets [51] we have
the relations:

g0)=e""h(v +-12~) (111-29)
g =™ (v+ %) (I11-30)

and
A )+ v+ -;-)i;' v+ %) =1 (1-31)

Many sets of filters were proposed, especially for coding. It was shown [52] that the
choice of these filters must be guided by the regularity of the scaling and the wavelet
functions.

The 2D algorithm is based on separate variables leading to a prioritizing of x and v
directions. The scaling function is defined by:
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¢(x, y) =¢(x)¢(y) (II1-32)

The passage from a resolution to the next one is done by:

Frateok)= S S h(t, -2k )h(, -2k f,0,.0,) (I1-33)

R

The detail signal is obtained from three wavelets:

. a vertical wavelet :

w'(x,y) = (X (») (I-34)
. a horizontal wavelet:
Wi (x, y) =w(x(y) (III-35)
. a diagonal wavelet
Y’ (xy) =y (v (y) | | (I11-36)

which leads to three sub-images:

Clolk k)= gl -2k h(, -2k,)f,U.1,) (I1-37)
i'_,:—wfy=—°= )

Cilk k)= Y hi, -2k)gd, -2k;)f,U.1,) (II-38)
ly=—eal =0

Clilk k)= Y g, -2k )g(l, ~2k,)f;,.1,) (I1-39)

]

=mea | =

The process of decomposition in the case of two dimension is represented by the Figure 1I1-6.
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Figure [II-6. Wavelet transform representation of an image.

The wavelet transform can be interpreted as the decomposition on frequency sets with

a spatial orientation.

I11.5 Wavelet examples

The research and theory applied to wavelets, permitted the definition of several base
wavelets, each one is adapted to a specified applications. Between these wavelets we can
state, Morlet wavelet, Haar wavelet, Daubechies wavelet, Meyer wavelet, Mexican Hat
wavelet, Coiflets wavelet. Symlets wavelet, Biorthogonal wavelet,,.
present the wavelet of Daubechies and the Mexican Hat that are used in the present work to

process the Sun images.
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II1.5.1 Daubechies’s wavelet

Ingrid Daubechies, one of the brightest stars m the world of wavelet research,

invented what are called compactly supported orthonormal wavelets, thus making discrete
‘wavelet analysis practicable. Different members of Daubechies of wavelets exist, the first

wavelet is the Haar wavelet. It is a discontinuous function and resembles to a

step function,
see Figure III-7. It is defined by:

w(x) =1 xe[0,0.S]
y(x) =—1 x€l0.5,1] (11-40)
v(x)=0 xe[0,1]

The associated scaling function is defined as:

#(x)=1-|x xe[-1+1] l41)
#(x)=0 xe([-1+1]

Wavekt ingtion psr

_—
!

0 Pz
Figure I11-7. The Haar wavelet,

Figure II1-8 shows the next nine members of Daubechies’s wavelet family.
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oE ,f{f ] o '\\ ; "D ! D:i u: ;
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] , ! o ‘
db7 dbsg " dbg : db10

Figure II1-8. Some members of Daubechies's wavelet.
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II1.5.2 Mexican Hat wavelet

It 1s defined by:

-

v =2a - xe (I11-42)

-— b

N/

7 =¥ =x

(=)
Figure [T1-9. Mexican Hat wavelet,

This function is proportional to the second derivative function of the Gaussian
probability density function. This wavelet has no scaling function and it is derived from w(x).

(I1.6 Algorithms to build wavelets

Two algorithms used in this work will be presented, the Mallat algorithm and the 4
frous algorithm.

[1I-6.1 Mallat’s Algorithm

Given a signal s of length ¥, the DWT consists of log,V stages at most. Starting from s, the
first step produces two sets of coefficients: approximation coefficients cA;, and detail
coefficients ¢\, These vectors are obtained by convolving s with the low-pass filter H for.
approximation, and with the high-pass filter G for detail, followed by dyadic decimation, as
shown in Figure [11-10.

low-pass filter downsampling

F1
s
—_—
G | 2 cD1
Gt
high-pass filter downsampling
Whete :

X Comdove with fidter X .

; 2 | Keep the even indexed elements-

Figure I1-10. Decomposition of a signal to approximations and details.
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Precisely the process of decomposition works as follow:

The first step which is illustrated by Figure I11-10, where,

The length of each filter is equal to 2. If n = length(s), the signals F1 and G1, are of length »
+2N - 1, and then the coefficients c4; and cD, are of length

(H;IJ+N (111-43)

The second is:

The approximation coefficients cA; is splitted in two parts using the same scheme,
replacing s by ¢4, and producing c4, and ¢D;, and so on.

[J1.6.1.1 Decomposition algorithm in one dimension

The algorithm is illustrated by the Figure I11-11.

'On'eLDimensional DWT

Decomposition Step

cAj —_—

— G —t {0 ] CJDj+1

fevel

where ¥ | Convolve with filter X.

} 2 | Downsample.

Figure {I-11.Decomposition procedure.
Initialization cAy=s

So the wavelet decomposition of the signal s analyzed at level / has the following structure:
[c4;, eDy, ..., cDy].

This structure contains for ] = 3, the terminal nodes of the following tree represented by the
Figure [1I-12.



CAJ CDI
cAy eDy
cAjy cDy

Figure I-12. The structure of decomposition for j=3.

IF1.6.1.2 Reconstruction algorithm in one dimension
Conversely, starting from c4; and ¢D;, the IDWT reconstructs cA;, Inverting the

decomposition step by inserting zeros and convolving the results with the reconstruction
filters. The reconstruction procedure s represented by Figure IT1-13.

One-Dimensional IDWT

Reconsiruction Step

Lpearapie low-pace
FA]
T 7 2 — H
— [wheep [— A4
~
cDJ- — T D G 7
) - deved §. 1
ieond § NPTV hivh-Luse
where; 1 o Insert zevoz at odd-indexed ejements.
X Conrvolve with fijter X,

wheep Take the centra) part with the
convenient length,

Figure I-13. Reconstruction procedure.
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I11.6.1.3 Decomposition and reconstruction algorithms in two dimensions

For images, a similar algorithm is possible for two-dimensional wavelets and scaling
functions obtained from one-dimensional wavelets by tensonal product.

This kind of two-dimensional DWT leads to a decomposition of approximation
coefficients at level ; in four components: the approximation at level j + 1 and the details in

three orientations (horizontal, vertical, and diagonal).

Figure III-14 and Figure III-15 describe receptively the basic decomposition and
reconstruction steps for images:

Two-Dimensional DWT

Decomposition Siep

columis
rows — H |} CAj+1
H -t 2} |
rolumns )
. G p—l | § 2 — 1+l
harizonmal
Cﬁj —)
rofumis .
vy}
AOW'S H ol | } 2 CDj*l
] vesvical
_' G = 241 columits id)
L« G |} i+l
. diagonal

Where: |2 t1| Downsample columns: keep the even indexed columnus.

I + 2| Downsample rows: keep the even mndexed rows.

X | Convolve with filter X the rows of the entry.

columns

X | Convolve with filter X the columns of the entry.

Initialization CAp = ¢ for the decomposition imtialization.

Figure III-14. Decomposition steps in two dimensions.
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Two-Dimensional IDWT

Reconstruction Step

CAjTl_"'

h)

Dig —wl [y G

horizonial
V]
g L G

vertcal

D id)

]+l —
diagonal

Where:

L¢2— H

colunms

42— H

colunvis

[

cotunvis

not

colunuis

[l

it G

rows

column

3

111.6.2 The a trous aigorithm

The discrete approach of the wavelet transform can be done by 2 simple version of the
so-called a trous algorithm (with holes). It is assumed that the wavelet coefficients { co(k)}
are the scalar products at pixels k of the analyzed function fix) with a scaling function

Ffom’s

—t wleep cA

#(x) which corresponds to a low pass filter [31,32]}.

Upsample columns: insert zeros at od d-indexed columns.

Upsample rows: insext zeros at odd-indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

Figure [M-15. Reconstruction steps in two dimensions.

The first filtering is then performed by a twice-magnified scale leading to the { e, (k)}

set. The signal difference {co(k}— {cI (k)} contains the information bgpween these two scales
and is the discrete set associated with the wavelet transform corresponding to ¢(x). The

associated wavelet is therefore y(x). It is given by,

1 X 1, x
EV/(E) = g(x) - E¢(E)
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The distance between samples increasing by a factor of 2 from the scale (i-1) (>0) to
the next one. The coefficients ¢i(k) are given by,

k)= 3 (e (k+21) (111.45)

and the discrete wavelet transform v, (k) by:
wi(k)=c, (k) —c (k) (I11.46)

The coefficients {h(k)} derive from the scaling function ¢(x) are related by,
l X = — Y
2¢( 2) Zl:h(l);ﬁ(x 1) (111.47)

The reconstruction process is done by simple summation of the last approximation
with the signal details of each resolution step. T mean, the last smoothed array ¢, 1s added to

the differences y,.

co(k) =c, (k) +>"f.~,uj &k | (I11-48)

The decomposition algorithm with wavelet is summarized as follow:

1- we initialize / to zero, and we start wit the data c, (k).

2- we increase / and we evaluate the discrete convolution of the data c,_, (k) with filter 4(n)
which gives the approximation signal.

3- The wavelet coefficients at the point k and at the scale i are given by:
¥, (k) =l (k) -¢, (k)
Two scaling tunctions ¢(x)are tested with the g frous algorithm, the linear interpolation

and the B;-spline interpolation.
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111.6.2.1 The linear interpolation:

The scaling function in this case is shown in Figure 1lI-16. Its mathematical expression 1s
given by,

{gi(x) =1- ‘x| X € [— 1,+1]

(111-49)
b=0  xel1+]
'8 ! : : : '
N S AN OO SO SO S
AN
-/ \ .
! A A \ """" ’
a / = N
b Y , N\ |
15 -1 05 o 05 1 1.5
Figure III-16. Linear interpolation @
We have from equation I11-47,
1 .. x. 1 I 1
ZHE) = —p(x + D+ —g(x) + —{x -1 111-50
2¢(2) 4¢( ) 2¢( AEA ) ( )
¢, is obtained by:
1 1 1
c,(k)=—c (k-1 +—c (k) +—c,(k+ 1) (I11-51)
4 2 4
and ¢, is obtained from ¢, using,
W=t k2 ie (k) + e k42 M52
c}'&]( _ZC)'( _, ECJ( ) ZCJ( + ) ( - )

The associated wavelet y with this scaling function calculated using equation III-44 15
shown in Figure 111-17. This wavelet is the Mexican Hat wavelet.
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 Figure I11-17. The wavelet /.

The wavelet coefficients at the scale j using equation II1-46 are:
1 i ] 1 ; \
W. (k)= 75 (k-2 )+5cf (k) - ZC’(k +27) (111-53)

The above a frous algorithm is easily extensible to the two dimensional space. At each
scale j, we obtain a set {y/ , (%, l)} which has the same number of pixels as the image, it is the

advantage of the a #rous algorithm, except that the wavelet used must be isotrope.
I11.6.2.2 The B-spline interpolation
The B-spline interpolation of order / (/ is odd) is written in genefal case as [33]:

—l+k[

, 2
B:(x)zmg[;(—])tcg”, (111-54)

with s=2/-1. The filter coefficients 4(n) associated are given by:

h(n) = (;g_*] with  m= ’—;—1 (TTI-55)

We choose the B-spline function of order 2 for the scaling function, it is given:

gﬁ(x)_—.Bs(x):l—li-ki(-I)"C}|x—2+k|3 (TI1-56)
=0
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Figure II1-18 shows this ¢(x) function.

1412 ((abrs(x-2))"—4 (ab(x-1))3+6 (Alys(0)>—4 (absix+ 1))+ (absix+ 2D

T

Figure I11-18.The scaling function ¢(Xx).

The associated wavelet y(x) with this scaling function calculated using equation II-44, is
shown in Figure 1II-19. It is the wavelet of Mexican Hat.

AZE BEA72 7270+ 112 abstee 2P
. T T

035
(=13 ! “
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.‘ 3
ozl / \ 4

0.5}

Figure [11-19. The wavelet Y/ .

Even though the two interpolations for the scaling function are tested, the one that will
be presented and used in the present work is the B.spline interpolation.
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.7 Filters used to calculate the DWT and IDWT

The process of Sun images with wavelet transform is performed by using two
algorithms, the & trous algorithm and Mallat’s algorithm. Each one is implemented with a

chosen set of filters(wavelets).

II1.7.1 Filters with the a trous algorithm

In the case of B, -spline interpolations for the scaling function, the associated wavelet is

the Mexican Hat wavelet. The coefficients of the one dimensional fiiter # calculated from
¢g(x)are ( 1/16,1/4, 3/8,1/4,1/16) and in two dimensions are:

(17256 1/64 3/128
1/64 1/16 3/32
h(n)=|3/128 3/32 9/64
1/64 1/16 3/32
(1/256 1/64 3/128

1/64 1/256)
1/16 1/64
3/32 3/128
1/16 1/64
1/64 1/256

The filter # is a triangular low pass filter as shown in Figure II1-20. Its transfer

modulus 1s represented in Figure ITI-21.
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Figure HI-20. The filter h{n).
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Figure [11-21. The transfer modulus.
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For the coefficients of the filter in the case of linear interpolation for the scaling
function, see annex 7.

HI1.7.2 Filters with Mallat’s algorithm

The wavelet used with the Mallat’s algorithm is the Daubechies of order 3. For an
orthogonal wavelet, in the multiresolution framework, we start with the scaling function @
and the wavelet function y . One of the fundamental relations between ¢ and v is the twin-
scale relation (dilation equation or refinement equation):

%qé(-;—)' =S w,g(x—n) (111-57)

if ¢ is compactly supported, the sequence (w,) is finite and can be viewed as a filter. The
filter /¥, which is called the scaling filter (nonnormalized), is:

e Finite Impulse Response (FIR)
¢ oflength 2N
e ofsuml
e of norm
1
V2

¢ alow-pass filter
Ior our case the scaling filter is :
W=(0.2352 0.5706 03252 -0.0955 -0.0604 0.0249)

From filter W, four filters are defined of length 2N and of norm 1. They are organized as
follow:

Filters Low-pass | High-pass
Decomposition H G
Reconstruction H G

The relation between these filters is given by,

{ G-(k) = (-1) : H(ZN +1 -K), fork —_-1, 2, . 2N (111_58)

G(k) = (-1 H@N +1-K), fork =1,2, 2N

The four filters are computed using the scheme shown in Figure TII-22 with the help
of equation IT1-58.
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Figure 111-22. Decomposition and reconstruction low pass filters.

Figure I11-23 shows the four filters and their transfer modulus.
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Figure I1I-23. The four wavelet filters for Daubechies of order 3.
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IT1.8 Sun image processing

The Sun images are processed by the wavelet transform to remove the sunspots,
artificial defaults and noise. The implantation of wavelet is done by using two algorithms, the
@ trous algorithm and Mallat's algorithm. The decomposition by the two algorithms shows
that the signature of the sunspots appears clearly in the detail images. To clanfy this we use a
real image acquired by the solar astrolabe of Calern that presents sunspots, see Figure IH-24.

pixel

10:' 1 1 I A

50 100 150 200 260
pixel

Figure J1I-24. A real Sun image acquired by the solar astrolabe of Calern observatory.

In the case of @ frous algorithm the used wavelet is the Mexican Hat Wavelet and the
interpolation of the scaling function is .done by the Bs-spline function. Figure II1-25
represents the decomposition process of the Sun image shown in Figure III-24. As it can be
seen from Figure II-25 that, at each resolution step we have one approximation and one
detail In addition, the resolution of the original image is maintained along the process of the

decomposition.

For the Mallat's algorithm the used wavelet is Daubechies's wavelet of order 3. Figure
I11-26 illustrates the decomposition at level 2. We notice that each step of resolution we have
one approximation and three details; the horizontal detail, the vertical detail and the diagonal
detail In addition, the resolution of the original detail. is reduced along the process of
decomposition.
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Figure I1[-25. Decomposition of the sun image with the & trous algorithm up to level 3 using a B3-spline interpolation for the
: scaling function. Both the x and y axis are in pixels.
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Figure I11-26. Decomposition of the sun image with the Mallats algorithm using the wavelet of Daubechies of order 3. Both
the x axis and the v axis are in pixels.

The processing steps of the Sun images are:

Step 1 : Elimination of the sunspots.

Step 2: Reducing the noise of the resulting image by increasing the signal to noise ratio.
Step 3: Edge extraction.

Step 4: Determination of the tangency point.

The four steps are the same for the two algorithms, with one exception that, instead of
processing one detail using the d trous algorithm, we process the three details with Mallat's
one. The above steps will be presented using the & frows algorithm with the Bs-spline
interpolation for the scaling function.

I11. 8.1 Sunspot elimination

The mean aberration of the Sun images is the existing of the sunspots . These non
stationary effects are localized and eliminated by an iterative procedure. The localization is
performed by decomposing the Sun images to details and approximations. As shown in
Figure III-25 and TII-26, the signature of the sunspots is present in the details images. The
procedure then consists of eliminating them by applying a thresholding on the wavelet
coefficients of the first detail. The threshold value is adjusted so that the coeflicients are
reduced to the noise level. Its value is equai to * 3 sigma, where sigma is the standard
deviation of the coefficients calculated on the whole detail image. Figure II1-27 illustrates the
thresholidng process on a profile of the first detail image. We can see from Figure I11-28 the
effect of the thresholding on the sunspot elimination. The steps of the algorithm are:

stepl- We decompose the image to detail and approximation to level 1.
Step2. We threshold the detail image.

Step 3. We reconstruct the image
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Step 4. We test if all the detail coefficients image are between + 3 sigma and -3 sigma.
Step 5. If is not the case, the steps 1 to 4 are repeated, if yes the algorithm is stopped.

Figure III-29 represents the image obtained from the original image after sunspots
elimination.. ‘

Hl | g0
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Figure III-27. Sunspot elimination. (a) profile from an original image that passes through a sunspot. (b) Thresholding profile
detail (-) superposed to the original detail (—). ‘
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Figure IN-28. Profile obtained after thresholding (-) superposed to the original profile (=).
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Figure III-29. The image obtained from the original image after sunspots elimination.

I11.8.2 Reducing the noise in Sun images

The CCD images of the Sun are affected by noising spots (optical origin) and parasitic
noises ( photons noise, thermal noise). In order to increase the signal to noise ratio after
sunspots elimination and noising spots, the residual noise in the images must be reduced. The
wavelet analysis shows that the noise is localized in the first two detail images. So, these
details are processed before reconstruction of the image from approximations and details.
The noise reduction may be done by thresholding or filtering the details.

The first method is based on choosing a threshold value to be applied to detail images.
Figure I1I-30(a) and Figure III-30(b) show the effect of thresholding on a profile of a Sun
image after the elimination of the sunspots. The thresholding value in Figure HI-30(a) is 1.5
sigma and in Figure III-30(b) is 0.5 sigma. The choice of the threshold value is delicate ,
sirice the thresholding process modify simultaneously the coefficients that intervene in the
edge definition if the threshold value is not adequately chosen.

The second method, based on the filtering process to attenuate the noise in the detail

images, is the appropriate method to use in order to prevent the effect induced by a non
appropriate threshold value.
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Figure IT[-30. Noise reduction(thresholding method), sigma is the standard deviation
of the whole detail image.

Several types of filters are tested on the detail images. Between them we have tested
the following :
a- the filter with the coefficients (1/4 1/2 1/4).
b- the filter with coefficients (1/16 1/4 3/8 1/4 1/16).

c- the filter with coefficients (1/64 3/32 15/64 5/16 15/64 3/32 1/64).
All these filters are low pass filters, there charactenistics are given in annex 7.

The comparison between these three filters using a profile of a Sun image alter
sunspots elimination is shown in Figure II-31; sigma represents the fluctuations between the
obtained profile after the filtering process and the original one. The filter with best
performance according to the others in case of time execution and best noise reduction is the
filter (a). So, this filter will be used along this work to reduce noise in Sun images. Figure III-
32 shows the final cleaned and filtered image.
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F}'gur‘e III-31. Obtained profile after filtering process(-) superposed to the original profile(). (a) the results with filter a, (b)
the results with filter b, (c) the results with filter c.
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Figure I1I-32. The final cleaned and filtered image .
II1.8.3 The Sun edge

II1.8.3.1 Parabolic approximation

Even though if the solar flatness exists, the observed portion of the Sun image can not

put it in evidence (it is about some thousandths of arcsecond). The Sun edge can be
approximated for a first time by an arc of circle on the CCD images, but the apparent figure
searned to be close to a conical form, and this is for many reasons [14],

a-

The form of the diffraction spot of the astrolabe, which, for a point source is elliptic,
gives a parabolisation of the image of the disc solar, see Figure III-33 .

The optical defects of the objective toward the periphery of the focal plane, combined
with the atmospheric turbulence, give the same effect.
The sections taken to determine the inflection points are not radial, but parallel to the

CCD lines.

The integration time is 20 ms and the effect of the smearing is not zero along the
azimuthal component ( about 0.222 arcsecond ).
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all these reasons conduct us to approximate the Sun edge by a parabola [14]. The CcCD
matrix covers less than 5% of the Sun disc circumference and the Sun edge presents 2
curvature far from marked. Figure I1}-34 shows the real portions that exist between the Sun
image given by the optic of the astrolabe, the Field of the ocular and the CCD matrix; the
camera is the COHU 4710. '
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Figure II-33. input pupils and the diffraction spot.
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Figure I-34. The solar disc and the field of the CCD camera (1) is the ocular, (2) is the direct image,(3) 1s the reflected
1mage.
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1I1.8.3.2 Edge detection

The edge detection of the Sun image is the important step in Sun diameter
measurement, since it includes the information of Sun transition point by the defined
Almucantar. For this reason several methods are tested to determine the edge with high
accuracy. The comparison between these methods is based on the cleaned real image
acquired by the solar astrolabe shown in Figure I1I-32. After the detection of the edge, it is
filtered by a median filter. The characterizations of the non-linear signal enhancement
technique ( Image Enhancement) performed by the median filter are: the smoothing of
signals, the suppression of impulse noise and preservation of edges. In the one-dimensional
case, the median filter consists of sliding a window of an odd number of elements along the
signal and replacing the center sample by the median of the samples in the window.

Three methods are used to detect the edge of Sun image. These methods are presented
in the following sections.

111.8.3.2.1 The first method

For this method, the steps to detect the Sun edge are as follow

1- We compute the first derivative of the Sun image, be imgl.

2- We look for the index of the maximum points in imgl , be Pmax.

3- We compute the second derivative of the image, be img2.

4- We take an interval of points in img2, be Pmax-n Pmax+n, n number of points.
5- We fit this interval of points by a straight line, y=ax+b.

6- The points where y=0, are the edge points.

7- We filter the extracted edge by a median filter of order 3.

8- The resulting edge is fitted by a paraboia.

Figure ITI-35(a) represents the extracted edge before and after filtering, where Figure III--
35(b) shows the edge fitted by a parabola. The standard deviation of edge points fluctuations
around the parabola is 0.43 arcsecond, less than the pixel dimension (0.74 arcsecond). Figure
111-36 represents the image and its extracted edge.

dats: belore fllering.
schd aftor fitering.

picsl
plxal

a 50 it 150 X0 20 0 a E ] 1M 150 1) %D E Y
anel pxed

(@) (b}

Figure H11-35. {a) The extracted edge before (dots) and after Sfiltering(solid), (b} The extracted edge fitted by a parabola.
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Figure I1-36. The Sun image and its extracted edge.

I11.8.3.2.1 The second method

1-
2.
3-
4-
5.
6-
7-

Tt is summarized by the following steps,

We compute the first derivative of the Sun image, be imgl.

We look for the index of the maximum points in imgl , be Pmax.

We take an interval of points in imgl, be Pmax-n Pmax+n, n number of points.
We fit this interval of points by a parabola.

The inflection points of these parabolas are the edge points.

We filter the extracted edge by a median filter of order 3.

The resulting edge is fitted by a parabola

Figure I1I-37(a) represents the extracted edge before and after filtering, where Figure III-

37(b) shows the edge fitted by a parabola. The standard deviation of edge points fluctuations
around the parabola is 0.59 arcsecond, less than the pixel dimension (0.74 arcsecond). Figure
T11-38 represents the image and its extracted edge.
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Figure [11-37. (a} The e_v:rmcied.edge beforefdots) and after filtering (solid), (b} The extracted edge fitted by a parabola.
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Fignre HH-38. The Sun image and its extracted cdge.
[11.8.3.2.3 The third method
The following steps summarize the method.

|- We compute the first derivative of the Sun image, be imgl.

3. We look for the index of the maximum points inimg! be Pmax.
3- We take an interval of points in the original image, be Pmax-n Pmax+n.
4- We fit this interval of points by a polynomial ot degree three.

‘J_

The point where the second derivative of this polynomial is zero, are the edge pornts.
6- We filter the extracted edge by a median filter of order 3.
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7- The resulting edge 1s fitted by a parabola.

Figure II1-39(a} represents the extracted edge before and after filtering, where Figure
I11-39(b) shows the edge fitted by a parabola. The standard dewiation of edge points
fluctuations around the parabola i1s 0.79 arcsecond, more than the pixel dimension (0.74
arcsecond). Figure T11-40 represents the unage and its extracted edge
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Figure I1]-39. (o) The extracted edge before(dots) and after filtering (solid), (b) The extracted édge firted bv a parabola.
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Figure I11-40. The Sun image and its exiracted edge
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Due to the atmospheric turbulence and no correction of the diurnal motion using the
solar astrolabe, in addition to the long integration time of the CCD camera (20 ms), the edge
of the acquired images is not sharp and extends over more than 10 arcsecond. The classical
methods of edge detection are applied to Sun images and the results showed that the standard
deviation of the fluctuations, with some corrections, around parabola approximation are more
than those found by the three methods. For example, the Sobel method gives a standard
deviation of 3.28 arcsecond, that of Laplacian a sigma of 7.69 arcsecond and those of Derich
and Canny give a close sigma value of 1.26 arcsecond. So according to the present study,

the first method is the best one and it is it that will be used to detect the edge of Sun images.

The application of the first method of edge detection to a sequence of Sun images
acquired by the solar astrolabe shows the results illustrated in Figure III-41. Figure [1-41(a)
shows the way that the direct and reflected Sun images move toward each other on the CCD
frame for the first Sun transit (east), where Figure I1[-41(b) represents the way that the direct
and reflected Sun images move toward each other on the CCD frame for the second Sun
transit (west).

fa) {b)
Figure {lI-41. (a) a sequence acquired by the solar astrolabe of Calern that defines the upper transition point of the Sun (east
transition). (h) The associated sequence that defines the lower transition instant of the Sun (east transition).

After the edge detection step, it comes the most important one which is the
determination of the two tangency points where the upper and the lower Sun edges cross the
defined height circle, see chapterl section 1.6.2.

I11.8.4 Tangency point determination

After the' step of approximating the inflection points, defining the Sun edge, by a
parabola, it comes step of determining the instant where the Sun crosses the defined height
circle. The tangency to the summit of the parabola is parallel to the CCD columns which n
their turns are parallel to the Almucantar defined by the set of the prism and the mercury bath.
This parallelism is handled by the instrumental settings (see chapter II, section IL.7). The
chosen points to represent one of the two extremities of the diameter on the Sun edge are the
summits of the parabolas. The equation of the parabola gives access, with high precision to
the position of each summit in the coordinate system of the CCD matrix, in x(the lines) and in
y(columns).
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The variations of y reflects the varations of the zenithal distance of the Sun. the
measured gquantity, and it is the only coordinate taken into account In tangency point
determination. That of X, denotes the displacement in azimuth of the Sun, it 1s only used to
calculate the corrections due to the non-parallelism of the CCD lines and columns with the
instrumental plane defined by the instrument as it will be seen later. A third coordinate , the
UTC time of the Sun acquisition, 1s associated to each image, so 10 each summit. The set of
the summits, located m X, ¥ and time of each observation, are used 10 reconstruct the
trajectories of the Sun on the CCD field.

Two independent equations x=x(t) and y=y(l) are obtained , and thus obviously the
relation y=y(x). By instrumental definition, the variation of y according to the time represents
the position variation of the solar edge in zenithal distance. So the trajectories y(t) will permit
the definition of the transit instant. The equation of the trajectories can be always written
under the form of series development,

y=Sa.r | (I11.59)
(=0

where ay are the unknowns and n is an integer number selected in advance.

The coefficients of equation IL59 can be obtained with high precision, since we
dispose of 50 points {summuts of the parabolas) to define the trajectories of each image (direct
and reflected). In practice, the computation of the offect of the curvature of the two
trajectories Shows that the terms of the second order are negligibie: the test are done by
modeling the trajectories with parabolas. The field of the CCD 15 approximately two times
less than that of the ocular and the curvature of the trajectories can not be determined
practically. Therefore, the Sun trajectones are approximated by a strait lines.

For each passage we obtain two trajectories, a direct trajectory related to the direct
image and a reflect trajectory related 10 the reflected image. These trajectories are given by
the following system of equations,

{y =y, +a.(=1) (111.60)

y=y, +a{l—1)
where the vz refers to direct trajectory and yr 10 the reflected trajectory.

The equality in absolute value of the t coefficients in the equation 11160 are valid only
in the ideal case, where the CCD matrix is perfectly positioned (columns parallel to the
horizon). With this permission, at the instant fp the summits of the direct and reflected images
are situated respectively at the ordinates ya €t yr. The instant /m where the two summits have
the same ordinate, 18 calculated simply by:

1=t 2 ~(nLel)
2.4,

Figure I[1-42 and Figisre M43 illustrate thg image trajectories  y(1) and x(t)
materialized by the summits of the Sun images for a sequence acquired by the solar astrolabe
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of Calern after image processing and edge detection . We remark the high dispersion of the
points on the x() trajectories due to the weak precision of the x coordinates of the parabolas
summits. The spacing between the images is also highlighted (for a null spacing, the two

trajectories would be superposed).
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Figure HI-42. (a) trajectories of the Sun image along the zenithal ordinate,(b) the trajectories fitted by a straight lines.
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1§1.9 Inclination correction of the CCD

Since in practice the columns of the CCD are never perfectly horizontals, so, we must
determine the slope of its inclination and consequently make the necessary correction. For
this, the trajectories x(t), that represent the displacement in azimuth of the Sun image, are also
computed. This computation furnishes the correction to be applied 1o the transition time /n,
calculated above, and at the same time correct the effect produced by the vertical non
alignment of the direct and the reflected images, see Figure IIl-44.

-

X (CCD)

x (Horizon)

Figure Ii-44. The geometrical acquisition on the CCD reference.
Dots refers to the image trajeciories, C and C' the center of the direct and reflected images, (x.y) the instrumental reference,

(A1) the CCD reference, [ the CCD rotation angle, AX the spacing berween the two images, M and M the tangency

points of the images on the CCD reference and N and N’ the tangency points in the instrumenial reference.

The theoretical expression that gives the variation of the zenithal distance of a celestial
object in function of time can be written as (the terms of order 1 are taken into consideration),

z—z, =15 sina.cosg.(t -,) = 15.cosd.sin S(—-1) (111.62)

where a is the azimuth of the object computed from east to weast , ¢ is the latitude of the

observation place, & the declination of the object and S the parallactic angle. The parameters
are computed in seconds of the degree for z and in seconds for the time t. Reduced to the first
term, this relation implies that (f —/,) remains small. It is the case of the solar astrolabe, since
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the period of Sun transition doesn’t exceed 40 s and the quantity (¢t ~¢,) doesn’t exceed 20

second, be 5'5 or 1.5.107° radians. The corresponding equation in azimuth is written as, -

_15.cos8.cosS.(1 —¢,) (111.63)

a-ag .
sin z

Returning back to a coordinate system x,y on the CCD frame, supposed perfectly stetted, the
above relations become,

e (x—x,)=15.cosd.cosS.(r~1,)
' , (111.64)
e,.(y—yy)=15.co8d.5inS.(t — 1)

where e, and e, are the space sampling frequencies of the horizontal and vertical pixels of the
CCD in arcsecond/pixel. :

The same relations can be written for the reflected image by changing S by -S.
Introducing the vertical non-alignment of the images, we can write that the summit of the
direct image is situated at the point (x, +Ax, y,), where the summit of the reflected image

will be at the point (x, —Ax,y,) . This parameter setting implies that f, is the looked for
transition point, since when ¢ = fp, the ordinates of the two summits are equal.

If in contrary, the CCD columns are inclined by an angle S on the horizon, a rotation

of the same angle applied to the above coordinates gives the coordinates of the summits
reiative to the real CCD (X,Y) reference. In this case, the summit coordinates of the direct
image are written as:

{X =151 —£).cos8.cos(S - f) + e (x, + Ax) + y,.¢,.5in f +bpsin (IIL65)

Y =15.(t —t;).cosd sin(S — ) —e,(x, + Ax)sin B + y,.e,.cos B + bp.R(cos f - 1)

The parameters b and p refer by their values (-1 or +1) to the observed edge and at the east or
west passage. The equations for the summit coordinates of the reflected image are,

{X =15(t - 1,).cos8.cos(S + ) +e,(x, = Ax) + y,.e,.5in § —bpsin B (I11.66)

Y = ~15.(t =15).cos 5 sin(S + B) ~e (x, — Ax)sin B + y,.e,.cos B~ bp.R(cos B - 1)

dY . : : : :
The slope 2 according that we consider the direct or the reflect image, is equal to
!

+15.cosd . sin(S—fB) or —15.cosd.sin(S + ). So, knowing the value of the angle S, it is
possible to find the value of .
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Equalizing the ordinates of the direct and reflect images we get,

tan S bp.R 1-cos f3

o =1, —Axe ~———"F——-bp R ——— (111.67)
“15.cosd.sin S 15.cosd.sin S

the expression (II1.67) gives the true instant f, in function of the measured instant {, and the
error terms. The first error term is due to the spacing Ax between the images and the second
one is a term that dependents on the Solar Semi-diameter.

Knowing the value of the angle £, we can apply a rotation of - # to equation I11.65
and equation IT1.66 which permits to replace the points of the two trajectories in an horizontal
system. In this case, the coordinates (x,y) of the direct and reflected images become
respectively as, ' '

xe, =(x, +Ax)e, +bp.Rsin f+15(7 —1,).cos6.cosS IM.68
ve, =y,e, +bpR(1—cos f)+15.(/—1,).cosdsin S (1.68)
xe, =(x, — Ax)e, —bp.Rsin B +15.(1-1,).cosd. cos.S 11160
ye, = y,e,—bpR(1-cosf)-15.(1- f,).cosdsin § (H1L.69)

The transit instant is always defined as the point when the ordinates of the direct and
reflected images are equal, but in this time, in an horizontal plane. Therefore the instant /o
that we computed from the corrected time ,1s given by,

1—cos f

fy=1, +bR - F
15.cos&lsin S|

(I11.70)

After the determination of the angle £, the correction above is systematically applied

to transition instant given by f, in order to obtain a correct evaluation of the true transition
time. This correction is generally small, it is of the order of 4 to 5 ms for an mean inclination
of the CCD lines of 20 arcminute and 2 mean separation in x of 20 pixels.
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CHAPTER IV SOLAR DIAMETER MEASUREMENT WITH THE SOLAR
ASTROLABE

This chapter presents an application of the developed methods to process the Sun images and the developed
procedures to calculate the Sun diameter. The application is done using two selected sets of Sun images
acquired by the Solar CCD Astrolabe of Calern during the year 1997. One set is dated to 10/09/97 and the
other one to 09/09/97. These sets contain an even number of sequences. Each one is a series of one hundred
images of 101x256 pixels in dimension( 50 reflected images, and 50 direct images). Finally, the effects of the
atmospheric turbulence on Sun diameter measurement will be presented.

IV.1 Diameter measurement procedure

Typical direct and reflected images are shown in Figure IV. .

pirel

0 BB
puxal

Figure IV-1. A direct and a reflected Sun images acquired by Calern CCD astrolabe.

pixel

The Sun diameter measurement is a function of the difference between the two transit
instants of the Sun through the defined height circle. see chapterl, section 1.6.2. The following
steps illustrate the complete procedure to caicuiate it:

Step 1: - Reading of an acquired Sun image with the astrolabe (either direct or reflected).

Step2: - [Initialisation parameters of the processing method.
- Decomposition of the image signal by the wavelet transform to details and
approximation signals (images).
- Threshold the details to eliminate the sunspots and noisy spots.
- Reconstruction of the Sun image.
- Test if the residual noise in the current processed image and the preceding
one is the same. If not, the second step is repeated from the beginning.

Step 3: - Filtering the image for eliminating the residual noise.

- Extraction of the Sun edge.

- Fit the extracted edge points by a parabola.

- Determtnation of the summit point of this parabola (its coordinates ).

- Saving the result in a vector (the coordinate of the summit point, for the direct
and reflected images, the direct summit points represent the direct trajectory, the
reflected summit points the reflected trajectory). _

- Testif the 100 images that correspond to one sequence are read. If not, the upper
Steps are repeated.



*

Line adjustment of the direct and the reflected trajectories defined by the above

vector of summit points.

- Deiermination of the intersection point of the adjusted direct and reflected
trajectories. This point is the transit instant ( UTCI stands for the first Sun
transition instant and UTC2 for the second one through the defined height
circle).

- Steps 1 to 3 are repeated 10 determine the second transition point.

Step 4:

Correction of UTC1 and UTC2 to find the true instants of Sun transition.

- Reading of the station geographic coordinates and the date of observation.

- Reading of the parameters of atmospheric conditions at the moment of observation.
These parameters are: the atmospheric pressure, the air temperature, the barometer
temperature and the humidity.

- Reading of the instantaneous coordinates of the celestial pole, UT1-UTC, and TAI-

UTC from the IRES bulletins that correspond to the moment of observation.

t

Step 5:

Step 6: - Computation of the vector radius to the station according to the chosen ellipsoidal
model for the Earth. '
- Correction of the station latitude for station error and altitude effect.
- Correction of the station longitude and latitude for polar motion.

Step 7: - Computation of the Julian date and the Greenwich Mean Sidereal Time (GMST) at
the moment of observation.

Step 8: - Computation of UT0 and the ephemeredes time TT (Terrestrial
Dynamic Time).

Step 9: - Computation of the Local Sidereal Time (LST).
Step 10: - Computation of the Sun ephemeredes at the true time of observation.

Step 11: - Computation of the geocentric zenithal distance.
- Computation of the topocentric zenithal distance (correction for the geocentric
Parallax).

Step 12: - Correction of the topocentric zenithal distance for the atmosphernic refraction.
- Computation of the topocentric diameter.
- Computation of the geocentric diameter.

IV.2 Error on tangency instant determination

Sun Diameter measurement with the solar astrolabe depends cntically on a good
determination of the transition instants of the solar edge by the small circle (Almucantar)
defined by the instrument. Each instant is the intersection of the direct and the reflect
trajectories of one Sun passage. Because of the temporal fluctuations observed on the two
trajectories, the point of their intersection is not well defined. It is the error on this time
determination, which induces the error on the diameter measurement . In our case, straight
lines are used to approximate the two trajectories using a least-square fit, the error on their
point of intersection is given by [28],
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Where ovis the standard deviation of the temporal fluctuations observed on the solar
trajectory, Tnae: the student’s distribution, "1-¢ the confidence interval, t, the intersection
time and N the number of images taken at the t; instant relatively to the mean time 7 .

IV.3 Choice of the implementation algorithm

The two algorithms described in chapter III (section II11.6) are tested on the two
sequences of Sun images acquired by the solar astrolabe of Calern stated at section IV.1. The
first set, dated to 10/09/1997, contains 22 Sun image sequences {11 diameters), where the one
dated to 09/10/1997, contains 28 Sun image sequences. Each image is a window of 101x256
pixels associated to its time of acquisition and the coordinates of the upper left corner of its
window. The a frous algorithm is implemented using the Bs-spiine interpolation for the
scaling functions and the wavelet of Mexican Hat. For the Mallat algorithm the wavelet used.
is the wavelet of Daubechies of order 3. For each algorithm we determine the instants of Sun:
transition and the error handled to its determination using equation I'V-1. Since each extracted
edge is approximated by a parabola, the histogram of the fluctuations of the edge points
around the parabolas are calculated. Finally the fluctuations of the summit points defining the
two trajectories around the lines used for their adjustments are aiso given.

IV.3.1 The a trous algorithm

‘ Figure IV-2(a) represents the histogram of the error made on tangency point
determination for the two sets of Sun image. We notice that the error is not constant and.
varies from a minimum value of 0.71 msecond to a maximum value of 4.83 msecond. The:
mean error for the two sets 1s 1.81 msecond.

Figure IV-2(b) shows the histogram of the fluctuations of the edge points around the-
parabola used for approximation. These fluctuations varies from a minimum value of 0.35
arcsecond (less than 1 pixel) to maximum value of 2.52 arcsecond (more than three pixels).
The mean value of these fluctuations for the two sets is 1.36 arcsecond (less than two pixels).

Figure I'V-2(c) illustrates the histogram of the fluctuations of the summit points , that
define the two Sun trajectories, around the two lines of adjustment. For the two sets, the
minimum value of these fluctuations is 0.58 arcsecond (less that 1 pixel), where the maximum
value 1s 2.44 arcsecond ( more than three pixels). The mean value for these two sets 1s 1.27
arcsecond(less than 2 pixels).
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Figure -2, (a) The histogram of the error made on tangency point deiermination. (b) histogram of the extracted edge poinls

fluctuations around the parabola of approximation. (¢} histogram of the fluctuation of the summil points defining the two
trajectories around the two lines used for their upproximation.

I1V.3.2 Mallat’s algorithm

Figure IV-3(a) represents the histogram of the error made on tangency point
determination for the two sets of Sun images. We notice that the error is not constant and
varies from a minimum value of 0.72 msecond to a maximum value of 4.66 msecond. The
mean error for the two sets is 1.80 msecond.

Figure IV-3(b) shows the histogram of the fluctuations of the edge points around the
parabola used for approximation. These fluctuations varies from a minimum value of 0.38
arcsecond (less than 1 pixel) to maximum value of 2.33 arcsecond (more than three pixels).
The mean value of these fluctuations for the two sets is 1.07 arcsecond (less than two pixels).

Figure IV-3(c) illustrates the histogram of the fluctuations of the summit points ,

defining the two trajectories, around the two lines used for adjustment . For the two sets, the
minimum value of these fluctuations is 0.61 arcsecond (less that 1 pixel), where the maximum
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value is 2.38 arcsecond ( more than three pixels). The mean value for these two sets 15 1.28
arcsecond(less than 2 pixels).
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Figure [V-3. (2) The histogram of the error made on tangency point determination. (b} histogram of the extracted edge points
[Tuctuations around the parabola of approximation. (c) histogram of the fluctuation of the sumn! points defining the two
trujeciorivs around the two lines used for their upproximaiion.

Tablel summarizes the statistical comparison between the results of application of two
algorithms on the two sets of Sun image sequences.

Table 1 shows that the two processing methods reveals approximately the same
results. Even though that to come with a precise conclusion we have to apply them for a long
series of images. At the present case we have to say that there is a big difference between the
Mailat algorithm and the o rrous algorithm in the case of time execution and the simplicity of
the process. With Mallat's algorithm we have to process the three details at each stage of the
decomposition, where in the & /rous algorithm we have 10 process only one detail at each step.
Also with Mallat algorithm the decomposition and the reconstruction are effectuated with four
filters, in the case of a trows algorithm only one filter intervenes. In addition the image
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resolution using the Mallat algorithm decreases with the increasing number of the resolution
levels, in contrary to the & irous algorithms where the resolution remains always the same
along the decomposition steps.

For simplicity and time execution consideration we will use the & rrows algonthm with
linear interpolation for the scaling function and the Mexican Hat as wavelet type.

The a trous algorithm Mallat’s algorithm

Mean | Max Min Mean | Max | Min
value | value | value value | value | value

Error made on tangency point {msec) 1.81 | 483 | 071 180 | 4661 0.72

Fluctuations around parabolas (arcsecond) 136 | 252 | 035 1.07 | 2.38 | 0.38

Fluctuations around trajectories (arcsecond) | 1.27 [ 245 | 0.38 1.28 | 2.38 | 0.6]

Tablel. The comparison between the & frous algorithm and Maliat's algorithm.
1V.4 Solar diameter measurement

Having got the transit instants (UTC1 and UTC2) using the a trous algorithm , the
steps between the step 5 and the step 11 of the procedure described in section IV} are used
to calculate the Sun diameter. Table 2 and Tabie 3 give the results for the two chosen sets
with their corresponding one found at Calern observatory. R is the semi-diameter found by
the present method and R, is that found at Calern observatory.

Calculated semi-diameter (R) | Calern Sun semi-diameter (R.)
(arcsecond) (arcsecond)
95976 95957
960.10 ' 959.66
2960.03 9509.41
95991 959 .68
959.75 959.38
959.13 ' 959.76
958.37 959.70
958.55 859.50 *
95941 950.44
959 81 959.60
960.10 - 05918
059.35 959 66
960.41 95998
960.57 959.57
Mean: 959.66 _ Mean: 959.58

Table 2. Sun diameter of the set of 09/09/97.
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95993 959 39
959 86 959.66
959.73 959.69
95933 959 64
958.95 959 .66
958.05 959.51
- 959,97 959.80
959.62 958.96
85992 - 959 14
960.09 959 94
960.27 95933
Mean: 959.61 Mean: 959.52

Table 3. Sun diameter of the set of 10/09/97.

The difference between the mean values of Sun semi-diameter measurements (IR-R.[),
s 0.09 arcsecond for the set of 10/09/97 and 0.08 arcsecond for the set of 09/09/97. Where
the relative error is 4.69%1075 for the set of 10/09/97 and 5.16%10"-5 for the set of 09/09/97.
The small difference between the mean values is due meanly to the planetary theory used to
calculate the Sun ephemeredes. At Calern , they use the VSOPS87 planetary theory, where the
present work uses low accuracy formulae (the accuracy is 0.01° in longitude). In addition 10
that, the methods used to process the Sun images are not the same. Figure I'V-4 and IV-5
present the results of the two sets and their deviation from their corresponding mean values.

The diameter measurement using the astrolabe is subjected to different error sources.
One is due in a large part to the fluctuations on the image trajectories that are in one part
instrument dependent. Fore exampie the reflected image is more degraded than the direct
image. Thus, the reconstructed trajectory is less well defined. Another cause of the magnitude
of the fluctuations is the small size of the astrolabe pupil. Indeed, the image motion is due to
the angle formed by the pupil plane with the wavefront slope all over the pupil {36]. The
average angle of arrival will cause then a displacement of the image which can be more
important when the pupil is small [36]. According to the evolution time of the atmosphere
turbulence [36] and the integration of time of the CCD camera, these effects could be more
notable for the astrolabe than for other instruments with large pupil. The last effect which can
be noted is the displacement of the solar image during the acquisition of the data. In fact, the
astrolabe does not compensate for the diurnal motion of the Earth and so, the solar image
moves during the integration time of the CCD camera. Consequently, the solar limb function
:s smoothed and then, the inflection point is not very well defined [36].
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The huge data of visual observations at Calern observatory showed a variation of the
Sun semi-diameter with the heliographic latitude. This variation has revealed that the semi-
diameter is bigger at the royal zone(around 45°) and smaller toward 75° [14]. Thes effect 1s
not up to know put in evidence in the case of CCD observations for the small data that exist.
Even though, the heliographic latitude for the two sets is calculated and Figure IV-6 and IV-7
show the obtained resuits.
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IV.5 Error on diameter measurement
According to the measurement principle, the vertical Sun diameter is a function of the

difference between the two zenithal distances at the two points of tangency, see Figure I-8. In
this case we cane write,

2 dZ .
D, = jl (E)dt av.2)
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where [0 is the vertical diameter, f:—j— 1s the vertical speed of the Sun, and ¢, and /, are the
iy
two Instants when the Sun crosses the defined Aimucantar.

The transition instants for the set of 09/09/1997 and the their corresponding vertical
Sun speeds are summarised in Table 4. Figure IV-8(a) shows the varniation of this later along

. : . d: .
the period of measurement. We notice that the vertical speed (T) varies between the two
(N
instants of tangency and the interval time between them is not constant. The variation period
between the two instants is represented by Figure IV-8(b). Table 5 and Figure IV-9 iilustrate
the same thing for the set of 10/09/1997.

The tangency instant(HH:MM:SS,SSS) The vertical Sun speed (arcsecond/second)
6:59:04 340 9.566
7:02:04,490 .9.504
7:27:48,206 8872
7:30:53,116 §.783
7:57:22,011 7.897
8:00.34,622 7.774
8:19:01,000 6.998
8:22:21,776 6.844
8:45:00,700 5.695
8:48:35,854 5.496
9:09:36,963 4.241
9:13:32,660 3.990
9:41:25,668 2.101
9-46:06,444 1.771
13:12:36,557 : 1.752
13:17:17.369 2082
13:45:09,590 3.970
13:49:05,092 422]
14:10:05,387 5.476
14:13:40,426 5.675
14:36:18.420 , 6.825
14:39:39.038 6.979
14:58:04,508 7.756
15:01:16,960 7.880
15:27:44 242 8.767
15:30:49,014 8.856
15:56:30,808 _ 9.491
15:59:30,709 9.553

Table 4. The vertical Sun speed variation during the period of measurement.
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The tangency instant(HH:MM:SS,SSS) The vertical Sun speed (arcsecond/second)
7:00:14,307 9.529
7:03:14 815 9.466
7:29:02,748 8.822
7:32:08:360 8.732
7:58:44,076 7.833
8:01:57,737 7.708
3:46:43,364 : 5.602
8:50:20,792 5.400
9:11:37,334 4129
9:15:36,586 3.875
9:44,02,718 1.963
9:48:51,162 1.629
13:42:23,580 3.855
13:46:22,680 4,109
14:07:38,582 5.380
14:11:15,683 5.581
14:34:05,170 6.745
14:37:27,217 6.902
14:55:59,333 7.690
14:59:12,853 7.815
15:25:47 219 8.716
15:28:52,575 8.806

Table 5. The vertical Sun speed variation during the period of measurement.
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From the spherical triangle equations we can get the expression of dz. /1 1s given by,
dz :
s = sin{ @) cos ¢ (Iv.3)

where ¢ is the azimuth and ¢ is the latitude of the measurement place. So the diameter is
. . dz . . . . .
given by replacing 5 by its expression given by IV-3 in the equation V-2, we get,
!
Dv = —cosg{cosa(t,) - cos(a(,)} - (IV.4)
The error on the diameter measurement is, ‘

AD, = cos(¢)[[sin a(/,)Ar,

+[sin(a(z,)A1 ] (IV.5)

For the sequence of 09/09/1997 the mean error on diameter measurement is found to
be equal to 0.0345 arcsecond that is 0.0172 arcsecond for the semi-diameter, and 0.0341
arcsecond on the Sun diameter for the set of 10/09/1997, that is 0.0170 arcsecond for the
semi-diameter. From the two result sets the value of the Sun semi-diameter 1s:

959764 +0.02"
- IV.6 Measurement quality with CCD astrolabe
In visual observations it was not easy to observe the atmospheric effects at the moment

of observation. With the introduction of CCD astrolabe, it becomes possible to estumate this
effect using the numerical data.
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IV.6.1 Atmospheric effects: r, measurement

The parameter that describes the seeing atmospheric quality is the Fried parameter
noted generally r0. D L. Fried introduced it in 1966 [28]. This parameter is based on the size
of the coherence areas of the disturbed wavefront arriving at the entrance of the instrument
pupil. Its expression integrates the constant of the structure fluctuation of the air refraction

index C *.(h) of the atmosphere thickness traversed by the incident rays. It is written as

-3/5

ro{l 6.74 *(cosy) “T Cn'(h)dh (IV.6)

Where A is the wavelength of observation and y is the zenithal distance [28].

Another similar formula for r, directly related to the angle-of-arrival fluctuations o is
given by the following expression [33,34],

/5 | 6/5 2

r0=82510 "D A" (0 7 2k, " (IV.7y

where o+ is the spatial fluctuations presented on the solar trajectory images averaged
over the astrolabe pupil D. It interprets the angle-of-arrival fluctuations. A is the wavelength of
observation.

For each passage the Fried parameter is calculated using equation IV.7. Table 6 gives
the Fried's values found from the two sequences for each passage.

Sequence Number Fried parameter in mm for the | Fried parameter in mm for the
set of 10/09/1997 set of 09/09/1997
1 79.69 21.73
2 80.79 27.03
3 61.56 53.92
4 62.76 37.10
5 48.05 48.84
6 41.37 42.72
7 18.89 62.58
8 29.64 2599
9 2334 40.78
10 17.35 : 31.22
11 23.86 36.30
12 3735
13 36.03.
14 46.05
Mean r, is 44.3 mm Mean r, 15 33.48 mm

Table 6: The Fried paramerter for the two sets of Sun images.

From table 6 we notice that at the morning of the day of 10/09/1997, the condition of
observations was good ; the mean value of the Fried parameter exceed 30 mm. At the
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afternoon the conditions became less favourable, a value of 17.35 mm of Fried parameter 1s
attended. For the set of the day 09/09/97, the atmospheric conditions are stable, and the mean
Fried parameter is 38.89 mm. Even though , its a small set of data to make a final conclusion
about the condition of observation at Calern observatory, but the study done by A Irbah et al
[36] using the numerical data of the CCD Calern astrolabe between 1989 and 1992 revealed a
value of 4 cm for the Fried parameter. The situation that reflects the bad conditions of
observation.

The Fried parameter value qualifies the quality of observation of a site. Bigger is the
value of the Fried parameter better are the conditions of observation and consequently precise
results are obtained. Figure IV-10 and IV-11 represent the variation of the error on tangency
point determination with the Fnied parameter for thé two sets of Sun images.
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Its is clear that the error made on tangency point determination decreases with good
seeiny conditions. The error is equal to 0.7 msecond for 1, equal to 79.69 mm and increases
up to 2.8 msecond for ro equal to 18.89 mm for the set of 10/09/1997. For the set of
09/09/1997, the error is equal to 0.95 msecond for ry equal to 62.58 mm and increases up to
4.82 msecond for rp equal to 15.8 mm. So the error made on tangency point determination is
strongly linked to observation conditions. From the two sets the mean Fried parameter is
38.89 mm, which reflects the bad conditions when the observation took place.

The same result is noticed between the error on diameter measurement and Fried
parameter. Figure IV-12 and IV-13 illustrates this relation for the two sets. We notice that the
error on diameter measurement with the astrolabe increases with decreasing values of the
Fried parameter. For example it is equal to 0.02 arcsecond for ry equal to 79.7 mm and
increases up to 0.06 arcsecond for ry equal to 17.3 mm for the set of 10/09/1997. For the set of
09/09/1997 |, the error for example is equal to 0.02 arcsecond for ry equal to 62.58 mm and
increases up to 0.05 arcsecond for rp equal to 21.73 mm.
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The error that we make on diameter can be less than that obtained from these two sets,
if the conditions of observation, charactensed by the meteorological state and the
atmospheric turbulence are more favourable. The last one is a phenomena that is site
dependent and very complex to model. The idea 1s to dispose of the observation conditions at
the moment of measurement in order to moderate the diameter values during their analysis.
In addition, to be able to make a correlation beiween the seeing parameters and the diameter.
variations. This is the role of Misolfa that will be instalied near the DORaySol of Calemn
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observatory. The operation of the two instruments at the same time will qualify the Solar
astrolabe measurement by taking into account the transfer function of the atmosphere in the
image processing. -

At Tamanrasset observatory, there will be no seetng monitor of Misolfa type installed

near the astrolabe. But, using a powerful acquisition card and an adapted programming of the
whole acquisition system of the astrolabe could supply the necessary seeing parameters.
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CHAPTER V ACQUISITION SYSTEM FOR TAMANRASSET OBSERVATORY

In order to prepare the Algiers’s astrolabe for future integration in the ground network astrolabes and to be
ready for calibration when the microsatellite Picard will be launched in 2006, the old astrolabe, which is an
OPL type of Danjon, is currently at Calern observatory (France) where it is being transformed to DORaySol
instrument. After describing the operation of the global system, this chaprer presents the tested methods for
image acquisition. The selected elements to build the acquisition system and the developed algorithms to
“operate them are presented followed by a description of the global operation of the acquisition system.
Finaily, the results obiained at.the;laboratory, using a simulated Sun image, . from testing the whole system
are given.

V.1 The solar astrolabe for Tamanrasset observatory

The old Algiers’s astrolabe is currently in phase of transformation that will touch its
optical system and its mechanism. The main optical transformation is the replacement of the
refracting telescope with a reflecting one of a Cassegrain focus configuration of 3.5 m in focal
distance. In addition it will be equipped with a prism of variable angle. This prism made of
Zerodur material and with high temperature stability will enrich the data of diameter
measurement during a day. To be completely automated, the necessary adjustments before
launching the acquisition will be done via step motors. So, mechanical transformations will be
effectuated to fix the necessary motors that control the rotation in azimuth, the solar filter
displacement, the varable angle prism positioning and the optical axis tilt. After the
necessary transformations, the modified instrument , named DORaySol, that will be installed
at Tamanrasset observatory is shown Figure V.1.

EE M**L

Figuree V. DORaxSol Instrument.
I-Solar filter 2- CCD camera 3- Reflecting telescope 4-fixed plute 5-Rotating plate 6- Mercury bath 7- prism of variubic
angle .

The proposed instrumental set that will control the acquisition of the Sun images 1s
shown in Figure V-2.
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The acquisition of the Sun image 1s done via the video EureCard Primo piloted by a
computer. The shutter in rotation permits to acquire one Sun image, either direct image or
reflected one. So, one image of the two appears at a given instant in the field of the objective.
It is possible to observe the two images simuitaneously on the CCD field. This can be done
by eliminating the rotating shutter. Even though, this method has the advantage of eliminating
the rotating shutter (the only mechanical piece in movement during the acquisition) and gives
access to more information, it causes a problem in tangency point determination. Stnce at the
moment of tangency, the varation of the contrast is higher so that the saturation of the CCD

can be reached and consequently the image quality is influenced [14].
Wideo Monibr

Tele wope
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Figure V-2. The instrumental sef around TAM astrolabe.
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The principle of the measurement is to maintain the trace of the direct and the reflected
images on the field of the objective. This must be done in such a way that the tangency line to
each one of these two images at their summits is parallel to the horizon (the horizon is
represented by the columns of the CCD after some adjustments and corrections). When this
condition is verified, the acquisition process is launched for a set number of direct and
reflected images. The time period of this acquisition process must covers the tangency instant
of the two acquired images.

V.2 The acquisition method

The rotating shutter permits to acquire one solar image at a time, either direct image
or reflected image on the mercury bath each 250 ms. Therefore, we have 250 ms to acquire
the Sun image, to process it and finally to store it. For this reason, we have to look for the
method of acquisition that takes the lowest time and use the smallest space memory. So, to
optimize the acquisition we,

1- Acquire only a window inside the whole image by maintaining only the effective part.

2-  Since only the displacement of the image along the zenithal distance is important (CCD*
columns), one line over two can be stored.

3- One field of the video signal is digitized by controlling the camera mode (one field is
acquired in 20 ms, and the whole image (two field) in 40 ms). By doing this, the scale
along X is divided by two, and so, this will increase the curvature of the solar edge.

The acquired window inside the whole image can be defined by two methods,

The first method:

Before the acquisition, four lines are acquired from the whole image presented in the
image memory. The maximum intensity on each line is determined by derivation and sorting.
The maximum intensities founded are recorded with their corresponding column numbers.
From these maximums, we define a window around the point that has the maximum column
number. After that, the acquisition is launched.

This method sometimes does not work because it happens that one of the arbitrary
selected lines fall on a sunspot presented in the Sun image; see Figure V-3. In this case, the
resulting window is inappropriate and consequently the acquisition will not be the right one.
In addition, the derivative calculation and the sorting algorithm take an important time, which
slow the acquisition process. F.laclare and G.merlin have used this method with the CCD
astrolabe and it was soon abandoned.
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Figure -3, 4 solar image conlaining sunspols.

The second method:

The reiation between the horizontal coordinate system and the equatonal one ts given
by the following equations,

sin & =sin @COSz—COSESIn Zcoda
cosdsin H =sinzsina, (V.7)
COSOCOSH =COSE@COSI+SIN Psin Zcosa

cosz=sin sin d+cos@cosdcosH
. sin zsina=cQsdsin A (V.8)
sin zCosa=—Ccossin & +singcosd cosH
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cosS=cosacosf +sinasin Hsing
sinzcosS=singcosd —cosgssindcosH -
sinzsinS=cospsin H V.9)
' cosScosS= =SIN@SiNz-+cosgeoszcosa :
cosdsinS=cosgsing

Where § is the declination, ¢ the latitude, z the zenithal distance, a the azimuth, H the hour
angle, and § the parallactic angle. .

Given T=H-a (wherea is the right ascension ant T is the sidereal time), we have by
denvation,

dH =
§aato (V-10)
Where o is the right ascension ant T is the sidereal time.
The equations V.10 assumes that the displacement of the poles and the vernal point
are negligible. In this case the diurnal motion is reduced to a uniform rotation.
Differentiating V.8 relations, we get

sinzcosada+coszsinadz=cosdcos HdH, (V.11)

sinzdz=cosgcosdsin HdH
—sinzsinada-+coszcosadz=—singcosd sin HdH

The first relation in V-10 with the help of V.8 and V.9 relations can be written as:

dz

= A2
T =COSE@SINa=cosdsinsS ) (V.12)

The two last relations in V-11 give da/dT by eliminating dz/dT

da

AT “==cosd cosacos H +sinasingsin H) ' (V.13)

Sinz-tL.

The expression between parentheses is cos S that lets us writing,

da_cosdcosS _ - ' Vv

T Sinz Sing-+cos@cotzcosa (V.14)
The zenithal distance z and the azimuth a are calculated from the ephemeredes and the

coordinates of the astrolabe.

Since the acquisition of each image is done each 0.25 sec, we can calculate then the
trajectory of the two images in the field of the matrix CCD during this period of time. The
acquisition of the direct and the reflected images is realized alternatively. Two successive
positions of the same image are separated by an interval of 0.50 sec. So, the necessary time
for a Sun image to cross the CCD matrix can be deduced and the starting position and the
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ending one of the solar edge on each trajectory can be foreseen. We can then position the first
image in such a way that the intersection of the two trajectories is situated as close as possible
to the center of the CCD matrix. Figure V-4 shows a trajectory details of one of the two
acquired Sun images during each Sun transition. The method consists to acquire alternatively

two symmetrical windows each 0.25 sec.

Figure V4. Apparent movement of the Sun on the CCD frame.
da the displacement in azimuth in 0.5 sec, dz the displacement in zenithal distance in 0.50 sec, DA the total displacement in
azimuth, DZ the total displacement in zenithal distance, 1,2,3, positions of successive images.

This method is faster than the first one and it is not affected by the image
characteristics. The only thing that we need to have is a program that calculates the Sun
ephemeredes in real time. For these reasons, this method is chosen to be used for Sun image
acquisition. The Sun displacement on the CCD frame depends on the daily Sun speed variation
that governs the number of measurements per day. Faster the Sun displacement greater the
number of Sun diameter measurement. The Sun speed variation depends on the day time, on
the seasons and on the geographic coordinates of the astrolabe.

124 Ve \\ ! "-\‘

Varlation of tha zenithal distance {arcaecond persecen
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Figure V-5 . Zenithal distance variation of the fist day of Mars 200]. .
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For all the days, the variation of Sun zenithal distance during 2 day looks like Figure
V-5 that represents the zenithal distance vanation of the first day of Mars 2001 using the
equation V.6. For example, the mean variation of zenithal distance is 11"”.24 per second of
time in Mars and 11”.18 per second of time in July.

The Sun moves on the CCD frame in azimuth and height. The variation of the azimuth
looks like Figure V-6 that shows the vanation of the azimuth of the first day of Mars 2001
using the equation V.7. The mean variation of the azimuth is 9”.29 per second of time in
Mars and 9" .97 per second of time in July.
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Figure V-6 . Azimuth variation of the fist day of Mars 2001,
V.3 The CCD camera

The solar astrolabes are up to now equipped with black and white CCD cameras. These
Cameras are selected for their easy use and their low cost. The selected camera for
Tamanrasset astrolabe is the COHU 4710. {t is a Frame Transfer mode camera with 699(H) x
576(V) pixels. Each pixel is of 9.2x8.4 pum in dimension. Its output video is digitized on 8
bits by an analog to digital converter that gives a digitized images on 256 gray levels.

The field covered by the CCD camera is function of its dimension and the focal
distance of the telescope on which it is mounted. Its expression is given by the following
formula,

(V.1)

Field =arctan| S4¢s0fCCD(mm).10 J

foacl(m)

Using this equation, the field covered by the COHU 4710 CCD is ~ 6.3 on the
horizontal direction and ~ 4’.8 on the vertical one.

The resolution limit that we can attend with an astrolabe 1s determined by the telescope

diameter, the intrinsic quality of the image and the sampling frequency [41]. The first
limitation is due to diffraction phenomena, the second one to the atmospheric turbulence and
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the third one to the sampling rate of the CCD detector. The sampling siep represents
the angular portion of the sky seen by the CCD pixel. Its expression is given by.

L pixel(um). 10 - 79
Sampling arciﬁ.\‘{ Tocal(m) , (V.2) .

If the sampling step is in arcsecond per pixel. the pixel dimension in microns and the focal
Jength in millimetres, the formula of the sampling step is writien as,

Sampling (seconds arc/pixel)= 206 -}‘?; - _ (V.3)

Where P is the pixel dimension in pm and F the focal length of the telescope in mm.

The resolution Iimit imposed by a telescope of diameter D and a wavelength of
observation A is given by,

R _.=AlD (V.4)
If fis the focal length of the telescope. the resolution limit in this case is given by,

R_=fAlID (V.5)

To recover the optical signal , we have to verify the Shannon condition. So, the

optical signal must be sampled by a sampling rate A, , such that the following condition is
satisfied,

Ac £ Rmnanl2 _ (V.6)

The astrolabe of Tamanrasset will be equipped with a telescope of 10 cm in diameter
and 3.5 m in focal distance. In addition, since the same optical system as that of Calern
astrolabe will be used, the wavelength of observation is 550 nm . Using these characteristics,
the resolution Jimit is 1.14 arcsecond ( 38.5 sm ). In this case. the sampling step must be less

or equal to 0.57 arcsecond (19.25 um).

Using equation V.2, the sampling step is 0.5421 arcsecond along the vertical direction
of the CCD and 0.495 arcsecond along the horizontal one. The characteristics that justifv the
choice of the COHU CCD camera.

V.4 Time reference system
The time accuracy in the experiment is the most important factor, since any error or
instability will affect all the experiment. At Calern observatory, the solar astrolabe uses the

Universal Time Coordinate provided by the time service to date the acquired Sun images.
Since this kind of service does not exist at Tamanrasset observatory, we have to find a

118



solution to overcome this lack. For this, we have selected a time reference system based on
Navigation System Satellite, the GPS (Global Positioning System). Iis is a GPS: [SA TIME
that furnishes time with a precision of 130 ns with respect to the universai time. Figure V-7
shows its block diagram.

An active antenna with an RG58 type cable is used to receive the GPS carrier (1575,42
Mhz). The card is equipped with a real time clock and the geographical data (latitude,
longitude) are stored in an EEPROM memory. According to these geographical and temporal
data, the card chooses the best situated satellites and shorten its time of calculation. In case of
losing the GPS signals, the time base of the card varies according to the stability of its
oscillator. This stability is 173 ms during 24 hours. The meteorological conditions have only a
weak mfluence on the delays of the propagation of the GPS signals. A software program
written in C language is used to detect the GPS card and to access the stored data in real time.

Antenna

RGS58 Cable

PC

GPS Card

Figure V-7. The time reference for Tamanrasset Observatory Astrolabe.

The following steps illustrate the algorithm of the software program,
Stepl: Reading of the base address according to the switch setting on the GPS card.

Step2: -Test the operating mode as follow:
Timetest=Port[base address];if bitl=1, the time is valid (the GPS is working), if 0 the
card works on its internal base time.
-Reading the date,
Year=Port[base address].
Month=Port[base address+1].
Day of the month and the day of week=Port[base address+2].

Step3: Reading the time-of day,
Hour=Port[base address+3].
Minute=Port[base address+4].
Second=Port[base address+3].
Thousandths of second=Port{base address+6]+Port[base address+7] .
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V.5 The System Timing Controlier

The atmospheric refraction measurement 1s necessary in Sun semi-diameter
determination. So. the humidity. the atmospheric pressure and temperature musi be measured at
the moment of observation . For this a PC-TIO-10 board is chosen to get for the first time the
day time with high precision and to provide a future interface for the humidity, pressure and

temperature Sensors.

The PC-TIO-10 is a tuming and a digital VO board around two System Timing
Controllers (STC, Am9513A and the Am9513B integrated circuits) and one MC6821
integrated circuit. The Am9513A 1s a general-purpose counter/timer with five 16-bit,
individually controlled counters and a 4-bit frequency-scaler output. The MC6821 1s a 16-bit,
bit-configurable, digital }/O device with two interrupt inputs that are edge-programmable. The
STCs are the hearth of the PC-TIO-10. These chips have five individually controlied 16-bit
counters. The STCs have independently controlied frequency-scaler outputs. They are ciocked
by an onboard 1 MHz crystal oscillator to give I usec timing resolution. In addition,
SOURCES and SOURCEIO0 are clocked at 5 MHz to give a resolution of 200 nsec [37].

Figure V-8 presents the block diagram of PC-TIO-10 that illustrates its key functional
components [37].
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Figure V.8, The PC-TIG-10 block diagram.
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V.5.1 Time of day generation with the Am9513A

For Tamanrasset Observatory Astrolabe (TOA), the Am9513A is used to get the time-
of day with a precision of 1/1000000 of sec. The bits MMO and MM of the master mode
register control the time counting of the day in the Am9513A [37]. When these bits are set to
01, 10, or 11, logic on the counters 1 and 2 are enabled to cause the counters to roll over at the
counts required for time-of day accumulation.

Figure V-9 represents the configuration used to get the time-of day for TOA.

x1 INTERNAL
‘OMZE":; OSCILLATOR =10 +10 <10 | | =10
x2

Counter 5 (+l_ 0000)

Internal TC F2=1Mz

TCN-1 Counter 1
100 H{

Intemal

]

TCN-1

Counter 2
1 Hz

Figure V-9 .The time-of day configuration for Tamanrasset Observaiory.

The time-of day circuitry requires a special initialization sequence. The following steps must
be performed:

1- Set the Master Mode register and then the Counter Mode registers to the desired vatues.
2- Initialize the used counters to zero.

3. Set the Load registers of the used counters to the current time.



4- Start the counting process by writing the arm control word to the Am9513’s Command
register.

In the current application where high precision of time s required, the nitnalization
time is loaded somewhat later than the current time. In addition, the arming process of the
Counters is delayed until the current time matches the loaded one from the GPS card. The
reading of time from the registers used in the configuration (Figure V-7) can be done each
time by issuing a save word command to the three counters. This result in a transfer of their
contents to the corresponding holds registers. The time can be then read without disturbing the
time-of day process. For a speed reason, a software program writlen in assembly language is
performed to initialize and read the current time.

V.6 The acquisition card

Figure V-10 presents the block diagram of the Eurecard Pnimo hardware structure used
for Tamanrasset Observatory Astrolabe [38]. '
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Figure V-10. EureCard Primo Block Diagram.

- The EureCard Primo’s main processor is a Graphic System Processor (GSP). Its main
features are: 60 MHz clock frequency, 16 bits local data bus, 30 32-bit internal registers,
instruction cache memory, pipelining. It provides direct access from the PC to the
EureCard Primo.

- A 512-Kbytes system memory is used to store programs and data used by the GSP.

- A 512-Kbytes image memory ( one 8-bit, 512 x 10124 plane) used to store images
acquired and processed by the EureCard Primo.

- The video input samples and digitizes the signal coming from one of the four cameras.



- The video mixer mixes the image generated by the EureCard Primo with the image
coming from the PC.

- The video output is a tripie digital to analogue converter and a set of associated circuits. It
processes the video signal send to the VGA monitor.

The following algorithm illustrates the EureCard Primo configuration used for the
TOA:

1- EureCard Primo detection.
2- Set the monitor configuration to dual mode.

3- Set the trigger event output to a logical positive edge. This input line is connected to
the output line of the rotating shutter.

4- Initialize the acquisition to continuous mode,
5- Set the first input channel to which the COHU camera is connected.

6- Set the antialiasing filter, the gain, the offset and the Input Look Up Table of the input
module to the appropriate values (see Annex 6).

7- Set the first input channel for input synchronization,
8- Set the pause time waited for after the trigger signal to 0 sec.

9- Set the number of fields to skip before grabbing starts to zero, and the number of field
to grab to 1. This step is illustrated by the following timing:

video field

delay :

1]
1
'
:
i
VIN GRAS PAUSE VIN GRAB DELAY ' VIN GRAB DURATION

Trigger Event

VIN GRAB SYNC

-1 Next field
0 Next even fieid

u Next ocd field

Figure V-11. Steps of Grab Process.

The logical steps of the acquisition program is shown bellow.
[~ Intialization of the three cards (EureCard Primo, GPS card, PC-TIO-10 card).

2- Set the PC-TIO-10 to the current time using the GPS card.



3- Position calculation. Wait for a top signal from the rotating shutter.

4- Read the time and acquire the presented image in the image memory(direct or
reflected). Wait for a top signal from the rotating shutter. During this waiting state, we
process the image by the & zrous algorithm, calculate the summit of the parabola used
for approximation and finally store the whole in the ramdrive . When the top signal
of the rotating shutter is presented , this step is repeated from the beginning to acquire
the second 1mage.

5- Step 4 is repeated 100 times.

6- Stop the acquisition ( the acquired image sequence defines the first passage).

7- Position calculation. Wait for a top signal from the rotating shutier.

8- Read the time and acquire the presented image in the 1mage memory(direct or
reflected). Wait for a top signal from the rotating shutter. During this waiting state, we
process the image by the a trous algorithm, detect its edge, calculate the summit of
the parabola used for approximation and finally store the whole in the ramdrive.
When the top signal of the rotating shutter is presented thas step 1s repeated from the

~ beginning to acquire the second image.

9- Step 8 is repeated 100 times (the acquired image sequence defines the second
passage).

10- Stop the acquisition and store the acquired image sequences and the corresponding
edges in the hard disk. Preparation for the next diameter measurement.

When the proposed instrumental set will be installed around the astrolabe, it will permit
us to, test the overall system in operation. According to the tests done in laboratory, the
acquisition time of a window image of 101x256 pixels is 50 msec. Since the rotating shutter
that launches the acquisition makes 250 ms to complete one turn, so we have 250 ms to
process the image, to detect the Sun edge and to calculate the summit point of the parabola
used for the approximation. The laboratory test, using a computer of 350 Mhz, shows that the
necessary time to perform these functions is 125 ms. This time can be decreased if we use a
faster computer, since the acquisition process depends on the used grabbing card in one way
and on the speed of the computer in the other way. After each complete Sun transition and
before starting the next semi-diameter measurement, the steps to calculate the Sun semi-
diameter can be performed.



CHAPTER VI CONCLUSION AND PERSPECTIVES

V1.1 Conclusion

Sun semi-diameter is one of the important quantities in astrophysics and astronomy
domains. It is measured since 1666 by many astronomers and using different instruments.
L’astrolabe ,with its principle, is one of the precise instruments in astrometry. In its solar
configuration, it has furnished the most lengthy series of Sun diameter measurement at
Calern observatory. These measurements were the object of many studies. The interpretation
of the obtained results are always difficult. This difficulty is at least due to two main reasons,

s The observed solar edge has not a precise definition and the stability of the
observer response was not stable.

¢ The study of the effects of different phenomenon ( atmospheric, instrumentals)
on the measurement was not well known due to the lack of information.

In order to improve the Sun diameter measurement, a new generation of Solar
astrolabe, named DORaySol, is designed. This automatic instrument provides the observation
- in different wavelengths. In addition, the introduction of the prism of vanable angle permits.
the acquisition of a huge data set per day, if the methodological conditions were favorable.
The use of a CCD camera permits also the estimation of the atmospheric effects on Sun
diameter measurement at the moment of observation. After a precise and an automatic
instrument exists, the next step is to observe the Sun at lower latitudes and having the best
site where the conditions of observation are favorable. To be integrated in the international
network of astrolabes, the ancient solar astrolabe of Algiers observatory (Centre de
Recherche en Astronomie Asrophysique et Geophysique) is currently in  phase of
transformation to DoraySol instrument.

In the present work, after the presentation of the prnnciple of Sun diameter
measurement, the methodology of observation using the ancient and the new generation of
solar astrolabes, several techniques and algorithms are developed and tested in order to be
ready for their installation around the solar instrument of Tamanrasset observatory.

VI.1.1 Meteorological study of the site of Tamanrasset observatory

Meteorological conditions are important where the solar astrolabe is installed. For this
reason a meteorological study of Tamanrasset site has bee done. This study consisted in
evaluating the variations of the atmospheric pressure, temperature, nebulosity, humdity,
and wind speed. These quantities are important to qualify the site for the present and future
astronomical observations. The study used the data gathered during 1998, 1999 and 2000.

The resuits have shown a mean humidity of 20.5%, a mean atmospheric pressure of
866.4 hp. a mean nebulosity of 2 octas, a mean temperature of 22.8 °C. and a mean wind
speed of 3.7 m/s. This preliminary study showed that Tamanrasset observatory would be a
favorabte place for this type of observation. In addition, the study of the Sun trajectory over
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the site showed that the location of Tamanrasset observatory allows the collection of huge
data sets of Sun diameter measurements that can exceeds 4000 diameter per year.

VI.1.2 Sun image processing

The principle of Sun diameter measurement with the CCD observation is based on the
best method to extract the solar edge from the acquired digital images. Since the main
information is contained in the Sun edges, the techniques used to process the Sun images
must be capable to maintain this information during the whole image processing. Generally
the Sun images present sunspots, the non-stationary defects, that must be localized and
eliminated before edge detection and without affecting the Sun edge resolution. The chosen
method is the wavelet fransform, the technique that permits the analysis of a signal
simultaneously in time and frequency.

VI.1.2.1 Algorithms to implement the wavelet transform

Two algorithms to process the Sun images are used to implement the wavelet
transform. These two algorithms are,

1- The “a trous” algorithm using the wavelet of Mexican Hat. Since this wavelet has
not an associated scaling function, two interpolations of this later are tested, the
linear interpolation and the B-spline interpolation.

2- The Mallat algorithm using the wavelet of Daubechies of order 3.

The comparison between the two algorithms, using a real Sun image acquired by the
CCD astrolabe of Calern, showed that the obtained results from the two are comparable. The
main difference between the two algorithms is the execution time. With the “a trous”
algorithm, one filter is used for image decomposition, there is one approximation image and
one detail image at each resolution step and the dimension of the processed image remains
the same during the decomposition process. With Mallat algorithm, two filters are used for
decomposition and the reconstruction of the processed image, at each step of decomposition
there is one approximation image and three detail images and the dimension of the processed
mmage decreases with the number of the resolution steps.  Since at the solar astrolabe, we
acquire one image each 250 ms, we have to look for the algorithm that takes less time, since
our objective is to work in real time. So, the chosen algorithm is the “a trous” algorithm that
uses the Mexican Hat wavelet ant the Bi-spline interpolation for the scaling function.

VI1.1.2.2 Edge extraction of the Sun image

Before the edge extraction . the Sun images are processed in order to locate and
eliminate the sunspots and the optical defaults. The elimination method is done by processing
the detail images where the signatures of these spots are present. The process consists to
apply a thresholding on the wavelet coefficients of the first detail. The threshold value is
chosen so that the wavelet coefficients of the detail image are reduced to the noise level.
This value i1s chosen equal to + 3sigma, where sigma is the standard deviation of the detail
wavelel coefficients.

126



Even after the spots elimination, there are always a residual noise and a residual
signatures of the eliminated spots in the image. In order to increase the signal to noise ratio,
the detail images must be filiered before the final reconstruction of the processed Sun image.

- For that reason, two methods are tested, the method of thresholding and the method based on
filtering. Concerning the fist method, ~tests have shown that the choice of the threshold value

“is delicate, since, if the threshold value is not adequately chosen, the thresholding process will
modify simultaneously the coefficients that intervene in the edge definition. So, 10 overcome
this difficulty, we have decided to use the second method and several filters are tested. All
the filters are of rectangular low pass types. The comparison between the tested filters
showed that the low pass filter with coefficients { % %2 % ) in one dimension is the most
appropriate one.

Due to the :
»  Atmospheric turbulence.
» No correction of the diurnal motion using the solar astrolabe.
> Long integration time of the CCD camera (20 ms).

the edge of the acquired images is not sharp and extends over more than 10 arcseconds at
Calern observatory. The classical methods of edge detection are applied to extract the edge of
the processed and the cleaned Sun images. The results have showed that the edge is not well
detected and fluctuations of the extracted edge, with some corrections, around the parabola
used for its approximation are considerable. For example, the Sobel method gives a standard
deviation of 3.28 arcseconds, that of Laplacian a sigma of 7.69 arcseconds and those of
Derich and Canny give a close sigma value of 1.26 arcseconds. For that reason three
methods are developed to extract the edge with high precision. The companson between the
three methods, using a real and a cleaned Sun image, revealed that the method based on the
second derivative is the appropriate one. With this method, the fluctuations of the extracted
edge points after being smoothed by a median filter and approximated by parabola, is 0.43
arcseconds, a value that is less than the pixel resolution (0.74 arcseconds).

VI1.1.2.3 Tangency point determination

The tangency point determines the transition instant where the upper edge or the
lower edge of the Sun crosses the defined height circle. It is defined by the intersection of the
two Sun trajectories (direct trajectory and reflected trajectory} on the CCD frame. The CDD
lines (X) define the displacement of the Sun azimuth and the CCD columns (Y) define the
displacement of the Sun zenith. In practice, the CCD is never well positioned and there is
always an inclination with respect to the horizon. This inclination must be evaluated and the
value of the transit instants corrected. The computation showed that this correction is
generally small. It is found to be of the order of 4 te 5 ms for a mean inclination of the CCD
lines of 20 arcsecond and a mean separation in X of 20 pixels (22 arcseconds).



V1.1.3 Sun diameter measurement

The developed programs to process the Sun images and the procedures to calculate
the Sun diameter are tested. This test is done using two selected sets of Sun images acquired
by the Solar CCD Astrolabe of Calern (France) during the year of 1997. One is dated to
09/09/97 and the other one to 10/09/97. These sets contain an even number of sequences.
Each one is a series of one hundred images of 101x256 pixels in dimension( 50 reflected
images. and 50 direct images}.

The results of the measured apparent Sun semi-diameter, showed a mean value of
959".66 for the set of 09/09/97 with an error equal to 0.02" and 959 761 for the set of
10/09/97 with an error of 0.02"" The difference between the found mean values and those of
Calern is 0.09 arcseconds for the set of 10/09/97 and 0.1 arcseconds for the set of 09/09/97.
This difference is mainly due to the planetary theory used to calculate the Sun ephemeredes.
At Calern , they use the VSOP87 planetary theory, where the present work uses a low
accuracy formulae (the accuracy is 0.01° in longitude). In addition, the methods used to
.process the Sun images are not the same.

The mean value of Sun semi-diameter ( R} from the two sets is:
R=959"64+0.02"
V1.1.4 Atmospheric effect measurement

The study of the atmospheric turbulence, characterized by the Fried parameter using
the two sets showed a mean value of 1o equal to 38.89 mm . the value that reflects the bad
seeing conditions at Calern observatory. Also, a systematic decrease of the error inade on
diameter measurement and on the transit instants deterrnination with the best seeing
conditions (Fried parameter) is observed. The error on diameter can be Jess than that obtained
from these two sets, if the conditions of observation, characterised by the meteorological
state and the atmospheric turbulence were more favorable.

Vv1.1.5 Instrumentation

The studied and the selected instrumentation that will be instalied around Tamanrasset
astrolabe is made of an EureCard Prime for acquiring the Sun images, a GPS card for uime
reference and the PC-T10-10 card for dating the acquired images. The developed programs
that pilot these cards are tested in laboratory. using a computer of 350 Mhz and a simulated
Sun image. The tests showed that the required time to acquire an image of 101x256 pixels ip
dimension , to process it (elimination of sunspots and filtering the residual noise), to detect its
edge and to calculate the summit point of the parabola used for approximation is 175 msec.
This allow us to work in rea) time, since each 250 ms we have one Sun image present at the
focal plane, either direct or reflected.
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V1.2 Perspectives

The Sun is currently one of the most studied celestial body in astrometry . Due to the
technical advancement and  scientific developments  during the last years, many
measurements with high resolution will be available to response to various questions that the
results of the measurement ask. The simultaneous studies of all the solar parameters, that the
observation can access, are necessary.

Many ground CCD astrolabe measurements are operating in different regions in the
world, we can name that of Calern (France), Feira de Santana(Brésil), Malatya (Turquie),
Rio de Janeiro (Brésil), and San Fernando (Espagne). With ground measurement , the
knowledge of the seeing parameters is primordial to improve the accuracy of the solar
diameter. The optimum solution up to know is to perform this type of measurement out of the
atmosphere. It is why the French Agency CNES scheduled the launch of a microsatellite
(PICARD) in 2006 with its own program of measurements. In addition to its measurement of
the solar diameter with an accuracy of a hundred times better than what is done on the ground,
the differential rotation, the irradiance and its varations will be measured. So, with Picard
and its replica on the ground, Sodism II and the seeing monitor (Misolfa) , ail operating
simultaneously, will permit the calibration of the ground astrolabes.

At Tamanrasset observatory, there will be no seeing monitor of Misolfa type installed
near the astrolabe. But, using a powerful acquisition card and adapted programming could
supply the necessary seeing parameters. Finally, the installation of the designed
acquisition system around the astrolabe of Tamanrasset, the whole automation of the
instrument, will permit to integrate our astrolabe in the ground network and calibrate it when
the Picard microsatelite will be launched.
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ANNEX1

Meteorological study of Tamanraset Observatory

Tamanrasset observatory is built in 1932, and it is 2000 km far from the capital of
Algeria. Its geographic coordinates are 22.792 ° N in latitude and 5.527 ° E in longitude, and
it has an altitude of 1370 m. It is considered as one of the important International
Observatories in the world. Its emplacement makes it an important site for many geophysical
and astronomical applications. For the case of astronomy, Tamanrasset site is chosen as one
point of the solar diameter measurement network.

The present meteorological study of Tamanrasset site consists in studying the
variations of the atmospheric pressure, the temperature, the nebulosity, the humidity and the
wind speed. These quantities are important to qualify the site for the present and future
astronomical observations. The study extends over three years 1998, 1999 and 2000.

1.1 Humidity

1t is defined as the quantity of the water in the air. It is measured in percentage (%};
a dry air corresponds to 0 %, and a saturated air corresponds to 100%.

1.2 Atmospheric pressure

It is defined as the weight of an air column from the top of the atmosphere to the
Earth surface. It is measured in hecto-pascal.

1.3 Nebulosity

The total nebulosity is defined as the fraction of the celestial globe covered by a set
of the visible clouds. The nebulosity is estimated visually and measured in Octas;, a sky
which is three fourth covered by the clouds have a total nebulosity of 6 octas. A clear sky
corresponds to a nebulosity of o octas, and a sky totally covered corresponds to a nebuiosity
ot 8 octas.

1.4 Wind speed
It is measured in meter per second (m/sec).
1.5 Temperature
The temperature is measuréd in Celsius degrees (°C).
1.6 Recording data process and comparison
The parameters, the pressure, the humidity, the temperature, the nebulosity, the
direction and the wind speed are recorded eight times each day (at 00 hr, 03 hr, 06 br, 09 hr,

12 hr, 15 hr, 18 hr, 2thr). The comparison between these parameters for the three years 1s
yiven bellow.
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1.6.1 Humidity
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Figure 1.1. Dailv mean humiditv of each _vear.(a)vl 998, (b) 1999, (c) 2000.

The year 1998: The maximum humidity is 81% and the minimum one is
9%. The mean value is 21.18 %.
31.23 % of the days have humidity less than 15 %.

The year 1999: The maximum humidity is 85 % and the minimum is 9 %.
The mean value 1s 20.56 %.
35.68 % of the days have humdity less than 15 %.

The year 2000: The maximum humidity is 87% and the minimum is 9%.

The mean value is 19.76%.
48.56 % of the days have humudity less than 17 %.
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1.6.2 Nebulosity
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Figure 1.2. Daily mean nebulosity of each vear.(a) 1998,(b) 1999, (c) 2000.

The year 1998: The maximum nebulosity during all the year is 8 octas and the
minimum is O octas. The mean value is 2.84 octas.
60.96 % of the days have nebulosity less or equal to 3 octas and 2990 %
with zero octas.

The year 1999: The maximum nebulosity during all the year is 8 octas and the
minimum is 0 octas. The mean value is 2.45 octas.
66.92 % of the days have nebulosity under or equal to 3 octas and 34.38 %
with zero octas.

The year 2000: The maximum nebulosity during all the year is 8 octas and the
minimum is O octas. The mean value is 2.71 octas.
4.25 % of the days have a nebulosity more than 6 octas and 28.46 % with

zero nebulosity.



1.6.3 Atmospheric pressure
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Figure 1.3. Dailv mean atmospheric pressure of each vear.(a) 1998,(b) 1999, (c) 2000.

The year 1998: The maximum atmospheric pressure is 874.4 hp and minimum is
858.8 hp. The mean value 15 966.67 hp.

The year 1999: The maximum atmospheric pressure is 872.3 hp and the minimum
15 858.1 hp. The mean value is 966.00 hp.

The year 2000: The maximum atmospheric pressure is value 1s 874.3 hp and thé
minimum 1s 857.7 hp. The mean value 1s 966.54 hp.
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1.6.4 Temperature
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Figure 1.4. Daily mean temperature of each year.(a) 1998,(b) 1999, (c) 2000.

The year 1998: The maximum temperature value is 38 °C and the minimum is 1.5 °C. The
mean value is 23.00 °C.

The year 1999: The maximum temperature is 36.6 °C and the minimum is -1°C. The
mean value is 22.69 °C.

The year 2000: The maximum temperature is 38.5 °C and the minimum value is 0.5 °C.
The mean value is 22.60 °C.
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1.6.5 Wind speed
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Figure 1.5. Daily mean wind speed of each year .(a) 1998,(b) 1999, (c) 2000.

The year 1998: The maximum wind speed is 17 m/s. The mean value is 3.78 m/s.
35.03 % of the days have a wind speed less than 3 m/s and 33.22 %

of days with no wind.

The year 1999: The maximum wind speed is 18 m/s. The mean value is 3.74 m/s.
49 42 % of the days have a wind speed less or equal to 3 m/s and
31.99 % of the days with no wind.

The year 2000: The maximum value is 21 m/s. The mean value 1s 3.44 m/s.

52.84 % of the days have a wind speed less than 3 m/s and 36.17 % with
no wind.
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ANNEX 2

2.1 Spherical trigonometry

A great-circle arc is the analogue of a straight line. Where two such arcs intersect, we
can define the spherical angle. A spherical triangle is made up of three arcs of great circles all
less than 180°. The sum of the angles is not fixed, but will always be greater than 180°,
Consider a triangle ABC on the surface of a sphere with radius = 1 [39],

Let OXYZ be a system of rectangular axes,

O 1s at the centre of the sphere;

OZ passes through A;

OX passes through arc AB (or the extension of it);
QY 1s perpendicular to both.

Figure 2-1 Celestial sphere. Figure 2-2. Celestial sphere after pole movement.

The coordinates of C in this system are,

x = sin(b) cos(A)
y = sin(b) sin{A) 2.1)
Z = cos(b)

Now we create a new set of axes by keeping the y-axis fixed and moving the "pole" from A to
B; see Figure 2.2.

The new coordinates of C are

x' = sin(a) cos(180-B) = - sin{a) cos(B)
y' =sin(a) sin(180-B) = sin{a) sin(B) (2.2)
Z' =cos(a)

The relation between the oid and new system is simply a rotation of the x,z-axes through the
angle ¢,

x' = x cos(c) - z sin{c)
y'=y (2.3)



2'= x sin{c) + z cos(c)
That is:
sin{a) cos(B) = sin(b) cos{A) cos(c) - cos(b) sin(c)
sin{a) sin(B) = sin(b) sin{A) (2.4)
cos{a) = sin{b} cos(A) sin(c) + cos(b) cos(c)
The first relation 1n (2.4) 1s (he transposed cosine rule.
The second relation gives the sine rule. Rearrange this later, we have:
sin{a)/sin{A) = sin(b)/sin{B} (2.5)

Similarly,
sin(b)/sin(B) = sin(c)/sin(C), etc. 7 (2.6)

So the sine rule is usually expressed as:

sin(a)/sin{A) = sin(b)/sin(B) = sin(c)/sin(C) (2.7)

The third relation gives the cosine rule:

cos(a) == cos(b) cos(c) + sin(b) sin{c) cos(A) (2.8)
and similarty:

cos(b) = cos(c) cos(a) + sin(c) sin{a) cos(B) (2.9)

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C) (2.10)

2.2 Earth rotation and the equatorial coordinates

By the standards of modemn astrometry, the Earth is quite a wobbly platform from
which the sky is observed. The Earth's rotation rate ts not uniform. lts axis of rotation is not
fixed in space, and even its shape and relative positions of its surface locations are not fixed.
For the purposes of pointing & telescope o one-arcsecond accuracy, we need not worry about
shape and surface feature changes, but changes in the orientation of the Earth's rotation axis
are very important. In a sense, equatonial sky coordinates are a compromise between an earth-
based system and one fixed with respect to distant stars. Right ascension and declination are
quite analogous to longitude and latitude on the Earth's surface. They share the same polar
axis and equator, but the sky coordinate grid does not rotate with the Earth's daily spin.
However, apparent night ascension and declination are not fixed with respect to the stars
because their coordinate frame: follows the motion the Earth's pole and equator.

In practice, celestial coordinates are tied to observed objects because the location of
the vernal equinox is hard to measure directly. The B1950 coordinate grid location is defined
by the publish positions of stars in the Fourth Fundamental-Katalog (FK4). The J2000 system
1s based on FKS. These catalogs list mostly nearby stars, so any definition of coordinates tied
to these catalogs is subject 1o errors duc to motions of the stars on the sky. The FK4 equinox



is now known to drift with respect to the FK5 equinox by about 0.085 arcseconds per century.

Currently, the most stable definition of J2000 coordinates is one based on about 400
extragalactic objects in the Fadio Optical Reference Frame. This is heavily biased toward
VLBI radio sources, but it will soon be tied to many more optical objects by the HIPPARCOS
satellite. The RORF is stable to at least 0.020 arcseconds per century, and this is improving
with better observations and a longer time base. The positional accuracy of the set of 400
objects 1s about 0.0005 arcseconds.

For partly historical and partly practical reasons, the time variability of the direction of
the Earth's rotation axis and an observatory's refation to it are divided into four components:
precession, nutition, celestial pole offset, and polar motion. By definition, precession and
nutation are mathematically defined through the adoption of the best available equations.
Celestial pole offset and polar motion is observed offsets from the mathematical formulae and
are not predictable over long periods of time.

2.3 Precession

Neither the plane of the Earth's orbit (the ecliptic), nor the plane of the Earth’s equator
is fixed with respect to distart objects. The dominant motion is the precession of the Earth's.
polar axis around the ecliptic pole. The Earth's axis sweeps out a cone of 23.5 degrees half
angle in 26,000 years.

The ecliptic pole moves more slowly. If we imagine the motion of the two poles with.
respect to very distant objects, the Earth’s pole is moving about 20 arcseconds per year and
the ecliptic pole is moving about 0.5 arcseconds per year. The combined motion and its effect
on the position of the vernal equinox are called general precession. The predictable short-term
deviations of the Earth's axis from its long-term precession are called nutation. Equations,
accurate to one arcsecond, for computing precession corrections to right ascension and
declination for a given date within about 20 years of the year 2000 are:

RA = RA(2000) + (3.075 + 1.336 * sin(RA) * tan(Dec)) *y (2.11)
Dec = Dec(2000) + 20.04 * cos(RA) * y (2.12)

Where v is the time from January 1, 2000 in fractional years, and the offsets in RA and Dec
are in seconds of time and arcseconds, respectively.

2.4 Nutation

Predictable motions of the Earth's rotation axis on time scales less than 300 years are
combined under nutation. This can be thought of as a first order correction to precession. The
currently standard nutation theory is composed of 106 non-harmonically-related sine and
cosine components, mainly due to second-order torque effects from the sun and moon, plus 85
planetary correction terms. The four dominant periods of nutation are 18.6 years (precession
period of the lunar orbit), 182.6 days (half a year), 13.7 days (half a month) and 9.3 years
(rotation period of the moon's perigee). The following approximation for nutation is good to
about an arcsecond .

delta RA = (0.9175 + 0.3978 * sin(RA) * tan(Dec)) * dL-cos(RA)*tan(Dec)*dE (2.13)
delta Dec = 0.3978 * cos(RA) * dL + sin(RA) * dE (2.14)
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Where delta RA and delta Dec are added 10 mean coordinates to get apparent coordinates. The
nutations in fongitude (dL) and obliquity of the ecliptic (dE) may be computed from the two
largest terms in the general theory with

dL =-17.3 * sin(125.0 - 0.05295 * d)- 1.4 * sin(200.0 + 1.97129 * d (2.15)
dE = 9.4 * cos(125.0 - 0.05295 * d)+ 0.7 * cos(200.0 + 1.97129 * d) (2.16)

Where d = Julan Date - 2451545.0.The sine and cosine arguments are in degrees. dL and dE
are in arcseconds.

2.5 Celestia! pole offset

The celestial pole offset i1s the unpredictable part of nutation. These offsets are
published in IERS Bulletin as offsets in dL and dE. For telescope, pointing they are not
important since they are of the order of (.03 arcseconds.

2.6 Polar motion

Because of internal motions and shape deformations of the Earth, an axis defined by
the locations of a set of observatories on the surface of the earth is not fixed with respect to
the rotation axis that defines the celestial pole. The movement of one axis with respect to the
other is called polar motion. For a particular observatory, it has the effect of changing the
observalory's effective latitude as used in the transformation from terrestnal to celestial
coordinates. The International Earth Rotation Service definition of the terrestrial reference
frame axis 1s called the JERS Reference Pole (IRP).

The dominant component of polar motion called Chandler wobble is a roughly circular
motion of the IRP around the celestial pole with amplitude of about 0.7 arcseconds and a
period of 14 months. Shorter and longer time scale irregularities, due to internal motions of
the earth, are not predictable and must be monitored by observation. The sum of Chandler
wobble and itrregular components of polar motion are published weekly in IERS Bulletin
along with predictions for a nummber of months into the future.
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ANNEX 3

Systems of time

There are two widely used time standards. One is the rotation of the earth, and the
other is the frequency of alomic oscillations (mainly the cesium-133 atom). The Earth's
rotation is not uniform. Its rate exhibits both periodic changes and long term drifts on the
order of a second per year. Atomic standards are the closest approximations we currently have
to a uniform time with accuracies on the order of microseconds per year.

Since the advent of atomic time in 1955 there was a steady transition from reliance on
the Earth's rotation to the use of atomic time as the primary standard. Before atomic time, the
closest approximation to a uniform time was Ephemeris Time (ET), which used the best
available theory of the Earth's rotation to remove its known changes in rotation rate. The use
of Ephemeris Time continued until 1984.

Several important me scales still follow the rotation of the Earth. The most notably
are, civil and sidereal time. Actually, they are derived from atomic time through a
combination of earth rotation theory and actual measurements of the Earth's rotation and
orientation.

In basing the measurement of time upon the rotational motion of the Earth the ideal
unit of time would be the period of one complete rotation around the instantaneous axis. The:
sidereal time, defined by the apparent diumal motion of the equinox, is therefore adopted as
the empirical intermediary. Mean solar time, determined in principle by diurnal motion of the
conventional mean Sun and obtained in practice from its relation to sidereal time, is the
practical measure of the time defined by the rotation of the Earth.

3.1 Atomic times
3.1.1 TAI - International Atomic Time

International Atomic Time (TAI) is the primary time standard in the world today. It 1s
the combined input of many clocks around the world, each corrected for known
environmental and relativistic effects. In relativistic terms, TAIl is an Earth-based lime since it
is defined for a gravitational potential and inertial reference on the surface of the Earth. TAl is
the standard for the SI (System International) second. The zero point of TAl was somewhat

arbitrarily defined by euarly atomic clocks. lts offset from Ephemeris Time was precisely
defined as 32.184 seconds for Januaryl, 1977.

The difference between Ephemeris Time and atomic time AT(A) provides a first
approximationto AT =E.T.-U.T,

AT(A)=TAI +32°.184 - UTI post — 1972, (3.1)
3.1.2 UTC - Coordinated Universal Time

By defimition, UTC and TAl have the same rate, but UTC stays close to Mean Solar
Time by adding integer nurabers of seconds, called leap seconds, from time to time. This
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keeps solar noon at the sume UTC (averaged over the year), even though the rotation
of the Earth is slowing down. The offset is changed as needed to keep UTC within about 0.7
seconds of Earth rotation time, UT1. Leap seconds are typically added once per year at the
end of December or June, but they can be added (or subtracted) at other designated times
throughout the year.

UTC = TAI - (number of leap seconds) (3.2)
3.1.3TDT or TT - Terrestrial Dynramic Time

Before atomic clocks, Ephemeris Time (ET) was the closest available approximation
to a uniform time for planetary motion caiculations. Terrestrial Dynamic Time, which is tied
to atomic time by a constant offset of 32.184 seconds, replaced ET at the beginning of 1984,
The purpose of the offset is to maintain continuity between ET and TDT at the transition.
Planetary motions are now computed using Barycentric Dynamic Time (TDB), which is more
uniform than TT because it accounts for relativistic correcuons due to the Earth's motion in
the gravitational potential of the solar system.

TT =TAI + 32,184 = UTC + (number of lcap seconds) + 32.184 (3.3)

There 1s a subtle relativistic distinction between coordinate time and dynamic time,
which 15 not significant for most practical purposes. The counterpart to TT is Geocentric
Coordinate Time (TCG), which differs in rate from TT by about 0.7 parts per billion. TT and
TCG were coincident on January 1, 1977 and now differ by 0.42 seconds. The rate difference
from TT can be important to long term measurements.

3.1.4 TDB - Barvcentric Dynamic Time

Barycentne Dynamic Time (TDB) is the same as Terrestrial Dynamic Time (TT)
except for relativistic corrections to move the origin to the solar system barycentre. These
corrections amount to as much as about 1.6 milliseconds and are periodic with an average of
zero. The dominant terms in this correction are have annual and semi-annual periods.

TDB =TT + 0.001658 sin( g ) + 0.000014 sin( 2g ) seconds (3.4)

Where
£=357.53 +0.9856003 (JD -2451545.0) degrees (3.5)

and JD is the Julian Date.

There 1s a subtle relauvistic distinction between coordinate time and dynamic time,
which is not significant for most practical purposes. The counterpart 1o TDB is Barycentric
- Coordinate Time (TCB), which differs in rate from TDB by about 15.5 parts per billion. TDB
and TCB were coincident on January 1, 1977 and now differ by 9.3 seconds. The rate
difference from TDB can be important to long term measurements.
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3.2 Earth rotation times

3.2.1 UT1 - Universal Time

Universal Time (UT1) is a measure of the actual rotation of the Earth. It is
independent of observing location. UTI is essentially the same as the now discontinued
Greenwich Mean Time (GMT). It is the observed rotation of the Earth with respect to the
mean sun corrected for the observer's longitude with respect to the Greenwich Meridian and
for the observer's small shift in longitude due to polar motion.

Since the Earth's rotation is not uniform, the rate of UT1 is not constant, and its offset
from atomic time is continually changing in a not completely predictable way. As of
December 1995, UT1 was drifting about 0.8 seconds per year with respect to atomic time
(TAI or UTC). Since UTC is intentionally incremented by integer seconds (leap seconds) to
stay within 0.7 seconds of UT1. The difference between UT! and UTC is never greater than
this. The difference, DUT! = UTI - UTC is monitored by the International Earth Rotation
Service and published weekly in [ERS Builetin A along with predictions for a number of
months in the future.

UTt = UTC + DUT! (from the IERS bulletin A) (3.6)

Note that when a leap second is added to or subtracted from UTC, the value of DUTI 18
discontinuous by one second. UT1 is continuous, and UTC is incremented or decremented by
integer seconds to stay within 0.7 seconds of UT1.

3.2.2 The UTO

UTO0 (UT-zero) is an observatory-specific version of UT1 in the sense that UTO
contains the effect of polar motion on the observed rotation of the Earth. Polar motion is
equivalent to a change in latitude and longitude of points on the Earth's surface with respect to
the Earth's instantaneous rotation axis. The conversion from UT! to a local observatory time
with respect to the mean sun or stars is now done as a set of coordinate rotations that do not
explicitly use UTO as an intermediate step.

UT1=UTO - [%sinﬂu-&-%cos/!n:!tangm (3.7)
Where Xy and @0 are the mean geographic coordinates for a given instrument, referring to a
mean position Po of the geographic North Pole. x and y are the coordinates of an
instantaneous pole of rotation in a horizontal frame centered at Po and onented at the
Greenwich meridian. These coordinates are computed a posteriori when the polar motion is
exactly known and published at the end of the year by the IERS (International Earth Rotation
Service, Bulletin A). The observation, which is made at the point of coordinates, (A,p) can be
exactly known this way:

@ = (p t+ X cOsAy— ¥ Sinkg (3.8)

A=kt {x sinky + y cos Ay ) tan ¢y (3.9)
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3.2.3 The UT2

UT2 appears to be of mostly historical interest. Before 1972 the time broadeast
services kept their time signals within 0.1 seconds of UT2, which is UT1 with annual and
semi-annual variations in the Earth's rotation removed. The formal relation between UT1 and
UT2 s

UT2=UT! +0.022 *sin(2* Pi*1)-0.012 *cos(2*Pi * () -
0.006 * sin(4 * P1 * t) + 0.007 * cos(4 * P1 * 1} (3.10)

Where

{=2000.0 + (MID - 51544.03) / 365.2422 G.11)
is the Besselian day fraction, and MID is the Modified Julian Date (Julian Date - 2400000.5).
3.2.4 Sidereal Time

Sidereal time is the time derived from the Earth’s rotation with respect to the stars.
Apari from small effects of rapid fluctuations in the Earth’s rotation rate and polar motion,
local sidereal time is the hour angle of the true sidereal equinox. Because of precession and
nutation, the equinox is not fixed on the celestial sphere. In addition, the motion of the
geographic poles and the lunisolar variations of the vertical, the local meridian plane 1s not
fixed relative to the Earth. The motion of the equinox in hour angle is the resultant of the
separate motions of the meridian and the equinox on the celestial sphere. The measure of the
time by diurnal motion of the true equinox is known as the apparent sidereal time. The
expression for the hour angle of the true equinox, referred to the instantaneous local celestial
meridian, in terms of the uniform dynamical measure of time t is given as,

=704+ ja)d! Rotation of the Earth

+yncose "—a General precession in right ascension
+A;1/cos.£n—;A wsing Equation of equinoxes

+Ah Polar motion
+&h Variation of vertical (3.12)

Where €% is the mean obliquity of the epoch, £, the mean obliquity of the date, w the angular
rate of rotation and Ay, the lunisolar nutation in longitude referred to the ecliptic epoch. The
apparent inequality in apparent sidereal time is the equation of the equinox. The measure of
the time defined by the diurnal motion of the mean equinox is the mean sidereal time. It 1s the
apparent sidereal time minus the equation of the equinoxes.

The mean sidereal day is the duration of the time interval between two successive
upper transits of the mean equinox of date relative to a fixed mendian. An apparent sidereal
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b,
day is simply defined with respect to transit of the true equinox of date. It follows from

definition that the mean siderzal day is shorter than the Earth’s sidereal period of rotation (Pg)
by the daily precession in right ascension, 0°.008412 +5%1x 10° Ty,

(1 mean sidereal day)/ Pg =0.999999902907 - 5.9 x 10" Ty (3.13)

Here Ty is the time interval measured in Julian centuries since 12h Jan.0, 1900 E.-T=Jan 045,
1900.

o cidodon] davy = (74D | deaens h
(1 mean solar day / 1 mean sidereal day) = {24 + (————-———36525 T )1/24

= 1.002737909265 + 5.89 x 10" Ty (3.14)

Altemalively, apart from the negligible secular term, the ratio of sidereal day of 86400 mean
sidereal seconds to this interval is,

(Mean sidereal day / mean solar day) = 0.997269566414 (3.15)

The universal time at any instant is obtained by multiplying the sidereal interval since
0" U.T. by this fixed conversion factor. Inversely, the ratio of the mean solar day to the mean:
sidereal day is 1.002737909265 [40].

3.2.5 GMST - Greenwich Mean Sidereal Time

By convention, the reference points for Greenwich Sidereal Time are the Greenwich
Meridian and the vemnal equinox (the intersection of the planes of the Earth's equator and the
Earth's orbit, the ecliptic). The Greenwich sidereal day begins when the vernal equinox is on
the Greenwich Meridian. Greenwich Mean Sidereal Time (GMST) is the hour angle of the
average position of the vernal equinox, neglecting short-term motions of the equinox due (o
nutation.

In conformance with IAU conventions for the motion of the Earth's equator and
equinox, GMST is linked directly to UT1 through the equation

GMST (in seconds at UT1=0) = 24110.54841 + 8640184.812866 * T+ 0.093104 *
T#2 - 0.0000062 * T3 (3.16)

Where T is in Julian centuries from 2000 Jan. 1 12h UTI
T=4d/36525 (3.17)
d=1ID-2451545.0 (3.18)
3.2.6 GAST - Greenwich Apparent Sidereal Time
Greenwich Apparent Sidereal Time (GAST) is Greenwich Mean Sidereal Time
(GMST) corrected for the shift in the position of the vernal equinox due to nutation. The
smoothly varying part of the change n the Earth's orientation (precession) is already
accounted for in GMST. The right ascension component of nutation is called the "equation of

the equinoxes”

GAST = GMST + (equation of the equinoxes)
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3.2.7 LMST - Local Mean Sidereal Time

Local Mean Sidereal time is GMST plus the observer's longitude measured positive 1o
the east of Greenwich. This s the time commonly displayed on an observatory's sidereal
clock.

LMST = GMST + (observer's east longitude) (3.19)
3.2.8 LST - Local Sidereal Time
The definition of Local Sidereal Time given in the glossary of the Explanatory
Supplement to the Astronomical Almanac is "the local hour angle of a catalog equinox." This
fits the common textbook definition

Hour Angle = LST - Right Ascension (3.20)

Where the right ascension can be specified in one of the catalog coordinate systems B1950
(FK4} or J2000 (FK5),
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ANNEX 4
The CCD camera

In the years 80, to shoot one sunset was an impracticable operation with a video
camera. The tubes of the camera did not resist. With the apparition of the CCD sensors, the
operators could finally use the: video camera as the film cameras, to record some stages to high
contrasts. A Charge Coupled Device (CCD) is a semiconductor device in which finite 1solated
charge-packets are transported from one position in the semiconductor to the adjacent one by
sequential clocking of an array of pates [41]. ‘

4,1 CCD geometric features

The present CCDs are matrixes of two dimensions. The sizes are given in numbers of
pixels that define the resofution of images for an optical data. The most current matrixes have
sizes typical of 340 x280 pixels. The biggest can present matrixes up 10 4000 x 4000 pixels.
The pixels themselves have variable sizes according to the models. They can go from 6 to 40
um (distances between centres of the pixels). The photosensitive area of a CCD depends on
whether the chip is interline-transfer or frame transfer. Full frame transfer chips frequently
offer the best sensitivity since the photosensitive area is virtually 100% of the entire CCD .

4.2 Reading of the CCD matrixes
The exposition of the CCD matrix to light causes the accumulation of the electric
charges in its pholosites. The Reading process consists in bringing these charges in sequence

toward the output of the CCD, where an electric current can be measured.

The accumulated charges are displaced toward the output with the help of clock signals
produced by a control circuit. There are two types of clock signals:

1- Vertical clocks: these clocks shift ail lines by one row.
2. Horizontal clocks: these clocks shift the content of the horizontal register toward

the output of the CCD.

Expusad CCD Maotrix

= Output
Hostontal Regisier Proectad pin

Figure 4-1. Reuding of u CCD Matrix.
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Figure 4-2 CCD output comirol circuit.

The output signal is read and amplified by an analog stage, then converted to a digital
signal. Figure 4-2 shows the elements that control the output of the image from a CCD
camera.

4.3 Image integration

When no clock signal 1s active, no pixel 1s transferred. In this state all the received
light on the pixels generate the electronic image. When the integration of an image is
finished, the totality of pixels are transferred lo the output. Depending on how the storage
CCD arrays are configured, different methods have been developed to read the light intensity
values from the storage array. These modes are:

a- Frame Mode: it is the standard mnterlace mode of horizontal line transfer. For each frame,
the odd lines are transferred first followed by the even lines. In this mode, every line of
sensors 1s read separately each 0.04 sec.

b- Field Mode: in this mode, two adjacent lines are combined together and shified out during

each transfer.

c- Enhanced Vertical Definition Mode: it ts used to establish a compromise between the
advantages and the disadvantages of the two above operation modes. In this mode, each line
1s read separately during 50 szc.
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Even Mode 0.02 sec Field Maode Odd Frame .02 sec

Even Mode 0.04 sec Frame Mode 0dd Mode 0.04 sec

Figure 4-3. Reading modes of the CCD sensors.

During the exposure operation, the clock cycles are stopped and the charges are
accumulating in the CCD. At the end of exposition, the clock cycles are launched to transfer
and to measure the accumulated charges. This process can be long enough that parasitic
charges continue to accumulate on the image. This parasitic signal is more tmportant for the
lines situated at the bottom of the image than those situated on top. If the exposure time is
shorter compared to the time of reading, a trail upwards on the image is produced (smearing),
This problem can be resolved by two ways:

1- The placement of an electronic shutter in front of camera. The shutter is opened at the
beginning of the exposition and closed before the reading process is started.

2- The transfer of the useful part of the matrix in a protected area on the CCD [42].
The transfer itself can be done by several ways:
(a) Full frame transfer
The Full Frame Transfer is a mode where all the CCD lines are exposed to the light
and participate in the image formation. The problem with this kind of matrices is that, during
the reading process the photosites remain exposed to light. Since the reading time is not
negligible. an important trail is produced on all the image pixels. To prevent this problem, a

Full Frame CCD must be provided with an electromagnetic control shutter. Figure 4.4(a)
shows the CCD of the Full Frame Transfer mode [42].
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(b) Half frame transfer

Cameras working in this mode are full frame CCDs without electromagnetic control
shutter. The matrix of this type is divided in two equal parts. The upper half is used for image
integration and the lower one s protected. At the end of integration time, the charges in
photosites of the upper half of the CCD matnix are transferred quickly to the protecied lower
half.

(c) Frame Transfer

In this mode of operation, the entire CCD sensors contents are shifted to a protected
area in the chip before being read out. One half of the CCD area is used for detecting the
image while the other is used for readout. Images acquired in the sensing region are
transferred in a few milliseconds to the readout region. This process occurs concurrently with
the subsequent exposures. This approach allows the detection to continue almost completely
without interruption. Figure 4-4 (b) shows the CCD of the Frame Transfer mode [42)].

h1 hi
h2 h2 1] :
LI '
! i cco
Harzonts| CCI e l !!JJ‘T‘ l__"""‘- Output —
segister .E—-[Tf_l ,l'——-— Qutot = " Y WY P
mome LA A A4
}‘ | L& Y
i i H :
e |« Protected memary area
| g Image Arez - i
L
! RN
BEERE my !
CCD verica regisers ] Exposed image area
CCD photosites
Storing 15 Firme (0 my) | S
1 : tr 11 CCD vertical regisiers c wrenster
'4—-——"-—'--——-"-'.*. T reme
{Storing 2 fréme €40 ) i Storing of pne Frame -
p— e . : i
; : H in the image area +
| ?""""‘ 1t Frdme @20 m) Reading of the memery
“"_"_";"_'_“‘ area {the preceeding)
eading 2nd Frame (20 ma)
H " 20 me
(a) (b)

Figure 4-4.{a) The Full Frame Transfer, (b) The Frame transfer.

(d) Interline transfer

In this mode, each active pixel of the CCD sensor is transferred to an adjacent
shielded one. Then it is shifted to an output register for final readout. So, the electronic
shuttering is not needed in this mode of operation. Figure 4.5 shows the CCD of Interline
Frame Transfer mode.
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ANNEX 5

5.1 Register map of the PC-T10-10

Offset Adresse (Hex) | Size

Regisier Type
Am9513A Register Group
STCA
Data Register 00 8 bits | Read and write
Command Regster 01 8 bits | Write only
Status Register 01 8 bits | Read only
STCB
Data Register 02 8 bits | Read and write
Command Register 03 8 bits | Wnte only
Status Reyister 03 8 bits |Read only
MC6821 Register Group
PlA
Port A Data Register 04 8 bits | Read and write
Port A Control Register 05 8 bits |Read and write
Port B Data Register 06 8 bits | Read and write
. Port B Control Register 07 8 bits | Read and write

5.2 Register description

SNd v.ivda

Table 1.1 The register map of the PC-TIO- 110,

CONTROL [ CROEf\éi‘g’T\;E . OATA
PORT — ) POINTER
4 77| REGISTER
P _
8/ A
| STATUS |o | 4
| 8/16 DATA BUS I RECISTE | Y |! Group and Element
7 MULTIPLEXE |~ Adresss
I Byte pointer J'
DATA PREFETCH " oaTA L] Counter 1 mode
PORT < LATCH < PORT H
l ” MUX * Counter | load register
7 8/16

» Counter | hold register

Counters 2345
—+» Load and hold Registers

Master Mode Register

Counter | Alarm

A 4

Fretere 31 Dhe Am$S5 1304 Regoster olecess.

XXV
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5.3 The Data Pointer Register

Command Register

[C7

[C6 [Cs [cda  [C3 |2

fco ]  [SRO

J

000

Data Potnter
Reg:ster

E2 El G4

Gl |« BP

Element pointer

00=Mode Register
01=Load Register
10=Hold Register
11=Hold Register

00= Arm Register |

7 01= Alarm Register 2

10=Master Mode Register
1 1=Status Register

Figure 5.2, The Duta Puinter Regisier.
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Byte llointer
1=LSB transfer next
0=MSB transfer nex

Group pointer

000= iliegal

001= Counter Group 1
010= Counter Group 2
011= Counter Group 3
100= Counler Group 4
101= Counter Group 5
110=1illegal

111=Control Group



3.4 The Master Mode Register

FOUT Divider — FOUT Source
0000 = Divide by 16 0000 =Ei
0001 = Divide by 1 0001 =SRC 1
0010 =Divide by 2 0010=S8SRC?2
0011 = Divide by 3 0011 =SRC 3
0100 = Divide by 4 0100=8SRC 4
0101 = Divide by 5 0101 =SRC 5’
0110 = Divide by 6 0110 =GATE |
0111 = Divide by 7 0111 =GATE 2
1000 = Divide by 8 1000 = GATE 3
1001 = Divide by 9 1001 = GATE 4
1010 = Divide by 10 1010 =GATE 5
1011 = Divide by 11 1011 =F1
1100 = Divide by 12 1100 =F2
1101 = Divide by 13 1101 =F3
1110 = Divide by 14 1110=F4
1111 = Divide by 15 1111 =F5
[111 = Divide by 15
MMIS | MMI]MMI3 | MMI2 | MMLL [ MMI0 [ MMY | MM3 | MM7 [ MM6 | MMe | MMS [MMa {MM3 | MM2 | MM
L FOUT Gate Compare 2 Enable 4'
G =FOUT On 0 =Disabled
1 = FOUT Off (Low z to GND) I= Enabled
Data Bus Width Compare | Enable
0 = 8bis Bus 0 = Disabled
| = 16 bits Bus | = Enabled

" Data Pointer Control

0 = Enable Increment

1 = Disable Increment
Source Control

b = Binary Division

0 = BCD Division

Time of Day Mode

00 =TOD Disabled: 45 input
* 01 =TOD Enabled: w6 input
11 =TOD Enabled: y 1 Qinput

Figure 3.3 The Muster Mode Register.
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5.5 The Frequency Scaler Rutios

0OSC

Yy yYsyvyyey

Frequency

Fl
F2
F3
F4
F5

Fl F2 F3
4 BITS »| 4 BITS » 4 BITS
FREQUENCY SCALER

BCD Binary
Scaling Scaling
MMI15=1 MM15=0
0OSC OSC
F1 yl0 Flyl6
Flyl00 F1 y2256
Fly1000 F1 y4,096
F1y10,000 F1y65,536

Figure 3.4 The Frequency Scaler Rutioy.,
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5.6 The Counter Mode Register

Count Source Selection —

Count Contro!
0000 = TCN-1 0 =Disable Special Gate
0001 =SRC 1 1= Enable Special Gate
0010=SRC2
0011 =SRC3 0 = Reload from Load
0100 =SRC 4 1 = Reload from Load or Hold
0101 =SRC5
0110 =GATE 1 0 = Count Once
OlIl = GATE 2 1 = Count Repetively
1000 = GATE 3
1001 = GATE 4 — 0 = Binary Count
1010 = GATE 5 1 = BCD Count
1011 =F1
1100 =F2 0 = Count Down
110§ =F3 | = Count Up
1110="F4 |
1111 =F5
CMILS [ CMILS [CMI3 JCMI2 [CMIL [ CMI0 JCM9 | CM8 [CM7 ICMe [CMs [CMS | CM4 [CM3 [ CM2Z | CMI
Source Edge
0 = Count on Rising Edge
} = Count on Falling Edge
Gating Control — Ourput Coutrol
000 = No Gaung 000 = [nactive, Qutput Low
001 = Act.ve High TCN-1 001 = Active High TC Pulse
010 = Active High Level GATE N+1 010 =TC Toggled
011 = Active High Level GATE N-1 011 = lllegal
100 = Active High Level GATE N 100 = Inactive, Quiput High
imp

10t = Active Low Level GATE N
110 = Active High Level GATE N
111 = Active Low Edge GATE N

Figure 3.3.The Cowner AMode Register.

101 = Active Low TC Pulse -
110 = legal
{11 = illegal

It ex1sts 25 modes of operation according to bits state of the counter mode register.

5.7 The Am9513A Data Register

- Counter Mode Registers for Counters 1, 2, 3, 4, and 5.

The data Registers are used to read from or write to any of the 18 internal registers of
teham9513A. The Am9513A Command Registers must be wrilten to in order to select the
register to be accessed by the Am9513A Data Registers. The internal registers accessed by the
AmY513A Data Registers are as follow:

- Counter Load Registers for counters 1, 2, 3, 4, and 5.
- Counter Hold Registers for counters 1, 2, 3, 4, and 5.
- Compare Registers for counters | und 2.
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- Master Mode Register.

All these registers arc 16-bii registers thal must be accessed through an 8-bit port, lcast
significant byte first. _

Address: Base address + 00(hex) for the AmYSI13A STCA.
Basc address + 00(hex) for the Am9513B STCB
Figure 5.7 shows the internal am9513 registers and their logic counter logic groups.

Sr¢_ 5 ! .
gate 5 Input ! 16 bit load
freqz Select i register
tc w1 Logic
I h 4
Counter : 16 bit Out Out
Control————">  compter " control » Hin
logic : 1 7y
16 bit ;16 bit hold
mode P register
register | o
16 bit
comparator
16 bit alarm
register
ste_3 nput ;
5 16 bit load
gate >l Select register
freg 5| Logic
tc Ni
y
Counter 16 bit Out
Control [——» > L Outn
logic counter control
+ ,
16 bit 16 bit hold
mode regisier

Figure 5.6 The Counter Logic Groups.
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5.8 The AmY513A Command chister

The Am9513A command registers are 8-bit registers. They control the overall
operation of the Am9513A Counter/Timer and the selection of the internal registers that are
accessed through the Am9513A Data Registers.

Address:

Base address + 01(hex) forthe Am9513 STCB.

Base address + 03(hex) for the Am9513 STCB.

The possible commands are summarized on the following table:

Commuand Code

Commuand Description

C7 |Co |C5|C4 |3 |C2Cl ico

0 0 0 |E21El |G4 |G2 |Gl |Load Data Pointer with contents of E et G fields

0 0 1 |85 |84 83|82 {Sl |Am counting for all selected counters

0 |1 |0 S5 |S4|S3|S2 |S1 [Load counting of specified source into all sclected
counters

0 L] L |85 454 |83 |82 [Si |Load and Arm all selected counters

i 0 10 |S5 |S4 |83 |82 |SI | Disarm and save all selected counters

i O |1 |S5 |S4 1S3 (82 |81 |Save ail selected counters

t I 10 ;S5 1S4 |83 |82 |S1 |Set Toggle out (HIGH) for counter N{001<=N<=101)

Lo [P U |85 |54 ]S3 |S2 [SI | Clear Toggle out (LOW) for counter N N(001<=N<=101)

1 L IV 9 §1 |N4 N2 NI |Step Counter NN(00] <=N<=101)

1 L {1 ]0 [0 |[N4|N2 NI |Set MMI14 (Disable Data Pointer Sequencing)

1 ] 1 L |0 iN4 N2 NI |Set MM12 (Gate off FOUT)

! I [T Jo J1 |0 |0 |0 |Set MMI3 (Enter 16 bils bus mode)

l P JE jo Jv j1 |t 10 |Clear MM14 (Enable Data Pointer Sequencing)

1 L b o fr Jr jt Jt {Clear MMI12 (Gate on FOUT)

1 ] L]0 [0 0 (0 (0 |Clear MM13 (Enter 8 bits bus mode)

I I |1 40 jo |t |1 10 [Enable Prefetch for operations

5.9 The Status Registers

Table 2.2 The word commuands of Command Register.

The Am9513A Status registers give information about the output pin of each counter
in the Am9513A. In addition, these registers indicate the current setting of the Byte pointer,
which indicates whether the next byte to be accessed is in the most significant byte or the least
significant byte.
Address:

Base address + 01(hex) for the Am9513 STCB.

Base address + 03(hex) for the Am9513 STCB.
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ANNEX 6

6.1 Imuages in the EureCard Primo

The flow of images in the EureCard Primo is shown in Figure 6- [38].

:\\\\\\\\\\\\\\\\\\\\\\\h\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\.\\.‘.\\\\\\\‘\\\\\\\\\\\‘
. » . N
+ Video Inpul Timing vy Videa Qutput Timing 3
A
) o Pixels goi
Pixos coming | 310 e video
from the M ;

video input output

BRABARAR LR rasnteanunnn

Vidao Output
Timing
Ganarator ol
the GSP

GSP

Figure 6-1. Imuges flow in the EnreCurd Primo.

The 1mage memory is dedicated to contain images. Three devices have got access to this.
memory:

- The video input, which writes images into the memory.

- The video output, which reads stored images to display them.

- The GPS, which is able 10 read and write the image memory at any time in order to
process and analyze stored images.

6.2 Data transfer

The digitized pixels are stored in the video memory by the DMA machine through the
memory random access bus. During an acquisition, this bus is shared by the GPS and the
acquisition machine; see Figure 6-2.

FIFO |ADC]| Vvides input

Video
| port )
Artfltra[ion Video d I Video output
) ogic Memory ts
Gsp System
Memory

Figure 6-2. Daw transfer block dusgram,
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6.3 Input video to the EureCard Primo

Figure 6-3 shows the block diagram of the video input module structure {38].

Antiaiiasing
Filer Bank

Video
Gain/Oftset  Video Speed
Calt A/D Converner

Video
Seiactor

Video Input 1 5 H
Video Input 2 = S
3o
Video Input 3 -g o
@
Video tnput 4 = g

input

¥/ 5 bit pixels

Figure 6-3. The input ideo Module.

The video signal enters by one of the four inputs. The first path processes the video

signal:

a- Selection of one of the four input channels; [0.3].

b- Antiahasing filter bank ranges from [0.5]:

0: no filter.

1

2:

3: Pal filter.

5. NTSC filter.

5 MHz cut off frequency.
2.5 MHz cutoff frequency.

¢- Gain and offset control, [0.255].

d- Analogue 10 digital conversion and Input look Up table.

The second path deals with the synchronization information:

a- Selection of one of the four input channels for synchronization; [0.5]:
0: synchronize on channe] 0.
1 synchronize on channel 1.

Lh LI R

. synchronize on channel 2.
. synchronize on channe] 3.
: internal synchronization.

b-Extraction of the synchronization signals (honzontal and vertical) and the level of the sync
detector selection [0.3]:

0

]
2

=

3

50 mV
75 mV
: 100 mV
125 mV
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6.4 Image acquisition and visualisation

The EureCard Primo hus a special devices dedicated 1o acquire images. Video
memories are associated with busses that carry images between processing devices. The video
output deceives digital images and generates a video signal suitable for driving a VGA
monitor. In all case, a hardware device is very important: the mapper.

The mapper manages in a progrummable way the memory, the input and output video buses.

The
8 bit piXCIS Mappcr
coming .
from the 8hbat -p:;xels 10
Video the video
Input

Image
_.? Memory

Figure 6-4. The Mupper.

Several modes of acquisition can be selccted:
1-  Normal acquisition:
it ts represented by the waveforms shown in Figure 6-5 [38].

Acquisition in normal mode

video field

| %

Figure 6-5. Acquisition in Norma Mode.

2- Continuous Mode

It 1s described by the waveforms shown in Figure 6-6.
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Acquisition in continuous mode
wvideo field
- R Grabbed fields

i
]
b
'
'
'

Figure 6-6. Acquisition in Continuous Muode.
3- Background Mode

This mode allows easy parallel processing between the acquisition process and the
GSP. This acquisition is automatically stopped afier the specified number of ficlds. It
is represented by the waveforms shown in Figure 6-7.

~ Acquisition 1n background mode
video held
- - Grabbed flelds

'
¥
¥
'
'
'
1

] !
E N o
¥ N Acquisition is
2 % automatically
map_12() cal  map_12{) exi stopped here

© Figure 6-7. The Acquisition in Buckground Mode.

6.5 Video output
The EureCard Primo supports two display configurations:

1- Single monilor configuration: in this mode the monitor is connected to the PC’s VGA
card. The image stored in the EureCard Primo memory is mixed with the PC’s image
to go to a single VGA monilor.

7. Dual monitor configuration: in this mode the EureCard Primo uses its own VGA
monitor to display its images. The principle of output operation is shown in Figure 6-8
[38].
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; Fealure Connecior
EureCard Pririo
UG OUECERRERER LRSS N

A butf caxwis

Figure 6-8. The Video Output Principle.

The pixels coming from the VGA card are read through the VGA feature connector.
They are sent with pixels coming from the EureCard Primo image memory to the VGA mixer.
The VGA mixer is responsible for the selection of pixels that will come either from the VGA
card or from the EureCard Primo image. Its output is fed to the video Digital to Analog.
Converter, which includes a triple 8-bit look up table. Inside the VGA mixer, the pixels
coming from the VGA card are continuously compared with a Key color. An 8-bit value
restricts the comparison to some bits; see Figure 6.9.

The result 1s mixed with the blanking signal coming from the GSP to generate the final
selection signal.

i VGA Mixer
M'

Sopos b TR N
mmlyn [ Afr'i)g:..
T VGA Care ]

g

2

ur)—i—
& ot puray (W T
creng MEM e sty furp-;-qm
Prmoemam 4. .5 o Ty 0 e Pomo

SRR Y output LUT
oy [ SRR L pur

Figure 6-9. The VG- Mixer,
6.6 Output Look Up Table
The Eurecard Primo output LUT 1s used to display both the pixels coming from the

Eurecard Primo image and the PC’s image. Its 256 entries must be shared between these two

sources. The «mapping LUT», which maps every gray level of the EureCard Primo image into
a valid entry of the output LUT, performs this operation; see Figure 6-10.
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A e | Entry used by the PC
C—1 Eniry used by the Primo

Output LUT
Mapping LUT R G B

Vi

SR ] Ery #2534
et ey Entry #255

Figure 6-10. The Output Look Up Table.

6.7 Inputs and outputs control

The EureCard Primo provides a set of digital input and outpul lines. These states
control the generation of trigger and strobe events used by grabbing operations. The trigger
event specifies a combination of the input signals used to trigger an acquisition operation. It
informs the EureCard Primo that the object to be grabbed is in position. The strobe event
specifies a state to be imposed to the output signals during an acquisition operation.

6.7.1 Trigger event

Trngger
event

4 Tnggerevent

D detection machine

Figure 6-11. The irigger event.

The trigger event is computed from the status of D1 and D2 signals. The effect of each
signal on the trigger event can be controlled, and therefore controlling the acquisition process.
The input lines DI and D2 can be programmed for a certain type of input signals. Those that
exist on the EureCard Primo are:

- Check for a logical ‘zero’ state.

. Check for a logical ‘one’ state.

- Wait for a logical positive edge.

- Wait for a logical negative edge.

. Wait for a logical positive or negative edge.
- Don’t care condition.
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ANNEX 7

7.1 The filter associated with the linear interpolation

In the case of linear interpolation, the coefficients of the one dimensional filter A
calculated from @(x)are (1/4 172 1/4 )- In two dimension they are:

1716 1/8 1/16
h(my=| 1/8 1/4 1/8
1/16 1/8 1/16

The filter 4 is a triangular low pass filter as shown in Figure 7.1. Its transfer modulus is
represented in Figure 7.2. '

= o
S w5 8 B
;

=}
¥

amplitude{aiturrary unit)
(=]
xR

@
o
T

0.1
0.05-
0 : . . . N . . ;
1 12 14 1B 1.8 2 22 2z 26 23 3
sample numbers
Figure 7.1. The filter hin).
transler modulus
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Figure 7.2. The transfer modulus.
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7.2 Filters to reduce the noise in Sun images

Three types of low pass filters are tested on the detail images to reduce the residual noise
in the processed Sun images. These filters are,

a . The first filter

Its coefficients in one dimension are (1/4 1/2 1/4). In two dimension, they are,

1/16 1/8 1/16
hmy=| 1/8 1/4 1/4
1/16 1/8 1/16

its charactenstics are shown in Figure 7.1 and 7.2.

b. The second filter

Its coefficients in one dimension are (1/16 1/4 3/8 1/4 1/1 6). In two dimension, they
are

1/256 1/64 3/128 1/64 1/256)
1/64 1/16 3/32 1/16 1/64
h(n)=|3/128 3/32 9/64 3/32 3/128
1/64 1/16 3/32 1/16 1/64
1/256 1/64 3/128 1/64 1/256)

The filter #is a low pass filter as shown in Figure 7.3. Its transfer modulus is represented in
Figure 7.4,

=
=
4

armplitude(zrhitrary unit)
c 2 o 8 4 8
S on o mw BoOow o8
<
>
L L

R

]

s : N . .
0 0.5 1 1.5 2 25 3 35 4 45 5
sample numbers

Figure 7.5 The filter hfy).
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6.7.2 Strobe event

Strobe event

Ol Strobe event
—_— generation -
0O ——n machine "

Figure 6-12. The Strobe vvent.

The output Strobe signal generation can also be controlled by programming the output
lines Q1 and Q2. The possible programming states supplied by the EureCard Primo are:

- Immediately imposes a logical zero at this output.
- Immediately imposes a logical one at this output.
- The strobe machine contrels the output; output a positive pulse during the strobe event.
- The strobe machine controls the output; output a negative pulse during the strobe event.
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Figure 7.4. The transfer modufus.

¢. The third filter

This filter is characterized in one dimension by the coefficients (1/64 3/32 15/64 5/16

15/64 3/32 1/64). In two dimension its coefficients are,

( 0.0002
0.0015
0.0037
0.0049
0.0037
0.0015
0.0002

h(n) =

0.0015
0.0088
0.0220
0.0293
0.0220
0.0088
0.0015

0.0037
0.0220
0.0549
0.0732
0.0549
0.0220
0.0037

0.0049
0.0293
0.0732
0.0977
0.0732
0.0293
0.0049

0.0037
0.0220
0.0549
0.0732
0.0549
0.0220
0.0037

0.0015
0.0088
0.0220
0.0293
0.0220
0.0088
0.0015

0.0002)
0.0015
0.0037
0.0049
0.0037
0.0015
0.0002

~
LY

*

The filter A4 1s always a triangular low pass filter as shown in Figure 7.5. Its transfer
modulus is represented by Figure 7.6.
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Figure 7.6 . The transfer modulus.
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Résumé -

-~

Ce sujet s’inscrit dans le cadre de 'astronomie de position et comprend 1rois objectifs. Le
premier consiste en D'étude de Uinstrument wtilisé pour observer le soleil ainsi que le
développement des programuies nécessaires pour le calcnl du diamétre solaire. Le deuxiéme
comprend le développement des méthodes de fraitement  des images du Soleil acquise a
I'astrolabe solaire. Le troisiéme étant I'étude de I'instrumentation choisie qui sera installé
cutonr de 1 astrolabe de Tamanrasset ainsi que le développement des progranmes nécessaire
pour son opération.
Mots clés: Soleil, astrolabe solaire, diaméfre solaire, distaice zenithale, les ondeleties,
paramiétre de Fried. '
ol
. Abstract
This work deals with positional astronomy and witl three objectives in sight. The first
objective is 1o study  the instrument  used for Sun observation and provide the necessary
programs 1o calculate the Sun diameter. 1he second objective is 1o develop the appropriale
methods (o process the  acquired Sun images with the solar astrolabe. The third one is
oriented to siudy the selected instrumentation that will be installed around the solar
astrolabe of Tamanrasset and to develop the necessary software programs that control its
operation. ,
Keywords: Sun, solar  astrolabe, solar diameter, zenithal distance, wavelets,  Iried

pa ameier.
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