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Abstract 

Autonomous Mobile Robots (AMR) are robotic systems capable of navigating in 

environments without human intervention. Their growing popularity and practical 

applications have led to a rapid expansion, driven by increasing interest and research. 

However, a major challenge faced by these systems is the generation and execution of 

movements required for efficient trajectory planning, which remains a persistent 

problem in autonomous systems. In this study, our objective is to contribute to the 

field of motion planning by introducing two new variants of the Rapidly-exploring 

Random Tree Star (RRT*) algorithm that integrate the Whale Optimization Algorithm 

(WOA) to generate near-optimal trajectories. To validate the proposed variants, we 

implemented them in a simulation environment. Then, we explored the parameter 

space of WOA for both variants in order to identify optimal parameters and deepen 

our understanding of behavior with different configurations. The results obtained from 

the two variants demonstrate significant improvements in trajectory quality, 

surpassing the performance of the original RRT* algorithm. These promising results 

highlight the untapped potential of using this optimization technique and also pave the 

way for further research to explore and exploit the benefits of parallelization aiming to 

enhance the efficiency and effectiveness of these variants. 

Keywords: Autonomous Mobile Robots, Motion Planning, RRT*, Optimization 

Technique, Whale Optimization Algorithm 

 

 

 

 

 

 

 



 

 

Résumé  

Les robots mobiles autonomes (AMR, pour Autonomous Mobile Robots en anglais) 

sont des systèmes robotiques capables de naviguer dans des environnements sans 

intervention humaine. Leur popularité croissante et leurs applications concrètes ont 

entraîné une expansion rapide, propulsée par un intérêt et une recherche croissants. 

Cependant, un défi majeur auquel ces systèmes sont confrontés est la génération et 

l'exécution des mouvements nécessaires pour une planification de trajectoire efficace, 

ce qui reste un problème persistant dans les systèmes autonomes. Dans cette étude, 

notre objectif est de contribuer au domaine de la planification de mouvement en 

introduisant deux nouvelles variantes de l'algorithme Rapidly-exploring Random Tree 

Star (RRT*) qui intègrent l'algorithme d'optimisation des baleines (WOA) pour générer 

des trajectoires quasi-optimales. Pour valider les variantes proposées, nous les avons 

implémentées dans un environnement de simulation. Ensuite, nous avons exploré 

l'espace des paramètres de WOA pour les deux variantes, dans le but d'identifier les 

paramètres optimaux et d'approfondir notre compréhension du comportement avec 

différentes configurations. Les résultats obtenus à partir des deux variantes 

démontrent des améliorations significatives de la qualité de la trajectoire, surpassant 

les performances de l'algorithme RRT* d'origine. Ces résultats prometteurs mettent en 

évidence le potentiel inexploité de l'utilisation de cette technique d'optimisation et 

ouvrent également la voie à de nouvelles recherches pour explorer et exploiter les 

avantages de la parallélisation visant à améliorer l'efficacité et l'efficience de ces 

variantes. 

Mots-clés: Robots Mobiles Autonomes, Planification de Mouvement, RRT*, Technique 

d'Optimisation, WOA 

 

 

 

 



 

 

 ملخص

سٗب٘تٞت تستطٞغ اىتْقو فٜ اىبٞئبث دُٗ تذخو بششٛ. استفبع شؼبٞتٖب  تّظَأ( ٕٜ AMRاىشٗب٘تبث اىَتْقيت اىزاتٞت )

ٗتطبٞقبتٖب اىؼَيٞت أدٙ إىٚ ت٘سغ سشٝغ، ٍذف٘ػًب ببلإتَبً ٗاىبحث اىَتضاٝذ. ٍٗغ رىل، ت٘اجٔ ٕزٓ الأّظَت تحذًٝب 

ىتخطٞط اىَسبس اىفؼبه، ٕٗزٓ ٍشنيت ٍستَشة فٜ الأّظَت اىزاتٞت. فٜ ٕزٓ  مبٞشًا فٜ إّشبء ٗتْفٞز اىحشمبث اىَطي٘بت

اىذساست، ٕذفْب ٕ٘ اىَسبَٕت فٜ ٍجبه تخطٞط اىحشمت ٍِ خلاه تقذٌٝ اثِْٞ ٍِ الإصذاساث اىجذٝذة ىخ٘اسصٍٞت 

Rapidly-exploring Random Tree Star  (RRTاىتٜ تذٍج خ٘اسصٍٞت تحسِٞ اىح٘ث )* (WOA)  لإّشبء

بساث تقتشة ٍِ الأٍثو. ىتحقٞق ٕزا اىٖذف، قَْب بتْفٞز الإصذاساث اىَقتشحت فٜ بٞئت ٍحبمبة. ثٌ، استنشفْب ٍجبه ٍس

 اػذاداثاىَثيٚ ٗتؼَٞق فَْٖب ىيسي٘ك ٍغ  اىؼ٘اٍوىخ٘اسصٍٞت تحسِٞ اىح٘ث ىنلا الإصذاسِٝ ىتحذٝذ  اىؼ٘اٍو

مبٞشة فٜ ج٘دة اىَسبساث، ٗتف٘قبً ػيٚ أداء ٍختيفت. أظٖشث اىْتبئج اىَستخيصت ٍِ الإصذاسِٝ تحسْٞبث 

* الأصيٞت. تسيط ٕزٓ اىْتبئج اى٘اػذة اىض٘ء ػيٚ الإٍنبّبث غٞش اىَستغيت لاستخذاً ٕزٓ اىتقْٞت RRTخ٘اسصٍٞت 

اىتحسْٞٞت ٗتَٖذ اىطشٝق أٝضًب ىَضٝذ ٍِ اىبحث لاستنشبف ٗاستغلاه ف٘ائذ اىت٘اصٛ ٍغ اىتشمٞض ػيٚ تؼضٝض مفبءة 

 ٓ الإصذاساث.ٗفؼبىٞت ٕز

 WOA التحسين، تقنية ،*RRT الحركة، تخطيط الذاتية، المتنقلة الروبوتات الرئيسية: الكلمات
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General Introduction 

Autonomous mobile robots (AMRs) are robotic systems capable of operating and 

navigating in various environments without human intervention. With the help of 

sensors, computing capabilities, and decision-making algorithms, AMRs can 

autonomously perceive their surroundings, plan actions, and carry out tasks.   

AMRs have significant potential to enhance medical care and personal assistance for 

individuals with impaired mobility. In the medical field, they can automate tasks such 

as transporting supplies and patients, which allow healthcare professionals to dedicate 

more time to direct patient care. Equipped with sensors, AMRs can monitor vital signs 

and collect health data, facilitating timely decision-making. As personal assistants, 

AMRs can assist with daily tasks and improve social interactions, enabling individuals 

with disabilities to lead more independent and fulfilling lives [1]. 

The effectiveness of AMRs heavily relies on the integration of motion planning and 

optimization techniques, especially when navigating complex and dynamic 

environments. Motion planning addresses the challenge of generating efficient and 

feasible trajectories for AMRs, ensuring their movement from an initial state to a 

desired goal state while avoiding obstacles and adhering to constraints. Researchers 

have made significant progress in enabling AMRs to plan and execute precise and 

efficient motions by integrating algorithms, mathematical models, and optimization 

techniques. 

Initially, traditional methods [5,6,7,8] faced limitations when dealing with complex 

scenarios, high-dimensional spaces, and dynamic obstacles. To overcome these 

challenges, optimization techniques [17,21,26] have been seamlessly incorporated into 

motion planning algorithms, effectively transforming the process into an optimization 

problem. Our project aims to contribute to the research field by providing a novel bio-

inspired motion planning algorithm with two variants inspired by a swarm-based 

optimization technique. 

The local variant incorporates the whale optimization algorithm (WOA) into the 

expansion process of RRT* to enhance the exploration of space towards promising 
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areas. On the other hand, the global variant only uses the path returned by RRT* as a 

population initializer and generates optimized paths using WOA. This document is 

organized as follows: Chapter 1 presents a literature review on motion planning and 

optimization techniques, providing a detailed analysis justifying our chosen approach. 

Chapter 2 explains RRT* and the whale optimization algorithm in detail, along with an 

explanation of our proposed variants. In Chapter 3, we clarify the approach used to 

implement these variants. We test the variants in simulation setups and benchmark 

them against the original algorithm. Additionally, we conduct a thorough parameter 

tuning process to analyze the behaviors of the two variants and identify optimal 

settings. The thesis concludes with our findings and aspirations for future endeavors in 

this domain. 
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1.1   Introduction 

Motion planning and optimization techniques are crucial in robotics to generate 

feasible and optimal trajectories in complex and dynamic environments. By combining 

algorithms, mathematical models, and optimization principles, researchers have made 

significant progress in enabling precise and efficient motion execution. Motion 

planning involves finding actions or configurations to navigate from an initial state to a 

goal state while avoiding obstacles and adhering to constraints. 

To overcome challenges in dealing with high-dimensional spaces and dynamic 

obstacles, optimization techniques have been integrated into motion planning 

algorithms. This approach formulates motion planning as an optimization problem, 

finding the best trajectory that satisfies constraints and optimization criteria. 

Mathematical optimization allows consideration of multiple objectives, ensuring safety 

and collision avoidance. By integrating motion planning with optimization techniques, 

collision-free trajectories can be generated while optimizing factors like distance 

traveled or task completion time. This leads to intelligent and efficient motion planners 

that adapt to dynamic environments, optimize multiple objectives simultaneously, and 

enhance autonomous system capabilities. 

In the following sections, we will explore the primary categories of motion planning 

algorithms, analyzing their strengths, limitations, and selecting an appropriate 

algorithm for our application scenario. We will also discuss metaheuristic optimization 

algorithms, their operational mechanisms, and integrate a promising candidate into 

our chosen path planning method. 

1.2   Motion Planning 

Motion planning in robotics involves the generation of a collision-free motion from an 

initial to a goal position in a specified environment. However, this problem is known to 

be challenging to solve efficiently as it grows in difficulty with the complexity of the 

environment, the increase in degrees of freedom of the system, and the constraints 

imposed on it, such as kinematics constraints, dynamic constraints, sensor limitations, 

task-specific constraints, and real-time constraints [2]. Depending on the environment, 
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numerous motions may be possible in the space where the robot is able to move. 

Motion planning algorithms aim to find the best motion or at least an admissible 

approximation to it. The best motion here refers to the optimal one, in the sense that 

the resulting motion is obtained by minimizing the cost, time, or energy consumption 

through one or more objective optimization functions. Additionally, it’s crucial to 

consider the aforementioned constraints to ensure that the resulting motion is 

feasible, safe, and efficient for the robot’s specific task and environment. Figure 1.1 

illustrates the planned trajectory, starting from the robot’s initial position and leading 

to the goal, while effectively circumventing potential collision sources present in the 

environment. 

 

Figure 1.1 – Planned Path from the Robot’s Initial to Goal Position with Collision 

Avoidance  

Motion planning has been a fundamental topic in robotics for several decades. Early 

work in motion planning was focused on developing algorithms to plan motions for 

simple robots with limited degrees of freedom. In the 1980s, researchers began 

developing more sophisticated algorithms to handle more complex robot models and 

environments, and these algorithms have continued to evolve to this day [3]. One key 

development in motion planning was the introduction of probabilistic roadmap (PRM) 

algorithms in the 1990s. Other important developments include the use of visibility 

graphs, potential fields, and rapidly exploring random trees (RRTs). Today, motion 

planning continues to be an active area of research, with new algorithms and 
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techniques being developed to handle increasingly complex scenarios and real-time 

constraints. 

Deterministic algorithms are one of the oldest and most traditional methods for 

motion planning. These algorithms are based on solving a set of equations or 

constraints to determine the optimal motion for a robot. Deterministic algorithms can 

be very accurate and efficient for simple scenarios. However, they often fail to produce 

feasible solutions for complex scenarios due to their inability to handle uncertain or 

noisy environments. In contrast, sampling-based algorithms are a more recent 

approach that uses random sampling to generate a set of potential motions. The 

advantage of sampling-based algorithms is their ability to handle complex and 

uncertain environments, making them suitable for real-world applications. However, 

sampling-based algorithms may require a significant amount of computational 

resources to generate a solution, and the solution may not always be optimal. Each 

approach has its own set of advantages and disadvantages, and the selection of the 

algorithm depends on the specific problem domain and implementation requirements 

[4]. Figure 1.2 below classifies motion planning algorithms into two families: 

deterministic and sampling-based algorithms. 

 

Figure 1.2 – Classification of Motion Planning Algorithms 
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1.2.1   Preliminaries 

Before exploring the specifics of motion planning algorithms in the literature, it is 

important to establish some foundational terminology 

Workspace.  Refers to the physical environment in which a robot operates, 

encompassing all obstacles, boundaries, and other relevant features that may affect 

the robot’s movement. The workspace is commonly represented by a geometric 

model, which can be either two-dimensional or three-dimensional such as figure 1.3, 

depending on the problem domain. 

Configuration.  Represents the complete set of parameters that describe the state of a 

robot within its workspace. It includes attributes such as position, orientation, and any 

additional degrees of freedom that are relevant to the task at hand. 

Configuration Space. Also known as C-space, serves as a mathematical representation 

of all possible configurations that a robot can assume within its workspace. This high-

dimensional space captures the robot’s state in its environment, accounting for its 

degrees of freedom. The configuration space is instrumental in defining the feasible 

and obstacle-free regions through which the robot can navigate. 

Initial configuration. Denotes the starting position and orientation of the robot within 

its workspace. It is determined by the values of the robot’s degrees of freedom in the 

configuration space and serves as the initial state from which a motion planning 

algorithm can compute a path to the goal configuration. 

Goal configuration. Represents the desired position and orientation of the robot 

within its workspace upon completion of a task. It serves as the final state to which the 

motion planning algorithm endeavors to guide the robot by planning a path from the 

initial configuration. 

Heuristic.  Refers to a function or technique used to estimate the cost or distance 

between a robot’s current state and the goal configuration. Heuristics offer a quick and 

efficient means of evaluating different paths or actions to determine the most 

promising ones. The selection of an appropriate heuristic can significantly enhance the 

efficiency and effectiveness of the motion planning algorithm. 
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Optimality. Refers to the discovery of the path with the lowest cost or shortest 

distance between the start and goal configurations while avoiding collisions with 

obstacles. 

Completeness. Pertains to the capability of a motion planning algorithm to find a 

solution if one exists. A complete algorithm guarantees the discovery of a feasible path 

between the start and goal configurations given sufficient time and resources. 

Efficiency. Denotes the ability of a motion planning algorithm to generate a solution 

that is either close to optimal or optimal while minimizing computational resources 

and time required for computation. 

Non-holonomy. Refers to the limitations on movement and turning options caused by 

mechanical constraints or design factors in mobile robots.  

 

Figure 1.3 – Example of a Workspace 

In the following subsections, we will delve into the most prominent deterministic and 

sampling-based algorithms in motion planning, outlining their distinctive 

characteristics. 
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1.2.2   Deterministic Algorithms 

Deterministic algorithms are a class of algorithms used in motion planning that 

consistently produce the same output for a given input each time they are executed. 

These algorithms find widespread application in various fields, particularly robotics, 

where precise and repeatable outcomes are critical. In motion planning, deterministic 

algorithms ensure that the generated output is consistent, offering a reliable and 

dependable path for robots, vehicles, or other entities to follow while prioritizing 

safety and efficiency. Examples of such algorithms include Dijkstra, A*, Visibility Graph, 

and Voronoi Diagram. 

A. Dijkstra’s Algorithm 

Dijkstra’s algorithm is a pathfinding algorithm invented by Dutch computer scientist 

Edsger W. Dijkstra in 1956. It was originally designed to find the shortest path between 

two nodes in a graph with non-negative edge weights [5]. 

The algorithm works by maintaining a set of visited nodes and a set of unvisited nodes. 

It begins by setting the distance of the starting node to 0 and the distances of all other 

nodes to infinity. At each step of the algorithm, the unvisited node with the lowest 

tentative distance is selected, and its neighbors are examined. For each neighbor, if 

the distance to that neighbor through the current node is less than the neighbor’s 

current tentative distance, the neighbor’s distance is updated to the new lower value. 

This process is repeated until the destination node is reached or all reachable nodes 

have been visited [5]. 

 

Figure 1.4 – Dijkstra’s Pathfinding Graph: Visualization of Visited and Unvisited Nodes 
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Dijkstra’s algorithm is a widely-used path planning approach that is simple to 

understand. However, it can be slow and memory-intensive for large graphs and is not 

suitable for graphs with negative edge weights. It also does not consider other 

environmental factors such as obstacles or dynamic changes to the environment that 

may affect pathfinding. Despite these limitations, it remains a valuable tool in path 

planning and related applications. 

B. A* Algorithm 

The A* algorithm is a pathfinding algorithm that was first proposed in 1968 by Peter 

Hart, Nils Nilsson, and Bertram Raphael of Stanford Research Institute. The algorithm 

builds upon Dijkstra’s algorithm by incorporating a heuristic function that estimates 

the distance from each node to the goal, allowing it to search more efficiently and find 

the shortest path faster [6].   

It works by maintaining two lists of nodes: an open list of nodes to be evaluated, and a 

closed list of nodes that have already been evaluated. The algorithm begins at the start 

node and adds it to the open list. Then, it selects the node with the lowest estimated 

cost to the goal (based on a heuristic function) and adds its neighbors to the open list. 

After that, as the algorithm explores the nodes, it evaluates and moves them from the 

open list to the closed list once they have been considered [6]. 

 

Figure 1.5 – A* Pathfinding Graph: Visualization of Open and Closed Nodes 

A* algorithm has advantages such as its efficiency in large graphs, ability to find 

optimal paths with a well-designed heuristic function, and adaptability to various 

terrain and cost functions. However, A* may not always find the optimal path if the 
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heuristic function is not admissible, can be slower if the heuristic function is not well-

designed, requires more memory compared to Dijkstra’s algorithm. 

C. Visibility Graph 

The visibility graph algorithm was introduced by Lozano-Pérez, Tomás, and Michael A. 

Wesley in their 1979 paper titled “An algorithm for planning collision-free paths among 

polyhedral obstacles”. The algorithm was originally designed for robot path planning in 

terrain with obstacles, where the robot’s visibility was restricted by the terrain [7]. 

The visibility graph algorithm works by representing obstacles as vertices in a graph, 

and creating edges between vertices that are visible to each other. The start and goal 

points are added as vertices, and edges are added between them and any visible 

vertices. Then, a search algorithm is used to find the shortest path between the start 

and goal points in the graph [7]. 

 

Figure 1.6 – Visibility Graph: The Dashed Lines Represent Candidate Paths and the 

Polygons Represent Obstacles. 

The visibility graph algorithm offers advantages such as simplicity, efficiency, and 

optimality when solving path planning problems. However, it is computationally 

expensive for complex environments and does not account for non-holonomic 

constraints or dynamic/unknown environments. 
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D. Voronoi Diagram 

The Voronoi diagram was first introduced by Georgy Voronoy in 1908, a Russian 

mathematician, who was interested in the theory of numbers and algebraic topology. 

In the 1980s, robotics researchers realized that Voronoi diagrams could be used for 

path planning in a range of applications [8]. Since then, many researchers have worked 

on improving the efficiency and accuracy of Voronoi diagram-based path planning 

algorithms. 

The Voronoi diagram algorithm works by dividing the environment into regions based 

on the distance to the obstacles. Specifically, it creates a graph where the nodes 

represent the obstacles, and the edges are the lines of equal distance between 

adjacent obstacles. These lines form the boundaries of the regions, known as Voronoi 

cells. The Voronoi diagram algorithm then uses these cells to plan a path by connecting 

the start and goal locations to the cell boundaries and finding the path that passes 

through the fewest number of cells. 

 

Figure 1.7 – Voronoi Diagram: Generated Path Through Cells to the Goal 

Advantages of the Voronoi diagram algorithm in path planning include its ability to 

efficiently calculate paths for multiple agents and handle complex environments with a 

large number of obstacles. It also considers the size and shape of the agent, resulting 

in more feasible paths. However, the Voronoi diagram algorithm may not always find 

the shortest path and can be sensitive to the location of obstacles. It also assumes that 

the agent moves at a constant speed and does not take into account dynamic 

environments or other non-holonomic constraints. 
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1.2.3   Sampling Based Algorithms 

Sampling-based algorithms are a class of motion planning algorithms that are 

extensively employed in robotics applications to discover a feasible path for a robot 

from its initial position to its desired goal position. These algorithms operate on the 

principle of randomly sampling the configuration space of the robot and constructing a 

graph or tree structure that captures the connectivity among the sampled 

configurations. The objective is to identify a path that connects the initial and goal 

configurations while effectively circumventing obstacles present within the 

environment. 

A. Single Query 

Single query sampling-based algorithms use random sampling to construct a graph and 

search for a path through it for a single start and goal pair. These algorithms are 

designed to work in continuous, high-dimensional state spaces where it is difficult to 

construct a deterministic path from a start to a goal location. 

Rapidly-exploring Random Tree 

The Rapidly-exploring Random Tree (RRT) algorithm was first introduced by Steven 

LaValle in 1998 [9]. The algorithm was designed to efficiently plan paths in high-

dimensional configuration spaces, where traditional path planning algorithms struggle 

due to the problem of exponential growth of computational complexity with increasing 

dimensionality. 

The algorithm works by constructing a tree-like structure through the exploration of 

the configuration space. The algorithm starts with an initial configuration and then 

iteratively grows the tree by randomly selecting a new configuration and attempting to 

connect it to the existing tree. The algorithm continues to do this until either a 

specified number of iterations has been reached or a feasible path from the start to 

the goal configuration has been found [9]. 
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Figure 1.8 – RRT Tree Extension Process 

The Rapidly-exploring Random Tree (RRT) algorithm offers several advantages for path 

planning in complex and high-dimensional environments, including the ability to 

handle non-holonomic constraints and changing environments. However, it may not 

always generate an optimal path and can struggle in environments with narrow 

passages or difficult-to-navigate areas. 

B. Multi Query 

Multi query sampling-based algorithms construct a graph that can be used to search 

for multiple start and goal pairs efficiently. These algorithms are particularly useful for 

planning paths for groups of robots, where multiple start and goal configurations need 

to be considered simultaneously. 

Probabilistic Road Map 

The Probabilistic Road Map (PRM) algorithm was introduced by Kavraki, Lydia E., Petr 

Svestka, J-C. Latombe, and Mark H. Overmars in 1996 as a probabilistic method for 

robot path planning. It was designed to efficiently plan paths in high-dimensional 

spaces with complex and changing environments [10].  

The algorithm works by building a graph of nodes and edges that represent the 

configuration space of the environment. The nodes are generated by randomly 

sampling the configuration space, while the edges are formed by connecting the nodes 

that are within a certain distance of each other and that can be connected without 

colliding with any obstacles. Once the graph has been constructed, a search algorithm 
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such as Dijkstra’s algorithm or A* is used to find a path from the start node to the goal 

node. 

 

Figure 1.9 – Probabilistic Road Map: Graph Connecting Initial and Goal Points 

The Probabilistic Road Map (PRM) algorithm in path planning has several advantages 

including its ability to handle complex and changing environments, generate paths that 

are moderately optimal, and work well in narrow passages. The computational 

complexity can also be lower than some other sampling-based algorithms. However, 

the algorithm may require a large number of samples to achieve good performance in 

certain scenarios, struggle with non-holonomic constraints, and the generated paths 

may not always be feasible.  

1.2.4   Comparison 

In this subsection, we delve deeper into the characteristics of the six previously cited 

algorithms, considering various factors such as completeness, optimality, memory 

usage, handling of dynamic environments, and the ability to handle non-holonomic 

constraints.  

Dijkstra’s algorithm is widely recognized for its completeness, guaranteeing that it will 

always find a path if one exists. It also offers optimality, ensuring that the path found is 

the shortest [11]. However, Dijkstra’s algorithm has moderate memory usage, which 

can become a limitation in larger environments where memory resources are 

constrained. Furthermore, Dijkstra’s algorithm does not consider dynamic 

environments, meaning it cannot adapt its path planning in real-time to changes in the 
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environment. It also does not handle non-holonomic constraints, such as limitations on 

the turning radius or differential drive constraints for certain robotic systems. 

The A* algorithm, like Dijkstra’s algorithm, is both complete and optimal, ensuring that 

it will always find the shortest path [12]. However, the A* algorithm typically exhibits 

higher memory usage compared to Dijkstra’s algorithm, as it employs heuristics to 

guide the search process. This higher memory requirement can pose challenges in 

resource-constrained scenarios. On the positive side, the A* algorithm excels in 

handling dynamic environments due to its ability to incorporate heuristics that 

estimate the remaining cost to the goal. By dynamically updating these heuristics, the 

A* algorithm can adapt its path planning to changing circumstances. Nonetheless, 

similar to Dijkstra’s algorithm, A* does not inherently handle non-holonomic 

constraints. 

The Visibility Graph algorithm shares similarities with Dijkstra and A* algorithms in 

terms of completeness and optimality. It guarantees finding a path if one exists and 

ensures it is the shortest [13]. However, the Visibility Graph algorithm has high 

memory usage, which can be a drawback in memory-limited environments. Similar to 

Dijkstra and A*, it does not consider dynamic environments or non-holonomic 

constraints. As a result, the Visibility Graph algorithm is often more suitable for static 

environments where the map remains unchanged during the path planning process. 

In contrast to the previous algorithms, the Voronoi Diagram approach is not complete 

or optimal. It cannot guarantee finding a solution even if one exists, and the path it 

generates may not be the shortest. Moreover, unlike the A* and Visibility Graph 

algorithms, the Voronoi Diagram algorithm typically exhibits low memory usage [14]. 

Like the previous algorithms, it does not account for dynamic environments or non-

holonomic constraints. However, Voronoi Diagrams offer advantages in situations 

where an approximate solution is sufficient, such as scenarios where real-time path 

planning is not required, or where optimality is not the primary concern. 

The RRT (Rapidly-exploring Random Tree) algorithm, while complete, is not optimal. It 

offers a trade-off between optimality and computational efficiency. One of its 

advantages is its low memory usage, which makes it suitable for resource-constrained 
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systems. RRT is particularly well-suited for handling non-holonomic constraints, as it 

can explore the configuration space of non-holonomic vehicles efficiently. 

Furthermore, RRT can be adapted to handle dynamic environments by incorporating 

techniques such as incremental planning or replanning. By periodically updating the 

tree structure and adapting the paths based on changes in the environment, RRT can 

address dynamic scenarios to some extent. 

PRM (Probabilistic Roadmap) algorithm, similar to RRT, is complete but not optimal. It 

also boasts low memory usage, which is advantageous in memory-limited 

environments. PRM can handle dynamic environments; however, it struggles with non-

holonomic constraints. 

Algorithm Completeness Optimality 

Memory 

Usage 

Handling 

Dynamic 

Environment 

Handling 

Non-

holonomic 

Constraints 

Dijkstra Yes Yes Moderate No No 

A* Yes Yes High Yes No 

Visibility 

Graph 
Yes Yes High No No 

Voronoi 

Diagram 
No No Low No No 

RRT Yes No Low Yes Yes 

PRM Yes Yes Low Yes No 

Table 1.1 – Comparison of Motion Planning Algorithms 
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1.2.5   Discussion 

In the previous section, we compared various path planning algorithms. Based on our 

analysis, we have determined that certain criteria are crucial for our study: 

completeness, handling dynamic environments, and addressing the non-holonomic 

constraints imposed by the limited movement of the wheelchair. Considering these 

factors, we have selected the Rapidly-exploring Random Tree (RRT) as the most 

suitable path planning algorithm. While RRT may not guarantee optimality, we can 

overcome this limitation by exploring its variants in the following chapter. 

To further support our choice for RRT, we would like to highlight a few reasons: 

Probabilistic Completeness: RRT is probabilistically complete, meaning that given 

enough time, it is guaranteed to find a solution if one exists. This property ensures that 

the robotic wheelchair can always find a feasible path in the environment, providing 

reliable navigation capabilities. 

Adaptability: RRT can be easily extended and modified to incorporate additional 

constraints and optimize the generated paths through post-processing techniques. 

This adaptability allows us to enhance the quality of the paths according to specific 

requirements. 

Exploration and Coverage: The inherent randomness and exploratory nature of RRT 

make it well-suited for tasks involving exploration and coverage of unknown 

environments. For example, if the robotic wheelchair needs to navigate through a new 

environment or perform tasks like mapping or inspecting an area, RRT can efficiently 

explore the space and generate paths that cover the entire region of interest. 

Dynamic Environment Handling: RRT is able to handle dynamic environments where 

obstacles can move or appear/disappear over time. By continuously updating the tree 

structure, RRT can adapt to changes in the environment and generate new paths on 

the fly, ensuring safe and efficient navigation of the wheelchair. 

Potential for Real-World Deployment: The efficiency, adaptability, and extensive 

research on RRT make it a promising choice for the real-world deployment. Its 
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practicality and proven effectiveness in various applications strengthen its suitability 

for our study. 

By considering these factors, we are confident in our decision to utilize the RRT 

algorithm as the path planning approach for our research. 

1.3   Optimization Techniques 

Optimization techniques in motion planning are mathematical and computational tools 

used to find the best trajectory that satisfies specific criteria, such as the shortest or 

safest path, among all possible paths from a starting configuration to a goal 

configuration. These techniques aim to optimize the complete trajectory or assist in 

creating an effective path towards the goal. 

In motion planning, optimization techniques can be broadly categorized into 

approximate and exact methods. Approximate methods focus on finding a near-

optimal solution to the motion planning problem, while exact methods aim to find the 

optimal solution. Approximate methods can be further divided into heuristic and 

metaheuristic methods. 

Heuristic methods employ simple rules or heuristics to guide the search for a good 

trajectory. These methods are fast and easy to implement but do not guarantee the 

optimality of the found path. Heuristic methods are particularly useful when finding 

the exact solution is impractical or when a fast solution is required. Examples of 

heuristic methods include the Greedy algorithm, Simulated Annealing, and Tabu 

Search. 

On the other hand, metaheuristic methods are more powerful than heuristic methods 

and are capable of finding better solutions to motion planning problems. These 

methods utilize stochastic techniques inspired by natural phenomena or biological 

systems to explore the search space for the best trajectory. While metaheuristic 

methods do not guarantee optimality, they are able to find good solutions within a 

reasonable amount of time. Examples of metaheuristic methods used in motion 

planning include the Genetic Algorithm, Particle Swarm Optimization, and Ant Colony 

Optimization. 
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1.3.1   Metaheuristic Approaches 

The term “metaheuristic” was coined by Fred Glover in 1986 to describe a non-

problem-specific heuristic method. Metaheuristics combine exploration 

(diversification) and exploitation (intensification) to form a robust searching 

mechanism. Exploitation involves searching in the vicinity of the best solution, while 

exploration involves exploring new search areas [15]. 

In optimization and problem-solving, a metaheuristic approach refers to a general 

strategy or framework that can be applied to various problems without relying on 

specific problem knowledge. These iterative, heuristic-based algorithms intelligently 

explore the solution space to search for near-optimal solutions. They are particularly 

useful when traditional optimization techniques are impractical or inefficient due to 

complex, large-scale, or multi-objective problems. 

Metaheuristics are algorithmic structures that can be easily adapted to different 

optimization problems with minimal modifications. They possess fundamental 

characteristics such as applicability to multiple problems, approximate nature, 

exploration of the search space to find “good enough” solutions, and straightforward 

parallel implementation. Metaheuristics encompass a range of techniques, from basic 

local search methods to advanced learning techniques, incorporating mechanisms to 

prevent premature convergence. 

 

Figure 1.10 – Classification of Metaheuristic Approaches 



Chapter 1    Motion Planning and Trajectory Optimization: State of the Art 

21 

 

A. Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are population-based, fitness-oriented, and variation-

driven algorithms inspired by natural evolution. They mimic the process of natural 

selection and adaptation to solve optimization and learning problems. Eas maintain a 

population of potential solutions, where each individual has its own genetic 

representation and fitness value. By introducing variations through genetic operators, 

Eas explore the solution space to find better solutions. Eas have been proposed since 

the 1960s and have been used in various domains. They are distinguished from related 

concepts such as soft computing and computational intelligence. The number of 

research papers on Eas has been increasing over time, indicating ongoing interest and 

development in the field. [16] 

Genetic Algorithm 

John Henry Holland proposed the genetic algorithm for optimization and problem 

solving in his 1975 book “Adaptation in Natural and Artificial Systems”. He introduced 

genetic algorithms as a method to solve complex problems [17]. This marked the 

foundation of applying evolutionary computation techniques to optimization and 

search problems. Today, genetic algorithms are widely utilized across diverse fields to 

find optimal solutions. 

The Genetic Algorithm (GA) is an optimization technique inspired by natural selection. 

It begins with a population of potential solutions, called chromosomes, representing 

different possible solutions to the problem. The GA evaluates the fitness of each 

chromosome and selects two parents based on their fitness. Through crossover, 

genetic information is exchanged between parents, generating offspring with 

combined traits. Mutation introduces random changes, exploring new solutions. 

Offspring, including mutated individuals, form the next generation. This process 

repeats over multiple generations until a satisfactory solution is found or a termination 

criterion is met. The GA explores diverse solutions, converging towards an optimal or 

near-optimal solution by mimicking natural selection’s principles. [18] 
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Figure 1.11 – Genetic Algorithm Cycle: Evaluation, Selection, Crossover, and Mutation 

Phases 

Population-Based Incremental Learning 

Shumeet Baluja introduced the Population-Based Incremental Learning (PBIL) method 

in 1994, aiming to integrate genetic search-based function optimization and 

competitive learning. PBIL combines the advantages of genetic algorithms with simple 

competitive learning, offering a more efficient and straightforward approach 

compared to traditional genetic algorithms [19]. 

Population-Based Incremental Learning (PBIL) is an optimization algorithm that 

addresses the limitations of Genetic Algorithms (Gas) in solving deceptive problems. 

PBIL maintains a population of individuals representing potential solutions and evolves 

them over generations. Instead of using crossover and mutation, PBIL estimates and 

samples the joint probability distribution of selected individuals. 

PBIL maintains a probability vector representing the likelihood of each component in 

the solution space. At each iteration, the probability vector is used to generate new 

individuals, which are evaluated and ranked. The best individuals are selected to 

update the probability vector. The algorithm consists of initializing the probability 

vector and repeating the following steps until convergence: sampling a population, 

evaluating and ranking individuals, selecting the best ones, and updating the 

probability vector based on the selected individuals [20]. 
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Genetic Programming 

John Koza, an American computer scientist, proposed genetic programming as a 

method for automatically creating computer programs to solve complex problems. His 

work started in the 1980s and led to influential books like “Genetic Programming: On 

the Programming of Computers by Means of Natural Selection” in 1994 [21]. Genetic 

programming extends genetic algorithms to evolve programs using operators like 

crossover and mutation. This approach has gained prominence in the field of 

evolutionary computation for automated program synthesis and optimization. 

Genetic programming (GP) is an evolutionary algorithm inspired by Darwinian 

principles. It uses a population of candidate solutions represented as complex trees. 

GP applies genetic operators like crossover and mutation to create a new generation 

of individuals. Fitness functions evaluate individual quality, influencing their selection 

for reproduction. 

For successful GP, two conditions must be met: sufficiency, where the representation 

can solve the problem, and closure, where functions handle all possible input values. 

These conditions can be challenging when evolving programs for diverse value types 

[22]. 

Differential Evolution 

Differential Evolution (DE) for optimization and problem solving was proposed by 

Rainer Storn and Kenneth Price in the late 1990s. In their seminal work titled 

“Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over 

Continuous Spaces” published in 1997, Storn and Price introduced DE as an 

evolutionary algorithm [23]. DE utilizes vector differences to generate new candidate 

solutions, making it highly efficient for optimization in continuous search spaces. This 

approach has gained widespread popularity as a robust and effective method for 

solving optimization problems across various domains. 

Differential Evolution (DE) is an evolutionary algorithm used for searching in a solution 

space. It involves initialization, mutation, crossover, and selection steps. In 

initialization, a population of individuals represented by D-dimensional vectors is 
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created within the search space. Mutation generates a diverse population by adding 

the difference between two randomly selected individuals to a third individual. 

Crossover combines the target and mutation vectors, exchanging information between 

individuals using a binomial crossover. Selection evaluates the objective function for 

each test vector and replaces the target vector if it performs better. 

The DE algorithm iterates through these steps, evolving the population over multiple 

generations. By differentiating, scaling, and applying mutation, crossover, and 

selection, it explores the solution space and enhances individual quality in each 

generation [24]. 

B. Physics Based Algorithms 

Physics-based optimization algorithms are a category of metaheuristic optimization 

methods that draw inspiration from physical principles and laws to solve complex 

problems. These algorithms mimic physical processes found in nature and utilize 

concepts from physics to develop effective optimization techniques. They differ from 

biology-based algorithms and have been proposed as alternatives to solve various 

challenging problems [25]. 

Gravitational Search Algorithm  

The Gravitational Search Algorithm (GSA) for optimization and problem solving was 

proposed by Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi in 2009. 

Rashedi, Nezamabadi-Pour, and Saryazdi, who are researchers in the field of computer 

science and optimization, introduced GSA as a novel metaheuristic algorithm inspired 

by the laws of gravity and motion [26]. Their work on GSA aimed to develop an 

efficient optimization algorithm for solving complex problems by simulating the 

interactions between celestial bodies. Since its proposal, GSA has been applied to 

various optimization problems and has shown promising results. 

The Gravitational Search Algorithm (GSA) is an optimization algorithm inspired by the 

law of gravity. It represents the problem as a system of interacting masses, where each 

mass corresponds to a potential solution. The algorithm simulates the gravitational 

attraction between the masses, causing a global movement towards better solutions. 
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Each mass has position, inertial mass, active gravitational mass, and passive 

gravitational mass. The algorithm follows Newtonian laws of gravitation and motion to 

update the positions and velocities of the masses. Stochastic behavior is introduced 

through randomly weighted sum of forces. The algorithm balances exploration and 

exploitation by reducing the number of forces applied over time. GSA benefits from 

communication between masses, adaptive learning rate, and control over motion and 

attraction. It shows good convergence rates in experiments and allows for the 

adjustment of search accuracy [27]. Figure 1.12 demonstrates the force-based position 

update of a mass [28]. 

 

Figure 1.12 – Demonstration of Position Update in the GSA  

Charged System Search 

The Charged System Search (CSS) algorithm, proposed by A. Kaveh and S. Talatahari, is 

an optimization technique that draws inspiration from physics and mechanics. It 

utilizes principles from electrostatics and Newtonian laws to create a multi-agent 

approach. In CSS, each agent represents a charged particle (CP) and interacts with 

others based on fitness values and separation distances. Electrostatics laws determine 

the resultant force, while Newtonian mechanics laws govern the movement quality 

[29].  

In CSS, each potential solution is represented as a charged particle, and their 

interactions are governed by electric forces analogous to Coulomb’s law. The charges 

on the particles reflect the quality of their solutions, and the algorithm employs 

attractive and repulsive forces between particles based on their charges and distances. 

This encourages exploration and exploitation of the search space. The resultant force 
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acting on each particle is calculated considering these factors. To update the particles’ 

positions and velocities, Newtonian mechanics principles come into play. The new 

position depends on the previous position, velocity, and the resultant force acting on 

the particle. The velocity is adjusted based on the change in position and the time step. 

CSS effectively balances exploration and exploitation by considering solution quality, 

attractive and repulsive forces, and Newtonian mechanics. This enables efficient 

search and convergence towards the optimal solution in the solution space. [29] 

C. Central Force Optimization 

Central Force Optimization (CFO) is a metaheuristic search algorithm proposed by R. A. 

Formato in 2007. Inspired by gravitational kinematics, CFO employs a metaphor of 

“probes” navigating a multidimensional decision space, mirroring the motion of 

masses under gravity. Equations derived from particle motion govern the positions and 

accelerations of the probes [30]. 

Central Force Optimization (CFO) is an optimization algorithm that utilizes the 

principles of gravitation to guide particles towards better solutions. Each particle 

represents an object or solution, and its movement is driven by gravitational 

attraction. The goal is to maximize a given fitness function that measures performance. 

The algorithm starts with initializing a population of particles in a multi-dimensional 

space, distributed uniformly along “probe lines.” Particle acceleration is initially set to 

zero. The next step involves calculating the acceleration of each particle based on 

Newton’s law of gravity. The particle’s mass, derived from the objective function, 

influences its gravitational attraction to other particles. 

The motion procedure updates the positions and velocities of particles using Newton’s 

motion laws. Particle movement is restricted within a feasible region, and positions are 

updated deterministically using a gradient algorithm. The fitness function is evaluated 

at the new positions, and the algorithm iterates until a desired or global best solution 

is found. Convergence conditions ensure the algorithm converges to the best solutions 

discovered [31]. 
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Big-Bang Big-Crunch 

The “Big Bang-Big Crunch” optimization method was proposed by Osman K. Erol and 

Ibrahim Eksin [32]. It is a physics-based algorithm that draws inspiration from the Big 

Bang and Big Crunch theory of the evolution of the universe. The method involves two 

phases: the Big Bang phase, where random points are generated, and the Big Crunch 

phase, where these points are converged to a representative point using a center of 

mass or minimal cost approach. 

In the Big Bang phase, the algorithm creates an initial population of candidates 

randomly spread across the search space. This randomness represents energy 

dissipation in nature. The population size is fixed, and candidates are bounded within 

the search space. The algorithm then enters the Big Crunch phase, applying a 

convergence operator called the Big Crunch. It finds the center of mass of the 

population, representing the highest fitness value, using a formula that considers 

fitness values. This convergence process resembles gravitational attraction and 

eliminates the need for pairwise combinations. Next, the algorithm generates new 

candidate solutions for the next iteration by spreading offsprings around the center of 

mass using a normal distribution operation. The standard deviation decreases as 

iterations progress, converging towards an optimal point while exploring the search 

space. 

The algorithm alternates between the Big Bang and Big Crunch phases until a stopping 

criterion is met. It involves generating candidates, evaluating fitness values, finding the 

center of mass, and creating new candidates around it. The goal is to converge to an 

optimal point while maintaining a diverse population that decreases the probability of 

being far from the center of mass [32]. 

C. Swarm Based Algorithms 

Swarm-based optimization algorithms are a type of metaheuristic algorithms that draw 

inspiration from swarm intelligence (SI) observed in nature. These algorithms mimic 

the collective behavior of swarms or groups of individuals to solve optimization 

problems. 
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In swarm-based optimization algorithms, a population of candidate solutions (often 

called particles or agents) iteratively explores the search space to find an optimal or 

near-optimal solution. The individuals within the swarm interact with each other and 

exchange information to collectively improve their search performance [33]. 

Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was developed by James Kennedy and Russell 

Eberhart in 1995. Inspired by the collective behavior of birds and fish, they introduced 

PSO as an optimization algorithm. PSO employs a population of particles that 

dynamically move and interact with one another to explore and find optimal solutions 

within a given problem space [34]. Since its inception, PSO has gained significant 

popularity and has been extensively utilized across diverse domains for effective 

optimization problem-solving. 

The Algorithm simulates a swarm of particles moving through a problem space to find 

the best solution. Each particle represents a potential solution and adjusts its position 

based on a velocity vector. Personal experience and social influence guide the 

particle’s movement. It remembers its best position and learns from the swarm’s 

collective knowledge. 

The algorithm starts with randomly distributed particles. At each iteration, the velocity 

and position of each particle are updated based on its current and best positions. This 

process continues until a stopping criterion is met. 

PSO balances personal experience and swarm knowledge to explore the problem space 

efficiently. Its stochastic nature and particle memory enable it to adapt and find good 

solutions in complex search spaces. [35] 

Ant Colony Optimization 

Ant Colony Optimization (ACO) was proposed by Marco Dorigo and his colleagues in 

the early 1990s [36]. Marco Dorigo, an Italian computer scientist, introduced the 

concept of ACO as an optimization algorithm inspired by the foraging behavior of ants. 

ACO simulates the behavior of ant colonies to solve optimization problems by 

iteratively constructing solutions and refining them based on pheromone trails. The 
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algorithm has gained popularity and has been successfully applied to various problem 

domains. 

In ACO, artificial ants construct solutions by traversing a construction graph and 

depositing pheromone on the components they visit. The choice of components is 

influenced by pheromone levels and heuristic information. A local search can be 

applied to refine the solutions, and pheromone values are updated based on solution 

quality. ACO has different variations, such as Ant System (AS) and Ant Colony System 

(ACS), each with specific rules for pheromone update and solution construction. 

Overall, ACO is an effective algorithm for finding optimal solutions by mimicking the 

behavior of ants [36]. 

Firefly Algorithm 

The Firefly Algorithm (FA) was proposed by Xin-She Yang in 2008. It is an optimization 

algorithm inspired by the flashing behavior of fireflies in their natural environment. 

The algorithm gained attention for its ability to effectively solve complex optimization 

problems [37]. 

The algorithm mimics how fireflies use their bioluminescent flashes to attract mates 

and communicate. Each firefly represents a potential solution, with its light intensity 

indicating solution quality. 

The algorithm starts with a random population of fireflies. Fireflies move towards 

more attractive individuals based on their light intensity. Their movement considers 

attractiveness, distance, and a randomization parameter. 

Iterations involve evaluating fitness, sorting fireflies, and updating positions. 

Termination occurs when a criterion is met. The algorithm achieves a balance between 

exploration and exploitation, mirroring the collective intelligence exhibited by social 

insects [38]. 

Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) was proposed by Seyedali Mirjalili in 2016 as 

a nature-inspired optimization algorithm. Mirjalili introduced the WOA in his research 
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paper titled “Whale Optimization Algorithm,” which aimed to develop a novel 

approach for solving optimization problems [39].  

The Whale Optimization Algorithm (WOA) is an optimization algorithm inspired by the 

hunting behavior of humpback whales. It mimics their bubble-net feeding method, 

where whales work together to encircle and trap prey. The algorithm uses a 

population of search agents representing potential solutions. It combines exploration 

and exploitation phases, with agents moving randomly and towards the current best 

solution. The algorithm iterates, updating agent positions and evaluating fitness until a 

termination criterion is met. The WOA algorithm leverages whale behavior to 

efficiently search for optimal solutions in various optimization problems [39]. 

D. Human Based Algorithms 

Human-based optimization algorithms, also known as bio-inspired or nature-inspired 

algorithms, are metaheuristic methods that draw inspiration from human behaviors, 

social interactions, or natural phenomena to solve complex optimization problems. 

These algorithms attempt to mimic the problem-solving strategies employed by 

humans or observe patterns in natural systems to find optimal solutions. 

Social Emotional Optimization 

The Social Emotional Optimization Algorithm (SEOA) was proposed by Yuechun Xu, 

Zhihua Cui, and Jianchao Zeng in 2010. This algorithm is a swarm intelligent technique 

that simulates human behavior guided by emotions to solve nonlinear constrained 

optimization problems. It aims to address the challenges of nonlinear programming 

problems by incorporating social and emotional aspects into the optimization process 

[40]. 

The Social Emotional Optimization Algorithm (SEOA) is inspired by human behavior in 

society, where individuals strive to increase their social status. It employs virtual 

individuals who make choices based on their emotional index, which is evaluated by 

society. Initially, all individuals have an emotion index of 1 and choose their behavior 

using a set of manners and random factors. The algorithm incorporates thresholds and 
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parameters to simulate human behavior and control the behavior selection process 

[41]. 

Imperialist Competitive Algorithm 

The Imperialist Competitive Algorithm (ICA) was proposed by Esmaeil Atashpaz-Gargari 

and Caro Lucas in 2007. The algorithm is inspired by imperialistic competition and aims 

to solve optimization problems. It starts with an initial population divided into colonies 

and imperialists, forming empires. Through competition, powerful empires take over 

weaker ones, leading to convergence towards a state with a single empire. [42] 

The Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm that simulates 

the competition and assimilation processes among countries. Individuals in the 

population represent countries, divided into imperialist countries and colonies. 

Imperialists are selected based on lower costs, and colonies are assigned to 

imperialists based on their power. Colonies move towards their respective imperialists, 

representing assimilation. Empires compete and weaker ones collapse, leading to 

convergence. The algorithm includes revolution to prevent early convergence and 

position exchanges. Weaker empires lose colonies to stronger ones. Competition 

among empires determines colony distribution [43]. 

Teaching Learning Based Optimization 

Teaching Learning Based Optimization (TLBO) is an optimization method proposed by 

R.V. Rao, V.J. Savsani, and D.P. Vakharia in 2011. It was specifically developed for 

constrained mechanical design optimization problems. Inspired by the relationship 

between a teacher and learners, TLBO is a population-based technique consisting of 

two phases: the Teacher Phase and the Learner Phase. In the Teacher Phase, learners 

acquire knowledge from the teacher, while in the Learner Phase, learners interact and 

improve collectively [44]. 

Teaching-Learning-Based Optimization (TLBO) is an optimization technique that 

emulates the teaching and learning process in a classroom. It simulates the interaction 

between a teacher and a group of learners to solve optimization problems. 
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TLBO operates in two phases: the Teacher Phase and the Learner Phase. In the Teacher 

Phase, the teacher guides the learners towards better performance by modifying the 

existing solutions using a teaching factor and random numbers. During the Learner 

Phase, learners interact with each other, comparing their performances and adjusting 

their solutions based on the difference between them and random numbers. TLBO is a 

population-based method where the population represents the group of learners. The 

goal is to find the global solution that maximizes or minimizes the fitness function, 

corresponding to the learners’ performance. 

By drawing inspiration from the dynamics of a classroom, TLBO offers a unique 

approach to optimization, fostering interactions and knowledge exchange to improve 

performance iteratively [45]. 

Soccer League Competition 

The Soccer League Competition (SLC) algorithm, proposed by Naser Moosavian and 

Babak Kasaee Roodsari in 2014, is a meta-heuristic optimization technique inspired by 

the competitive nature of soccer leagues. It incorporates the concept of teams and 

players competing for top positions in the league table to solve various optimal design 

problems. By dividing the population into teams and simulating their competition, the 

SLC algorithm aims to find the global optimum. 

In soccer league competitions, teams compete against each other over a season to 

achieve top positions in the league table. Matches are played, and teams earn points 

based on their performance. At the end of the season, the team with the most points 

becomes the champion, while the bottom two teams are relegated to a lower-level 

league, making room for new talent. Each team consists of fixed players and 

substitutes, with internal competitions to improve performance. Key players, such as 

the Star Player and Super Star Player, play crucial roles. Strategies and competitions 

within teams lead to overall performance improvement. The Soccer League 

Competition (SLC) algorithm simulates this process to solve optimization problems. It 

follows steps such as initializing parameters, generating samples, assessing teams, 

updating standings, and handling relegation and promotion. SLC algorithm utilizes the 

dynamics of soccer leagues to optimize solutions and improve performance [46]. 



Chapter 1    Motion Planning and Trajectory Optimization: State of the Art 

33 

 

1.3.2   Discussion 

WOA (Whale Optimization Algorithm) is a recent approach that has shown promising 

performances in multiple engineering disciplines. In our research, we aim to pioneer its 

application in path planning, specifically in conjunction with the Rapidly-exploring 

Random Tree (RRT) algorithm, as we anticipate it to yield highly positive results. To the 

best of our knowledge, RRT has not yet been implemented with WOA for path 

planning. 

There are several key reasons why WOA holds great potential for path planning: 

Low computational complexity: WOA exhibits relatively low computational complexity 

when compared to other optimization algorithms. This characteristic is particularly 

advantageous for real-time applications like autonomous navigation, where quick 

decision-making is crucial. 

Ability to handle nonlinear and non-convex problems: Path planning in autonomous 

navigation often involves nonlinear and non-convex optimization problems which may 

contain local minima. WOA has demonstrated effectiveness in dealing with these 

problem characteristics [39]. By leveraging its exploration and exploitation 

mechanisms, WOA can efficiently explore the search space, even in the presence of 

complex constraints and irregular landscapes. Consequently, it leads to better path 

planning outcomes. 

Potential for parallelization: The characteristics exhibited by WOA make it well-suited 

for parallelization, which in turn allows for effective utilization of modern hardware 

architectures. By updating the agents individually in a parallel manner, the exploration 

of the search space is accelerated.  

Our research aims to investigate and validate the potential benefits of leveraging WOA 

(Whale Optimization Algorithm) in conjunction with the RRT (Rapidly-exploring 

Random Tree) algorithm for path planning. The focus of our investigation lies in 

exploring the specific advantages offered by WOA and how they can be effectively 

utilized in this context. 
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1.4   Conclusion 

In this chapter, we conducted a detailed examination of motion planning, 

encompassing its definition, a brief overview of its historical background, the 

fundamental concepts associated with it, and an introduction to the main classes of 

motion planning algorithms, namely deterministic and sampling-based approaches. 

We explored prominent algorithms within these classes, including Dijkstra’s algorithm, 

A*, Visibility Graph, Voronoi Diagram, Rapidly-exploring Random Trees (RRT), and 

Probabilistic Road Maps. 

Furthermore, we concluded the motion planning section by comparing the 

aforementioned algorithms in terms of completeness, optimality, memory usage, 

handling dynamic environments, and accommodating non-holonomic constraints. 

Additionally, we provided an overview of metaheuristic optimization approaches, 

specifically evolutionary-based, physics-based, swarm-based, and human-based 

methods, along with some of their corresponding algorithms. 

We also justified our selection of the RRT algorithm as the primary path planning 

algorithm for our study, considering its advantages for our application scenario. We 

acknowledged the weaknesses of RRT and expressed our intention to address them by 

exploring its variants. One of the main reasons behind choosing RRT was its 

adaptability, allowing for extension through optimization algorithms. Consequently, 

we opted for the integration of the Whale Optimization Algorithm (WOA) as the 

optimization algorithm in conjunction with RRT, which was supported by several 

reasons specific to this choice. 

In the upcoming chapter, we will introduce RRT and briefly discuss its variants. We will 

then provide a rationale for our selection of a particular variant. Additionally, we will 

present the formulation of WOA and outline our proposed variants, along with the 

type of control generation we have opted for.
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2.1   Introduction 

Rapidly-exploring Random Tree (RRT) is a popular algorithm used for motion planning 

in robotics and computer graphics. It efficiently explores the search space to find 

feasible paths between a start and goal configuration. RRT is well-suited for high-

dimensional and complex motion planning problems, overcoming the curse of 

dimensionality. 

Many variants of RRT exist to address specific challenges and improve performance. 

Variants like RRT* [47], RRT-Connect [48], and Goal Biased-RRT [49] introduce 

modifications to tackle issues such as narrow passages, high-dimensional spaces, and 

dynamic obstacles. 

Optimization techniques like the Whale Optimization Algorithm (WOA) can enhance 

the performance of RRT and its variants, discovering feasible and optimized paths in 

complex scenarios. WOA is versatile and has been successfully applied to various 

optimization problems, overcoming local optima and converging to high-quality 

solutions [39]. 

The chapter provides an overview of RRT, its limitations, and the development of 

variants. It explores the integration of WOA and its advantages. The sections cover 

RRT’s operational principles, renowned variants, justification for choosing RRT*, its 

enhancements and limitations, and the proposed local and global variants of RRT* 

combined with WOA. The nature of the robot platform and the chosen approach for 

generating controls are also discussed. 

2.2   Rapidly-exploring Random Tree 

The Rapidly Exploring Random Tree (RRT) algorithm is a path planning technique 

introduced by Steven M. LaValle in June 1998. It was developed as a simple and 

iterative algorithm to efficiently search complex and high-dimensional spaces for 

feasible paths. The RRT algorithm has since become widely used in various robotic 

systems and other fields. 
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The algorithm begins with an initial configuration or point in the space, which acts as 

the root of the tree. This initial configuration could represent the starting position of a 

robot or any other desired location. The tree is then iteratively expanded by randomly 

sampling points in the space. In each iteration, a new random sample is generated in 

the space. The nearest point in the existing tree is identified, and a connection is 

established between this point and the new sample if it lies within the free space. The 

connection is usually made by following a straight line or any other suitable trajectory. 

This process is repeated for a predefined number of iterations or until a specific 

condition is met. As the algorithm progresses, the tree structure gradually expands and 

covers the space more uniformly. Eventually, if the initial and goal regions are 

reachable within the space, the growing tree will establish a connection between 

them. This connection indicates the discovery of a feasible path from the initial 

configuration to the goal configuration. 

 

Initialization of the tree with       

 

Generation of a random sample       

 

The nearest node         to       from 

 

Insertion of      through steering from 
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the current tree is             towards       

 

Second expansion 

 

After 9 Added nodes,      falls within the 

goal region and the path is returned 

Figure 2.1 – Building Process of the Rapidly-exploring Random Tree 

Presented below is the Rapidly-exploring Random Tree algorithm. 
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The Rapidly Exploring Random Tree (RRT) algorithm, although powerful, does have 

certain limitations. While RRTs are primarily designed for static environments and can 

be effective in many cases, they do not guarantee optimal paths and may converge 

slowly in certain scenarios. Additionally, they do not inherently handle dynamic 

obstacles or account for changes in the environment during the planning process. 

However, researchers have developed variants of the RRT algorithm to address some 

of these limitations. These variants aim to enhance the efficiency and performance of 

the algorithm by considering dynamic obstacles and adapting to changes in the 
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environment. By incorporating these improvements, the modified versions of RRT 

strive to provide better planning results and overcome some of the original algorithm’s 

shortcomings. 

2.3   The RRT Variants 

In this section, we will discuss briefly the main contributions of various RRT (Rapidly-

exploring Random Tree) variants. 

S-RRT. Introduces a greedy approach to shorten the total length of the path, 

Incorporates B-spline curves to provide smoother paths, and reduces the path 

complexity by removing redundant nodes from the tree [50]. 

RRT*. During the node insertion process. First, it selects the parent node that 

minimizes the overall cost to the root resulting in shorter paths. Second, dynamic edge 

rewiring is implemented to provide efficient exploration of the configuration space 

[51]. 

RJ-RRT. Incorporates a greedy-based sampling strategy that progressively narrows 

down the sampling space to the goal area. Additionally, it employs an enhanced 

environment judgment method that swiftly detects and explores narrow passage. This 

method utilizes a simple calculation to determine the environment at each sampling 

point [52]. 

RRT-Connect. Introduces the Connect heuristic, enabling longer-distance movements 

and rapid convergence to a solution. Moreover, the simultaneous maintenance of two 

trees facilitates quick and uniform exploration of the configuration space [53]. 

IRRT-Connect. Makes use of a third node based on the idea of dichotomous points, 

allowing the algorithm to be extended with four trees. In addition, biased spanning of 

the tree towards the goal point effectively addresses the blind search problem of RRT-

Connect [54]. 

RRT-A*. Integrates the A* cost function, allowing for informed decision-making during 

the planning process and improved generated paths [55].  



Chapter 2                             Optimal Motion Planners: Proposed Approaches 

40 

 

ORRT-A*. Employs morphological dilation to inflate obstacles before path generation, 

preventing collisions and improving safety. Furthermore, cubic spline interpolation is 

used to smoothen the generated path, ensuring seamless transitions and a visually 

appealing trajectory [56]. 

PG-RRT. Incorporates Gaussian models to enhance goal adaptation and faster 

convergence in RRT node generation. Additionally, feasible Gaussian model samples 

are included to ensure kinematic compatibility. Moreover, a specialized node has been 

introduced to facilitate intelligent tree expansion towards the goal [57]. 

pRRT. Integrates uncertainty by simulating multiple search tree extensions as a 

stochastic process. The variant also implements probabilistic selection of extensions 

and entire paths based on the expected probability of successful execution, 

considering costs and likelihood of success. In addition, it considers various cost 

metrics beyond path length, such as energy consumption and execution time, enabling 

paths with different cumulative costs. To enhance robustness in uncertain 

environments, the variant propagates uncertainty to planned paths and accounts for 

factors like terrain characteristics, sensor accuracy, and coefficients of friction [58].  

NRRT*. Uses a trained CNN model to guide the sampling process and predict optimal 

path probabilities [59]. 

FG-RRT. Incorporates a fuzzy logic-based approach to allow for an intelligent decision-

making process during tree expansion [60]. 

MRRT. Uses artificial guided points to explore narrow passages. Moreover, the 

incorporation of trajectory primitives respecting the robot’s dynamic constraints 

enables generation of feasible trajectories [61]. 

GB-RRT. Integrates potential fields representation of the environment to significantly 

increase the sampling efficiency. Furthermore, the use of cubic B-splines to generate 

smoother paths and eliminate sharp turns, results in feasible paths [62]. 

Bi-RRT. Allows comprehensive exploration of the search space by simultaneously 

generating two trees, one from the starting point and the other from the target point 

[63]. 
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RRT-Rope. Uses an optimized version of RRT-Connect enabling rapid computation of 

feasible paths. By simultaneously growing two trees towards each other, it significantly 

reduces path finding time. To further enhance the computed path, a deterministic 

shortcutting technique is employed. This technique efficiently shortens the path after 

computation by leveraging intermediate nodes without compromising resolution [64]. 

RRT*-Smart. Optimizes the initial path by directly connecting visible nodes, reducing 

the number of nodes compared to the original RRT* path. Additionally, it biases the 

sampling towards beacons, which are nodes in the optimized path, helping the 

algorithm approach optimality faster [65].  

RRV. Explores narrow passages by utilizing dominant eigenvectors and precise 

sampling, allowing for the effective expansion of the tree. It is aware of tree nodes 

located near narrow passages, enabling appropriate expansion in those areas. 

Additionally, it employs a unique vine-like expansion strategy along obstacles, 

facilitating efficient identification and traversal of narrow passages [66]. 

RRT-Blossom. Enables local exploration while avoiding local minima, ensuring 

expansions move away from the target without regression. Additionally, it improves 

node generation efficiency and exploration rate by instantiating all eligible edges 

during node expansion. Furthermore, it detects deadlocks when all accessible paths 

are blocked, allowing the next expansion attempt to ignore regression constraints [67]. 

2.4   Discussion 

The previous variants of the Rapidly Exploring Random Tree (RRT) algorithm have 

made significant contributions, each improving the algorithm in specific areas while 

potentially introducing limitations in others. 

Our primary focus is to identify a variant that greatly prioritizes optimality, as obtaining 

a high-quality path enhances the comfort of wheelchair users and instills a sense of 

predictability among people around the device. 

Among the variants, RRT* has emerged as a highly successful and widely recognized 

algorithm in the research field because of its asymptotic optimality property. This 
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means that given an infinite amount of time and samples, the algorithm will converge 

to the optimal solution if one exists. The aspect of RRT* achieving asymptotic 

optimality has been thoroughly studied, leading to the establishment of formal 

guarantees [68]. 

The upcoming section will explore the enhancements brought by RRT*. 

2.5   The RRT* Algorithm 

The RRT* algorithm, introduced in 2006 by Steven LaValle and James Kuffner, extends 

the Rapidly-exploring Random Tree (RRT) algorithm to overcome limitations of the 

original approach. RRT* improves upon RRT by introducing both parent choosing and 

edge rewiring steps to optimize the tree structure and reduce the overall cost of the 

path. These enhancements address the lack of optimality guarantees and sensitivity to 

algorithm parameters found in the original RRT. By combining parent choosing and 

edge rewiring, RRT* is able to generate near-optimal paths while efficiently exploring 

high-dimensional configuration spaces [51]. 

2.5.1   Enhancements 

RRT* shares a similar approach with RRT in the initial phase, where random samples 

are incrementally connected to the existing tree structure to explore the configuration 

space. However, RRT* introduces two key modifications to enhance its performance. 

A. Parent Choosing 

RRT* identifies nearby nodes when a new node is generated. Within this 

neighborhood, it selects the parent node that minimizes the path cost. This approach 

enhances path optimality and increases the probability of finding near-optimal paths. 
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Generation of a new node      

 

Assessment of the cost of nearby nodes to 

the root       

 

Selection of the best parent node         

 

Insertion of the new node into the tree 

Figure 2.2 – Parent Choosing Process of RRT* 

B. Edge Rewiring 

RRT* performs edge rewiring after adding a new node. It reevaluates the edges within 

the node’s neighborhood and rewires them to achieve lower path costs. This process 

involves considering alternative connections and assessing the potential for reducing 

costs. By dynamically adjusting the edges, RRT* improves path efficiency and explores 

the configuration space more effectively. 
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Insertion of the new node into the tree 

 

Assessment of the potential cost 

reduction of nearby nodes 

 

Selection of candidate nodes (Green) for 

rewiring 

 

The unselected nodes (Red) remain as 

they are, The candidate nodes have their 

current edges removed 

 

The candidate nodes are rewired with      to achieve lower costs 

Figure 2.3 – Edge Rewiring Process of RRT* 
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2.5.2   Tree Construction 

The RRT* algorithm begins by taking the initial configuration       and goal 

configuration       as parameters. It initializes the tree   with an empty set of nodes 

and edges. The algorithm inserts the root node       into the tree. 

To build the tree, the algorithm samples a random configuration       from the free 

space. It then finds the nearest node       in the tree based on the Euclidean distance 

metric. From      , a new node      is extended towards       with a predefined 

step size. 

If the new node      belongs to the free space, the algorithm considers its 

neighborhood           . Within this neighborhood, it selects the parent node         

that minimizes the overall cost to the root node. The new node      is then inserted 

into the tree  . 

Next, the algorithm reevaluates the neighboring nodes and rewires their connections 

to achieve lower path costs. This process improves the efficiency and optimality of the 

tree structure. 

If the goal configuration       is reached, the algorithm returns the path. Otherwise, 

the process of building the tree continues iteratively until the maximum number of 

iterations is reached. If no path is found within the maximum iterations, the algorithm 

does not return a path. 

Presented below is the Rapidly-exploring Random Tree Star (RRT*) algorithm. 
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It is important to note that RRT* is primarily applied in static environments, as it lacks 

inherent support for dynamic obstacles. Addressing this limitation is crucial for our 

application scenario, and it will be the subject of discussion in the upcoming chapter. 

2.6   Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) is a metaheuristic optimization algorithm 

inspired by the hunting strategy of humpback whales. It was first proposed in 2016 by 

Seyedali Mirjalili, a researcher at Griffith University in Australia [39]. Since then, the 

WOA has gained significant attention and has been widely and recently used in various 

works of path planning due to its impressive performance [69,70,71]. 

2.6.1   Inspiration 

The remarkable characteristics and behaviors of whales have served as a significant 

inspiration for the development of the Whale Optimization Algorithm. Whales, as the 

largest mammals on Earth, exhibit impressive traits such as intelligence and emotional 

capacity. This allows them to think, learn, communicate, and display emotions, albeit 

at a lower level of intelligence compared to humans. 

Humpback whales, one of the largest baleen whale species, employ a distinctive 

hunting technique known as bubble-net feeding. It involves the creation of bubbles in 

a circular or spiral shaped path to enclose prey near the water's surface. Initially 

studied through surface observations, researchers later utilized tag sensors to capture 

and analyze 300 instances of bubble-net feeding in nine individual humpback whales. 

This research identified two maneuvers associated with bubble-net feeding: upward-

spirals and double-loops. Humpback whales dive approximately 12 meters, create a 

spiral-shaped bubble net around their prey, and swim back up to the surface, 

strategically positioning themselves to capitalize on the trapped prey [39].  
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The exceptional bubble-net feeding behavior of humpback whales has provided 

inspiration for the authors of the algorithm, leading them to mathematically model 

and optimize this unique foraging strategy.  

 

Figure 2.4 – Bubble-net Feeding Technique of Humpback Whales 

2.6.2   Formulation 

A. Initialization 

The WOA algorithm represents whales as a population of n search agents, dynamically 

exploring the solution space. The best known solution, denoted as   , is associated 

with the concept of prey. The population size is predetermined, and the initial 

positions of whales are randomly assigned within the search space. To manage the 

algorithm's execution time, the maximum number of iterations is specified. 

B. Choice of Maneuver 

During the execution of the algorithm, each whale is required to make a choice 

between two distinct behaviors. The first option is to move in accordance with the 

"Shrinking Circle Mechanism" or engage in the "Search for Prey" behavior. 

Alternatively, the second behavior choice entails implementing the "Spiral Updating 

Position" strategy. This choice of strategies is determined by the values of two random 

parameters:    ranging in the interval [0, 1] and a   ranging in the interval [-2, 2]. 

Figure 2.5 depicts a diagram illustrating the behavior selection process within the 

Whale Optimization Algorithm. 
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 If   is less than 0.5 and | | is greater than 1, the whale selects a random agent to 

move away from, emphasizing exploration. However if | | is less than 1, it switches 

to the Shrinking Circle Mechanism, prioritizing exploitation. 

 If   is greater than or equal to 0.5, the whale chooses to follow a spiral movement. 

 

Figure 2.5 - Behavior Selection Diagram of the Whale Optimization Algorithm 

C. Bubble-Net Attacking Method (Exploitation Phase) 

Shrinking Encircling Mechanism enables each whale to navigate towards the optimal 

solution  ⃗  using the following equation: 

 ⃗⃗⃗  | ⃗   ⃗      ⃗   |                                                                                                                  

 ⃗       ⃗      ⃗   ⃗⃗⃗                                                                                                             

Where   indicates the current iteration,  ⃗  is the position vector of the best solution 

obtained so far,  ⃗ is the position vector, || is the absolute value, and   is an element-

by-element multiplication.  ⃗ and  ⃗ are coefficient vectors and are calculated as 

follows: 
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 ⃗    ⃗   ⃗   ⃗                                                                                                                                 

 ⃗     ⃗                                                                                                                                            

Where  ⃗ is linearly decreased from 2 to 0 over the course of iterations (in both 

exploration and exploitation phases) and  ⃗ is a random vector in the interval [0, 1]. 

Spiral Updating Position enables each whale to navigate towards the optimal solution 

 ⃗  using the following equation: 

  ⃗⃗ ⃗⃗  | ⃗      ⃗   |                                                                                                                      

 ⃗        ⃗⃗ ⃗⃗                ⃗                                                                                            

With   as a random variable varying within the interval [-1, 1] and   as a coefficient 

that defines the shape of the logarithmic spiral. 

D. Search for Prey (Exploration Phase) 

This strategy enables each whale to move far away from a random whale using the 

following equation: 

 ⃗⃗⃗  | ⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⃗|                                                                                                                        

 ⃗           
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ⃗  ⃗⃗⃗                                                                                                             

Where      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a random agent’s position vector. 

2.6.3   Algorithm 

The Whale Optimization algorithm starts by initializing a population of search agents 

with random positions, representing potential solutions. Their fitness values are 

calculated, indicating performance in terms of the objective function. The best fitness 

value    is initially set. 

The algorithm proceeds to enter the main loop, where it iterates over each search 

agent and performs the following updates. The coefficients (         ) are updated. If 

  is less than 0.5, the magnitude of   is examined. If | | is less than 1, an update is 
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performed using Shrinking Encircling Mechanism equation (2.2). Otherwise, Search for 

Prey equation (2.8) is used. 

When   is greater than or equal to 0.5, agents are updated with Spiral Updating 

Position equation (2.6). After updating, a boundary check ensures positions remain 

within the search space. Fitness is recalculated, and the iteration counter   is 

incremented. The iterative process continues until the maximum number of iterations 

is reached. 

Finally, the algorithm returns the best solution    found after the specified iterations, 

representing the optimal solution to the optimization problem. 

Presented below is the Whale Optimization algorithm. 
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2.7   Proposed Local Variant 

The proposed local variant optimizes the extension process of RRT* by leveraging the 

Whale Optimization Algorithm. This variant enhances the efficiency of exploring the 

search space by expanding towards promising areas. In this approach, each particle in 

the population is represented as a single configuration. 
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To guide the expansion process, biasing weights are employed in the variant, enabling 

a range of strategies from completely random to goal-oriented expansion. 

Additionally, the inclusion of visibility factors addresses the local minima problem. 

These factors prioritize solutions that have an unobstructed line of sight to both the 

starting node and the goal node. Essentially, the local variant favors solutions that can 

perceive both the initial and goal nodes without encountering any obstacles in 

between. 

The proposed local variant incorporates the RRT* algorithm but replaces the steer 

function with algorithm 4. This modified algorithm takes into account three main 

parameters: the nearest configuration (     ), the random configuration (     ), and 

the goal configuration (     ). Firstly, it uses       as the center point and a 

predefined radius to initialize the population with random configurations that are 

located within that circle. Secondly, it utilizes      ,      , and       to calculate the 

objective function, which is based on four factors. Two factors represent the distance 

to       and      , while the other two factors are binary and indicate the visibility of 

the solution to       and      , the former one having higher priority. 

Finally, the new node is generated by extending from       towards    with a 

specified step size, and this new node is returned as the result. 

                               (                  ) 

                                             

                        (           ) 
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Figure 2.6 – Local Variant During Optimization Phase  

The figure 2.6 above illustrates the population of solutions during the optimization 

phase. The red dots represent invalid solutions as they cross the obstacle, while the 

blue dots indicate solutions that possess a direct line of sight to the nearest 

configuration. On the other hand, the orange dots maintain a straight visibility line to 

the goal configuration. As for the green dots, they have visibility to both the nearest 

and goal configurations. Finally, the magenta node found in the center represents the 

current best solution achieved thus far. 

2.8   Proposed Global Variant 

The proposed global variant utilizes the Whale Optimization Algorithm to improve the 

quality of the path obtained from RRT*. In this variant, each particle in the population 

is encoded as an array of configurations, representing a specific path. 

To optimize the path, the algorithm considers two essential factors. Firstly, it focuses 

on minimizing the length of the path, aiming to find a trajectory that is shorter and 

more efficient. Secondly, it employs a binary factor to indicate whether the path is 

collision-free or not, thereby ensuring safe traversal. 

The global variant incorporates the path obtained from RRT* as the initial particle, 

serving as the population's initialization. To ensure diversity, randomization is applied 
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to each position along the path. This process involves assigning values within a circular 

region centered at the initial origin, with a radius of R, to every particle in the 

population. Afterward, the optimization algorithm refines the paths of all particles. 

Ultimately, the optimized solution is determined by selecting the best path among the 

particles. Figure 2.7, presented below, provides a visual representation of this variant. 
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Figure 2.7 – Global Variant During Optimization Phase 

The red paths denote invalid solutions as they traverse through the obstacle, while the 

blue paths indicate valid solutions. Among them, the green path represents the current 

best solution achieved thus far. 
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2.9   Robot Motion  

In this section, we will discuss the nature of our robot platform and the approach we 

have chosen for control generation. 

2.9.1   Robot Platform and Kinematic Modeling 

Despite our proposed motion planning variants generating a path from the initial to 

the goal configuration, this high-level process that considers factors such as obstacles 

and optimality alone does not provide us with the necessary low-level information 

about the controls needed to effectively follow the trajectory. 

The trajectories generated by our approach are non-linear in nature, and we also need 

to handle various constraints like collision avoidance and velocity limits while aiming 

for optimal control. This led us to opt for an optimization algorithm to generate the 

controls, rather than relying on analytical methods. 

To begin, we will introduce our robot platform, emphasizing its key features and 

capabilities. Following that, we will present a model that approximates the robot's 

position based on its velocities. Finally, we will outline the approach we used to 

generate the appropriate controls for the robot, considering the trajectory and other 

relevant factors. 

2.9.2   Differential Drive Robot and the Odometric Model 

The motorized wheelchair, which serves as the mobile robot for our study, 

incorporates a differential drive system to control its movement. This system consists 

of two separate wheels, each driven by its own motor. Unlike traditional vehicles with 

a single motor driving both wheels, the differential drive system allows independent 

control of the two wheels. 

By altering the speed and direction of each drive wheel, a differential drive robot can 

execute various types of maneuvers. For instance, if both wheels rotate at the same 

speed in opposite directions, the robot can pivot around a central point, enabling it to 

turn in place. If the wheels rotate at different speeds in the same direction, the robot 

will move along a curved path. 
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The differential drive configuration offers several advantages. Firstly, it simplifies the 

mechanical design by requiring fewer moving parts compared to other drive systems. 

This results in a more compact and lightweight robot. Secondly, it provides excellent 

maneuverability, as the robot can easily navigate tight spaces and perform agile 

movements. 

 

Figure 2.8 Representation of a Non-holonomic Differential Drive Mobile Robot 

The cinematic model for a differential drive robot is a mathematical representation 

that describes the relationship between the robot's wheel velocities and its linear and 

angular motion. It allows us to predict the robot's position and orientation based on 

the inputs given to its wheels. 

 ̇                                                                                                                                         

 ̇                                                                                                                                           

 ̇    
 

 
                                                                                                                             

Where   is the speed of the caster wheel,   The instantaneous rotation of the robot 

with respect to the reference frame (     ),   is the angular velocity of the caster 

wheel, D is the distance between the center of the two drive wheels and the caster 

wheel, and   is the instantaneous orientation of the caster wheel. 

So, the position of the robot is given by: 
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When considering the kinematic model of a differential drive system, the integration 

process to obtain the positions using equations (2.12), (2.13) and (2.14) can be 

troublesome and difficult for several reasons. Firstly, the complexity and accuracy 

involved in solving the integrals numerically or approximating them can be 

computationally expensive and introduce errors, particularly in real-time or complex 

trajectory scenarios. Additionally, the integration amplifies any measurement errors or 

inaccuracies in the input velocities and angular velocities, resulting in significant 

differences between the estimated position and the actual position of the robot. 

Instead, the odometric model, represented by equations (2.15), (2.16), and (2.17), 

offers a simpler alternative. By relying on incremental changes in position and 

orientation based on known wheel displacements, the odometric model eliminates the 

need for integration, reducing the accumulation of errors. Furthermore, the odometric 

model allows for real-time estimation, as it only requires information about the 

current and previous states, making it more practical for applications that demand 

quick updates and responsiveness. Due to its simplicity, reasonable accuracy for short-

term estimates, and widespread use in robotics for tasks like localization and mapping, 

the odometric model is often preferred over the integration-based approach in 

differential drive systems. 

              (     
  

 
)                                                                                           
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2.9.3   Control Generation 

The use of the Whale Optimization Algorithm (WOA) for control generation is 

straightforward. In this approach, each particle is represented as a variable array 

consisting of control pairs, namely linear ( ) and angular ( ) controls. Additionally, a 

time parameter ( ) is included to specify the duration of the control execution. 

This optimization technique is employed for each segment of the path. Consequently, 

between every successive waypoints on the path, a set of controls is determined to 

bridge the gap. The variable nature of these controls enables the execution of more 

complex maneuvers and facilitates non-linear behaviors between two consecutive 

nodes. To accomplish this, the objective function incorporates the odometric model 

formulas (2.15, 2.16, and 2.17) to accurately estimate the future positions of the robot. 

This estimation helps in achieving the appropriate set of controls to transition from 

one configuration to another, while also ensuring that the trajectory remains free from 

collisions. 

The outcome of this problem-solving process is an array of velocity pairs, along with 

the corresponding time intervals during which these controls should be applied. It is 

worth noting that this approach has produced positive results. 

                                                                         

                                            

                            

                              

                                       

                                                  

                                    

                                | |          

                                                                                             

                                | |          

                                                                           

                                  

                                                                              

                                       

                                  

                 

                  



Chapter 2                             Optimal Motion Planners: Proposed Approaches 

58 

 

2.10   Conclusion 

In this chapter, we delved into a detailed examination of the Rapidly Exploring Random 

Tree (RRT) algorithm and its variants. We also explored the notable improvements 

introduced by the RRT* variant and gained a comprehensive understanding of the 

Whale Optimization Algorithm. 

Additionally, we proposed two variants that combine the Whale Optimization 

Algorithm with RRT*. The first variant is a local approach that focuses on the expansion 

process, while the second variant is a global approach that operates on the path 

generated by RRT*. By incorporating these variants, we aim to enhance the 

performance and efficiency of the overall algorithm. 

To conclude the chapter, we discussed the kinematic modeling of our robot platform 

and emphasized the significance of the odometric model in aiding us in generating 

controls for the planned path. Understanding the robot's kinematics and leveraging 

the odometric model is crucial for accurately implementing and executing the planned 

path. 

In the upcoming chapter, we will shift our focus to the simulation setup, where we will 

meticulously analyze the proposed variants. Our analysis will involve benchmarking 

these variants against the original RRT* algorithm, enabling us to assess their 

comparative performance and evaluate their effectiveness in achieving our objectives. 
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3.1   Introduction 

In this chapter, we will provide a comprehensive overview of the structure used to 

implement the algorithms, namely RRT* and the proposed variants (local and global). 

Additionally, we will discuss the image processing library utilized to retrieve obstacle 

information, as well as the various types of obstacles encountered in an environment 

and how our system responds to each of them. 

Following this, we will present the experimental setup employed for simulation 

purposes, detailing the methodology utilized for conducting benchmarks. We will then 

proceed to conduct a comparison of the three algorithms: RRT*, the local variant, and 

the global variant. Subsequently, based on our initial findings, we will delve deeper 

into an extensive benchmark analysis of the two variants. This analysis will involve 

varying several parameters of the Whale Optimization Algorithm and meticulously 

examining the outcomes. We will discuss our discoveries and insights resulting from 

this process. 

Lastly, we will address the hardware and software aspects of this project. We will 

introduce the underlying functioning of the Robot Operating System (ROS) and 

emphasize its pivotal role in our implementation. To conclude this chapter, we will 

present the results obtained and explore their implications. 

3.2   Simulation 

This section will focus on software implementation of the following algorithms: RRT*, 

the local proposed variant, and the global proposed variant. Additionally, we will 

evaluate the approach performances in static and dynamic environments. Finally, we 

will showcase the simulation results. 

3.2.1   Algorithm Implementation 

The algorithms were implemented in C++ using an object-oriented approach and a 

modularized structure. Since they share the RRT* algorithm, ensuring code reusability 
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was a crucial step in facilitating the software development. Therefore, we adopted a 

module framework throughout our project, which consists of the following modules: 

Map Processing Module: It handles the processing of map data, such as loading and 

representing the environment in a suitable format for motion planning to take place. 

Planning Module: It is responsible for generating paths or trajectories for the given 

map using RRT* or any of the variants. 

Optimization Module: It utilizes the WOA (Whale Optimization Algorithm) to enhance 

space exploration in the local variant and to refine the generated trajectory in the 

global variant. 

Control Generation Module: It focuses on converting the planned path into suitable 

control inputs for the robot ensuring successful execution of that motion. 

We integrated JSON files for configuration and calibration, simplifying the process of 

storing and retrieving simulation parameters. The figure 3.1 illustrates an example of 

the configuration file for the global variant. 

 

Figure 3.1 – Configuration File of the Global Variant 
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3.2.2   Obstacle Avoidance 

To enable obstacle avoidance, we utilized OpenCV (Open Computer Vision) library to 

binarize the workspace once the map was acquired. In this process, white areas 

indicates free space, while black areas represent occupied obstacles. Additionally, the 

library was employed to transform all existing obstacles within the workspace into a 

set of polygons. During the expansion and optimization phases, the segments of these 

polygons were checked for intersection, ensuring the generation of collision-free 

trajectories. 

To further enhance collision avoidance and prevent close proximity to obstacles, we 

implemented an additional measure known as obstacle inflation through a dilation 

function provided by OpenCV. This involves expanding the size of the obstacles, 

effectively creating a safety buffer around them. By increasing the size of the 

obstacles, we create a larger margin for the robot to navigate around them, reducing 

the risk of potential collisions. An example is depicted in figure 3.2 where obstacle 

boundaries are retrieved. 

 

Figure 3.2 – Map Polygon Approximation with 3-Pixel Dilation 

When it comes to dealing with obstacles, we have implemented various behaviors for 

our system based on the nature of the obstacles. They can be classified into three main 

types: 
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Static Obstacles: Static obstacles refer to stationary objects that remain in a fixed 

position. Our system takes them into account during the motion planning process, 

ensuring that they are avoided while determining the optimal trajectory to the goal. 

Temporary Obstacles: Temporary obstacles are obstructions that are present for a 

limited period of time. Whenever our system encounters such an obstacle, it promptly 

reevaluates the entire trajectory to the goal. By incorporating the new obstacle into 

consideration, it recalculates a new motion that avoids this temporary obstacle and 

allows the system to continue towards the intended destination. 

Dynamic Obstacles: Dynamic obstacles include objects or entities that are in motion 

and can change their position, speed, and direction. To address the uncertainty 

associated with the behavior of these objects, we have chosen to halt the movement 

of the robot altogether when approaching a dynamic obstacle. This precautionary 

measure ensures the safety of the system and prevents any potential collisions or 

undesired interactions. 

3.2.3   Results 

The Figure 3.3 illustrates the workflow of the global variant’s simulation. Initially, the 

map is processed to identify all static obstacles present within the workspace. 

Subsequently, the Rapidly-exploring Random Tree Star (RRT*) algorithm is employed 

to find a collision-free motion from the starting point to the destination. In the third 

step, the Whale Optimization Algorithm (WOA) is utilized to optimize the path with 

respect to its length. Finally, the necessary controls for guiding the robot along the 

optimized trajectory are generated. 
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Map Processing: Retrieving Obstacle 

Information 

 

Planning: Generating a Collision-free 

Motion from Initial to Goal Position 

 

Optimization: Enhancing Path Length and 

Smoothness 

 

Control Generation: Generating Necessary 

Velocities to Execute The Motion 

Figure 3.3 – Simulation Workflow of the Proposed Global Variant 

When faced with temporary obstacles along the path, the system chooses to fully 

replan the motion towards the goal from its current location. The replanning process 

depicted in figure 3.4 below, showcases the system's adaptive and dynamic nature in 

responding to real-time challenges. 
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Figure 3.4 – Adaptive Replanning: Responding to Environmental Changes 

3.3   Comparative Analysis 

In this section, we will present the experimental setup utilized to perform the 

benchmarks. We will also provide a detailed comparison between the classical RRT* 

algorithm and the proposed variants. Additionally, we will examine the influence of 

varying the parameters of the Whale Optimization Algorithm (WOA) on the 

performance of these variants. 

3.3.1   Experimental Setup 

The experimental setup for the benchmarks conducted in this study involved running 

the motion planning algorithms on an i3-11th gen 3.00GHz Quad-Core laptop with 4 

GB of memory. To ensure reliable results, each reported result is an average of 100 

runs conducted on each map. 

The experimental map set used in this study was created using the image manipulation 

program GIMP. The maps were designed to test the performance of the proposed 

algorithms in various environments. These environments encompassed both simple 

and complex scenarios. 

The simple environments consisted of empty spaces and areas occupied by 

unobtrusive obstacles (map 1 and 2), allowing for a baseline evaluation of the 

New 

Obstacle 
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algorithms' basic path planning capabilities. On the other hand, the complex 

environments incorporated additional challenging features (map 3, 4 and 5). These 

features included narrow passages, local minima, and cluttered areas, which aimed to 

observe and analyze the algorithms' behaviors in more intricate and demanding 

scenarios. 

   

  

 

Figure 3.5 – Experimental Map Set: The Purple Dot Represents the Initial Position of 

the Robot, while the Orange Dot Indicates the Goal Position 

3.3.2   Algorithms Assessment  

The table below presents benchmarking results of the motion planning algorithms. It 

compares the original RRT* algorithm with two proposed variants. 

Algorithm Time (s) Length (m) Nodes 

RRT* 0.026 35.268 409.258 

Local Variant 1.440 27.132 167.378 

Global Variant 0.072 30.656 410.598 
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Table 3.1 – Experimental Results: Analysis of RRT*, Local and Global Variants’ 

Performance 

Upon analysis, the local and global variants of the RRT* algorithm, incorporating the 

WOA technique, have demonstrated notable performance improvements compared to 

the original RRT* algorithm. 

The local variant of the RRT* algorithm demonstrated superior performance compared 

to the original algorithm. It achieved a significantly shorter path length of 27.132 

meters, compared to the path length of 35.268 meters obtained by the RRT* 

algorithm. Despite taking slightly longer to compute, with a return time of 1.440 

seconds due to the execution of WOA on every expansion, the local variant exhibited 

improved efficiency by generating only 167.378 nodes. These findings highlight the 

effectiveness of the local variant in optimizing path length and enhancing space 

exploration. 

Similarly, the global variant of the RRT* algorithm demonstrated significant 

improvements over the original algorithm. Although it took a slightly longer time of 

0.072 to return the path, it managed to achieve a shorter path length of 30.656 

meters, compared to the original algorithm's path length of 35.268 meters. 

Remarkably, the global variant accomplished this while generating a similar number of 

nodes. These results highlight the effectiveness of the global variant in optimizing path 

length while maintaining a comparable level of exploration in the search space. 

These findings suggest that both variations of the WOA algorithm, namely the local 

and global variants, have demonstrated promising improvements in optimizing path 

length and efficiently exploring the search space. However, it is important to consider 

the trade-off associated with increased computation time. Figure 3.6 provides a visual 

representation of the improvements achieved by these variants. 
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Figure 3.6 – Visual Comparison of Paths: RRT*, Local Variant and Global Variant 

3.3.3   Parameter Tuning 

In this segment, our objective is to thoroughly examine and analyze the influence of 

adjusting key parameters in the Whale Optimization Algorithm (WOA) on the 

performance of the proposed variants, both local and global, while focusing on metrics 

such as computation time, path length and nodes generated. Moreover, by exploring 

the impact of parameters like population size, number of iterations and other relevant 

factors, we aim to gain an understanding of the optimal configurations that yield the 

most favorable outcomes. 

All parameters are fixed except for the parameter currently undergoing variation. 

A. Varying Population 

Varying the population size in the WOA algorithm impacts its performance. A larger 

population enables more extensive exploration of the solution space, potentially 

yielding better solutions. However, it comes with increased computation time. 

Local Variant 

Population Time (s) Length (m) Nodes 

10 0.4112 35.2668 329.9866 

20 0.5120 34.9051 219.2681 

30 0.6930 34.8108 201.9980 

40 0.8151 34.6556 179.9042 

50 0.9948 34.5616 175.8849 
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60 1.1826 34.5598 175.1680 

70 1.4912 34.6016 173.3743 

80 1.6152 34.5794 177.6069 

90 1.8053 34.4544 174.1088 

100 1.9976 34.4393 172.7764 

Table 3.2 – Results of Population Size Variation in Local Variant 

 

 

Figure 3.7 - Analysis of Population Variation in Local Variant 

Based on Figure 3.7 and Table 3.2 above, it is evident that increasing the population 

size in the local variant leads to longer computation times. However, this increase in 

population size also results in decreased path lengths, indicating improved solution 

quality. Furthermore, a larger population size enables more efficient exploration of the 

search space with fewer generated nodes. 

Global Variant 

Population Time (s) Length (m) Nodes 

10 0.0391 35.7192 411.2046 

20 0.0614 35.3398 409.0541 

30 0.0694 35.1144 407.9880 
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40 0.0848 35.1648 403.1343 

50 0.1052 35.0045 408.2663 

60 0.1152 35.0506 407.1966 

70 0.1300 34.9082 412.9768 

80 0.1448 34.9326 402.4641 

90 0.1606 34.8842 409.8182 

100 0.1762 34.7814 409.1384 

Table 3.3 – Results of Population Size Variation in Global Variant 

 

Figure 3.8 – Analysis of Population Variation in Global Variant 

As demonstrated by Figure 3.8 and Table 3.3, it can be observed that increasing the 

population size in the global variant leads to slightly longer computation times. 

However, it also results in fluctuating but decreasing values of length, indicating a 

slight improvement in solution quality. On the other hand, a larger population size 

does not necessarily guarantee more efficient exploration of the search space, as the 

number of generated nodes fluctuates without a clear trend. 

B. Varying Iterations 

Varying iterations in the Whale Optimization Algorithm affects exploration. More 

iterations lead to better exploration but increase the computational time. 
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Local Variant 

Iterations Time (s) Length (m) Nodes 

10 0.4110 35.2260 326.9866 

20 0.5912 35.0804 247.3840 

30 0.7836 35.1534 229.2912 

40 1.0902 34.9312 237.5325 

50 1.2914 34.9588 224.6928 

60 1.4906 34.9626 215.1647 

70 1.7073 34.9158 212.1142 

80 1.9996 34.9718 217.5400 

90 2.2538 34.8430 215.3588 

100 2.5102 34.9368 216.6423 

Table 3.4 – Results of Iterations Variation in Local Variant 

 

Figure 3.9 - Analysis of Iterations Variation in Local Variant 

As demonstrated by Figure 3.9 and Table 3.4, it is evident that increasing the number 

of iterations in the local variant leads to significantly longer computation times. 

However, this increase in population size also results in fluctuating values of length, 

without a clear trend, yet an overall decrease can be observed. Interestingly, a larger 

number of iterations in the local variant lead to more efficient exploration of the 
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search space, as the number of generated nodes fluctuates but displays an exponential 

decrease. 

Global Variant 

Iterations Time (s) Length (m) Nodes 

10 0.0399 35.7192 411.2049 

20 0.0510 35.0342 394.9081 

30 0.0654 34.7646 411.1840 

40 0.7683 34.6472 408.1522 

50 0.8881 34.4450 407.1823 

60 0.1014 34.4542 402.3282 

70 0.1148 34.3808 416.7160 

80 0.1278 34.3528 418.2768 

90 0.1386 34.2745 406.1363 

100 0.1518 34.3318 395.7544 

Table 3.5 – Results of Iterations Variation in Global Variant 

 

Figure 3.10 - Analysis of Iterations Variation in Global Variant 

As demonstrated by Figure 3.10 and Table 3.5, increasing the iterations in the 

algorithm leads to consistently greater computation times. However, it also results in 

exponentially decreasing values of length with minimal fluctuations. Surprisingly, 
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despite the decreasing length values, more iterations do not necessarily lead to more 

efficient exploration of the search space, as the number of generated nodes fluctuates 

without a clear trend. 

C. Varying   

The variable   serves as the threshold for testing the random parameter  , 

determining whether the algorithm should choose the first behavior, the Shrinking 

Encircling Mechanism or Search for Prey, or the second behavior, Spiral Updating 

Position. Lower values of this threshold provide a higher probability for the second 

behavior, while greater values favor the first behavior. The Figure 3.11 below provides 

a visual representation of this concept. 

 

Figure 3.11 – The Behavior Associated with Parameter   Value 

Local Variant 

  Time (s) Length (m) Nodes 

0.0  0.3731 35.6852 306.9522 

0.1 0.3789 35.5608 310.7000 

0.2 0.3902 35.5272 314.3561 

0.3 0.4016 35.4266 323.1766 

0.4 0.3968 35.4346 317.6481 

0.5 0.4032 35.3592 318.4669 

0.6 0.4042 35.3334 317.3785 

0.7 0.4182 35.3378 325.9347 

0.8 0.4022 35.3646 309.4812 

0.9 0.4036 35.3190 310.8347 

1.0 0.4098 35.2666 302.6145 
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Table 3.6 – Results of   Threshold Variation in Local Variant 

 

 

 

Figure 3.12 - Analysis of   Threshold Variation in Local Variant 

As Figure 3.12 and Table 3.6 demonstrate, the behavior of computation time does not 

exhibit a clear trend. However, it is noticeable that lower thresholds result in lower 

computation times, while higher thresholds lead to longer computation times. On the 

other hand, increasing the threshold in the algorithm results in exponentially 

decreasing values of length with minimal fluctuations. Interestingly, despite the 

decreasing length values, the increase in threshold does not lead to more efficient 

exploration of the search space, as the number of generated nodes fluctuates without 

a clear trend. 

Global Variant 

  Time (s) Length (m) Nodes 

0.0  0.0396 38.4018 411.9044 

0.1 0.0386 36.7648 407.1043 

0.2 0.0382 36.4454 399.5581 

0.3 0.0386 35.9325 400.7561 
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0.4 0.0400 35.8574 433.7714 

0.5 0.0376 35.5156 319.9583 

0.6 0.0381 35.4291 406.4640 

0.7 0.0384 35.3558 408.0682 

0.8 0.0378 35.2112 405.3261 

0.9 0.0394 35.1938 417.4583 

1.0 0.0376 35.0976 403.7628 

Table 3.7 – Results of   Threshold Variation in Global Variant 

 

Figure 3.13 – Analysis of   Threshold Variation in Global Variant 

As demonstrated by Figure 3.13 and Table 3.7, varying the threshold does not have a 

clear impact on the behavior of computation time. However, it does result in 

exponentially decreasing values of length with an increase in the threshold. However, 

despite the increase in threshold, it does not lead to more efficient exploration of the 

search space. This is because the number of generated nodes fluctuates throughout 

the graph, with higher values observed throughout the entirety of the graph and a 

single instance of a significant drop at the center. 

D. Varying   

The parameter   defines the shape of the logarithmic spiral in the Spiral Updating 

Position behavior [39]. 
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Local Variant 

  Time (s) Length (m) Nodes 

1  0.3972 35.4062 312.4426 

2 0.3904 35.4784 310.2246 

3 0.3904 35.3436 313.6448 

4 0.4076 35.4213 323.9785 

5 0.4354 35.4862 346.2684 

6 0.4200 35.5178 333.1662 

7 0.4416 35.5286 347.6088 

8 0.4257 35.5112 337.0482 

9 0.4404 35.4542 347.3921 

10 0.4466 35.4415 351.3527 

Table 3.8 – Results of Parameter   Variation in Local Variant 

 

Figure 3.14 – Analysis of Parameter   Variation in Local Variant 

As demonstrated by Figure 3.14 and Table 3.7, increasing the value of the b parameter 

does not exhibit a clear trend in computation time, but it does show an overall 

increase. However, it results in fluctuating values of length that are generally similar. 

Interestingly, the number of generated nodes exhibits the same behavior as 

computation time, indicating inefficient exploration of the search space. 
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Global Variant 

  Time (s) Length (m) Nodes 

1  0.0400 35.5972 406.7246 

2 0.0378 35.5724 400.8224 

3 0.0394 35.4664 415.3000 

4 0.0392 35.5938 412.7943 

5 0.0388 35.5549 410.0640 

6 0.0392 35.6272 414.5662 

7 0.0388 35.5488 410.4026 

8 0.0392 35.5436 410.5246 

9 0.0381 35.5943 396.5448 

10 0.0374 35.5213 393.2330 

 Table 3.9 – Results of Parameter   Variation in Global Variant 

 

Figure 3.15 - Analysis of Parameter   Variation in Global Variant 

As demonstrated by Figure 3.15 and Table 3.8, increasing the value of the b parameter 

in the global variant does not exhibit a clear trend in computation time, length of the 

path, or the number of generated nodes. 

E. Varying   
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The algorithm's behavior when       is contingent upon the random parameter A, 

which spans a range from    to   . If the absolute value of   is less than 1 (|A| < 1), 

the algorithm adopts a Shrinking Encircling Mechanism, which signifies a form of 

solution exploitation. Conversely, if the absolute value of A exceeds 1 (|A| > 1), it opts 

for a Search for Prey approach that prioritizes exploration.  

To visualize these behaviors, refer to Figure 3.16 below, which illustrates the zones of 

exploration and exploitation corresponding to different values of A. 

 

Figure 3.16 – The Behavior Associated with Absolute Value of   with Fixed Threshold 

Local Variant 

  Time (s) Length (m) Nodes 

1  0.4160 35.3606 354.5611 

2 0.3972 35.4062 312.4426 

3 0.3986 35.4462 313.3360 

4 0.4100 35.4514 318.9224 

5 0.4432 35.4678 346.8369 

6 0.4338 35.5494 339.5965 

7 0.4471 35.5688 347.8200 

8 0.4752 35.5798 368.2943 

9 0.4729 35.6766 366.5369 

10 0.5058 35.6948 391.8987 

Table 3.10 – Results of Parameter   Variation in Local Variant 
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Table 3.9 presents the results indicating the impact of increasing the parameter a. It 

can be observed that as a increases, the time required fluctuates but remains relatively 

constant. The length, however, exhibits a gradual but slight increase. On the other 

hand, no clear trend is discernible when it comes to the number of nodes generated. 

Global Variant 

A Time (s) Length (m) Nodes 

1  0.0400 35.5200 400.5411 

2 0.0402 35.5972 406.7246 

3 0.0398 35.6942 404.6527 

4 0.0382 35.8951 405.6246 

5 0.0382 35.9034 402.9347 

6 0.0394 35.9527 415.8466 

7 0.0386 36.0132 405.1663 

8 0.0386 36.1188 408.2100 

9 0.0382 36.1536 401.6641 

10 0.0378 36.2312 399.0600 

Table 3.11 – Results of Parameter   Variation in Global Variant 

The findings presented in Table 3.10 highlight the influence of increasing the 

parameter a. It can be observed that as a increases, the time required shows minimal 

variation. The length, however, demonstrates a gradual but modest increase. 

However, no clear trend is discernible when it comes to the number of nodes 

generated. 

We observed similar behavior in both variants when the parameter   was varied. 

Specifically, as the exploration to exploitation ratio increased, there was an increase in 

path length. To further investigate this phenomenon, we conducted additional 

experiments by varying both the   parameter and the threshold   for the two 

behaviors. Our initial hypothesis suggests that achieving optimal path lengths involves 

striking a balance between the two behaviors or placing emphasis on the exploitation 

phase. 
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F. Varying a & A 

The tables below demonstrate how the threshold value λ affects the performance of 

the variants. Increasing the threshold value signifies a higher exploitation to 

exploration ratio, while lower values indicate a greater emphasis on exploration. 

Figure 3.17 provides a visual representation of the relationship between these two 

parameters and behaviors. 

 

Figure 3.17 – The Behavior Associated with Absolute Value of   with Variable 

Threshold 

Local Variant 

a   Time (s) Length (m) Nodes 

2 

0.0 0.5708 35.6828 427.7613 

0.2 0.4763 35.4884 357.1549 

0.4 0.4122 35.3508 319.9561 

0.6 0.4434 35.3592 323.8325 

0.8 0.3992 35.4044 313.1066 

1.0 0.4136 35.3394 321.5842 

1.2 0.4066 35.3314 324.2280 

1.4 0.4374 35.3896 326.3268 

1.6 0.4204 35.3222 320.2570 

1.8 0.4276 35.2944 314.5886 

2.0 0.4002 35.3158 319.4081 

4 0.0 0.6516 35.7036 474.9743 
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0.4 0.4648 35.4836 350.1941 

0.8 0.4352 35.4892 336.2662 

1.2 0.4108 35.3772 329.5914 

1.6 0.4000 35.8408 318.4549 

2.0 0.3946 35.3804 319.3347 

2.4 0.3978 35.4024 324.2684 

2.8 0.3988 35.4454 325.9918 

3.2 0.3985 35.2592 322.6309 

3.6 0.4118 35.3778 333.7981 

4.0 0.4028 35.2875 328.3861 

6 

0.0 0.6784 35.6741 505.6981 

0.6 0.4614 35.4664 353.5123 

1.2 0.4332 35.5052 337.9941 

1.8 0.4214 35.4208 331.8741 

2.4 0.4406 35.4168 337.4369 

3.0 0.4222 35.4032 337.156 

3.6 0.4542 35.3544 350.4381 

4.2 0.3944 35.4304 325.4681 

4.8 0.4156 35.3426 346.7881 

5.4 0.4004 35.3471 331.4628 

6.0 0.4256 35.4282 351.202 

Table 3.12 – Results of Parameter   and Threshold   Variation in Local Variant 
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Figure 3.18 - Analysis of Parameter   and Threshold   Variation in Local Variant in 

Relation to Computation Time 

 

Figure 3.19 – Analysis of Parameter   and Threshold   Variation in Local Variant in 

Relation to Path Length 
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Figure 3.20 - Analysis of Parameter   and Threshold   Variation in Local Variant in 

Relation to Nodes Generated 

Based on the analysis of the three previous figures, namely 3.18, 3.19, and 3.20, along 

with Table 3.11, it is evident that achieving a balance between exploration and 

exploitation, or placing emphasis on exploitation, leads to improved performance 

across all three metrics: computation time, path length, and the number of nodes 

generated. 

Global Variant 

a   Time (s) Length (m) Nodes 

2 

0.0 0.0396 37.6369 407.3921 

0.2 0.0392 36.4714 410.0369 

0.4 0.0382 35.9981 401.1300 

0.6 0.0396 35.7939 348.4921 

0.8 0.0388 35.6356 411.4260 

1.0 0.0378 35.3934 399.7000 

1.2 0.0382 35.4446 406.8921 

1.4 0.0382 35.3502 397.7022 

1.6 0.0388 35.3794 401.5001 

1.8 0.0392 35.2898 404.3123 
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2.0 0.0384 35.4112 399.8246 

4 

0.0 0.0394 37.7156 405.9246 

0.4 0.0381 36.4264 401.5347 

0.8 0.0396 36.0464 414.9741 

1.2 0.0386 35.7956 406.8741 

1.6 0.0392 35.5626 414.3300 

2.0 0.0382 35.5028 407.0505 

2.4 0.0392 35.5106 410.4786 

2.8 0.0378 35.3182 403.0721 

3.2 0.0388 35.3594 413.2562 

3.6 0.0382 35.5040 404.9145 

4.0 0.0384 35.3800 406.444 

6 

0.0 0.0400 37.5474 419.8246 

0.6 0.0386 36.1036 407.9965 

1.2 0.0388 35.7194 410.7010 

1.8 0.0386 35.5134 408.7628 

2.4 0.0386 35.4098 406.3682 

3.0 0.0391 35.4896 408.4711 

3.6 0.0391 35.2736 412.9801 

4.2 0.0394 35.5206 410.4724 

4.8 0.0384 35.4252 400.4300 

5.4 0.0396 35.5066 403.7866 

6.0 0.0410 35.4574 405.5949 

Table 3.13 – Results of Parameter   and Threshold   Variation in Global Variant 
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Figure 3.21 - Analysis of Parameter   and Threshold   Variation in Global Variant in 

Relation to Computation Time 

 

 

Figure 3.22 - Analysis of Parameter   and Threshold   Variation in Global Variant in 

Relation to Path Length 
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Figure 3.23 - Analysis of Parameter   and Threshold   Variation in Global Variant in 

Relation to Nodes Generated 

Based on the examination of the three preceding figures, namely 3.21, 3.22, and 3.23, 

along with Table 3.12, it is evident that finding a balance between exploration and 

exploitation or emphasizing exploitation yields varying results with no consistent trend 

in both computation time and the number of nodes generated. However, it undeniably 

demonstrates superior performance in terms of reducing the path length. 

3.3.4   Discussion 

In this section, we conducted multiple analyses to assess the impact of parameters on 

the performance of both the local and global variants. Initially, the local variant 

demonstrated exceptional performance in terms of path length and node generation, 

albeit at the expense of computation time. On the other hand, the global variant 

showed no reduction in the number of nodes generated but exhibited a decrease in 

path length, accompanied by a slight increase in computation time. 

After thorough examination, we can confirm that the local variant responds positively 

to an increase in population size. Additionally, a slight improvement was observed 

when increasing the threshold, favoring the behaviors of shrinking encircling 

mechanism and search for prey over spiral updating position. Furthermore, achieving a 

balance between the shrinking encircling behavior and search for prey, or focusing 
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primarily on the shrinking encircling mechanism to emphasize exploitation, resulted in 

enhanced performance across all three metrics. 

Similarly, the global variant responded well to both iterations and population increase. 

It demonstrated a significant exponential decrease in path length when favoring the 

behaviors of shrinking encircling and search for prey over spiral updating position. 

Likewise, just like the local variant, achieving a balance between the shrinking 

encircling mechanism and emphasizing exploitation led to improved performance in 

path length. 

Overall, our analyses indicate that both variants exhibit promising results when specific 

parameters are adjusted and the exploitation to exploration ratio is appropriately 

calibrated. 

3.4   Implementation 

In this section, we will explore the hardware and software implementation aspects of 

this project. 

3.5.1   Hardware 

The robotic wheelchair showed in figure 2.24 is equipped with microcontrollers that 

perform low-level calculations. The first microcontroller handles tasks such as control 

and management of speeds, sense of rotation of brushless motors, and the retrieval 

and calculation of odometric data from encoders. The second microcontroller manages 

all the onboard ultrasonic sensors on the wheelchair. 

To enable remote manual control of the wheelchair, a wireless joystick is incorporated. 

For obstacle detection, a laser rangefinder is installed at the front of the wheelchair. It 

scans the horizontal plane with a 270° field of view and a detection range of 10 meters. 

To enhance obstacle detection further, eight ultrasonic sensors of two different 

models are added and strategically placed at the front of the wheelchair, covering a 

wide field of vision. 

To enable the wheelchair to navigate its environment, it is crucial to determine its 

position at all times. To achieve this, encoders are utilized to measure the motor 
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rotation speed for speed control purposes. Encoders are fixed parallel to the axis of 

each wheel. 

The power supply for the system consists of two 36-volt, 4Ah lithium batteries. These 

batteries offer the advantage of being significantly lighter (1.6 kilograms) compared to 

the lead-acid batteries commonly used in most electric wheelchairs. 

In this project, the chosen control method is the widely recognized Proportional 

Integral Derivative (PID) control. PID control is widely employed due to its 

effectiveness. The main objective of control is to achieve and sustain a specific target 

value by directly influencing the system based on the difference between the 

reference value and the measured value. 

 

 

Figure 2.24 – Robotic Wheelchair 

Overall, the combination of microcontrollers, sensors, joystick, encoders, and power 

supply enables the robotic wheelchair to perform tasks such as speed control, obstacle 

detection, localization, and precise movement using the PID control method. 
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3.4.2   Software 

The project was developed using Visual Studio Code on Ubuntu 20.04. We chose to 

utilize the C++ language for its performance and robust object-oriented support. This 

version of Ubuntu provided compatibility with ROS (Robot Operating System) Noetic, a 

popular robotics framework. Despite its name, ROS is not an operating system but 

rather a framework built on top of Ubuntu. It played a vital role in our project 

development, offering features such as hardware abstraction, seamless 

communication between different components, and efficient sensor processing.  

 

Figure 3.25 – Robot Operating System Logo 

ROS operates based on a publish-subscribe model, where nodes communicate by 

publishing and subscribing to topics. Each node represents a basic building block in the 

robot system, performing specific tasks such as reading sensor data, controlling 

actuators, or performing computations. Communication between nodes occurs 

through messages, which define the structure and type of data exchanged. ROS 

provides a range of predefined message types, including sensor data, commands, and 

control messages. 

Nodes communicate with each other by publishing messages to topics and subscribing 

to topics to receive messages. Topics serve as named channels that facilitate message 

exchange. Multiple nodes can publish or subscribe to the same topic, allowing for 

loose coupling and seamless integration of separate components. This flexibility 

enables the system to adapt and scale effectively. 

To facilitate the registration and discovery of nodes and topics, ROS employs a 

centralized component called the ROS Master. The Master keeps track of active nodes 

and the topics they publish or subscribe to. It acts as a central hub for coordinating the 
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communication between nodes, ensuring efficient and reliable message exchange 

throughout the system. 

 

Figure 2.26 - Visual Representation of the Communication Architecture and Data Flow 

Between Different Nodes in a ROS System 

Our project utilized several nodes to achieve successful results. These nodes played 

vital roles in various aspects of the project, including mapping the environment, 

establishing serial communication with the Arduino boards on the wheelchair, and 

transmitting control signals to the actuators, among other functions. We will briefly 

provide an overview of each node and its specific contribution to the project. 

gmapping_node. Responsible for implementing simultaneous localization and 

mapping (SLAM) using a grid-based approach. It receives sensor data from the LiDAR 

and uses this information to create a 2D occupancy grid map of the surrounding 

environment. Simultaneously, it estimates the robot's pose within the map. To 

accomplish this, the gmapping_node subscribes to two topics: ”/scan” for laser scans 

and “/tf” for transforms that define the positions and orientations of the laser, base, 

and odometry frames. It then publishes two topics: “/map” containing the map of the 

environment and “/tf” providing the estimated pose of the robot [ZA]. 

tf_transform_node. Supplies the necessary transforms to the gmapping_node, 

enabling it to establish relationships between various frames. Specifically, it handles 

transformations from the frame associated with the incoming scan, known as 

"laser_link," to "base_link." Additionally, it manages the transformation from 

"base_link" to "odometry." To achieve this, the tf_transform_node subscribes to the 

"/ARDUINO1/Odom" topic, which is published by the Arduino board, and publishes 
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"/tf" with the appropriate frame_id and child_id to meet the required transform 

specifications. 

urg_node. Serves as the driver responsible for establishing a connection and 

facilitating communication with the LiDAR sensor. Its primary function is to retrieve 

range measurements from the sensor, which correspond to the distances between the 

sensor and objects within its field of view. These range measurements are then 

published by the urg_node to the "/scan" topic, allowing other nodes in the system to 

access and utilize this data. 

rviz_node. Launches and manages the RViz visualization tool. RViz is a 3D visualization 

tool widely used in robotics for visualizing sensor data, robot models, and other 

elements related to perception, planning, and navigation. With the rviz_node, users 

can customize the RViz environment to their needs. It subscribes to ROS topics like 

sensor data, robot pose, or map data to obtain the required information for 

visualization. The data is then rendered in a user-friendly graphical interface, enabling 

users to interact with and visualize sensor data, robot models, and other relevant 

visualizations. 

navigation_node. Responsible for planning a motion from the intial to the goal 

configuration and providing the necessary controls to execute that motion. It 

subscribes to the topic "/map" in order to acquire the grid representation of the 

environment, allowing it to retrieve information about obstacles and perform its tasks. 

Additionally, it subscribes to the topic "/scan" to detect any new changes made to the 

environment. To enable the robot to move and rotate as required, the 

navigation_node publishes velocity commands to the robot's mobile base on the topic 

"/ARDUINO1/Velocity". This ensures that the robot can navigate through the 

environment and respond to the detected changes. 



Chapter 3                  Simulation, Comparative Analysis, and Implementation 

92 

 

 

Figure 2.27 – Control Generation in Mapped Environment in RViz (Red Curve: 

Represents the path generated by the global variant, Blue Curve: The trajectory 

approximation of the robot’s movement when executing the generated controls) 

3.5   Conclusion  

This chapter concludes the thesis by presenting simulation results for the proposed 

variants. The obtained results were highly positive and demonstrate the remarkable 

potential of the Whale Optimization Algorithm as a robust tool for optimizing path 

planners. Additionally, we have extensively examined the algorithm's response to 

various settings in both variants. 

Moreover, this chapter provides an overview of the software and hardware aspects of 

the project. It is important to note that during the physical implementation, we 

encountered certain challenges related to communication and configuration. However, 

we are determined to address these issues and validate the efficacy of these variants 

in a real-world scenario. 
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General Conclusion 

 

This project aimed to make a significant contribution to the field of robotics research 

by introducing a novel bio-inspired motion planning algorithm inspired by a swarm-

based optimization technique. The proposed solution integrates the whale 

optimization algorithm with the RRT* algorithm, resulting in the development of two 

approaches: a local variant and a global variant of RRT*. 

Both variants of the algorithm demonstrated substantial improvements in path quality 

compared to the original RRT* algorithm. In terms of path length, the proposed 

variants outperformed the original algorithm by 13 to 23 percent. Moreover, unlike 

RRT*, our approaches provide feasible trajectories by utilizing a WOA-based trajectory 

generator that takes into consideration the robot model. 

From an optimization perspective, both the local variant and global variant of the 

algorithm responded favorably to increased population size and iterations number, as 

well as lower values of   and the lower half of values in the interval of the random 

parameter  . 

The findings of this study demonstrate that the whale optimization algorithm is a 

suitable technique for optimizing path planners, yielding positive results and 

showcasing potential for further enhancements. For instance, future research could 

explore parallelization techniques and other performance-boosting tweaks to 

maximize the algorithm's capabilities. 

In summary, this thesis introduced two variants of the RRT* algorithm that incorporate 

the whale optimization algorithm. Both variants exhibited promising results, and the 

comparative analysis provided valuable insights into their behavior under different 

settings. This study aspires to pave the way for future research that explores the 

untapped potential of the whale optimization algorithm in the context of path 

planning.
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