

Master's Thesis

Specialization: Electronics of Embedded Systems

Presented by

Yacine Belalia

Autonomous Navigation of a Robotic Wheelchair

in an Indoor Environment

Jury Members

President: Mr. Amar Bounemri Examiner: Mr. Yacine Kabir

Supervisor: Mme. Sara Bouraine Co-Supervisor: Mme. Djamila Naceur

Academic Year 2022-2023

الشعبية الديمقراطية الجزائرية الجـمهورية

Democratic and Popular Algerian Republic

العــلمــي البحــث و الــعــالي التعليم وزارة

Ministry of Higher Education and Scientific Research

البليدة دحلب سعد جــامعة

Saad Dahlab University of BLIDA

التكنولوجيا كلية

Faculty of Technology

الإلكترونيـك قسم

Department of Electronics

Acknowledgments

I would like to express my heartfelt gratitude to my esteemed supervisor, Mme. Sara

Bouraine, for her unwavering trust, enthusiasm, and leadership throughout this

adventurous research journey. Her unyielding support and engagement, combined with

her extensive experience and knowledge, have been pivotal in shaping this project. Her

high standards have constantly pushed me to improve, and for that, I am truly grateful.

Special thanks are extended to Mme. Djamila Naceur for her honesty, valuable advice,

guidance, and insightful remarks, which have made a significant contribution to the

production of this thesis.

I am deeply appreciative of the jury members for their expertise and the dedicated

effort they put into evaluating this thesis. Their advice, mentorship, and feedback have

been invaluable. I would also like to extend my gratitude to all the teachers in the

department who collectively made my experience at Saad Dahlab University an

unforgettable milestone in my academic journey. I wish them all the best.

I express my sincere appreciation to my older brother, Abderraouf, for his invaluable

insights and thought-provoking ideas. Our exchanges of perspectives on the various

challenges encountered during this endeavor have been immensely enlightening.

To my parents and my family as a whole, I extend my profound thanks for their

consistent support and understanding throughout the course of my research and thesis

writing.

I would also like to express my gratitude to my friends for their valuable comments, as

well as to the staff at CDTA for providing a warm and welcoming environment that

fostered an atmosphere conducive to learning and growth.

Finally, I offer my gratitude to God for granting me the strength to overcome the

challenges that arose during this academic pursuit and enabling me to complete my

degree. I humbly seek continued guidance and blessings for my future endeavors.

Abstract

Autonomous Mobile Robots (AMR) are robotic systems capable of navigating in

environments without human intervention. Their growing popularity and practical

applications have led to a rapid expansion, driven by increasing interest and research.

However, a major challenge faced by these systems is the generation and execution of

movements required for efficient trajectory planning, which remains a persistent

problem in autonomous systems. In this study, our objective is to contribute to the

field of motion planning by introducing two new variants of the Rapidly-exploring

Random Tree Star (RRT*) algorithm that integrate the Whale Optimization Algorithm

(WOA) to generate near-optimal trajectories. To validate the proposed variants, we

implemented them in a simulation environment. Then, we explored the parameter

space of WOA for both variants in order to identify optimal parameters and deepen

our understanding of behavior with different configurations. The results obtained from

the two variants demonstrate significant improvements in trajectory quality,

surpassing the performance of the original RRT* algorithm. These promising results

highlight the untapped potential of using this optimization technique and also pave the

way for further research to explore and exploit the benefits of parallelization aiming to

enhance the efficiency and effectiveness of these variants.

Keywords: Autonomous Mobile Robots, Motion Planning, RRT*, Optimization

Technique, Whale Optimization Algorithm

Résumé

Les robots mobiles autonomes (AMR, pour Autonomous Mobile Robots en anglais)

sont des systèmes robotiques capables de naviguer dans des environnements sans

intervention humaine. Leur popularité croissante et leurs applications concrètes ont

entraîné une expansion rapide, propulsée par un intérêt et une recherche croissants.

Cependant, un défi majeur auquel ces systèmes sont confrontés est la génération et

l'exécution des mouvements nécessaires pour une planification de trajectoire efficace,

ce qui reste un problème persistant dans les systèmes autonomes. Dans cette étude,

notre objectif est de contribuer au domaine de la planification de mouvement en

introduisant deux nouvelles variantes de l'algorithme Rapidly-exploring Random Tree

Star (RRT*) qui intègrent l'algorithme d'optimisation des baleines (WOA) pour générer

des trajectoires quasi-optimales. Pour valider les variantes proposées, nous les avons

implémentées dans un environnement de simulation. Ensuite, nous avons exploré

l'espace des paramètres de WOA pour les deux variantes, dans le but d'identifier les

paramètres optimaux et d'approfondir notre compréhension du comportement avec

différentes configurations. Les résultats obtenus à partir des deux variantes

démontrent des améliorations significatives de la qualité de la trajectoire, surpassant

les performances de l'algorithme RRT* d'origine. Ces résultats prometteurs mettent en

évidence le potentiel inexploité de l'utilisation de cette technique d'optimisation et

ouvrent également la voie à de nouvelles recherches pour explorer et exploiter les

avantages de la parallélisation visant à améliorer l'efficacité et l'efficience de ces

variantes.

Mots-clés: Robots Mobiles Autonomes, Planification de Mouvement, RRT*, Technique

d'Optimisation, WOA

 ملخص

سٗب٘تٞت تستطٞغ اىتْقو فٜ اىبٞئبث دُٗ تذخو بششٛ. استفبع شؼبٞتٖب تّظَأ(ٕٜ AMRاىشٗب٘تبث اىَتْقيت اىزاتٞت)

ٗتطبٞقبتٖب اىؼَيٞت أدٙ إىٚ ت٘سغ سشٝغ، ٍذف٘ػًب ببلإتَبً ٗاىبحث اىَتضاٝذ. ٍٗغ رىل، ت٘اجٔ ٕزٓ الأّظَت تحذًٝب

ىتخطٞط اىَسبس اىفؼبه، ٕٗزٓ ٍشنيت ٍستَشة فٜ الأّظَت اىزاتٞت. فٜ ٕزٓ مبٞشًا فٜ إّشبء ٗتْفٞز اىحشمبث اىَطي٘بت

اىذساست، ٕذفْب ٕ٘ اىَسبَٕت فٜ ٍجبه تخطٞط اىحشمت ٍِ خلاه تقذٌٝ اثِْٞ ٍِ الإصذاساث اىجذٝذة ىخ٘اسصٍٞت

Rapidly-exploring Random Tree Star (RRTاىتٜ تذٍج خ٘اسصٍٞت تحسِٞ اىح٘ث)* (WOA) لإّشبء

بساث تقتشة ٍِ الأٍثو. ىتحقٞق ٕزا اىٖذف، قَْب بتْفٞز الإصذاساث اىَقتشحت فٜ بٞئت ٍحبمبة. ثٌ، استنشفْب ٍجبه ٍس

 اػذاداثاىَثيٚ ٗتؼَٞق فَْٖب ىيسي٘ك ٍغ اىؼ٘اٍوىخ٘اسصٍٞت تحسِٞ اىح٘ث ىنلا الإصذاسِٝ ىتحذٝذ اىؼ٘اٍو

مبٞشة فٜ ج٘دة اىَسبساث، ٗتف٘قبً ػيٚ أداء ٍختيفت. أظٖشث اىْتبئج اىَستخيصت ٍِ الإصذاسِٝ تحسْٞبث

* الأصيٞت. تسيط ٕزٓ اىْتبئج اى٘اػذة اىض٘ء ػيٚ الإٍنبّبث غٞش اىَستغيت لاستخذاً ٕزٓ اىتقْٞت RRTخ٘اسصٍٞت

اىتحسْٞٞت ٗتَٖذ اىطشٝق أٝضًب ىَضٝذ ٍِ اىبحث لاستنشبف ٗاستغلاه ف٘ائذ اىت٘اصٛ ٍغ اىتشمٞض ػيٚ تؼضٝض مفبءة

 ٓ الإصذاساث.ٗفؼبىٞت ٕز

 WOA التحسين، تقنية ،*RRT الحركة، تخطيط الذاتية، المتنقلة الروبوتات الرئيسية: الكلمات

Acronyms and Abbreviations

AMRs Autonomous Mobile Robots

PRM Probabilistic Road Map

RRT Rapidly-exploring Random Tree

EA Evolutionary Algorithm

GA Genetic Algorithm

PBIL Population-Based Incremental Learning

GP Genetic Programming

DE Differential Evolution

GSA Gravitational Search System

CSS Charged System Search

CFO Central Force Optimization

BBBC Big-Bang Big-Crunch

SI Swarm Intelligence

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

AS Ant System

ACS Ant Colony System

FA Firefly Algorithm

WOA Whale Optimization Algorithm

SEOA Social Emotional Optimization Algorithm

ICA Imperialist Competitive Algorithm

TLBO Teaching Learning Based Optimization

SLC Soccer League Competition

ROS Robot Operating System

OpenCV Open Computer Vision

JSON JavaScript Object Notation

GIMP GNU Image Manipulation Program

SLAM Simultaneous Localization And Mapping

Table of Contents

Acknowledgements………………………………………………………………………………………………………..

Abstract…….

Acronyms and Abbreviations………………………………………………………………………………………….

Table of Contents…….

List of Figures………

List of Tables……….

General Introduction .. 1

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art.................... 3

1.1 Introduction ... 4

1.2 Motion Planning .. 4

1.2.1 Preliminaries ... 7

1.2.2 Deterministic Algorithms .. 9

1.2.3 Sampling Based Algorithms .. 13

1.2.4 Comparison ... 15

1.2.5 Discussion ... 18

1.3 Optimization Techniques .. 19

1.3.1 Metaheuristic Approaches ... 20

1.3.2 Discussion ... 33

1.4 Conclusion ... 34

Chapter 2 Optimal Motion Planners: Proposed Approaches 35

2.1 Introduction ... 36

2.2 Rapidly-exploring Random Tree .. 36

2.3 The RRT Variants ... 39

2.4 Discussion .. 41

2.5 The RRT* Algorithm ... 42

2.5.1 Enhancements .. 42

2.5.2 Tree Construction ... 45

2.6 Whale Optimization Algorithm ... 46

2.6.1 Inspiration ... 46

2.6.2 Formulation .. 47

2.6.3 Algorithm .. 49

2.7 Proposed Local Variant .. 50

2.8 Proposed Global Variant ... 52

2.9 Robot Motion .. 54

2.9.1 Robot Platform and Kinematic Modeling ... 54

2.9.2 Differential Drive Robot and the Odometric Model 54

2.9.3 Control Generation ... 57

2.10 Conclusion ... 58

Chapter 3 Simulation, Comparative Analysis, and Implementation 59

3.1 Introduction ... 60

3.2 Simulation .. 60

3.2.1 Algorithm Implementation ... 60

3.2.2 Obstacle Avoidance .. 62

3.2.3 Results ... 63

3.3 Comparative Analysis .. 65

3.3.1 Experimental Setup .. 65

3.3.2 Algorithms Assessment .. 66

3.3.3 Parameter Tuning ... 68

3.3.4 Discussion ... 86

3.4 Implementation ... 87

3.5.1 Hardware .. 87

3.4.2 Software .. 89

3.5 Conclusion ... 92

General Conclusion ... 93

References ... …………

List of Figures

Figure 1.1 – Planned Path from the Robot’s Initial to Goal Position with

Collision Avoidance

5

Figure 1.2 – Classification of Motion Planning Algorithms 7

Figure 1.3 – Example of a Workspace 8

Figure 1.4 – Dijkstra's Pathfinding Graph: Visualization of Visited and

Unvisited Nodes

9

Figure 1.5 - A* Pathfinding Graph: Visualization of Open and Closed Nodes 10

Figure 1.6 – Visibility Graph: The Dashed Lines Represent Candidate Paths

and the Polygons Represent Obstacles.

11

Figure 1.7 – Voronoi Diagram: Generated Path Through Cells to the Goal 12

Figure 1.8 – RRT Tree Extension Process 14

Figure 1.9 – Probabilistic Road Map: Graph Connecting Initial and Goal Points 15

Figure 1.10 – Classification of Metaheuristic Approaches 20

Figure 1.11 - Genetic Algorithm Cycle: Evaluation, Selection, Crossover, and

Mutation Phases

22

Figure 1.12 – Demonstration of Position Update in the GSA 25

Figure 2.1 – Building Process of the Rapidly-exploring Random Tree 38

Figure 2.2 – Parent Choosing Process of RRT* 43

Figure 2.3 – Edge Rewiring Process of RRT* 44

Figure 2.4 – Bubble-net Feeding Technique of Humpback Whales 47

Figure 2.5 - Behavior Selection Diagram of the Whale Optimization Algorithm 48

Figure 2.6 – Local Variant During Optimization Phase 52

Figure 2.7 – Global Variant During Optimization Phase 53

Figure 2.8 Representation of a Non-holonomic Differential Drive Mobile

Robot

55

Figure 3.1 – Configuration File of the Global Variant 61

Figure 3.2 – Map Polygon Approximation with 3-Pixel Dilation 62

Figure 3.3 – Simulation Workflow of the Proposed Global Variant 64

Figure 3.4 – Adaptive Replanning: Responding to Environmental Changes 65

Figure 3.5 – Experimental Map Set: The Purple Dot Represents the Initial

Position of the Robot, while the Orange Dot Indicates the Goal Position

66

Figure 3.6 – Visual Comparison of Paths: RRT*, Local Variant and Global

Variant

67

Figure 3.7 - Analysis of Population Variation in Local Variant 69

Figure 3.8 – Analysis of Population Variation in Global Variant 70

Figure 3.9 - Analysis of Iterations Variation in Local Variant 71

Figure 3.10 - Analysis of Iterations Variation in Global Variant 72

Figure 3.11 – The Behavior Associated with Parameter Value 73

Figure 3.12 - Analysis of Threshold Variation in Local Variant 74

Figure 3.13 – Analysis of Threshold Variation in Global Variant 75

Figure 3.14 – Analysis of Parameter Variation in Local Variant 76

Figure 3.15 - Analysis of Parameter Variation in Global Variant 77

Figure 3.16 – The Behavior Associated with Absolute Value of with Fixed

Threshold

78

Figure 3.17 – The Behavior Associated with Absolute Value of with Variable

Threshold

80

Figure 3.18 - Analysis of Parameter and Threshold Variation in Local

Variant in Relation to Computation Time

81

Figure 3.19 – Analysis of Parameter and Threshold Variation in Local

Variant in Relation to Path Length

82

Figure 3.20 - Analysis of Parameter and Threshold Variation in Local

Variant in Relation to Nodes Generated

82

Figure 3.21 - Analysis of Parameter and Threshold Variation in Global

Variant in Relation to Computation Time

84

Figure 3.22 - Analysis of Parameter and Threshold Variation in Global

Variant in Relation to Path Length

85

Figure 3.23 - Analysis of Parameter and Threshold Variation in Global

Variant in Relation to Nodes Generated

85

Figure 2.24 – Robotic Wheelchair 87

Figure 3.24 – Robot Operating System Logo 88

Figure 2.25 - Visual Representation of the Communication Architecture and

Data Flow Between Different Nodes in a ROS System

89

Figure 2.27 – Control Generation in Mapped Environment (Red Curve:

Represents the path generated by the global variant, Blue Curve: The

trajectory approximation of the robot’s movement when executing the

generated controls)

92

List of Tables

Table 1.1 – Comparison of Motion Planning Algorithms 17

Table 3.1 – Experimental Results: Analysis of RRT*, Local and Global

Variants’ Performance

66

Table 3.2 – Results of Population Size Variation in Local Variant 68

Table 3.3 – Results of Population Size Variation in Global Variant 69

Table 3.4 – Results of Iterations Variation in Local Variant 71

Table 3.5 – Results of Iterations Variation in Global Variant 72

Table 3.6 – Results of Threshold Variation in Local Variant 73

Table 3.7 – Results of Threshold Variation in Global Variant 74

Table 3.8 – Results of Parameter Variation in Local Variant 76

Table 3.9 – Results of Parameter Variation in Global Variant 77

Table 3.10 – Results of Parameter Variation in Local Variant 78

Table 3.11 – Results of Parameter Variation in Global Variant 79

Table 3.12 – Results of Parameter and Threshold Variation in Local

Variant

81

Table 3.13 – Results of Parameter and Threshold Variation in Global

Variant

84

1

1

General Introduction

Autonomous mobile robots (AMRs) are robotic systems capable of operating and

navigating in various environments without human intervention. With the help of

sensors, computing capabilities, and decision-making algorithms, AMRs can

autonomously perceive their surroundings, plan actions, and carry out tasks.

AMRs have significant potential to enhance medical care and personal assistance for

individuals with impaired mobility. In the medical field, they can automate tasks such

as transporting supplies and patients, which allow healthcare professionals to dedicate

more time to direct patient care. Equipped with sensors, AMRs can monitor vital signs

and collect health data, facilitating timely decision-making. As personal assistants,

AMRs can assist with daily tasks and improve social interactions, enabling individuals

with disabilities to lead more independent and fulfilling lives [1].

The effectiveness of AMRs heavily relies on the integration of motion planning and

optimization techniques, especially when navigating complex and dynamic

environments. Motion planning addresses the challenge of generating efficient and

feasible trajectories for AMRs, ensuring their movement from an initial state to a

desired goal state while avoiding obstacles and adhering to constraints. Researchers

have made significant progress in enabling AMRs to plan and execute precise and

efficient motions by integrating algorithms, mathematical models, and optimization

techniques.

Initially, traditional methods [5,6,7,8] faced limitations when dealing with complex

scenarios, high-dimensional spaces, and dynamic obstacles. To overcome these

challenges, optimization techniques [17,21,26] have been seamlessly incorporated into

motion planning algorithms, effectively transforming the process into an optimization

problem. Our project aims to contribute to the research field by providing a novel bio-

inspired motion planning algorithm with two variants inspired by a swarm-based

optimization technique.

The local variant incorporates the whale optimization algorithm (WOA) into the

expansion process of RRT* to enhance the exploration of space towards promising

2

areas. On the other hand, the global variant only uses the path returned by RRT* as a

population initializer and generates optimized paths using WOA. This document is

organized as follows: Chapter 1 presents a literature review on motion planning and

optimization techniques, providing a detailed analysis justifying our chosen approach.

Chapter 2 explains RRT* and the whale optimization algorithm in detail, along with an

explanation of our proposed variants. In Chapter 3, we clarify the approach used to

implement these variants. We test the variants in simulation setups and benchmark

them against the original algorithm. Additionally, we conduct a thorough parameter

tuning process to analyze the behaviors of the two variants and identify optimal

settings. The thesis concludes with our findings and aspirations for future endeavors in

this domain.

3

Chapter 1

Motion Planning and

Trajectory

Optimization:

State of the Art

Chapter 1 Motion Planning and Trajectory

Optimization: State of the Art

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

4

1.1 Introduction

Motion planning and optimization techniques are crucial in robotics to generate

feasible and optimal trajectories in complex and dynamic environments. By combining

algorithms, mathematical models, and optimization principles, researchers have made

significant progress in enabling precise and efficient motion execution. Motion

planning involves finding actions or configurations to navigate from an initial state to a

goal state while avoiding obstacles and adhering to constraints.

To overcome challenges in dealing with high-dimensional spaces and dynamic

obstacles, optimization techniques have been integrated into motion planning

algorithms. This approach formulates motion planning as an optimization problem,

finding the best trajectory that satisfies constraints and optimization criteria.

Mathematical optimization allows consideration of multiple objectives, ensuring safety

and collision avoidance. By integrating motion planning with optimization techniques,

collision-free trajectories can be generated while optimizing factors like distance

traveled or task completion time. This leads to intelligent and efficient motion planners

that adapt to dynamic environments, optimize multiple objectives simultaneously, and

enhance autonomous system capabilities.

In the following sections, we will explore the primary categories of motion planning

algorithms, analyzing their strengths, limitations, and selecting an appropriate

algorithm for our application scenario. We will also discuss metaheuristic optimization

algorithms, their operational mechanisms, and integrate a promising candidate into

our chosen path planning method.

1.2 Motion Planning

Motion planning in robotics involves the generation of a collision-free motion from an

initial to a goal position in a specified environment. However, this problem is known to

be challenging to solve efficiently as it grows in difficulty with the complexity of the

environment, the increase in degrees of freedom of the system, and the constraints

imposed on it, such as kinematics constraints, dynamic constraints, sensor limitations,

task-specific constraints, and real-time constraints [2]. Depending on the environment,

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

5

numerous motions may be possible in the space where the robot is able to move.

Motion planning algorithms aim to find the best motion or at least an admissible

approximation to it. The best motion here refers to the optimal one, in the sense that

the resulting motion is obtained by minimizing the cost, time, or energy consumption

through one or more objective optimization functions. Additionally, it’s crucial to

consider the aforementioned constraints to ensure that the resulting motion is

feasible, safe, and efficient for the robot’s specific task and environment. Figure 1.1

illustrates the planned trajectory, starting from the robot’s initial position and leading

to the goal, while effectively circumventing potential collision sources present in the

environment.

Figure 1.1 – Planned Path from the Robot’s Initial to Goal Position with Collision

Avoidance

Motion planning has been a fundamental topic in robotics for several decades. Early

work in motion planning was focused on developing algorithms to plan motions for

simple robots with limited degrees of freedom. In the 1980s, researchers began

developing more sophisticated algorithms to handle more complex robot models and

environments, and these algorithms have continued to evolve to this day [3]. One key

development in motion planning was the introduction of probabilistic roadmap (PRM)

algorithms in the 1990s. Other important developments include the use of visibility

graphs, potential fields, and rapidly exploring random trees (RRTs). Today, motion

planning continues to be an active area of research, with new algorithms and

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

6

techniques being developed to handle increasingly complex scenarios and real-time

constraints.

Deterministic algorithms are one of the oldest and most traditional methods for

motion planning. These algorithms are based on solving a set of equations or

constraints to determine the optimal motion for a robot. Deterministic algorithms can

be very accurate and efficient for simple scenarios. However, they often fail to produce

feasible solutions for complex scenarios due to their inability to handle uncertain or

noisy environments. In contrast, sampling-based algorithms are a more recent

approach that uses random sampling to generate a set of potential motions. The

advantage of sampling-based algorithms is their ability to handle complex and

uncertain environments, making them suitable for real-world applications. However,

sampling-based algorithms may require a significant amount of computational

resources to generate a solution, and the solution may not always be optimal. Each

approach has its own set of advantages and disadvantages, and the selection of the

algorithm depends on the specific problem domain and implementation requirements

[4]. Figure 1.2 below classifies motion planning algorithms into two families:

deterministic and sampling-based algorithms.

Figure 1.2 – Classification of Motion Planning Algorithms

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

7

1.2.1 Preliminaries

Before exploring the specifics of motion planning algorithms in the literature, it is

important to establish some foundational terminology

Workspace. Refers to the physical environment in which a robot operates,

encompassing all obstacles, boundaries, and other relevant features that may affect

the robot’s movement. The workspace is commonly represented by a geometric

model, which can be either two-dimensional or three-dimensional such as figure 1.3,

depending on the problem domain.

Configuration. Represents the complete set of parameters that describe the state of a

robot within its workspace. It includes attributes such as position, orientation, and any

additional degrees of freedom that are relevant to the task at hand.

Configuration Space. Also known as C-space, serves as a mathematical representation

of all possible configurations that a robot can assume within its workspace. This high-

dimensional space captures the robot’s state in its environment, accounting for its

degrees of freedom. The configuration space is instrumental in defining the feasible

and obstacle-free regions through which the robot can navigate.

Initial configuration. Denotes the starting position and orientation of the robot within

its workspace. It is determined by the values of the robot’s degrees of freedom in the

configuration space and serves as the initial state from which a motion planning

algorithm can compute a path to the goal configuration.

Goal configuration. Represents the desired position and orientation of the robot

within its workspace upon completion of a task. It serves as the final state to which the

motion planning algorithm endeavors to guide the robot by planning a path from the

initial configuration.

Heuristic. Refers to a function or technique used to estimate the cost or distance

between a robot’s current state and the goal configuration. Heuristics offer a quick and

efficient means of evaluating different paths or actions to determine the most

promising ones. The selection of an appropriate heuristic can significantly enhance the

efficiency and effectiveness of the motion planning algorithm.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

8

Optimality. Refers to the discovery of the path with the lowest cost or shortest

distance between the start and goal configurations while avoiding collisions with

obstacles.

Completeness. Pertains to the capability of a motion planning algorithm to find a

solution if one exists. A complete algorithm guarantees the discovery of a feasible path

between the start and goal configurations given sufficient time and resources.

Efficiency. Denotes the ability of a motion planning algorithm to generate a solution

that is either close to optimal or optimal while minimizing computational resources

and time required for computation.

Non-holonomy. Refers to the limitations on movement and turning options caused by

mechanical constraints or design factors in mobile robots.

Figure 1.3 – Example of a Workspace

In the following subsections, we will delve into the most prominent deterministic and

sampling-based algorithms in motion planning, outlining their distinctive

characteristics.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

9

1.2.2 Deterministic Algorithms

Deterministic algorithms are a class of algorithms used in motion planning that

consistently produce the same output for a given input each time they are executed.

These algorithms find widespread application in various fields, particularly robotics,

where precise and repeatable outcomes are critical. In motion planning, deterministic

algorithms ensure that the generated output is consistent, offering a reliable and

dependable path for robots, vehicles, or other entities to follow while prioritizing

safety and efficiency. Examples of such algorithms include Dijkstra, A*, Visibility Graph,

and Voronoi Diagram.

A. Dijkstra’s Algorithm

Dijkstra’s algorithm is a pathfinding algorithm invented by Dutch computer scientist

Edsger W. Dijkstra in 1956. It was originally designed to find the shortest path between

two nodes in a graph with non-negative edge weights [5].

The algorithm works by maintaining a set of visited nodes and a set of unvisited nodes.

It begins by setting the distance of the starting node to 0 and the distances of all other

nodes to infinity. At each step of the algorithm, the unvisited node with the lowest

tentative distance is selected, and its neighbors are examined. For each neighbor, if

the distance to that neighbor through the current node is less than the neighbor’s

current tentative distance, the neighbor’s distance is updated to the new lower value.

This process is repeated until the destination node is reached or all reachable nodes

have been visited [5].

Figure 1.4 – Dijkstra’s Pathfinding Graph: Visualization of Visited and Unvisited Nodes

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

10

Dijkstra’s algorithm is a widely-used path planning approach that is simple to

understand. However, it can be slow and memory-intensive for large graphs and is not

suitable for graphs with negative edge weights. It also does not consider other

environmental factors such as obstacles or dynamic changes to the environment that

may affect pathfinding. Despite these limitations, it remains a valuable tool in path

planning and related applications.

B. A* Algorithm

The A* algorithm is a pathfinding algorithm that was first proposed in 1968 by Peter

Hart, Nils Nilsson, and Bertram Raphael of Stanford Research Institute. The algorithm

builds upon Dijkstra’s algorithm by incorporating a heuristic function that estimates

the distance from each node to the goal, allowing it to search more efficiently and find

the shortest path faster [6].

It works by maintaining two lists of nodes: an open list of nodes to be evaluated, and a

closed list of nodes that have already been evaluated. The algorithm begins at the start

node and adds it to the open list. Then, it selects the node with the lowest estimated

cost to the goal (based on a heuristic function) and adds its neighbors to the open list.

After that, as the algorithm explores the nodes, it evaluates and moves them from the

open list to the closed list once they have been considered [6].

Figure 1.5 – A* Pathfinding Graph: Visualization of Open and Closed Nodes

A* algorithm has advantages such as its efficiency in large graphs, ability to find

optimal paths with a well-designed heuristic function, and adaptability to various

terrain and cost functions. However, A* may not always find the optimal path if the

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

11

heuristic function is not admissible, can be slower if the heuristic function is not well-

designed, requires more memory compared to Dijkstra’s algorithm.

C. Visibility Graph

The visibility graph algorithm was introduced by Lozano-Pérez, Tomás, and Michael A.

Wesley in their 1979 paper titled “An algorithm for planning collision-free paths among

polyhedral obstacles”. The algorithm was originally designed for robot path planning in

terrain with obstacles, where the robot’s visibility was restricted by the terrain [7].

The visibility graph algorithm works by representing obstacles as vertices in a graph,

and creating edges between vertices that are visible to each other. The start and goal

points are added as vertices, and edges are added between them and any visible

vertices. Then, a search algorithm is used to find the shortest path between the start

and goal points in the graph [7].

Figure 1.6 – Visibility Graph: The Dashed Lines Represent Candidate Paths and the

Polygons Represent Obstacles.

The visibility graph algorithm offers advantages such as simplicity, efficiency, and

optimality when solving path planning problems. However, it is computationally

expensive for complex environments and does not account for non-holonomic

constraints or dynamic/unknown environments.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

12

D. Voronoi Diagram

The Voronoi diagram was first introduced by Georgy Voronoy in 1908, a Russian

mathematician, who was interested in the theory of numbers and algebraic topology.

In the 1980s, robotics researchers realized that Voronoi diagrams could be used for

path planning in a range of applications [8]. Since then, many researchers have worked

on improving the efficiency and accuracy of Voronoi diagram-based path planning

algorithms.

The Voronoi diagram algorithm works by dividing the environment into regions based

on the distance to the obstacles. Specifically, it creates a graph where the nodes

represent the obstacles, and the edges are the lines of equal distance between

adjacent obstacles. These lines form the boundaries of the regions, known as Voronoi

cells. The Voronoi diagram algorithm then uses these cells to plan a path by connecting

the start and goal locations to the cell boundaries and finding the path that passes

through the fewest number of cells.

Figure 1.7 – Voronoi Diagram: Generated Path Through Cells to the Goal

Advantages of the Voronoi diagram algorithm in path planning include its ability to

efficiently calculate paths for multiple agents and handle complex environments with a

large number of obstacles. It also considers the size and shape of the agent, resulting

in more feasible paths. However, the Voronoi diagram algorithm may not always find

the shortest path and can be sensitive to the location of obstacles. It also assumes that

the agent moves at a constant speed and does not take into account dynamic

environments or other non-holonomic constraints.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

13

1.2.3 Sampling Based Algorithms

Sampling-based algorithms are a class of motion planning algorithms that are

extensively employed in robotics applications to discover a feasible path for a robot

from its initial position to its desired goal position. These algorithms operate on the

principle of randomly sampling the configuration space of the robot and constructing a

graph or tree structure that captures the connectivity among the sampled

configurations. The objective is to identify a path that connects the initial and goal

configurations while effectively circumventing obstacles present within the

environment.

A. Single Query

Single query sampling-based algorithms use random sampling to construct a graph and

search for a path through it for a single start and goal pair. These algorithms are

designed to work in continuous, high-dimensional state spaces where it is difficult to

construct a deterministic path from a start to a goal location.

Rapidly-exploring Random Tree

The Rapidly-exploring Random Tree (RRT) algorithm was first introduced by Steven

LaValle in 1998 [9]. The algorithm was designed to efficiently plan paths in high-

dimensional configuration spaces, where traditional path planning algorithms struggle

due to the problem of exponential growth of computational complexity with increasing

dimensionality.

The algorithm works by constructing a tree-like structure through the exploration of

the configuration space. The algorithm starts with an initial configuration and then

iteratively grows the tree by randomly selecting a new configuration and attempting to

connect it to the existing tree. The algorithm continues to do this until either a

specified number of iterations has been reached or a feasible path from the start to

the goal configuration has been found [9].

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

14

Figure 1.8 – RRT Tree Extension Process

The Rapidly-exploring Random Tree (RRT) algorithm offers several advantages for path

planning in complex and high-dimensional environments, including the ability to

handle non-holonomic constraints and changing environments. However, it may not

always generate an optimal path and can struggle in environments with narrow

passages or difficult-to-navigate areas.

B. Multi Query

Multi query sampling-based algorithms construct a graph that can be used to search

for multiple start and goal pairs efficiently. These algorithms are particularly useful for

planning paths for groups of robots, where multiple start and goal configurations need

to be considered simultaneously.

Probabilistic Road Map

The Probabilistic Road Map (PRM) algorithm was introduced by Kavraki, Lydia E., Petr

Svestka, J-C. Latombe, and Mark H. Overmars in 1996 as a probabilistic method for

robot path planning. It was designed to efficiently plan paths in high-dimensional

spaces with complex and changing environments [10].

The algorithm works by building a graph of nodes and edges that represent the

configuration space of the environment. The nodes are generated by randomly

sampling the configuration space, while the edges are formed by connecting the nodes

that are within a certain distance of each other and that can be connected without

colliding with any obstacles. Once the graph has been constructed, a search algorithm

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

15

such as Dijkstra’s algorithm or A* is used to find a path from the start node to the goal

node.

Figure 1.9 – Probabilistic Road Map: Graph Connecting Initial and Goal Points

The Probabilistic Road Map (PRM) algorithm in path planning has several advantages

including its ability to handle complex and changing environments, generate paths that

are moderately optimal, and work well in narrow passages. The computational

complexity can also be lower than some other sampling-based algorithms. However,

the algorithm may require a large number of samples to achieve good performance in

certain scenarios, struggle with non-holonomic constraints, and the generated paths

may not always be feasible.

1.2.4 Comparison

In this subsection, we delve deeper into the characteristics of the six previously cited

algorithms, considering various factors such as completeness, optimality, memory

usage, handling of dynamic environments, and the ability to handle non-holonomic

constraints.

Dijkstra’s algorithm is widely recognized for its completeness, guaranteeing that it will

always find a path if one exists. It also offers optimality, ensuring that the path found is

the shortest [11]. However, Dijkstra’s algorithm has moderate memory usage, which

can become a limitation in larger environments where memory resources are

constrained. Furthermore, Dijkstra’s algorithm does not consider dynamic

environments, meaning it cannot adapt its path planning in real-time to changes in the

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

16

environment. It also does not handle non-holonomic constraints, such as limitations on

the turning radius or differential drive constraints for certain robotic systems.

The A* algorithm, like Dijkstra’s algorithm, is both complete and optimal, ensuring that

it will always find the shortest path [12]. However, the A* algorithm typically exhibits

higher memory usage compared to Dijkstra’s algorithm, as it employs heuristics to

guide the search process. This higher memory requirement can pose challenges in

resource-constrained scenarios. On the positive side, the A* algorithm excels in

handling dynamic environments due to its ability to incorporate heuristics that

estimate the remaining cost to the goal. By dynamically updating these heuristics, the

A* algorithm can adapt its path planning to changing circumstances. Nonetheless,

similar to Dijkstra’s algorithm, A* does not inherently handle non-holonomic

constraints.

The Visibility Graph algorithm shares similarities with Dijkstra and A* algorithms in

terms of completeness and optimality. It guarantees finding a path if one exists and

ensures it is the shortest [13]. However, the Visibility Graph algorithm has high

memory usage, which can be a drawback in memory-limited environments. Similar to

Dijkstra and A*, it does not consider dynamic environments or non-holonomic

constraints. As a result, the Visibility Graph algorithm is often more suitable for static

environments where the map remains unchanged during the path planning process.

In contrast to the previous algorithms, the Voronoi Diagram approach is not complete

or optimal. It cannot guarantee finding a solution even if one exists, and the path it

generates may not be the shortest. Moreover, unlike the A* and Visibility Graph

algorithms, the Voronoi Diagram algorithm typically exhibits low memory usage [14].

Like the previous algorithms, it does not account for dynamic environments or non-

holonomic constraints. However, Voronoi Diagrams offer advantages in situations

where an approximate solution is sufficient, such as scenarios where real-time path

planning is not required, or where optimality is not the primary concern.

The RRT (Rapidly-exploring Random Tree) algorithm, while complete, is not optimal. It

offers a trade-off between optimality and computational efficiency. One of its

advantages is its low memory usage, which makes it suitable for resource-constrained

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

17

systems. RRT is particularly well-suited for handling non-holonomic constraints, as it

can explore the configuration space of non-holonomic vehicles efficiently.

Furthermore, RRT can be adapted to handle dynamic environments by incorporating

techniques such as incremental planning or replanning. By periodically updating the

tree structure and adapting the paths based on changes in the environment, RRT can

address dynamic scenarios to some extent.

PRM (Probabilistic Roadmap) algorithm, similar to RRT, is complete but not optimal. It

also boasts low memory usage, which is advantageous in memory-limited

environments. PRM can handle dynamic environments; however, it struggles with non-

holonomic constraints.

Algorithm Completeness Optimality

Memory

Usage

Handling

Dynamic

Environment

Handling

Non-

holonomic

Constraints

Dijkstra Yes Yes Moderate No No

A* Yes Yes High Yes No

Visibility

Graph
Yes Yes High No No

Voronoi

Diagram
No No Low No No

RRT Yes No Low Yes Yes

PRM Yes Yes Low Yes No

Table 1.1 – Comparison of Motion Planning Algorithms

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

18

1.2.5 Discussion

In the previous section, we compared various path planning algorithms. Based on our

analysis, we have determined that certain criteria are crucial for our study:

completeness, handling dynamic environments, and addressing the non-holonomic

constraints imposed by the limited movement of the wheelchair. Considering these

factors, we have selected the Rapidly-exploring Random Tree (RRT) as the most

suitable path planning algorithm. While RRT may not guarantee optimality, we can

overcome this limitation by exploring its variants in the following chapter.

To further support our choice for RRT, we would like to highlight a few reasons:

Probabilistic Completeness: RRT is probabilistically complete, meaning that given

enough time, it is guaranteed to find a solution if one exists. This property ensures that

the robotic wheelchair can always find a feasible path in the environment, providing

reliable navigation capabilities.

Adaptability: RRT can be easily extended and modified to incorporate additional

constraints and optimize the generated paths through post-processing techniques.

This adaptability allows us to enhance the quality of the paths according to specific

requirements.

Exploration and Coverage: The inherent randomness and exploratory nature of RRT

make it well-suited for tasks involving exploration and coverage of unknown

environments. For example, if the robotic wheelchair needs to navigate through a new

environment or perform tasks like mapping or inspecting an area, RRT can efficiently

explore the space and generate paths that cover the entire region of interest.

Dynamic Environment Handling: RRT is able to handle dynamic environments where

obstacles can move or appear/disappear over time. By continuously updating the tree

structure, RRT can adapt to changes in the environment and generate new paths on

the fly, ensuring safe and efficient navigation of the wheelchair.

Potential for Real-World Deployment: The efficiency, adaptability, and extensive

research on RRT make it a promising choice for the real-world deployment. Its

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

19

practicality and proven effectiveness in various applications strengthen its suitability

for our study.

By considering these factors, we are confident in our decision to utilize the RRT

algorithm as the path planning approach for our research.

1.3 Optimization Techniques

Optimization techniques in motion planning are mathematical and computational tools

used to find the best trajectory that satisfies specific criteria, such as the shortest or

safest path, among all possible paths from a starting configuration to a goal

configuration. These techniques aim to optimize the complete trajectory or assist in

creating an effective path towards the goal.

In motion planning, optimization techniques can be broadly categorized into

approximate and exact methods. Approximate methods focus on finding a near-

optimal solution to the motion planning problem, while exact methods aim to find the

optimal solution. Approximate methods can be further divided into heuristic and

metaheuristic methods.

Heuristic methods employ simple rules or heuristics to guide the search for a good

trajectory. These methods are fast and easy to implement but do not guarantee the

optimality of the found path. Heuristic methods are particularly useful when finding

the exact solution is impractical or when a fast solution is required. Examples of

heuristic methods include the Greedy algorithm, Simulated Annealing, and Tabu

Search.

On the other hand, metaheuristic methods are more powerful than heuristic methods

and are capable of finding better solutions to motion planning problems. These

methods utilize stochastic techniques inspired by natural phenomena or biological

systems to explore the search space for the best trajectory. While metaheuristic

methods do not guarantee optimality, they are able to find good solutions within a

reasonable amount of time. Examples of metaheuristic methods used in motion

planning include the Genetic Algorithm, Particle Swarm Optimization, and Ant Colony

Optimization.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

20

1.3.1 Metaheuristic Approaches

The term “metaheuristic” was coined by Fred Glover in 1986 to describe a non-

problem-specific heuristic method. Metaheuristics combine exploration

(diversification) and exploitation (intensification) to form a robust searching

mechanism. Exploitation involves searching in the vicinity of the best solution, while

exploration involves exploring new search areas [15].

In optimization and problem-solving, a metaheuristic approach refers to a general

strategy or framework that can be applied to various problems without relying on

specific problem knowledge. These iterative, heuristic-based algorithms intelligently

explore the solution space to search for near-optimal solutions. They are particularly

useful when traditional optimization techniques are impractical or inefficient due to

complex, large-scale, or multi-objective problems.

Metaheuristics are algorithmic structures that can be easily adapted to different

optimization problems with minimal modifications. They possess fundamental

characteristics such as applicability to multiple problems, approximate nature,

exploration of the search space to find “good enough” solutions, and straightforward

parallel implementation. Metaheuristics encompass a range of techniques, from basic

local search methods to advanced learning techniques, incorporating mechanisms to

prevent premature convergence.

Figure 1.10 – Classification of Metaheuristic Approaches

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

21

A. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are population-based, fitness-oriented, and variation-

driven algorithms inspired by natural evolution. They mimic the process of natural

selection and adaptation to solve optimization and learning problems. Eas maintain a

population of potential solutions, where each individual has its own genetic

representation and fitness value. By introducing variations through genetic operators,

Eas explore the solution space to find better solutions. Eas have been proposed since

the 1960s and have been used in various domains. They are distinguished from related

concepts such as soft computing and computational intelligence. The number of

research papers on Eas has been increasing over time, indicating ongoing interest and

development in the field. [16]

Genetic Algorithm

John Henry Holland proposed the genetic algorithm for optimization and problem

solving in his 1975 book “Adaptation in Natural and Artificial Systems”. He introduced

genetic algorithms as a method to solve complex problems [17]. This marked the

foundation of applying evolutionary computation techniques to optimization and

search problems. Today, genetic algorithms are widely utilized across diverse fields to

find optimal solutions.

The Genetic Algorithm (GA) is an optimization technique inspired by natural selection.

It begins with a population of potential solutions, called chromosomes, representing

different possible solutions to the problem. The GA evaluates the fitness of each

chromosome and selects two parents based on their fitness. Through crossover,

genetic information is exchanged between parents, generating offspring with

combined traits. Mutation introduces random changes, exploring new solutions.

Offspring, including mutated individuals, form the next generation. This process

repeats over multiple generations until a satisfactory solution is found or a termination

criterion is met. The GA explores diverse solutions, converging towards an optimal or

near-optimal solution by mimicking natural selection’s principles. [18]

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

22

Figure 1.11 – Genetic Algorithm Cycle: Evaluation, Selection, Crossover, and Mutation

Phases

Population-Based Incremental Learning

Shumeet Baluja introduced the Population-Based Incremental Learning (PBIL) method

in 1994, aiming to integrate genetic search-based function optimization and

competitive learning. PBIL combines the advantages of genetic algorithms with simple

competitive learning, offering a more efficient and straightforward approach

compared to traditional genetic algorithms [19].

Population-Based Incremental Learning (PBIL) is an optimization algorithm that

addresses the limitations of Genetic Algorithms (Gas) in solving deceptive problems.

PBIL maintains a population of individuals representing potential solutions and evolves

them over generations. Instead of using crossover and mutation, PBIL estimates and

samples the joint probability distribution of selected individuals.

PBIL maintains a probability vector representing the likelihood of each component in

the solution space. At each iteration, the probability vector is used to generate new

individuals, which are evaluated and ranked. The best individuals are selected to

update the probability vector. The algorithm consists of initializing the probability

vector and repeating the following steps until convergence: sampling a population,

evaluating and ranking individuals, selecting the best ones, and updating the

probability vector based on the selected individuals [20].

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

23

Genetic Programming

John Koza, an American computer scientist, proposed genetic programming as a

method for automatically creating computer programs to solve complex problems. His

work started in the 1980s and led to influential books like “Genetic Programming: On

the Programming of Computers by Means of Natural Selection” in 1994 [21]. Genetic

programming extends genetic algorithms to evolve programs using operators like

crossover and mutation. This approach has gained prominence in the field of

evolutionary computation for automated program synthesis and optimization.

Genetic programming (GP) is an evolutionary algorithm inspired by Darwinian

principles. It uses a population of candidate solutions represented as complex trees.

GP applies genetic operators like crossover and mutation to create a new generation

of individuals. Fitness functions evaluate individual quality, influencing their selection

for reproduction.

For successful GP, two conditions must be met: sufficiency, where the representation

can solve the problem, and closure, where functions handle all possible input values.

These conditions can be challenging when evolving programs for diverse value types

[22].

Differential Evolution

Differential Evolution (DE) for optimization and problem solving was proposed by

Rainer Storn and Kenneth Price in the late 1990s. In their seminal work titled

“Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over

Continuous Spaces” published in 1997, Storn and Price introduced DE as an

evolutionary algorithm [23]. DE utilizes vector differences to generate new candidate

solutions, making it highly efficient for optimization in continuous search spaces. This

approach has gained widespread popularity as a robust and effective method for

solving optimization problems across various domains.

Differential Evolution (DE) is an evolutionary algorithm used for searching in a solution

space. It involves initialization, mutation, crossover, and selection steps. In

initialization, a population of individuals represented by D-dimensional vectors is

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

24

created within the search space. Mutation generates a diverse population by adding

the difference between two randomly selected individuals to a third individual.

Crossover combines the target and mutation vectors, exchanging information between

individuals using a binomial crossover. Selection evaluates the objective function for

each test vector and replaces the target vector if it performs better.

The DE algorithm iterates through these steps, evolving the population over multiple

generations. By differentiating, scaling, and applying mutation, crossover, and

selection, it explores the solution space and enhances individual quality in each

generation [24].

B. Physics Based Algorithms

Physics-based optimization algorithms are a category of metaheuristic optimization

methods that draw inspiration from physical principles and laws to solve complex

problems. These algorithms mimic physical processes found in nature and utilize

concepts from physics to develop effective optimization techniques. They differ from

biology-based algorithms and have been proposed as alternatives to solve various

challenging problems [25].

Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) for optimization and problem solving was

proposed by Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi in 2009.

Rashedi, Nezamabadi-Pour, and Saryazdi, who are researchers in the field of computer

science and optimization, introduced GSA as a novel metaheuristic algorithm inspired

by the laws of gravity and motion [26]. Their work on GSA aimed to develop an

efficient optimization algorithm for solving complex problems by simulating the

interactions between celestial bodies. Since its proposal, GSA has been applied to

various optimization problems and has shown promising results.

The Gravitational Search Algorithm (GSA) is an optimization algorithm inspired by the

law of gravity. It represents the problem as a system of interacting masses, where each

mass corresponds to a potential solution. The algorithm simulates the gravitational

attraction between the masses, causing a global movement towards better solutions.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

25

Each mass has position, inertial mass, active gravitational mass, and passive

gravitational mass. The algorithm follows Newtonian laws of gravitation and motion to

update the positions and velocities of the masses. Stochastic behavior is introduced

through randomly weighted sum of forces. The algorithm balances exploration and

exploitation by reducing the number of forces applied over time. GSA benefits from

communication between masses, adaptive learning rate, and control over motion and

attraction. It shows good convergence rates in experiments and allows for the

adjustment of search accuracy [27]. Figure 1.12 demonstrates the force-based position

update of a mass [28].

Figure 1.12 – Demonstration of Position Update in the GSA

Charged System Search

The Charged System Search (CSS) algorithm, proposed by A. Kaveh and S. Talatahari, is

an optimization technique that draws inspiration from physics and mechanics. It

utilizes principles from electrostatics and Newtonian laws to create a multi-agent

approach. In CSS, each agent represents a charged particle (CP) and interacts with

others based on fitness values and separation distances. Electrostatics laws determine

the resultant force, while Newtonian mechanics laws govern the movement quality

[29].

In CSS, each potential solution is represented as a charged particle, and their

interactions are governed by electric forces analogous to Coulomb’s law. The charges

on the particles reflect the quality of their solutions, and the algorithm employs

attractive and repulsive forces between particles based on their charges and distances.

This encourages exploration and exploitation of the search space. The resultant force

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

26

acting on each particle is calculated considering these factors. To update the particles’

positions and velocities, Newtonian mechanics principles come into play. The new

position depends on the previous position, velocity, and the resultant force acting on

the particle. The velocity is adjusted based on the change in position and the time step.

CSS effectively balances exploration and exploitation by considering solution quality,

attractive and repulsive forces, and Newtonian mechanics. This enables efficient

search and convergence towards the optimal solution in the solution space. [29]

C. Central Force Optimization

Central Force Optimization (CFO) is a metaheuristic search algorithm proposed by R. A.

Formato in 2007. Inspired by gravitational kinematics, CFO employs a metaphor of

“probes” navigating a multidimensional decision space, mirroring the motion of

masses under gravity. Equations derived from particle motion govern the positions and

accelerations of the probes [30].

Central Force Optimization (CFO) is an optimization algorithm that utilizes the

principles of gravitation to guide particles towards better solutions. Each particle

represents an object or solution, and its movement is driven by gravitational

attraction. The goal is to maximize a given fitness function that measures performance.

The algorithm starts with initializing a population of particles in a multi-dimensional

space, distributed uniformly along “probe lines.” Particle acceleration is initially set to

zero. The next step involves calculating the acceleration of each particle based on

Newton’s law of gravity. The particle’s mass, derived from the objective function,

influences its gravitational attraction to other particles.

The motion procedure updates the positions and velocities of particles using Newton’s

motion laws. Particle movement is restricted within a feasible region, and positions are

updated deterministically using a gradient algorithm. The fitness function is evaluated

at the new positions, and the algorithm iterates until a desired or global best solution

is found. Convergence conditions ensure the algorithm converges to the best solutions

discovered [31].

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

27

Big-Bang Big-Crunch

The “Big Bang-Big Crunch” optimization method was proposed by Osman K. Erol and

Ibrahim Eksin [32]. It is a physics-based algorithm that draws inspiration from the Big

Bang and Big Crunch theory of the evolution of the universe. The method involves two

phases: the Big Bang phase, where random points are generated, and the Big Crunch

phase, where these points are converged to a representative point using a center of

mass or minimal cost approach.

In the Big Bang phase, the algorithm creates an initial population of candidates

randomly spread across the search space. This randomness represents energy

dissipation in nature. The population size is fixed, and candidates are bounded within

the search space. The algorithm then enters the Big Crunch phase, applying a

convergence operator called the Big Crunch. It finds the center of mass of the

population, representing the highest fitness value, using a formula that considers

fitness values. This convergence process resembles gravitational attraction and

eliminates the need for pairwise combinations. Next, the algorithm generates new

candidate solutions for the next iteration by spreading offsprings around the center of

mass using a normal distribution operation. The standard deviation decreases as

iterations progress, converging towards an optimal point while exploring the search

space.

The algorithm alternates between the Big Bang and Big Crunch phases until a stopping

criterion is met. It involves generating candidates, evaluating fitness values, finding the

center of mass, and creating new candidates around it. The goal is to converge to an

optimal point while maintaining a diverse population that decreases the probability of

being far from the center of mass [32].

C. Swarm Based Algorithms

Swarm-based optimization algorithms are a type of metaheuristic algorithms that draw

inspiration from swarm intelligence (SI) observed in nature. These algorithms mimic

the collective behavior of swarms or groups of individuals to solve optimization

problems.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

28

In swarm-based optimization algorithms, a population of candidate solutions (often

called particles or agents) iteratively explores the search space to find an optimal or

near-optimal solution. The individuals within the swarm interact with each other and

exchange information to collectively improve their search performance [33].

Particle Swarm Optimization

Particle Swarm Optimization (PSO) was developed by James Kennedy and Russell

Eberhart in 1995. Inspired by the collective behavior of birds and fish, they introduced

PSO as an optimization algorithm. PSO employs a population of particles that

dynamically move and interact with one another to explore and find optimal solutions

within a given problem space [34]. Since its inception, PSO has gained significant

popularity and has been extensively utilized across diverse domains for effective

optimization problem-solving.

The Algorithm simulates a swarm of particles moving through a problem space to find

the best solution. Each particle represents a potential solution and adjusts its position

based on a velocity vector. Personal experience and social influence guide the

particle’s movement. It remembers its best position and learns from the swarm’s

collective knowledge.

The algorithm starts with randomly distributed particles. At each iteration, the velocity

and position of each particle are updated based on its current and best positions. This

process continues until a stopping criterion is met.

PSO balances personal experience and swarm knowledge to explore the problem space

efficiently. Its stochastic nature and particle memory enable it to adapt and find good

solutions in complex search spaces. [35]

Ant Colony Optimization

Ant Colony Optimization (ACO) was proposed by Marco Dorigo and his colleagues in

the early 1990s [36]. Marco Dorigo, an Italian computer scientist, introduced the

concept of ACO as an optimization algorithm inspired by the foraging behavior of ants.

ACO simulates the behavior of ant colonies to solve optimization problems by

iteratively constructing solutions and refining them based on pheromone trails. The

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

29

algorithm has gained popularity and has been successfully applied to various problem

domains.

In ACO, artificial ants construct solutions by traversing a construction graph and

depositing pheromone on the components they visit. The choice of components is

influenced by pheromone levels and heuristic information. A local search can be

applied to refine the solutions, and pheromone values are updated based on solution

quality. ACO has different variations, such as Ant System (AS) and Ant Colony System

(ACS), each with specific rules for pheromone update and solution construction.

Overall, ACO is an effective algorithm for finding optimal solutions by mimicking the

behavior of ants [36].

Firefly Algorithm

The Firefly Algorithm (FA) was proposed by Xin-She Yang in 2008. It is an optimization

algorithm inspired by the flashing behavior of fireflies in their natural environment.

The algorithm gained attention for its ability to effectively solve complex optimization

problems [37].

The algorithm mimics how fireflies use their bioluminescent flashes to attract mates

and communicate. Each firefly represents a potential solution, with its light intensity

indicating solution quality.

The algorithm starts with a random population of fireflies. Fireflies move towards

more attractive individuals based on their light intensity. Their movement considers

attractiveness, distance, and a randomization parameter.

Iterations involve evaluating fitness, sorting fireflies, and updating positions.

Termination occurs when a criterion is met. The algorithm achieves a balance between

exploration and exploitation, mirroring the collective intelligence exhibited by social

insects [38].

Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) was proposed by Seyedali Mirjalili in 2016 as

a nature-inspired optimization algorithm. Mirjalili introduced the WOA in his research

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

30

paper titled “Whale Optimization Algorithm,” which aimed to develop a novel

approach for solving optimization problems [39].

The Whale Optimization Algorithm (WOA) is an optimization algorithm inspired by the

hunting behavior of humpback whales. It mimics their bubble-net feeding method,

where whales work together to encircle and trap prey. The algorithm uses a

population of search agents representing potential solutions. It combines exploration

and exploitation phases, with agents moving randomly and towards the current best

solution. The algorithm iterates, updating agent positions and evaluating fitness until a

termination criterion is met. The WOA algorithm leverages whale behavior to

efficiently search for optimal solutions in various optimization problems [39].

D. Human Based Algorithms

Human-based optimization algorithms, also known as bio-inspired or nature-inspired

algorithms, are metaheuristic methods that draw inspiration from human behaviors,

social interactions, or natural phenomena to solve complex optimization problems.

These algorithms attempt to mimic the problem-solving strategies employed by

humans or observe patterns in natural systems to find optimal solutions.

Social Emotional Optimization

The Social Emotional Optimization Algorithm (SEOA) was proposed by Yuechun Xu,

Zhihua Cui, and Jianchao Zeng in 2010. This algorithm is a swarm intelligent technique

that simulates human behavior guided by emotions to solve nonlinear constrained

optimization problems. It aims to address the challenges of nonlinear programming

problems by incorporating social and emotional aspects into the optimization process

[40].

The Social Emotional Optimization Algorithm (SEOA) is inspired by human behavior in

society, where individuals strive to increase their social status. It employs virtual

individuals who make choices based on their emotional index, which is evaluated by

society. Initially, all individuals have an emotion index of 1 and choose their behavior

using a set of manners and random factors. The algorithm incorporates thresholds and

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

31

parameters to simulate human behavior and control the behavior selection process

[41].

Imperialist Competitive Algorithm

The Imperialist Competitive Algorithm (ICA) was proposed by Esmaeil Atashpaz-Gargari

and Caro Lucas in 2007. The algorithm is inspired by imperialistic competition and aims

to solve optimization problems. It starts with an initial population divided into colonies

and imperialists, forming empires. Through competition, powerful empires take over

weaker ones, leading to convergence towards a state with a single empire. [42]

The Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm that simulates

the competition and assimilation processes among countries. Individuals in the

population represent countries, divided into imperialist countries and colonies.

Imperialists are selected based on lower costs, and colonies are assigned to

imperialists based on their power. Colonies move towards their respective imperialists,

representing assimilation. Empires compete and weaker ones collapse, leading to

convergence. The algorithm includes revolution to prevent early convergence and

position exchanges. Weaker empires lose colonies to stronger ones. Competition

among empires determines colony distribution [43].

Teaching Learning Based Optimization

Teaching Learning Based Optimization (TLBO) is an optimization method proposed by

R.V. Rao, V.J. Savsani, and D.P. Vakharia in 2011. It was specifically developed for

constrained mechanical design optimization problems. Inspired by the relationship

between a teacher and learners, TLBO is a population-based technique consisting of

two phases: the Teacher Phase and the Learner Phase. In the Teacher Phase, learners

acquire knowledge from the teacher, while in the Learner Phase, learners interact and

improve collectively [44].

Teaching-Learning-Based Optimization (TLBO) is an optimization technique that

emulates the teaching and learning process in a classroom. It simulates the interaction

between a teacher and a group of learners to solve optimization problems.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

32

TLBO operates in two phases: the Teacher Phase and the Learner Phase. In the Teacher

Phase, the teacher guides the learners towards better performance by modifying the

existing solutions using a teaching factor and random numbers. During the Learner

Phase, learners interact with each other, comparing their performances and adjusting

their solutions based on the difference between them and random numbers. TLBO is a

population-based method where the population represents the group of learners. The

goal is to find the global solution that maximizes or minimizes the fitness function,

corresponding to the learners’ performance.

By drawing inspiration from the dynamics of a classroom, TLBO offers a unique

approach to optimization, fostering interactions and knowledge exchange to improve

performance iteratively [45].

Soccer League Competition

The Soccer League Competition (SLC) algorithm, proposed by Naser Moosavian and

Babak Kasaee Roodsari in 2014, is a meta-heuristic optimization technique inspired by

the competitive nature of soccer leagues. It incorporates the concept of teams and

players competing for top positions in the league table to solve various optimal design

problems. By dividing the population into teams and simulating their competition, the

SLC algorithm aims to find the global optimum.

In soccer league competitions, teams compete against each other over a season to

achieve top positions in the league table. Matches are played, and teams earn points

based on their performance. At the end of the season, the team with the most points

becomes the champion, while the bottom two teams are relegated to a lower-level

league, making room for new talent. Each team consists of fixed players and

substitutes, with internal competitions to improve performance. Key players, such as

the Star Player and Super Star Player, play crucial roles. Strategies and competitions

within teams lead to overall performance improvement. The Soccer League

Competition (SLC) algorithm simulates this process to solve optimization problems. It

follows steps such as initializing parameters, generating samples, assessing teams,

updating standings, and handling relegation and promotion. SLC algorithm utilizes the

dynamics of soccer leagues to optimize solutions and improve performance [46].

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

33

1.3.2 Discussion

WOA (Whale Optimization Algorithm) is a recent approach that has shown promising

performances in multiple engineering disciplines. In our research, we aim to pioneer its

application in path planning, specifically in conjunction with the Rapidly-exploring

Random Tree (RRT) algorithm, as we anticipate it to yield highly positive results. To the

best of our knowledge, RRT has not yet been implemented with WOA for path

planning.

There are several key reasons why WOA holds great potential for path planning:

Low computational complexity: WOA exhibits relatively low computational complexity

when compared to other optimization algorithms. This characteristic is particularly

advantageous for real-time applications like autonomous navigation, where quick

decision-making is crucial.

Ability to handle nonlinear and non-convex problems: Path planning in autonomous

navigation often involves nonlinear and non-convex optimization problems which may

contain local minima. WOA has demonstrated effectiveness in dealing with these

problem characteristics [39]. By leveraging its exploration and exploitation

mechanisms, WOA can efficiently explore the search space, even in the presence of

complex constraints and irregular landscapes. Consequently, it leads to better path

planning outcomes.

Potential for parallelization: The characteristics exhibited by WOA make it well-suited

for parallelization, which in turn allows for effective utilization of modern hardware

architectures. By updating the agents individually in a parallel manner, the exploration

of the search space is accelerated.

Our research aims to investigate and validate the potential benefits of leveraging WOA

(Whale Optimization Algorithm) in conjunction with the RRT (Rapidly-exploring

Random Tree) algorithm for path planning. The focus of our investigation lies in

exploring the specific advantages offered by WOA and how they can be effectively

utilized in this context.

Chapter 1 Motion Planning and Trajectory Optimization: State of the Art

34

1.4 Conclusion

In this chapter, we conducted a detailed examination of motion planning,

encompassing its definition, a brief overview of its historical background, the

fundamental concepts associated with it, and an introduction to the main classes of

motion planning algorithms, namely deterministic and sampling-based approaches.

We explored prominent algorithms within these classes, including Dijkstra’s algorithm,

A*, Visibility Graph, Voronoi Diagram, Rapidly-exploring Random Trees (RRT), and

Probabilistic Road Maps.

Furthermore, we concluded the motion planning section by comparing the

aforementioned algorithms in terms of completeness, optimality, memory usage,

handling dynamic environments, and accommodating non-holonomic constraints.

Additionally, we provided an overview of metaheuristic optimization approaches,

specifically evolutionary-based, physics-based, swarm-based, and human-based

methods, along with some of their corresponding algorithms.

We also justified our selection of the RRT algorithm as the primary path planning

algorithm for our study, considering its advantages for our application scenario. We

acknowledged the weaknesses of RRT and expressed our intention to address them by

exploring its variants. One of the main reasons behind choosing RRT was its

adaptability, allowing for extension through optimization algorithms. Consequently,

we opted for the integration of the Whale Optimization Algorithm (WOA) as the

optimization algorithm in conjunction with RRT, which was supported by several

reasons specific to this choice.

In the upcoming chapter, we will introduce RRT and briefly discuss its variants. We will

then provide a rationale for our selection of a particular variant. Additionally, we will

present the formulation of WOA and outline our proposed variants, along with the

type of control generation we have opted for.

35

Chapter 2

Optimal Motion

Planners: Proposed

Approaches

Chapter 2 Optimal Motion Planners: Proposed

Approaches

Chapter 2 Optimal Motion Planners: Proposed Approaches

36

2.1 Introduction

Rapidly-exploring Random Tree (RRT) is a popular algorithm used for motion planning

in robotics and computer graphics. It efficiently explores the search space to find

feasible paths between a start and goal configuration. RRT is well-suited for high-

dimensional and complex motion planning problems, overcoming the curse of

dimensionality.

Many variants of RRT exist to address specific challenges and improve performance.

Variants like RRT* [47], RRT-Connect [48], and Goal Biased-RRT [49] introduce

modifications to tackle issues such as narrow passages, high-dimensional spaces, and

dynamic obstacles.

Optimization techniques like the Whale Optimization Algorithm (WOA) can enhance

the performance of RRT and its variants, discovering feasible and optimized paths in

complex scenarios. WOA is versatile and has been successfully applied to various

optimization problems, overcoming local optima and converging to high-quality

solutions [39].

The chapter provides an overview of RRT, its limitations, and the development of

variants. It explores the integration of WOA and its advantages. The sections cover

RRT’s operational principles, renowned variants, justification for choosing RRT*, its

enhancements and limitations, and the proposed local and global variants of RRT*

combined with WOA. The nature of the robot platform and the chosen approach for

generating controls are also discussed.

2.2 Rapidly-exploring Random Tree

The Rapidly Exploring Random Tree (RRT) algorithm is a path planning technique

introduced by Steven M. LaValle in June 1998. It was developed as a simple and

iterative algorithm to efficiently search complex and high-dimensional spaces for

feasible paths. The RRT algorithm has since become widely used in various robotic

systems and other fields.

Chapter 2 Optimal Motion Planners: Proposed Approaches

37

The algorithm begins with an initial configuration or point in the space, which acts as

the root of the tree. This initial configuration could represent the starting position of a

robot or any other desired location. The tree is then iteratively expanded by randomly

sampling points in the space. In each iteration, a new random sample is generated in

the space. The nearest point in the existing tree is identified, and a connection is

established between this point and the new sample if it lies within the free space. The

connection is usually made by following a straight line or any other suitable trajectory.

This process is repeated for a predefined number of iterations or until a specific

condition is met. As the algorithm progresses, the tree structure gradually expands and

covers the space more uniformly. Eventually, if the initial and goal regions are

reachable within the space, the growing tree will establish a connection between

them. This connection indicates the discovery of a feasible path from the initial

configuration to the goal configuration.

Initialization of the tree with

Generation of a random sample

The nearest node to from

Insertion of through steering from

Chapter 2 Optimal Motion Planners: Proposed Approaches

38

the current tree is towards

Second expansion

After 9 Added nodes, falls within the

goal region and the path is returned

Figure 2.1 – Building Process of the Rapidly-exploring Random Tree

Presented below is the Rapidly-exploring Random Tree algorithm.

 ()

 ()

The Rapidly Exploring Random Tree (RRT) algorithm, although powerful, does have

certain limitations. While RRTs are primarily designed for static environments and can

be effective in many cases, they do not guarantee optimal paths and may converge

slowly in certain scenarios. Additionally, they do not inherently handle dynamic

obstacles or account for changes in the environment during the planning process.

However, researchers have developed variants of the RRT algorithm to address some

of these limitations. These variants aim to enhance the efficiency and performance of

the algorithm by considering dynamic obstacles and adapting to changes in the

Chapter 2 Optimal Motion Planners: Proposed Approaches

39

environment. By incorporating these improvements, the modified versions of RRT

strive to provide better planning results and overcome some of the original algorithm’s

shortcomings.

2.3 The RRT Variants

In this section, we will discuss briefly the main contributions of various RRT (Rapidly-

exploring Random Tree) variants.

S-RRT. Introduces a greedy approach to shorten the total length of the path,

Incorporates B-spline curves to provide smoother paths, and reduces the path

complexity by removing redundant nodes from the tree [50].

RRT*. During the node insertion process. First, it selects the parent node that

minimizes the overall cost to the root resulting in shorter paths. Second, dynamic edge

rewiring is implemented to provide efficient exploration of the configuration space

[51].

RJ-RRT. Incorporates a greedy-based sampling strategy that progressively narrows

down the sampling space to the goal area. Additionally, it employs an enhanced

environment judgment method that swiftly detects and explores narrow passage. This

method utilizes a simple calculation to determine the environment at each sampling

point [52].

RRT-Connect. Introduces the Connect heuristic, enabling longer-distance movements

and rapid convergence to a solution. Moreover, the simultaneous maintenance of two

trees facilitates quick and uniform exploration of the configuration space [53].

IRRT-Connect. Makes use of a third node based on the idea of dichotomous points,

allowing the algorithm to be extended with four trees. In addition, biased spanning of

the tree towards the goal point effectively addresses the blind search problem of RRT-

Connect [54].

RRT-A*. Integrates the A* cost function, allowing for informed decision-making during

the planning process and improved generated paths [55].

Chapter 2 Optimal Motion Planners: Proposed Approaches

40

ORRT-A*. Employs morphological dilation to inflate obstacles before path generation,

preventing collisions and improving safety. Furthermore, cubic spline interpolation is

used to smoothen the generated path, ensuring seamless transitions and a visually

appealing trajectory [56].

PG-RRT. Incorporates Gaussian models to enhance goal adaptation and faster

convergence in RRT node generation. Additionally, feasible Gaussian model samples

are included to ensure kinematic compatibility. Moreover, a specialized node has been

introduced to facilitate intelligent tree expansion towards the goal [57].

pRRT. Integrates uncertainty by simulating multiple search tree extensions as a

stochastic process. The variant also implements probabilistic selection of extensions

and entire paths based on the expected probability of successful execution,

considering costs and likelihood of success. In addition, it considers various cost

metrics beyond path length, such as energy consumption and execution time, enabling

paths with different cumulative costs. To enhance robustness in uncertain

environments, the variant propagates uncertainty to planned paths and accounts for

factors like terrain characteristics, sensor accuracy, and coefficients of friction [58].

NRRT*. Uses a trained CNN model to guide the sampling process and predict optimal

path probabilities [59].

FG-RRT. Incorporates a fuzzy logic-based approach to allow for an intelligent decision-

making process during tree expansion [60].

MRRT. Uses artificial guided points to explore narrow passages. Moreover, the

incorporation of trajectory primitives respecting the robot’s dynamic constraints

enables generation of feasible trajectories [61].

GB-RRT. Integrates potential fields representation of the environment to significantly

increase the sampling efficiency. Furthermore, the use of cubic B-splines to generate

smoother paths and eliminate sharp turns, results in feasible paths [62].

Bi-RRT. Allows comprehensive exploration of the search space by simultaneously

generating two trees, one from the starting point and the other from the target point

[63].

Chapter 2 Optimal Motion Planners: Proposed Approaches

41

RRT-Rope. Uses an optimized version of RRT-Connect enabling rapid computation of

feasible paths. By simultaneously growing two trees towards each other, it significantly

reduces path finding time. To further enhance the computed path, a deterministic

shortcutting technique is employed. This technique efficiently shortens the path after

computation by leveraging intermediate nodes without compromising resolution [64].

RRT*-Smart. Optimizes the initial path by directly connecting visible nodes, reducing

the number of nodes compared to the original RRT* path. Additionally, it biases the

sampling towards beacons, which are nodes in the optimized path, helping the

algorithm approach optimality faster [65].

RRV. Explores narrow passages by utilizing dominant eigenvectors and precise

sampling, allowing for the effective expansion of the tree. It is aware of tree nodes

located near narrow passages, enabling appropriate expansion in those areas.

Additionally, it employs a unique vine-like expansion strategy along obstacles,

facilitating efficient identification and traversal of narrow passages [66].

RRT-Blossom. Enables local exploration while avoiding local minima, ensuring

expansions move away from the target without regression. Additionally, it improves

node generation efficiency and exploration rate by instantiating all eligible edges

during node expansion. Furthermore, it detects deadlocks when all accessible paths

are blocked, allowing the next expansion attempt to ignore regression constraints [67].

2.4 Discussion

The previous variants of the Rapidly Exploring Random Tree (RRT) algorithm have

made significant contributions, each improving the algorithm in specific areas while

potentially introducing limitations in others.

Our primary focus is to identify a variant that greatly prioritizes optimality, as obtaining

a high-quality path enhances the comfort of wheelchair users and instills a sense of

predictability among people around the device.

Among the variants, RRT* has emerged as a highly successful and widely recognized

algorithm in the research field because of its asymptotic optimality property. This

Chapter 2 Optimal Motion Planners: Proposed Approaches

42

means that given an infinite amount of time and samples, the algorithm will converge

to the optimal solution if one exists. The aspect of RRT* achieving asymptotic

optimality has been thoroughly studied, leading to the establishment of formal

guarantees [68].

The upcoming section will explore the enhancements brought by RRT*.

2.5 The RRT* Algorithm

The RRT* algorithm, introduced in 2006 by Steven LaValle and James Kuffner, extends

the Rapidly-exploring Random Tree (RRT) algorithm to overcome limitations of the

original approach. RRT* improves upon RRT by introducing both parent choosing and

edge rewiring steps to optimize the tree structure and reduce the overall cost of the

path. These enhancements address the lack of optimality guarantees and sensitivity to

algorithm parameters found in the original RRT. By combining parent choosing and

edge rewiring, RRT* is able to generate near-optimal paths while efficiently exploring

high-dimensional configuration spaces [51].

2.5.1 Enhancements

RRT* shares a similar approach with RRT in the initial phase, where random samples

are incrementally connected to the existing tree structure to explore the configuration

space. However, RRT* introduces two key modifications to enhance its performance.

A. Parent Choosing

RRT* identifies nearby nodes when a new node is generated. Within this

neighborhood, it selects the parent node that minimizes the path cost. This approach

enhances path optimality and increases the probability of finding near-optimal paths.

Chapter 2 Optimal Motion Planners: Proposed Approaches

43

Generation of a new node

Assessment of the cost of nearby nodes to

the root

Selection of the best parent node

Insertion of the new node into the tree

Figure 2.2 – Parent Choosing Process of RRT*

B. Edge Rewiring

RRT* performs edge rewiring after adding a new node. It reevaluates the edges within

the node’s neighborhood and rewires them to achieve lower path costs. This process

involves considering alternative connections and assessing the potential for reducing

costs. By dynamically adjusting the edges, RRT* improves path efficiency and explores

the configuration space more effectively.

Chapter 2 Optimal Motion Planners: Proposed Approaches

44

Insertion of the new node into the tree

Assessment of the potential cost

reduction of nearby nodes

Selection of candidate nodes (Green) for

rewiring

The unselected nodes (Red) remain as

they are, The candidate nodes have their

current edges removed

The candidate nodes are rewired with to achieve lower costs

Figure 2.3 – Edge Rewiring Process of RRT*

Chapter 2 Optimal Motion Planners: Proposed Approaches

45

2.5.2 Tree Construction

The RRT* algorithm begins by taking the initial configuration and goal

configuration as parameters. It initializes the tree with an empty set of nodes

and edges. The algorithm inserts the root node into the tree.

To build the tree, the algorithm samples a random configuration from the free

space. It then finds the nearest node in the tree based on the Euclidean distance

metric. From , a new node is extended towards with a predefined

step size.

If the new node belongs to the free space, the algorithm considers its

neighborhood . Within this neighborhood, it selects the parent node

that minimizes the overall cost to the root node. The new node is then inserted

into the tree .

Next, the algorithm reevaluates the neighboring nodes and rewires their connections

to achieve lower path costs. This process improves the efficiency and optimality of the

tree structure.

If the goal configuration is reached, the algorithm returns the path. Otherwise,

the process of building the tree continues iteratively until the maximum number of

iterations is reached. If no path is found within the maximum iterations, the algorithm

does not return a path.

Presented below is the Rapidly-exploring Random Tree Star (RRT*) algorithm.

 ()

 | |

 ()

Chapter 2 Optimal Motion Planners: Proposed Approaches

46

 ()

 ()

 ()

It is important to note that RRT* is primarily applied in static environments, as it lacks

inherent support for dynamic obstacles. Addressing this limitation is crucial for our

application scenario, and it will be the subject of discussion in the upcoming chapter.

2.6 Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is a metaheuristic optimization algorithm

inspired by the hunting strategy of humpback whales. It was first proposed in 2016 by

Seyedali Mirjalili, a researcher at Griffith University in Australia [39]. Since then, the

WOA has gained significant attention and has been widely and recently used in various

works of path planning due to its impressive performance [69,70,71].

2.6.1 Inspiration

The remarkable characteristics and behaviors of whales have served as a significant

inspiration for the development of the Whale Optimization Algorithm. Whales, as the

largest mammals on Earth, exhibit impressive traits such as intelligence and emotional

capacity. This allows them to think, learn, communicate, and display emotions, albeit

at a lower level of intelligence compared to humans.

Humpback whales, one of the largest baleen whale species, employ a distinctive

hunting technique known as bubble-net feeding. It involves the creation of bubbles in

a circular or spiral shaped path to enclose prey near the water's surface. Initially

studied through surface observations, researchers later utilized tag sensors to capture

and analyze 300 instances of bubble-net feeding in nine individual humpback whales.

This research identified two maneuvers associated with bubble-net feeding: upward-

spirals and double-loops. Humpback whales dive approximately 12 meters, create a

spiral-shaped bubble net around their prey, and swim back up to the surface,

strategically positioning themselves to capitalize on the trapped prey [39].

Chapter 2 Optimal Motion Planners: Proposed Approaches

47

The exceptional bubble-net feeding behavior of humpback whales has provided

inspiration for the authors of the algorithm, leading them to mathematically model

and optimize this unique foraging strategy.

Figure 2.4 – Bubble-net Feeding Technique of Humpback Whales

2.6.2 Formulation

A. Initialization

The WOA algorithm represents whales as a population of n search agents, dynamically

exploring the solution space. The best known solution, denoted as , is associated

with the concept of prey. The population size is predetermined, and the initial

positions of whales are randomly assigned within the search space. To manage the

algorithm's execution time, the maximum number of iterations is specified.

B. Choice of Maneuver

During the execution of the algorithm, each whale is required to make a choice

between two distinct behaviors. The first option is to move in accordance with the

"Shrinking Circle Mechanism" or engage in the "Search for Prey" behavior.

Alternatively, the second behavior choice entails implementing the "Spiral Updating

Position" strategy. This choice of strategies is determined by the values of two random

parameters: ranging in the interval [0, 1] and a ranging in the interval [-2, 2].

Figure 2.5 depicts a diagram illustrating the behavior selection process within the

Whale Optimization Algorithm.

Chapter 2 Optimal Motion Planners: Proposed Approaches

48

 If is less than 0.5 and | | is greater than 1, the whale selects a random agent to

move away from, emphasizing exploration. However if | | is less than 1, it switches

to the Shrinking Circle Mechanism, prioritizing exploitation.

 If is greater than or equal to 0.5, the whale chooses to follow a spiral movement.

Figure 2.5 - Behavior Selection Diagram of the Whale Optimization Algorithm

C. Bubble-Net Attacking Method (Exploitation Phase)

Shrinking Encircling Mechanism enables each whale to navigate towards the optimal

solution ⃗ using the following equation:

 ⃗⃗⃗ | ⃗ ⃗ ⃗ |

 ⃗ ⃗ ⃗ ⃗⃗⃗

Where indicates the current iteration, ⃗ is the position vector of the best solution

obtained so far, ⃗ is the position vector, || is the absolute value, and is an element-

by-element multiplication. ⃗ and ⃗ are coefficient vectors and are calculated as

follows:

Chapter 2 Optimal Motion Planners: Proposed Approaches

49

 ⃗ ⃗ ⃗ ⃗

 ⃗ ⃗

Where ⃗ is linearly decreased from 2 to 0 over the course of iterations (in both

exploration and exploitation phases) and ⃗ is a random vector in the interval [0, 1].

Spiral Updating Position enables each whale to navigate towards the optimal solution

 ⃗ using the following equation:

 ⃗⃗ ⃗⃗ | ⃗ ⃗ |

 ⃗ ⃗⃗ ⃗⃗ ⃗

With as a random variable varying within the interval [-1, 1] and as a coefficient

that defines the shape of the logarithmic spiral.

D. Search for Prey (Exploration Phase)

This strategy enables each whale to move far away from a random whale using the

following equation:

 ⃗⃗⃗ | ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|

 ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗

Where
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is a random agent’s position vector.

2.6.3 Algorithm

The Whale Optimization algorithm starts by initializing a population of search agents

with random positions, representing potential solutions. Their fitness values are

calculated, indicating performance in terms of the objective function. The best fitness

value is initially set.

The algorithm proceeds to enter the main loop, where it iterates over each search

agent and performs the following updates. The coefficients () are updated. If

 is less than 0.5, the magnitude of is examined. If | | is less than 1, an update is

Chapter 2 Optimal Motion Planners: Proposed Approaches

50

performed using Shrinking Encircling Mechanism equation (2.2). Otherwise, Search for

Prey equation (2.8) is used.

When is greater than or equal to 0.5, agents are updated with Spiral Updating

Position equation (2.6). After updating, a boundary check ensures positions remain

within the search space. Fitness is recalculated, and the iteration counter is

incremented. The iterative process continues until the maximum number of iterations

is reached.

Finally, the algorithm returns the best solution found after the specified iterations,

representing the optimal solution to the optimization problem.

Presented below is the Whale Optimization algorithm.

 | |

 | |

2.7 Proposed Local Variant

The proposed local variant optimizes the extension process of RRT* by leveraging the

Whale Optimization Algorithm. This variant enhances the efficiency of exploring the

search space by expanding towards promising areas. In this approach, each particle in

the population is represented as a single configuration.

Chapter 2 Optimal Motion Planners: Proposed Approaches

51

To guide the expansion process, biasing weights are employed in the variant, enabling

a range of strategies from completely random to goal-oriented expansion.

Additionally, the inclusion of visibility factors addresses the local minima problem.

These factors prioritize solutions that have an unobstructed line of sight to both the

starting node and the goal node. Essentially, the local variant favors solutions that can

perceive both the initial and goal nodes without encountering any obstacles in

between.

The proposed local variant incorporates the RRT* algorithm but replaces the steer

function with algorithm 4. This modified algorithm takes into account three main

parameters: the nearest configuration (), the random configuration (), and

the goal configuration (). Firstly, it uses as the center point and a

predefined radius to initialize the population with random configurations that are

located within that circle. Secondly, it utilizes , , and to calculate the

objective function, which is based on four factors. Two factors represent the distance

to and , while the other two factors are binary and indicate the visibility of

the solution to and , the former one having higher priority.

Finally, the new node is generated by extending from towards with a

specified step size, and this new node is returned as the result.

 ()

 ()

 | |

 | |

 ()

Chapter 2 Optimal Motion Planners: Proposed Approaches

52

Figure 2.6 – Local Variant During Optimization Phase

The figure 2.6 above illustrates the population of solutions during the optimization

phase. The red dots represent invalid solutions as they cross the obstacle, while the

blue dots indicate solutions that possess a direct line of sight to the nearest

configuration. On the other hand, the orange dots maintain a straight visibility line to

the goal configuration. As for the green dots, they have visibility to both the nearest

and goal configurations. Finally, the magenta node found in the center represents the

current best solution achieved thus far.

2.8 Proposed Global Variant

The proposed global variant utilizes the Whale Optimization Algorithm to improve the

quality of the path obtained from RRT*. In this variant, each particle in the population

is encoded as an array of configurations, representing a specific path.

To optimize the path, the algorithm considers two essential factors. Firstly, it focuses

on minimizing the length of the path, aiming to find a trajectory that is shorter and

more efficient. Secondly, it employs a binary factor to indicate whether the path is

collision-free or not, thereby ensuring safe traversal.

The global variant incorporates the path obtained from RRT* as the initial particle,

serving as the population's initialization. To ensure diversity, randomization is applied

Chapter 2 Optimal Motion Planners: Proposed Approaches

53

to each position along the path. This process involves assigning values within a circular

region centered at the initial origin, with a radius of R, to every particle in the

population. Afterward, the optimization algorithm refines the paths of all particles.

Ultimately, the optimized solution is determined by selecting the best path among the

particles. Figure 2.7, presented below, provides a visual representation of this variant.

 | |

 | |

Figure 2.7 – Global Variant During Optimization Phase

The red paths denote invalid solutions as they traverse through the obstacle, while the

blue paths indicate valid solutions. Among them, the green path represents the current

best solution achieved thus far.

Chapter 2 Optimal Motion Planners: Proposed Approaches

54

2.9 Robot Motion

In this section, we will discuss the nature of our robot platform and the approach we

have chosen for control generation.

2.9.1 Robot Platform and Kinematic Modeling

Despite our proposed motion planning variants generating a path from the initial to

the goal configuration, this high-level process that considers factors such as obstacles

and optimality alone does not provide us with the necessary low-level information

about the controls needed to effectively follow the trajectory.

The trajectories generated by our approach are non-linear in nature, and we also need

to handle various constraints like collision avoidance and velocity limits while aiming

for optimal control. This led us to opt for an optimization algorithm to generate the

controls, rather than relying on analytical methods.

To begin, we will introduce our robot platform, emphasizing its key features and

capabilities. Following that, we will present a model that approximates the robot's

position based on its velocities. Finally, we will outline the approach we used to

generate the appropriate controls for the robot, considering the trajectory and other

relevant factors.

2.9.2 Differential Drive Robot and the Odometric Model

The motorized wheelchair, which serves as the mobile robot for our study,

incorporates a differential drive system to control its movement. This system consists

of two separate wheels, each driven by its own motor. Unlike traditional vehicles with

a single motor driving both wheels, the differential drive system allows independent

control of the two wheels.

By altering the speed and direction of each drive wheel, a differential drive robot can

execute various types of maneuvers. For instance, if both wheels rotate at the same

speed in opposite directions, the robot can pivot around a central point, enabling it to

turn in place. If the wheels rotate at different speeds in the same direction, the robot

will move along a curved path.

Chapter 2 Optimal Motion Planners: Proposed Approaches

55

The differential drive configuration offers several advantages. Firstly, it simplifies the

mechanical design by requiring fewer moving parts compared to other drive systems.

This results in a more compact and lightweight robot. Secondly, it provides excellent

maneuverability, as the robot can easily navigate tight spaces and perform agile

movements.

Figure 2.8 Representation of a Non-holonomic Differential Drive Mobile Robot

The cinematic model for a differential drive robot is a mathematical representation

that describes the relationship between the robot's wheel velocities and its linear and

angular motion. It allows us to predict the robot's position and orientation based on

the inputs given to its wheels.

 ̇

 ̇

 ̇

Where is the speed of the caster wheel, The instantaneous rotation of the robot

with respect to the reference frame (), is the angular velocity of the caster

wheel, D is the distance between the center of the two drive wheels and the caster

wheel, and is the instantaneous orientation of the caster wheel.

So, the position of the robot is given by:

Chapter 2 Optimal Motion Planners: Proposed Approaches

56

 ∫ ()

 ∫

 ∫

When considering the kinematic model of a differential drive system, the integration

process to obtain the positions using equations (2.12), (2.13) and (2.14) can be

troublesome and difficult for several reasons. Firstly, the complexity and accuracy

involved in solving the integrals numerically or approximating them can be

computationally expensive and introduce errors, particularly in real-time or complex

trajectory scenarios. Additionally, the integration amplifies any measurement errors or

inaccuracies in the input velocities and angular velocities, resulting in significant

differences between the estimated position and the actual position of the robot.

Instead, the odometric model, represented by equations (2.15), (2.16), and (2.17),

offers a simpler alternative. By relying on incremental changes in position and

orientation based on known wheel displacements, the odometric model eliminates the

need for integration, reducing the accumulation of errors. Furthermore, the odometric

model allows for real-time estimation, as it only requires information about the

current and previous states, making it more practical for applications that demand

quick updates and responsiveness. Due to its simplicity, reasonable accuracy for short-

term estimates, and widespread use in robotics for tasks like localization and mapping,

the odometric model is often preferred over the integration-based approach in

differential drive systems.

 (

)

Chapter 2 Optimal Motion Planners: Proposed Approaches

57

2.9.3 Control Generation

The use of the Whale Optimization Algorithm (WOA) for control generation is

straightforward. In this approach, each particle is represented as a variable array

consisting of control pairs, namely linear () and angular () controls. Additionally, a

time parameter () is included to specify the duration of the control execution.

This optimization technique is employed for each segment of the path. Consequently,

between every successive waypoints on the path, a set of controls is determined to

bridge the gap. The variable nature of these controls enables the execution of more

complex maneuvers and facilitates non-linear behaviors between two consecutive

nodes. To accomplish this, the objective function incorporates the odometric model

formulas (2.15, 2.16, and 2.17) to accurately estimate the future positions of the robot.

This estimation helps in achieving the appropriate set of controls to transition from

one configuration to another, while also ensuring that the trajectory remains free from

collisions.

The outcome of this problem-solving process is an array of velocity pairs, along with

the corresponding time intervals during which these controls should be applied. It is

worth noting that this approach has produced positive results.

 | |

 | |

Chapter 2 Optimal Motion Planners: Proposed Approaches

58

2.10 Conclusion

In this chapter, we delved into a detailed examination of the Rapidly Exploring Random

Tree (RRT) algorithm and its variants. We also explored the notable improvements

introduced by the RRT* variant and gained a comprehensive understanding of the

Whale Optimization Algorithm.

Additionally, we proposed two variants that combine the Whale Optimization

Algorithm with RRT*. The first variant is a local approach that focuses on the expansion

process, while the second variant is a global approach that operates on the path

generated by RRT*. By incorporating these variants, we aim to enhance the

performance and efficiency of the overall algorithm.

To conclude the chapter, we discussed the kinematic modeling of our robot platform

and emphasized the significance of the odometric model in aiding us in generating

controls for the planned path. Understanding the robot's kinematics and leveraging

the odometric model is crucial for accurately implementing and executing the planned

path.

In the upcoming chapter, we will shift our focus to the simulation setup, where we will

meticulously analyze the proposed variants. Our analysis will involve benchmarking

these variants against the original RRT* algorithm, enabling us to assess their

comparative performance and evaluate their effectiveness in achieving our objectives.

59

Chapter 3

Simulation,

Comparative Analysis,

and Implementation

Chapter 3 Simulation, Comparative Analysis, and

Implementation

Chapter 3 Simulation, Comparative Analysis, and Implementation

60

3.1 Introduction

In this chapter, we will provide a comprehensive overview of the structure used to

implement the algorithms, namely RRT* and the proposed variants (local and global).

Additionally, we will discuss the image processing library utilized to retrieve obstacle

information, as well as the various types of obstacles encountered in an environment

and how our system responds to each of them.

Following this, we will present the experimental setup employed for simulation

purposes, detailing the methodology utilized for conducting benchmarks. We will then

proceed to conduct a comparison of the three algorithms: RRT*, the local variant, and

the global variant. Subsequently, based on our initial findings, we will delve deeper

into an extensive benchmark analysis of the two variants. This analysis will involve

varying several parameters of the Whale Optimization Algorithm and meticulously

examining the outcomes. We will discuss our discoveries and insights resulting from

this process.

Lastly, we will address the hardware and software aspects of this project. We will

introduce the underlying functioning of the Robot Operating System (ROS) and

emphasize its pivotal role in our implementation. To conclude this chapter, we will

present the results obtained and explore their implications.

3.2 Simulation

This section will focus on software implementation of the following algorithms: RRT*,

the local proposed variant, and the global proposed variant. Additionally, we will

evaluate the approach performances in static and dynamic environments. Finally, we

will showcase the simulation results.

3.2.1 Algorithm Implementation

The algorithms were implemented in C++ using an object-oriented approach and a

modularized structure. Since they share the RRT* algorithm, ensuring code reusability

Chapter 3 Simulation, Comparative Analysis, and Implementation

61

was a crucial step in facilitating the software development. Therefore, we adopted a

module framework throughout our project, which consists of the following modules:

Map Processing Module: It handles the processing of map data, such as loading and

representing the environment in a suitable format for motion planning to take place.

Planning Module: It is responsible for generating paths or trajectories for the given

map using RRT* or any of the variants.

Optimization Module: It utilizes the WOA (Whale Optimization Algorithm) to enhance

space exploration in the local variant and to refine the generated trajectory in the

global variant.

Control Generation Module: It focuses on converting the planned path into suitable

control inputs for the robot ensuring successful execution of that motion.

We integrated JSON files for configuration and calibration, simplifying the process of

storing and retrieving simulation parameters. The figure 3.1 illustrates an example of

the configuration file for the global variant.

Figure 3.1 – Configuration File of the Global Variant

Chapter 3 Simulation, Comparative Analysis, and Implementation

62

3.2.2 Obstacle Avoidance

To enable obstacle avoidance, we utilized OpenCV (Open Computer Vision) library to

binarize the workspace once the map was acquired. In this process, white areas

indicates free space, while black areas represent occupied obstacles. Additionally, the

library was employed to transform all existing obstacles within the workspace into a

set of polygons. During the expansion and optimization phases, the segments of these

polygons were checked for intersection, ensuring the generation of collision-free

trajectories.

To further enhance collision avoidance and prevent close proximity to obstacles, we

implemented an additional measure known as obstacle inflation through a dilation

function provided by OpenCV. This involves expanding the size of the obstacles,

effectively creating a safety buffer around them. By increasing the size of the

obstacles, we create a larger margin for the robot to navigate around them, reducing

the risk of potential collisions. An example is depicted in figure 3.2 where obstacle

boundaries are retrieved.

Figure 3.2 – Map Polygon Approximation with 3-Pixel Dilation

When it comes to dealing with obstacles, we have implemented various behaviors for

our system based on the nature of the obstacles. They can be classified into three main

types:

Chapter 3 Simulation, Comparative Analysis, and Implementation

63

Static Obstacles: Static obstacles refer to stationary objects that remain in a fixed

position. Our system takes them into account during the motion planning process,

ensuring that they are avoided while determining the optimal trajectory to the goal.

Temporary Obstacles: Temporary obstacles are obstructions that are present for a

limited period of time. Whenever our system encounters such an obstacle, it promptly

reevaluates the entire trajectory to the goal. By incorporating the new obstacle into

consideration, it recalculates a new motion that avoids this temporary obstacle and

allows the system to continue towards the intended destination.

Dynamic Obstacles: Dynamic obstacles include objects or entities that are in motion

and can change their position, speed, and direction. To address the uncertainty

associated with the behavior of these objects, we have chosen to halt the movement

of the robot altogether when approaching a dynamic obstacle. This precautionary

measure ensures the safety of the system and prevents any potential collisions or

undesired interactions.

3.2.3 Results

The Figure 3.3 illustrates the workflow of the global variant’s simulation. Initially, the

map is processed to identify all static obstacles present within the workspace.

Subsequently, the Rapidly-exploring Random Tree Star (RRT*) algorithm is employed

to find a collision-free motion from the starting point to the destination. In the third

step, the Whale Optimization Algorithm (WOA) is utilized to optimize the path with

respect to its length. Finally, the necessary controls for guiding the robot along the

optimized trajectory are generated.

Chapter 3 Simulation, Comparative Analysis, and Implementation

64

Map Processing: Retrieving Obstacle

Information

Planning: Generating a Collision-free

Motion from Initial to Goal Position

Optimization: Enhancing Path Length and

Smoothness

Control Generation: Generating Necessary

Velocities to Execute The Motion

Figure 3.3 – Simulation Workflow of the Proposed Global Variant

When faced with temporary obstacles along the path, the system chooses to fully

replan the motion towards the goal from its current location. The replanning process

depicted in figure 3.4 below, showcases the system's adaptive and dynamic nature in

responding to real-time challenges.

Chapter 3 Simulation, Comparative Analysis, and Implementation

65

Figure 3.4 – Adaptive Replanning: Responding to Environmental Changes

3.3 Comparative Analysis

In this section, we will present the experimental setup utilized to perform the

benchmarks. We will also provide a detailed comparison between the classical RRT*

algorithm and the proposed variants. Additionally, we will examine the influence of

varying the parameters of the Whale Optimization Algorithm (WOA) on the

performance of these variants.

3.3.1 Experimental Setup

The experimental setup for the benchmarks conducted in this study involved running

the motion planning algorithms on an i3-11th gen 3.00GHz Quad-Core laptop with 4

GB of memory. To ensure reliable results, each reported result is an average of 100

runs conducted on each map.

The experimental map set used in this study was created using the image manipulation

program GIMP. The maps were designed to test the performance of the proposed

algorithms in various environments. These environments encompassed both simple

and complex scenarios.

The simple environments consisted of empty spaces and areas occupied by

unobtrusive obstacles (map 1 and 2), allowing for a baseline evaluation of the

New

Obstacle

Chapter 3 Simulation, Comparative Analysis, and Implementation

66

algorithms' basic path planning capabilities. On the other hand, the complex

environments incorporated additional challenging features (map 3, 4 and 5). These

features included narrow passages, local minima, and cluttered areas, which aimed to

observe and analyze the algorithms' behaviors in more intricate and demanding

scenarios.

Figure 3.5 – Experimental Map Set: The Purple Dot Represents the Initial Position of

the Robot, while the Orange Dot Indicates the Goal Position

3.3.2 Algorithms Assessment

The table below presents benchmarking results of the motion planning algorithms. It

compares the original RRT* algorithm with two proposed variants.

Algorithm Time (s) Length (m) Nodes

RRT* 0.026 35.268 409.258

Local Variant 1.440 27.132 167.378

Global Variant 0.072 30.656 410.598

Chapter 3 Simulation, Comparative Analysis, and Implementation

67

Table 3.1 – Experimental Results: Analysis of RRT*, Local and Global Variants’

Performance

Upon analysis, the local and global variants of the RRT* algorithm, incorporating the

WOA technique, have demonstrated notable performance improvements compared to

the original RRT* algorithm.

The local variant of the RRT* algorithm demonstrated superior performance compared

to the original algorithm. It achieved a significantly shorter path length of 27.132

meters, compared to the path length of 35.268 meters obtained by the RRT*

algorithm. Despite taking slightly longer to compute, with a return time of 1.440

seconds due to the execution of WOA on every expansion, the local variant exhibited

improved efficiency by generating only 167.378 nodes. These findings highlight the

effectiveness of the local variant in optimizing path length and enhancing space

exploration.

Similarly, the global variant of the RRT* algorithm demonstrated significant

improvements over the original algorithm. Although it took a slightly longer time of

0.072 to return the path, it managed to achieve a shorter path length of 30.656

meters, compared to the original algorithm's path length of 35.268 meters.

Remarkably, the global variant accomplished this while generating a similar number of

nodes. These results highlight the effectiveness of the global variant in optimizing path

length while maintaining a comparable level of exploration in the search space.

These findings suggest that both variations of the WOA algorithm, namely the local

and global variants, have demonstrated promising improvements in optimizing path

length and efficiently exploring the search space. However, it is important to consider

the trade-off associated with increased computation time. Figure 3.6 provides a visual

representation of the improvements achieved by these variants.

Chapter 3 Simulation, Comparative Analysis, and Implementation

68

Figure 3.6 – Visual Comparison of Paths: RRT*, Local Variant and Global Variant

3.3.3 Parameter Tuning

In this segment, our objective is to thoroughly examine and analyze the influence of

adjusting key parameters in the Whale Optimization Algorithm (WOA) on the

performance of the proposed variants, both local and global, while focusing on metrics

such as computation time, path length and nodes generated. Moreover, by exploring

the impact of parameters like population size, number of iterations and other relevant

factors, we aim to gain an understanding of the optimal configurations that yield the

most favorable outcomes.

All parameters are fixed except for the parameter currently undergoing variation.

A. Varying Population

Varying the population size in the WOA algorithm impacts its performance. A larger

population enables more extensive exploration of the solution space, potentially

yielding better solutions. However, it comes with increased computation time.

Local Variant

Population Time (s) Length (m) Nodes

10 0.4112 35.2668 329.9866

20 0.5120 34.9051 219.2681

30 0.6930 34.8108 201.9980

40 0.8151 34.6556 179.9042

50 0.9948 34.5616 175.8849

Chapter 3 Simulation, Comparative Analysis, and Implementation

69

60 1.1826 34.5598 175.1680

70 1.4912 34.6016 173.3743

80 1.6152 34.5794 177.6069

90 1.8053 34.4544 174.1088

100 1.9976 34.4393 172.7764

Table 3.2 – Results of Population Size Variation in Local Variant

Figure 3.7 - Analysis of Population Variation in Local Variant

Based on Figure 3.7 and Table 3.2 above, it is evident that increasing the population

size in the local variant leads to longer computation times. However, this increase in

population size also results in decreased path lengths, indicating improved solution

quality. Furthermore, a larger population size enables more efficient exploration of the

search space with fewer generated nodes.

Global Variant

Population Time (s) Length (m) Nodes

10 0.0391 35.7192 411.2046

20 0.0614 35.3398 409.0541

30 0.0694 35.1144 407.9880

Chapter 3 Simulation, Comparative Analysis, and Implementation

70

40 0.0848 35.1648 403.1343

50 0.1052 35.0045 408.2663

60 0.1152 35.0506 407.1966

70 0.1300 34.9082 412.9768

80 0.1448 34.9326 402.4641

90 0.1606 34.8842 409.8182

100 0.1762 34.7814 409.1384

Table 3.3 – Results of Population Size Variation in Global Variant

Figure 3.8 – Analysis of Population Variation in Global Variant

As demonstrated by Figure 3.8 and Table 3.3, it can be observed that increasing the

population size in the global variant leads to slightly longer computation times.

However, it also results in fluctuating but decreasing values of length, indicating a

slight improvement in solution quality. On the other hand, a larger population size

does not necessarily guarantee more efficient exploration of the search space, as the

number of generated nodes fluctuates without a clear trend.

B. Varying Iterations

Varying iterations in the Whale Optimization Algorithm affects exploration. More

iterations lead to better exploration but increase the computational time.

Chapter 3 Simulation, Comparative Analysis, and Implementation

71

Local Variant

Iterations Time (s) Length (m) Nodes

10 0.4110 35.2260 326.9866

20 0.5912 35.0804 247.3840

30 0.7836 35.1534 229.2912

40 1.0902 34.9312 237.5325

50 1.2914 34.9588 224.6928

60 1.4906 34.9626 215.1647

70 1.7073 34.9158 212.1142

80 1.9996 34.9718 217.5400

90 2.2538 34.8430 215.3588

100 2.5102 34.9368 216.6423

Table 3.4 – Results of Iterations Variation in Local Variant

Figure 3.9 - Analysis of Iterations Variation in Local Variant

As demonstrated by Figure 3.9 and Table 3.4, it is evident that increasing the number

of iterations in the local variant leads to significantly longer computation times.

However, this increase in population size also results in fluctuating values of length,

without a clear trend, yet an overall decrease can be observed. Interestingly, a larger

number of iterations in the local variant lead to more efficient exploration of the

Chapter 3 Simulation, Comparative Analysis, and Implementation

72

search space, as the number of generated nodes fluctuates but displays an exponential

decrease.

Global Variant

Iterations Time (s) Length (m) Nodes

10 0.0399 35.7192 411.2049

20 0.0510 35.0342 394.9081

30 0.0654 34.7646 411.1840

40 0.7683 34.6472 408.1522

50 0.8881 34.4450 407.1823

60 0.1014 34.4542 402.3282

70 0.1148 34.3808 416.7160

80 0.1278 34.3528 418.2768

90 0.1386 34.2745 406.1363

100 0.1518 34.3318 395.7544

Table 3.5 – Results of Iterations Variation in Global Variant

Figure 3.10 - Analysis of Iterations Variation in Global Variant

As demonstrated by Figure 3.10 and Table 3.5, increasing the iterations in the

algorithm leads to consistently greater computation times. However, it also results in

exponentially decreasing values of length with minimal fluctuations. Surprisingly,

Chapter 3 Simulation, Comparative Analysis, and Implementation

73

despite the decreasing length values, more iterations do not necessarily lead to more

efficient exploration of the search space, as the number of generated nodes fluctuates

without a clear trend.

C. Varying

The variable serves as the threshold for testing the random parameter ,

determining whether the algorithm should choose the first behavior, the Shrinking

Encircling Mechanism or Search for Prey, or the second behavior, Spiral Updating

Position. Lower values of this threshold provide a higher probability for the second

behavior, while greater values favor the first behavior. The Figure 3.11 below provides

a visual representation of this concept.

Figure 3.11 – The Behavior Associated with Parameter Value

Local Variant

 Time (s) Length (m) Nodes

0.0 0.3731 35.6852 306.9522

0.1 0.3789 35.5608 310.7000

0.2 0.3902 35.5272 314.3561

0.3 0.4016 35.4266 323.1766

0.4 0.3968 35.4346 317.6481

0.5 0.4032 35.3592 318.4669

0.6 0.4042 35.3334 317.3785

0.7 0.4182 35.3378 325.9347

0.8 0.4022 35.3646 309.4812

0.9 0.4036 35.3190 310.8347

1.0 0.4098 35.2666 302.6145

Chapter 3 Simulation, Comparative Analysis, and Implementation

74

Table 3.6 – Results of Threshold Variation in Local Variant

Figure 3.12 - Analysis of Threshold Variation in Local Variant

As Figure 3.12 and Table 3.6 demonstrate, the behavior of computation time does not

exhibit a clear trend. However, it is noticeable that lower thresholds result in lower

computation times, while higher thresholds lead to longer computation times. On the

other hand, increasing the threshold in the algorithm results in exponentially

decreasing values of length with minimal fluctuations. Interestingly, despite the

decreasing length values, the increase in threshold does not lead to more efficient

exploration of the search space, as the number of generated nodes fluctuates without

a clear trend.

Global Variant

 Time (s) Length (m) Nodes

0.0 0.0396 38.4018 411.9044

0.1 0.0386 36.7648 407.1043

0.2 0.0382 36.4454 399.5581

0.3 0.0386 35.9325 400.7561

Chapter 3 Simulation, Comparative Analysis, and Implementation

75

0.4 0.0400 35.8574 433.7714

0.5 0.0376 35.5156 319.9583

0.6 0.0381 35.4291 406.4640

0.7 0.0384 35.3558 408.0682

0.8 0.0378 35.2112 405.3261

0.9 0.0394 35.1938 417.4583

1.0 0.0376 35.0976 403.7628

Table 3.7 – Results of Threshold Variation in Global Variant

Figure 3.13 – Analysis of Threshold Variation in Global Variant

As demonstrated by Figure 3.13 and Table 3.7, varying the threshold does not have a

clear impact on the behavior of computation time. However, it does result in

exponentially decreasing values of length with an increase in the threshold. However,

despite the increase in threshold, it does not lead to more efficient exploration of the

search space. This is because the number of generated nodes fluctuates throughout

the graph, with higher values observed throughout the entirety of the graph and a

single instance of a significant drop at the center.

D. Varying

The parameter defines the shape of the logarithmic spiral in the Spiral Updating

Position behavior [39].

Chapter 3 Simulation, Comparative Analysis, and Implementation

76

Local Variant

 Time (s) Length (m) Nodes

1 0.3972 35.4062 312.4426

2 0.3904 35.4784 310.2246

3 0.3904 35.3436 313.6448

4 0.4076 35.4213 323.9785

5 0.4354 35.4862 346.2684

6 0.4200 35.5178 333.1662

7 0.4416 35.5286 347.6088

8 0.4257 35.5112 337.0482

9 0.4404 35.4542 347.3921

10 0.4466 35.4415 351.3527

Table 3.8 – Results of Parameter Variation in Local Variant

Figure 3.14 – Analysis of Parameter Variation in Local Variant

As demonstrated by Figure 3.14 and Table 3.7, increasing the value of the b parameter

does not exhibit a clear trend in computation time, but it does show an overall

increase. However, it results in fluctuating values of length that are generally similar.

Interestingly, the number of generated nodes exhibits the same behavior as

computation time, indicating inefficient exploration of the search space.

Chapter 3 Simulation, Comparative Analysis, and Implementation

77

Global Variant

 Time (s) Length (m) Nodes

1 0.0400 35.5972 406.7246

2 0.0378 35.5724 400.8224

3 0.0394 35.4664 415.3000

4 0.0392 35.5938 412.7943

5 0.0388 35.5549 410.0640

6 0.0392 35.6272 414.5662

7 0.0388 35.5488 410.4026

8 0.0392 35.5436 410.5246

9 0.0381 35.5943 396.5448

10 0.0374 35.5213 393.2330

 Table 3.9 – Results of Parameter Variation in Global Variant

Figure 3.15 - Analysis of Parameter Variation in Global Variant

As demonstrated by Figure 3.15 and Table 3.8, increasing the value of the b parameter

in the global variant does not exhibit a clear trend in computation time, length of the

path, or the number of generated nodes.

E. Varying

Chapter 3 Simulation, Comparative Analysis, and Implementation

78

The algorithm's behavior when is contingent upon the random parameter A,

which spans a range from to . If the absolute value of is less than 1 (|A| < 1),

the algorithm adopts a Shrinking Encircling Mechanism, which signifies a form of

solution exploitation. Conversely, if the absolute value of A exceeds 1 (|A| > 1), it opts

for a Search for Prey approach that prioritizes exploration.

To visualize these behaviors, refer to Figure 3.16 below, which illustrates the zones of

exploration and exploitation corresponding to different values of A.

Figure 3.16 – The Behavior Associated with Absolute Value of with Fixed Threshold

Local Variant

 Time (s) Length (m) Nodes

1 0.4160 35.3606 354.5611

2 0.3972 35.4062 312.4426

3 0.3986 35.4462 313.3360

4 0.4100 35.4514 318.9224

5 0.4432 35.4678 346.8369

6 0.4338 35.5494 339.5965

7 0.4471 35.5688 347.8200

8 0.4752 35.5798 368.2943

9 0.4729 35.6766 366.5369

10 0.5058 35.6948 391.8987

Table 3.10 – Results of Parameter Variation in Local Variant

Chapter 3 Simulation, Comparative Analysis, and Implementation

79

Table 3.9 presents the results indicating the impact of increasing the parameter a. It

can be observed that as a increases, the time required fluctuates but remains relatively

constant. The length, however, exhibits a gradual but slight increase. On the other

hand, no clear trend is discernible when it comes to the number of nodes generated.

Global Variant

A Time (s) Length (m) Nodes

1 0.0400 35.5200 400.5411

2 0.0402 35.5972 406.7246

3 0.0398 35.6942 404.6527

4 0.0382 35.8951 405.6246

5 0.0382 35.9034 402.9347

6 0.0394 35.9527 415.8466

7 0.0386 36.0132 405.1663

8 0.0386 36.1188 408.2100

9 0.0382 36.1536 401.6641

10 0.0378 36.2312 399.0600

Table 3.11 – Results of Parameter Variation in Global Variant

The findings presented in Table 3.10 highlight the influence of increasing the

parameter a. It can be observed that as a increases, the time required shows minimal

variation. The length, however, demonstrates a gradual but modest increase.

However, no clear trend is discernible when it comes to the number of nodes

generated.

We observed similar behavior in both variants when the parameter was varied.

Specifically, as the exploration to exploitation ratio increased, there was an increase in

path length. To further investigate this phenomenon, we conducted additional

experiments by varying both the parameter and the threshold for the two

behaviors. Our initial hypothesis suggests that achieving optimal path lengths involves

striking a balance between the two behaviors or placing emphasis on the exploitation

phase.

Chapter 3 Simulation, Comparative Analysis, and Implementation

80

F. Varying a & A

The tables below demonstrate how the threshold value λ affects the performance of

the variants. Increasing the threshold value signifies a higher exploitation to

exploration ratio, while lower values indicate a greater emphasis on exploration.

Figure 3.17 provides a visual representation of the relationship between these two

parameters and behaviors.

Figure 3.17 – The Behavior Associated with Absolute Value of with Variable

Threshold

Local Variant

a Time (s) Length (m) Nodes

2

0.0 0.5708 35.6828 427.7613

0.2 0.4763 35.4884 357.1549

0.4 0.4122 35.3508 319.9561

0.6 0.4434 35.3592 323.8325

0.8 0.3992 35.4044 313.1066

1.0 0.4136 35.3394 321.5842

1.2 0.4066 35.3314 324.2280

1.4 0.4374 35.3896 326.3268

1.6 0.4204 35.3222 320.2570

1.8 0.4276 35.2944 314.5886

2.0 0.4002 35.3158 319.4081

4 0.0 0.6516 35.7036 474.9743

Chapter 3 Simulation, Comparative Analysis, and Implementation

81

0.4 0.4648 35.4836 350.1941

0.8 0.4352 35.4892 336.2662

1.2 0.4108 35.3772 329.5914

1.6 0.4000 35.8408 318.4549

2.0 0.3946 35.3804 319.3347

2.4 0.3978 35.4024 324.2684

2.8 0.3988 35.4454 325.9918

3.2 0.3985 35.2592 322.6309

3.6 0.4118 35.3778 333.7981

4.0 0.4028 35.2875 328.3861

6

0.0 0.6784 35.6741 505.6981

0.6 0.4614 35.4664 353.5123

1.2 0.4332 35.5052 337.9941

1.8 0.4214 35.4208 331.8741

2.4 0.4406 35.4168 337.4369

3.0 0.4222 35.4032 337.156

3.6 0.4542 35.3544 350.4381

4.2 0.3944 35.4304 325.4681

4.8 0.4156 35.3426 346.7881

5.4 0.4004 35.3471 331.4628

6.0 0.4256 35.4282 351.202

Table 3.12 – Results of Parameter and Threshold Variation in Local Variant

Chapter 3 Simulation, Comparative Analysis, and Implementation

82

Figure 3.18 - Analysis of Parameter and Threshold Variation in Local Variant in

Relation to Computation Time

Figure 3.19 – Analysis of Parameter and Threshold Variation in Local Variant in

Relation to Path Length

Chapter 3 Simulation, Comparative Analysis, and Implementation

83

Figure 3.20 - Analysis of Parameter and Threshold Variation in Local Variant in

Relation to Nodes Generated

Based on the analysis of the three previous figures, namely 3.18, 3.19, and 3.20, along

with Table 3.11, it is evident that achieving a balance between exploration and

exploitation, or placing emphasis on exploitation, leads to improved performance

across all three metrics: computation time, path length, and the number of nodes

generated.

Global Variant

a Time (s) Length (m) Nodes

2

0.0 0.0396 37.6369 407.3921

0.2 0.0392 36.4714 410.0369

0.4 0.0382 35.9981 401.1300

0.6 0.0396 35.7939 348.4921

0.8 0.0388 35.6356 411.4260

1.0 0.0378 35.3934 399.7000

1.2 0.0382 35.4446 406.8921

1.4 0.0382 35.3502 397.7022

1.6 0.0388 35.3794 401.5001

1.8 0.0392 35.2898 404.3123

Chapter 3 Simulation, Comparative Analysis, and Implementation

84

2.0 0.0384 35.4112 399.8246

4

0.0 0.0394 37.7156 405.9246

0.4 0.0381 36.4264 401.5347

0.8 0.0396 36.0464 414.9741

1.2 0.0386 35.7956 406.8741

1.6 0.0392 35.5626 414.3300

2.0 0.0382 35.5028 407.0505

2.4 0.0392 35.5106 410.4786

2.8 0.0378 35.3182 403.0721

3.2 0.0388 35.3594 413.2562

3.6 0.0382 35.5040 404.9145

4.0 0.0384 35.3800 406.444

6

0.0 0.0400 37.5474 419.8246

0.6 0.0386 36.1036 407.9965

1.2 0.0388 35.7194 410.7010

1.8 0.0386 35.5134 408.7628

2.4 0.0386 35.4098 406.3682

3.0 0.0391 35.4896 408.4711

3.6 0.0391 35.2736 412.9801

4.2 0.0394 35.5206 410.4724

4.8 0.0384 35.4252 400.4300

5.4 0.0396 35.5066 403.7866

6.0 0.0410 35.4574 405.5949

Table 3.13 – Results of Parameter and Threshold Variation in Global Variant

Chapter 3 Simulation, Comparative Analysis, and Implementation

85

Figure 3.21 - Analysis of Parameter and Threshold Variation in Global Variant in

Relation to Computation Time

Figure 3.22 - Analysis of Parameter and Threshold Variation in Global Variant in

Relation to Path Length

Chapter 3 Simulation, Comparative Analysis, and Implementation

86

Figure 3.23 - Analysis of Parameter and Threshold Variation in Global Variant in

Relation to Nodes Generated

Based on the examination of the three preceding figures, namely 3.21, 3.22, and 3.23,

along with Table 3.12, it is evident that finding a balance between exploration and

exploitation or emphasizing exploitation yields varying results with no consistent trend

in both computation time and the number of nodes generated. However, it undeniably

demonstrates superior performance in terms of reducing the path length.

3.3.4 Discussion

In this section, we conducted multiple analyses to assess the impact of parameters on

the performance of both the local and global variants. Initially, the local variant

demonstrated exceptional performance in terms of path length and node generation,

albeit at the expense of computation time. On the other hand, the global variant

showed no reduction in the number of nodes generated but exhibited a decrease in

path length, accompanied by a slight increase in computation time.

After thorough examination, we can confirm that the local variant responds positively

to an increase in population size. Additionally, a slight improvement was observed

when increasing the threshold, favoring the behaviors of shrinking encircling

mechanism and search for prey over spiral updating position. Furthermore, achieving a

balance between the shrinking encircling behavior and search for prey, or focusing

Chapter 3 Simulation, Comparative Analysis, and Implementation

87

primarily on the shrinking encircling mechanism to emphasize exploitation, resulted in

enhanced performance across all three metrics.

Similarly, the global variant responded well to both iterations and population increase.

It demonstrated a significant exponential decrease in path length when favoring the

behaviors of shrinking encircling and search for prey over spiral updating position.

Likewise, just like the local variant, achieving a balance between the shrinking

encircling mechanism and emphasizing exploitation led to improved performance in

path length.

Overall, our analyses indicate that both variants exhibit promising results when specific

parameters are adjusted and the exploitation to exploration ratio is appropriately

calibrated.

3.4 Implementation

In this section, we will explore the hardware and software implementation aspects of

this project.

3.5.1 Hardware

The robotic wheelchair showed in figure 2.24 is equipped with microcontrollers that

perform low-level calculations. The first microcontroller handles tasks such as control

and management of speeds, sense of rotation of brushless motors, and the retrieval

and calculation of odometric data from encoders. The second microcontroller manages

all the onboard ultrasonic sensors on the wheelchair.

To enable remote manual control of the wheelchair, a wireless joystick is incorporated.

For obstacle detection, a laser rangefinder is installed at the front of the wheelchair. It

scans the horizontal plane with a 270° field of view and a detection range of 10 meters.

To enhance obstacle detection further, eight ultrasonic sensors of two different

models are added and strategically placed at the front of the wheelchair, covering a

wide field of vision.

To enable the wheelchair to navigate its environment, it is crucial to determine its

position at all times. To achieve this, encoders are utilized to measure the motor

Chapter 3 Simulation, Comparative Analysis, and Implementation

88

rotation speed for speed control purposes. Encoders are fixed parallel to the axis of

each wheel.

The power supply for the system consists of two 36-volt, 4Ah lithium batteries. These

batteries offer the advantage of being significantly lighter (1.6 kilograms) compared to

the lead-acid batteries commonly used in most electric wheelchairs.

In this project, the chosen control method is the widely recognized Proportional

Integral Derivative (PID) control. PID control is widely employed due to its

effectiveness. The main objective of control is to achieve and sustain a specific target

value by directly influencing the system based on the difference between the

reference value and the measured value.

Figure 2.24 – Robotic Wheelchair

Overall, the combination of microcontrollers, sensors, joystick, encoders, and power

supply enables the robotic wheelchair to perform tasks such as speed control, obstacle

detection, localization, and precise movement using the PID control method.

Chapter 3 Simulation, Comparative Analysis, and Implementation

89

3.4.2 Software

The project was developed using Visual Studio Code on Ubuntu 20.04. We chose to

utilize the C++ language for its performance and robust object-oriented support. This

version of Ubuntu provided compatibility with ROS (Robot Operating System) Noetic, a

popular robotics framework. Despite its name, ROS is not an operating system but

rather a framework built on top of Ubuntu. It played a vital role in our project

development, offering features such as hardware abstraction, seamless

communication between different components, and efficient sensor processing.

Figure 3.25 – Robot Operating System Logo

ROS operates based on a publish-subscribe model, where nodes communicate by

publishing and subscribing to topics. Each node represents a basic building block in the

robot system, performing specific tasks such as reading sensor data, controlling

actuators, or performing computations. Communication between nodes occurs

through messages, which define the structure and type of data exchanged. ROS

provides a range of predefined message types, including sensor data, commands, and

control messages.

Nodes communicate with each other by publishing messages to topics and subscribing

to topics to receive messages. Topics serve as named channels that facilitate message

exchange. Multiple nodes can publish or subscribe to the same topic, allowing for

loose coupling and seamless integration of separate components. This flexibility

enables the system to adapt and scale effectively.

To facilitate the registration and discovery of nodes and topics, ROS employs a

centralized component called the ROS Master. The Master keeps track of active nodes

and the topics they publish or subscribe to. It acts as a central hub for coordinating the

Chapter 3 Simulation, Comparative Analysis, and Implementation

90

communication between nodes, ensuring efficient and reliable message exchange

throughout the system.

Figure 2.26 - Visual Representation of the Communication Architecture and Data Flow

Between Different Nodes in a ROS System

Our project utilized several nodes to achieve successful results. These nodes played

vital roles in various aspects of the project, including mapping the environment,

establishing serial communication with the Arduino boards on the wheelchair, and

transmitting control signals to the actuators, among other functions. We will briefly

provide an overview of each node and its specific contribution to the project.

gmapping_node. Responsible for implementing simultaneous localization and

mapping (SLAM) using a grid-based approach. It receives sensor data from the LiDAR

and uses this information to create a 2D occupancy grid map of the surrounding

environment. Simultaneously, it estimates the robot's pose within the map. To

accomplish this, the gmapping_node subscribes to two topics: ”/scan” for laser scans

and “/tf” for transforms that define the positions and orientations of the laser, base,

and odometry frames. It then publishes two topics: “/map” containing the map of the

environment and “/tf” providing the estimated pose of the robot [ZA].

tf_transform_node. Supplies the necessary transforms to the gmapping_node,

enabling it to establish relationships between various frames. Specifically, it handles

transformations from the frame associated with the incoming scan, known as

"laser_link," to "base_link." Additionally, it manages the transformation from

"base_link" to "odometry." To achieve this, the tf_transform_node subscribes to the

"/ARDUINO1/Odom" topic, which is published by the Arduino board, and publishes

Chapter 3 Simulation, Comparative Analysis, and Implementation

91

"/tf" with the appropriate frame_id and child_id to meet the required transform

specifications.

urg_node. Serves as the driver responsible for establishing a connection and

facilitating communication with the LiDAR sensor. Its primary function is to retrieve

range measurements from the sensor, which correspond to the distances between the

sensor and objects within its field of view. These range measurements are then

published by the urg_node to the "/scan" topic, allowing other nodes in the system to

access and utilize this data.

rviz_node. Launches and manages the RViz visualization tool. RViz is a 3D visualization

tool widely used in robotics for visualizing sensor data, robot models, and other

elements related to perception, planning, and navigation. With the rviz_node, users

can customize the RViz environment to their needs. It subscribes to ROS topics like

sensor data, robot pose, or map data to obtain the required information for

visualization. The data is then rendered in a user-friendly graphical interface, enabling

users to interact with and visualize sensor data, robot models, and other relevant

visualizations.

navigation_node. Responsible for planning a motion from the intial to the goal

configuration and providing the necessary controls to execute that motion. It

subscribes to the topic "/map" in order to acquire the grid representation of the

environment, allowing it to retrieve information about obstacles and perform its tasks.

Additionally, it subscribes to the topic "/scan" to detect any new changes made to the

environment. To enable the robot to move and rotate as required, the

navigation_node publishes velocity commands to the robot's mobile base on the topic

"/ARDUINO1/Velocity". This ensures that the robot can navigate through the

environment and respond to the detected changes.

Chapter 3 Simulation, Comparative Analysis, and Implementation

92

Figure 2.27 – Control Generation in Mapped Environment in RViz (Red Curve:

Represents the path generated by the global variant, Blue Curve: The trajectory

approximation of the robot’s movement when executing the generated controls)

3.5 Conclusion

This chapter concludes the thesis by presenting simulation results for the proposed

variants. The obtained results were highly positive and demonstrate the remarkable

potential of the Whale Optimization Algorithm as a robust tool for optimizing path

planners. Additionally, we have extensively examined the algorithm's response to

various settings in both variants.

Moreover, this chapter provides an overview of the software and hardware aspects of

the project. It is important to note that during the physical implementation, we

encountered certain challenges related to communication and configuration. However,

we are determined to address these issues and validate the efficacy of these variants

in a real-world scenario.

93

General Conclusion

This project aimed to make a significant contribution to the field of robotics research

by introducing a novel bio-inspired motion planning algorithm inspired by a swarm-

based optimization technique. The proposed solution integrates the whale

optimization algorithm with the RRT* algorithm, resulting in the development of two

approaches: a local variant and a global variant of RRT*.

Both variants of the algorithm demonstrated substantial improvements in path quality

compared to the original RRT* algorithm. In terms of path length, the proposed

variants outperformed the original algorithm by 13 to 23 percent. Moreover, unlike

RRT*, our approaches provide feasible trajectories by utilizing a WOA-based trajectory

generator that takes into consideration the robot model.

From an optimization perspective, both the local variant and global variant of the

algorithm responded favorably to increased population size and iterations number, as

well as lower values of and the lower half of values in the interval of the random

parameter .

The findings of this study demonstrate that the whale optimization algorithm is a

suitable technique for optimizing path planners, yielding positive results and

showcasing potential for further enhancements. For instance, future research could

explore parallelization techniques and other performance-boosting tweaks to

maximize the algorithm's capabilities.

In summary, this thesis introduced two variants of the RRT* algorithm that incorporate

the whale optimization algorithm. Both variants exhibited promising results, and the

comparative analysis provided valuable insights into their behavior under different

settings. This study aspires to pave the way for future research that explores the

untapped potential of the whale optimization algorithm in the context of path

planning.

References

[1] Zghair, N.A.K. and Al-Araji, A.S., 2021. A one decade survey of autonomous mobile

robot systems. International Journal of Electrical and Computer Engineering, 11(6),

p.4891.

[2] Karur, K., Sharma, N., Dharmatti, C. and Siegel, J.E., 2021. A survey of path planning

algorithms for mobile robots. Vehicles, 3(3), pp.448-468.

[3] Latombe, J.C., 2012. Robot motion planning (Vol. 124). Springer Science & Business

Media.

[4] Khanmirza, E., Haghbeigi, M., Nazarahari, M. and Doostie, S., 2017, October. A

comparative study of deterministic and probabilistic mobile robot path planning

algorithms. In 2017 5th RSI international conference on robotics and mechatronics

(ICRoM) (pp. 534-539). IEEE.

[5] Dijkstra, E.W., 2022. A note on two problems in connexion with graphs. In Edsger

Wybe Dijkstra: His Life, Work, and Legacy (pp. 287-290).

[6] Hart, P.E., Nilsson, N.J. and Raphael, B., 1968. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2), pp.100-107.

[7] Lozano-Pérez, T. and Wesley, M.A., 1979. An algorithm for planning collision-free

paths among polyhedral obstacles. Communications of the ACM, 22(10), pp.560-570.

[8] Aurenhammer, F., 1991. Voronoi diagrams—a survey of a fundamental geometric

data structure. ACM Computing Surveys (CSUR), 23(3), pp.345-405.

[9] LaValle, S.M., 1998. Rapidly-exploring random trees: A new tool for path planning.

[10] Kavraki, L.E., Svestka, P., Latombe, J.C. and Overmars, M.H., 1996. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

transactions on Robotics and Automation, 12(4), pp.566-580.

[11] Smith College. Dijkstra's Algorithm. Visited on June 28, 2023

https://www.science.smith.edu/~istreinu/Teaching/Courses/274/Spring98/Projects/Ph

ilip/fp/dijkstra.htm

[12] Russell Stuart J and Peter Norvig. 2020. Artificial Intelligence : A Modern

Approach. 4th ed. Boston: Pearson.

[13] Smith College. Visiblity Graph. Visited on June 28, 2023

https://www.science.smith.edu/~istreinu/Teaching/Courses/274/Spring98/Projects/Ph

ilip/fp/visibility.htm

[14] UPC Research Group. Voronoi Diagram. Visited on June 28, 2023

https://dccg.upc.edu/wp-content/uploads/2020/06/GeoC-Voronoi-storing.pdf

[15] Abdel-Basset, M., Abdel-Fatah, L. and Sangaiah, A.K., 2018. Metaheuristic

algorithms: A comprehensive review. Computational intelligence for multimedia big

data on the cloud with engineering applications, pp.185-231.

[16] Yu, X. and Gen, M., 2010. Introduction to evolutionary algorithms. Springer

Science & Business Media.

[17] Sampson, J.R., 1976. Adaptation in natural and artificial systems (John H. Holland).

[18] Katoch, S., Chauhan, S.S. and Kumar, V., 2021. A review on genetic algorithm: past,

present, and future. Multimedia Tools and Applications, 80, pp.8091-8126.

[19] Baluja, S., 1994. Population-based incremental learning. a method for integrating

genetic search based function optimization and competitive learning. Carnegie-Mellon

Univ Pittsburgh Pa Dept Of Computer Science.

[20] González Morgado, C., Lozano Alonso, J.A. and Larrañaga Múgica, P.M., 2000.

Analyzing the population based incremental learning algorithm by means of discrete

dynamical systems. Complex Systems, 12(4), pp.465-479.

[21] Koza, J.R., 1994. Genetic programming as a means for programming computers by

natural selection. Statistics and computing, 4, pp.87-112.

[22] Espejo, P.G., Ventura, S. and Herrera, F., 2009. A survey on the application of

genetic programming to classification. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 40(2), pp.121-144.

[23] Storn, R. and Price, K., 1997. Differential evolution-a simple and efficient heuristic

for global optimization over continuous spaces. Journal of global optimization, 11(4),

p.341.

[24] Deng, W., Shang, S., Cai, X., Zhao, H., Song, Y. and Xu, J., 2021. An improved

differential evolution algorithm and its application in optimization problem. Soft

Computing, 25, pp.5277-5298.

[25] Can, Ü. and Alataş, B., 2015. Physics based metaheuristic algorithms for global

optimization.

[26] Rashedi, Esmat, Hossein Nezamabadi-Pour, and Saeid Saryazdi. "GSA: a

gravitational search algorithm." Information sciences 179, no. 13 (2009): 2232-2248.

[27] Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S., 2009. GSA: a gravitational

search algorithm. Information sciences, 179(13), pp.2232-2248.

[28] Mittal, H., Tripathi, A., Pandey, A.C. and Pal, R., 2021. Gravitational search

algorithm: A comprehensive analysis of recent variants. Multimedia Tools and

Applications, 80, pp.7581-7608.

[29] Kaveh, A. and Talatahari, S., 2010. A novel heuristic optimization method: charged

system search. Acta mechanica, 213(3-4), pp.267-289.

[30] Formato, R.A., 2007. Central force optimization. Prog Electromagn Res, 77(1),

pp.425-491.

[31] Ding, D., Qi, D., Luo, X., Chen, J., Wang, X. and Du, P., 2012. Convergence analysis

and performance of an extended central force optimization algorithm. Applied

Mathematics and Computation, 219(4), pp.2246-2259.

[32] Erol, O.K. and Eksin, I., 2006. A new optimization method: big bang–big crunch.

Advances in Engineering Software, 37(2), pp.106-111.

[33] Yang, X.S., 2014. Swarm intelligence based algorithms: a critical analysis.

Evolutionary intelligence, 7, pp.17-28.

[34] Eberhart, R. and Kennedy, J., 1995, November. Particle swarm optimization. In

Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942-

1948). [35] Venter, G. and Sobieszczanski-Sobieski, J., 2003. Particle swarm

optimization. AIAA journal, 41(8), pp.1583-1589.

[36] Dorigo, M., Birattari, M. and Stutzle, T., 2006. Ant colony optimization. IEEE

computational intelligence magazine, 1(4), pp.28-39.

[37] Yang, X.S., 2010. Firefly algorithm, stochastic test functions and design

optimisation. International journal of bio-inspired computation, 2(2), pp.78-84.

[38] Fister, I., Fister Jr, I., Yang, X.S. and Brest, J., 2013. Swarm and evolutionary

computation. A Comprehensive Review of Firefly Algorithms.

[39] Mirjalili, S. and Lewis, A., 2016. The whale optimization algorithm. Advances in

engineering software, 95, pp.51-67.

[40] Xu, Y., Cui, Z. and Zeng, J., 2010. Social emotional optimization algorithm for

nonlinear constrained optimization problems. In Swarm, Evolutionary, and Memetic

Computing: First International Conference on Swarm, Evolutionary, and Memetic

Computing, SEMCCO 2010, Chennai, India, December 16-18, 2010. Proceedings 1 (pp.

583-590). Springer Berlin Heidelberg.

[41] Xu, Y., Cui, Z. and Zeng, J., 2010. Social emotional optimization algorithm for

nonlinear constrained optimization problems. In Swarm, Evolutionary, and Memetic

Computing: First International Conference on Swarm, Evolutionary, and Memetic

Computing, SEMCCO 2010, Chennai, India, December 16-18, 2010. Proceedings 1 (pp.

583-590). Springer Berlin Heidelberg.

[42] Atashpaz-Gargari, E. and Lucas, C., 2007, September. Imperialist competitive

algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007

IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.

[43] Hosseini, S. and Al Khaled, A., 2014. A survey on the imperialist competitive

algorithm metaheuristic: implementation in engineering domain and directions for

future research. Applied Soft Computing, 24, pp.1078-1094.

[44] Rao, R.V., Savsani, V.J. and Vakharia, D.P., 2011. Teaching–learning-based

optimization: a novel method for constrained mechanical design optimization

problems. Computer-aided design, 43(3), pp.303-315.

[45] Rao, R.V., Savsani, V.J. and Vakharia, D.P., 2011. Teaching–learning-based

optimization: a novel method for constrained mechanical design optimization

problems. Computer-aided design, 43(3), pp.303-315.

[46] Moosavian, N. and Roodsari, B.K., 2014. Soccer league competition algorithm: A

novel meta-heuristic algorithm for optimal design of water distribution networks.

Swarm and Evolutionary Computation, 17, pp.14-24.

[47] Karaman, S. and Frazzoli, E., 2011. Sampling-based algorithms for optimal motion

planning. The international journal of robotics research, 30(7), pp.846-894.

[48] Kuffner, J.J. and LaValle, S.M., 2000, April. RRT-connect: An efficient approach to

single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.

00CH37065) (Vol. 2, pp. 995-1001). IEEE.

[49] Jin, X., Yan, Z., Yang, H., Wang, Q. and Yin, G., 2020, December. A goal-biased RRT

path planning approach for autonomous ground vehicle. In 2020 4th CAA International

Conference on Vehicular Control and Intelligence (CVCI) (pp. 743-746). IEEE.

[50] Song, Q., Li, S., Yang, J., Bai, Q., Hu, J., Zhang, X. and Zhang, A., 2021. Intelligent

optimization algorithm-based path planning for a mobile robot. Computational

Intelligence and Neuroscience, 2021.

[51] Karaman, S. and Frazzoli, E., 2011. Sampling-based algorithms for optimal motion

planning. The international journal of robotics research, 30(7), pp.846-894.

[52] Chai, Q. and Wang, Y., 2022. RJ-RRT: Improved RRT for Path Planning in Narrow

Passages. Applied Sciences, 12(23), p.12033.

[53] Kuffner, J.J. and LaValle, S.M., 2000, April. RRT-connect: An efficient approach to

single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.

00CH37065) (Vol. 2, pp. 995-1001). IEEE.

[54] Chen, J., Zhao, Y. and Xu, X., 2021. Improved RRT-Connect Based Path Planning

Algorithm for Mobile Robots. IEEE Access, 9, pp.145988-145999.

[55] Li, J., Liu, S., Zhang, B. and Zhao, X., 2014, September. RRT-A* motion planning

algorithm for non-holonomic mobile robot. In 2014 proceedings of the SICE annual

conference (SICE) (pp. 1833-1838). IEEE.

[56] Ayawli, B.B.K., Mei, X., Shen, M., Appiah, A.Y. and Kyeremeh, F., 2019. Optimized

RRT-A* path planning method for mobile robots in partially known environment.

Information technology and control, 48(2), pp.179-194.

[57] Sharma, P., Gupta, A., Ghosh, D., Honkote, V., Nandakumar, G. and Ghose, D.,

2021, September. Pg-rrt: A gaussian mixture model driven, kinematically constrained

bi-directional rrt for robot path planning. In 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (pp. 3666-3673). IEEE.

[58] Melchior, N.A. and Simmons, R., 2007, April. Particle RRT for path planning with

uncertainty. In Proceedings 2007 IEEE International Conference on Robotics and

Automation (pp. 1617-1624). IEEE.

[59] Wang, J., Chi, W., Li, C., Wang, C. and Meng, M.Q.H., 2020. Neural RRT*: Learning-

based optimal path planning. IEEE Transactions on Automation Science and

Engineering, 17(4), pp.1748-1758.

[60] Taheri, E., Ferdowsi, M.H. and Danesh, M., 2018. Fuzzy greedy RRT path planning

algorithm in a complex configuration space. International Journal of Control,

Automation and Systems, 16, pp.3026-3035.

[61] Wang, Q., Wang, W. and Li, Y., 2012, November. A multi-RRT based hierarchical

path planning method. In 2012 IEEE 14th International Conference on Communication

Technology (pp. 971-975). IEEE.

[62] Jin, X., Yan, Z., Yang, H., Wang, Q. and Yin, G., 2020, December. A goal-biased RRT

path planning approach for autonomous ground vehicle. In 2020 4th CAA International

Conference on Vehicular Control and Intelligence (CVCI) (pp. 743-746). IEEE.

[63] LaValle, S.M. and Kuffner Jr, J.J., 2001. Randomized kinodynamic planning. The

international journal of robotics research, 20(5), pp.378-400.

[64] Petit, L. and Desbiens, A.L., 2021, October. RRT-Rope: A deterministic shortening

approach for fast near-optimal path planning in large-scale uncluttered 3D

environments. In 2021 IEEE International Conference on Systems, Man, and

Cybernetics (SMC) (pp. 1111-1118). IEEE.

[65] Islam, F., Nasir, J., Malik, U., Ayaz, Y. and Hasan, O., 2012, August. Rrt -smart:

Rapid convergence implementation of rrt towards optimal solution. In 2012 IEEE

international conference on mechatronics and automation (pp. 1651-1656). IEEE.

[66] Tahirovic, A. and Ferizbegovic, M., 2018, May. Rapidly-exploring random vines

(RRV) for motion planning in configuration spaces with narrow passages. In 2018 IEEE

International Conference on Robotics and Automation (ICRA) (pp. 7055-7062). IEEE.

[67] Kalisiak, M. and van de Panne, M., 2006, May. RRT-blossom: RRT with a local

flood-fill behavior. In Proceedings 2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006. (pp. 1237-1242). IEEE.

[68] Solovey, K., Janson, L., Schmerling, E., Frazzoli, E. and Pavone, M., 2020, May.

Revisiting the asymptotic optimality of RRT. In 2020 IEEE International Conference on

Robotics and Automation (ICRA) (pp. 2189-2195). IEEE.

[69] Dao, T.K., Pan, T.S. and Pan, J.S., 2016, November. A multi-objective optimal

mobile robot path planning based on whale optimization algorithm. In 2016 IEEE 13th

international conference on signal processing (ICSP) (pp. 337-342). IEEE.

[70] Yan, Z., Zhang, J., Yang, Z. and Tang, J., 2021. Two‐dimensional optimal path

planning for autonomous underwater vehicle using a whale optimization algorithm.

Concurrency and Computation: Practice and Experience, 33(9), p.e6140.

[71] Kumar, S.V., Jayaparvathy, R. and Priyanka, B.N., 2020. Efficient path planning of

AUVs for container ship oil spill detection in coastal areas. Ocean Engineering, 217,

p.107932.

