People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

SAAD DAHLEB University, BLIDA 01

Faculty of Science

Computer Science Department

Master’s Thesis

Major: Security of Information Systems

Detection of Image Stegware

Using Deep Learning

Author
TESTAS Dounia

Supervisor

Pr. BOUSTIA Narhimene



Acknowledgments

[ would like to extend my sincerest thanks to my exceptional supervisor, Professor
BOUSTIA Narhimene, her insightful guidance, unwavering support and patience have
been crucial to the completion of this work.

Her dedication and belief in my abilities inspired me greatly and instilled in me the
confidence to overcome the challenges and hardships I faced.

[ am also deeply thankful to my family for their continuous love and encouragement
throughout this journey, and to my dearest friends for being my pillars of support and a
source of constant strength and motivation.

[ am forever indebted to all those who have supported and assisted me, both near and
far.



Abstract

In an era where privacy has become increasingly important with the constant
informatisation of our day-to-day tasks, the quest to safeguard sensitive and personal
information had led to the invention of various methods. Throughout history, the
persistent need for secrecy and confidentiality has served as the driving force behind the
development of these methods, including encryption techniques, anonymization
protocols and secure communication systems. However, a paradoxical phenomenon has
emerged as these very tools, which were initially intended to protect privacy, are now
being exploited for the malicious purposes they were designed to guard against, one of
these techniques is steganography.

The misuse of steganography to conceal malware within innocent media files,
particularly images, has given rise to a significant cybersecurity concern known as
stegomalware or stegware for short. Threat actors have recognized the potential of
utilizing this technique to embed and distribute malicious payloads undetected.
Consequently, traditional measures and defences are rendered powerless in the face of
this sophisticated threat.

In this research, we aim to combine Deep Learning, Malware Analysis and
Steganalysis techniques in order to put in place a system capable of dissecting and
detecting stegware present specifically in PNG images. Our system comprises three main
components. Firstly, we implement various steganalysis deep learning models proposed
by researchers in the field, making the necessary adjustments and modifications to suit
our case of study. The purpose of this first model is to determine the presence of
steganography in images. Subsequently, we employ a module to extract hidden data from
images identified as steganographic. Lastly, a text-based classification model is utilized to
categorize the extracted data as either malicious or clean. The implementation details,
rigorous testing, and comprehensive results will be discussed and presented in this study.

Keywords: Steganography, Malware, PNG Images, Deep Learning, Malware
Analysis, Steganalysis, Detection, Classification.



Résumé

Au moment ou la vie privée prend de plus en plus d'importance avec l'informatisation
constante de nos taches quotidiennes, la recherche de la protection des informations
sensibles et personnelles a conduit a l'invention de différentes méthodes. Depuis toujours,
la nécessité persistante du secret a été la force motrice derriere le développement de ces
méthodes, notamment les techniques de cryptage, les protocoles d'anonymisation et les
systemes de communication siirs. Cependant, un phénomene paradoxal a émergé, car ces
outils, qui étaient a l'origine destinés a la protection de la vie privée, sont désormais
exploités aux fins malveillantes contre lesquelles ils ont été congus pour se protéger, 'une
de ces techniques est la stéganographie.

Le mauvais usage de la stéganographie pour cacher des logiciels malveillants dans
des fichiers multimédias innocents, en particulier les images, a donné lieu a un probleme
de cybersécurité appelé stegomalware ou stegware. Les attaquants ont reconnu la
puissance d’utiliser cette technique pour éviter la détection en intégrant et en distribuant
des payloads cachés dans des images apparemment inoffensives. En conséquence, les
moyens de défense traditionnels sont impuissants face a cette menace sophistiquée.

Dans ce travail, notre but est de combiner l'apprentissage profond, l'analyse de
logiciels malveillants et les techniques de stéganalyse pour créer un systéme capable de
disséquer et de détecter les stegware. Notre systéme est constitué de trois éléments
principaux. Tout d'abord, nous mettons en ceuvre différents modeles d'apprentissage
profond proposés par les chercheurs dans le domaine de stéganalyse, en effectuant les
ajustements et les modifications nécessaires. Ce premier modele vise a détecter la
présence de la stéganographie dans les images. Nous utilisons ensuite un module pour
extraire les données cachées de l'image identifiée comme stéganographique. Finalement,
un modele de classification sert a classer les données extraites comme étant malveillantes
ou non est utilisé. Les détails de 'implémentation, les tests et les résultats complets seront
discutés et présentés dans ces chapitres.

Mots-clés : Stéganographie, Logiciels malveillants, Images, Apprentissage en
profond, Analyse de logiciels malveillants, Stéganalyse, Détection, Classification.



Abiall il sleal) dlaad adl (ol g sl Lildalial 5 paiesall 2508 )1 ae G gundll dpanl 48 o)) 55 poac b
Al 8Ly ekl oda Ly ghai el 5 aga @il A pull Aalall CulS iy Ul je e Ae i 3Lk ) i) ) duad il
o328 Il oy s Aalliia 3 jalla < jeda (@l aa s AY) Jlai¥l dadail 5 jaeacll ¥ S 55 s il il
s A o L 3 G e s Alnd ) Y da padl) Gleal dasias duall 8 uilS ) dlgadi <l oY)

" e sl )

el BB ) sels ool ¢ suall Jia iy 5 Ll 5 85 jlucall el ) £lBAY Ll 2 sile il aladiul ¢ g

Al o2 aladinl Ala) o Dl sangall Culgall b jad | juaide (S5 g gt ol sl gt anly Co ey ala

Gilaagdll sda eui dpdal) lelaall g pulail) ¢ il LELESSH o3y o) o5 3 ball Y geall a5 65 (aana]
L Jsnia ¥ 5y ghaidll

L) Jal e Wil e silaiad) Jalai 5 5 lcall el sl il g (Saend) aledll Colyiii gan () Cangd sl 138 b

Gac alad 3lai Ana y p s Y5l At ) il s€a 3 a Lialad 05y g sl LA 5 Jidas e 50l ol

JsY1 73 saill 138 Caagy A 33U CiBanill o) ya) e edlaall 138 b cpfiall) J8 (g da sl 5 L) e gilagindl Julail

3224l ) guall (e dpdaall GULLI ) HATLY als p 2t 22y ) guall A Wl e bl dga g (e <l )

iz Al gl 8 Jlm el e R sl L o] i i 73 s 85 o ) 58] Al e il Lol
Al ol o3 8 ALALGN i) apadh g 488 <l HLad) o) ja) 5 2dul) Jualds A58

Jaladll (dinall QL;\LAJ.\S\ Jalas cé:u\aj\ e&:_’m U)..A\ Aual) &_11.;\;4‘).\3\ s\.,)ﬂ\‘)c}.ﬁa:ﬁ‘.d\ :&g&m‘ Clalsly
caiaill «cadSl) cz_s_.ﬂiad\



Table of Content

LIST OF FIGURES.......uuuiiiiiaaaaaaaaaaaaaaaaaaassaaaaaaasssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 9
LIST OF TABLES . ...ttt ettt e e e e e ettt aaa e e e e et ttte e e e eeeeeteaansaeeaeeeeteeannnnaaaeeeennannnnasaeeaeeenann 10
ACRONY M. ettt e ettt ee et e e e ettt ean e e eeeetteaann et aeaeereannsaeesseeeeteeanssnnnsteeeemeennnnnnnsseeeennnn 11
GENERAL INTRODUCGTION.....ccotitssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssens 13
CHAPTER 01 STEGANOGRAPHY AND STEGOMALWARE........oomnmnmsnsnssssssssssssssssssssssssssssssssssssssssens 14
1.1 INTRODUCTION woutruiuscuscsessesssssssssssssessessassassssssssssss s sesssss s bbb E R 14
1.2 STEGANOGRAPHY ...cuiuriuiusiussssssssssssessessssssss s s sss s sesss s bbb B R R bR 14
1.2.1  KeY TeIMINOIOZY coueueeircesererseessessessesssesssssssssesssssssssesssssssse s s ss s s ssssss s s sasss s s sssnens 14

1.2.2  Digital Steganography ... ———————— 15

1.2.3  Cryptography and Watermarking ... sssessssssssees 15

1.2.3.1  WatermMarking.....cooceeeeeeeeessensseessesssenssesssesssesssessessssesssesssessssssssessssssees 15

1.2.3.2  Cryptography ... ceceeeeeeseesseessessenssessessssesssesssssssesssesssessssesssesssessssssans 16

1.2.4  Types of Modern StEZan0ZIrapPY .......couereererneeurerrerseesserssssessses s sessssss s ssssss s sssss s sssesssssssasees 17

1.2.4.1 TexXt SteZANOZIAPNY ....vveueemreerreeerersserssensseessesssesssesssesssesssssssesssesssesssssssssssesseses 17

1.2.4.2 AUAiO SLEZANOGIAPNY ... couiereeererrrersrenseerseesssesssesssessssesssessssssssesssesssesssessssesssesssssssessssesssessesssessssessssssssssssesas 17

1.2.4.3 VideOo SteZaNOZIaPNY .....ovceueeeeeereeseeseeeseeessenssessseesssesssessssssssssssesssesssessssesssesssssssessssssssesssesssessssessssssssssssesas 17

1.2.4.4 NetworK SteZanOZIaAPNY ......ccoveemeeueereersersserssessseesssesssesssessssesssesssesssessssesssessssssssssssesssssssesssessssessssssssssssesas 17

1.2.4.5 IMAage StEZANOZIAPINY ...couieueeeeeererseesseeseeessesssesssessssesssess s s sssesssessssessse s ss bbb s s s s sessas 18

1.2.5 Image steganography tEChNIQUES ...t esaees 18

1.2.5.1 Spatial domain steganography ........cuereeseeeneeessessessseesseesssesssessnens 18

1.2.5.2 Transform domain steganography..........eeemneeneesnsessessseesseesnns 19

1.3 STEGANALYSIS coueuriuisssuissssssssisssssssssss st bbb s b SEERER R 20
1.3.1  TYPES Of SLEZANALYSIS ..cvueueerieeenreeseieeseese et s s s s s s s bbb 20

1.3.1.1  Signature STEGANALYSIS ...ccieueeeeeeeesserseeseeessesssesssesessesssesssesssssssessse s ssssssssessss s s sssesssesssessssssssssssne 20

1.3.1.2  Statistical STEGANALYSIS....ccoriuurereeeeeerreesseeiseeessesssesssesassesssesssessessssessss s s s s s s s bbb sssesas 20

1.3.1.3  Deep StEZANALYSIS ..eureueeererreenseesseeeeeesesssesiseeesesssesssesssessssssse s ssssssssssssessssssans 21

1.4 STEGOMALWARE ...oostititississsss st sss b bbb bbb bbb bbb bbb bbb s 21



1.4.1  Malicious SOftWware OF MAIWATE ... bbb bbb 21

1.4.2  MalWare ANalySiS ....oereurireeereereesessessisissss s sessessesses bbb bbbt 22
1.4.2.1 Dynamic malware analysis .....ccmeemenneessesesnsseessssssessesssesssssseens 22

1.4.2.2  StatiC MAIWALe ANALYSIS....cuuurierreureereerrerneesseeseesseesesssessesssssssssssssssssssessssssesssssssssssssssssssssssssssssssssessssssssans 22

1.4.3  StegomalWare EXAIMPIES ... b 23
1.4.3.1  RANSOMWATIE CEIDET c.urrirerereereereereeresresesesesssssssssssssssssssssssssessssssssssssssssssssssssssssssssssessessssssssssesssssessssenes 23

1.4.3.2  RAT AENTTESIA c.uruuieeeeceerreeesenreesesssenssesssesssesssesssessssesssessesssssssessessaees 23

1.4.3.3  ASTrUM EXPIOTE Kt .uueuieiierieeiiiesiisieeiseeseeiseesesisesesssessesssssssssssssessss s sssssessssssssssssssssssssesssessssssssssssssssssane 24

1.5 CONCLUSION ..cuttueerereeeereuseusessesssssssessessessessssssssssssessessessssssssssssasssssssssesssassasssssssssesssassssssssasssessessssssussusssssssssssnsnesssunsunsans 25
CHAPTER 02 ARTIFICIAL NEURAL NETWORKS.......ccovoinmmssmmsmssssssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 26
2.1 INTRODUCTION w.cueueuesesseessesessessssesessesessssessssessssessssssssssssssessssssssssssssssssssassssasssesssssssssssssssssssessssssssseassssasssesssasasssenssssassens 26
2.2 ARTIFICIAL NEURAL NETWORKS. ...etustueeseusesensesessesessssensssensssessssesssssssssssssssasssssssssssssssssssssssssssssssssssssssssssssssssassssnssssassens 26
7725 W \\ L= 0= 0 U175 0) oS0 o a0 (o 0 26

2.3 TYPES OF NEURAL NETWORKS ...ucuueuruessesessesessesessssensssensssessssessssessssssssssssssssssssssssssssssassssssssesssssssssssssssasssssssssassssnssssassnas 27
2.3.1  Recurrent NEUTral NEIWOTKS. ..ot ss s ss s asss e 27

2.3.2  Convolutional NEUTAl NETWOTKS .....c.cvuieereereiecseese e ss s sasssss s ssseens 28

0 0 TR N0 Lo =) o Uol T (=) o PP 28

2.4 RELATED WORK w.eueuieueresreusessessesesssssessessessessssssssssssessessessssssssssssssssessessesssssssssssssessessessssssssssssssssessessssssssssssssssssessensssessess 29
2.5 CONCLUSION..cueueuseesesresseessessessssssessessesseessessssssessesssssessessesusessesssssessessssssessesesssessessesssessesuesssessesssessessesases e sasasessesssanees 30
CHAPTER 03 PROPOSED APPROACH........ccccuiimstssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassesssssassssssssns 31
3.1 INTRODUCTION weoueueueressesessessesseseessssessessessesssssssssssssessessesssssssssssssessessessesssssssssssssessessessssssssssesssssessesssnsssssssssssessessensesessess 31
3.2 METHODOLOGY euueueueesessessessessesseseessssessessessesssssssssssssessessessesessssssssessessessessssssssssessessessessssssssssesssssessesssssssssssssssessessensesessess 31
PART 01: CNIN STEGANALYZER....u.cueueereeseesessessessessessesssssssessessessessssssssssessessessesssssssssssssessessessssssssssssssssessessesssssssssssssessessensesssess 33
3201 MOAEL Ottt ee e ee bbb R AR R R 33

322 MOAEL D2ttt ee bbb R R R 34

3.2.3  MOAEL 03ttt R AR R R 36

20 D (o T U=Y 0 PR 37

PART 02: EXTRACTION MODULE ...cueueueeseeeesessessessessessssessessessessessssssssssessessessessessssssssssessessessessssessessessessesssnssssssssssssessessensesssness 38
PART 032 TEXT CLASSIFIER ..cuueucuesessesessesssessssssesssssssssessssssssssssssssssssssssssssssssssessssesssssssssssssssassssasssessssessssssssssssssesssssasssensssesssens 39
20 T 00004 1) (0] T 40



CHAPTER 04 TEST AND VALIDATION

4.1  INTRODUCTION ..covrrrrreensereseresenssnenesenes
4.2 TOOLS AND WORKING ENVIRONMENT.
4.2.1 Hardware specifications
4.2.2  Libraries and software ..

4.3  DATASET

4.3.1 Steganalyzer Dataset......

4.3.1.1 BOSSDASE DAtaSEL......cccovererreerrereereessesssresressessessessesesesssssssssssssssssssssssssssssssssssseens

4.3.1.2 Our diverse dataset

4.3.2  Text-Classifier Dataset...

4.3.2.1 Source code-based malware analysis

4.3.2.2 Our dataset

4.4  RESULTS AND DISCUSSION ...ceovrvrveennns
RESULTS
4.4.1 Partone: Steganalyzer...

4.41.1 Model 01: Basic CNN

4.4.1.2 Model 02: GNCNN....covirnririssssssssssssssssssssssssssssssssssssssssssiens

4.4.1.3 Model 03: XU-Netuiiriiisis s

4.41.4 Model 04: DCNN + ClaSSifier ...ccomrrrirereersereeresrsssssrssssssssssssssessssssess

4.4.2  Part two: Text Classifier

48

48

48

49

50

50

50

50

50

DiscussION
Model 01:
Model 02:
Model 03:
Model 04:
Autoencoder:
4.5  CONCLUSION...veuermermermermermenmenseenaes
GENERAL CONCLUSION
REFERENCES




List of Figures

Figure 1.1 Classification tree of a general data security System [6]......emesnenns 15
Figure 1.2 Block diagram of a steganographic System [6]. ... 16
Figure 1.3: The different types of Steganography. ... 17
Figure 1.4 Pixel size of different colour [13]. s 18
Figure 1.5 Common types of Malware [20]......ceesssssssssssssssssssssssssssssssssssssssssssseess 21
Figure 2.1: Basic Neural Network Structure [31]...essssssessssssssssssssssssesssssssssenss 27
Figure 2.2: Recurrent network with hidden neurons [32]. ... 27
Figure 2.3: BasiC CNN STIUCEUTE [34]..crriereeesesssessssssssssessssssssssessssssssssessssssssssssssssssssssssssssssssesss 28
Figure 2.4: Basic structure of an AUtOenCOder [36] .....cumereesmeesessssessssssssessssssssseess 29
Figure 3.1: The proposed apPIrOACH ... ereeeessseessssesssessssssssssessssssssssessssssssssessssssssssssssssssssseess 32
Figure 3.2: Overview of the proposed SYSTEM ......ceeensssnsessssssssssssssssssssssssssens 32
Figure 3.3: The structure of the basic proposed CNN ... 33
Figure 3.4: The Gaussian FUNCLION [39] ..eisenssnsssssssssssssssssssssssssssssssssssssssssssssssssssees 35
Figure 3.5: Structure of GNCNN [39]... s ssssssssssssssssssssssssssssssssssssns 35
Figure 3.6: The structure of the proposed Xu-Net [40].....coeeermeeeeessmeessssssseessssssneess 37
Figure 3.7: Global structure of the fourth model [41]....oeeemeeeeeeseesseessssessesssneees 37
Figure 3.8: The structure of the DCNN [4 1] ..oeeeesesssssssesssssssssesssssssssesssssssssssssssssssseees 38
Figure 3.9: Extraction script snippet in PYthomn ... ceceeecseeeceseesseessesseesseeseeens 39
Figure 3.10: Structure of our proposed text-based classSifier........eneeneenseesneeens 40
Figure 4.1: Usage of image formats for WebSites [42]....ceeemeeeeenmeeseesmeesseessesssesssesseeens 42
Figure 4.2: A scheme representing the steps of data collection........neneeenreesrecesreeseeens 43
Figure 4.3: A clean image from oUr dataset .......oeeenmeeeeenmeseessneesesssessesssesssessssesssesssssseeens 45
Figure 4.4: A stego image from OUT dataSet ........oceeeenmeeseesmeessessssesssesssesssesssesssesssesssesssessseens 45
Figure 4.5: The Chi-SQUAare Dia@ram .......cceeeeermeeseesseesesssessesssessssssssssessssssssessssssssesssssssssens 45
Figure 4.6: The histogram of piXel VAalUES .....cooeneereeenmeeeernneeseessseesseessseessessssessseesssesssessssessseens 46


file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934308
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934310
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934311
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934312
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934313
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934314
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934315
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934316
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934317
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934317
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934318
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934319
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934320
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934322
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934321
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934323
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934324
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934325
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934336
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934337
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934338
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934339
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934340
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934341

List of Tables

Table 2.1: Related works in Steganalysis and Stegware detection. ... 29
Table 4.1: Libraries and t001S USE......ceeenienreneeessssessesssesssssssssssesssssssssssssssssssssssssssssssssens 42
Table 4.2: Data Collection AlGOTitNIM ... 44
Table 4.3: Table of embedding rates and Sub-datasets........eeeneneeeeneeesesseeseeens 44
Table 4.4: Comparison of MSE, PSNR and SSIM. ......ccssssssssssssssssssssssssseees 46
Table 4.5: SSIM values and their readings. ... 47
Table 4.6: Our dataset for the text ClasSIfier. ... 47
Table 4.7: Results for the CNN first MOdel.......ocneneeneneneseesnsesesssssesssssssssssssssssssssssssssseens 48
Table 4.8: Results for the second model GNCNN. ... ssesssssesssesssssssssssssssseens 48
Table 4.9: Results for the third model Xu-Net.......coecneenenssesssesssssssssssssssssssssens 49
Table 4.10: MAE and 10Ss fOr the deN0iSer. .. eeeneissesesssssesssssssssssssssssssssssssssesssssssseens 49
Table 4.11: Accuracy achieved for the fourth model classifier. ... 49
Table 4.12: Accuracy for the text-based ClasSifier. ... ————— 49

10


file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934308
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309

List of Acronyms

ABS Absolute. p. 36

AES Advanced Encryption Standard. p. 39

ANN Artificial Neural Network. p. 27

AV AntiVirus. p. 22

BN Batch Normalization. p. 36

BOSS Break Our Steganographic System. p. 29, 30, 43
C&C Command and Control. p. 24

CNN Convolutional Neural Network. p. 28, 32-34, 36-38, 48-50
DCNN Denoising Convolutional Network. p. 38, 49
DCT Discrete Cosine Transform. p. 19, 36

DLL Dynamic Link Library. p. 23

DWT Discrete Wavelet Transform. p. 19

EK Exploit Kit. p. 24

FTP File Transform Protocol. p. 24

GIF Graphic Interchange Format. p. 24

GNCNN Gaussian Convolutional Neural Network. p. 29, 34-36, 48, 50
HPF High Pass Filter. p. 34, 36, 50

ICMP Internet Control Message Protocol. p. 17

IP Internet Protocol. p. 17

JPEG Joint Photographic Experts Group. p. 29, 36, 48
JS JavaScript. p. 24

LSTM Long Short-Term Memory. p. 39

11



LSB Least Significant Bit. p. 18-20, 45

LoG Laplacian of Gaussian. p. 34

MaaS Malware as a Service. p. 23

ML Machine Learning. p. 42

MSE Mean Squared Error. p. 46

OSI Open System Interconnection. p. 17

PE Portable Executable. p. 23

PNG Portable Network Graphics. p. 24, 29, 31, 40, 42-44, 48-52
PSNR Peak Signal-to-Noise Ratio. p. 46, 47
PVD Pixel Value Differencing. p. 19

RAT Remote Access Trojan. p. 23

RGB Red Green Blue. p. 33, 42,43

RNN Recurrent Neural Network. p. 32, 39
SMTP Simple Mail Transform Protocol. p. 24
SSIM Structural Similarity Index. p. 46, 47
TCP Transmission Control Protocol. p. 17
UDP User Datagram Protocol. p. 17

URL Uniform Resource Locator. p. 23, 24

VBS Visual Basic Scripting. p. 23

12



GENERAL INTRODUCTION

General Introduction

The necessity for secrecy and discretion has existed aslong as the need for communication
between individuals and society. Throughout history, people have always sought ways to
ensure secure and confidential transmission of sensitive information. In ancient
civilizations, for example, King Histiaeus employed a unique method: he shaved the head
of a slave, tattooed a secret message on his scalp, waited for his hair to grow back, and
then sent him to the Greeks [1]. Fast forward to World War II, where steganography was
used in the form of Microdots by military troops to pass messages via insecure postal
channels. Agents used tiny photographs or documents reduced to the size of a dot. These
dots were then placed on seemingly harmless-looking objects, such as the bottom of
clothes, postage stamps, or letters [2].

Now back to the Digital Era, new applications for steganography have been found
in digital media. For example, digital images can nowadays be used as carriers to conceal
all sorts of data using different embedding techniques that varies in levels of stealthiness.
These new found ways didn’t go unnoticed by the web criminals, who are always in search
for different manners to pass under the radar of detection methods.

The incorporation of steganography by existing malware families introduces an
additional layer of threat and danger, augmenting the already menacing nature of malware
in its conventional and normal form. By concealing malicious payloads within PNG digital
images, cybercriminals can exploit unsuspecting individuals and organizations, and go
completely unnoticed. This is because antivirus software and other existing security
measures are not specifically designed to combat this type of malware. As a result, there
is a pressing need to strengthen our efforts to neutralize and mitigate the dangers
associated with this new wave of malware.

In our pursuit to create a safer system, we fuse multiple disciplines and work to
extend the pre-existing approaches, expanding their applicability to encompass larger
more diverse and realistic scenarios. In the first chapter, we provide an introduction to the
fundamental concepts of steganography, steganalysis, malware, and malware analysis. We
then present a brief overview of dep learning techniques, specially focusing on CNNs and
autoencoders. Moving forward, we lay out our proposed approach, discussing the various
implementations. Finally, in our fourth chapter we discuss the conducted tests and analyse
the results obtained and the obstacles encountered.

13



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

Chapter 01

Steganography and Stegomalware

1.1 Introduction

Steganography is considered one of the key components in facilitating the process of
hiding malicious programs to ensure their undetection by protective measures. It serves
as the primary method utilized by malicious actors to ensure the successful infiltration of
their malware into victims' machines. In this chapter, we will cover fundamental concepts
of steganography and its related techniques. Additionally, we will provide a brief
introduction to the concept of malware, along with examples of families that have already
adopted this technique.

1.2 Steganography

The primary motive behind concealing information is to keep it away from the eyes of
those not intended to see it. Steganography, as a technique to achieve this, derives its name
from the Greek term "steganos," meaning "secret," combined with "graphy" signifying
"writing." In its simplest form, steganography involves hiding information, whether it be
data concealed within a digital file, an image masked by another image, or words written
in invisible ink [3]. Although steganography is often confused with cryptography and
watermarking due to their shared objectives, they remain fundamentally distinct methods.

1.2.1 Key Terminology

In the context of steganography, certain terms are used to refer to important actors
involved in the process. The following is a list of key terms and their meanings:

Stego files: Also known as carriers, these files contain embedded hidden
information resulting from the application of a steganographic technique.

Cover files: These files have the potential to be used as carriers, meaning they can
be used to conceal hidden information through an embedding method that
supports them. Cover files can include any file type as long as there is a compatible
embedding technique available.

14



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

Clean files: In contrast, clean files are untouched files that have never undergone
any modifications using steganography. These files remain unaltered and free from
any hidden information.

Embedding rate: It refers to the quantity of hidden information that can be
concealed within the carrier file without affecting its perceptual quality or arousing
suspicion. It is typically measured in bits or bytes.

1.2.2 Digital steganography

While steganography has ancient origins rooted in early history, it has evolved and
expanded significantly with the emergence of technology, presenting new opportunities
for its implementation. In contemporary practice, digital steganography is defined as “The
art and science of hiding information into covert channels, so as to conceal the information
and prevent the detection of the hidden message.” By Shih, Frank in his book [4]. To
enhance effectiveness, steganography is often combined with modern cryptographic
techniques, adding an extra layer of confidentiality and security.

1.2.3 Cryptography and watermarking

Information security is a critical requirement that can be attained through various means.
In general, information security systems can be categorized into two classes: encryption
and information hiding [5], as illustrated in Figure 1.1. Steganography, watermarking, and
cryptography all strive to safeguard information using distinct approaches.

Security Systems

Information
Hiding
1
{ |

Cryptography

Steganography Watermarking

]
[ I [
Linguistic Technical

Steganography Steganography

| I
[ | I | I I |
Digital
Image

Robust Fragile

Vvideo Audio Text Imperceptible Fingerprint Visible

Figure 1.1 Classification tree of a general data security system. [6]

1.2.3.1 Watermarking

One approach to ensure the authenticity of information is through watermarking.
An electronic watermark serves as an imprint on a digital file, providing evidence
of its originality and reducing the risk of counterfeiting [3]. In the context of hiding
confidential data within different media files, watermarking and steganography
share common objectives. They both possess attributes such as data capacity,
security, imperceptibility, and robustness [7].

15



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.2.3.2 Cryptography

The key principle of cryptography is to make information or data illegible to ensure
its confidentiality, making it incomprehensible to unauthorized individuals.
Cryptography is commonly used in securely transmitting data through insecure
channels like the internet safeguarding it from wunauthorized access. In
cryptographic terms, the original information is referred to as "plaintext,” and the
process of transforming it is known as "encryption,” resulting in "ciphertext."
Encryption involves the use of specific algorithms called "encryption algorithms"
and requires an "encryption key" as input. To retrieve the information, the
recipient employs a "decryption algorithm" along with the corresponding
"decryption key" [8].

The integration of cryptography principles into steganography leads to the
following classification.

Pure steganography

Pure steganography is when data is hidden within an object without using
any encryption keys. Essentially, the data is embedded as is, without being
encrypted first. However, this approach is not very secure [9]. If someone
unauthorized manages to figure out the specific embedding technique being
used, they can easily extract the hidden data.

Sender side Receiver side
Secrt data Retrieved secrt
crt dat: A
data

key1[€&= Encr}'pncz‘.zg' :@-De:ﬂ'pm: ¢<3]keyl

I it T

e i —» T ocess—>  Stego- i g e
Cover media Empeding process Stego-media Stego-media  — Extraction process

=

key2 key2

Figure 1.2 Block diagram of a steganographic system [6].

Secret key steganography

Similar to pure steganography, secret key steganography uses an
embedding algorithm to conceal data within a selected digital carrier.
However, unlike pure steganography, it incorporates the use of a
symmetric key to encrypt and decrypt the data prior to embedding and
after extraction [9]

Public key steganography

On the other hand, public key steganography employs an asymmetric key to
encrypt and decrypt the data before and after transmission [9]. Public key
works by using a pair of mathematically related keys: a public key and a

16



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

private key. The public key is freely distributed, allowing anyone to encrypt
data using this key, while the private key is kept secret and is used for
decrypting the encrypted data The detailed process is illustrated in Figure
1.2.

1.2.4 Types of modern steganography

Taking into consideration the type of digital carrier and the format of the embedded
data, steganography can be classified into five main types, as depicted in Figure 1.3:

1.2.4.1 Text steganography

Text steganography involves concealing information within text files through
various techniques. These techniques may include modifying the formatting of
existing text, altering individual words, generating random strings, and
constructing coherent text using context-free grammars [10].

Steganography

Text Audio Video Network Image
stegangraphy steganography steganography steganography steganography

Figure 1.3: The different types of Steganography

1.2.4.2 Audio steganography

In audio steganography, covert messages are embedded within audio signals by
modifying the binary sequences of accompanying audio files. This type of
steganography presents a greater challenge in concealing secret messages using
digital sound [10].

1.2.4.3 Video steganography

Digital video format provides the capability for concealing information through
video steganography. This method offers the advantage of fitting a substantial
amount of hidden data within a dynamic stream of images and sounds. It can be
seen as a combination of audio and visual steganography, blending elements from
both domains [11].

1.2.4.4 Network steganography

It is a technique that involves embedding data into network control protocols like
TCP, UDP, and ICMP, which are used for transporting data. Within the OSI model,
there are hidden communication channels that can be utilized in conjunction with
steganography [5]. For instance, you can conceal information within certain
optional header fields of TCP/IP packets.

17



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.2.4.5 Image steganography

In image steganography, data is concealed by using an image as the cover object.
Images are commonly used in digital steganography due to their high bit depth [12].
An image is typically represented as an N * M matrix in memory, where each entry
corresponds to the intensity value of a pixel. During the process of embedding a
message into the image, specific pixels are selected and their values are modified
according to an encryption algorithm.

1.2.5 Image steganography techniques

It is important to highlight the significant role that compression plays in determining the
effectiveness of steganographic algorithms. While lossy compression methods reduce
image file sizes, they also increase the possibility of partial loss of embedded messages
due to the removal of image data. On the other hand, lossless compression techniques do
not compress image files as much, ensuring minimal loss of embedded information [12].

To resolve this issue, researchers have come up with various steganographic
algorithms including the following:

1.2.5.1  Spatial domain steganography

The spatial domain refers to the direct manipulation of the pixel values and their
positions in an image without any transformation. It involves working with the
original pixel grid to perform different operations.

Least significant bit (LSB)

An image is a visual representation composed of individual pixels, where each pixel
represents a specific element of the image. It is a collection of small units that
together form the visual content. Each pixel of an image consists of three bytes
representing the intensity of the primary colours (RGB), as shown in Figure 1.4.

Figure 1.4 Pixel size of different colour. [10]

In the LSB method, the least significant bit of each pixel in the image is utilized to
perform an Exclusive OR (XOR) operation with secret data. This process ensures
that the least significant bit values of the pixels store the secret data [13].

18



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

An example [14] of this is the insertion of letter “D” in a 24-bit image, we know the
binary representation of letter “D” (ASCII value of 68) is 01000100.

After the embedding in the LSBs, we obtain the following results:

Pixel 1: (00100111 11101001 11001000) = (00100111 11101000 11001000)
Pixel 2: (00100111 11001000 11101001) = (00100111 11001000 11101000)
Pixel 3: (11001000 00100111 11101001) = (11001000 0010011111101001)

Pixel value differencing

The PVD-based steganographic scheme is an edge adaptive method where the
number of embedded bits depends on the variation between a pixel and the pixels
surrounding it [15], The basic idea behind PVD is to calculate the difference
between the pixel value of a selected pixel and the pixel values of its neighbouring
pixels. The larger the difference between the pixel and its neighbours, the greater
the capacity to embed message bits.

1.2.5.2 Transform domain steganography

On the other hand, the transform domain refers to a specific representation of data
obtained by applying a mathematical transform to the original image. It involves
converting the image from its original spatial domain into a different domain, such as
frequency or wavelet domain, using the following techniques:

Discrete Cosine transform (DCT)

DCT is a technique commonly used in transform domain steganography,
particularly for lossy image formats. It allows the transformation of an image from
the spatial domain to the frequency domain. the lossy image is divided into
components based on their frequency importance, namely low frequency, middle
frequency, and high frequency components [16]. The essential visual elements are
preserved in the low frequency components, while the secret information is
embedded by modifying the coefficients of the middle frequency components
without significantly affecting the visibility of the image.

Discrete Wavelet transform (DWT)

DWT steganography is another technique also used for lossy images. It has been
introduced as a highly flexible and efficient method for processing signals. DWT
allows the concentration of signal energy into wavelet coefficients, enabling more
efficient storage compared to blocks of pixels [17]. With wavelets, an image can be
converted into a series of wavelet coefficients that can be stored in a more efficient
manner.

19



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.3 Steganalysis

As steganography gained popularity, the need for a method to counter it, arose under the
name Steganalysis. Steganalysis is the art and science of detecting concealed messages
embedded in images using steganography. Its purpose is to determine if undetectable
messages are present, allowing the steganographer to detect, extract, disable, or modify
the messages before reaching the intended recipient.

1.3.1 Types of steganalysis

Steganalysis plays a significant role in selecting distinguishing features that might be
shown by Stego- and Cover-objects. Two types of features are commonly observed: deep
features and handcrafted features, often referred to as "statistical features" or "specific
features". Steganalysis approaches based on these features can be classified into the
following categories:

1.3.1.1 Signature steganalysis

In this approach, features are treated as distinct patterns or signatures. If the
steganographic embedding technique is known, it becomes easier to identify and
extract recurring special patterns, such as histogram arrangements, intensity
ranges, and more. This type is referred to as "target" or "specific" steganalysis.

Conversely, the "universal" type considers features as behavioural patterns
regardless of the embedding technique. Some steganography methods follow a
sequential or linear access approach when embedding, which can create noticeable
patterns [18].

1.3.1.2 Statistical steganalysis

Statistical steganalysis primarily depends on extracting statistical features and
properties from cover- and stego-images. Similar to the previous type, it includes
both “universal” and “target” methods. Target techniques are developed by
studying and analysing specific steganographic embedding techniques to identify
modified statistical features resulting from the embedding process. Deep
understanding of the embedding techniques enhances steganalysis accuracy and
gives rise to various categories based on the embedding domain (such as LSB
matching steganalysis, LSB embedding steganalysis, Transform domain
steganography steganalysis, etc.) [18].

Conversely, universal statistical steganalysis does not target specific
steganography techniques. It employs learning and training concepts to identify
sensitive statistical features with distinguishing capabilities. These features are
utilized to construct learning models for machine learning and neural networks
[19].

20



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.3.1.3 Deep steganalysis

We refer to this category as deep steganalysis, named after the concept of deep
features. Neural networks have gained popularity in both deep learning and
classification tasks due to their accuracy and ability to enable profound
understanding for improved robustness and effectiveness in semantic
representation. Deep steganalysis shares similarities with universal statistical
steganalysis, as it does not rely on specific embedding steganography techniques
[21]. However, the distinction lies in the extraction of deep features in contrast to
hand-crafted features.

1.4 Stegomalware

In simple terms, Stegomalware or Stegware is a type of malware that utilizes
steganography to conceal its malicious payload within an image [22]. An instance of this
is when a script is embedded within an image, where no suspicious elements are apparent
upon viewing. However, the payload is cleverly manipulated so that when the image file is
executed as a script, the appended malicious code seamlessly executes as well. In such a
scenario, the downloaded image file evades detection as it appears harmless and is
executed by the web page without triggering any defence measures. The hidden script
then gains access to another image containing the primary attack payload.

1.4.1 Malicious software or Malware

Various terms, such as malicious code, malcode, and malware, are used to describe
malicious software. Different definitions have been proposed, and for the purpose of this
context, we adopt the definition provided by Vasudevan and Yerraballi [23], which defines
malware as "a generic term that encompasses viruses, trojans, spyware, and other
intrusive code." Some of which are shown in figure 1.5.

e Ransomware

““““““

Trojan ()

O Spyware Worms O

) Cryptojacking Rootkits )

€) Malvertising Backdoors )

Figure 1.5 Common types of malware [20]

21



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.4.2 Malware analysis

Over the past decade, malware analysis and detection techniques have undergone
significant evolution in response to the development of various malware techniques
aiming to escape being detected by security measures. The rapid growth of diverse
malware forms has posed considerable challenges for forensic investigators, making it
increasingly difficult to provide timely responses. As a result, the integration of Machine
Learning (ML) into malware analysis has become imperative, enabling automation of
various aspects of static and dynamic malware investigation.

1421 Dynamic malware analysis

Dynamic malware analysis involves observing the behaviour of malware in a
controlled environment, such as a virtual machine or emulator. It allows for
analysing the actual behaviour during runtime, bypassing the limitations of
static analysis. By executing the malware in a restricted environment, it is
possible to monitor its actions, including changes to registry keys and
privileged access to the operating system [24]. This approach provides
advantages such as detecting known and unknown malware, including
obfuscated and polymorphic variants. However, dynamic analysis can be
resource-intensive and time-consuming, and it may suffer from incomplete
code coverage and potential risks to third-party systems. Despite these
challenges, dynamic analysis is valuable for understanding and countering
malware threats.

1.4.2.2  Static malware analysis

Static analysis on the other hand, involves analysing executable files without
executing them in a controlled environment. It focuses on the structure and
static attributes of the files, extracting information without running them.
Malware often employs binary packers to avoid analysis, requiring the files to
be unpacked and decompressed before analysis. Disassembler tools can be
used to decompile Windows executable files and extract patterns to identify
attackers. Static analysis is conducted manually and can be challenging due to
the loss of information during compilation [25]. However, it provides valuable
insights into the structure and characteristics of malware without the need for
execution.

Some of the techniques employed in static malware analysis include:
checking File format, AV scanning, Packer detection and Disassembly.

Disassembly:

Static analysis predominantly involves the disassembly of a provided binary.
This process utilizes tools that can reverse the machine code into assembly
language, such as IDA Pro. By examining the reconstructed assembly code,
analysts can investigate the program logic and discern its underlying intent.

22



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.4.3 Stegomalware examples

We present 3 examples of malware families utilizing steganography and explain how
they work:

1.4.3.1 Ransomware Cerber

A ransomware is generally defined as “a kind of malware which demands a
payment in exchange for a stolen functionality” [26]. By running an executable,
the victim’s machine data is encrypted, the adversary then demands a ransom
in exchange for a decryption key.

Cerber is a variation named after Cerberus, a 3-headed dog guiding the
entrance to Hades in Greek Mythology. The Cerber ransomware attack starts
with a decoy document that contains malicious macro code. When the
document is opened, it drops a VBScript file with a random name in the user's
"%APPDATA%" directory. This VBScript file is executed using the "wscript.exe"
process, which downloads an image file named "mhtr.jpg" from specific URLs.
The image file appears benign and displays content related to "zen-coding," but
it contains hidden malware embedded using steganography [27]. This allows
the transmission of executables without raising suspicion from network
monitoring devices.

1.4.3.2 RAT Agent Tesla

RATs, short for Remote Access Trojans, as the name suggests, are a type of
Trojan malware. While a Trojan is not classified as a virus, it may potentially
harbour a virus within it and deceive users by appearing as something
beneficial. RAT is also a type of MaaS “Malware-as-a-Service”, it allows threat
actors to gain control of the system and access the victim's information by
creating a backdoor in the user's system.

To summarize briefly, Agent Tesla is a Remote Access Trojan (RAT) that
is usually delivered through phishing emails and uses various evasion
techniques to avoid detection and analysis.

Agent Tesla's main functionalities include keylogging, screen capturing,
form-grabbing, and credential theft. It targets popular software programs like
Google Chrome, Mozilla Firefox, and Microsoft Outlook to extract sensitive
information.

Steganography plays its role in storing a PE file in a bitmap image, to be
extracted by the first stage DLL module, then the data is collected from this
image in the main payload, decrypting the collected data, and generating the
second stage module. This second stage DLL module is heavily obfuscated to
complicate analysis.

23



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

Once the second stage DLL is loaded into memory, it performs further
decryption routines to obtain the final payload. After the final payload is
decrypted, the malware injects its code into the main process and starts
stealing computer information, including browser data, keystrokes, clipboard
data, FTP credentials, and more [28].

Agent Tesla encrypts stolen data before communicating with its
command and control (C&C) server and uses the TOR client to maintain
anonymity. Stolen data is exfiltrated over SMTP (Simple Mail Transfer Protocol),
and for persistence, the malware drops its copy at a specific location and
creates a run entry.

1.4.3.3  Astrum Exploit Kit

The Astrum Exploit Kit, also known as Stegano, was discovered in 2016 during
the AdGholas Malvertising Campaign. This campaign was launched by the
cybercriminal group known as AdGholas from 2015 to 2017 and targeted a
large number of websites. The Astrum EK is an image-based exploit kit used to
distribute various malicious payloads such as backdoors, trojans, spyware, and
ransomware using steganography [29].

The main target of Astrum EK is users with unpatched Windows systems
who are infected through poorly configured third-party webservers.

1. When a user clicks on the malicious advertisement, the index.html file
of their browser loads a JavaScript file. This file contains obfuscated
malicious code and reports the victim's local environment back to the
server.

2. Based on the environment information received, the server responds
with an advertisement banner, a steganographic PNG image that
contains hidden JavaScript code.

3. The hidden JavaScript code attempts to further analyse the browser and
computer environment, focusing on detecting packet -capture,
sandboxing, virtualization software, security products, and drivers.

4. If no signs of monitoring are detected, the victim is redirected to the
landing page of the Stegano exploit kit via the TinyURL service. The
landing page loads a Flash file.

5. The Flash file invokes a JS code which returns a shell code containing the
URL of the payload and a password. This shell code collects information
about installed security products and, if the results are favourable,
downloads the encrypted payload disguised as a GIF image.

6. The payload is then decrypted and launched using regsvr32.exe or
rundll32.exe.

24



CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

1.5 Conclusion

In this chapter, we present the key concepts to understand how steganography and
malware converge to form stegomalware. In the next chapter, we will delve into deep
learning techniques that can aid in countering this emerging threat, along with prominent

works in this field.

25



CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

Chapter 02

Artificial Neural Networks

2.1 Introduction

Deep learning plays a vital role in malware detection by leveraging extensive training data
to accurately classify and identify malicious software. In steganalysis, deep learning
models facilitates the detection of hidden information in digital media by learning
statistical characteristics and subtle changes associated with steganographic content. This
chapter introduces a brief overview of artificial neural networks (ANNs). It explores ANNS,
including CNNs, autoencoders and RNNs. We'll also cover applications such as denoising.

2.2 Artificial Neural Networks

An artificial neural network can be formally defined as a powerful computational model
that consists of interconnected processing units. These units have the ability to store and
utilize experiential knowledge in a parallel and distributed manner [30].

2.2.1 Neural network structure

A basic artificial neural network typically consists of three key components: an input
layer, one or more hidden layers composed of interconnected neurons, and an output
layer as depicted in figure 2.1. Neurons, inspired by biological neurons, are the
fundamental processing units within the network. Each neuron takes inputs, applies
weights to them, and passes the result through an activation function.

Input layer: this layer is responsible for receiving the input data, which could be
numerical values, images, or any other form of structured data. Each input node in
the input layer represents a feature or attribute of the data.

Hidden layer: situated between the input and output layers, each neuron
composing this layer takes inputs, applies weights to them, and passes the result
through an activation function. The goal is to enable the network to learn and
extract relevant features from the input data.

26



CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

Output layer: the role of this layer is to produce predictions based on the
processed information from the hidden layers. The number of neurons in the
output layer depends on the type of problem the ANN is designed to solve.

Input Hidden Output

layer layer layer
Input #1 :

\\_\:-
Input #2 — : \\ 7 _
o g - Qutput

Input #3 —@—/ X <\ !
Input #4

Figure 2.1: Basic Neural Network Structure [31]

2.3 Types of neural networks

Making certain modifications to the basic ANN structure gives birth to new types and
architectures. These modifications include changing connectivity patterns, activation
functions and learning algorithms.

2.3.1 Recurrent neural networks

RNNs are a more advanced structure in which neurons within a layer are
interconnected and allow for feedback, resulting in information flowing in cycles [32]
an example of that would be the illustration in figure 2.2. This unique architecture
makes RNNs better suited for tasks such as natural language processing (NLP) and
speech recognition, given their effectiveness in processing sequential and temporal
data.

Figure 2.2: Recurrent network with hidden neurons. [32]

27



CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

2.3.2 Convolutional neural networks

A Convolutional Neural Network (CNN) is a popular algorithm widely used in the field
of deep learning, especially for image-related tasks. It consists of input, convolutional,
pooling, fully connected, and output layers as shown in figure 2.3. CNNs automatically
identify relevant features without human supervision [33], allowing them to extract
meaningful patterns from images. Convolutional layers detect local patterns, pooling
layers reduce spatial dimensions, and fully connected layers perform high-level
reasoning. The output layer provides final classification or regression results. Overall,
CNNs have revolutionized image analysis and recognition tasks, playing a crucial role
in computer vision applications.

Fully-
X connected
Convolution layer

layer 1 Convolution
layer 2

36

9 Max pooling
Max pooling layer 2

layer 1 Output
layers

Input Layer

Figure 2.3: Basic CNN structure [34]

2.3.3 Autoencoders

Autoencoders were initially introduced as a neural network architecture aimed at
reconstructing its input data, as described in [35]. They serve as a powerful tool for
unsupervised learning, focusing on obtaining a compressed and meaningful
representation of the input data. By learning to encode and decode the data,
autoencoders aim to capture the essential features and patterns within the dataset,
that is clearly described in figure 2.4. This "informative" representation obtained by
autoencoders can be utilized for numerous purposes, namely, image denoising
anomaly detection.

Encoder: the encoder component of the network is responsible for compressing
or encoding the input data into a representation in a latent space. This compressed
representation often appears distorted or unintelligible compared to the original
data.

Decoder: the decoder component is responsible for decoding or reconstructing
the encoded data from the latent space back to its original dimensions. However,

28



CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

the reconstructed data is typically a lossy approximation of the original data,
meaning that it may not perfectly match the exact details of the original input.

Reconstructed

Input Image
9 9 Image

Latent space
Representation

Bottleneck Decoder

Figure 2.4: Basic structure of an Autoencoder [36]

24

Related Work

To the best of our knowledge, no previous research has been conducted on the
identification and detection of Stegware in PNG images. Therefore, considering the
significant role of steganalysis in the detection of hidden Stegware, we have decided to
highlight four existing works in the field of steganalysis, ordered in table 2.1. These works
could be adapted to work with PNG images through appropriate adjustments and

modifications.
Authors Year | Dataset | Technique | Performance Evaluation
metrics
Qianetal | 2015 | BOSSbase | GNCNN | 0.3bpp: Detection
[39]. 1.01, HUGO: 0.338, error
ImageNet WOW: 0.343,
S-UNIWARD: 0.359
Xu et al 2016 | BOSSbase Xu-Net 0.4bpp: Accuracy
[40]. 1.01 S-UNIWARD:79.53,
HILL:75.47
Boroumand | 2019 | BOSSbase SRNet 0.2bpp: Detection
etal [37]. and Spatial ( Error
BOWS2 S-UNIWARD: 0.2090,
HILL: 0.2353,
WOW: 0.1676
);
QF75, JPEG (
J-UNIWARD: 0.1889,
UED-]JC-.0568
).

29



CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

Singh et al
[38].

2021

BOSSbase

SFNet

0.2bpp:
WOW:0.1579,
S-UNIWARD:0.1964,
HILL: 0.2438

Detection
Error

2.5 Conclusion

Table 2.1: Related works in Steganalysis and Stegware detection

In this chapter, we have introduced the fundamental techniques of deep learning models
that are extensively utilized in addressing the problem at hand. Building upon these works
and foundational knowledge, we will proceed to construct our proposed system, which
will be discussed in the following chapter.

30



CHAPTER 03 : PROPOSED APPROACH

Chapter 03

Proposed Approach

3.1 Introduction

Due to the fact that stegomalware detection combines three separated research fields, as
mentioned previously, that are vast on their own, few studies have been conducted to
address this problem. In the following chapter, we’ll be presenting our proposed approach
to tackle both steganalysis and malware detection aspects of this solution. Additionally,
we will discuss various implementations proposed by researchers for steganalysis
generalised to work for PNG images.

3.2 Methodology

The primary principle of our system is to decompose the stegware into distinct
components and tackle each component using its corresponding counterattack method,
as illustrated in Figure 3.1. By leveraging the advantages of steganalysis and malware
detection within a deep learning framework, our proposed system is comprised of three
components:

1. Steganalyzer: The first part of our system involves implementing 4 different
models to select the one with the best performance. These models serve as
steganalyzers, detecting the presence of steganography in an image, regardless of
whether the embedded data is harmless or malicious.

2. Data Extraction Module: The second part of our system is a data extraction
module. This module, implemented as a Python script, is responsible for extracting
the embedded data from the detected steganographic images. To accomplish this,
we have chosen to use the Openstego Extractor tool, which was also employed
during the preparation of the dataset.

3. Text Classifier: The extracted data is then fed into the second deep learning model,
a simple classifier designed to classify whether the text data is benign or malicious.
This classifier serves as the third part of our system and aids in determining the
nature of the extracted information.

Please note that Figure 3.2 provides a more detailed visual representation of the system
architecture, illustrating the flow of data and the interaction between the components.

31



CHAPTER 03 : PROPOSED APPROACH

Steganalysis
(CNN based)

)=

—

Malware
Detection

(RNN based)

Figure 3.1 : The proposed approach

Part 01: Steganalyzer

Stegomalware

—_—
Part 02:
Extraction
Module
Steganography
absent

2

=]

T

=]

=

=

2

it

Q

1]

[

=)

x

1]

©

et

1]
Steganography (m]

present

z 'y 3
%] No noise . .
2 extraction as a CNN Classification with
g pre-pr?cesswng no noise pre-processing
- step
=
AN /
| OR
e )
g No noise Image pre- ) N
5 e EEEEG A ::;ro;:;eﬁz:gg ConI;oI:rtéonal + Clals;fécritmn
i pre-processing YHPF 9 y y
E step
N _
4>| OR
Rrs R
2
ZI Moise extraction Linear
= X
< ||| o= Comueral 4 cassicaton
E step module
AN /
| OR
z )/
[&]
: Denoising CNN Classification CNN based on
3 as a noise . . .
S extractor the residual noise obtained
L AN
[ Part 03: Text-Classifier ]
Embeddin Classification W
9 &+ Lsmm +
layer layer J
Malicious code Benign text

Stegware
Detected!

Figure 3.2: Overview of the proposed System

32



CHAPTER 03 : PROPOSED APPROACH

Part 01: CNN Steganalyzer

3.2.1 Model 01

The first model is the implementation of a simple CNN, as shown in the figure 3.3. It
consists of 3 convolutional layers, 3 max pooling layers, one flatten layer, and two fully
connected layers.

The input image, an RGB image with dimensions 224x224, is passed through the
first Conv2D layer, applying 32 filters of size 3x3. This generates 32 feature maps, each
highlighting different learned patterns or features from the image.

The feature maps then go through a MaxPooling2D layer to reduce their spatial
dimensions by a factor of two, using a 2x2 pooling window.

Next, the 32 feature maps from the previous step are fed into the second Conv2D
layer, applying 64 filters of size 3x3. This produces 64 new feature maps, capable of
capturing more complex and abstract features.

The process is repeated for the third Conv2D and MaxPooling2D layers, using 128
filters and resulting in 128 feature maps.

The Flatten layer converts the feature maps into a 1-dimensional vector with
86,528 units, representing the learned filters in a sequential manner.

The flattened vector is then connected to a Dense layer with 128 units, utilizing the
ReLU activation function to enhance the model's ability to capture complex relationships
among the filters.

Finally, the output of the previous Dense layer is connected to a second Dense layer
with a single unit and the Sigmoid activation function. This unit represents the probability
of the input image belonging to either the clean or steganographic class.

[(Mone, 224, 224, 3)]
[(MNone, 224, 224, 3)]
(None, 222, 222, 32)
(None, 111, 111, 32)
(None, 109, 109, 64)
(None, 54, 54, 64)
(None, 54, 54, 64)
(None, 52, 52, 128)
(None, 26, 26, 128)
(None, 86528)
(None, §6528)
(None, 128)
(None, 128)
(None, 1)

(None, 111, 111, 32)

(None, 109, 109, 64)

(None, 52, 52, 128)
(None, 26, 26, 128)

(None, 224, 224, 3)
(None, 222, 222, 32)

Y

Y

Y

Y
A J
Y

Y

mput;
output:
mput;
output:
mput;
output:
\ i
mput:
oufput:
\
mput:
nput;
output:

mput:
mput;

oufput:
mput;
output:

input:

Flatten | output:

2

MaxPooling2D

e2d_1

Denge

Dense | output:

dense
denge 1

CouvZD | output:

InputLayer
conv2d
conv2d 1
Conv2D
conv2d 2
Conv2D

convZd_input
max_pooling2d
MaxPooling2D
max_pooling2d
MaxPooling2D
flatten

max_poolin;

Figure 3.3: The structure of the basic proposed CNN

33



CHAPTER 03 : PROPOSED APPROACH

3.2.2 Model 02

The second model is the implementation of GNCC, a variation of CNN proposed by Qian et
al. it is considered to be the first CNN to use Gaussian function as the activation function,
from which the name was derived [39]. This model is composed of a pre-processing layer,
multiple convolutional layers and a classification layer as depicted in figure 3.5.

Image pre-processing: CNNs are yet not developed enough to extract certain statistical
features, and the noise presented by steganography being a weak noise, a basic CNN no
matter how deep it is, will most likely fail to capture it. For this reason, the GNCNN model
starts with an image pre-processing layer. This layer applies a high-pass filter to the input
image, aiming to enhance the images noise and reduce the impact of image content. we
denote I as image, R as image after high-pass filtering (usually referred to as residual
image), and Kv as the HPF:

R=Fkv=*lI

The high-pass filter is defined as follow:

/ -1 2 =2 |
1 2 -6 8 -6 2
kv=—| -2 8 -12 8 -2 |
12\ 2 -6 8 -6 2
-1 2 =2 2 -1

An HPF is a kernel matrix, based on the Laplacian of Gaussian (LoG) filter. The LoG
filter is designed to enhance the high-frequency components (edges, details) in an image
while suppressing the low-frequency components (smooth regions). The matrix values
can be obtained using the Laplacian operator, which is a discrete approximation of the
second derivative as follow:

_Of L Of

L= 52752

where f is the image function, and 0?/0dx® and 02/dy? represent the second
derivatives in the x and y directions, respectively.

We then start with a 3x3 neighbourhood for the approximation, where each pixel
contributes to the computation of the Laplacian value at its central position.

0 1 0
1 -4 1
0 1 0

This operator assigns a weight of 0 to the central pixel and weights of 1 to its four
neighbouring pixels. The neighbouring pixels are in the horizontal and vertical directions,
reflecting the second derivative approximation. The negative weight in the central
position is used to subtract the average value of the neighbouring pixels from the central
pixel, enhancing the edges.

34



CHAPTER 03 : PROPOSED APPROACH

To extend this 3x3 Laplacian operator to a 5x5 matrix, the same pattern can be
repeated while adding additional rows and columns of zeros around it. This expansion
ensures that the Laplacian operator covers a larger neighbourhood for better edge
detection. The resulting 5x5 matrix is the Kv we previously presented.

Convolutional layer: After the image processing layer, convolutional layers are
used to capture dependencies among local and global regions of the stego signal. Each
layer performs convolution, non-linearity using the Gaussian activation function,
Generally, it is chosen to be a sigmoidal function such as the logistic sigmoid or the tanh()
sigmoid function in traditional CNNs. But in this work, a Gaussian function is used, which
can be express as:

xZ
fix)=eo*

where o is a parameter that determines the width of the curve. A neuron with this
activation function will produce a significant positive response only when the input falls
into a small interval around zero.

ﬂ\ Cover
0 > — 1 .

signal

1.1 |— AR ) 0 S.tego

signal

Prediction error Gaussian activation

Figure 3.4: The Gaussian Function [39]

The resulting activations are then passed to the pooling part of the layer, two
conventional choices for pooling are available, average pooling and max pooling. While
max pooling captures the strongest activation, average pooling considers all activations in
the region, making it suitable for steganalysis.

Classification layer: Fully connected layers are employed for classification. The learned
features from the convolutional layers are passed to these layers, and a softmax activation
function is used to produce a probability distribution over the class labels (two-way
softmax in this case).

Input: P1: C1: Cc2: C3: C4: C5: F1: F2: F3:
1@256*256 1@252*252 16@124*124 16@61*61 16@29*29 16@13*13 16@4*4 128 128 2
Image Fully !

|
| 1
X connected «—3
|
|

I
layers \

Convolutional
layers

I layer

|
}H processing ,:\

|
I |

Figure 3.5: Structure of GNCNN [39]

35



CHAPTER 03 : PROPOSED APPROACH

3.2.3 Model 03

The third model is based on the work proposed by Xu et al., referred to as the "Xu-net"
[40]. It's important to clarify that this model is from 2016 and not 2017. The improved
architecture introduced in 2017 specifically operates on JPEG images, utilizing a DCT
transformation during the pre-processing stage, as JPEG is a lossy format. The depicted
model, shown in figure 3.6, consists of a pre-processing step that involves the use of a High
Pass Filter (HPF) similar to the GNCNN model. This is followed by 5 groups of layers, a
global average pooling, and a linear classification module.

Pre-processing step: As mentioned earlier, an HPF is employed as a pre-processing step
during the generation and loading of the images.

Convolutional modules: The CNN consists of a convolutional module responsible for
transforming the images into feature vectors. This module is divided into five groups of
layers, referred to as "Group 1" to "Group 5" in the accompanying figure. Each group starts
with a convolutional layer that generates feature maps and ends with an average pooling
layer for local averaging and subsampling (except for Group 5).

Activation Functions: To enhance the power of statistical modelling, different activation
functions are employed in different groups. Group 1 and Group 2 use the hyperbolic
tangent (tanH()) activation function, while Group 3, Group 4, and Group 5 use the
rectified linear unit (ReLU) activation function. The activation functions introduce non-
linearities to capture complex relationships in the data.

ABS Layer: Within Group 1, an absolute activation (ABS) layer is inserted to enforce the
statistical modelling to consider the symmetry (sign) present in the noise residuals. This
layer helps to capture and utilize the symmetry information during the steganalysis
process.

Batch-Normalization (BN): To aid in the training process and prevent the CNN from
getting stuck in poor local minima, batch-normalization is performed immediately before
each non-linear activation layer. Batch-normalization normalizes the input data to have
zero mean and unit variance, which helps stabilize and accelerate the training of the CNN.

Global Averaging: In Group 5, a pooling layer performs global averaging, which collapses
each spatial map into a single element. This results in a feature vector of size 128.

Linear Classification Module: The linear classification module follows the convolutional
module. It consists of a fully-connected layer (no hidden layers) and a softmax layer. It is
responsible for making the final predictions based on the learned features.

36



CHAPTER 03 : PROPOSED APPROACH

class
probabilities

linear
classification

module

Fully-connected

128x(1x1) 128-D features

16x(128x128) average pooling
I 32x32 Global
average pooling
(— size 5x5 stride 2 -ReLU
Group 5
CBND
Group 2 < - 128x(32x32)
A convolutional
16x(256x256) 128x(1x1x64)
e convolutional T 64x(32x32)
16x(5x5x8) average pooling
size 5x5 stride 2 )
8x(256x256)
_ average pooling
size 5x5 stride 2 . Growpd
64x(64x64)
m convolutional _J
Group 1 < 64x(1x1x32)
ABS T 32x(64x64)
average pooling
e size5x5stride2 | )
— convolutional
8x(5x5x1)
A
1x(512x512) m > Group 3
HPF 32x(128x128)
1x(5x5x1)
A convolutional wz)
1x(512x512) 32x(1x1x16)
/  Input image 7 T 16x(128x128)

Figure 3.6: The structure of the proposed Xu-net [40]

3.2.4 Model 04

The fourth model is based on a proposed approach by Brijesh Singh on his thesis [41], he
proposed the usage of an architecture composed of two modules: a denoising CNN and a
classifying CNN as shown in figure 3.7.

e " # Convolution convolution fully fully *
64 flers 16 filters connicled connecled ! K
B0wits  750unics O
= = 1
() |
7} - - |
E ) - |
E (=] = L 2] - -
= - - 5
! N ! ] %-—ir"-—)ﬂ—) —DUI
I | 1 = 5%5 - = o |
e I | 1 0 . .
2565256 1 Iffiles 1 Wr256 | g 2 |
inputimage | size=5x5 ; noise residual @ (e R
Denoising CNN Classification CNN

Figure 3.7: Global structure of the fourth model [41]

Denoising CNN: this denoiser comprises a single convolutional layer with 16 kernels of
size 5x5. To preserve the stego noise, which is a relatively weak signal, no pooling layer is
included in the network. The stride is set to 1 to ensure convolution over the entire image

37



CHAPTER 03 : PROPOSED APPROACH

without padding. The DCNN is trained to predict a denoised cover image from a stego
image. The architecture of the proposed DCNN is illustrated in Figure 3.8.

7716 filters
256 i size = 5x5 V 256
b Stego : “ ‘ | Denoised .
g —p! I ——
N - m | - LOQ
De-noising
CNN

Figure 3.8: The structure of the DCNN [41]

Classifying CNN: In the second module, a shallower CNN is utilized as a steganalytic
classifier, comprising two convolutional layers and two fully connected layers with varying
filter sizes. The first layer takes a 256x256 noise residual as input and employs 64 filters
of size 7x7, producing 64 feature maps of size 128x128. The second layer uses 16 filters
of size 5x5 to extract more detailed features, resulting in 16 feature maps of size 64x64.
The fully connected layers consist of 750 neurons each, and a softmax layer is employed
for binary classification. ReLU activation and dropout with a probability of 0.8 are applied
to mitigate overfitting, while pooling layers are removed to preserve the weak stego noise.

Note:

We would like to emphasize that we implemented two variations of the proposed
approach:

1. Denoising CNN combined with a CNN classifier.
2. Autoencoder integrated with a CNN classifier.

The motivation behind this decision was driven by the widespread use of
autoencoders for denoising tasks, and our aim was to investigate whether autoencoders
could effectively capture the subtle noise introduced by the steganography embedding
process.

Part 02: Extraction Module

For the second part of our system, we employed a selected extraction tool to retrieve the
data from the images identified as steganographic by the initial steganalyzer. In
consideration of the primary focus of this work, which is not cryptography, we opted to
use OpenStego. This tool was also utilized for encrypting our data and embedding it within
the cover images.

38



CHAPTER 03 : PROPOSED APPROACH

D: > Dat

input dir =

output_dir

if os.path.exists(output dir):
os.makedirs(output_dir)

for filename in os.listdir(input_dir)
if filename.endswith(".png') filename.endswith( ' .jpg'):
input_path h.join(input_dir, filename)
output path i r, filename.spl
subp s

Figure 3.9: Extraction script snippet in Python

The code presented in the figure 3.9 demonstrates an example of utilizing the
OpenStego extractor to retrieve data from a batch of steganographic images and save it to
a new folder. It is important to clarify that OpenStego uses the AES encryption algorithm,
which is widely recognized as one of the most secure encryption algorithms available. Any
attempts to circumvent this encryption and extract the data would require an entirely
separate work.

Part 03: Text Classifier

For the classification task of the text files, and due to the contrast difference between the
plain text files and the code files, we opted for a fairly simple RNN illustrated in figure 3.10.
This RNN is composed of an embedding layer follower by an LSTM layer and finally a dense
layer.

Embedding layer: this layer is responsible for mapping the input sequence of words
(represented as integers) to dense vectors of fixed size. It learns the embeddings or
representations of words in a continuous space, allowing the model to capture the
semantic relationships between words.

LSTM (Long Short-Term Memory): this layer is a type of recurrent layer that can capture
long-term dependencies in sequential data. It has memory cells that can retain
information over longer sequences, enabling the model to learn patterns and
dependencies in the input text.

Dense layer: this layer with a sigmoid activation function produces a single-unit output
with a range between 0 and 1. It will classify the text files as either malicious code or plain
harmless text.

39



CHAPTER 03 : PROPOSED APPROACH

embedding 2 mput

mput: | [(None, 1000)]

InputLayer

output: | [(None, 1000)]

l

embedding_2

mput:

(None, 1000}

Embedding

output:

(None, 1000, 100)

;

Istim 2 | wput:

(None, 1000, 100}

LSTM | output:

(None, 128)

l

dense 2

mput:

(None, 128)

Denge

output:

(None, 1)

Figure 3.10: Structure of our proposed text-based classifier

3.3 Conclusion

This chapter was dedicated to the exploration of various proposed models, their detailed
structures, and the necessary modifications made to construct the modules that compose
our system. In the subsequent chapter, Chapter Four, we will delve into the datasets
employed, as well as the tests conducted and the results obtained from implementing
these models on both PNG images and text files.

40



CHAPTER 04 : TEST AND VALIDATION

Chapter 04

Test and Validation

4,1 Introduction

In the following chapter, we will discuss the steps we took to conduct our research,
beginning with the construction of our dataset and progressing to the training, testing,
and comparison of the results obtained from various implementations of the architectures
discussed in the previous chapter.

4.2 Tools and working environment

4.2.1 Hardware specifications

to train our models, two different laptops were used, their specifications are the following:

Laptop 01: Laptop 02:

— 0S: Windows 10 —0S: Windows 11
—CPU:i7-7700HQ CPU @ 2.80 GHz —CPU:i7-8750H CPU @ 2.20 GHz
— GPU: NVIDIA GTX 1050 @ 4.0 GB — GPU: NVIDIA GTX 1070 @ 8.0 GB
—RAM: 16.0 GB —RAM: 16.0 GB

4.2.2 Libraries and software

Tool/Library | Description

Python Chosen high-level programming language.

OpenStego Steganography tool for concealing data in digital images.

41




CHAPTER 04

: TEST AND VALIDATION

TensorFlow Library for ML and neural networks.
Keras High-level neural networks APL.
NumPy Library for numerical computations.
Matplotlib Plotting library for creating visualizations.
OpenCV Library for computer vision and image processing.
SciPy Library for scientific and technical computing.
Scikit-learn Library for ML algorithms.
Markovify Library for generating Markov chain-based test.

Table 4.1: Libraries and tools used.

4.3 Dataset

4.3.1 Steganalyzer Dataset

Preparing the appropriate dataset is a crucial step in building and training any deep
learning model. In our case, several specifications had to be taken into consideration to
better represent real-life scenarios:

— Ensuring an equal distribution between clean images and steganographic images
(referred to as "stego" images from now on).

— Considering the frequency of usage in terms of file formats. According to statistical
studies conducted by w3techs.com, the PNG image format has consistently topped
the charts for the past 5 years, as shown in the Figure 4.1.

— Using the RGB colour model for images.

90

BO

10 +— | ——

-

o L=
1dan™2  1Jan13  1Jan14  1Jan™5  1Jan™6  1Jan"17  1Jan’18  1Jan"9  1Jan20 1Jan21  1Jan22  1Janf23ay

Figure 4.1: Usage of image formats for websites [42]

42



CHAPTER 04 : TEST AND VALIDATION

BOSSbase, despite being widely used in steganalysis, did not meet our requirements

4.3.1.1 BOSSbase Dataset

BOSSbase is a training database consisting of 9074 grayscale images in the PGM format
with a resolution of 512x512 pixels [43]. It was initially released on June 28th, 2010, as
part of the challenge with the same name, "Break Our Steganographic System". Please
refer to the website and the accompanying paper for more details. There are several
reasons why we chose not to use this dataset:

— The images were captured by only 7 cameras in similar circumstances, which does
not provide the desired diversity and representativeness for our dataset.

— The images in the dataset are grayscale, whereas we require RGB images.

— The format of the dataset's images did not present a significant issue, as we could
have solved it by converting the images from PGM to PNG.

4.3.1.2 Our diverse dataset

For the reasons previously mentioned, we made the decision to create our own dataset
from scratch. To achieve this, we undertook a series of meticulous steps shown in figure
4.2,

Collecting Images

P!

JPEG PNG
Images | Images |
Discarding
Converting JPEG fo insignificant and
PNG

ineffective images

|

Generating TXT S Resizing PNG

Text files l images

Embedding .TXT files
into PNG images

1

Main
Dataset |

Figure 4.2: A scheme representing the steps of data collection

43



CHAPTER 04 : TEST AND VALIDATION

Algorithm 01: Preparing Dataset
INPUT: Data «<— PNG Images = N
OUTPUT: Clean images, Steganographic images

1. Q= initialize pool of PNG images to empty
2. ¢ ={Text files}

3. ForiimagesinN do

4, If format of image i <> ‘PNG’ then

5. Convert image i to PNG

6. Q +=i add the resized image to the pool
7. Else

8. Q+=1i

9. End if

10. End for

11. Foriimage in Q2 do

12. If Size of i < 400KB then

13. Q -=1iremove image i from pool

14. Else

15. Resize image i

16. End if

17. Q=Q /2 Devise the pool of images by 2 to ensure an equal distribution
between clean and steganographic images in our dataset.

18. Foriimage in Q do

19. For j text file in ¢

20. Embed j text file into i image
21. End for
22. End for

Table 4.2: Data Collection Algorithm

Algorithm 4.2 illustrates the detailed steps of constructing our dataset, and the
table below presents three of its variants, with the main dataset being the third one. The
first and second datasets can be considered subsets of the third dataset, which will be
discussed in detail when we get to the results of the experiments. We selected an
embedding rate of 0.5 for the main dataset, while for the sub-datasets, we experimented
with both 0.5 and 0.8 embedding.

Dataset 01 Dataset 02 Dataset 03
Embedding rate | 0.5 | 0.8 05 | 0.8 0.5

Training 1442 7000 21000
70% 70% 70%
Testing 308 1500 4500
15% 15% 15%
Validation 308 1500 4500
15% 15% 15%
Total 2058 10000 30000

44

Table 4.3: Table of embedding rates and sub-datasets




CHAPTER 04 : TEST AND VALIDATION

Evaluating our proposed dataset:

Since our proposed dataset was built from scratch, and in order to ensure the successful
embedding process and verify the impact of the LSB embedding process on the
composition of steganographic images, we used various statistical metrics to evaluate it,
these metrics are the following:

Chi-square

The chi-square test measures the difference between the observed and expected
pixel frequencies in an image. It evaluates the hypothesis that the distribution of
pixel values in the clean and stego images is significantly different. The following
clean image (Figure 4.3) has been randomly selected from our dataset, along with
its corresponding stego image (Figure 4.4). when observing the Chi-square
diagram (Figure 4.5), we can see a subtle difference between the two.

[ Pixel Value Histograms

[ [ Image 1
60000 s Image 2

50000

40000

Frequency

30000

20000

10000

o 50 100 150 200 250
Pixel Value

Figure 4.3: A clean Figure 4.4: A stego Figure 4.5: The Chi-square Diagram
image from our image from our
dataset dataset
Histogram

Histogram analysis is another valuable statistical metric for comparing clean and
stego images. A histogram represents the frequency distribution of pixel values in
an image. By examining the histograms of clean and stego images, you can identify
differences in their pixel value distributions. The following (Figure 4.6) is a
histogram of the same previous images overlapped and the difference between the
two.

45



CHAPTER 04 : TEST AND VALIDATION

Comparison of histograms

= Image 1
20000 Image 2
—— Difference

15000

10000

Number of pixels

P Wi A

0 50 100 150 200 250
Intensity value

Figure 4.6: The histogram of pixel values

MSE, PSNR and SSIM

MSE: MSE stands for Mean Squared Error. It is a commonly used metric in
image processing and other fields to measure the average squared
difference between the pixel values of two images or sets of data. In the
context of comparing images, the MSE quantifies the dissimilarity or
distortion between a reference image (e.g., clean image) and a test image
(e.g., stego image). It calculates the average of the squared differences
between corresponding pixel values in the two images.

PSNR: PSNR stands for Peak Signal-to-Noise Ratio. It is a widely used metric
for measuring the quality or fidelity of reconstructed or compressed images.
PSNR provides a quantitative assessment of the difference between a
reference image and a distorted or reconstructed image by considering both
the error magnitude and the dynamic range of pixel values.

SSIM: SSIM stands for Structural Similarity Index. It is a widely used metric
for measuring the perceived similarity or quality of images, taking into
account both structural information and pixel-wise differences. SSIM aims
to mimic human perception by considering the relationships between
neighbouring pixels and the overall structure of the image.

When comparing the previous pictures, we obtained the following results:

Metric Stego vs clean images Identical images
MSE 0.99 0.0

PSNR 52.06 361.20
SSIM 0.99 1.0

Table 4.4: Comparison of MSE, PSNR and SSIM
Note on how to read the results:

— Alower MSE value indicates a smaller difference between the pixel values
of the two images and suggests a higher similarity or less distortion.

— A higher PSNR value indicates a smaller difference or distortion between
the images and suggests better quality or higher fidelity. Conversely, a

46



CHAPTER 04 : TEST AND VALIDATION

lower PSNR value indicates more noticeable differences or artifacts in the
reconstructed or distorted image compared to the reference image.

— For SSIM:
SSIM =1 SSIM>09 |SSIM>0.8 SSIM > 0.7 SSIM < 0
Perfect Very high Reasonably | Moderate The images
similarity level of good level of | level of are
similarity similarity similarity dissimilar

Table 4.5: SSIM values and their readings

After evaluating our proposed dataset using the metrics mentioned above, we have
ensured that any variations in the results cannot be attributed to flaws in the construction
of our steganalyzer dataset.

4.3.2 Text-Classifier Dataset

Constructing a dataset from scratch for our text classifier presented several challenges
due to the following reasons:

4.3.2.1 Source code-based malware analysis

Seeing that the problem at hand requires a specific type of malware detection and
classification that is not widely used, static malware analysis becomes a relevant approach.
Static malware analysis, as mentioned in the first chapter, encompasses the following
techniques:

— Code and behaviour analysis: This involves examining the code to identify
patterns, signatures, or known malicious behaviour. It includes API calls, function
calls, system calls, and detecting obfuscated code.

— Structural analysis: This means studying the structure of the malware code, such
as the presence of packers, obfuscation techniques, or anti-analysis mechanisms.
It helps in comprehending how the malware attempts to evade detection or
analysis.

4.3.2.2 Our dataset

Unfortunately, the availability of malware source code datasets is limited, which led us to
create our own dataset through web scraping of malware source code repositories.
However, this approach proved to be a time-consuming and yielded fewer promising
results. The scarcity of publicly available malware source codes poses legal and ethical
concerns, as they are rarely disclosed openly. To overcome this limitation, we used
augmentation techniques that involved random modifications, such as variable name
changes, code block rearrangements, and the insertion of random lines of commented
code.

Malicious code Plain Text
Training 175 175
Validation 820 820
Testing 175 175

47

Table 4.6: Our dataset for the text classifier




CHAPTER 04 : TEST AND VALIDATION

44 Results and Discussion

In this section of the chapter, we present the results obtained after training, validating,
and testing all of the previously mentioned models on the dataset we detailed. We also
discuss potential reasons and justifications for the performance results of each model.

Results

4.4.1 Part one: Steganalyzer

We begin with our steganalyzer. The following tables present the accuracy achieved for
each of the four implemented models. Each model trained on the main dataset and its
variant sub-dataset and with corresponding bits per pixel (bpp):

44.1.1 Model 01: Basic CNN

As depicted in the table 4.7 below, the first CNN results demonstrate random guessing,
as indicated by the confusion matrix occasionally classifying all instances as either
clean or steganographic:

Dataset 01 Dataset 02 Main Dataset
bpp 0.5 0.8 0.5 0.8 0.8
Accuracy 50% 52% 50% 50% 50%

Table 4.7: Results for the CNN first model.

44.1.2 Model 02: GNCNN

Despite incorporating a pre-processing layer utilizing high-pass filtering (HPF) to
highlight the stego noise, GNCNN did not outperform a basic CNN without the noise
extraction step or pre-processing. Although it exhibited promising results in tests
conducted on JPEG images, the performance of GNCNN did not show any
improvements in the case of PNG images. The results are presented in Table 4.8:

Dataset 01 Dataset 02 Main Dataset
bpp 0.5 0.8 0.5 0.8 0.8
Accuracy 50% 54% 50% 50% 50%

Table 4.8: Results for the second model GNCNN

44.1.3 Model 03: Xu-Net

Xu-net, on the other hand, demonstrated slightly improved results compared to the
first two models. As shown in Table 4.9, the results indicate performance levels slightly
higher than random guessing

48



CHAPTER 04 : TEST AND VALIDATION

Dataset 01 Dataset 02 Main Dataset
bpp 0.5 0.8 0.5 0.8 0.8
Accuracy 52% 61% 54% 54% 53%

Table 4.9: Results for the third model, Xu-Net.

44.1.4 Model 04: DCNN + Classifier

The fourth model showcased the most promising results for the PNG dataset, achieving
an impressive accuracy of 75%. It clearly outperformed the other models, as backed-
up by the data presented in both table 4.10 and table 4.11.

We’d also like to note that we considered the usage of autoencoders to capture the
noise instead of the proposed denoising CNN, however, the results yielded were
disappointing to say the least with a loss of 0.087.

DCNN

We note that for this model, we relied solely on the main dataset, training the
denoiser we got:

MAE 0.0409

Loss 0.0056
Table 4.10: MAE and loss results for the denoiser

Classifier

As for the Classifier we obtained promising results, indicating that this classifier
did better at classifying the residual noise than the other two models:

Accuracy 75.09%

Table 4.11: Accuracy achieved for the fourth model classifier

4.4.2 Part two: Text Classifier

The contrast between plain text and code is substantial and distinct, allowing our simple
text classifier to achieve an exceptionally high accuracy of 99.70% as shown in table 4.12:

Accuracy 99.70%

Table 4.12: Accuracy for text-based classifier.

Discussion

In this section, we provide analysis and discussion of the results presented for each part
and model. Our objective is to identify potential factors that may account for the varying
performances and outcomes, whether they be poor or promising.

49



CHAPTER 04 : TEST AND VALIDATION

Model 01:

Model 01 served as the initial foundation for this work, where we assessed the
performance of a relatively simple yet moderately deep CNN. The aim was to
evaluate its ability to detect and learn the features and distortions introduced
during the embedding process. However, the results showed that the model
achieved an accuracy equivalent to random guessing. Notably, in certain datasets,
it exhibited a bias towards the 'clean’ class, while in others, it leaned towards the
'steganographic’ class.

Model 02:

GNCNN, which incorporated the consideration of noise present in both stego and
clean images, demonstrated potential in theory, as we previously discussed.
However, when applied to a dataset of PNG images, it did not yield satisfactory
results. One possible explanation for this outcome is that the classifier was unable
to effectively learn and distinguish the subtle noise patterns that differentiate the
clean noise from the stego noise, despite the application of a high-pass filter (HPF).

Model 03:

Xu-net's results provided evidence to support our hypothesis that the inability of
GNCNN to perform well was primarily attributed to the classifier component of the
architecture, rather than the HPF. It is worth noting that both GNCNN and Xu-net
incorporated the use of HPF as a pre-processing step, either as a customized layer
in the case of GNCNN or a function applied during data loading. This observation
suggests that the difference in performance between the two models can be
attributed to Xu-net's classifier part, which demonstrated a better capability to
learn and identify the distinctive stego noise patterns to some degree.

Model 04:

The fourth model, which yielded the best results, owes its success to two key
factors. Firstly, the denoising module played a crucial role in effectively capturing
the subtle stego noise present in both clean and stego images. By leveraging the
ground truth of clean images and starting from a set of stego images, the denoising
module generated denoised images with remarkable similarity to the original
covers. Secondly, the classifier component of this model was slightly deeper
compared to the previous models. This deeper architecture likely contributed to its
enhanced ability to learn and classify the distinctive features associated with stego
and clean images, further boosting its overall performance.

Autoencoder:

While one may argue that a loss of 0.087 is acceptable for a denoising autoencoder,
it is important to note that the training process was not effective. The training loss
and validation loss exhibited minimal changes over a period of 10 epochs.
Additionally, when the autoencoder was tested on images, the results were found

50



CHAPTER 04 : TEST AND VALIDATION

to be unsatisfactory. A plausible explanation for this could be that the training of
autoencoders is insufficient to effectively capture and denoise the subtle noise
introduced during the embedding process of steganography techniques. The
complexity of the steganographic embedding may require further training or more
sophisticated approaches to achieve optimal denoising performance.

4,5 Conclusion

This chapter concluded the entire work with promising results that have not been
achieved before in the field of steganalysis of PNG images using deep learning. However,
it is important to note that this achievement is only a part of the overall goal of this work.
The trained models, along with the detailed implementation, the appropriate data
extractor, and the accurate method of classifying the extracted data, contribute to the
development of a robust and high-performing system to combat the emerging threat of
stegomalware in images

51



GENERAL CONCLUSION

General Conclusion

We embarked on this work with the intention of developing an approach to detect the
evolving trend in malware techniques that aim to remain hidden in plain sight, commonly
known as stegware. Our process involved conducting thorough bibliographic research,
collecting and constructing our own dataset, and training five different models: four for
the steganalyzer component and one for the text classifier component. The main goal was
to create a system capable of dissecting stegware into its individual components and
addressing each component using the most suitable methods. Our work concluded with
results that were deemed reasonably acceptable, serving as a foundation for future
enhancements and advancements in this field.

In this work, we also ventured into the realm of PNG images, a widely utilized
format by internet users and certain stegware variants. Despite the limited research
conducted on this format, we aimed to demonstrate the feasibility of applying steganalysis
to PNG images and showcase the potential for achieving significant results. Our results
highlight the importance of further exploration and investigation in this area.

In conclusion, we would like to draw attention to the fact that the sub-field of
stegware detection and analysis remains largely unexplored. This raises significant
concerns considering the increasing adoption of steganography techniques by malware
families. The potential for any malware to easily incorporate this technique and evade
detection poses a serious threat. It is imperative that further research and development
efforts be dedicated to advancing stegware detection methods to stay ahead of these
evolving threats and ensure the security of digital systems and networks.

52



GENERAL CONCLUSION

53



REFERENCES

References

[1]. Judge, J C. Steganography: Past, present, future, 2001, https://doi:10.2172/15006450

[2]. White William. The microdot: History and Application. Phillips Publications, 1992.

[3]. Cole, Eric. “Covert Communication: It’s All Around You.” Hiding in plain sight:
Steganography and the art of covert communication, Wiley Pub., New York 2003, pp.
1-7.

[4]. Shih, Frank Y., and Venkata Gopal Edupuganti. “Differential Evolution Based
Algorithm for Breaking the Visual Steganalytic System.” Multimedia Security:
Watermarking, Steganography, and Forensics, CRC Press, Taylor &amp; Francis
Group, Boca Raton, 2013, pp. 245-255.

[5]. Cheddad, Abbas, et al. “Digital Image Steganography: Survey and analysis of current
methods.”  Signal Processing, vol. 90, no. 3, 2010, pp. 727-752,
https://doi.org/10.1016/j.sigpro.2009.08.010

[6]. Majeed, Mohammed Abdul, et al. “A Review on Text Steganography Techniques.”
Mathematics, vol. 9, no. 21, 2021, p. 2829, https://doi.org/10.3390/math9212829

[7]. Cox, Ingemar J. Digital Watermarking and Steganography. Morgan Kaufmann
Publishers, 2008.

[8]. Piper, Frederick Charles, and Sean Murphy. Cryptography: A Very Short Introduction.
Oxford University Press, 2002.

[9]. AL-Ani, Zaidoon Kh., et al. "Overview: Main Fundamentals for Steganography."”
ArXiv, 2010, abs/1003.4086.

[10]. Amitava Podder, et al. “Steganography Techniques - an Overview.”
International Journal of Scientific Research in Computer Science, Engineering and
Information Technology, 2022, pp. 323-327, https://doi.org/10.32628/cseit228642

[11]. Juneja, Mamta, and Parvinder S. Sandhu. “An Improved LSB Based
Steganography Technique for RGB Color Images.” International Journal of Computer
and Communication Engineering, 2013, pp. 513-517,

https://doi.org/10.7763/ijcce.2013.v2.238

[12]. Prasad, M. Sitaram, et al. "A novel information hiding technique for security by
using image steganography.” Journal of Theoretical and Applied Information
Technology, vol. 8, no. 1, 2009, pp. 35-39. Accessed 10 May 2023. Available at:
www. jatit.org/volumes/research-papers/\VVol8No1/6Vol8Nol.pdf

54


https://doi:10.2172/15006450
https://doi.org/10.1016/j.sigpro.2009.08.010
https://doi.org/10.3390/math9212829
https://doi.org/10.32628/cseit228642
https://doi.org/10.7763/ijcce.2013.v2.238
http://www.jatit.org/volumes/research-papers/Vol8No1/6Vol8No1.pdf

REFERENCES

[13]. Amitava Podder, et al. “Steganography Techniques - an Overview.”
International Journal of Scientific Research in Computer Science, Engineering and
Information Technology, 2022, pp. 323-327, https://doi.org/10.32628/cseit228642

[14]. Shih, Frank Y., and Mayra Bachrach. “Survey of Image Steganography and
Steganalysis.” Multimedia Security: Watermarking, Steganography, and Forensics,
CRC Press, Taylor &amp; Francis Group, Boca Raton, 2013, pp. 201-214.

[15]. Wu, Da-Chun, and Wen-Hsiang Tsai. “A Steganographic Method for Images by
Pixel-Value Differencing.” Pattern Recognition Letters, vol. 24, no. 9-10, 2003, pp.
1613-1626, https://doi.org/10.1016/s0167-8655(02)00402-6

[16]. Stuti Goel, Stuti Goel. “A Review of Comparison Techniques of Image
Steganography.” IOSR Journal of Electrical and Electronics Engineering, vol. 6, no. 1,
2013, pp. 41-48, https://doi.org/10.9790/1676-0614148

[17]. Gupta, D., and Siddhartha Choubey. "Discrete Wavelet Transform for Image
Processing."” International Journal of Emerging Technology and Advanced Engineering,
vol. 4, 2015, pp. 598-602.

[18]. Karampidis, Konstantinos, et al. “A Review of Image Steganalysis Techniques
for Digital Forensics.” Journal of Information Security and Applications, vol. 40, 2018,
pp. 217-235, https://doi.org/10.1016/].jisa.2018.04.005

[19]. Nissar, Arooj, and A.H. Mir. “Classification of Steganalysis Techniques: A
Study.” Digital Signal Processing, vol. 20, no. 6, 2010, pp. 1758-1770,
https://doi.org/10.1016/j.dsp.2010.02.003

[20]. Wallarm. “What Is Malware? Types and Examples.” RSS, 12 Apr. 2023,
www.wallarm.com/what/malware-types-and-detection

[21]. Shehab, Doaa A., and Mohmmed J. Alhaddad. “Comprehensive Survey of
Multimedia Steganalysis: Techniques, Evaluations, and Trends in Future Research.”
Symmetry, vol. 14, no. 1, 2022, p. 117, https://doi.org/10.3390/sym14010117

[22]. Chaganti, Raj, et al. Stegomalware: A Systematic Survey of Malware Hiding and
Detection in Images, Machine Learning Models and Research Challenges, 2021,
https://doi.org/10.36227/techrxiv.16755457

[23]. Vasudevan, Amit, and Ramesh Yerraballi. "Spike: Engineering malware
analysis tools using unobtrusive binary-instrumentation.” Proceedings of the 29th
Australasian Computer Science Conference, 2006, pp. 311-320.

[24]. Ye, Yanfang, et al. “A Survey on Malware Detection Using Data Mining
Techniques.” ACM Computing Surveys, vol. 50, no. 3, 2017, pp. 1-40,
https://doi.org/10.1145/3073559

[25]. Ijaz, Muhammad, et al. “Static and Dynamic Malware Analysis Using Machine
Learning.” 2019 16th International Bhurban Conference on Applied Sciences and
Technology (IBCAST), 2019, https://doi.org/10.1109/ibcast.2019.8667136

55


https://doi.org/10.32628/cseit228642
https://doi.org/10.1016/s0167-8655(02)00402-6
https://doi.org/10.9790/1676-0614148
https://doi.org/10.1016/j.jisa.2018.04.005
https://doi.org/10.1016/j.dsp.2010.02.003
http://www.wallarm.com/what/malware-types-and-detection
https://doi.org/10.3390/sym14010117
https://doi.org/10.36227/techrxiv.16755457
https://doi.org/10.1145/3073559
https://doi.org/10.1109/ibcast.2019.8667136

REFERENCES

[26]. Gazet, Alexandre. “Comparative Analysis of Various Ransomware Virii.”
Journal in  Computer Virology, wvol. 6, no. 1, 2008, pp. 77-90,
https://doi.org/10.1007/s11416-008-0092-2

[27]. Vamshi, Ashwin. “Anatomy of a Ransomware Attack: Cerber Uses
Steganography to ‘Hide in Plain Sight.”” Netskope, 10 April 2023,
www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-
hide-plain-sight.

[28]. Ghanshyam More, Principal Research Engineer. “Catching the Rat Called Agent
Tesla.” Qualys Security Blog, 23 Dec. 2022, blog.qualys.com/vulnerabilities-threat-
research/2022/02/02/catching-the-rat-called-agent-tesla

[29]. “Research, News, and Perspectives.” Trend Micro,
https://www.trendmicro.com/en_us/research/17/f/adgholas-malvertising-campaign-
employs-astrum-exploit-kit.nhtml. Accessed 27 April 2023.

[30]. Haykin, Simon. Neural Networks and Learning Machines. Pearson India
Education Services Pvt. Ltd, 2021.

[31]. Galaxylnferno. “Explaining the Components of a Neural Network [Ai].” Galaxy
Inferno, 13 July 2021, https://galaxyinferno.com/explaining-the-components-of-a-
neural-network-ai/

[32]. Tan, Xiao. “Libor Prediction Using Genetic Algorithm and Genetic Algorithm
Integrated with Recurrent Neural Network.” 2019 Global Conference for Advancement
in Technology (GCAT), 2019, https://doi.org/10.1109/gcat47503.2019.8978299

[33]. Gu, Jiuxiang, et al. “Recent Advances in Convolutional Neural Networks.”
Pattern Recognition, vol. 77, 2018, pp. 354-377,
https://doi.org/10.1016/j.patcog.2017.10.013

[34]. Dwivedi, Rohit. “5 Common Architectures in Convolution Neural Networks
(CNN).” Analytics Steps, www.analyticssteps.com/blogs/common-architectures-
convolution-neural-networks Accessed 20 May 2023.

[35]. Tran, Loc. Enhancing Neural Network Explainability with Variational
Autoencoders, 2020, https://doi.org/10.2514/6.2021-1886.vid

[36]. Birla, Deepak. “Autoencoders.” Medium, 12 Mar. 2019,
medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f

[37]. Boroumand, Mehdi, et al. “Deep Residual Network for Steganalysis of Digital
Images. ” IEEE Transactions on Information Forensics and Security, vol. 14, no. 5,
2019, pp. 1181-1193, https://doi.org/10.1109/tifs.2018.2871749

[38]. Singh, Brijesh, et al. “Steganalysis of Digital Images Using Deep Fractal
Network.” IEEE Transactions on Computational Social Systems, vol. 8, no. 3, 2021, pp.
599-606, https://doi.org/10.1109/tcss.2021.3052520

56


https://doi.org/10.1007/s11416-008-0092-2
http://www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-hide-plain-sight
http://www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-hide-plain-sight
https://galaxyinferno.com/explaining-the-components-of-a-neural-network-ai/
https://galaxyinferno.com/explaining-the-components-of-a-neural-network-ai/
https://doi.org/10.1109/gcat47503.2019.8978299
https://doi.org/10.1016/j.patcog.2017.10.013
http://www.analyticssteps.com/blogs/common-architectures-convolution-neural-networks
http://www.analyticssteps.com/blogs/common-architectures-convolution-neural-networks
https://doi.org/10.2514/6.2021-1886.vid
mailto:medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
https://doi.org/10.1109/tifs.2018.2871749
https://doi.org/10.1109/tcss.2021.3052520

REFERENCES

[39]. Qian, Yinlong, et al. “Deep Learning for Steganalysis via Convolutional Neural
Networks.” SPIE Proceedings, 2015, https://doi.org/10.1117/12.2083479

[40]. Xu, Guanshuo, et al. “Structural Design of Convolutional Neural Networks for
Steganalysis.” IEEE Signal Processing Letters, vol. 23, no. 5, 2016, pp. 708-712,
https://doi.org/10.1109/1sp.2016.2548421

[41]. Singh, Brijesh. "Spatial-Domain Image Steganalysis using Deep Learning
Techniques.” Thesis, Department of Computer Science and Engineering, Indian
Institute of Technology Guwahati, 2021.

[42]. “Historical Yearly Trends in the Usage Statistics of Image File Formats for
Websites.”W3Techs, https://w3techs.com/technologies/history_overview/image_format
/allly Accessed 10 May 2023.

[43]. Bas, Patrick, et al. “break Our Steganographic System”: The Ins and Outs of
Organizing Boss.” Information Hiding, 2011, pp. 5970, https://doi.org/10.1007/978-3-
642-24178-9 5

57


https://doi.org/10.1117/12.2083479
https://doi.org/10.1109/lsp.2016.2548421
https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1007/978-3-642-24178-9_5

	Table of Content
	General Introduction
	Chapter   01
	Steganography and Stegomalware
	1.1 Introduction
	1.2 Steganography
	1.2.1  Key Terminology
	1.2.2 Digital steganography
	1.2.3 Cryptography and watermarking
	1.2.3.1  Watermarking
	1.2.3.2  Cryptography
	Pure steganography
	Secret key steganography
	Public key steganography


	1.2.4 Types of modern steganography
	1.2.4.1  Text steganography
	1.2.4.2  Audio steganography
	1.2.4.3  Video steganography
	1.2.4.4  Network steganography
	1.2.4.5  Image steganography

	1.2.5 Image steganography techniques
	1.2.5.1 Spatial domain steganography
	Least significant bit (LSB)
	Pixel value differencing

	1.2.5.2 Transform domain steganography
	Discrete Cosine transform (DCT)
	Discrete Wavelet transform (DWT)



	1.3 Steganalysis
	1.3.1 Types of steganalysis
	1.3.1.1   Signature steganalysis
	1.3.1.2   Statistical steganalysis
	1.3.1.3   Deep steganalysis


	1.4 Stegomalware
	1.4.1 Malicious software or Malware
	1.4.2 Malware analysis
	1.4.2.1 Dynamic malware analysis
	1.4.2.2 Static malware analysis
	Disassembly:


	1.4.3 Stegomalware examples
	1.4.3.1 Ransomware Cerber
	1.4.3.2 RAT Agent Tesla
	1.4.3.3 Astrum Exploit Kit


	1.5 Conclusion

	Chapter 02
	Artificial Neural Networks
	2.1 Introduction
	2.2 Artificial Neural Networks
	2.2.1 Neural network structure

	2.3 Types of neural networks
	2.3.1 Recurrent neural networks
	2.3.2 Convolutional neural networks
	2.3.3 Autoencoders

	2.4 Related Work
	2.5 Conclusion

	Chapter 03
	Proposed Approach
	3.1 Introduction
	3.2 Methodology
	Part 01: CNN Steganalyzer
	3.2.1 Model 01
	3.2.2 Model 02
	3.2.3 Model 03
	3.2.4 Model 04

	Part 02: Extraction Module
	Part 03: Text Classifier
	3.3 Conclusion

	Chapter 04
	Test and Validation
	4.1 Introduction
	4.2 Tools and working environment
	4.2.1 Hardware specifications
	4.2.2 Libraries and software

	4.3 Dataset
	4.3.1 Steganalyzer Dataset
	4.3.1.1   BOSSbase Dataset
	4.3.1.2   Our diverse dataset
	Chi-square
	Histogram
	MSE, PSNR and SSIM


	4.3.2 Text-Classifier Dataset
	4.3.2.1   Source code-based malware analysis
	4.3.2.2   Our dataset


	4.4 Results and Discussion
	Results
	4.4.1 Part one: Steganalyzer
	4.4.1.1 Model 01: Basic CNN
	4.4.1.2 Model 02: GNCNN
	4.4.1.3 Model 03: Xu-Net
	4.4.1.4 Model 04: DCNN + Classifier
	DCNN
	Classifier


	4.4.2  Part two: Text Classifier

	Discussion
	Model 01:
	Model 02:
	Model 03:
	Model 04:
	Autoencoder:

	4.5 Conclusion

	General Conclusion
	References

