
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

SAAD DAHLEB University, BLIDA 01

Faculty of Science

Computer Science Department

Master’s Thesis

Major: Security of Information Systems

Detection of Image Stegware

 Using Deep Learning

Author

TESTAS Dounia

Supervisor

Pr. BOUSTIA Narhimene

Acknowledgments

I would like to extend my sincerest thanks to my exceptional supervisor, Professor

BOUSTIA Narhimene, her insightful guidance, unwavering support and patience have

been crucial to the completion of this work.

Her dedication and belief in my abilities inspired me greatly and instilled in me the

confidence to overcome the challenges and hardships I faced.

I am also deeply thankful to my family for their continuous love and encouragement

throughout this journey, and to my dearest friends for being my pillars of support and a

source of constant strength and motivation.

I am forever indebted to all those who have supported and assisted me, both near and

far.

3

Abstract

In an era where privacy has become increasingly important with the constant

informatisation of our day-to-day tasks, the quest to safeguard sensitive and personal

information had led to the invention of various methods. Throughout history, the

persistent need for secrecy and confidentiality has served as the driving force behind the

development of these methods, including encryption techniques, anonymization

protocols and secure communication systems. However, a paradoxical phenomenon has

emerged as these very tools, which were initially intended to protect privacy, are now

being exploited for the malicious purposes they were designed to guard against, one of

these techniques is steganography.

The misuse of steganography to conceal malware within innocent media files,

particularly images, has given rise to a significant cybersecurity concern known as

stegomalware or stegware for short. Threat actors have recognized the potential of

utilizing this technique to embed and distribute malicious payloads undetected.

Consequently, traditional measures and defences are rendered powerless in the face of

this sophisticated threat.

In this research, we aim to combine Deep Learning, Malware Analysis and

Steganalysis techniques in order to put in place a system capable of dissecting and

detecting stegware present specifically in PNG images. Our system comprises three main

components. Firstly, we implement various steganalysis deep learning models proposed

by researchers in the field, making the necessary adjustments and modifications to suit

our case of study. The purpose of this first model is to determine the presence of

steganography in images. Subsequently, we employ a module to extract hidden data from

images identified as steganographic. Lastly, a text-based classification model is utilized to

categorize the extracted data as either malicious or clean. The implementation details,

rigorous testing, and comprehensive results will be discussed and presented in this study.

Keywords: Steganography, Malware, PNG Images, Deep Learning, Malware

Analysis, Steganalysis, Detection, Classification.

4

Résumé

Au moment ou la vie prive e prend de plus en plus d'importance avec l'informatisation

constante de nos ta ches quotidiennes, la recherche de la protection des informations

sensibles et personnelles a conduit a l'invention de diffe rentes me thodes. Depuis toujours,

la ne cessite persistante du secret a e te la force motrice derrie re le de veloppement de ces

me thodes, notamment les techniques de cryptage, les protocoles d'anonymisation et les

syste mes de communication su rs. Cependant, un phe nome ne paradoxal a e merge , car ces

outils, qui e taient a l'origine destine s a la protection de la vie prive e, sont de sormais

exploite s aux fins malveillantes contre lesquelles ils ont e te conçus pour se prote ger, l'une

de ces techniques est la ste ganographie.

Le mauvais usage de la ste ganographie pour cacher des logiciels malveillants dans

des fichiers multime dias innocents, en particulier les images, a donne lieu a un proble me

de cyberse curite appele stegomalware ou stegware. Les attaquants ont reconnu la

puissance d’utiliser cette technique pour e viter la de tection en inte grant et en distribuant

des payloads cache s dans des images apparemment inoffensives. En conse quence, les

moyens de de fense traditionnels sont impuissants face a cette menace sophistique e.

Dans ce travail, notre but est de combiner l'apprentissage profond, l'analyse de

logiciels malveillants et les techniques de ste ganalyse pour cre er un syste me capable de

disse quer et de de tecter les stegware. Notre syste me est constitue de trois e le ments

principaux. Tout d'abord, nous mettons en œuvre diffe rents mode les d'apprentissage

profond propose s par les chercheurs dans le domaine de ste ganalyse, en effectuant les

ajustements et les modifications ne cessaires. Ce premier mode le vise a de tecter la

pre sence de la ste ganographie dans les images. Nous utilisons ensuite un module pour

extraire les donne es cache es de l'image identifie e comme ste ganographique. Finalement,

un mode le de classification sert a classer les donne es extraites comme e tant malveillantes

ou non est utilise . Les de tails de l’imple mentation, les tests et les re sultats complets seront

discute s et pre sente s dans ces chapitres.

Mots-clés : Ste ganographie, Logiciels malveillants, Images, Apprentissage en

profond, Analyse de logiciels malveillants, Ste ganalyse, De tection, Classification.

5

 ملخص

السعي لحماية المعلومات الحساسة ىاليومية، أد نشاطاتنال ةالمستمر الرقمنةأهمية الخصوصية مع ت فيهفي عصر تزايد

وراء تطوير هذه الطرق، بما في ذلك دافع مهم الحاجة للسرية توالشخصية إلى اختراع طرق متنوعة. على مر التاريخ، كان

تم استغلال هذه يتقنيات التشفير وبروتوكولات التجهيز وأنظمة الاتصال الآمنة. ومع ذلك، ظهرت ظاهرة متناقضة، حيث

التورية الأدوات نفسها، التي كانت في الأصل مصممة لحماية الخصوصية، لأغراض خبيثة، ومن بين هذه التقنيات هي تقنية

 .يغانوغرافياالست او

الصور، أدى إلى ظهور قلق أمني مثلبرامج الضارة في وسائط بريئة، السوء استخدام التسترغانوغرافيا لإخفاء

إمكانية استخدام هذه التقنية للأمن علىالجهات المهددة تهام يعرف باسم ستيغومالوير أو ستيغووير بشكل مختصر. تعرف

التدابير والدفاعات التقليدية أمام هذه التهديدات فان. وبالتالي، ان يتم اكتشافها وتوزيع الحمولات الضارة بدون نلتضمي

 لا مفعول لها. المتطورة

غانوغرافيا من أجل إنشاء ستيوتحليل البرامج الضارة وتحليل ال في هذا البحث، نهدف إلى دمج تقنيات التعلم العميق

نماذج تعلم عميق ببرمجةمكونات رئيسية. أولاً، نقوم ثلاث. يتكون نظامنا من ستيغوويرالنظام قادر على تحليل واكتشاف

يهدف هذا النموذج الأول .اللازمة التعديلاتالمقترحة من قبل الباحثين في هذا المجال، مع إجراء وغانوغرافيا ستيلتحليل ال

لاستخراج البيانات المخفية من الصور المحددة برنامجغانوغرافيا في الصور. بعد ذلك، نستخدم ستيوجود ال التأكد منإلى

غانوغرافية. وأخيرًا، يتم استخدام نموذج تصنيف نصي لتصنيف البيانات المستخرجة على أنها ضارة أو نظيفة. سيتم ستيبأنها

 .مناقشة تفاصيل التنفيذ وإجراء اختبارات دقيقة وتقديم النتائج الشاملة في هذه الدراسة

غانوغرافيا، البرمجيات الخبيثة، الصور، التعلم العميق، تحليل البرمجيات الخبيثة، التحليل ستيال :الكلمات المفتاحية

 المختبئ، الكشف، التصنيف.

6

Table of Content

LIST OF FIGURES.. 9

LIST OF TABLES ... 10

ACRONYMS .. 11

GENERAL INTRODUCTION.. 13

CHAPTER 01 STEGANOGRAPHY AND STEGOMALWARE .. 14

1.1 INTRODUCTION ... 14

1.2 STEGANOGRAPHY .. 14

1.2.1 Key Terminology.. 14

1.2.2 Digital steganography .. 15

1.2.3 Cryptography and watermarking .. 15

1.2.3.1 Watermarking.. 15

1.2.3.2 Cryptography ... 16

1.2.4 Types of modern steganography.. 17

 1.2.4.1 Text steganography ... 17

 1.2.4.2 Audio steganography.. 17

 1.2.4.3 Video steganography .. 17

 1.2.4.4 Network steganography .. 17

 1.2.4.5 Image steganography ... 18

1.2.5 Image steganography techniques .. 18

1.2.5.1 Spatial domain steganography .. 18

1.2.5.2 Transform domain steganography ... 19

1.3 STEGANALYSIS ... 20

1.3.1 Types of steganalysis ... 20

1.3.1.1 Signature steganalysis .. 20

1.3.1.2 Statistical steganalysis .. 20

1.3.1.3 Deep steganalysis ... 21

1.4 STEGOMALWARE ... 21

7

1.4.1 Malicious software or Malware .. 21

1.4.2 Malware analysis ... 22

1.4.2.1 Dynamic malware analysis ... 22

1.4.2.2 Static malware analysis .. 22

1.4.3 Stegomalware examples ... 23

1.4.3.1 Ransomware Cerber .. 23

1.4.3.2 RAT Agent Tesla .. 23

1.4.3.3 Astrum Exploit Kit ... 24

1.5 CONCLUSION.. 25

CHAPTER 02 ARTIFICIAL NEURAL NETWORKS ... 26

2.1 INTRODUCTION ... 26

2.2 ARTIFICIAL NEURAL NETWORKS ... 26

2.2.1 Neural network structure ... 26

2.3 TYPES OF NEURAL NETWORKS ... 27

2.3.1 Recurrent neural networks .. 27

2.3.2 Convolutional neural networks .. 28

2.3.3 Autoencoders.. 28

2.4 RELATED WORK ... 29

2.5 CONCLUSION.. 30

CHAPTER 03 PROPOSED APPROACH .. 31

3.1 INTRODUCTION ... 31

3.2 METHODOLOGY ... 31

PART 01: CNN STEGANALYZER.. 33

3.2.1 Model 01... 33

3.2.2 Model 02... 34

3.2.3 Model 03... 36

3.2.4 Model 04... 37

PART 02: EXTRACTION MODULE ... 38

PART 03: TEXT CLASSIFIER .. 39

3.3 CONCLUSION.. 40

8

CHAPTER 04 TEST AND VALIDATION ... 41

4.1 INTRODUCTION ... 41

4.2 TOOLS AND WORKING ENVIRONMENT ... 41

4.2.1 Hardware specifications ... 41

4.2.2 Libraries and software .. 41

4.3 DATASET .. 42

4.3.1 Steganalyzer Dataset .. 42

4.3.1.1 BOSSbase Dataset ... 43

4.3.1.2 Our diverse dataset .. 43

4.3.2 Text-Classifier Dataset ... 47

4.3.2.1 Source code-based malware analysis .. 47

4.3.2.2 Our dataset ... 47

4.4 RESULTS AND DISCUSSION ... 48

RESULTS .. 48

4.4.1 Part one: Steganalyzer ... 48

4.4.1.1 Model 01: Basic CNN ... 48

4.4.1.2 Model 02: GNCNN... 48

4.4.1.3 Model 03: Xu-Net .. 48

4.4.1.4 Model 04: DCNN + Classifier .. 49

4.4.2 Part two: Text Classifier .. 49

DISCUSSION .. 49

Model 01: ... 50

Model 02: ... 50

Model 03: ... 50

Model 04: ... 50

Autoencoder: .. 50

4.5 CONCLUSION.. 51

GENERAL CONCLUSION ... 52

REFERENCES .. 54

9

List of Figures

Figure 1.1 Classification tree of a general data security system [6]. ... 15

Figure 1.2 Block diagram of a steganographic system [6]. .. 16

Figure 1.3: The different types of Steganography. ... 17

Figure 1.4 Pixel size of different colour [13]. ... 18

Figure 1.5 Common types of malware [20]. .. 21

Figure 2.1: Basic Neural Network Structure [31]. .. 27

Figure 2.2: Recurrent network with hidden neurons [32]. ... 27

Figure 2.3: Basic CNN structure [34] .. 28

Figure 2.4: Basic structure of an Autoencoder [36] .. 29

Figure 3.1: The proposed approach .. 32

Figure 3.2: Overview of the proposed System ... 32

Figure 3.3: The structure of the basic proposed CNN .. 33

Figure 3.4: The Gaussian Function [39] .. 35

Figure 3.5: Structure of GNCNN [39] .. 35

Figure 3.6: The structure of the proposed Xu-net [40].. 37

Figure 3.7: Global structure of the fourth model [41] .. 37

Figure 3.8: The structure of the DCNN [41] .. 38

Figure 3.9: Extraction script snippet in Python .. 39

Figure 3.10: Structure of our proposed text-based classifier ... 40

Figure 4.1: Usage of image formats for websites [42] .. 42

Figure 4.2: A scheme representing the steps of data collection .. 43

Figure 4.3: A clean image from our dataset .. 45

Figure 4.4: A stego image from our dataset .. 45

Figure 4.5: The Chi-square Diagram ... 45

Figure 4.6: The histogram of pixel values .. 46

file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934308
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934310
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934311
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934312
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934313
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934314
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934315
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934316
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934317
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934317
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934318
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934319
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934320
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934322
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934321
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934323
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934324
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934325
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934336
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934337
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934338
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934339
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934340
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934341

10

List of Tables

Table 2.1: Related works in Steganalysis and Stegware detection. .. 29

Table 4.1: Libraries and tools used.. 42

Table 4.2: Data Collection Algorithm. ... 44

Table 4.3: Table of embedding rates and sub-datasets .. 44

Table 4.4: Comparison of MSE, PSNR and SSIM. ... 46

Table 4.5: SSIM values and their readings. .. 47

Table 4.6: Our dataset for the text classifier. ... 47

Table 4.7: Results for the CNN first model. .. 48

Table 4.8: Results for the second model GNCNN. ... 48

Table 4.9: Results for the third model Xu-Net. ... 49

Table 4.10: MAE and loss for the denoiser... 49

Table 4.11: Accuracy achieved for the fourth model classifier. ... 49

Table 4.12: Accuracy for the text-based classifier. ... 49

file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934308
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309
file:///D:/Thesis/Main%20Thesis.DOCX%23_Toc136934309

11

List of Acronyms

ABS Absolute. p. 36

AES Advanced Encryption Standard. p. 39

ANN Artificial Neural Network. p. 27

AV AntiVirus. p. 22

BN Batch Normalization. p. 36

BOSS Break Our Steganographic System. p. 29, 30, 43

C&C Command and Control. p. 24

CNN Convolutional Neural Network. p. 28, 32-34, 36-38, 48-50

DCNN Denoising Convolutional Network. p. 38, 49

DCT Discrete Cosine Transform. p. 19, 36

DLL Dynamic Link Library. p. 23

DWT Discrete Wavelet Transform. p. 19

EK Exploit Kit. p. 24

FTP File Transform Protocol. p. 24

GIF Graphic Interchange Format. p. 24

GNCNN Gaussian Convolutional Neural Network. p. 29, 34-36, 48, 50

HPF High Pass Filter. p. 34, 36, 50

ICMP Internet Control Message Protocol. p. 17

IP Internet Protocol. p. 17

JPEG Joint Photographic Experts Group. p. 29, 36, 48

JS JavaScript. p. 24

LSTM Long Short-Term Memory. p. 39

12

LSB Least Significant Bit. p. 18-20, 45

LoG Laplacian of Gaussian. p. 34

MaaS Malware as a Service. p. 23

ML Machine Learning. p. 42

MSE Mean Squared Error. p. 46

OSI Open System Interconnection. p. 17

PE Portable Executable. p. 23

PNG Portable Network Graphics. p. 24, 29, 31, 40, 42-44, 48-52

PSNR Peak Signal-to-Noise Ratio. p. 46, 47

PVD Pixel Value Differencing. p. 19

RAT Remote Access Trojan. p. 23

RGB Red Green Blue. p. 33, 42, 43

RNN Recurrent Neural Network. p. 32, 39

SMTP Simple Mail Transform Protocol. p. 24

SSIM Structural Similarity Index. p. 46, 47

TCP Transmission Control Protocol. p. 17

UDP User Datagram Protocol. p. 17

URL Uniform Resource Locator. p. 23, 24

VBS Visual Basic Scripting. p. 23

GENERAL INTRODUCTION

13

General Introduction

The necessity for secrecy and discretion has existed as long as the need for communication

between individuals and society. Throughout history, people have always sought ways to

ensure secure and confidential transmission of sensitive information. In ancient

civilizations, for example, King Histiaeus employed a unique method: he shaved the head

of a slave, tattooed a secret message on his scalp, waited for his hair to grow back, and

then sent him to the Greeks [1]. Fast forward to World War II, where steganography was

used in the form of Microdots by military troops to pass messages via insecure postal

channels. Agents used tiny photographs or documents reduced to the size of a dot. These

dots were then placed on seemingly harmless-looking objects, such as the bottom of

clothes, postage stamps, or letters [2].

Now back to the Digital Era, new applications for steganography have been found

in digital media. For example, digital images can nowadays be used as carriers to conceal

all sorts of data using different embedding techniques that varies in levels of stealthiness.

These new found ways didn’t go unnoticed by the web criminals, who are always in search

for different manners to pass under the radar of detection methods.

The incorporation of steganography by existing malware families introduces an

additional layer of threat and danger, augmenting the already menacing nature of malware

in its conventional and normal form. By concealing malicious payloads within PNG digital

images, cybercriminals can exploit unsuspecting individuals and organizations, and go

completely unnoticed. This is because antivirus software and other existing security

measures are not specifically designed to combat this type of malware. As a result, there

is a pressing need to strengthen our efforts to neutralize and mitigate the dangers

associated with this new wave of malware.

In our pursuit to create a safer system, we fuse multiple disciplines and work to

extend the pre-existing approaches, expanding their applicability to encompass larger

more diverse and realistic scenarios. In the first chapter, we provide an introduction to the

fundamental concepts of steganography, steganalysis, malware, and malware analysis. We

then present a brief overview of dep learning techniques, specially focusing on CNNs and

autoencoders. Moving forward, we lay out our proposed approach, discussing the various

implementations. Finally, in our fourth chapter we discuss the conducted tests and analyse

the results obtained and the obstacles encountered.

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

14

Chapter 01

Steganography and Stegomalware

1.1 Introduction

Steganography is considered one of the key components in facilitating the process of

hiding malicious programs to ensure their undetection by protective measures. It serves

as the primary method utilized by malicious actors to ensure the successful infiltration of

their malware into victims' machines. In this chapter, we will cover fundamental concepts

of steganography and its related techniques. Additionally, we will provide a brief

introduction to the concept of malware, along with examples of families that have already

adopted this technique.

1.2 Steganography

The primary motive behind concealing information is to keep it away from the eyes of

those not intended to see it. Steganography, as a technique to achieve this, derives its name

from the Greek term "steganos," meaning "secret," combined with "graphy" signifying

"writing." In its simplest form, steganography involves hiding information, whether it be

data concealed within a digital file, an image masked by another image, or words written

in invisible ink [3]. Although steganography is often confused with cryptography and

watermarking due to their shared objectives, they remain fundamentally distinct methods.

1.2.1 Key Terminology

In the context of steganography, certain terms are used to refer to important actors
involved in the process. The following is a list of key terms and their meanings:

Stego files: Also known as carriers, these files contain embedded hidden
information resulting from the application of a steganographic technique.

Cover files: These files have the potential to be used as carriers, meaning they can
be used to conceal hidden information through an embedding method that
supports them. Cover files can include any file type as long as there is a compatible
embedding technique available.

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

15

Clean files: In contrast, clean files are untouched files that have never undergone
any modifications using steganography. These files remain unaltered and free from
any hidden information.

Embedding rate: It refers to the quantity of hidden information that can be
concealed within the carrier file without affecting its perceptual quality or arousing
suspicion. It is typically measured in bits or bytes.

1.2.2 Digital steganography

While steganography has ancient origins rooted in early history, it has evolved and

expanded significantly with the emergence of technology, presenting new opportunities

for its implementation. In contemporary practice, digital steganography is defined as “The

art and science of hiding information into covert channels, so as to conceal the information

and prevent the detection of the hidden message.” By Shih, Frank in his book [4]. To

enhance effectiveness, steganography is often combined with modern cryptographic

techniques, adding an extra layer of confidentiality and security.

1.2.3 Cryptography and watermarking

Information security is a critical requirement that can be attained through various means.

In general, information security systems can be categorized into two classes: encryption

and information hiding [5], as illustrated in Figure 1.1. Steganography, watermarking, and

cryptography all strive to safeguard information using distinct approaches.

1.2.3.1 Watermarking

One approach to ensure the authenticity of information is through watermarking.

An electronic watermark serves as an imprint on a digital file, providing evidence

of its originality and reducing the risk of counterfeiting [3]. In the context of hiding

confidential data within different media files, watermarking and steganography

share common objectives. They both possess attributes such as data capacity,

security, imperceptibility, and robustness [7].

Figure 1.1 Classification tree of a general data security system. [6]

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

16

1.2.3.2 Cryptography

The key principle of cryptography is to make information or data illegible to ensure

its confidentiality, making it incomprehensible to unauthorized individuals.

Cryptography is commonly used in securely transmitting data through insecure

channels like the internet safeguarding it from unauthorized access. In

cryptographic terms, the original information is referred to as "plaintext," and the

process of transforming it is known as "encryption," resulting in "ciphertext."

Encryption involves the use of specific algorithms called "encryption algorithms"

and requires an "encryption key" as input. To retrieve the information, the

recipient employs a "decryption algorithm" along with the corresponding

"decryption key" [8].

The integration of cryptography principles into steganography leads to the

following classification.

Pure steganography

Pure steganography is when data is hidden within an object without using
any encryption keys. Essentially, the data is embedded as is, without being
encrypted first. However, this approach is not very secure [9]. If someone
unauthorized manages to figure out the specific embedding technique being
used, they can easily extract the hidden data.

Secret key steganography

Similar to pure steganography, secret key steganography uses an

embedding algorithm to conceal data within a selected digital carrier.

However, unlike pure steganography, it incorporates the use of a

symmetric key to encrypt and decrypt the data prior to embedding and

after extraction [9]

Public key steganography

On the other hand, public key steganography employs an asymmetric key to

encrypt and decrypt the data before and after transmission [9]. Public key

works by using a pair of mathematically related keys: a public key and a

Figure 1.2 Block diagram of a steganographic system [6].

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

17

private key. The public key is freely distributed, allowing anyone to encrypt

data using this key, while the private key is kept secret and is used for

decrypting the encrypted data The detailed process is illustrated in Figure

1.2.

1.2.4 Types of modern steganography

Taking into consideration the type of digital carrier and the format of the embedded

data, steganography can be classified into five main types, as depicted in Figure 1.3:

1.2.4.1 Text steganography

Text steganography involves concealing information within text files through

various techniques. These techniques may include modifying the formatting of

existing text, altering individual words, generating random strings, and

constructing coherent text using context-free grammars [10].

1.2.4.2 Audio steganography

In audio steganography, covert messages are embedded within audio signals by

modifying the binary sequences of accompanying audio files. This type of

steganography presents a greater challenge in concealing secret messages using

digital sound [10].

1.2.4.3 Video steganography

Digital video format provides the capability for concealing information through

video steganography. This method offers the advantage of fitting a substantial

amount of hidden data within a dynamic stream of images and sounds. It can be

seen as a combination of audio and visual steganography, blending elements from

both domains [11].

1.2.4.4 Network steganography

It is a technique that involves embedding data into network control protocols like

TCP, UDP, and ICMP, which are used for transporting data. Within the OSI model,

there are hidden communication channels that can be utilized in conjunction with

steganography [5]. For instance, you can conceal information within certain

optional header fields of TCP/IP packets.

Steganography

Text
stegangraphy

Audio
steganography

Video
steganography

Network
steganography

Image
steganography

Figure 1.3: The different types of Steganography

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

18

1.2.4.5 Image steganography

In image steganography, data is concealed by using an image as the cover object.

Images are commonly used in digital steganography due to their high bit depth [12].

An image is typically represented as an N * M matrix in memory, where each entry

corresponds to the intensity value of a pixel. During the process of embedding a

message into the image, specific pixels are selected and their values are modified

according to an encryption algorithm.

1.2.5 Image steganography techniques

It is important to highlight the significant role that compression plays in determining the

effectiveness of steganographic algorithms. While lossy compression methods reduce

image file sizes, they also increase the possibility of partial loss of embedded messages

due to the removal of image data. On the other hand, lossless compression techniques do

not compress image files as much, ensuring minimal loss of embedded information [12].

To resolve this issue, researchers have come up with various steganographic

algorithms including the following:

1.2.5.1 Spatial domain steganography

The spatial domain refers to the direct manipulation of the pixel values and their

positions in an image without any transformation. It involves working with the

original pixel grid to perform different operations.

Least significant bit (LSB)

An image is a visual representation composed of individual pixels, where each pixel

represents a specific element of the image. It is a collection of small units that

together form the visual content. Each pixel of an image consists of three bytes

representing the intensity of the primary colours (RGB), as shown in Figure 1.4.

In the LSB method, the least significant bit of each pixel in the image is utilized to

perform an Exclusive OR (XOR) operation with secret data. This process ensures

that the least significant bit values of the pixels store the secret data [13].

Figure 1.4 Pixel size of different colour. [10]

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

19

An example [14] of this is the insertion of letter “D” in a 24-bit image, we know the

binary representation of letter “D” (ASCII value of 68) is 01000100.

After the embedding in the LSBs, we obtain the following results:

Pixel 1: (00100111 11101001 11001000) (00100111 11101000 11001000)

Pixel 2: (00100111 11001000 11101001) (00100111 11001000 11101000)

Pixel 3: (11001000 00100111 11101001) (11001000 00100111 11101001)

Pixel value differencing

The PVD-based steganographic scheme is an edge adaptive method where the

number of embedded bits depends on the variation between a pixel and the pixels

surrounding it [15], The basic idea behind PVD is to calculate the difference

between the pixel value of a selected pixel and the pixel values of its neighbouring

pixels. The larger the difference between the pixel and its neighbours, the greater

the capacity to embed message bits.

1.2.5.2 Transform domain steganography

On the other hand, the transform domain refers to a specific representation of data

obtained by applying a mathematical transform to the original image. It involves

converting the image from its original spatial domain into a different domain, such as

frequency or wavelet domain, using the following techniques:

Discrete Cosine transform (DCT)

DCT is a technique commonly used in transform domain steganography,

particularly for lossy image formats. It allows the transformation of an image from

the spatial domain to the frequency domain. the lossy image is divided into

components based on their frequency importance, namely low frequency, middle

frequency, and high frequency components [16]. The essential visual elements are

preserved in the low frequency components, while the secret information is

embedded by modifying the coefficients of the middle frequency components

without significantly affecting the visibility of the image.

Discrete Wavelet transform (DWT)

DWT steganography is another technique also used for lossy images. It has been

introduced as a highly flexible and efficient method for processing signals. DWT

allows the concentration of signal energy into wavelet coefficients, enabling more

efficient storage compared to blocks of pixels [17]. With wavelets, an image can be

converted into a series of wavelet coefficients that can be stored in a more efficient

manner.

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

20

1.3 Steganalysis

As steganography gained popularity, the need for a method to counter it, arose under the

name Steganalysis. Steganalysis is the art and science of detecting concealed messages

embedded in images using steganography. Its purpose is to determine if undetectable

messages are present, allowing the steganographer to detect, extract, disable, or modify

the messages before reaching the intended recipient.

1.3.1 Types of steganalysis

Steganalysis plays a significant role in selecting distinguishing features that might be

shown by Stego- and Cover-objects. Two types of features are commonly observed: deep

features and handcrafted features, often referred to as "statistical features" or "specific

features". Steganalysis approaches based on these features can be classified into the

following categories:

1.3.1.1 Signature steganalysis

In this approach, features are treated as distinct patterns or signatures. If the

steganographic embedding technique is known, it becomes easier to identify and

extract recurring special patterns, such as histogram arrangements, intensity

ranges, and more. This type is referred to as "target" or "specific" steganalysis.

Conversely, the "universal" type considers features as behavioural patterns

regardless of the embedding technique. Some steganography methods follow a

sequential or linear access approach when embedding, which can create noticeable

patterns [18].

1.3.1.2 Statistical steganalysis

Statistical steganalysis primarily depends on extracting statistical features and

properties from cover- and stego-images. Similar to the previous type, it includes

both “universal” and “target” methods. Target techniques are developed by

studying and analysing specific steganographic embedding techniques to identify

modified statistical features resulting from the embedding process. Deep

understanding of the embedding techniques enhances steganalysis accuracy and

gives rise to various categories based on the embedding domain (such as LSB

matching steganalysis, LSB embedding steganalysis, Transform domain

steganography steganalysis, etc.) [18].

Conversely, universal statistical steganalysis does not target specific

steganography techniques. It employs learning and training concepts to identify

sensitive statistical features with distinguishing capabilities. These features are

utilized to construct learning models for machine learning and neural networks

[19].

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

21

1.3.1.3 Deep steganalysis

We refer to this category as deep steganalysis, named after the concept of deep

features. Neural networks have gained popularity in both deep learning and

classification tasks due to their accuracy and ability to enable profound

understanding for improved robustness and effectiveness in semantic

representation. Deep steganalysis shares similarities with universal statistical

steganalysis, as it does not rely on specific embedding steganography techniques

[21]. However, the distinction lies in the extraction of deep features in contrast to

hand-crafted features.

1.4 Stegomalware

In simple terms, Stegomalware or Stegware is a type of malware that utilizes

steganography to conceal its malicious payload within an image [22]. An instance of this

is when a script is embedded within an image, where no suspicious elements are apparent

upon viewing. However, the payload is cleverly manipulated so that when the image file is

executed as a script, the appended malicious code seamlessly executes as well. In such a

scenario, the downloaded image file evades detection as it appears harmless and is

executed by the web page without triggering any defence measures. The hidden script

then gains access to another image containing the primary attack payload.

1.4.1 Malicious software or Malware

Various terms, such as malicious code, malcode, and malware, are used to describe

malicious software. Different definitions have been proposed, and for the purpose of this

context, we adopt the definition provided by Vasudevan and Yerraballi [23], which defines

malware as "a generic term that encompasses viruses, trojans, spyware, and other

intrusive code." Some of which are shown in figure 1.5.

Figure 1.5 Common types of malware [20]

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

22

1.4.2 Malware analysis

Over the past decade, malware analysis and detection techniques have undergone

significant evolution in response to the development of various malware techniques

aiming to escape being detected by security measures. The rapid growth of diverse

malware forms has posed considerable challenges for forensic investigators, making it

increasingly difficult to provide timely responses. As a result, the integration of Machine

Learning (ML) into malware analysis has become imperative, enabling automation of

various aspects of static and dynamic malware investigation.

1.4.2.1 Dynamic malware analysis

Dynamic malware analysis involves observing the behaviour of malware in a

controlled environment, such as a virtual machine or emulator. It allows for

analysing the actual behaviour during runtime, bypassing the limitations of

static analysis. By executing the malware in a restricted environment, it is

possible to monitor its actions, including changes to registry keys and

privileged access to the operating system [24]. This approach provides

advantages such as detecting known and unknown malware, including

obfuscated and polymorphic variants. However, dynamic analysis can be

resource-intensive and time-consuming, and it may suffer from incomplete

code coverage and potential risks to third-party systems. Despite these

challenges, dynamic analysis is valuable for understanding and countering

malware threats.

1.4.2.2 Static malware analysis

Static analysis on the other hand, involves analysing executable files without

executing them in a controlled environment. It focuses on the structure and

static attributes of the files, extracting information without running them.

Malware often employs binary packers to avoid analysis, requiring the files to

be unpacked and decompressed before analysis. Disassembler tools can be

used to decompile Windows executable files and extract patterns to identify

attackers. Static analysis is conducted manually and can be challenging due to

the loss of information during compilation [25]. However, it provides valuable

insights into the structure and characteristics of malware without the need for

execution.

Some of the techniques employed in static malware analysis include:

checking File format, AV scanning, Packer detection and Disassembly.

Disassembly:

Static analysis predominantly involves the disassembly of a provided binary.

This process utilizes tools that can reverse the machine code into assembly

language, such as IDA Pro. By examining the reconstructed assembly code,

analysts can investigate the program logic and discern its underlying intent.

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

23

1.4.3 Stegomalware examples

We present 3 examples of malware families utilizing steganography and explain how

they work:

1.4.3.1 Ransomware Cerber

A ransomware is generally defined as “a kind of malware which demands a

payment in exchange for a stolen functionality” [26]. By running an executable,

the victim’s machine data is encrypted, the adversary then demands a ransom

in exchange for a decryption key.

Cerber is a variation named after Cerberus, a 3-headed dog guiding the

entrance to Hades in Greek Mythology. The Cerber ransomware attack starts

with a decoy document that contains malicious macro code. When the

document is opened, it drops a VBScript file with a random name in the user's

"%APPDATA%" directory. This VBScript file is executed using the "wscript.exe"

process, which downloads an image file named "mhtr.jpg" from specific URLs.

The image file appears benign and displays content related to "zen-coding," but

it contains hidden malware embedded using steganography [27]. This allows

the transmission of executables without raising suspicion from network

monitoring devices.

1.4.3.2 RAT Agent Tesla

RATs, short for Remote Access Trojans, as the name suggests, are a type of

Trojan malware. While a Trojan is not classified as a virus, it may potentially

harbour a virus within it and deceive users by appearing as something

beneficial. RAT is also a type of MaaS “Malware-as-a-Service”, it allows threat

actors to gain control of the system and access the victim's information by

creating a backdoor in the user's system.

To summarize briefly, Agent Tesla is a Remote Access Trojan (RAT) that

is usually delivered through phishing emails and uses various evasion

techniques to avoid detection and analysis.

Agent Tesla's main functionalities include keylogging, screen capturing,

form-grabbing, and credential theft. It targets popular software programs like

Google Chrome, Mozilla Firefox, and Microsoft Outlook to extract sensitive

information.

Steganography plays its role in storing a PE file in a bitmap image, to be

extracted by the first stage DLL module, then the data is collected from this

image in the main payload, decrypting the collected data, and generating the

second stage module. This second stage DLL module is heavily obfuscated to

complicate analysis.

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

24

Once the second stage DLL is loaded into memory, it performs further

decryption routines to obtain the final payload. After the final payload is

decrypted, the malware injects its code into the main process and starts

stealing computer information, including browser data, keystrokes, clipboard

data, FTP credentials, and more [28].

Agent Tesla encrypts stolen data before communicating with its

command and control (C&C) server and uses the TOR client to maintain

anonymity. Stolen data is exfiltrated over SMTP (Simple Mail Transfer Protocol),

and for persistence, the malware drops its copy at a specific location and

creates a run entry.

1.4.3.3 Astrum Exploit Kit

The Astrum Exploit Kit, also known as Stegano, was discovered in 2016 during

the AdGholas Malvertising Campaign. This campaign was launched by the

cybercriminal group known as AdGholas from 2015 to 2017 and targeted a

large number of websites. The Astrum EK is an image-based exploit kit used to

distribute various malicious payloads such as backdoors, trojans, spyware, and

ransomware using steganography [29].

The main target of Astrum EK is users with unpatched Windows systems

who are infected through poorly configured third-party webservers.

1. When a user clicks on the malicious advertisement, the index.html file

of their browser loads a JavaScript file. This file contains obfuscated

malicious code and reports the victim's local environment back to the

server.

2. Based on the environment information received, the server responds

with an advertisement banner, a steganographic PNG image that

contains hidden JavaScript code.

3. The hidden JavaScript code attempts to further analyse the browser and

computer environment, focusing on detecting packet capture,

sandboxing, virtualization software, security products, and drivers.

4. If no signs of monitoring are detected, the victim is redirected to the

landing page of the Stegano exploit kit via the TinyURL service. The

landing page loads a Flash file.

5. The Flash file invokes a JS code which returns a shell code containing the

URL of the payload and a password. This shell code collects information

about installed security products and, if the results are favourable,

downloads the encrypted payload disguised as a GIF image.

6. The payload is then decrypted and launched using regsvr32.exe or

rundll32.exe.

CHAPTER 01 : STEGANOGRAPHY AND STEGOMALWARE

25

1.5 Conclusion

In this chapter, we present the key concepts to understand how steganography and

malware converge to form stegomalware. In the next chapter, we will delve into deep

learning techniques that can aid in countering this emerging threat, along with prominent

works in this field.

CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

26

Chapter 02

Artificial Neural Networks

2.1 Introduction

Deep learning plays a vital role in malware detection by leveraging extensive training data

to accurately classify and identify malicious software. In steganalysis, deep learning

models facilitates the detection of hidden information in digital media by learning

statistical characteristics and subtle changes associated with steganographic content. This

chapter introduces a brief overview of artificial neural networks (ANNs). It explores ANNs,

including CNNs, autoencoders and RNNs. We’ll also cover applications such as denoising.

2.2 Artificial Neural Networks

An artificial neural network can be formally defined as a powerful computational model

that consists of interconnected processing units. These units have the ability to store and

utilize experiential knowledge in a parallel and distributed manner [30].

2.2.1 Neural network structure

A basic artificial neural network typically consists of three key components: an input

layer, one or more hidden layers composed of interconnected neurons, and an output

layer as depicted in figure 2.1. Neurons, inspired by biological neurons, are the

fundamental processing units within the network. Each neuron takes inputs, applies

weights to them, and passes the result through an activation function.

Input layer: this layer is responsible for receiving the input data, which could be

numerical values, images, or any other form of structured data. Each input node in

the input layer represents a feature or attribute of the data.

Hidden layer: situated between the input and output layers, each neuron

composing this layer takes inputs, applies weights to them, and passes the result

through an activation function. The goal is to enable the network to learn and

extract relevant features from the input data.

CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

27

Output layer: the role of this layer is to produce predictions based on the

processed information from the hidden layers. The number of neurons in the

output layer depends on the type of problem the ANN is designed to solve.

2.3 Types of neural networks

Making certain modifications to the basic ANN structure gives birth to new types and

architectures. These modifications include changing connectivity patterns, activation

functions and learning algorithms.

2.3.1 Recurrent neural networks

RNNs are a more advanced structure in which neurons within a layer are

interconnected and allow for feedback, resulting in information flowing in cycles [32]

an example of that would be the illustration in figure 2.2. This unique architecture

makes RNNs better suited for tasks such as natural language processing (NLP) and

speech recognition, given their effectiveness in processing sequential and temporal

data.

Figure 2.1: Basic Neural Network Structure [31]

Figure 2.2: Recurrent network with hidden neurons. [32]

CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

28

2.3.2 Convolutional neural networks

A Convolutional Neural Network (CNN) is a popular algorithm widely used in the field

of deep learning, especially for image-related tasks. It consists of input, convolutional,

pooling, fully connected, and output layers as shown in figure 2.3. CNNs automatically

identify relevant features without human supervision [33], allowing them to extract

meaningful patterns from images. Convolutional layers detect local patterns, pooling

layers reduce spatial dimensions, and fully connected layers perform high-level

reasoning. The output layer provides final classification or regression results. Overall,

CNNs have revolutionized image analysis and recognition tasks, playing a crucial role

in computer vision applications.

2.3.3 Autoencoders

Autoencoders were initially introduced as a neural network architecture aimed at

reconstructing its input data, as described in [35]. They serve as a powerful tool for

unsupervised learning, focusing on obtaining a compressed and meaningful

representation of the input data. By learning to encode and decode the data,

autoencoders aim to capture the essential features and patterns within the dataset,

that is clearly described in figure 2.4. This "informative" representation obtained by

autoencoders can be utilized for numerous purposes, namely, image denoising

anomaly detection.

Encoder: the encoder component of the network is responsible for compressing

or encoding the input data into a representation in a latent space. This compressed

representation often appears distorted or unintelligible compared to the original

data.

Decoder: the decoder component is responsible for decoding or reconstructing

the encoded data from the latent space back to its original dimensions. However,

Figure 2.3: Basic CNN structure [34]

CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

29

the reconstructed data is typically a lossy approximation of the original data,

meaning that it may not perfectly match the exact details of the original input.

2.4 Related Work

To the best of our knowledge, no previous research has been conducted on the

identification and detection of Stegware in PNG images. Therefore, considering the

significant role of steganalysis in the detection of hidden Stegware, we have decided to

highlight four existing works in the field of steganalysis, ordered in table 2.1. These works

could be adapted to work with PNG images through appropriate adjustments and

modifications.

Authors Year Dataset Technique Performance Evaluation
metrics

Qian et al
[39].

2015 BOSSbase
1.01,

ImageNet

GNCNN 0.3bpp:
HUGO: 0.338,
WOW: 0.343,
S-UNIWARD: 0.359

Detection
error

Xu et al
[40].

2016 BOSSbase
1.01

Xu-Net 0.4bpp:
S-UNIWARD:79.53,
HILL:75.47

Accuracy

Boroumand
et al [37].

2019 BOSSbase
and

BOWS2

SRNet 0.2bpp:
Spatial (
S-UNIWARD: 0.2090,
HILL: 0.2353,
WOW: 0.1676
);
QF75, JPEG (
J-UNIWARD: 0.1889,
UED-JC -.0568
).

Detection
Error

Figure 2.4: Basic structure of an Autoencoder [36]

CHAPTER 02 : ARTIFICIAL NEURAL NETWORKS

30

Singh et al
[38].

2021 BOSSbase SFNet 0.2bpp:
WOW:0.1579,
S-UNIWARD:0.1964,
HILL: 0.2438

Detection
Error

Table 2.1: Related works in Steganalysis and Stegware detection

2.5 Conclusion
In this chapter, we have introduced the fundamental techniques of deep learning models

that are extensively utilized in addressing the problem at hand. Building upon these works

and foundational knowledge, we will proceed to construct our proposed system, which

will be discussed in the following chapter.

CHAPTER 03 : PROPOSED APPROACH

31

Chapter 03

Proposed Approach

3.1 Introduction

Due to the fact that stegomalware detection combines three separated research fields, as

mentioned previously, that are vast on their own, few studies have been conducted to

address this problem. In the following chapter, we’ll be presenting our proposed approach

to tackle both steganalysis and malware detection aspects of this solution. Additionally,

we will discuss various implementations proposed by researchers for steganalysis

generalised to work for PNG images.

3.2 Methodology

The primary principle of our system is to decompose the stegware into distinct

components and tackle each component using its corresponding counterattack method,

as illustrated in Figure 3.1. By leveraging the advantages of steganalysis and malware

detection within a deep learning framework, our proposed system is comprised of three

components:

1. Steganalyzer: The first part of our system involves implementing 4 different

models to select the one with the best performance. These models serve as

steganalyzers, detecting the presence of steganography in an image, regardless of

whether the embedded data is harmless or malicious.

2. Data Extraction Module: The second part of our system is a data extraction

module. This module, implemented as a Python script, is responsible for extracting

the embedded data from the detected steganographic images. To accomplish this,

we have chosen to use the Openstego Extractor tool, which was also employed

during the preparation of the dataset.

3. Text Classifier: The extracted data is then fed into the second deep learning model,

a simple classifier designed to classify whether the text data is benign or malicious.

This classifier serves as the third part of our system and aids in determining the

nature of the extracted information.

Please note that Figure 3.2 provides a more detailed visual representation of the system

architecture, illustrating the flow of data and the interaction between the components.

CHAPTER 03 : PROPOSED APPROACH

32

Steganalysis

(CNN based)

Malware
Detection

(RNN based)

Stegomalware

Figure 3.2: Overview of the proposed System

Figure 3.1 : The proposed approach

CHAPTER 03 : PROPOSED APPROACH

33

Part 01: CNN Steganalyzer

3.2.1 Model 01

The first model is the implementation of a simple CNN, as shown in the figure 3.3. It

consists of 3 convolutional layers, 3 max pooling layers, one flatten layer, and two fully

connected layers.

The input image, an RGB image with dimensions 224x224, is passed through the

first Conv2D layer, applying 32 filters of size 3x3. This generates 32 feature maps, each

highlighting different learned patterns or features from the image.

The feature maps then go through a MaxPooling2D layer to reduce their spatial

dimensions by a factor of two, using a 2x2 pooling window.

Next, the 32 feature maps from the previous step are fed into the second Conv2D

layer, applying 64 filters of size 3x3. This produces 64 new feature maps, capable of

capturing more complex and abstract features.

The process is repeated for the third Conv2D and MaxPooling2D layers, using 128

filters and resulting in 128 feature maps.

The Flatten layer converts the feature maps into a 1-dimensional vector with

86,528 units, representing the learned filters in a sequential manner.

The flattened vector is then connected to a Dense layer with 128 units, utilizing the

ReLU activation function to enhance the model's ability to capture complex relationships

among the filters.

Finally, the output of the previous Dense layer is connected to a second Dense layer

with a single unit and the Sigmoid activation function. This unit represents the probability

of the input image belonging to either the clean or steganographic class.

Figure 3.3: The structure of the basic proposed CNN

CHAPTER 03 : PROPOSED APPROACH

34

3.2.2 Model 02

The second model is the implementation of GNCC, a variation of CNN proposed by Qian et

al. it is considered to be the first CNN to use Gaussian function as the activation function,

from which the name was derived [39]. This model is composed of a pre-processing layer,

multiple convolutional layers and a classification layer as depicted in figure 3.5.

Image pre-processing: CNNs are yet not developed enough to extract certain statistical

features, and the noise presented by steganography being a weak noise, a basic CNN no

matter how deep it is, will most likely fail to capture it. For this reason, the GNCNN model

starts with an image pre-processing layer. This layer applies a high-pass filter to the input

image, aiming to enhance the images noise and reduce the impact of image content. we

denote I as image, R as image after high-pass filtering (usually referred to as residual

image), and Kv as the HPF:

𝑅 = 𝑘𝑣 ∗ 𝐼

The high-pass filter is defined as follow:

𝑘𝑣 =
1

12

(

−1 2 −2
 2 −6 8

2 −1
−6 2

 −2 8 −12
 2 −6 8
 −1 2 −2

8 −2
−6 2
2 −1

)

An HPF is a kernel matrix, based on the Laplacian of Gaussian (LoG) filter. The LoG

filter is designed to enhance the high-frequency components (edges, details) in an image

while suppressing the low-frequency components (smooth regions). The matrix values

can be obtained using the Laplacian operator, which is a discrete approximation of the

second derivative as follow:

𝐿 =
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2

where f is the image function, and ∂²/∂x² and ∂²/∂y² represent the second

derivatives in the x and y directions, respectively.

We then start with a 3x3 neighbourhood for the approximation, where each pixel

contributes to the computation of the Laplacian value at its central position.

(
0 1 0
1 −4 1
0 1 0

)

This operator assigns a weight of 0 to the central pixel and weights of 1 to its four

neighbouring pixels. The neighbouring pixels are in the horizontal and vertical directions,

reflecting the second derivative approximation. The negative weight in the central

position is used to subtract the average value of the neighbouring pixels from the central

pixel, enhancing the edges.

CHAPTER 03 : PROPOSED APPROACH

35

To extend this 3x3 Laplacian operator to a 5x5 matrix, the same pattern can be

repeated while adding additional rows and columns of zeros around it. This expansion

ensures that the Laplacian operator covers a larger neighbourhood for better edge

detection. The resulting 5x5 matrix is the Kv we previously presented.

Convolutional layer: After the image processing layer, convolutional layers are

used to capture dependencies among local and global regions of the stego signal. Each

layer performs convolution, non-linearity using the Gaussian activation function,
Generally, it is chosen to be a sigmoidal function such as the logistic sigmoid or the 𝑡𝑎𝑛ℎ ()

sigmoid function in traditional CNNs. But in this work, a Gaussian function is used, which

can be express as:

𝑓(𝑥) = 𝑒
−
𝑥2

𝜎2

where σ is a parameter that determines the width of the curve. A neuron with this

activation function will produce a significant positive response only when the input falls

into a small interval around zero.

The resulting activations are then passed to the pooling part of the layer, two

conventional choices for pooling are available, average pooling and max pooling. While

max pooling captures the strongest activation, average pooling considers all activations in

the region, making it suitable for steganalysis.

Classification layer: Fully connected layers are employed for classification. The learned

features from the convolutional layers are passed to these layers, and a softmax activation

function is used to produce a probability distribution over the class labels (two-way

softmax in this case).

Figure 3.4: The Gaussian Function [39]

Figure 3.5: Structure of GNCNN [39]

CHAPTER 03 : PROPOSED APPROACH

36

3.2.3 Model 03

The third model is based on the work proposed by Xu et al., referred to as the "Xu-net"

[40]. It's important to clarify that this model is from 2016 and not 2017. The improved

architecture introduced in 2017 specifically operates on JPEG images, utilizing a DCT

transformation during the pre-processing stage, as JPEG is a lossy format. The depicted

model, shown in figure 3.6, consists of a pre-processing step that involves the use of a High

Pass Filter (HPF) similar to the GNCNN model. This is followed by 5 groups of layers, a

global average pooling, and a linear classification module.

Pre-processing step: As mentioned earlier, an HPF is employed as a pre-processing step

during the generation and loading of the images.

Convolutional modules: The CNN consists of a convolutional module responsible for

transforming the images into feature vectors. This module is divided into five groups of

layers, referred to as "Group 1" to "Group 5" in the accompanying figure. Each group starts

with a convolutional layer that generates feature maps and ends with an average pooling

layer for local averaging and subsampling (except for Group 5).

Activation Functions: To enhance the power of statistical modelling, different activation

functions are employed in different groups. Group 1 and Group 2 use the hyperbolic
tangent (𝑡𝑎𝑛𝐻()) activation function, while Group 3, Group 4, and Group 5 use the

rectified linear unit (ReLU) activation function. The activation functions introduce non-

linearities to capture complex relationships in the data.

ABS Layer: Within Group 1, an absolute activation (ABS) layer is inserted to enforce the

statistical modelling to consider the symmetry (sign) present in the noise residuals. This

layer helps to capture and utilize the symmetry information during the steganalysis

process.

Batch-Normalization (BN): To aid in the training process and prevent the CNN from

getting stuck in poor local minima, batch-normalization is performed immediately before

each non-linear activation layer. Batch-normalization normalizes the input data to have

zero mean and unit variance, which helps stabilize and accelerate the training of the CNN.

Global Averaging: In Group 5, a pooling layer performs global averaging, which collapses

each spatial map into a single element. This results in a feature vector of size 128.

Linear Classification Module: The linear classification module follows the convolutional

module. It consists of a fully-connected layer (no hidden layers) and a softmax layer. It is

responsible for making the final predictions based on the learned features.

CHAPTER 03 : PROPOSED APPROACH

37

3.2.4 Model 04

The fourth model is based on a proposed approach by Brijesh Singh on his thesis [41], he

proposed the usage of an architecture composed of two modules: a denoising CNN and a

classifying CNN as shown in figure 3.7.

Denoising CNN: this denoiser comprises a single convolutional layer with 16 kernels of

size 5×5. To preserve the stego noise, which is a relatively weak signal, no pooling layer is

included in the network. The stride is set to 1 to ensure convolution over the entire image

Figure 3.6: The structure of the proposed Xu-net [40]

Figure 3.7: Global structure of the fourth model [41]

CHAPTER 03 : PROPOSED APPROACH

38

without padding. The DCNN is trained to predict a denoised cover image from a stego

image. The architecture of the proposed DCNN is illustrated in Figure 3.8.

Classifying CNN: In the second module, a shallower CNN is utilized as a steganalytic

classifier, comprising two convolutional layers and two fully connected layers with varying

filter sizes. The first layer takes a 256x256 noise residual as input and employs 64 filters

of size 7x7, producing 64 feature maps of size 128x128. The second layer uses 16 filters

of size 5x5 to extract more detailed features, resulting in 16 feature maps of size 64x64.

The fully connected layers consist of 750 neurons each, and a softmax layer is employed

for binary classification. ReLU activation and dropout with a probability of 0.8 are applied

to mitigate overfitting, while pooling layers are removed to preserve the weak stego noise.

Note:

We would like to emphasize that we implemented two variations of the proposed

approach:

1. Denoising CNN combined with a CNN classifier.

2. Autoencoder integrated with a CNN classifier.

The motivation behind this decision was driven by the widespread use of

autoencoders for denoising tasks, and our aim was to investigate whether autoencoders

could effectively capture the subtle noise introduced by the steganography embedding

process.

Part 02: Extraction Module

For the second part of our system, we employed a selected extraction tool to retrieve the

data from the images identified as steganographic by the initial steganalyzer. In

consideration of the primary focus of this work, which is not cryptography, we opted to

use OpenStego. This tool was also utilized for encrypting our data and embedding it within

the cover images.

Figure 3.8: The structure of the DCNN [41]

CHAPTER 03 : PROPOSED APPROACH

39

The code presented in the figure 3.9 demonstrates an example of utilizing the

OpenStego extractor to retrieve data from a batch of steganographic images and save it to

a new folder. It is important to clarify that OpenStego uses the AES encryption algorithm,

which is widely recognized as one of the most secure encryption algorithms available. Any

attempts to circumvent this encryption and extract the data would require an entirely

separate work.

Part 03: Text Classifier
For the classification task of the text files, and due to the contrast difference between the

plain text files and the code files, we opted for a fairly simple RNN illustrated in figure 3.10.

This RNN is composed of an embedding layer follower by an LSTM layer and finally a dense

layer.

Embedding layer: this layer is responsible for mapping the input sequence of words

(represented as integers) to dense vectors of fixed size. It learns the embeddings or

representations of words in a continuous space, allowing the model to capture the

semantic relationships between words.

LSTM (Long Short-Term Memory): this layer is a type of recurrent layer that can capture

long-term dependencies in sequential data. It has memory cells that can retain

information over longer sequences, enabling the model to learn patterns and

dependencies in the input text.

Dense layer: this layer with a sigmoid activation function produces a single-unit output

with a range between 0 and 1. It will classify the text files as either malicious code or plain

harmless text.

Figure 3.9: Extraction script snippet in Python

CHAPTER 03 : PROPOSED APPROACH

40

3.3 Conclusion

This chapter was dedicated to the exploration of various proposed models, their detailed

structures, and the necessary modifications made to construct the modules that compose

our system. In the subsequent chapter, Chapter Four, we will delve into the datasets

employed, as well as the tests conducted and the results obtained from implementing

these models on both PNG images and text files.

Figure 3.10: Structure of our proposed text-based classifier

CHAPTER 04 : TEST AND VALIDATION

41

Chapter 04

Test and Validation

4.1 Introduction

In the following chapter, we will discuss the steps we took to conduct our research,

beginning with the construction of our dataset and progressing to the training, testing,

and comparison of the results obtained from various implementations of the architectures

discussed in the previous chapter.

4.2 Tools and working environment

4.2.1 Hardware specifications

to train our models, two different laptops were used, their specifications are the following:

4.2.2 Libraries and software

Tool/Library Description

Python Chosen high-level programming language.

OpenStego Steganography tool for concealing data in digital images.

Laptop 01:

 OS: Windows 10

 CPU: i7-7700HQ CPU @ 2.80 GHz

 GPU: NVIDIA GTX 1050 @ 4.0 GB

 RAM: 16.0 GB

Laptop 01:

 OS: Windows 10

 CPU: i7-7700HQ CPU @ 2.80 GHz

 GPU: NVIDIA GTX 1050 @ 4.0 GB

 RAM: 16.0 GB

Laptop 02:

 OS: Windows 11

 CPU: i7-8750H CPU @ 2.20 GHz

 GPU: NVIDIA GTX 1070 @ 8.0 GB

 RAM: 16.0 GB

Laptop 02:

 OS: Windows 11

 CPU: i7-8750H CPU @ 2.20 GHz

 GPU: NVIDIA GTX 1070 @ 8.0 GB

 RAM: 16.0 GB

CHAPTER 04 : TEST AND VALIDATION

42

TensorFlow Library for ML and neural networks.

Keras High-level neural networks API.

NumPy Library for numerical computations.

Matplotlib Plotting library for creating visualizations.

OpenCV Library for computer vision and image processing.

SciPy Library for scientific and technical computing.

Scikit-learn Library for ML algorithms.

Markovify Library for generating Markov chain-based test.

Table 4.1: Libraries and tools used.

4.3 Dataset

4.3.1 Steganalyzer Dataset

Preparing the appropriate dataset is a crucial step in building and training any deep

learning model. In our case, several specifications had to be taken into consideration to

better represent real-life scenarios:

 Ensuring an equal distribution between clean images and steganographic images

(referred to as "stego" images from now on).

 Considering the frequency of usage in terms of file formats. According to statistical

studies conducted by w3techs.com, the PNG image format has consistently topped

the charts for the past 5 years, as shown in the Figure 4.1.

 Using the RGB colour model for images.

 Figure 4.1: Usage of image formats for websites [42]

CHAPTER 04 : TEST AND VALIDATION

43

BOSSbase, despite being widely used in steganalysis, did not meet our requirements

4.3.1.1 BOSSbase Dataset

BOSSbase is a training database consisting of 9074 grayscale images in the PGM format

with a resolution of 512x512 pixels [43]. It was initially released on June 28th, 2010, as

part of the challenge with the same name, "Break Our Steganographic System". Please

refer to the website and the accompanying paper for more details. There are several

reasons why we chose not to use this dataset:

 The images were captured by only 7 cameras in similar circumstances, which does

not provide the desired diversity and representativeness for our dataset.

 The images in the dataset are grayscale, whereas we require RGB images.

 The format of the dataset's images did not present a significant issue, as we could

have solved it by converting the images from PGM to PNG.

4.3.1.2 Our diverse dataset

For the reasons previously mentioned, we made the decision to create our own dataset

from scratch. To achieve this, we undertook a series of meticulous steps shown in figure

4.2.

Figure 4.2: A scheme representing the steps of data collection

CHAPTER 04 : TEST AND VALIDATION

44

Algorithm 01: Preparing Dataset

 INPUT: Data PNG Images = N
 OUTPUT: Clean images, Steganographic images
1. = initialize pool of PNG images to empty
2. = {Text files}
3. For i images in N do
4. If format of image i <> ‘PNG’ then
5. Convert image i to PNG
6. += i add the resized image to the pool
7. Else
8. += i
9. End if
10. End for
11. For i image in do
12. If Size of i < 400KB then
13. -= i remove image i from pool
14. Else
15. Resize image i
16. End if
17. = / 2 Devise the pool of images by 2 to ensure an equal distribution

between clean and steganographic images in our dataset.
18. For i image in do
19. For j text file in
20. Embed j text file into i image
21. End for
22. End for

Table 4.2: Data Collection Algorithm

Algorithm 4.2 illustrates the detailed steps of constructing our dataset, and the

table below presents three of its variants, with the main dataset being the third one. The

first and second datasets can be considered subsets of the third dataset, which will be

discussed in detail when we get to the results of the experiments. We selected an

embedding rate of 0.5 for the main dataset, while for the sub-datasets, we experimented

with both 0.5 and 0.8 embedding.

Table 4.3: Table of embedding rates and sub-datasets

 Dataset 01 Dataset 02 Dataset 03
Embedding rate 0.5 0.8 0.5 0.8 0.5

Training 1442 7000 21000
70% 70% 70%

Testing 308 1500 4500
15% 15% 15%

Validation 308 1500 4500
15% 15% 15%

Total 2058 10000 30000

CHAPTER 04 : TEST AND VALIDATION

45

Evaluating our proposed dataset:

Since our proposed dataset was built from scratch, and in order to ensure the successful

embedding process and verify the impact of the LSB embedding process on the

composition of steganographic images, we used various statistical metrics to evaluate it,

these metrics are the following:

Chi-square

The chi-square test measures the difference between the observed and expected

pixel frequencies in an image. It evaluates the hypothesis that the distribution of

pixel values in the clean and stego images is significantly different. The following

clean image (Figure 4.3) has been randomly selected from our dataset, along with

its corresponding stego image (Figure 4.4). when observing the Chi-square

diagram (Figure 4.5), we can see a subtle difference between the two.

Histogram

Histogram analysis is another valuable statistical metric for comparing clean and

stego images. A histogram represents the frequency distribution of pixel values in

an image. By examining the histograms of clean and stego images, you can identify

differences in their pixel value distributions. The following (Figure 4.6) is a

histogram of the same previous images overlapped and the difference between the

two.

Figure 4.3: A clean
image from our

dataset

Figure 4.4: A stego
image from our

dataset

Figure 4.5: The Chi-square Diagram

CHAPTER 04 : TEST AND VALIDATION

46

MSE, PSNR and SSIM

MSE: MSE stands for Mean Squared Error. It is a commonly used metric in

image processing and other fields to measure the average squared

difference between the pixel values of two images or sets of data. In the

context of comparing images, the MSE quantifies the dissimilarity or

distortion between a reference image (e.g., clean image) and a test image

(e.g., stego image). It calculates the average of the squared differences

between corresponding pixel values in the two images.

PSNR: PSNR stands for Peak Signal-to-Noise Ratio. It is a widely used metric

for measuring the quality or fidelity of reconstructed or compressed images.

PSNR provides a quantitative assessment of the difference between a

reference image and a distorted or reconstructed image by considering both

the error magnitude and the dynamic range of pixel values.

SSIM: SSIM stands for Structural Similarity Index. It is a widely used metric

for measuring the perceived similarity or quality of images, taking into

account both structural information and pixel-wise differences. SSIM aims

to mimic human perception by considering the relationships between

neighbouring pixels and the overall structure of the image.

When comparing the previous pictures, we obtained the following results:

Metric Stego vs clean images Identical images
MSE 0.99 0.0

PSNR 52.06 361.20
SSIM 0.99 1.0
 Table 4.4: Comparison of MSE, PSNR and SSIM

Note on how to read the results:

 A lower MSE value indicates a smaller difference between the pixel values

of the two images and suggests a higher similarity or less distortion.

 A higher PSNR value indicates a smaller difference or distortion between

the images and suggests better quality or higher fidelity. Conversely, a

Figure 4.6: The histogram of pixel values

CHAPTER 04 : TEST AND VALIDATION

47

lower PSNR value indicates more noticeable differences or artifacts in the

reconstructed or distorted image compared to the reference image.

 For SSIM:

SSIM = 1 SSIM > 0.9 SSIM > 0.8 SSIM > 0.7 SSIM < 0
Perfect
similarity

Very high
level of
similarity

Reasonably
good level of
similarity

Moderate
level of
similarity

The images
are
dissimilar

Table 4.5: SSIM values and their readings

After evaluating our proposed dataset using the metrics mentioned above, we have

ensured that any variations in the results cannot be attributed to flaws in the construction

of our steganalyzer dataset.

4.3.2 Text-Classifier Dataset

Constructing a dataset from scratch for our text classifier presented several challenges

due to the following reasons:

4.3.2.1 Source code-based malware analysis

Seeing that the problem at hand requires a specific type of malware detection and

classification that is not widely used, static malware analysis becomes a relevant approach.

Static malware analysis, as mentioned in the first chapter, encompasses the following

techniques:

 Code and behaviour analysis: This involves examining the code to identify

patterns, signatures, or known malicious behaviour. It includes API calls, function

calls, system calls, and detecting obfuscated code.

 Structural analysis: This means studying the structure of the malware code, such

as the presence of packers, obfuscation techniques, or anti-analysis mechanisms.

It helps in comprehending how the malware attempts to evade detection or

analysis.

4.3.2.2 Our dataset

Unfortunately, the availability of malware source code datasets is limited, which led us to

create our own dataset through web scraping of malware source code repositories.

However, this approach proved to be a time-consuming and yielded fewer promising

results. The scarcity of publicly available malware source codes poses legal and ethical

concerns, as they are rarely disclosed openly. To overcome this limitation, we used

augmentation techniques that involved random modifications, such as variable name

changes, code block rearrangements, and the insertion of random lines of commented

code.

 Malicious code Plain Text
Training 175 175

Validation 820 820
Testing 175 175

Table 4.6: Our dataset for the text classifier

CHAPTER 04 : TEST AND VALIDATION

48

4.4 Results and Discussion
In this section of the chapter, we present the results obtained after training, validating,

and testing all of the previously mentioned models on the dataset we detailed. We also

discuss potential reasons and justifications for the performance results of each model.

Results

4.4.1 Part one: Steganalyzer

We begin with our steganalyzer. The following tables present the accuracy achieved for

each of the four implemented models. Each model trained on the main dataset and its

variant sub-dataset and with corresponding bits per pixel (bpp):

4.4.1.1 Model 01: Basic CNN

As depicted in the table 4.7 below, the first CNN results demonstrate random guessing,

as indicated by the confusion matrix occasionally classifying all instances as either

clean or steganographic:

 Dataset 01 Dataset 02 Main Dataset

bpp 0.5 0.8 0.5 0.8 0.8

Accuracy 50% 52% 50% 50% 50%
Table 4.7: Results for the CNN first model.

4.4.1.2 Model 02: GNCNN

Despite incorporating a pre-processing layer utilizing high-pass filtering (HPF) to

highlight the stego noise, GNCNN did not outperform a basic CNN without the noise

extraction step or pre-processing. Although it exhibited promising results in tests

conducted on JPEG images, the performance of GNCNN did not show any

improvements in the case of PNG images. The results are presented in Table 4.8:

 Dataset 01

Dataset 02 Main Dataset

bpp 0.5 0.8 0.5 0.8 0.8
Accuracy 50% 54% 50% 50% 50%

Table 4.8: Results for the second model GNCNN

4.4.1.3 Model 03: Xu-Net

Xu-net, on the other hand, demonstrated slightly improved results compared to the

first two models. As shown in Table 4.9, the results indicate performance levels slightly

higher than random guessing

CHAPTER 04 : TEST AND VALIDATION

49

 Dataset 01

Dataset 02 Main Dataset

bpp 0.5 0.8 0.5 0.8 0.8
Accuracy 52% 61% 54% 54% 53%

Table 4.9: Results for the third model, Xu-Net.

4.4.1.4 Model 04: DCNN + Classifier

The fourth model showcased the most promising results for the PNG dataset, achieving

an impressive accuracy of 75%. It clearly outperformed the other models, as backed-

up by the data presented in both table 4.10 and table 4.11.

We’d also like to note that we considered the usage of autoencoders to capture the

noise instead of the proposed denoising CNN, however, the results yielded were

disappointing to say the least with a loss of 0.087.

DCNN

We note that for this model, we relied solely on the main dataset, training the

denoiser we got:

MAE 0.0409

Loss 0.0056

Table 4.10: MAE and loss results for the denoiser

Classifier

As for the Classifier we obtained promising results, indicating that this classifier

did better at classifying the residual noise than the other two models:

Accuracy 75.09%

Table 4.11: Accuracy achieved for the fourth model classifier

4.4.2 Part two: Text Classifier

The contrast between plain text and code is substantial and distinct, allowing our simple

text classifier to achieve an exceptionally high accuracy of 99.70% as shown in table 4.12:

Accuracy 99.70%

Table 4.12: Accuracy for text-based classifier.

Discussion

In this section, we provide analysis and discussion of the results presented for each part

and model. Our objective is to identify potential factors that may account for the varying

performances and outcomes, whether they be poor or promising.

CHAPTER 04 : TEST AND VALIDATION

50

Model 01:

Model 01 served as the initial foundation for this work, where we assessed the

performance of a relatively simple yet moderately deep CNN. The aim was to

evaluate its ability to detect and learn the features and distortions introduced

during the embedding process. However, the results showed that the model

achieved an accuracy equivalent to random guessing. Notably, in certain datasets,

it exhibited a bias towards the 'clean' class, while in others, it leaned towards the

'steganographic' class.

Model 02:

GNCNN, which incorporated the consideration of noise present in both stego and

clean images, demonstrated potential in theory, as we previously discussed.

However, when applied to a dataset of PNG images, it did not yield satisfactory

results. One possible explanation for this outcome is that the classifier was unable

to effectively learn and distinguish the subtle noise patterns that differentiate the

clean noise from the stego noise, despite the application of a high-pass filter (HPF).

Model 03:

Xu-net's results provided evidence to support our hypothesis that the inability of

GNCNN to perform well was primarily attributed to the classifier component of the

architecture, rather than the HPF. It is worth noting that both GNCNN and Xu-net

incorporated the use of HPF as a pre-processing step, either as a customized layer

in the case of GNCNN or a function applied during data loading. This observation

suggests that the difference in performance between the two models can be

attributed to Xu-net's classifier part, which demonstrated a better capability to

learn and identify the distinctive stego noise patterns to some degree.

Model 04:

The fourth model, which yielded the best results, owes its success to two key

factors. Firstly, the denoising module played a crucial role in effectively capturing

the subtle stego noise present in both clean and stego images. By leveraging the

ground truth of clean images and starting from a set of stego images, the denoising

module generated denoised images with remarkable similarity to the original

covers. Secondly, the classifier component of this model was slightly deeper

compared to the previous models. This deeper architecture likely contributed to its

enhanced ability to learn and classify the distinctive features associated with stego

and clean images, further boosting its overall performance.

Autoencoder:

While one may argue that a loss of 0.087 is acceptable for a denoising autoencoder,

it is important to note that the training process was not effective. The training loss

and validation loss exhibited minimal changes over a period of 10 epochs.

Additionally, when the autoencoder was tested on images, the results were found

CHAPTER 04 : TEST AND VALIDATION

51

to be unsatisfactory. A plausible explanation for this could be that the training of

autoencoders is insufficient to effectively capture and denoise the subtle noise

introduced during the embedding process of steganography techniques. The

complexity of the steganographic embedding may require further training or more

sophisticated approaches to achieve optimal denoising performance.

4.5 Conclusion
This chapter concluded the entire work with promising results that have not been

achieved before in the field of steganalysis of PNG images using deep learning. However,

it is important to note that this achievement is only a part of the overall goal of this work.

The trained models, along with the detailed implementation, the appropriate data

extractor, and the accurate method of classifying the extracted data, contribute to the

development of a robust and high-performing system to combat the emerging threat of

stegomalware in images

GENERAL CONCLUSION

52

General Conclusion

We embarked on this work with the intention of developing an approach to detect the

evolving trend in malware techniques that aim to remain hidden in plain sight, commonly

known as stegware. Our process involved conducting thorough bibliographic research,

collecting and constructing our own dataset, and training five different models: four for

the steganalyzer component and one for the text classifier component. The main goal was

to create a system capable of dissecting stegware into its individual components and

addressing each component using the most suitable methods. Our work concluded with

results that were deemed reasonably acceptable, serving as a foundation for future

enhancements and advancements in this field.

In this work, we also ventured into the realm of PNG images, a widely utilized

format by internet users and certain stegware variants. Despite the limited research

conducted on this format, we aimed to demonstrate the feasibility of applying steganalysis

to PNG images and showcase the potential for achieving significant results. Our results

highlight the importance of further exploration and investigation in this area.

In conclusion, we would like to draw attention to the fact that the sub-field of

stegware detection and analysis remains largely unexplored. This raises significant

concerns considering the increasing adoption of steganography techniques by malware

families. The potential for any malware to easily incorporate this technique and evade

detection poses a serious threat. It is imperative that further research and development

efforts be dedicated to advancing stegware detection methods to stay ahead of these

evolving threats and ensure the security of digital systems and networks.

GENERAL CONCLUSION

53

REFERENCES

54

References

[1]. Judge, J C. Steganography: Past, present, future, 2001, https://doi:10.2172/15006450

[2]. White William. The microdot: History and Application. Phillips Publications, 1992.

[3]. Cole, Eric. “Covert Communication: It’s All Around You.” Hiding in plain sight:

Steganography and the art of covert communication, Wiley Pub., New York 2003, pp.

1–7.

[4]. Shih, Frank Y., and Venkata Gopal Edupuganti. “Differential Evolution Based

Algorithm for Breaking the Visual Steganalytic System.” Multimedia Security:

Watermarking, Steganography, and Forensics, CRC Press, Taylor & Francis

Group, Boca Raton, 2013, pp. 245–255.

[5]. Cheddad, Abbas, et al. “Digital Image Steganography: Survey and analysis of current

methods.” Signal Processing, vol. 90, no. 3, 2010, pp. 727–752,

https://doi.org/10.1016/j.sigpro.2009.08.010

[6]. Majeed, Mohammed Abdul, et al. “A Review on Text Steganography Techniques.”

Mathematics, vol. 9, no. 21, 2021, p. 2829, https://doi.org/10.3390/math9212829

[7]. Cox, Ingemar J. Digital Watermarking and Steganography. Morgan Kaufmann

Publishers, 2008.

[8]. Piper, Frederick Charles, and Sean Murphy. Cryptography: A Very Short Introduction.

Oxford University Press, 2002.

[9]. AL-Ani, Zaidoon Kh., et al. "Overview: Main Fundamentals for Steganography."

ArXiv, 2010, abs/1003.4086.

[10]. Amitava Podder, et al. “Steganography Techniques - an Overview.”

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology, 2022, pp. 323–327, https://doi.org/10.32628/cseit228642

[11]. Juneja, Mamta, and Parvinder S. Sandhu. “An Improved LSB Based

Steganography Technique for RGB Color Images.” International Journal of Computer

and Communication Engineering, 2013, pp. 513–517,

https://doi.org/10.7763/ijcce.2013.v2.238

[12]. Prasad, M. Sitaram, et al. "A novel information hiding technique for security by

using image steganography." Journal of Theoretical and Applied Information

Technology, vol. 8, no. 1, 2009, pp. 35-39. Accessed 10 May 2023. Available at:

www.jatit.org/volumes/research-papers/Vol8No1/6Vol8No1.pdf

https://doi:10.2172/15006450
https://doi.org/10.1016/j.sigpro.2009.08.010
https://doi.org/10.3390/math9212829
https://doi.org/10.32628/cseit228642
https://doi.org/10.7763/ijcce.2013.v2.238
http://www.jatit.org/volumes/research-papers/Vol8No1/6Vol8No1.pdf

REFERENCES

55

[13]. Amitava Podder, et al. “Steganography Techniques - an Overview.”

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology, 2022, pp. 323–327, https://doi.org/10.32628/cseit228642

[14]. Shih, Frank Y., and Mayra Bachrach. “Survey of Image Steganography and

Steganalysis.” Multimedia Security: Watermarking, Steganography, and Forensics,

CRC Press, Taylor & Francis Group, Boca Raton, 2013, pp. 201–214.

[15]. Wu, Da-Chun, and Wen-Hsiang Tsai. “A Steganographic Method for Images by

Pixel-Value Differencing.” Pattern Recognition Letters, vol. 24, no. 9–10, 2003, pp.

1613–1626, https://doi.org/10.1016/s0167-8655(02)00402-6

[16]. Stuti Goel, Stuti Goel. “A Review of Comparison Techniques of Image

Steganography.” IOSR Journal of Electrical and Electronics Engineering, vol. 6, no. 1,

2013, pp. 41–48, https://doi.org/10.9790/1676-0614148

[17]. Gupta, D., and Siddhartha Choubey. "Discrete Wavelet Transform for Image

Processing." International Journal of Emerging Technology and Advanced Engineering,

vol. 4, 2015, pp. 598-602.

[18]. Karampidis, Konstantinos, et al. “A Review of Image Steganalysis Techniques

for Digital Forensics.” Journal of Information Security and Applications, vol. 40, 2018,

pp. 217–235, https://doi.org/10.1016/j.jisa.2018.04.005

[19]. Nissar, Arooj, and A.H. Mir. “Classification of Steganalysis Techniques: A

Study.” Digital Signal Processing, vol. 20, no. 6, 2010, pp. 1758–1770,

https://doi.org/10.1016/j.dsp.2010.02.003

[20]. Wallarm. “What Is Malware? Types and Examples.” RSS, 12 Apr. 2023,

www.wallarm.com/what/malware-types-and-detection

[21]. Shehab, Doaa A., and Mohmmed J. Alhaddad. “Comprehensive Survey of

Multimedia Steganalysis: Techniques, Evaluations, and Trends in Future Research.”

Symmetry, vol. 14, no. 1, 2022, p. 117, https://doi.org/10.3390/sym14010117

[22]. Chaganti, Raj, et al. Stegomalware: A Systematic Survey of Malware Hiding and

Detection in Images, Machine Learning Models and Research Challenges, 2021,

https://doi.org/10.36227/techrxiv.16755457

[23]. Vasudevan, Amit, and Ramesh Yerraballi. "Spike: Engineering malware

analysis tools using unobtrusive binary-instrumentation." Proceedings of the 29th

Australasian Computer Science Conference, 2006, pp. 311-320.

[24]. Ye, Yanfang, et al. “A Survey on Malware Detection Using Data Mining

Techniques.” ACM Computing Surveys, vol. 50, no. 3, 2017, pp. 1–40,

https://doi.org/10.1145/3073559

[25]. Ijaz, Muhammad, et al. “Static and Dynamic Malware Analysis Using Machine

Learning.” 2019 16th International Bhurban Conference on Applied Sciences and

Technology (IBCAST), 2019, https://doi.org/10.1109/ibcast.2019.8667136

https://doi.org/10.32628/cseit228642
https://doi.org/10.1016/s0167-8655(02)00402-6
https://doi.org/10.9790/1676-0614148
https://doi.org/10.1016/j.jisa.2018.04.005
https://doi.org/10.1016/j.dsp.2010.02.003
http://www.wallarm.com/what/malware-types-and-detection
https://doi.org/10.3390/sym14010117
https://doi.org/10.36227/techrxiv.16755457
https://doi.org/10.1145/3073559
https://doi.org/10.1109/ibcast.2019.8667136

REFERENCES

56

[26]. Gazet, Alexandre. “Comparative Analysis of Various Ransomware Virii.”

Journal in Computer Virology, vol. 6, no. 1, 2008, pp. 77–90,

https://doi.org/10.1007/s11416-008-0092-2

[27]. Vamshi, Ashwin. “Anatomy of a Ransomware Attack: Cerber Uses

Steganography to ‘Hide in Plain Sight.’” Netskope, 10 April 2023,

www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-

hide-plain-sight.

[28]. Ghanshyam More, Principal Research Engineer. “Catching the Rat Called Agent

Tesla.” Qualys Security Blog, 23 Dec. 2022, blog.qualys.com/vulnerabilities-threat-

research/2022/02/02/catching-the-rat-called-agent-tesla

[29]. “Research, News, and Perspectives.” Trend Micro,

https://www.trendmicro.com/en_us/research/17/f/adgholas-malvertising-campaign-

employs-astrum-exploit-kit.html. Accessed 27 April 2023.

[30]. Haykin, Simon. Neural Networks and Learning Machines. Pearson India

Education Services Pvt. Ltd, 2021.

[31]. GalaxyInferno. “Explaining the Components of a Neural Network [Ai].” Galaxy

Inferno, 13 July 2021, https://galaxyinferno.com/explaining-the-components-of-a-

neural-network-ai/

[32]. Tan, Xiao. “Libor Prediction Using Genetic Algorithm and Genetic Algorithm

Integrated with Recurrent Neural Network.” 2019 Global Conference for Advancement

in Technology (GCAT), 2019, https://doi.org/10.1109/gcat47503.2019.8978299

[33]. Gu, Jiuxiang, et al. “Recent Advances in Convolutional Neural Networks.”

Pattern Recognition, vol. 77, 2018, pp. 354–377,

https://doi.org/10.1016/j.patcog.2017.10.013

[34]. Dwivedi, Rohit. “5 Common Architectures in Convolution Neural Networks

(CNN).” Analytics Steps, www.analyticssteps.com/blogs/common-architectures-

convolution-neural-networks Accessed 20 May 2023.

[35]. Trần, Lộc. Enhancing Neural Network Explainability with Variational

Autoencoders, 2020, https://doi.org/10.2514/6.2021-1886.vid

[36]. Birla, Deepak. “Autoencoders.” Medium, 12 Mar. 2019,

medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f

[37]. Boroumand, Mehdi, et al. “Deep Residual Network for Steganalysis of Digital

Images.” IEEE Transactions on Information Forensics and Security, vol. 14, no. 5,

2019, pp. 1181–1193, https://doi.org/10.1109/tifs.2018.2871749

[38]. Singh, Brijesh, et al. “Steganalysis of Digital Images Using Deep Fractal

Network.” IEEE Transactions on Computational Social Systems, vol. 8, no. 3, 2021, pp.

599–606, https://doi.org/10.1109/tcss.2021.3052520

https://doi.org/10.1007/s11416-008-0092-2
http://www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-hide-plain-sight
http://www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-hide-plain-sight
https://galaxyinferno.com/explaining-the-components-of-a-neural-network-ai/
https://galaxyinferno.com/explaining-the-components-of-a-neural-network-ai/
https://doi.org/10.1109/gcat47503.2019.8978299
https://doi.org/10.1016/j.patcog.2017.10.013
http://www.analyticssteps.com/blogs/common-architectures-convolution-neural-networks
http://www.analyticssteps.com/blogs/common-architectures-convolution-neural-networks
https://doi.org/10.2514/6.2021-1886.vid
mailto:medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
https://doi.org/10.1109/tifs.2018.2871749
https://doi.org/10.1109/tcss.2021.3052520

REFERENCES

57

[39]. Qian, Yinlong, et al. “Deep Learning for Steganalysis via Convolutional Neural

Networks.” SPIE Proceedings, 2015, https://doi.org/10.1117/12.2083479

[40]. Xu, Guanshuo, et al. “Structural Design of Convolutional Neural Networks for

Steganalysis.” IEEE Signal Processing Letters, vol. 23, no. 5, 2016, pp. 708–712,

https://doi.org/10.1109/lsp.2016.2548421

[41]. Singh, Brijesh. "Spatial-Domain Image Steganalysis using Deep Learning

Techniques." Thesis, Department of Computer Science and Engineering, Indian

Institute of Technology Guwahati, 2021.

[42]. “Historical Yearly Trends in the Usage Statistics of Image File Formats for

Websites.”W3Techs,https://w3techs.com/technologies/history_overview/image_format

/all/y Accessed 10 May 2023.

[43]. Bas, Patrick, et al. “break Our Steganographic System”: The Ins and Outs of

Organizing Boss.” Information Hiding, 2011, pp. 59–70, https://doi.org/10.1007/978-3-

642-24178-9_5

https://doi.org/10.1117/12.2083479
https://doi.org/10.1109/lsp.2016.2548421
https://doi.org/10.1007/978-3-642-24178-9_5
https://doi.org/10.1007/978-3-642-24178-9_5

	Table of Content
	General Introduction
	Chapter 01
	Steganography and Stegomalware
	1.1 Introduction
	1.2 Steganography
	1.2.1 Key Terminology
	1.2.2 Digital steganography
	1.2.3 Cryptography and watermarking
	1.2.3.1 Watermarking
	1.2.3.2 Cryptography
	Pure steganography
	Secret key steganography
	Public key steganography

	1.2.4 Types of modern steganography
	1.2.4.1 Text steganography
	1.2.4.2 Audio steganography
	1.2.4.3 Video steganography
	1.2.4.4 Network steganography
	1.2.4.5 Image steganography

	1.2.5 Image steganography techniques
	1.2.5.1 Spatial domain steganography
	Least significant bit (LSB)
	Pixel value differencing

	1.2.5.2 Transform domain steganography
	Discrete Cosine transform (DCT)
	Discrete Wavelet transform (DWT)

	1.3 Steganalysis
	1.3.1 Types of steganalysis
	1.3.1.1 Signature steganalysis
	1.3.1.2 Statistical steganalysis
	1.3.1.3 Deep steganalysis

	1.4 Stegomalware
	1.4.1 Malicious software or Malware
	1.4.2 Malware analysis
	1.4.2.1 Dynamic malware analysis
	1.4.2.2 Static malware analysis
	Disassembly:

	1.4.3 Stegomalware examples
	1.4.3.1 Ransomware Cerber
	1.4.3.2 RAT Agent Tesla
	1.4.3.3 Astrum Exploit Kit

	1.5 Conclusion

	Chapter 02
	Artificial Neural Networks
	2.1 Introduction
	2.2 Artificial Neural Networks
	2.2.1 Neural network structure

	2.3 Types of neural networks
	2.3.1 Recurrent neural networks
	2.3.2 Convolutional neural networks
	2.3.3 Autoencoders

	2.4 Related Work
	2.5 Conclusion

	Chapter 03
	Proposed Approach
	3.1 Introduction
	3.2 Methodology
	Part 01: CNN Steganalyzer
	3.2.1 Model 01
	3.2.2 Model 02
	3.2.3 Model 03
	3.2.4 Model 04

	Part 02: Extraction Module
	Part 03: Text Classifier
	3.3 Conclusion

	Chapter 04
	Test and Validation
	4.1 Introduction
	4.2 Tools and working environment
	4.2.1 Hardware specifications
	4.2.2 Libraries and software

	4.3 Dataset
	4.3.1 Steganalyzer Dataset
	4.3.1.1 BOSSbase Dataset
	4.3.1.2 Our diverse dataset
	Chi-square
	Histogram
	MSE, PSNR and SSIM

	4.3.2 Text-Classifier Dataset
	4.3.2.1 Source code-based malware analysis
	4.3.2.2 Our dataset

	4.4 Results and Discussion
	Results
	4.4.1 Part one: Steganalyzer
	4.4.1.1 Model 01: Basic CNN
	4.4.1.2 Model 02: GNCNN
	4.4.1.3 Model 03: Xu-Net
	4.4.1.4 Model 04: DCNN + Classifier
	DCNN
	Classifier

	4.4.2 Part two: Text Classifier

	Discussion
	Model 01:
	Model 02:
	Model 03:
	Model 04:
	Autoencoder:

	4.5 Conclusion

	General Conclusion
	References

