République Algérienne Démocratique et Populaire Ministère de l'enseignement Supérieur et de la Recherche Scientifique Université Sâad Dahlab, Blida 1

Faculté des Sciences de la Nature et de la Vie

Département de Biologie et Physiologie Cellulaire

Mémoire de fin d'études en vue de l'obtention du diplôme de Master

Filière : Sciences Biologiques

Option : Génétique

Validation interne du kit d'amplification GlobalFiler sur le séquenceur 3500 xL pour l'établissement des profils génétiques.

Réalisé par

BRAHIM ERRAHMANI Ramzi

KHELIL Alaa Eddine

Devant le jury composé de

CHELGHOUM H.	MCB	Université Blida 1	Présidente
CHERALLAH A.	MCB	Université Blida 1	Examinatrice
BENYAHIA N.	MAA	Université Blida 1	Promoteur
LAZREG S.	Master en Scie	ences Forensiques INCC-GN	Co-promoteur
AGGOUNE A.	Invité		

Promotion 2018/2019

Dédicaces

Je dédie ce travail

A mes chers parents, à ma mère que je remercie pour sa présence, son soutien, à mon père qui m'a encouragé et m'a toujours poussé à aller de l'avant.

A mes grands parents et toute ma famille, pour leur aide, leur soutien et leurs encouragements.

A mes amis, Adem, Asma, Smail et Walid, en vous souhaitant un avenir radieux et plein de bonheur.

A mon binôme, Aladin, et à mes camarades Abdou, Tarek, Sana et Wassim, en témoignage de l'amitié qui nous a liés tout au long de ces années.

Ramzi

Dédicaces

Je dédie ce travail aux êtres qui me sont les plus chers,

A ma mère

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que vous avez consenti pour mon instruction et mon bien être.

Je vous remercie pour tout le soutien et l'amour que vous me portez depuis mon enfance, ta présence à mes côtés a toujours été ma source de force pour affronter les différents obstacles et j'espère que votre bénédiction m'accompagne toujours.

Que ce modeste travail soit le fruit de vos nombreux sacrifices, puisse Dieu vous accorde santé, bonheur et longue vie.

A mon père

Vous avez toujours été à mes côtés pour me soutenir et m'encourager, que ce travail traduit ma gratitude et mon affection.

A ma sœur Imane

Tu m'as soutenu tout au long de mon parcours, tu été toujours auprès de moi, de mon enfance à ma jeunesse et arrivant du moment où je te dédie ce travail de fin d'étude, je te souhaite tout le bonheur, et le succès dans ta vie.

A mon frère Houssame Eddine

Pour sa présence auprès de moi, ses soutiens moraux et ses conseils précieux tout au long de mes études, je te souhaite toute la joie et le bonheur dans ta vie.

A Khemici Meriem

Qui m'a aidé et supporté dans mon parcourt universitaire et dans les moments difficiles. Je te souhaite un agréable avenir plein de succès.

A mon binôme Ramzi et à mes amis Wassim, Mohamed Ghilasse, Abdou, Tarak, Youcef et Walid, en témoignage de notre amitié loyale qui nous a liés tout au long de notre vie et parcours universitaire, en vous souhaitant un avenir radieux et pleine de bonheur.

Alaa Eddine

REMERCIEMENTS

Au terme de ce travail, c'est avec un immense plaisir que nous tenons à remercier tous ceux qui ont contribué de près ou de loin à la réalisation de ce projet.

Tout d'abord, nous tenons à remercier notre promoteur, M^r **BENYAHIA** N., pour avoir bien voulu diriger ce mémoire, pour ses judicieux conseils, sa patience et sa disponibilité ainsi que pour ses remarques constructives et ses encouragements qui nous ont été d'une aide inestimable.

Ce Master a été accompli au Département de Biologie de l'Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale (INCC/GN). Nous adressons nos sincères remerciements au colonel **BOUSSOUFI A.**, Chef du Département, de nous avoir accueilli au sein de son service et de nous avoir permis de mettre en œuvre ce projet.

Ce mémoire n'aurait pas pu avoir lieu sans un encadrement de grande qualité, celui de nos deux co-promoteurs de l'INCC, le Commandant LAZREG S., Expert et Chef du Laboratoire d'Identification Génétique, et le Commandant AGGOUNE A., Expert en Identification Génétique, pour leur disponibilité, leurs précieux conseils et encouragements, pour nous avoir permis d'accéder à des moyens performants et pour nous avoir permis de réaliser notre travail dans les meilleures conditions.

Nous tenons également à remercier le Lieutenant **KEROUGHLANE S.**, ainsi que tous les membres du département de Biologie de l'INCC, pour leur accueil, leur disponibilité et leur aide durant notre projet.

Nos remerciements les plus sincères s'adressent aussi aux membres du jury, M^{me} CHELGHOUM H. et M^{me} CHERALLAH A. pour l'intérêt qu'ils ont porté à notre travail et pour avoir accepté de l'examiner et de l'enrichir avec leurs connaissances.

Et enfin nos remerciements les plus chaleureux vont à tous nos enseignants plus particulièrement Mr MOHAMED SAID R. responsable de l'option génétique.

Résumé

La science forensique cherche en permanence des moyens plus rapides et moins coûteux pour l'établissement de profils génétiques notamment pour les étapes d'amplification et d'analyse par électrophorèse, parmi les nombreux kits d'amplification utilisés, le kit d'amplification multiplexe GlobalFiler TM amplifie un ensemble de 24 marqueurs.

Cette étude nous a permis d'évaluer les performances du kit *GlobalFiler*[™] avec le séquenceur 3500xL sur des prélèvements de référence de salive, dans le but de leurs utilisations au sein du Laboratoire d'Identification Génétique de l'INCC. Pour cela, 5 paramètres ont été testés : Le seuil analytique qui a été fixé à 60 RFU, l'étude de la sensibilité qui a permis d'obtenir des profils complets jusqu'à une quantité d'ADN de 125 pg, avec une limite stochastique fixé à 230 RFU et un PHR à 41 %. L'étude de mélange d'ADN a permis la séparation des profils à partir du ratio 1:4 avec un PHR à 41%, enfin ces résultats sont répétables et la reproductibles.

Les résultats obtenus démontrent que le kit d'amplification *GlobalFiler*[™] est fiable, efficace et robuste pour l'analyse d'échantillons dans le cadre de l'identification génétique en criminalistique.

Mots clés : profil génétique, marqueurs STR, validation interne, kit d'amplification GlobalFilerTM, séquenceur 3500 XL.

Abstract

Forensic science is constantly seeking faster and less expensive means for genetic profiling, especially for amplification and electrophoresis, among the many amplification kits used, the GlobalFiler [™] multiplex amplification kit. amplifies a set of 24 markers.

This study allowed us to evaluate the performance of the GlobalFiler TM kit coupled to the 3500xL sequencer on saliva reference samples, for the purpose of their use in the INCC Genetics Identification Laboratory. 5 parameters were tested: the analytical threshold which was fixed at 60 RFU, the sensitivity study with which complete profiles were obtained up to a quantity of DNA of 125 pg, with a stochastic threshold set at 230 RFU and a PHR at 41%. The DNA mixture study allowed the separation of the profiles from the ratio 1: 4 with a PHR at 41%, finally these results are repeatable and reproducible.

The results demonstrate that the GlobalFiler [™] Amplification Kit is reliable, efficient, and robust for sample analysis for forensic DNA identification.

Key words: genetic profile, STR markers, internal validation, GlobalFilerTM amplification kit, 3500 XL sequencer.

ملخص

يبحث علم الطب الشرعي باستمرار عن وسائل أسرع وأقل تكلفة للتوصيف الوراثي، خاصةً من أجل التضخيم الكهربائي و الرحلان الكهربائي، من بين العديد من أدوات التضخيم المستخدمة، أداة التضخيم المتعددة GlobalFiler TM التي تقوم بتضخيم مجموعة من 24 علامة.

سمحت لنا هذه الدراسة بتقييم أداء مجموعة ™ GlobalFiler إلى جانب محلل وراثي 3500 XL على عينات مرجعية من اللعاب، لغرض استخدامها في مختبر تحديد علم الوراثة التابع لـ INCC. تم اختبار 5 معاملات: العتبة التحليلية التي تم تثبيتها عندال 60 RFU، ودراسة الحساسية التي سمحت لنا بالحصول على لمحات كاملة تصل كمية الحمض النووي إلى pg 125، مع عتبة تصادفية المحددة في RFU و PHR عند 14. سمحت دراسة خليط الحمض النووي بفصل الملامح عن النسبة 4 :1 مع نسبة PHR عند/41، وأخيراً هذه النتائج قابلة للتكرار وقابلة للتكرار.

توضح النتائج أن مجموعة أدوات GlobalFiler TM موثوقة و فعالة و متينة لغرض تحليل العينات للتعرف على الحمض النووي الشرعي.

الكلمات المفتاحية: الملف الوراثي، علامة STR، التحقق الداخلي، أداة التضخيم ™ GlobalFiler، محلل وراثي XL. 3500.

Liste des Abréviations

ABI	Applie	d Biosystems			
ADNmt Acide Désoxyribonucléique Mitochondrial		Acide Désoxyribonucléique Mitochondrial			
CODIS Combined DNA I		Combined DNA Index System			
dNTPs	Didéso	xyribonucléotide			
ISO	Interna	tional Organization for Standardization			
Kb	Kiloba	ses			
LTRs	Long terminal repeats				
LINE	Long I	nterspersed Nuclear Element			
Mb	Mégab	ases			
Ng	Nanogi	camme			
Pb	Paire d	e Base			
PCR	Polyme	erase Chain Reaction			
PHR	Peak H	eight Ratio			
RFLP	Restriction Fragment Length Polymorphism				
RFU	Relative Fluorescence Unit				
RT-PO	CR	Real Time Polymerase Chain Reaction			
SINE	Short I	nterspersed Nuclear Element			
SNP	Single	Nucleotide Polymorphism (polymorphisme mono-nucléotidique)			
SSR	Simple	Sequence Repeats			
STR	Short 7	andem Repeat (courte répétition en tandem)			
SWGI	DAM	Scientific Working Group on DNA Analysis Methods			
tr.min	-1	Tours par minute			
μL	Microl	itres			
UTRs	Untran	slated regions			
VNTR	Variab	le Number Tandem Repeats			
Min	Minim	um			
Max	Maxim	um			

Liste des figures

Figure 1 : Schéma représentant les 23 paires de chromosomes dans le génome humain	2
Figure 2 : Schéma de la double hélice d'ADN	2
Figure 3 : Schéma récapitulatif de l'Organisation du génome humain	3
Figure 4 : Schéma représentant un exemple de RFLP en comparant deux individus (A) et (B)	5
Figure 5 : Exemple des minisatellites.	6
Figure 6 : Cartographie des loci à rechercher pour une empreinte génétique.	6
Figure 7 : Exemple des microsatellite	7
Figure 8 : Schéma explicatif d'un exemple d'SNP : une paire de base GC est remplacée à un seul e par la paire de base AT	ndroit
Figure 9 : Identification du sexe via le locus Amélogénine (AMEL).	12
Figure 10 : Processus analytique des analyses génétiques en criminalistique	12
Figure 11 : Séquenceur génétique ABITM 3500xL	16
Figure 12 : Les composants intérieurs de l'instrument ABI 3500Xl Genetic Analyzer ²	17
Figure 13 : Plan de plaque de la quantification des profils génétiques.	25
Figure 14 : Plan de plaque de l'électrophorèse capillaire pour les profils génétiques	28
Figure 15 : Exemple d'électrophorégramme obtenue à partir de l'échantillon KA2	28
Figure 16 : Plan de plaque de l'électrophorèse capillaire pour l'étude du seuil analytique	30
Figure 17 : Plan de plaque de l'électrophorèse capillaire pour l'étude de répétabilité et reproductibi	ilité 32
Figure 18 : Plan de plaque de l'électrophorèse capillaire pour l'étude de sensibilité	34
Figure 19 : Plan de plaque de l'électrophorèse capillaire pour l'étude de mélange	36
Figure 20 : Profil génétique complet obtenu à partir de l'échantillon KA2.	39
Figure 21 : Hauteur des pics des séries d'échantillons 1 et 2	44
Figure 22 : Pourcentage d'allèles non-observés selon le facteur de dilution	45
Figure 23 : Carte thermique représentant les résultats de la sensibilité	46
Figure 24 : Hauteurs moyennes de pics pour les divers allèles pour les dilutions de 1 à 1/16ème	47
Figure 25 : Hauteurs moyennes de pics pour les divers allèles pour les dilutions de 1 à 1/16ème	47
Figure 26 : PHR en fonction du facteur de dilution	48
Figure 27 : PHR en fonction de la hauteur des pics	48
Figure 28 : Proportion en fonction des ratios	50
Figure 29 : Rapport entre les deux contributeurs en fonction des ratios	52

Liste des tableaux

Tableau 1 : Les molécules fluorescentes utilisés dans le kit d'amplification GlobalFiler.	18
Tableau 2 : Contenus des réactifs inclus dans le kit d'amplification PCR GlobalFiler™	18
Tableau 3 : Caractéristiques des marqueurs STR inclus dans le kit PCR GlobalFiler™	19
Tableau 4 : Matériel non-biologique utilisé pour la réalisation de la présente étude	22
Tableau 5 : Préparation de la Gamme de standards	23
Tableau 6 : Calcul des réactifs de la RT-PCR.	24
Tableau 7 : Ajustement de la concentration d'ADN	26
Tableau 8 : Calcul du volume des réactifs de la solution d'amplification	26
Tableau 9 : Conditions de la PCR	27
Tableau 10 : Calcul des réactifs de la solution	27
Tableau 11 : Ajustement de la concentration d'ADN	29
Tableau 12 : Résumé des échantillons de l'amplification	29
Tableau 13 : Calcul des réactifs (Formamide + Size standard)	30
Tableau 14 : Ajustement de la concentration d'ADN	31
Tableau 15 : Résumé des échantillons de l'amplification	31
Tableau 16 : Calcul des réactifs (Formamide + Size standard)	31
Tableau 17 : Préparation des dilutions d'ADN	33
Tableau 18 : Résumé des échantillons de l'amplification	33
Tableau 19 : Calcul des réactifs (Formamide + Size standard)	33
Tableau 20 : Ajustement de la concentration d'ADN	35
Tableau 21 : Préparation des mélanges	35
Tableau 22 : Résumé des échantillons de l'amplification	36
Tableau 23 : Calcul des réactifs (Formamide + Size standard)	36
Tableau 24 : Concentration des échantillons d'ADN	38
Tableau 25 : Allèles de chaque système pour chacun des donneurs.	40
Tableau 26 : Taux d'hétérozygotes pour chacun des donneurs.	40
Tableau 27 : Résumé des calculs du seuil analytique	41
Tableau 28 : Comparaison de deux équations utilisées pour le calcul du seuil analytique.	42
Tableau 29 : Rapport des hauteurs de pics entre échantillon 1 et 2 pour les 43 allèles	43
Tableau 30 : Concentration, nombre d'allèles détectés et nombre de drop-out pour chaque dilution	45
Tableau 31 : Méthode 2 du calcul du seuil stochastique	46
Tableau 32 : Plus fort déséquilibre allélique de la dilution 1/8ème.	49
Tableau 33 : Nombre d'allèles hétérozygotes différentes des ADN masculins et féminins	49
Tableau 34 : Moyenne des proportions pour chaque ratio.	50
Tableau 35 : Rapport entre les deux contributeurs	51

Sommaire

Introduction	1
Chapitre I : Synthèse bibliographique	
I.1. L'ADN humain	2
I.1.1. Composition du génome humain	3
I.2. Polymorphisme et variations de l'ADN	4
I.2.1. Polymorphisme de longueur des fragments de restrictions (RFLP)	4
I.2.2. Polymorphisme de répétition	5
I.2.2.1. Les minisatellites ou VNTR	5
I.2.2.2. Les microsatellites ou STR	6
I.2.2.3. Polymorphisme d'un seul nucléotide (SNP)	8
I.3. La génétique au service de la justice	9
I.3.1. Historique	9
I.3.2. L'empreinte génétique	10
I.3.3. STR, marqueurs d'identification de choix	11
I.3.4. Marqueur déterminant le sexe « Amélogénine »	11
I.4. Processus analytique pour l'établissement de profils génétiques	12
I.4.1. Détection de la trace	12
I.4.2. Prélèvement	13
I.4.3. Détermination de la nature de la trace	13
I.4.4. Échantillonnage	13
I.4.5. Extraction et purification	13
I.4.5.1. L'extraction organique (phénol/chloroforme)	13
I.4.5.2. L'extraction par la résine échangeuse d'ions Chelex®100	14
I.4.5.3. L'extraction sur carte FTA® « Flinder Technology Associates »	14
I.4.6. Quantification	14
I.4.7. Amplification	14
I.4.8. Electrophorèse capillaire et analyse des résultats	15
I.5. Séquenceur ABITM 3500xL et kit d'amplification GlobalFilerTM	16
I.5.1. Caractéristiques de séquenceur	16
I.5.2. Kit d'amplification PCR GlobalFiler TM	18
I.6. Validation des méthodes d'analyse	20
I.6.1. Seuil analytique	20
I.6.2. Répétabilité et reproductibilité	20
I.6.3. Sensibilité	21
I.6.4. Etude de mélange	21
Chapitre II : Matériels et méthodes	
II.1. Matériels	22
II.1.1. Matériels biologiques	22
II.1.2. Matériels non-biologique	22

II.2. Méthodes	23
II.2.1. Etablissement du profil génétique des donneurs	23
II.2.1.1. Extraction d'ADN	23
II.2.1.2. Quantification	23
II.2.1.2.1. Préparation de la gamme de standards	23
II.2.1.2.2. Préparation des réactifs	24
II.2.1.2.3. Préparation de la plaque	24
II.2.1.3. Amplification	25
II.2.1.3.1. Ajustement de la concentration d'ADN	25
II.2.1.3.2. Etape de pré-amplification	26
II.2.1.3.3. Etape d'amplification	27
II.2.1.4. Electrophorèse capillaire	27
II.2.1.4.1. Etape de post-amplification	27
II.2.1.4.2. Préparation de la plaque	28
II.2.1.5. Analyse des résultats de l'électrophorèse	28
II.2.1.5.1 Taux d'hétérozygotie	29
II. 2.2. Paramètres de la validation du kit Globalfiler TM	29
II.2.2.1. Seuil analytique	29
II.2.2.1.1. Amplification	30
II.2.2.1.2. Electrophorèse capillaire	30
II.2.2.1.3. Analyse des résultats de l'électrophorèse	31
II.2.2.2. Répétabilité et reproductibilité	31
II.2.2.2.1. Amplification	31
II.2.2.2.2. Electrophorèse capillaire	32
II.2.2.1.3. Analyse des résultats de l'électrophorèse	32
II.2.2.3. Sensibilité	33
II.2.2.3.1. Amplification	33
II.2.2.3.2. Electrophorèse capillaire	34
II.2.2.3.3. Analyse des résultats de l'électrophorèse	34
II.2.2.4. Etude de mélange	35
II.2.2.4.1. Amplification	36
II.2.2.4.2. Electrophorèse capillaire	36
II.2.2.4.3. Analyse des résultats de l'électrophorèse	37
II.2.3. Analyse statistique des données	38
Chapitre III : Résultats et discussion	
III.1. Sélection des échantillons.	39
III.1.1. Quantification	39
III.1.2. Profil génétique des donneurs	39
III.1.2.1. Allèles des donneurs	41
III.1.2.2. Taux d'hétérozygotie	41

III.2. Paramètres de la validation interne du kit GlobalFiler TM	42
III.2.1 Seuil analytique	42
III.2.2. Répétabilité et reproductibilité	43
III.2.2.1. Répétabilité	43
III.2.2.2. Reproductibilité	43
III.2.3. Sensibilité	45
III.2.3.1. Seuil stochastique.	47
III.2.3.2. Ratio entre la hauteur des pics	49
III.2.4. Etude de mélange	50
III.2.4.2. Proportion des contributeurs	51
III.2.4.2. Rapport entre les deux contributeurs	
Conclusion	54
Références bibliographiques	55
Annexes	

Introduction

Introduction

De tous temps, le système judiciaire a cherché à prouver la culpabilité des présumés criminels, afin que justice soit rendue. Cependant, les diverses méthodes ancestrales pour y parvenir n'ont pas toujours été fiables.

La criminalistique est une discipline mise en œuvre par le service de l'ordre qui étudie par des voies scientifiques, les indices, preuves et traces des infractions et des crimes, identifier leurs auteurs ce qui permet d'innocenter ou d'inculper leurs suspects. (Laurent *et al.*, 2017).

Quand on a proposé à la fin du siècle dernier que les empreintes digitales soient utilisées comme moyen d'identification des individus dans les affaires criminelles, c'était révolutionnaire, leur utilisation comme preuve est une pratique établie de longue date et un outil inestimable pour la poursuite des criminels ainsi que pour l'identification des personnes disparues. Depuis plus d'une dizaine d'années, la biologie a révolutionné l'analyse des preuves scientifiques dans le cadre judiciaire avec une technique révolutionnaire : l'analyse des empreintes génétiques, qui est devenu de nos jours un élément technique incontournable au sein de l'enquête judiciaire. Dès lors, elle fait désormais partie des demandes les plus urgentes des enquêteurs pour déterminer et identifier les propriétaires de profils génétiques issus de scènes de crime (**Curran,1997**).

L'institut national de criminalistique et de criminologie de la Gendarmerie Nationale à Alger (INCC/GN), utilise depuis sa création en 2009 plusieurs techniques modernes d'analyse d'ADN pour traiter et résoudre un nombre important d'affaires de justice.

Cependant, l'utilisation de nouvelles technologies nécessite la validation préalable de leurs méthodes et kits conformément aux directives du SWGDAM « *Scientific Working Group on DNA Analysis Methods* » (Swango et al., 2007).

L'objectif de ce travail est la validation interne du kit d'amplification *GlobalFiler*TM couplé au séquenceur 3500xL « technique de multiplexage » en vue de l'établissement de profils génétiques. Il a été réalisé au sein du laboratoire d'identification génétique de l'INCC, un processus analytique précis a été suivis ce qui nous a permis d'étudier et de valider les 5 paramètres suivants : Le seuil analytique, la répétabilité, la reproductibilité, l'étude de la sensibilité, l'étude de mélange. Chapitre I : Synthèse Bibliographique

Chapitre I : Synthèse Bibliographique

I.1. L'ADN humain

L'ADN ou acide désoxyribonucléique, est décrit comme étant l'unité fondamentale de la vie ou le support de l'information génétique. Chez l'humain, cette molécule est présente dans la quasi-totalité des cellules à l'exception des globules rouges (**Myriam, 2008**). De structure bicaténaire, l'ADN s'organise dans les cellules somatiques en 23 paires de chromosomes dont 22 paires de chromosomes homologues et deux hétérochromosomes sexuels (génotype XX chez la femme, XY chez l'homme) (**Figure 1**).

Figure 1 : Schéma représentant les 23 paires de chromosomes dans le génome humain (Myriam, 2008).

La molécule d'ADN est constituée d'un enchaînement de sucres-phosphates reliés à quatre bases [Adénine, Guanine, Cytosine, Thymine (A, G, C, T)], formant des nucléotides (**Figure 2**).

Figure 2 : Schéma de la double hélice d'ADN (Myriam, 2008).

Figure 2 (a) : Les deux brins d'ADN en forme de double hélice, maintenus ensemble par une série de liaisons hydrogènes. Les bases doivent toujours s'apparier de la façon qui suit : G - C ou A - T. L'ordre défini de ces bases

constitue la carte génétique propre à chaque individu. Outre cette complémentarité, les deux chaines sont orientées en sens opposé ce qui confère à la double hélice une structure antiparallèle.

Figure 2 (b) : Le squelette de l'ADN, formé par les liaisons sucre-phosphate, est maintenu par des liaisons covalentes phosphodiesters entre les carbones 5' et 3' de deux désoxyriboses consécutifs. Tout au long de cette chaine, les bases azotées sont greffées latéralement à raison d'une base par sucre.

I.1.1. Composition du génome humain

L'ADN humain est arrangé en un ensemble de 23 paires de chromosomes dont chacun est une molécule unique d'ADN double brin comportant de 55 à 250 millions de paires de bases. La totalité de l'information génétique et héréditaire chez l'homme est contenue dans environ trois milliards de paires de base et contient 30.000 à 35.000 gènes. Cette incertitude vient du fait que certains gènes sont à l'heure actuelle hypothétiques et n'ont pas encore été entièrement validés in vivo ou in vitro (**Petkovski, 2006**).

Le génome humain est constitué en majorité de séquences non codantes (Figure 3), c'està-dire ne comportant pas d'information en rapport direct avec la synthèse de protéines, réparties entre les gènes : ADN extra-génique constitué de répétitions variées d'origines diverses, et représentant deux tiers de la totalité du génome. Sur le tiers restant, près de 95 % de l'ADN est représenté par des séquences apparentées, répétitives et très polymorphes (pseudogènes, introns et UTRs principalement), ce qui fait que seulement 1 à 2% du génome humain est codant (Klug *et al.*, 2006). Contrairement à ce dernier, la partie non-codante du génome n'est pas soumise à la forte pression de sélection ce qui permet aux mutations qui y surviennent d'être conservées et transmises à la descendance (Amorim *et al.*, 2005).

Cette variabilité polymorphe induit donc des variations qui se révèlent extrêmement informatives pour les analyses criminalistique (Kaplan, 1994; Lander *et al.*, 2001; Venter *et al.*, 2001; Brown, 2004).

Figure 3 : Schéma récapitulatif de l'Organisation du génome humain (Hartl, 2003; Lander *et al.*, 2001; Venter *et al.*, 2003).

(Abréviation : Kb : kilobases; Mb : Mégabases; UTRs : Untranslated regions (régions non traduites); LINEs : Long interspersed nuclear elements (longs éléments nucléaires dispersés); SINEs : short interspersed nuclear elements (courts éléments nucléaires dispersés); LTRs : long terminal repeats (longues répétitions terminales).

I.2. Polymorphisme et variations de l'ADN

Tous les individus sont génétiquement très proches les uns des autres, mais la présence d'un grand polymorphisme dans l'information génétique crée une biodiversité qui rend chaque individu unique.

Les polymorphismes génétiques correspondent à des variations naturelles dans la séquence d'ADN au sein des individus d'une population, n'ayant à priori pas d'incidence directe sur un phénotype. Ces variations de séquences sont dues à des petites mutations successives ou de plus grands remaniements au cours de l'évolution ; elles sont stables et sont transmises de manière mendélienne, générant ainsi un polymorphisme génotypique, source moléculaire de la diversité intra-spécifique des individus (**Kaplan, 1994; Butler, 2005**).

Ces régions sont très informatives pour la génétique criminalistique tout en étant phénotypiquement neutres, elles sont définies par plusieurs critères :

- Leur transmission mendélienne.
- Leur caractère stable au cours de la vie d'un individu.
- Un grand polymorphisme, c'est-à-dire, la présence d'un grand nombre d'allèles dans la population.
- Un fort taux d'hétérozygotie.

Plusieurs types de polymorphismes de l'ADN ont été utilisés comme marqueurs génétiques, chacun révélant un niveau diffèrent de variabilité (**Myriam, 2008**).

L'identification d'un individu par les différentes méthodes d'analyse des marqueurs génétiques repose sur l'étude de leur transmission mendélienne caractérisée par leurs différents allèles, qui sont des polymorphismes de la séquence d'ADN.

Quatre types de marqueurs polymorphes ont été développés. La première génération de marqueurs ADN, est représentée par les polymorphismes de longueur de fragment de restriction ou *RFLP* (Restriction fragment length polymorphism). Ce polymorphisme est constitué de marqueurs bi-alléliques et ainsi peu informatifs.

La technique RFLP a été remplacée par des marqueurs multi-alléliques plus polymorphes. Au début les séquences répétées minisatellites *VNTR* (Variable number tandem repeat) ont été utilisées, puis les séquences microsatellites ou *STR* (Short tandem repeats) et enfin, les *SNP* (Single nucleotide polymorphism) qui correspondent à des variations d'une seule base dans la séquence d'ADN, dues à des substitutions, insertions ou délétions (**Petkovski, 2006; Horchani, 2009**).

I.2.1. Polymorphisme de longueur des fragments de restrictions (RFLP)

Cette technique consiste à étudier la taille des fragments de restriction d'ADN (**Figure 4**). En effet, même si deux segments d'ADN sont homologues, leurs longueurs diffèrent. Ces variations ont été nommées polymorphismes de taille des fragments de restriction et furent l'un des premiers systèmes de marqueurs à être développé par *Botstein* en 1980.

Le concept utilisé pour la mise en évidence de ces polymorphismes fait appel à des enzymes de restriction qui opèrent un clivage de l'ADN à des sites hautement spécifiques et reconnaissent des séquences de 4, 6, 8 ou parfois plus de paires de bases (**Petkovski, 2006**).

C'est une technique, robuste qui a eu un grand succès auprès des généticiens dans les années 1980-1990, elle n'est cependant plus la méthode de choix dans la plupart des laboratoires effectuant des tests d'ADN (**Doutremepuich**, 2002).

Figure 4 : Schéma représentant un exemple de RFLP dans la comparaison de deux individus A et B (GNIS, 2019).

I.2.2. Polymorphisme de répétition

Environ 30% de la région non codante du génome humain est constituée de séquences répétées, de manière juxtaposée en tandem dans le génome. Ces séquences sont présentes à différents loci connus sur les chromosomes, et sont donc recherchées pour la réalisation d'une empreinte génétique (**Kaplan, 1994; Brown, 2004**). Selon la structure et le nombre de répétitions du motif de base formant le polymorphisme.

I.2.2.1. Les minisatellites ou VNTR

Les loci des VNTR sont une famille de séquences répétées en tandem, ayant en commun un motif central de 9 à 16 paires de bases (**Kaplan, 1989; Griffiths** *et al.*, **2001**). Leur longueur totale, qui varie selon les loci, varie entre 0,5 et 500 kb. Les plus longs sont généralement localisés dans les régions télomériques des chromosomes (90%), tandis que les minisatellites interstitiels ont une longueur qui excède rarement 1 kb (**Debrauwère** *et al.*, **2000**).

Les motifs répétés en tandem sont riches en GC (Figure 5), ce sont les loci les plus variables du génome humain, avec un taux de mutation de 0,5% à plus de 20% par génération (Bois,

2003). Le nombre de répétitions varie énormément d'une personne à une autre, elles ne sont pas codantes et donc ne permettent pas de les relier à une éventuelle maladie génétique (Rouger, 2000; Kashyap *et al.*, 2004).

Le développement des sondes multiloci qui s'hybrident à un grand nombre de régions dispersées hypervariables a permis le développement de l'empreinte génétique (Armour, 1992).

En premier lieu, leur inégale répartition dans le génome en font des marqueurs moins utiles (**Bérard, 2002**). Du fait qu'ils sont multiloci, leur séquence se retrouve en différents endroits du génome, le profil ainsi obtenu est composé d'un grand nombre de bandes, bi-allélique, et donc moins informatif et dominant (**Pitel, 2000**). En second lieu, leur révélation après PCR nécessite la mise au point d'amorces spécifiques (**Henry, 1998**).

Figure 5 : Exemple de minisatellites (Loistron, 2009; Jeffreys, 1985).

I.2.2.2. Les microsatellites ou STR

Aussi nommés **SSR** « simple sequence repeats » (répétition de simple séquence), ils ont une distribution uniforme dans le génome et c'est le nombre de répétitions chez chaque individu qui diffère. Ils sont composés de 2 à 6 paires de bases, répétées entre 10 et 50 fois à chaque locus, ce qui génère des allèles de taille variable. Les microsatellites ont été étudiés avec intérêt, leur séquence de bases est connue, ainsi que leur emplacement sur les chromosomes (**Figure 6**).

Figure 6 : Cartographie des loci à rechercher pour une empreinte génétique (Butler, 2006).

Ces séquences sont présentes en forte quantité dans le génome, et elles permettent de réaliser une cartographie génétique, cette dernière est une carte de position de différents loci. Les microsatellites sont le plus souvent utilisés pour déterminer l'empreinte. En effet, la séquence de base est toujours la même au locus recherché, mais c'est le nombre de bases qui est différent selon les individus. En analysant plusieurs loci (de 11 à 16), le risque d'erreur d'identification est de 1 sur 1 milliard (**Rouger, 2000**).

La structure d'un STR peut être simple, complexe ou composée. Les STR complexes sont plus informatifs car ils ont une plus grande variabilité. En revanche, les STR simples permettront une meilleure standardisation, car ils ont un taux de mutation plus faible. Le plus souvent, dans le génome humain, la séquence de bases du microsatellite est un dinucléotide (**Figure 7**).

Figure 7 : Exemple de microsatellites (Loistron, 2009).

STR Autosomiques : Le profil génétique autosomal d'une personne est le plus discriminant, les STR autosomiques présentent un polymorphisme de longueur de di, tri ou tétra nucléotides. Par exemple : (CA)n, (CTT)n, (GTCT)n ... où n représente le nombre de répétitions de ce motif. Des régions qui bordent les extrémités d'un microsatellite permettent de le repérer au cours de la PCR. Les motifs di-nucléotidiques (CA) sont les plus abondants (**Bernot, 1996; CAB International, 2001**).

Les marqueurs autosomaux subissent un brassage génétique à chaque génération puisqu'ils sont transmis de manière biparentale. Cependant, d'autres marqueurs appelés marqueurs uniparentaux, sont transmis d'une génération à l'autre sans changement à partir de l'un des parents, donc moins informatifs pour l'identification individuelle. L'information génétique de chaque marqueur uni-parental est appelée haplotype au lieu de génotype puisqu'un seul allèle est détecté par individu (**Petkovski, 2006**).

STR Sexuels : Le chromosome Y est l'un des plus petits chromosomes du génome humain d'une taille d'environ 60 Mb. Il possède au niveau des télomères deux régions homologues au chromosome X et une grande partie centrale comportant le plus grand segment non recombinant. Par conséquent, le chromosome Y est transmis sans modification à la génération suivante et les seules mutations qui apparaissent proviennent de nouvelles mutations touchant les cellules germinales (**Quintana-Murci et al., 2012**).

Les marqueurs du chromosome Y peuvent être utilisés pour de nombreuses applications :

- L'analyse spécifique de l'ADN masculin lors de l'exploration des indices relatifs aux agressions sexuelles (Sibille *et al.*, 2002; Parson et al, 2003).
- La recherche d'une personne disparue dans le cas où les individus de la lignée paternelle peuvent être utilisés comme donneurs d'échantillons pour une éventuelle comparaison (Dettlaff-Kakom, 2002; Koyoma *et al.*, 2002).
- Les tests de paternité pour relier des individus masculins à une lignée paternelle (**Rolf et al, 2001**).

Marqueurs STR du chromosome X : Ces dernières années, plus d'importance a été accordée à l'application des marqueurs STR du chromosome X dans le domaine d'identification et de la génétique des populations. Contrairement aux STR du chromosome Y, l'analyse des marqueurs du chromosome X peut être moins efficace dans des situations particulières, par exemple, dans le cas des tests de paternité de la progéniture féminine lorsque le père présumé n'est pas présent. Cependant, des résultats peuvent être obtenus en examinant ses parents (Primorac *et al.*, 2014; Mansuet-Lupo *et al.*, 2007).

Nomenclature des marqueurs STR : En octobre 1993, la commission internationale « DNA Commission International Society of Forensic Haemogenetic » nommée actuellement « The International Society Of Forensic Genetics » a recommandé une nomenclature pour les loci STR et les variantes alléliques utilisées aujourd'hui. Cette nomenclature est désignée de manière très spécifique.

On prend l'exemple du locus D21S11, la première lettre « D » correspond à l'ADN (DNA en anglais), suivie par le numéro du chromosome portant la séquence qui est le « 21 », la troisième lettre définit la localisation précise sur le chromosome, « S » pour une séquence d'ADN unique, « Z » pour une localisation multiple sur un même chromosome, ou « F » pour une localisation multiple sur des chromosomes homologues. Le dernier nombre confère un caractère unique au locus mais celui-ci ne se rapporte à aucune information sur la région chromosomique concernée. Certains loci ne suivent pas cette nomenclature et leur détermination correspond à un signe proposé par l'équipe l'ayant découvert.

Concernant la nomenclature des variantes alléliques, elle est basée sur le nombre de leurs unités de répétition. Si l'allèle contient neuf unités de répétition, alors il est indiqué par le numéro « 9 », cependant si l'allèle contient dix motifs de répétition dont neuf sont communs et un non commun, contenant par exemple trois bases au lieu de quatre, alors le variant allélique est marqué « 9.3 », ou « 9 » est le nombre de motifs communs et complets avec quatre bases et « 3 » le nombre de bases de motif de répétition incomplet que le variant allélique inclut (**Fregeau** *et al.*, 2000).

I.2.2.3. Polymorphisme d'un seul nucléotide (SNP)

Les SNP sont des marqueurs bi-alléliques qui correspondent à la substitution d'un seul nucléotide à une position spécifique dans le génome (**Figure 8**), ce qui crée des allèles différents. Un SNP est dû à une mutation au niveau d'une cellule germinale qui a échappé au système de réparation de l'ADN, et si la mutation n'est pas létale, elle sera transmise à la descendance (**Petkovski, 2006**).

Figure 8 : Schéma explicatif d'un exemple de SNP : une paire de base GC est remplacée à un seul endroit par la paire de base AT (Revue scientifique populaire trimestrielle MENS, 2010).

Les SNP sont stables, très abondants et distribués uniformément dans tout le génome, au sein des gènes, dans les exons, les introns, et aussi dans les régions intergéniques. Ils sont très intéressants en criminalistique et pour la détermination de paternité (**Brown, 2004**). Ils sont révélés par la méthode de la puce à ADN (**Mansuet-Lupo** *et al.*, **2007**).

I.3. La génétique au service de la justice

A partir de 1990, l'analyse de l'ADN a été de plus en plus utilisée par les biologistes, les magistrats et les enquêteurs afin d'identifier les cellules présentes sur les scènes de crime. Par la suite, il peut devenir possible d'en faire des profils génétiques et de les comparer à d'autres profils, et c'est ainsi que les enquêtes criminelles ont évolué en donnant des résultats de plus en plus crédibles (Watson *et al.*, 2013). En partant d'une analyse, les magistrats peuvent immédiatement détecter s'il existe des profils identiques dans des bases de données. Ces analyses dont l'importance est sans cesse reconnue doivent être exactes, fiables et reproductibles, qualités bien sûr obligatoires pour justifier la mise en place de bases de données. L'analyse permet donc d'identifier une trace et d'établir une relation ou non avec une personne (Doutremépuich *et al.*, 2003).

La criminalistique est l'ensemble des techniques mises en œuvre par la justice, la police et la gendarmerie pour établir la preuve d'un délit ou d'un crime et d'en identifier son auteur. Elle consiste en l'étude des traces laissées par une activité criminelle ou litigieuse en ayant recours principalement aux techniques biologiques (**Buquet, 2011; Mathyer, 1986**).

I.3.1. Historique

La découverte des premiers marqueurs génétiques date des années 1900. Le groupe sanguin ABO découvert par Karl Landsteiner permet de retrouver des individus ayant les mêmes caractéristiques sanguines et donc la résolution de crimes. Cette découverte fut le début de la génétique criminalistique (**Petkovski, 2006**).

En 1985, le chercheur anglais Alec Jeffreys découvre que l'ADN d'une personne constitue son empreinte génétique unique (Jeffreys et al., 1985). Par la suite, en 1988, le

développement de la technique PCR permettra (1991) l'utilisation de séquences répétées en tandem STR pour l'obtention de résultats rapides à partir d'une infime quantité d'ADN (**Poirier**, 2014).

En 1992, la découverte de la technique Y-STR a permis d'isoler le chromosome Y afin de distinguer un profil génétique féminin d'un profil génétique masculin, une technique qui est très utilisée dans les cas de viols (**Poirier**, 2014).

En 1996, des tests sont effectués à partir d'une portion d'ADN propre à une femme, ce qui donne lieu à la technique d'ADN mitochondrial. C'est par le biais de la mère que l'enfant reçoit l'ADNmt. Ce dernier a la particularité de se dégrader moins rapidement que l'ADN nucléaire, qui sert de base pour beaucoup d'analyses d'ADN. Au cours de la même année, les scientifiques arrivent à distinguer l'ADN non humain de l'ADN humain, utilisant l'ADN d'un chat pour identifier un meurtrier (**Poirier, 2014**).

De nos jours, les scientifiques continuent d'utiliser ces mêmes techniques dans le cadre de leurs tests d'ADN en laboratoire de criminalistique, pour l'amélioration des techniques d'analyses des réactifs et pour l'automatisation de la chaine analytique (**Poirier, 2014**).

I.3.2. L'empreinte génétique

Une empreinte génétique ou profil génétique, est la carte d'identité génétique d'un individu. C'est le résultat d'une analyse génétique, rendant possible l'identification d'une personne à partir d'un échantillon biologique.

Cette notion n'a été introduite qu'au milieu des années 80s, mais a révolutionné la vision du domaine médico-légal. L'avènement des différentes technologies permettant la récolte, le stockage et l'analyse de l'ADN a conforté la capacité d'effectuer des tests d'identité humaine. Pour identifier un individu inconnu grâce à l'étude de sa filiation ou afin d'associer un suspect à une affaire criminelle, l'établissement d'un profil génétique est alors indispensable. Celui-ci est réalisé à partir des échantillons biologiques issus de traces ou prélevés sur des individus soupçonnés (**Butler, 2005; Girod, 2002**).

Ce sont les séquences polymorphes spécifiques d'un individu qui sont utilisés pour l'analyse d'empreinte génétique afin d'opérer des comparaisons. En effet, si un échantillon de cellules présente la même empreinte génétique qu'un individu, ceci soutient le fait que ces cellules proviennent de ce même individu, ou de son éventuel jumeau monozygote (**Lupo** *et al.*, **2007**).

Les profils et marqueurs génétiques trouvent, de manière générale, leurs applications dans différents autres domaines :

Identification post-mortem : L'empreinte génétique permet en médecine légale d'identifier les cadavres ou des restes de corps humain (dent, fragment de muscle, ou ossement), essentiellement dans le cas de grandes catastrophes, naturelles comme les séismes et tsunami ou les accidents d'avion ou des actions terroristes (**Cunha et al., 2006 ; Doutremepuich, 2012**).

Filiation : Un marqueur génétique est utilisable en médecine légale pour déterminer les liens de parenté que ce soit dans un cadre civil, pénal ou de recherche en paléoanthropologie, pour pouvoir établir une filiation. Il en va de même pour la recherche de paternité ou de

maternité (détermination du père ou de la mère biologique) (Lambert, 1996; Lacombe *et al.*, 1996).

I.3.3. STR, marqueurs d'identification de choix

L'utilisation des STR à des fins d'identification génétique humaine a été proposée au début des années 90. Au cours de ces années, le service des sciences médico-légales britannique (« FSS » Forensic Science Service) a entamé la recherche de nouveaux loci en tant que marqueurs STR d'après l'étude de leurs variations au sein de la population (**Kimpton** *et al.*, **1994**).

Dès lors, le succès qui a été observé au Royaume-Uni, a poussé le laboratoire du Bureau Fédéral d'Investigation (FBI) à établir le système CODIS (Combined DNA Index System) pour la base de données des Etats-Unis.

Par ailleurs, en avril 1995, la base de données ADN du Royaume-Uni a lancée l'utilisation de loci STR autosomiques et l'amélogénine (Werrett, 1997). En avril 1996 un projet nommé « Community-wide STR project » a été lancé. Ce projet, qui a duré environ 18 mois, a vu la contribution de 22 laboratoires pour l'évaluation de 17 loci STR. En novembre 1997, 13 loci STR ont été proposés comme les marqueurs requis et exigés pour la base de données nationale des Etats-Unis (Budwle *et al.*, 1998).

Bien que le génome humain contienne environ 3% de séquences STR, seuls quelques loci ont été choisis comme marqueurs dans le domaine d'analyse de l'ADN à des fins d'identification génétique humaine (**Butler, 2006**). Les critères de sélection des loci STR incluent les paramètres suivants :

- Un pouvoir discriminatoire élevé, avec un taux d'hétérozygotie supérieur.
- Une localisation sur différents chromosomes, ou ils doivent être largement espacés sur le même chromosome pour éviter le problème de corrélation de génotype à des loci.
- Une amplification simple et fiable.
- Une longueur d'allèle comprise entre 90 et 500 paires de base.

I.3.4. Marqueur déterminant le sexe « Amélogénine »

Le gène de l'Amélogénine localisé sur les deux chromosomes sexuels X et Y code pour une protéine de l'émail des dents. Les séquences homologues de ce gène diffèrent par la présence de plusieurs délétions. En 1993, une délétion de 6 paires de bases localisée dans le premier intron de ce gène, a été observée sur le chromosome X. Celle-ci a été utilisée pour la première fois pour la détermination spécifique du sexe des individus suspects (**Sullivan** *et al.*, **1993**).

Ceci a permis l'exclusion de la moitié de la population dans les cas d'identification de sexe. Le principe de cette méthode repose sur l'amplification par PCR d'une partie du premier intron du gène de l'Amélogénine située en dehors des régions recombinantes, en utilisant un couple d'amorces s'hybridant en amont et en aval de cette délétion (**Primorac, 2014**). La taille des fragments amplifiés, est de 106 paires de base pour le chromosome X et de 112 paires de base pour le chromosome Y (**Figure 9**).

I.4. Processus analytique pour l'établissement de profils génétique

L'analyse d'un échantillon biologique s'effectue généralement en 8 étapes (Figure 10). Les 2 premières sont généralement effectuées sur la scène de crime, les 6 dernières au laboratoire.

I.4.1. Détection de la trace

Initialement, les prélèvements s'effectuaient sur des traces visibles susceptibles d'être des cheveux, du sang, du sperme et d'autres fluides biologiques. Avec les progrès réalisés à ce jour, il est devenu possible d'obtenir des résultats à partir de traces invisibles à l'œil nu, par l'utilisation de sources de lumières UV (Simmons *et al.*, 2014 ; Kumar *et al.*, 2015).

I.4.2. Prélèvement

Le prélèvement d'une trace consiste en le transfert du matériel biologique sur un support directement exploitable au laboratoire. Plusieurs méthodes sont présentes pour effectuer le prélèvement de traces : utilisation d'écouvillons, utilisation de bandes adhésives (pour les cheveux) (**Van Oorschot** *et al.*, **2010**), M-VACTM.

I.4.3. Détermination de la nature de la trace

Elle est réalisée au laboratoire. Elle permet d'identifier la nature de l'échantillon biologique concerné : sang, salive ou sperme. Celle-ci s'effectue en 2 étapes : à l'aide d'un test présomptif puis à l'aide d'un test de confirmation (**Frippiat** *et al.*, **2015**).

I.4.4. Échantillonnage

Cette étape, l'échantillonnage, est celle du conditionnement des prélèvements en échantillons directement utilisables au laboratoire. Pour la plupart des prélèvements, l'écouvillon contenant le matériel biologique, est déposé en entier, ou la tête seulement, dans des tubes d'extraction. De la même manière, les éléments de petite taille directement analysables tels que les ongles ou certains éléments pileux sont directement déposés dans le support d'extraction. Les prélèvements de taille plus importante (compresse, tissu) ou suffisamment riches pour ne pas être entièrement consommés (mégots, chewing-gum) font l'objet d'une découpe afin de n'en analyser qu'une partie (Wickenheiser, 2002).

I.4.5. Extraction et purification

Cette étape consiste en un traitement chimique des échantillons biologiques qui permet de lyser les cellules, de solubiliser l'ADN et de l'isoler de tous les autres constituants cellulaires. Il s'agit probablement de l'étape où les échantillons d'ADN sont les plus exposés aux contaminations par rapport aux autres procédures d'analyses (**Van Oorschot** *et al.*, **2010**). Pour cette raison, Il existe des recommandations propres à cette phase d'extraction qui sont communes aux différents procédés pratiqués. En effet, les échantillons « traces » sont indépendamment traités des échantillons « références », à différents moments voire dans différents locaux (**Butler**, **2011**).

Dans les laboratoires médico-légaux, le choix de la méthode d'extraction dépend essentiellement du type, de la quantité de l'échantillon et de la rapidité de la méthode (Walsh *et al.*, 1991). Parmi les méthodes les plus utilisées dans ces laboratoires, il est possible de trouver :

I.4.5.1. L'extraction organique (phénol/chloroforme)

Elle débute par une lyse cellulaire grâce à des détergents, dont le rôle est de disperser les bicouches lipidiques des membranes cellulaires et de dénaturer les protéines notamment les protéines histones. Une précipitation à l'alcool de la phase aqueuse permet de faire apparaître l'ADN sous forme d'une méduse, qu'il faut ensuite mettre dans un tampon approprié pour le conserver (**Butler, 2005**).

I.4.5.2. L'extraction par la résine échangeuse d'ions Chelex®100

Cette résine échangeuse d'ions est rajoutée aux échantillons, elle est composée de copolymères de styrène di-vinylbenzène contenant des ions iminodiacétate appariés, liant des ions de métaux polyvalents tels que le magnésium, provoquant l'inactivation des nucléases dégradant la molécule d'ADN, ainsi cette dernière sera protégée. Une exposition à une température de 100°C permet la dénaturation de l'ADN, suivies d'une brève centrifugation qui permet de précipiter la résine Chelex®100. Le surnageant est ensuite élué et pourra être utilisé pour une amplification par PCR. (**Butler, 2011**).

I.4.5.3. L'extraction sur carte FTA® « Flinder Technology Associates »

La carte FTA ® est un papier absorbant à base de cellulose, imprégnée d'une chimie brevetée : lorsqu'un échantillon biologique est déposé sur la carte FTA, cette chimie lyse les cellules et dénature les protéines, tandis que les acides nucléiques sont extraits et protégés dans les fibres du papier. La carte est aussi disponible avec un indicateur coloré. La zone de dépôt change de couleur, ce qui permet d'identifier sans ambiguïté l'endroit où se trouve l'ADN il est enfin prêt à être amplifié en moins de 30 min. La carte FTA peut alors être stockée à température ambiante. (Thermo Fisher Scientific Inc., 2019)

I.4.6. Quantification

En premier lieu, la quantification vise à estimer la quantité, la qualité et la pureté de l'ADN disponible, avant d'entamer des procédures analytiques et s'assurer d'un résultat optimal. En effet, la détermination de la quantité d'ADN dans un échantillon est essentielle pour la plupart des analyses basées sur l'amplification par PCR, du fait de l'existence d'un intervalle de concentration optimale d'ADN pour la suite des étapes d'analyse (**Butler, 2009**). En effet, une quantité d'ADN supérieure peut entrainer une saturation du profil génétique lors de la révélation des résultats. Par contre, une quantité insuffisante entrainera un échec de processus d'amplification par PCR, ce qui rendra l'analyse inexploitable (**Butler, 2011**).

I.4.7. Amplification

Le but de la PCR est de reproduire spécifiquement et massivement une séquence d'ADN à analyser. Cette technique a un rôle important en analyses médico-légales. En effet, sans cette possibilité d'amplifier la molécule d'ADN, les échantillons trouvés en faible quantité et de qualité peu avantageuse sur une scène de crime, seraient impossibles à analyser (**Butler, 2009**).

La « PCR multiplexe » est une variante de la PCR qui permet d'amplifier plusieurs séquences d'ADN à la fois, en utilisant des amorces spécifiques pour chaque séquence (Whitaker *et al.*, 2001). Elle est parfaitement adaptée au génotypage d'ADN en criminalistique, puisque l'analyse simultanée de plusieurs loci STR est nécessaire pour établir un profil génétique (Elkins, 2013). Parfois, l'analyse des marqueurs STR peut être difficilement révélée à partir des échantillons d'ADN très dégradés qui minimisent de façon relative la taille des fragments d'ADN amplifiables. L'utilisation des mini-STR est la solution à ce problème, résultant de la conception de nouvelles paires d'amorces qui s'hybrident le plus près possible du locus STR considéré. Il ne s'agit donc pas de nouveaux marqueurs mais plutôt de marqueurs STR réduits (Coble, 2016).

I.4.8. Electrophorèse capillaire et analyse des résultats

La dernière étape consiste en une migration différentielle des amplicons à travers des capillaires contenant une solution de polymère en présence d'un standard de taille et d'une échelle allélique. Les amplicons sont de ce fait séparés en fonction de leurs tailles et de leurs charges. La détection est réalisée par fluorimétrie grâce aux marqueurs fluorescents qui sont couplés aux amplicons d'ADN lors de la PCR.

Par la suite, la lecture et l'analyse des résultats obtenus s'effectue grâce au logiciel « GeneMapperTM ID-X ». Ce dernier représente les données obtenues par un électrophorégramme, avec de nombreux pics, dont chaque loci STR est représenté par un ou deux pics indiquant que l'individu est homozygote ou hétérozygote, respectivement, formant ainsi le profil génétique qui permet d'identifier la combinaison allélique de l'échantillon analysé (**Butler, 2014; Smith, 2007**).

I.5. Séquenceur ABITM 3500xL et kit d'amplification GlobalFilerTM

L'analyseur génétique Applied BiosystemsTM 3500xL (**Figure 11**) est un instrument d'analyse d'ADN basée sur la fluorescence utilisant la technologie d'électrophorèse à 24 capillaires (**ABI**TM **3500 et 3500xL Genetic Analyzers, 2010**).

I.5.1. Caractéristiques de séquenceur

Les composants du séquenceur sont représentés dans la figure 12, il se caractérise par :

- Une fonctionnalité de multiplexage (analyse multiple) avancée pour l'analyse de fragments d'ADN avec jusqu'à six 6 colorants uniques.
- Un logiciel intégré pour le contrôle des instruments, la collecte de données, le contrôle de la qualité et l'analyse automatique des fichiers d'échantillon.
- Un débit de 264 échantillons par jour pour le séquençage, et de 840 échantillons par jour pour l'analyse de fragments (**Applied Biosystems : Life Technologies Corporation, 2010**).

Figure 12 : Les composants intérieurs de l'instrument ABI 3500Xl Genetic Analyzer (Applied Biosystems 3500xL Genetic Analyzer User Guide)

I.5.2. Kit d'amplification PCR GlobalFilerTM

Le kit d'amplification GlobalFiler permet l'analyse multiplexe des STR, il amplifie 21 loci STR autosomiques, l'amélogénine, un locus Y-STR et un locus Y d'insertion ou de délétion sur le chromosome Y « Y indel » avec 6 colorants (**Tableau 1**) (**GlobalFiler** TM PCR **Amplification Kit User Guide**, 2016).

Tableau 1 : Les molécules fluorescentes utilisées dans le kit d'amplification GlobalFiler (GlobalFiler ™ PCR Amplification Kit User Guide, Thermo Fisher, July 7, 2016)

Colorant	Couleur	Label	
6-FAМтм	Bleue		
VICTM	Vert		
NED TM	Jaune	Echantillons, échelle allélique et contrôle.	
ТАΖ тм	Rouge		
SID TM	Violet		
LIZTM	Orange	GeneScan TM 600 LIZ TM Size Standard v2.0	

Les composants des différents réactifs du kit sont résumés dans le **Tableau 2**, le kit combine les 13 loci originaux de **CODIS** (CSF1PO, FGA, TH01, TPOX, VWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11) (**Budowle et al., 2000**) avec 7 des loci dévelopés par le **« ESSL** » (European Standard Set of Loci) (TH01, vWA, FGA, D21S11, D3S1358, D8S1179, D18S51) et le locus SE33 hautement discriminant. Le kit fournit donc un multiplex de 24 loci (**Tableau 3**) avec un pouvoir de discrimination très élevé,

Tableau 2 : Contenus et composants des réactifs inclus dans le kit d'amplification PCR GlobalFiler™ (GlobalFiler™ PCR Amplification Kit User Guide, 2016)

Contenus du kit	Composants	Conservation
GlobalFiler™ Master Mix GlobalFiler™ Primer Set	Enzyme, sels, dNTPs, sérum albumine, 0,05% d'azide de sodium en tampon. Amorces « Forward » et « Revers » pour	
	Allèles amplifiés	25°C à -15°C à la réception. 2°C à 8°C après la première
GlobalFiler™ Allelic Ladder	Il permet une caractérisation précise et un génotypage automatique de tous les allèles pour	utilisation.
DNA Control 007	les locus ciblés par le kit. 0,1 ng.μL ⁻¹ d'ADN génomique humain mâle Utilisé comme témoin de contrôle pour évaluer l'efficacité de l'étape d'amplification et de génotypage des STR.	jusqu'à la date d'expiration indiquée sur le kit.
GeneScan [™] 600 LIZ [™] Size Standard v2.0	Fragments d'ADN de taille précise Utilisé pour calibrer l'électrophorèse et obtenir des résultats précis de dimensionnement pour les produits de la PCR.	

Tableau 3 : Caractéristiques générales des marqueurs STR autosomiques inclus dans le kit d'amplification PCR GlobalFiler™ (GlobalFiler ™ PCR Amplification Kit User Guide, July 7, 2016)

Locus	Location chromosomique	Allèles	Taille des allèles (bp)	Colorants
D3S1358	3p21.31	9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20	96-141	
VWA	12p13.31	11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24	156-209	БАЛЛТМ
D16S539	16q24.1	5, 8, 9, 10, 11, 12, 13, 14, 15	227-267	FANI
CSF1PO	5q33.3-34	6, 7, 8, 9, 10, 11, 12, 13, 14, 15	282-318	
TPOX	2p23-2per	5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	337-377	
Y indel	Yq11.221	1, 2		
Amélogénine	X: p22.1-22.3 Y: p11.2	Χ, Υ		
D8S1179	8q24.13	5, 6, 7, 8, 9 10, 11, 12, 13, 14, 15, 16, 17, 18, 19	114-171	
D21S11	21q11.2-q21	24, 24.2, 25, 26, 27, 28, 28.2, 29, 29.2, 30, 30.2, 31, 31.2, 32, 32.2, 33, 33.2, 34, 34.2, 35, 35.2, 36, 37, 38	182-239	V I Стм
D18S51	18q21.33	7, 9, 10, 10.2, 11, 12, 13, 13.2, 14, 14.2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27	261-342	
DYS391	Yq11.21	7, 8, 9, 10, 11, 12, 13		
D2S441	2p14	8, 9, 10, 11, 11.3, 12, 13, 14, 15, 16, 17	76-113	
D198433	19q12	6, 7, 8, 9, 10, 11, 12, 12.2, 13, 13.2, 14, 14.2, 15, 15.2, 16, 16.2, 17, 17.2, 18.2, 19.2	118-171	
TH01	11p15.5	4, 5, 6, 7, 8, 9, 9.3, 10, 11, 13.3	179-218	NEDTM
FGA	4q28	13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 26.2, 27, 28, 29, 30, 30.2, 31.2, 32.2, 33.2, 42.2, 43.2, 44.2, 45.2, 46.2, 47.2, 48.2, 50.2, 51.2	223-378	N E D ^{ara}
D22S1045	22q12.3	8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19	88-121	
D5S818	5q21-31	7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18	138-183	
D13S317	13q22-31	5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16	149-243	
D7S820	7q11.21-22	6, 7, 8, 9, 10, 11, 12, 13, 14, 15	262-298	ТАТТМ
SE33	6q14	4.2, 6.3, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20.2, 21, 21.2, 22.2, 23.2, 24.2, 25.2, 26.2, 27.2, 28.2, 29.2, 30.2, 31.2, 32.2, 33.2, 34.2, 35, 35.2, 36, 37	307-428	
D10S1248	10q26.3	8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19	85-129	
D1S1656	1q42.2	9, 10, 11, 12, 13, 14, 14.3, 15, 15.3, 16, 16.3, 17, 17.3, 18.3, 19.3, 20.3	160-207	
D12S391	12p13.2	14, 15, 16, 17, 18, 19, 19.3, 20, 21, 22, 23, 24, 25, 26, 27	216-268	SID TM
D2S1338	2q35	11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28	281-349	

I.6. Validation des méthodes d'analyse

La validation est un ensemble de procédures permettant de démontrer qu'une technique de laboratoire est robuste, c'est-à-dire qu'un pourcentage élevé de résultats positifs est obtenu et par conséquent ne nécessitera que peu d'échantillons, fiable, c'est-à-dire que les résultats obtenus sont précis et reflètent correctement l'échantillon testé, reproductible, c'est-à-dire que des résultats identiques ou très similaires sont obtenus à chaque fois qu'un échantillon est testé (**Butler, 2009**).

La validation pour l'analyse des STR passe par deux étapes, la validation développementale et la validation interne.

La validation développementale permet de tester de nouveaux loci et kits STR, de nouveaux ensembles d'amorces et de nouvelles technologies de détection des allèles STR. Elle est généralement effectuée par les fabricants commerciaux de kits STR et les grands laboratoires tels que le laboratoire du FBI (**Butler, 2009**).

SWGDAM (Scientific Working Group on DNA Analysis Methods) définit la validation interne comme étant une accumulation de données de tests au sein d'un laboratoire pour démontrer que les méthodes et les procédures établies fonctionnent comme prévu par les fournisseurs (SWGDAM, 2016).

La validation interne permet donc de vérifier que les procédures précédemment testées sous contrôle de la validation développementale fonctionneront efficacement dans un laboratoire donné, elle joue donc un rôle important dans l'assurance de la qualité des résultats et pour l'accréditation des laboratoires médico-légaux selon la norme ISO 17025 (**Butler, 2010**).

Selon la méthode ou la procédure à valider, plusieurs critères doivent être évalués. Concernant la méthode d'amplification, les paramètres suivants seront étudiés :

I.6.1. Seuil analytique

Le seuil analytique définit la hauteur minimale requise pour distinguer les pics détectés du bruit de fond produit par les instruments utilisés.

Étant un phénomène aléatoire, il est prévisible que des pics de bruit de fond puissent occasionnellement être détectés. L'utilisation d'un seuil d'analyse élevé diminue donc le risque de détecter des données non-alléliques (SWGDAM, 2016; Butler, 2010).

I.6.2. Répétabilité et reproductibilité

La répétabilité vise à établir si un échantillon lancé plusieurs fois par le même opérateur et dans les mêmes conditions donnera le même résultat quantitativement et qualitativement.

La reproductibilité vise à établir si un échantillon lancé plusieurs fois dans les mêmes conditions mais par deux opérateurs différents donnera le même résultat quantitativement et qualitativement (SWGDAM, 2016; Butler, 2010).

I.6.3. Sensibilité

L'étude de la sensibilité vise à déterminer la capacité à obtenir des résultats fiables à partir d'une gamme de quantités et de concentrations d'ADN différentes. Les limites supérieure et inférieure du test doivent également être évaluées (SWGDAM, 2012).

Une concentration d'ADN trop élevée donnera une fluorescence qui pourrait dépasser la limite de détection de l'instrument.

En revanche, pour une concentration d'ADN trop basse, le nombre total de copies d'allèles amplifiées par la PCR sera faible et une amplification déséquilibrée des allèles peut se produire en raison des fluctuations stochastiques liées à la PCR.

I.6.4. Etude de mélange

L'étude de mélange évalue la capacité à obtenir des résultats fiables à partir d'échantillons de source mixte. Il est essentiel de s'assurer que le processus d'analyse génétique est capable de détecter les mélanges d'ADN.

En règle générale, les échantillons de source mixte peuvent être distingués des échantillons à source unique par :

- La présence de plus de deux allèles dans un ou plusieurs loci
- La présence de pics en position de stutter (artéfact) significativement plus élevés que celui généralement observé dans un échantillon à source unique
- Allèles nettement déséquilibrés pour un génotype hétérozygote
Chapitre II : Matériels et Méthodes

Chapitre II : Matériels et méthodes

II. Matériels et méthodes

La présente étude a été réalisée au Département de Biologie de l'Institut National de Criminalistique et de Criminologie (INCC) de la Gendarmerie Nationale, Alger, de février à juin 2019, dans le but de valider le kit d'amplification *GlobalFiler*[™] qui traite 24 loci en multiplexe sur le séquenceur 3500xL en vue de l'établissement de profils génétiques.

II.1. Matériels

II.1.1. Matériels biologiques

Les échantillons étudiés ont consisté en de l'ADN de référence obtenu à partir de prélèvements de salive effectués sur 5 individus (3 femmes et 2 hommes).

Trois prélèvements de salive ont été opérés pour chacun des individus, ce qui a généré un total de 15 échantillons à analyser. Les prélèvements ont été effectués avec des écouvillons, le coton imbibé de salive est ensuite coupé et placé dans des micro-tubes de 1.5 mL, les microtubes sont étiquetés selon les initiales du donneur suivies d'un chiffre de 1 à 3.

II.1.2. Matériels non-biologiques

Le tableau 4 récapitule tout le matériel utilisé à chacune des étapes.

Etapes	Equipements	Réactifs	Consommables
Extraction.	 Centrifugeuse HeraeusTM Pico (Annexe 30) Bloc chauffant Grant InstrumentsTM. (Annexe 31) Vortex VWRTM. Portoirs. 	 Protéinase K à 20%. Chelex à 5%. 	
Quantification.	 ABITM 7500 Real-Time PCR System. (Annexe 32) Plaque RT-PCR à 96 puits Film adhésif pour plaques RT-PCR. Vortex VWRTM. Centrifugeuse pour plaques HeraeusTM LabofugeTM (Annexe 41) Portoirs. 	 Kit ABI[™] Quantifiler[™] Human. (Annexe 33) ABI[™] Quantifiler [™] Human Primer Mix. ABI[™] Quantifiler [™] PCR Reaction Mix. ABI[™] Quantifiler [™] Human DNA Standard. Eau ultra pure. 	 Gants. Charlottes. Bavettes. Micro-tubes « Eppendorff »
Amplification.	 Thermocycleur ABITM VeritiTM 96-Well (Annexe 34) Centrifugeuse HeraeusTM LabofugeTM Vortex VWRTM Portoirs Eppendorf 0.2 mL PCR Tubes 	 ABITM GlobalFiler TM PCR Amplification Kit. (Annexe 35) ABITM GlobalFiler TM Master Mix. ABITM GlobalFiler TM Primer Set. ABITM DNA Control 007. Eau ultra pure. 	(1,5; 0,6; 0,2 mL). - Tips « Eppendorff » (1; 0,2; 0,1; 0,01 mL).
Electrophorèse capillaire.	 Séquenceur génétique ABI™ 3500xL Genetic Analyzer. Bloc chauffant Grant InstrumentsTM. (Annexe 36) Plaques pour séquenceur à 96 puits (Annexe 37) Logiciel Gene Mapper ID-X v1.4. 96-Well Silicone Septa Mat Eppendorf® iceless plate cooler (Annexe 40) 	 ABI[™] GlobalFiler [™] Allelic Ladder (Annexe 39) GeneScan [™] 600 LIZ [™] Size Standard v2.0. (Annexe 39) Hi-Di [™] Formamide. (Annexe 38) 	

Tableau 4 : Matériel non-biologique utilisé pour la réalisation de la présente étude

II. 2. Méthodes

II.2.1. Etablissement du profil génétique des donneurs

II.2.1.1. Extraction d'ADN

L'extraction chimique de la molécule d'ADN a été réalisée par l'utilisation du Chelex 5%, le protocole a consisté en les étapes suivantes :

- Etiqueter 15 micro-tubes correspondant à chaque échantillon de salive et un micro-tube correspondant au témoin de contrôle négatif.
- Ajouter 400 μ L de Chelex à 5% et 10 μ L de protéinase K à 20% dans chaque micro-tube en utilisant une micropipette.
- Les micro-tubes sont passés au vortex 30 s, puis incubés au bain marie à 56°C pendant au moins 30 min.
- Les micro-tubes repassent au vortex 30 s, sont chauffés à sec à 100°C pendant 8 min, puis reviennent au vortex pendant 10 s.
- Après centrifugation à 13000 tr.min⁻¹ pendant 3 min, le surnageant contenant l'ADN est récupéré avec une micropipette dans des micro-tubes de 0.6 mL puis conservé à 5°C.

II.2.1.2. Quantification

La quantification de l'échantillon biologique a été réalisée à l'aide du kit « ABI^{TM} *Quantifiler*TM *Human* » et de l'appareil de RT-PCR « ABI^{TM} 7500 Real-Time PCR System », système pour la détection des produits de la PCR en temps réel, cette étape permet de déterminer la quantité d'ADN exacte dans nos échantillons, et le taux d'inhibition des échantillons.

Elle a été réalisée selon le protocole décrit ci-dessous :

II.2.1.2.1. Préparation de la gamme de standards

Préparation de 8 micro-tubes correspondant aux gammes de standard.

La gamme de standards a été préparée à partir d'une solution d'ADN mère « *Quantifiler*TM *Human DNA Standard* » à 200 ng. μ L⁻¹ et d'eau ultra pure, en respectant les dilutions indiquées dans le tableau 5.

Les solutions passent au vortex après chaque dilution.

Standards	Facteur de dilution	Dilutions (µL)	Concentration finale (ng.µL ⁻¹)
STD 01	1/4	30 (Eau ultra pure) +10 (ADN mère)	50.00
STD 02	1/3	20 (Eau Ultra pure) + 10 (STD 01)	16.67
STD 03	1/3	20 (Eau Ultra pure) + 10 (STD 02)	5.56
STD 04	1/3	20 (Eau Ultra pure) + 10 (STD 03)	1.85
STD 05	1/3	20 (Eau Ultra pure) + 10 (STD 04)	0.617
STD 06	1/3	20 (Eau Ultra pure) + 10 (STD 05)	0.206
STD 07	1/3	20 (Eau Ultra pure) + 10 (STD 06)	0.0686
STD 08	1/3	20 (Eau Ultra pure) + 10 (STD 07)	0.0229

Tableau 5 : Préparation de la gamme de standards

II.2.1.2.2. Préparation des réactifs

Préparation de la solution contenant les réactifs (« *QuantifilerTM PCR Reaction Mix* » + « *QuantifilerTM Human Primer Mix* ») de la RT-PCR selon les recommandations du fabricant (**Tableau 6**).

Un total de 33 échantillons a été quantifié (15 échantillons d'ADN, 16 échantillons de gamme de standards et deux témoins de contrôle).

	Echantillons	Reaction mix (µL)	Primer mix (µL)
Par tube	1	12.5	10.5
Total	33	412.5	346.5

- Etiqueter un tube vide de 1.5 mL qu'on nommera (MM1), où se fera le mélange des réactifs (Reaction mix + Primer mix).
- Passer au vortex les tubes de « *Quantifiler* ® *PCR Reaction Mix* » et « *Quantifiler* ® *Human Primer Mix* », fournis dans le kit, pendant 5 s.
- Mélanger 412.5 μL de « Reaction Mix » et 346.5 μL de « Primer Mix » et les déposer dans le tube (MM1).
- Passer au vortex le tube (MM1) pendant 10 s.

II.2.1.2.3. Préparation de la plaque :

Une plaque à 96 puits a été utilisée (Figure 13), le protocole a consisté en les étapes suivantes :

- Déposer 23 µL de (MM1) (Reaction mix + Primer mix) pour chacun des échantillons dans 32 puits et un pour le témoin négatif de quantification (TQ-).
- Passer au vortex chaque tube de standard avant le prélèvement pendant 5 s.
- Déposer 2 µL de chaque standard deux fois, ce qui donne 16 puits contenants deux séries de la gamme standard.
- Passer au vortex les échantillons d'ADN pendant 5 s puis déposer 2 µL de chaque échantillon d'ADN dans les 15 puits correspondants.
- Déposer 2 μL d'eau ultra pure qui correspond au contrôle négatif de la quantification (TQ-) et 2μL de témoin de contrôle de l'extraction (TEX-).
- Sceller la plaque avec le film optique adhésif transparent.
- Centrifuger la plaque pendant 15 s à 3000 tr.min⁻¹.

Figure 13 : Plan de plaque de la quantification des profils génétiques.

La plaque est placée à l'intérieur de l'appareil « *ABI*TM 7500 Real-Time PCR System », le logiciel et l'appareil sont calibrés selon les recommandations du fabricant, les résultats sont obtenus après 1h45mn.

II.2.1.3. Amplification

L'amplification de l'ADN a été réalisée avec le kit « *GlobalFiler* ™ *PCR Amplification Kit* » et le thermocycleur « *Veriti* ™ 96 *Well Thermal Cycler* » en suivant les recommandations du fabricant.

II.2.1.3.1. Ajustement de la concentration d'ADN

Le fabricant recommande pour 29 cycles une concentration de 1 ng pour 15 μ L, c'est-àdire 0.0667 ng. μ L⁻¹.

Le volume final est de 25 μ L comprenant 15 μ L d'ADN à 0.0667 ng. μ L⁻¹, 7.5 μ L de « *GlobalFiler* TM *Master Mix* » et 2.5 μ L de « *GlobalFiler* TM *Primer Set* »

Pour chaque individu, l'échantillon avec la concentration d'ADN la plus haute sera choisi, les échantillons suivants sont choisis : HF1, AS3, KA2, BER1, WA2 (**Tableau 7**).

ADN	$C_1(ng.\mu L^{-1})$	C_2 (ng.µL ⁻¹)	$V_1 (\mu L)$	$V_2 (\mu L)$	$\Delta \mathbf{V}=(\mathbf{V}_2-\mathbf{V}_1)\;(\boldsymbol{\mu}\boldsymbol{L})$
KA2	5.27	0.0667	1	79	78
HF1	5.48	0.0667	1	82	81
AS3	6.19	0.0667	1	93	92
BER1	1.40	0.0667	1	21	20
WA2	7.26	0.0667	1	109	108
DNA 007	0.10	0.0667	10	15	5

Tableau 7 : Ajustement de la concentration d'ADN

 $(C_1 : Concentration initiale, V_1 : Volume initial, C_2 : Concentration finale ciblée à 0.0667 ng.\mu L⁻¹, V_2 : Volume final$ $<math>\Delta V :$ le volume d'eau à ajouter)

- Préparation de 5 micro-tubes de 0.6 mL pour chacun des échantillons d'ADN.
- Déposer 1 µL d'ADN dans chaque tube et rajouter la quantité adéquate d'eau ultra pure selon le tableau des dilutions, passer au vortex pendant 10 s.
- Déposer 10 μL d'ADN contrôle « *ABI*TM *DNA Control 007* », rajouter 5 μL d'eau ultra pure puis passer au vortex pendant 10 s.

II.2.1.3.2. Etape de pré-amplification

Préparer la solution contenant les réactifs (*« GlobalFiler* TM *Master Mix »* + *« GlobalFiler* TM *Primer Set »*) pour la PCR selon les recommandations du fabricant.

Sept échantillons ont été amplifiés (5 échantillons d'ADN et 2 témoins de contrôle) (Tableau 8).

Tableau 8 : Calcul du volume des réactifs de la solution d'amplification	ion
--	-----

	Echantillons	Master mix (µL)	Primer set (µL)
Par tube	1	7.5	2.5
Total	7	52.5	17.5

- Etiqueter un tube vide de 0.6 mL qu'on nommera (MM2), où se fera le mélange des réactifs (Master mix + Primer set).
- Passer au vortex les tubes de « *GlobalFiler* TM *Master Mix* » et « *GlobalFiler* TM *Primer Set* » fournis dans le kit pendant 5 s.
- Mélanger 52.5 μL de « *GlobalFiler* TMMaster Mix » et 17.5 μL de « *GlobalFiler* TM *Primer Set* » dans le tube (MM2).
- Passer au vortex le tube (MM2) pendant 10 s.
- Préparation de 7 micro-tubes « *Eppendorf PCR Tubes* » de 200 µL, un par échantillon.
- Déposer 10 µL de (MM2) (Master mix + Primer set) dans chacun des micro-tubes PCR.
- Passer au vortex chaque micro-tube d'ADN dilué puis déposer un volume de 15 μL dans le micro-tube PCR adéquat.
- Déposer 15 µL d'eau ultra pure qui correspond au témoin de contrôle négatif.
- Mélanger 10 μL d'ADN contrôle « *ABI*TM *DNA Control* 007 » et 5 μL d'eau ultra pure qui correspondent au témoin de contrôle positif.
- Centrifuger les micro-tubes pendant 15 s à 3000 tr.min⁻¹.

II.2.1.3.3. Etape d'amplification

L'amplification a été opérée en 29 cycles en utilisant le thermocycleur « *Veriti* $^{\text{TM}}$ 96-Well Thermal Cycler » et en suivant les recommandations du fabricant du kit Globalfiler $^{\text{TM}}$ (**Tableau 9**).

Tableau 9	:	Conditions	de	la	PCR
	•	00110110110	~~~		

Phase d'incubation	29 Cycles		Extension finale	Stockago	
initiale	Dénaturation	Extension	- Extension male	Stockage	
95°C, 1 min	94°C, 10 s	59°C, 90 s	60°C, 10 min	4°C, jusqu'à 24 h	

Les micro-tubes PCR sont agencés sur la plaque du thermocycleur après programmation des conditions de la PCR, l'ADN est récupéré après 75 min.

II.2.1.4. Electrophorèse capillaire

La séparation des produits d'amplification du kit « ABI^{TM} GlobalFiler TM » a été faite par électrophorèse sur le séquenceur « ABI^{TM} 3500xL Genetic Analyzer ».

II.2.1.4.1. Etape de post-amplification

Préparation des réactifs (« *Hi-Di* TM *Formamide* » + « *GeneScan* TM *600 LIZ* TM *Size Standard* v2.0 ») pour l'électrophorèse capillaire selon les recommandations du fabricant.

Un total de 9 échantillons a été analysé (5 échantillons d'ADN, 2 témoins de contrôle de l'amplification, 1 témoin de contrôle post-amplification et un ladder) (**Tableau 10**).

	Echantillons	Formamide (µL)	Size standard (µL)
Par tube	1	9.6	0.4
Total	9	86.4	3.6

Tableau 10 : Calcul des réactifs de la solution

- Etiquetter un tube vide de 0.6 mL qu'on nommera (MM3), où se fera le mélange des réactifs (Formamide + size standard).
- Passer au vortex les tubes de « *Hi-Di* TM *Formamide* » et « *GeneScan* TM *600 LIZ* TM *Size Standard v2.0* » fournis dans kit pendant 5 s.
- Mélanger 86.4 µL de Formamide et 3.6 µL de Size standard et le déposer dans le tube (MM3).
- Passer au vortex le tube (MM3) pendant 10 s.

II.2.1.4.2. Préparation de la plaque

Une plaque pour séquenceur à 96 puits a été utilisée (Figure 14), selon le protocole suivant :

- Déposer 10 µL de (MM3) (Formamide + Size standard) dans 9 puits correspondant à chaque micro-tube contenant les produits de la PCR, au témoin négatif ainsi qu'au Ladder.
- Passer au vortex les micro-tubes contenant les produits de la PCR et le tube de « *ABI*TM *GlobalFiler* TM *Allelic Ladder* » pendant 5 s.
- Déposer 1 μL de chaque micro-tube PCR, déposer 1 μL de « *ABI*TM *GlobalFiler* TM *Allelic Ladder* » dans le puit H3, déposer 1 μL d'eau ultra pure qui correspond au témoin de contrôle négatif de la post-amplification.
- Sceller la plaque avec un feuillet de silicone « 96-Well Silicone Septa Mat ».
- Centrifuger la plaque pendant 15 s à 3000 tr.min⁻¹.
- Placer la plaque sur le bloc chauffant à 96°C pendant 3 min, suivi d'un choc thermique à -20°C pendant 3 min sur « *Eppendorf*® *iceless 96-well plates Cooler* ».

Figure 14 : Plan de plaque de l'électrophorèse capillaire pour les profils génétiques

La plaque est placée à l'intérieur de l'appareil « $ABI^{TM} 3500xL$ Genetic Analyzer », il est calibré selon les recommandations du fabricant du kit GlobalFiler TM; les résultats sont obtenus après 45 min et la lecture des données est effectuée en utilisant le logiciel « Gene Mapper ID-X ».

II.2.1.5 Analyse des résultats de l'électrophorèse

Le logiciel « *Gene Mapper ID-X v1.5*» a été utilisé pour l'analyse des données brutes obtenues par électrophorèse capillaire. Des graphes sous forme d'électrophorégrammes sont générés par le logiciel (**Figure 15**).

Les pics représentent les différents allèles, de tailles et de hauteurs proportionnelles à la quantité de produit détecté par PCR. Au-dessus de chaque série de pics sont mentionnés les noms des 24 marqueurs liés au kit. Les différents fluorochromes sont représentés par 5 lignes de couleurs différentes (bleu, vert, noir, rouge et violet). Enfin, l'échelle allélique est représentée par des traits de couleur grise (Bin), elle permet d'attribuer à chaque fragment d'ADN (STR) un numéro allélique (**Figure 15**).

II.2.1.5.1 Taux d'hétérozygotie

Le taux d'hétérozygotie représente le taux de systèmes hétérozygotes par rapport au nombre total d'allèles.

L'équation suivante est utilisée : $\frac{Nombre \ de \ systèmes \ hétérozygotes}{N} \times 100$

N représente le nombre total d'allèles.

Dans notre cas, le système permet de prendre en considération 24 allèles simultanément. Par conséquent N=24.

Ce taux est important pour le choix de l'échantillon à utiliser pour le reste de l'étude. Un échantillon avec un taux d'hétérozygotie élevé aura un plus grand nombre de pics présents dans tout le profil.

II. 2.2. Paramètres de la validation du kit *Globalfiler*TM

Pour la validation du kit « *GlobalFiler* TM », 5 séries d'échantillons différents pour chaque paramètre ont été préparés. L'amplification requiert un volume minimal de 15 µL pour chaque échantillon qui sera amplifié et analysé par l'électrophorèse capillaire.

II.2.2.1. Seuil analytique

Le seuil analytique est le seuil minimal pour la lecture des données génétiques obtenues par l'électrophorèse capillaire. Un total de 24 échantillons a été utilisé pour le calcul du paramètre du seuil analytique, 7 échantillons préparés à partir de l'ADN « DNA control 007 » à 0.0667 ng. μ L⁻¹ (ADN+) et 17 échantillons contenant uniquement de l'eau ultra pure (ADN-) (**Tableau 11**).

	Concentration initiale	ADN	Eau	Concentration finale
	(ng.µL ⁻¹)	(µL)	(µL)	(ng.µL ⁻¹)
DNA 007	0.1	70	35	0.0667

Tableau 11 : Ajustement de la concentration d'ADN

II.2.2.1.1. Amplification

Un total de 24 échantillons a été amplifié en suivant le même protocole utilisé pour l'établissement des profils génétiques; seul le nombre et le nom des échantillon ainsi que la concentration d'ADN et le volume des réactifs sont changés (**Tableau 12**).

N Nom des échantillons		Nom des échentillens	Concentration	Volume des réactifs (µL)	
		Nom des échantmons	$(ng.\mu L^{-1})$	Master Mix	Primer set
DNA 007	7	Amp+ 1, Amp+ 2, Amp+ 3, Amp+ 4, Amp+ 5, Amp+ 6, Amp+ 7	0,06667	52.5	17.5
Négatif	17	 Amp- 1, Amp- 2, Amp- 3, Amp- 4, Amp- 5, Amp- 6, Amp- 7, Amp- 8, Amp- 9, Amp- 10, Amp- 11, Amp- 12, Amp- 13, Amp- 14, Amp- 15, Amp- 16, Amp- 17 	0	127.5	42.5
Total	24			180	60

Tableau 12 : Résumé des échantillons de l'amplification

II.2.2.1.2. Electrophorèse capillaire

Un total de 27 échantillons a été analysé, selon le même protocole utilisé pour l'établissement des profils génétiques, le volume des réactifs ainsi que le plan de la plaque de l'électrophorèse seront adaptés au nombre d'échantillons (**Tableau 13, Figure 16**).

	Nombre d'échantillons	Formamide (µL)	Size standard (µL)
Par tube	1	9.6	0.4
Total	27	259.2	10.8

Tableau 13 : Calcul des réactifs (Formamide + Size standard)

Figure 16 : Plan de plaque de l'électrophorèse capillaire pour l'étude du seuil analytique

II.2.2.1.3. Analyse des résultats de l'électrophorèse

Le logiciel « *Gene Mapper ID-X v1.5* » a été utilisé pour l'analyse des données brutes obtenues par électrophorèse capillaire, les données ont été analysées avec un seuil de 1 RFU.

Pour les échantillons négatifs, la hauteur du plus grand pic pour chaque couleur a été définie.

Pour les échantillons positifs, les pics correspondants aux artéfacts liés à l'amplification et à l'électrophorèse (Stutter) ont été supprimés avant de définir la hauteur du plus grand pic de chaque couleur.

Pour le calcul du seuil analytique, les valeurs minimale et maximale de tous les échantillons négatifs et positifs pour chaque couleur ont été déterminées, puis l'équation suivante a été utilisée pour déterminer le seuil analytique

$SA = 3 * Valeur_{maximale}$ (Martin *et al.*, 2014)

II.2.2.2. Répétabilité et reproductibilité

La répétabilité vise à étudier si un échantillon en plusieurs réplicats lancés avec le même protocole et dans les mêmes conditions par un seul opérateur va aboutir aux mêmes résultats, alors que la reproductibilité consiste à vérifier la similarité des résultats obtenus pour un échantillon lancé avec le même protocole et dans les mêmes conditions par deux opérateurs différents.

Un 1^{er} opérateur a préparé toutes les étapes de l'amplification et de l'électrophorèse capillaire du paramètre de répétabilité, un 2^{ème} opérateur a effectué les mêmes étapes de l'amplification et de l'électrophorèse capillaire, séparément, pour le paramètre de reproductibilité, en utilisant le même échantillon d'ADN « KA2 » avec la même concentration.

Dix échantillons ont été utilisés, 5 pour le paramètre répétabilité et 5 pour la reproductibilité, les échantillons ont été préparés à partir de l'ADN de l'un des donneurs « KA2 » à 0.0667 ng. μ L⁻¹ (**Tableau 14**).

Tableau 14 : Ajustement de la concentration d'ADN

	Concentration	ADN	Eau	Concentration finale
	initiale (ng.µL ⁻¹)	(µL)	(µL)	(ng.µL ⁻¹)
KA 2	5.27	2	156	0.0667

II.2.2.2.1. Amplification

Un total de 12 échantillons a été amplifié en suivant le même protocole utilisé pour l'établissement des profils génétiques, le nombre et le nom de chaque échantillon ainsi que la concentration et le volume des réactifs sont résumés dans le **Tableau 15**.

	N	Nom des	Concentration	Volume des réactifs (µL)	
	IN	échantillons	$(ng.\mu L^{-1})$	Master Mix	Primer set
Reproductibilité	5	Rd1, Rd2, Rd3, Rd4, Rd5	0,06667	37.5	12.5
Répétabilité	5	Rb1, Rb2, Rb3, Rb4, Rb5	0,06667	37.5	12.5
Contrôle	2	Ctrl–, Ctrl+	0,06667 - 0.0	15	5
Total	12			90	30

Tableau 15 : Résumé des échantillons de l'amplification

II.2.2.2.2. Electrophorèse capillaire

Un total de 14 échantillons a été analysé selon le même protocole utilisé pour l'établissement des profils génétiques, le volume des réactifs ainsi que le plan de la plaque de l'électrophorèse sont adaptés au nombre d'échantillons (**Tableau 16, Figure 17**).

	Echantillons	Formamide (µL)	Size standard (µL)
Par tube	1	9.6	0.4
Total	14	134.4	5.6

Tableau 16 : Calcul des réactifs (Formamide + Size standard)

II.2.2.2.3. Analyse des résultats de l'électrophorèse

Le logiciel « *Gene Mapper ID-X v1.5* » a été utilisé pour l'analyse des données brutes obtenues par électrophorèse capillaire. Les résultats ont été analysés à 60 RFU.

Pour tous les échantillons, après obtention du profil complet, la hauteur des pics de chaque allèle a été déterminée.

Les moyennes avec l'écart-type, la médiane, les valeurs minimum et maximum, et le coefficient de variation ont été calculés.

Une comparaison entre les échantillons « Rb1 à Rb5 » avec les échantillons « Rd1 à Rd5 » pour la reproductibilité a été faite, les rapports des hauteurs de pics entre les séries d'échantillons « Rb1 à Rb5 » et « Rd1 à Rd5 » ont aussi été calculés.

II.2.2.3. Sensibilité

La sensibilité vise à identifier la concentration d'ADN permettant d'obtenir un profil génétique exploitable. Pour cela, une série de dilutions de l'ADN « *ABI*TM *DNA Control* 007 » a été préparée selon le tableau 17, chaque dilution sera amplifiée 3 fois.

- Préparation de 9 micro-tubes de 0.6 mL qui correspondent aux dilutions.
- Préparation des dilutions à partir de l'ADN contrôle « *ABI™ DNA Control 007* » et d'eau ultra pure, en respectant les indications du tableau 17.
- Passer au vortex la solution après chaque dilution.

Échantillons	Dilutions (µL)	Concentration finale (ng.µL ⁻¹)	Facteur de dilution
D1	66 (ADN Contrôle) +33 (Eau ultra pure)	0.06667	2/3
D2	50 (Eau ultra pure) + 50 (D1)	0.03333	1/2
D3	50 (Eau ultra pure) + 50 (D2)	0.01667	1/2
D4	50 (Eau ultra pure) + 50 (D3)	0.00833	1/2
D5	50 (Eau ultra pure) + 50 (D4)	0.00417	1/2
D6	50 (Eau ultra pure) + 50 (D5)	0.00208	1/2
D7	50 (Eau ultra pure) + 50 (D6)	0.00104	1/2
D8	50 (Eau ultra pure) + 50 (D7)	0.00052	1/2
D9	50 (Eau ultra pure) + 50 (D8)	0.00026	1/2

Tableau 17 : Préparation des dilutions d'ADN

II.2.2.3.1. Amplification

Un total de 29 échantillons a été amplifié en suivant le même protocole utilisé pour l'établissement des profils génétiques, le nombre et le nom de chaque échantillon ainsi que la concentration et le volume des réactifs sont résumés dans le **tableau 18**.

1	NI	Nom dag áskontillang	Concentration	Volume des réactifs (µL)	
1	IN	Nom des échantilions	(ng.µ L ⁻¹)	Master Mix	Primer Set
Sensibilité	27	D1.1, D1.2, D1.3, D1.4, D1.5, D1.6, D1.7, D1.8, D1.9 D2.1, D2.2, D2.3, D2.4, D2.5, D2.6, D2.7, D2.8, D2.9 D3.1, D3.2, D3.3, D3.4, D3.5, D3.6, D3.7, D3.8, D3.9	0.06667 – 0.00026	202.5	67.5
Contrôle	2	Ctrl-, Ctrl+	0.06667 - 0.0	15	5
Total	29			217.5	72.5

Tableau 18 : Récapitulatif des échantillons pour l'amplification

II.2.2.3.2. Electrophorèse capillaire

Un total de 31 échantillons a été analysé selon le même protocole utilisé pour l'établissement des profils génétiques, le volume des réactifs ainsi que le plan de la plaque de l'électrophorèse seront adaptés au nombre d'échantillons (**Tableau 19, Figure 18**).

	Echantillons	Formamide (µL)	Size standard (µL)
Par tube	1	9.6	0.4
Total	32	307.2	12.8

 Tableau 19 : Calcul des réactifs (Formamide + Size standard)

Figure 18 : Plan de plaque de l'électrophorèse capillaire pour l'étude de sensibilité

II.2.2.3.3. Analyse des résultats de l'électrophorèse

Le logiciel « *Gene Mapper ID-X v1.5* » a été utilisé pour l'analyse des données brutes obtenues par électrophorèse capillaire, les résultats ont été analysés à 60 RFU.

Pour tous les échantillons et après obtention du profil, les hauteurs des pics de chaque allèle ont été déterminés, le nombre de « *drop-out* » (allèles non-détectés pour les marqueurs hétérozygotes) ainsi que le nombre d'allèles détectés, ont été déterminés.

Le rapport des hauteurs des pics (Peak Height Ratio, PHR) est défini comme suit :

$$PHR = \frac{Hauteur du petit pic (RFU)}{Hauteur du grand pic (RFU)} \times 100 \quad (Tan et al., 2017).$$

Les marqueurs hétérozygotes permettent, par la suite, d'établir une carte thermique qui est une représentation graphique de la sensibilité. Cela permet aussi de fixer le seuil stochastique, qui détermine le seuil au-dessous duquel les résultats de l'analyse peuvent être influencés par des phénomènes aléatoires pendant la PCR, en particulier quand la concentration d'ADN est faible (**Brune, 2017**).

En-dessous de ce seuil, quand la concentration d'ADN est basse, les phénomènes aléatoires liés à l'amplification préférentielle font qu'un des deux allèles d'un marqueur hétérozygote n'est pas amplifié, c'est un « *Drop-out* », nous obtenons alors un faux homozygote.

Au-dessus de ce seuil, il est raisonnable de supposer que les allèles uniques dans les échantillons de source unique sont homozygotes.

Deux méthodes ont été utilisées pour déterminer la valeur de ce seuil :

Méthode 1 : Hauteur du plus grand pic issu d'un marqueur hétérozygote portant un dropout (Faux homozygote).

Méthode 2 : Moyenne des hauteurs des pics issue d'un marqueur hétérozygote portant un drop-out + (Ecart-type x 3) (Klein, 2011).

II.2.2.4. Etude de mélange

Ce paramètre permet d'évaluer les conditions qui permettent la séparation entre deux profils génétiques appartenant à un mélange. Pour cela, sept ratios ont été préparés à partir de deux ADN différents, un ADN masculin qui consiste en l'ADN contrôle « *ABI*TM *DNA Control* 007 » et un ADN féminin appartenant à un des donneur « WA2 ». La sélection des échantillons est basée sur le nombre maximal d'hétérozygotie présent dans les profils et l'absence d'allèles en commun, permettant ainsi un calcul adéquat.

L'eau ultra pure est ajoutée pour obtenir une concentration de 0.066 ng. μ L⁻¹ (**Tableau** 20).

	Concentration initiale $(ng.\mu L^{-1})$	ADN (µL)	Eau (µL)	Concentration finale (ng.µL ⁻¹)
ADN contrôle (M)	0.1	56	28	0,06667
WA2 (F)	7.26	3	324	0,06667

Tableau 20 : Ajustement de la concentration d'ADN

Il a été choisi 7 ratios de mélange différents entre l'ADN masculin (ADN contrôle) et l'ADN féminin (WA2).

- Préparation de 10 micro-tubes de 0.6 mL, 7 correspondants aux mélanges, 2 aux échantillons (M) et (F).
- Déposer 56 µL d'ADN contrôle et rajouter 28 µL d'eau ultra pure dans le tube (M)
- Déposer 3 µL d'ADN « WA2 » et rajouter 324 µL d'eau ultra pure dans le tube (F)
- Passer au vortex les tubes (M) et (F) pendant 10 s avant chaque prélèvement.
- Déposer les volumes d'ADN (M) et (F) adéquats selon le tableau 21 dans chaque tube
- Passer au vortex chaque tube pendant 10 s.

Échantillons	Ratio M:F	Volume M (µL)	Volume F (µL)
Me1	1:1	25.00	25.00
Me2	1:2	16.67	33.33
Me3	1:3	12.50	37.50
Me4	1:4	10.00	40.00
Me5	1:5	8.33	41.67
Me6	1:9	5.00	45.00
Me7	1:19	2.50	47.50

Tableau 21 : Préparation des mélanges

II.2.2.4.1. Amplification

Un total de 23 échantillons a été amplifié en suivant le même protocole utilisé pour l'établissement des profils génétiques, le nombre et le nom de chaque échantillon ainsi que la concentration et le volume des réactifs sont résumés dans le tableau 22.

Tableau 22 : Récapitulatif des échantillons de l'amplification

	N Nom des échantillons		Concentration	Volume des réactifs (µL)	
			$(ng.\mu L^{-1})$		Primer set
Mélange	21	Me1.1, Me1.2, Me1.3, Me1.4, Me1.5, Me1.6, Me1.7, Me2.1, Me2.2, Me2.3, Me2.4, Me2.5, Me2.6, Me2.7, Me3.1, Me3.2, Me3.3, Me3.4, Me3.5, Me3.6, Me3.7	0.06667	157.5	52.5
Contrôle	2	Ctrl–, Ctrl+	0.06667 - 0.0	15	5
Total	23			172.5	57.5

II. 2.2.4.2. Electrophorèse capillaire

Un total de 25 échantillons a été analysé selon le même protocole utilisé pour l'établissement des profils génétiques. Le volume des réactifs ainsi que le plan de la plaque de l'électrophorèse seront adaptés au nombre d'échantillons (**Tableau 23, Figure 19**).

Tableau 23 : Calcul des réactifs (Formamide + Size standard)

	Echantillons	Formamide (µL)	Size standard (µL)
Par tube	1	9,6	0,4
Total	23	220.8	9.2

Figure 19 : Plan de plaque de l'électrophorèse capillaire pour l'étude de mélange.

II.2.2.4.3. Analyse des résultats de l'électrophorèse

Le logiciel « *Gene Mapper ID-X v1.5* » a été utilisé pour l'analyse des données brutes obtenues par électrophorèse capillaire. Les résultats ont été analysés à 60 RFU.

Pour tous les échantillons et après obtention du profil, les hauteurs des pics de chaque allèle des deux contributeurs ont été déterminés.

L'étude de mélange a pour but de déterminer les conditions qui permettent de faire la distinction entre les différents contributeurs; pour cela deux formules mathématiques sont utilisées, la proportion du contributeur minoritaire dans le mélange est calculée selon la formule suivante :

Proportion (%) =
$$\frac{\sum Hauteurs \ des \ pics \ du \ contributeur \ minoritaire(RFU)}{\sum Hauteur \ des \ pics \ de \ tous \ les \ contributeurs \ (RFU)} \times 100$$
 (Butler, 2014).

Le rapport entre la hauteur des pics des contributeurs majoritaire et minoritaire, rapport semblable à celui du PHR, est calculé selon la formule suivante :

Rapport (%) = $\frac{\text{Hauteur du grand pic du contributeur minoritaire(RFU)}}{\text{Hauteur du petit pic du contributeur majoritaire(RFU)}} \times 100$ (Butler, 2014).

Ce rapport sera comparé au PHR pour pouvoir différencier entre les différents allèles de chacun des contributeurs.

II.2.3 Analyse statistique des données

Les statistiques descriptives du vaste ensemble de données recueillies ont été établies en déterminant pour les divers échantillons les moyennes, écarts-type, médianes, coefficients de variations CV, minimums et maximums.

Ces calculs ont porté sur le seuil analytique avec 115 mesures sur 5 couleurs (23 par couleur) dont 85 pour le négatif et 30 pour le positif.

Les calculs ont de même porté sur la répétabilité (5 mesures) et la reproductibilité (5 mesures) pour 19 marqueurs à 2 allèles et 5 marqueurs à allèle unique soit 43 hauteurs de pics.

Les comparaisons entre les 2 échantillons (répétabilité et reproductibilité) pour les hauteurs moyennes des pics des 43 allèles ont été établies par des tests de *Student*. Ces comparaisons ont aussi porté sur les rapports moyens de ces hauteurs de pics.

Pour l'étude de la sensibilité, le travail a porté sur 3 séries distinctes pour lesquelles, au fur et à mesure des dilutions successives allant de la solution mère jusqu'à la dilution au 1/256^{ème}, les nombres d'allèles non détectés (*drop out*) ont successivement été comptabilisés parmi 1161 mesures liées à 43 allèles de l'échantillonnage, ce qui a permis de dresser la « Carte Thermique ».

Les ratios (%) des hauteurs des 2 pics d'un même marqueur (PHR, Peak Height Ratio) ont été déterminés pour mettre en évidence leur diminution en fonction des facteurs de dilution de nos solutions. Le travail a porté sur 3 séries de mesures pour 19 marqueurs à 2 allèles.

Pour cerner la zone d'effondrement, une cartographie du lien qui existe entre ces ratios (%) et les hauteurs de pics (RFU) pour les 3 séries de mesures a été établie.

Le seuil stochastique (Stochastic Threshold) a été déterminé en utilisant les moyennes et écarts-type des hauteurs de 228 pics et de leurs ratios (PHR) correspondant à 19 marqueurs à 2 allèles.

Enfin, pour le suivi des conditions de séparation de 2 profils génétiques (masculin/féminin), les rapports des hauteurs de pics de couples Mas/Fém ont été suivis pour 9 marqueurs hétérozygotes. Les variations ont porté sur 3 séries avec 7 dilutions successives (684 pics). Une *ANOVA* factorielle a été établie pour tester la variabilité de ces rapports en fonction du facteur « série », du facteur «dilution» et de leur éventuelle interaction « série*dilution ».

Les analyses ont été réalisées sur Statistica 64.12 de StatSoftTM, et IBMTM SPSS StatisticsTM 25.0.

Chapitre III : Résultats et Discussion

Chapitre III : Résultats et discussion

III.1. Sélection des échantillons

III.1.1. Quantification

Les concentrations de l'ADN extrait à partir des 15 échantillons (à raison de 3 réplicats par individu), et des 2 témoins de contrôle de la quantification et de l'extraction sont présentées dans le tableau 24.

Échantillons	Concentration
	d'ADN (ng. μ L ⁻¹)
WA1	0.50
WA2	7.26
WA3	0.49
HF1	5.48
HF2	3.47
HF3	4.22
AS1	0.38
AS2	1.34
AS3	6.19
KA1	0.97
KA2	5.27
KA3	1.43
BER1	1.40
BER2	1.23
BER3	0.12
TEX-	0.00
TQ-	0.00

Tableau 24 : Concentration des échantillons d'ADN

(WA, HF, KA, AS, BER : individus de l'échantillon, TEX : contrôle de l'extrait, TQ : contrôle de la quantification)

Pour l'établissement du profil génétique, les échantillons avec la concentration d'ADN la plus haute seront sélectionnés pour chaque donneur (WA2, HF1, AS3, KA2, BER1).

III.1.2. Profil génétique des donneurs

Les profils génétiques obtenus montrent les 24 marqueurs identifiés chez chacun des individus. Le logiciel étiquettera chaque pic par l'allèle et la hauteur de pics correspondants.

À titre d'exemple, le résultat obtenu à partir de l'échantillon KA 2 est montré dans la figure 20. Tous les résultats sont présentés en annexes 23 à 26.

GeneMapper® ID-X 1.5

Project: 19-val-GF-profiles-13-03

Figure 20 : Profil génétique complet obtenu à partir de l'échantillon KA2.

III.1.2.1. Allèles des donneurs

Les résultats établis à partir de chaque donneur et ceux de l'ADN de contrôle du kit « *ABI*TM *DNA Control 007* » sont regroupés dans le tableau 25. Les allèles sont classés selon les marqueurs correspondants.

		WA2	HF1	AS3	KA2	BER1	DNA 007
	D3S1358	17;18	17;18	17	16	16;17	15;16
	vWA	15;16	15;18	14;18	14;16	16;17	14;16
	D16S539	11;13	11	13;14	9;13	10;12	9;10
	CSF1PO	10	12	10;11	10	10;11	11;12
	TPOX	8;10	8;9	8;9	8;9	8;9	8
	Yindel				2	2	2
	AMEL	Х	Х	Х	X ; Y	X ; Y	X ; Y
	D8S1179	10;15	15	13;14	11;13	10;12	12;13
	D21S11	31;33.2	28;30	30	29;30	29;30	28;31
	D18S51	12;21	12;17	15;17	16;18	12;15	12;15
M	DYS391				9	10	11
arq	D2S441	10;11	10;11	11	11;13	11	14;15
ueu	D19S433	14;15.2	14	12;12.2	15;15.2	13;14	14;15
Irs	TH01	8;9	6;9.3	6;9	6;8	9	7;9.3
	FGA	21	21;25	23;24	20;24	25;26	24;26
	D22S1045	15	15	15;16	11;14	11;16	11;16
	D5S818	11;12	12	12	11;13	13	11
	D13S317	11	11;13	12	12	12	11
	D7S820	9	12	10	9;12	10;11	7;12
	SE33	20	17;20	17;21.2	18;30.2	15;18	17
	D10S1248	14;16	14;15	14	14;15	14;15	12;15
	D1S1656	12;17.3	15;16.3	12;14	15;16	14;19.3	13;16
	D12S391	18;22	22;23	20;21	17;23	20;23	18;19
	D2S1338	22;24	17;19	17;20	19;25	16;17	20;23

Tableau 25 : Allèles de chaque système pour chacun des donneurs.

(WA1, HF1, KA3, AS3, BER1: individus de l'échantillon, DNA007 : ADN « ABI™ DNA Control 007 »)

III.1.2.2. Taux d'hétérozygotie

Le taux d'hétérozygoties est calculé pour chacun des individus ainsi que pour l'ADN « *ABI*TM *DNA Control 007* ». Les résultats sont indiqués dans le tableau 26.

	Hétérozygotes	Homozygotes	Taux d'hétérozygotie (%)
WA1	15	7	62,5
HF1	14	8	58.3
AS3	14	8	58.3
KA2	19	5	79,2
BER1	18	6	75,0
DNA 007	18	6	75,0

 Tableau 26 : Taux d'hétérozygotes pour chacun des donneurs.

(WA1, HF1, KA3, AS3, BER1: individus de l'échantillon, DNA007 : ADN « ABI™ DNA Control 007 »)

L'échantillon KA2 présente le meilleur taux d'hétérozygotie (**79.2%**) il sera donc retenu en tant qu'ADN masculin.

L'échantillon WA1 présente le meilleur taux d'hétérozygotie (62.5%) parmi les échantillons féminins, il sera donc retenu pour le paramètre de l'étude de mélange.

III.2. Paramètres de la validation interne du kit GlobalFilerTM

III.2.1 Seuil analytique

Les données des 17 échantillons négatifs sont répertoriées en annexe 1 et les données des 7 échantillons positifs en annexe 2.

A titre d'exemple, le profil obtenu à partir d'un des échantillons positifs est montré en annexe 27; l'un des échantillons négatifs est en annexe 28.

Le tableau 27 résume les résultats des 2 séries de mesures (échantillons négatif et positif, annexe 3).

Couleur		Ν	$\bar{x} \pm \sigma$	Min	Max	Seuil analytique
Bleu	_	17	7,47±2,03	5	12	36
Vert	_	17	8,94±1,48	7	12	36
Noir	_	17	5,94±1,68	4	10	30
Rouge	_	17	9,12±0,93	8	11	33
Violet	_	17	8,59±1,58	6	13	39
Bleu	+	6	12,83±4,17	8	19	57
Vert	+	6	13,67±4,27	10	20	60
Noir	+	6	12,33±4,08	7	17	51
Rouge	+	6	11,67±3,01	9	16	48
Violet	+	6	13,17±3,37	11	20	60

Tableau 27 : Résumé des calculs du seuil analytique

(N : Nombre d'échantillons, $\overline{x} \pm \sigma$: moyenne et écart-type, **Min** : Valeur minimale, **Max** : Valeur maximale, **Seuil** analytique : $3 * Valeur_{max}$

Le calcul du seuil analytique des échantillons négatifs a donné des valeurs comprises entre 30 et 39 RFU; pour les échantillons positifs les valeurs sont comprises entre 48 et 60 RFU.

Nous observons que le bruit de fond est plus élevé pour les échantillons positifs contenant de l'ADN relativement aux échantillons négatifs contenant de l'eau ultra pure. Toutefois, le seuil analytique doit être le plus élevé possible pour éviter que les artéfacts liés au bruit de fond soit confondus avec des allèles.

Nous choisirons donc la plus grande valeur obtenue qui est de **60 RFU** comme seuil analytique pour le kit « *ABI*TM *GlobalFiler* TM » avec le séquenceur « *ABI*TM *3500xL Genetic Analyzer* ». Il y a lieu de noter que cette valeur est supérieure à celle fixée par le fabriquant du kit qui est de 50 RFU (**Thermo Fisher Scientifc, 2016**).

Comme le montrent les comparaisons du tableau 28, cela s'explique par l'équation très conservative qui a été utilisée pour le calcul (Ballpark) qui donne des résultats supérieurs à ceux obtenus avec l'équation suggérée par SWGDAM pour le calcul du seuil analytique (SWGDAM, 2016).

Ballpark = $3 * Val_{max}$ (Martin *et al.*, 2014)

SWGDAM = $2 * (Val_{max} - Val_{min})$ (**SWGDAM**, 2016)

	Couleur		Ν	Min	Max	Ballpark	SWGDAM
	Bleu	-	17	5	12	36	14
	Vert	_	17	7	12	36	10
	Noir	_	17	4	10	30	12
	Rouge	_	17	8	11	33	6
	Violet	_	17	6	13	39	14
_	Bleu	+	6	8	19	57	22
	Vert	+	6	10	20	60	20
	Noir	+	6	7	17	51	20
	Rouge	+	6	9	16	48	14
	Violet	+	6	11	20	60	18

Tableau 28 : Comparaison de deux équations utilisées pour le calcul du seuil analytique.

[N : Nombre d'échantillons, **Min** : Valeur minimal, **Max** : Valeur maximal, **Ballpark** : $3 * Val_{max}$, SWGDAM : $2 * (Val_{max} - Val_{min})$]

Une validation interne a été établie par l'unité de Biologie du Département des Sciences Médico-Légales du District de Colombia en utilisant l'équation suggérée par SWGDAM, un seuil de 70 RFU a été choisi avec des résultats compris entre 40 et 100 RFU, valeurs supérieures à celles que nous avons obtenus, ce qui peut s'expliquer par des différences entre le nombre de cycles de la PCR et la quantité d'ADN utilisée (0.5 ng à 30 cycles) (**Skillman, 2016**).

III.2.2. Répétabilité et reproductibilité

L'étude a été établie sur les hauteurs de pics pour 19 marqueurs hétérozygotes et 5 marqueurs homozygote soit 43 pics au total.

Un profil génétique complet et identique a été obtenu pour l'ensemble des échantillons (Rb1 à Rb5) et (Rd1 à Rd5), les hauteurs des pics de chaque allèle pour chaque échantillon sont consignées dans les annexes 4 et 5, alors que les moyennes avec écart-type, médiane, minimum et maximum, et coefficients de variation (CV) sont représentés dans les annexes 6 et 7.

III.2.2.1. Répétabilité

Un coefficient de variation de 30% est généralement acceptable pour la répétabilité, nous pouvons donc considérer que la variabilité intra-échantillon est parfaitement acceptable, un seul coefficient de variation dépasse très légèrement 30% (30,2%).

Ces résultats démontrent que le protocole d'établissement de profils génétiques en utilisant le kit d'amplification GlobalFilerTM avec le séquenceur ABITM 3500xL est **répétable.** ILa même conclusion a été faite par le Centre des Sciences Médico-Légales de l'Université Marshall sur la répétabilité du kit (**MUFSC**, 2017).

III.2.2.2. Reproductibilité

Cette fois-ci, pour les échantillons (Rd1 à Rd5), la variabilité est sensiblement plus élevée. Ainsi, les coefficients de variation d'un peu plus de la moitié des hauteurs des pics dépassent 30%, ils sont 22 allèles sur 43, soit 51.2% des cas.

Toutefois, la reproductibilité doit être basée sur la comparaison de groupes de mesures opérées par des opérateurs différents, c'est-à-dire la comparaison entre les séries d'échantillons « Rb » et « Rd », et non la comparaison des échantillons de la série « Rd » entre eux.

Les comparaisons par tests de Student (annexe 8) des 2 séries d'échantillons de mesures pour les hauteurs de pics des 43 allèles testés mettent en évidence des différences :

- Non significatives au risque 5% pour 15 couples sur 43 soit 34.9% du total des mesures.
- Non significatives au risque 2% pour 35 couples sur 43 soit 81.4% du total des mesures.
- Non significatives au risque 1% pour 41 couples sur 43 soit 95.4% du total des mesures.

Il s'agit toutefois ici d'un paramètre dont la variabilité n'est pas fortement préjudiciable à la possibilité de lecture des hauteurs de pics. Nous pouvons donc considérer un risque d'erreur plausible et acceptable limité à 2% ce qui nous donne 18.6% du total des mesures hors de l'intervalle de confiance. Nous pouvons donc considérer une moyenne de 8 allèles sur 10 (81,4%) dans l'intervalle de confiance bilatéral pour le test de reproductibilité, et donc seulement 2 allèles sur 10 (18.6%) dont les hauteurs de pics peuvent diverger significativement au risque d'erreur de 2%.

Chose particulière et frappante, nous remarquons que la variabilité n'est pas due à une fluctuation aléatoire des hauteurs de pics entre les 2 séries de mesures mais à une augmentation systématique (Annexe 9, tableau 29) pour chaque allèle entre les séries d'échantillons 1 (Rb) et 2 (Rd). En effet, tous les rapports sont largement supérieurs à 1 (100%).

Marqueur	\bar{x}_1	\bar{x}_2	Rapport (%)	Marqueur	\bar{x}_1	\bar{x}_2	Rapport (%)
D3S1358(16)	6346,4	11164,2	175,9	TH01(6)	3380	3648,2	107,9
vWA(14)	1861,8	3784,6	203,3	TH01(8)	3425,6	3701,4	108,1
vWA(16)	2323	4196,6	180,7	FGA(20)	4318,4	4470,6	103,5
D16S539(9)	1598	3039,2	190,2	FGA(24)	3864,4	4205,6	108,8
D16S539(13)	1279,2	2489,4	194,6	D22S1045(11)	3034	5994	197,6
CSF1PO(10)	2807,4	4809	171,3	D22S1045(14)	2694,6	5524,2	205
TPOX(8)	897,4	1827,6	203,7	D5S818(11)	3449	6700,8	194,3
TPOX(9)	901,8	1624,8	180,2	D5S818(13)	3612	6661,8	184,4
Yindel(2)	4550,6	10257	225,4	D13S317(12)	6140,8	11853,8	193
AMEL(X)	5338	10097	189,2	D7S820(9)	2728,8	5280,2	193,5
AMEL(Y)	4788,4	9063,4	189,3	D7S820(12)	2073	4535,6	218,8
D8S1179(11)	5018,4	8080,4	161	SE33(18)	2239,6	4008,8	179
D8S1179(13)	5239,2	7694,2	146,9	SE33(30,2)	1925,2	3372,4	175,2
D21S11(29	2482,8	4729,8	190,5	D10S1248(14)	3489,2	8976,8	257,3
D21S11(30)	2400,8	4630,6	192,9	D10S1248(15)	3510	7607,8	216,7
D18S51(16)	1928,2	3788,2	196,5	D1S1656(15)	2789,4	6389,8	229,1
D18S51(18)	2107,2	3682,4	174,8	D1S1656(16)	2439,6	5562,4	228
DYS391(9)	2691,8	4071,2	151,2	D12S391(17)	1707,4	3714,6	217,6
D2S441(11)	5976,4	6563,8	109,8	D12S391(23)	1598,2	3619,8	226,5
D2S441(13)	5854	6469	110,5	D2S1338(19)	2717,2	4040,2	148,7
D19S433(15)	4382	4666	106,5	D2S1338(25)	2183,8	3509,6	160,7
D198433(15.2)	4238.8	4486 2	105.8				

Tableau 29 : Rapport des hauteurs de pics entre échantillons 1 et 2 pour les 43 allèles

(\overline{x}_1 : moyenne de la série d'échantillon 1 (Rb), \overline{x}_2 : moyenne de la série d'échantillon 2 (Rd))

Le rapport moyen est égal à $176.8\pm6.1\%$ avec un intervalle de confiance à 95% {164.4; 189.2} et un coefficient de variation de 22.8%.

Le très faible écart-type de la moyenne σ_m (6.1%) et le coefficient de variation bas de 22.8% montrent bien qu'il s'agit d'une augmentation systématique laissant toutes les hauteurs de pics dans des proportions comparables (faible coefficient de variation <30%).

La variabilité inter-échantillons n'a donc probablement rien d'aléatoire et ne doit être due qu'à des différences de concentrations des ADN entre les 2 échantillons.

La vingtaine de graphes suivants (Figure 21) montrent bien cette augmentation systématique des hauteurs de pics qui est valable pour la totalité des allèles entre les séries d'échantillons 1 (Rb) et 2 (Rd).

Figure 21 : Hauteur des pics des séries d'échantillons 1 et 2 (**Echant_1 :** Série d'échantillons Rb, **Echant_2 :** Série d'échantillons Rd)

Malgré la variabilité entre les séries d'échantillons qui doit être due à une différence de concentration d'ADN, l'obtention de profils génétiques complets pour tous les échantillons démontre que le protocole d'établissement de profils génétiques en utilisant le kit d'amplification GlobalFilerTM avec le séquenceur ABITM 3500xL est **reproductible**.

Une étude similaire faite par le Département des Sciences Médico-Légales de l'Alabama en utilisant « *ABI*TM *GlobalFiler* TM *Allelic Ladder* » comme échantillon d'ADN aboutit au même résultat sur la répétabilité du kit d'amplification GlobalFilerTM (Kokoszka, 2014).

III.2.3. Sensibilité

Les hauteurs des pics de chaque allèle pour les 3 séries d'échantillons ont été déterminés à partir des profils obtenus (Annexe 10, 11, 12).

Nous partons d'une solution initiale de 1 ng pour 15 μ L (0.0667 ng. μ L⁻¹). La série de dilutions dont les rapports sont 1, ¹/₂, ¹/₄, 1/8^{ème}, 1/16^{ème}, 1/32^{ème}, 1/64^{ème}, 1/128^{ème} et 1/256^{ème} a donné des concentrations en ADN comme reportés dans le tableau 30. Les calculs des *drop out* et des nombres d'allèles détectés sont en annexe 13.

Sária	Facteur de	Concentration	D	rop-out		Nombre d'allèles détectés			
Serie	dilution	(ng.µL ⁻¹)	Ech ₁	Ech ₂	Ech ₃	Ech ₁	\mathbf{Ech}_2	Ech ₃	% moyen
D1	1	0.06667	0	0	0	43	43	43	100.0
D2	1/2	0.03333	0	0	0	43	43	43	100.0
D3	1/4	0.01667	0	0	0	43	43	43	100.0
D4	1/8	0.00833	0	0	0	43	43	43	100.0
D5	1/16	0.00417	0	4	0	43	39	43	96.9±3.1
D6	1/32	0.00208	4	4	3	39	38	40	90.7±1.3
D7	1/64	0.00104	21	19	21	20	22	19	47.3±2.1
D8	1/128	0.00052	36	34	36	3	4	2	7.0±1.3
D9	1/256	0.00026	35	35	36	2	4	3	7.0±1.3

 Tableau 30 : Concentration, nombre d'allèles détectés et nombre de drop-out pour chaque facteur de dilution.

(Ech₁: série d'échantillon 1, Ech₂: série d'échantillon 2, Ech₃: série d'échantillon 3, %moyen : pourcentage moyen et écart-type)

Nous observons dans le tableau 30 et la figure 22 que jusqu'à la dilution au $1/8^{\text{ème}}$ (D4), le nombre de pics non observés est nul, c'est-à-dire que des profils complets ont été obtenus pour les dilutions D1 à D4.

Ensuite, jusqu'à la dilution au $1/32^{\text{ème}}$ (D6), le nombre de pics non observés ne dépasse pas en moyenne 4 sur un total de 43 soit un pourcentage inférieur à 10% (9.3±1.3%). Ce pourcentage grimpe ensuite brutalement pour dépasser les 50% à la dilution au $1/64^{\text{ème}}$ (52.7±2.1%).

Figure 22 : Pourcentage d'allèles non observés selon le facteur de dilution

Le kit GlobalFilerTM a donc une sensibilité bien supérieure (**0.008 ng.µL**⁻¹ **ou 125 pg par volume réactionnel**) à celle déterminée par le fabricant ($0.066ng.µL^{-1}$ ou 1 ng par volume réactionnel) pour 29 cycles de PCR, résultats similaires à ceux de deux autres études (**Thermo Fisher Scientific, 2016**).

La première étant une validation développementale faite par le laboratoire de la firme Thermo Fisher ScientificTM (Luderman *et al.*, 2017), et la deuxième étant une évaluation de la

performance de plusieurs kits STR faite par le laboratoire de profilage génétique de la « *Health Sciences Authority* » à Singapour (**Tan et al., 2017**). **III.2.3.1. Seuil stochastique**.

Les deux méthodes utilisées pour déterminer le seuil stochastique ont donné les résultats suivants :

Méthode 1 : A partir de la figure 23, la hauteur du plus grand pic issu d'un marqueur hétérozygote portant un drop-out (carrés jaunes) est de 230 RFU.

				-	-	-	-	-	-	IVI	arque	urs	-	-			-	-	-	
Facteurs de dilution	Séries	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	1																			
1	2																			
	3																	L		
	1																			
1/2	2		1																	
,	3		1																	
	1																			
1/4	2		1																	
	3		1																	
	1																			
1/8	2																			
2,0	3		•																	
	1		157																	
1/16	2											89					87	110		133
	3		1																	
	1							149	67			67		92			170	122		
1/32	2	104			67	80			72							77		133	158	
	3		•									97					180			
	1					139				95	182		169			128			65	
1/64	2	114					82				143		80	62		185				186
	3		74	95					83	128	109		74							230
	1									100										
1/128	2								,		67	86	60		-					
	3																			68
	1	92											66							
1/256	2									71	72	71								
	3													107			66			

Figure 23 : Carte thermique représentant les résultats de la sensibilité

(Vert : Présence des deux allèles, Jaune : présence d'un seul allèle avec sa hauteur, Rouge : absence d'allèles, Marqueurs : 1 : D3S1358, 2 : vWA, 3 : D16S539, 4 : CSF1PO, 5 : AMEL, 6 : D8S1179, 7 : D21S11, 8 : D18S51, 9 : D2S441, 10 : D19S433, 11 : TH01, 12 : FGA, 13 : D22S1045, 14 : D7S820, 15 : SE33, 16 : D10S1248, 17 : D1S1656, 18 : D12S391, 19 : D2S1338)

Méthode 2 : A partir toujours de la même figure, la moyenne des hauteurs de pics (faux homozygotes) est calculée et donne 231.5 RFU (Tableau 31).

Ν	\bar{x}	σ	$\bar{x} + 3\sigma$
52	106.9	41.5	231.5

 Tableau 31 : Méthode 2 du calcul du seuil stochastique

(N : Nombre de valeurs, \overline{x} : Moyenne, σ : écart-type, $\overline{x} + 3\sigma$: relation pour le seuil stochastique)

Ces résultats nous confortent dans la détermination d'un seuil stochastique validé à 230 **RFU**, résultat proche de l'étude fait par la *Health Sciences Authority* à Singapour en utilisant la

méthode 2, ce qui leur a permis de déterminer le seuil stochastique à 240 RFU (Tan et al., 2017).

Voici le graphe (**Figure 24**) des hauteurs moyennes des pics pour les divers marqueurs et les dilutions allant de 1 à $1/16^{\text{ème}}$.

Figure 24 : Hauteurs moyennes des pics pour les divers allèles et les dilutions de 1 à 1/16^{ème}

Le graphe suivant (**Figure 25**) fait suite au précédent pour les dilutions allant du $1/32^{\text{ème}}$ au $1/256^{\text{ème}}$. On voit bien tous les pics moyens en dessous du seuil stochastique (230 RFU).

Figure 25 : Hauteurs moyennes des pics pour les divers allèles et les dilutions du 1/32^{ème} au 1/256^{ème}

III.2.3.2. Ratio des différentes hauteurs de pics

Les calculs des ratios entre les hauteurs des pics (Peak Height Ratio, PHR) ont porté sur les données de 19 marqueurs hétérozygotes (à 2 allèles) donc 38 allèles au total. Nous donnons les résultats en annexe 14.

La **figure 26** illustre la moyenne des 3 séries d'échantillons avec l'intervalle de confiance à 95% des PHR pour les dilutions successives allant de 1 au $1/64^{\text{ème}}$.

Figure 26 : PHR en fonction du facteur de dilution

Nous pouvons considérer que jusqu'à la dilution ¹/₄, les PHR moyens restent au-dessus de 80% (ligne verte horizontale). Nous remarquons aussi la forte variabilité (valeurs hors de l'intervalle de confiance). Les PHR chutent en dessous de 60% après la dilution au 1/16^{ème} (ligne rouge horizontale).

Il est aussi intéressant de voir comment évoluent les PHR en fonction des hauteurs de pics. La figure 27 illustre cette variation des PHR en fonction des hauteurs des pics (RFU)

(Ratio % : PHR en pourcentage, Série 1, 2, 3 : Séries d'échantillons 1, 2, 3)

On voit que les PHR dépassent 60% pour tous les pics dépassant 2000 RFU pour les 3 séries. En dessous de cette valeur, nous observons la chute brutale des PHR.

Tout cela montre que le PHR est un indicateur clé de la qualité du profil obtenu, il est donc important de déterminer un seuil minimal pour le PHR, en dessous duquel on considère que les deux allèles ne proviennent pas du même individu, et n'appartiennent pas au même profil génétique.

Pour déterminer ce seuil, le plus fort déséquilibre allélique (*most severe imbalance*) est utilisé, c'est-à-dire la plus basse valeur des PHR, calcul opéré pour les dilutions qui donnent un profil génétique complet (D1 à D4), (Annexe 14). Nous voyions que ces valeurs sont de 41.1, 49.4 et 47.0% pour les 3 séries du facteur de dilution D4 (**Tableau 32**).

Série	Facteurs de dilution	Plus fort déséquilibre allélique (%)	Hauteur moyenne (RFU)	PHR moyen (%)	σ(PHR) (%)
1	$1/8^{eme}$	41.1	849.8	77.7	16.3
2	1/8 ^{ème}	49.4	802.1	75.6	15.1
3	1/8 ^{ème}	47.0	929.1	76.4	15.6

1 ableau 52 : Plus fort desequilibre allengue de la dificition 1/8	Tableau	t déséquilibre allélique	e de la dilution $1/8^{3}$
---	---------	--------------------------	----------------------------

Ainsi, pour une quantité d'ADN >= 125 pg, le seuil minimal du PHR est de 41%.

III.2.4. Etude de mélange

L'échantillon WA1 présente le meilleur taux d'hétérozygotie (62.5%) parmi les échantillons féminins, il sera donc retenu pour le paramètre de mélange avec l'échantillon DNA007 à cause des nombreux marqueurs hétérozygotes qui comprennent des allèles différents pour les deux ADN (**Tableau 33**).

Tableau 33 : Nombre d'allèles hétérozygotes différentes des ADN masculins et féminins

	KA	BER	DNA 007
WA	5	6	8
HF	4	4	7
AS	7	7	5

La hauteur des pics de chaque allèle pour les 3 séries d'échantillons pour les deux contributeurs a été déterminée à partir des profils obtenus (Annexes 15 à 20). A titre d'exemple est montré un profil obtenu pour le ratio 1:1 (Annexe 29).

On note une absence de profils pour les réplicats :

- De la série 3, ratio 1:4, due à un problème de migration du standard de taille
- Et la série 2, ratio 1:20, due une erreur de manipulation (Non dépôt de l'échantillon).

III.2.4.1. Proportion des contributeurs

Les résultats du calcul des proportions du contributeur mineur (DNA 007) pour les 3 séries et tous les ratios sont représentés en annexe 21. La moyenne pour chaque série ainsi que la moyenne totale est donné en tableau 34, la différence entre la proportion théorique et la proportion réelle a aussi été calculée.

Ratio	1:1	1:2	1:3	1:4	1:5	1:10	1:20
Série 1 (%)	42.2	25	19.6	15.4	15.5	8.7	3.7
Série 2 (%)	38.7	25.7	21.3	15.9	15.6	8.2	
Série 3 (%)	39.8	26.8	18.7		15.1	8.4	2.8
$\overline{x} \pm \sigma$ (%)	40.3±0.6	25.9±0.6	19.9±0.6	15.7±0.8	15.4 ± 0.6	8.5±0.6	3.5±0.8
Théorique (%)	50	33	25	20	16.6	9	4.7
Différence (%)	-9.7	-7.1	-5.1	-4.3	-0.9	-0.5	-1.2
			(TA Mouron	na ágant tr	m (a)		

 Tableau 34 : Moyenne des proportions pour chaque ratio.

 $(\overline{x}: Moyenne, \sigma: écart-type)$

La figure 28 représente la moyenne des proportions en fonction des différents ratios.

Figure 28 : Proportion en fonction des ratios

(•:Moyenne, \Box : Moyenne±Erreur standard, I: Ecart-type)

Ces résultats montrent que pour chaque ratio, il y a une différence entre la proportion théorique et la moyenne des proportions réelles jusqu'à -9.7% pour le premier ratio (1:1) et -7.1%, -5.1%, -4.3%, -0.9%, -0.5%, -1.2% pour les ratios (1:2), (1:3), (1:4), (1:5), (1:10), (1:20) respectivement.

Pour cerner d'où provient la variabilité, on utilise alors une ANOVA factorielle pour vérifier

- L'effet «série », c'est-à-dire la variation des rapports en passant d'une série à l'autre
- L'effet «ratio», c'est-à-dire la variation des rapports en passant d'un ratio à l'autre
- Mais surtout l'effet d'interaction «Série*Ratio», c'est-à-dire qu'en passant d'une série à une autre, est-ce que les variations des rapports pour les différents ratios restent

comparables ou non. Ce 3^{ème} élément va nous renseigner aussi sur la qualité de nos séries.

On voit (Annexe 22) qu'il n'y a aucun effet série sur la variation des rapports (p=0.83), ce résultat confirme les précédents, les chutes des rapports sont parfaitement comparables dans chacune des 3 séries, ce qui nous conforte dans l'idée d'une homogénéité de nos séries.

Par contre, l'effet du ratio est très hautement significatif (p<0.001, vraie valeur $8.9.10^{-84}$), les rapports chutent de façon similaire d'une série à l'autre puisqu'il n'y a pas d'interaction Série*Ratio (p=0.459).

Par ailleurs, la différence entre la valeur théorique et la moyenne calculée des proportions de chaque contributeur doit être probablement due à des erreurs de manipulation ou des phénomènes aléatoires liés à l'amplification. Ainsi, pour les futurs échantillons contenant un mélange d'ADN, les proportions seront calculées avec un intervalle de confiance conformément aux pourcentages des différences trouvéss pour chaque ratio.

III.2.4.2. Rapport entre les deux contributeurs

Les résultats du calcul des rapports entre les deux contributeurs des 3 séries et tous les ratios sont représentés en tableau 35.

Série	Ratio	D3S135	D16S5	D8S11	D2S4	TH0	SE3	D10S12	D1S16	D2S13
		8	39	79	41	1	3	48	56	38
1	1:1	77,8	94,9	79,4	71,8	52,9	95.3	81,5	74,2	99.3
1	1:2	36,9	46,7	37,1	39,1	26,8	36,9	39,7	31,0	42,6
1	1:3	33,1	31,5	21,0	18,2	27,9	34,4	35,8	19,8	35,4
1	1:4	23,1	21,0	23,0	17,8	19,9	25,3	22,2	21,1	24,5
1	1:5	20,4	38,2	20,9	17,1	16,4	25,9	22,9	15,4	21,1
1	1:10	15,2	15,8	8,4	7,7	8,5	13,0	15,1	12,2	15,2
1	1:20	15,1	4,9	4,3	3,8	6,6	3,9	4,8	8,1	6,9
2	1:1	75,8	99,2	73,6	46,5	66,5	99,0	71,1	73,7	61,0
2	1:2	38,4	42,4	49,0	32,3	36,0	49,3	31,1	40,4	37,4
2	1:3	26,1	43,9	30,9	28,8	27,6	31,6	42,0	22,0	41,6
2	1:4	26,8	23,4	25,7	17,1	22,4	23,8	22,9	13,9	24,1
2	1:5	22,8	28,3	21,9	14,2	25,8	26,3	18,3	21,9	23,3
2	1:10	5,7	16,8	7,7	8,8	10,7	13,3	17,0	16,0	14,6
2	1:20									
3	1:1	87,0	90,3	69,0	76,8	71,7	96.3	57,2	65,8	77,2
3	1:2	39,0	59,9	44,9	37,8	41,0	49,9	40,2	40,9	43,7
3	1:3	34,5	33,1	25,2	18,9	23,4	32,4	34,5	22,3	31,6
3	1:4									
3	1:5	15,6	32,0	18,7	16,5	16,9	29,8	20,5	16,1	22,5
3	1:10	14,3	12,3	9,8	7,2	9,7	13,5	12,7	10,8	12,2
3	1:20	3,30	5,7	3,5	4,0	6,1	2,4	2,8	4,4	13,2

 Tableau 35 : Rapport (%) entre les deux contributeurs

La figure 29 représente la moyenne des rapports entre les deux contributeurs en fonction des ratios.

Figure 29 : Rapport entre les deux contributeurs en fonction des ratios

(•:Moyenne, **I**: Moyenne ± Erreur standard, **I**: Ecart-type)

D'après les résultats de l'étude de sensibilité, pour dire que deux allèles appartiennent au même locus, le PHR doit être supérieur à 41%. Ainsi, pour un échantillon contenant un mélange d'ADN et pour pouvoir séparer les allèles de deux contributeurs, le PHR doit être inférieur à 41%.

Les résultats des calculs des rapports montrent que pour les 3 séries du ratio (1:1), le rapport est compris entre 46.5% et 99.2%, valeurs supérieures au PHR (41%).

Concernant le ratio (1:2), le rapport fluctue entre 59.9% et 26.8%, pour le ratio (1:3) le rapport fluctue entre 43.9% et 18.2%, ces valeurs n'étant pas toutes supérieur ou toutes inférieurs à 41%, et à partir du ratio du ratio (1:4) tous les rapports calculés sont inférieurs à 41%.

D'après ces résultats et ceux obtenus par le calcul des proportions des contributeurs, on peut affirmer que le kit d'amplification $GlobalFiler^{TM}$ ne permet pas la séparation des profils génétiques pour le ratio 1:1, et seule une séparation partielle est possible pour les ratios 1:2 et 1:3.

En revanche, à partir du ratio **1:4**, une séparation totale des profils génétiques des contributeurs est possible.

Conclusion

Conclusion

Cette étude nous a permis d'évaluer les performances du kit *GlobalFiler*[™] qui traite 24 loci en multiplexe sur le séquenceur 3500 xL dans le but de leurs utilisations au sein du Laboratoire d'Identification Génétique de l'INCC. Pour cela, nous avons testé 5 paramètres en suivant le protocole préétabli du fabriquant ainsi que les directives du SWGDAM et des divers articles de validation développementale et interne.

L'analyse des résultats nous a permis d'établir un seuil analytique à 60 RFU. Cette valeur a été ensuite utilisée pour le reste des paramètres.

Pour l'étude de répétabilité et de reproductibilité, des profils génétiques complets et identiques ont été obtenus, démontrant ainsi, malgré la présence de variations entre la hauteur des pics, que ces deux conditions sont respectées.

L'étude de la sensibilité nous a permis de déterminer que la quantité minimale d'ADN pouvant produire un profil génétique complet, et qui est de 0.125 ng ou 0.008 ng. μ L⁻¹.

Nous avons aussi pu établir que pour des quantités d'ADN comprises entre 0.031 et 0.062 ng (ou 0.002 et 0.004 ng. μ L⁻¹), plus de 80% des allèles sont présents, ce qui nous permet d'obtenir des profils génétiques exploitables.

L'étude de sensibilité nous a aussi permis de fixer la limite stochastique à 230 RFU et le PHR à 41%.

Enfin, l'étude de mélange d'ADN nous a montré que la séparation totale des profils génétiques de deux contributeurs peut se faire à partir du ratio 1:4, ou une proportion de contributeur minoritaire/majoritaire de 20/80%, avec un rapport entre les deux contributeurs inférieur au PHR (41%).

Les résultats obtenus pour cette étude nous permettent de conclure que le kit d'amplification *GlobalFiler*TM est fiable, efficace et robuste pour l'analyse d'échantillons dans le cadre de l'identification génétique en criminalistique.

L'objectif, dans un avenir proche, sera d'optimiser les performances de ce kit en diminuant les volumes des mélanges réactionnels afin d'analyser un plus grand nombre d'échantillons tout en réduisant le cout de l'analyse.
Références Bibliographiques

Références bibliographiques

Α

- **Applied BiosystemsTM**, (2010). 3500 and 3500xL Genetic Analyzers User Guide, URL: http://tools.thermofisher.com/content/sfs/manuals/4401661, 02/05/19.
- Applied Biosystems[™], (2017). GlobalFiler[™] PCR STR Typing by Forensic DNA Testing Laboratories. URL : http://tools.thermofisher.com/content/sfs/manuals/4477604, 14/06/19.
- Amorim A., Pereira L., (2005). Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. Forensic Sci Int; 150:17–21.
- Armour L., Jeffreys J., (1992). Humain minisatellite alleles detectable only after PCR amplification. Genomics, Elsevier 12 :116-124.

B

- Bérard S., Rivals E., (2002). Comparison of Minisatellites. Proceeding of the 6th Annual International Conference on Research in Computational Molecular Biology. ACM Press. vol 2676, 32-41.
- Bernot D., (2001). Genome, Transcriptome and Proteome Analysis; Paris, Ed: Dunond, 18 p
- Bois P., (2003). Hyper-mutable minisatellite : a Human affaire ? Genomics 81 :349-55.
- **Brown T.A.**, (2001). Identifying the sex of human remains by ancient DNA analysis. Anc. Biomol.3:215-25.
- Brown T.A., (2004). Genomes. Paris: Edition Flammarion, 130 p.
- Budowle B., Chakraborty R., Carmody G. & Monson L., (July 2000). Source Attribution of a Forensic DNA Profile. Forensic Science Communications, 2(3):1-6.
- **Brune G. (2017).** STR Analysis Using Thresholds Forensic Focus #5. URL: https://www.thermofisher.com/blog/behindthebench/str-analysis-using-thresholds-forensic-focus-5/, 28/05/19.
- Budowle B., Moretti T.R., Niezgoda S.J., & Brown B.L. (1998). CODIS and PCRbased short tandem repeat loci: law enforcement tools. In *Second European Symposium on Human Identification* Promega Corporation, Madison, Wisconsin (Vol. 7388).
- **Buquet A., (2011)**. *Manuel de criminalistique moderne et de police scientifique*, Presses universitaires de France (PUF), 5^e édition, Paris. 396 p.
- Butler J.M. & Li E., (2014). Forensic DNA typing, Elsevier, USA 2014, pp 43-78.
- **Butler J.M.**, (2005). Forensic DNA Typing: Biology, Technology, And Genetic OF STR Markers. Elsevier (USA). 237 p.
- **Butler J.M.**, (2006). Genetics and Genomics of Core Short Tandem Repeat Loci Used in Human Identity Testing. Journal of forensic science, 51 (2) : 253-265.
- **Butler J.M., (2010).** Fundamentals of Forensic DNA Taping. Contribution of the National Institue of Standards and Technology. Elsevier (USA) 8:147-205.
- **Butler J.M.**, (2003). Forensic DNA typing: Biology and technology behind STR markers. Academic press, 2ème edition, 28- 82- 94 p.
- **Butler J.M.**, (2011). Advanced topics in Forensic DNA typing: Methodology. USA (p:49-69).
- Butler J.M. & Hill C., (2012). Biology and genetics of autosomal STR loci useful for forensic analysis, Forensic Science Review,24:15-26.

С

- Camire R., Ann Denchy R., Day G.A., Lanzano P., Sheth S. & Brown S., (2003) Prenatal diagnosis of factor X deficiency using a combination of direct mutation detection and linkage analysis with an intragenic single nucleotide polymorphism. Prenat. Diagn. ;23(6):457-60.
- Carvalho C. M., Fujisawa M., Shirakawa T., Gotoh A., Kamidono S., Freitas Paulo T. & Santos F.R., (2003). Lack of association between Y chromosome haplogroups and male infertility in Japanese men. *American Journal of Medical Genetics Part A*, 116(2), 152-158.
- Coble M.D. & Just R.S., (2016). The Armed Forces DNA Identification Laboratory, Rockville, MD, USA chapter 26. P:222-225.
- Cunha E., Pinheiro J. & Nuno-Vieira D., (2006). Identification in forensic anthropology: its reation to genetics. International Congress Series, 1288: 807–809.
- Curran J.M., Triggs C.M., Almirall J.R., Buckleton J.S., & Walsh K.A.J., (1997). A guide to forensic DNA profiling. In: The interpretation of elemental composition measurements from forensic glass evidence, Vol II. *Science & Justice*, *pp* : 245-249.

D

- Debrauwère H., Nicolas A., Vergnaud G., Buard J., Tessier J. & Aubert D., (2000). Mécanisme d'instabilité des minisatellites. Médecine/sciences, 16 : 415-7.
- Dettlaff-Kakol A. & Pawlowski R., (2002). First Polish DNA "manhunt"-an application of Ychromosome STRs. Int. J. Legal Med.;116(5):289-91.
- **Doutremepuich C., (2001) :**10 ans d'empreinte génétique :la documentation Française, Paris , Ed : Hachette éducation ,75 p.
- **Doutremepuich C., (2002)**. Les empreintes génétiques en pratique judiciaire. Med Leg.12(9) ;10-25.
- Doutremepuich C., Roca I., Beaufils M., Esponda A. & Said G., (2010). Homicide Investigation: Anthropology and Genetic analysis for the crime scene in Forensic Genetic Research Progress Fabricio Gonzalez Andrade Editor, Nova Publisher, 73-90.
- **Doutremepuich C., (2012).** Les empreintes génétiques en pratique judiciaire." *Bulletin de l'Académie Nationale de Médecine* 196.6: 1117-1130.
- Doutremépuich F., Beaufils M. & Doutremépuich C., (2003). Les empreintes génétiques en pratique judiciaire. Journal de la Société de Biologie. Article : DNA profile in legal practice 197 (4), 329–331.

F

- Frégeau C.J., Germain O. & Fourney R.M., (2000). Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent Profiler PlusTM fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints. *Journal of Forensic Science*, *45*(2), 354-380.
- Frégeau C.J., Germain O. & Ron M. (2000). Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent Profiler Plus[™] fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints." *Journal of Forensic Science* 45.2: 354-380.

• Frippiat C., De Roy G., Fontaine L.M., Dognaux S., Noel F., Heudt L., & Lepot L. (2015). Nylon flocked swab severely reduces Hexagon Obti sensibility. *Forensic science international*, 247, 126-129.

G

- Genetic Engineering & Biotechnology News, (2013). Life Technologies: A Look Back, URL: https://www.genengnews.com/news/life-technologies-a-look-back/, 04/06/19.
- **Girod A., (2002).** Exploitation et gestion systématique des traces de souliers : une approche complémentaire pour l'investigation criminelle des cambriolages, Thèse de doctorat. Ecole des sciences criminelles, Institut de police scientifiques, Faculté de droit, Université de Lausanne.
- González-Andrade F., Bolea M., Martínez-Jarreta B., & Sánchez D., (2006, April). DNA typing in missing persons in Ecuador (South America). In *International Congress Series*. Elsevier (Vol. 1288, pp. 544-546).
- Griffiths A. J., Gelbart W. M. & Miller J. H., (2001). *Analyse génétique moderne* : De Boeck Supérieur.Ed : Lavoisier, Paris. France. 380 p.

Η

- Hartl L.D. & Jones E., (2003). Génétique : Les grands principes, Ed : Dudon, Collection : Science Sup, Paris France. 636 p.
- Hedman J., Ågren J. & Ansell R., (2015). Crime scene DNA sampling by wet-vacuum
- applying M-Vac. Forensic Scince International Genetics Supplement Series, pp89-90.
- Henry J.P., Gouyon P.H., (1997)."Précis de Génétique des populations", Ed : Masson, Paris, France ,186p.
- Henry R.J., (1998). Plant DNA Extraction, In: Plant Conservation Genetics, Southern Cross University, Lismore, Australia, p245.
- Hudson B., Beatty T., Beatty K., Al Bastaki H., Kuyper L. & Al Shamsi R., (2018) Internal Validation of the Biology and DNA Section of the Dubai Police Headquarters' Science Research Laboratory, Marshall University Forensic Science Center.

J

- Kokoszka J., (2014). Alabama's Internal Validation of the GlobalFiler STR Kit for Forensic Casework, Alabama Department of Forensic Sciences. URL: https://strbase.nist.gov/training/ISHI2013-GlobalFiler-Kokoszka, 30/06/19.
- Jeffreys A.J., Brookfield J.F. & Semeonoff R., (1985). Positive identification of an immigration test-case using human DNA fingerprints. Nature. Vol 322.
- Jessica S., (2016). Internal Validation GlobalFiler PCR Amplification Kit using the 3500xL Genetic Analyzer. Forensic Biology Unit-DFS, 7(1). URL: https://dfs.dc.gov/sites/default/files/dc/sites/dfs/page_content/attachments/GlobalFiler%2 0Using%20the%2035003500xL%20Validation, 20/05/19.
- Jobling M.A., Pandya A. & Tyler-Smith C., (1997). The Y chromosome in forensic analysis and paternity testing. Int. J. Legal Med: 110,118-24.

K

• Kaplan J.C. & Delpech M., (1989). Biologie moléculaire et médecine 610. Flammarion, 4 rue Casimir-Delavigne, 75006 Paris. 1989 ISBN 2-257-10488-9.

- Kaplan J.C et Delpech M., (1994). -Biologie moléculaire et médecine. Médecine/Science. Flammarion. Paris ; Édition : 3e édition. 815 p<u>.</u>
- Kashyap V.K., Chattopadhyay P., Dutta R. & Vasulu T.S., (2004). Genetic structure and affinity among eight ethnic populations of Eastern India: Based on 22 polymorphic DNA loci. American Journal of Human Biology. Vol 16, Issue 3, 5-23.
- Kempton P., Urquhart A. & Gill D., (1994). Variation in Short Tandem Repeat sequences —a survey of twelve microsatellite loci for use as forensic identification markers; International Journal of Legal Medicine, 107(1), 2, 13–20.
- Klein S., (2011). presentation at the CAC meeting (Sacramento, CA), approaches to estimating a stochastic threshold. pub_press,3(8),1-19.
- Koyama H., Iwasa M., Tsuchimochi T., Maeno Y., Isobe I., Matsumoto T. & Nagao M. (2002). Utility of Y-STR haplotype and mtDNA sequence in personal identification of human remains. Am. J. Forensic Med. Pathol.; 23(2):181-5.
- Kumar P., Gupta R., Singh R. & Jasuja O., (2015). Effects of latent fingerprint development reagents on subsequent forensic DNA typing: A review. J Forensic Leg Med.; 32:64-9.

L

- Laboratory of Forensic Genetics and Molecular Archeology. Nature-Index. (en ligne) .(le 21/06/19) .URL: http://med.kuleuven.be/labfor/index.html.
- Lacombe. K. (1996). Santé Publique Médecine Légale ; Médecine du travail,2eme Ed. 140 p.
- Lacombe D., Toutain A., Gorlin R.J., Oley C.A. & Battin J., (1996). Clinical identification of a human. Ann Genet; 37: 184-91.
- Lambert J.A. & Evett I.W. (1996), The Impact of Recent Judgements on the Presentation of DNA Evidence, Science & Justice 38(4): 266-270.
- Lamorile J., Andant C., Gouya L. & Ducamp S., (2008) .Cell.Mol.Biol. 9 (6) ,48,33-41.
- Lander S., Chen C., Linton M. & Birren B., (2001). Initial sequencing and analysis of the human genome. Nature. 15;409(6822):860-921.
- Landsteiner K., (2001). Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zbl Bakt; 27:357–62.
- Laurent F.X., Vibrac G., Rubio A., Thévenot M.T., & Pène L., (2017). Les nouvelles technologies d'analyses ADN au service des enquêtes judiciaires. *Médecine/sciences*, 33(11), 971-978.
- Loistron S., (2009). Les empreintes génétiques en médecine légale : réalisation, législation. Thèse pour le diplôme d'état de docteur en chirurgie dentaire. Nantes, université de Nantes .126p.
- Ludes B. & Mangin P., (1992) Les empreintes génétiques en médecine légale (Coll. G2). Editions Médicales Internationales. 160 p.
- Ludes B. & Magin P., (2017) : Les empreintes génétiques en médecine légale. L'archive ouverte pluridisciplinaire HAL. URL : https://dumas.ccsd.cnrs.fr/dumas_15/06/19.
- Lupo A. M., Huffel V. & Rouger P., (2007) Les empreintes génétiques : nouvel outil en médecine légale. Paris. Elsevier Masson.80 p.

• Lygo J.E., Johnson P.E., Holdaway D.J., Woodroffe S., Whitaker J.P. & Clayton T.M. (1994). The validation of short tandem repeat (STR) loci for use in forensic casework. Int. J. Legal Med.;107(2):77-89.

Μ

- Mansuet-lupo A., Rouger P. & Van Huffel V., (2007). Les empreintes génétiques : état de l'art en 2007, techniques, application et législation. Transfusion clinique et biologique, Volume 14, n° 3 14 : 334 342.
- Mathyer J. & Reiss R., (1986). Pionnier de la criminalistique : Les années lausannoises et la fondation de l'Institut de police scientifique et de criminologie Institut de police scientifique et de criminologie. Lausanne. Ed. Payot.673 p.
- Matthew J., Mulero J., Lagacé R.E., Hennessy L.K., Short M.L. & Wang D.M., (2018). Developmental validation of GlobalFiler[™] PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. International Journal of Legal Médicine. Vol 132, Issue 6, pp 1555–1573.
- Coble M.D., (Mars 15 2011). Design and Execution of Validation Studies for Establishing DNA Mixture Interpretation Procedures, DNA Mixture Interpretation Workshop pub.press (en ligne),10(6) (le 02/07/19) .https://strbase.nist.gov/pub_pres/ASCLD-LAB-Jan2015_
- Myriam H., (2008). Génétique moléculaire et evolutive,2 eme Ed Maloine. Paris : 463 p.
 N
- Naslund K., Saetreb P., Salomé J.V., Bergstrfma T.F., Jareborga N., & Jazinb E., (2005). Genome-wide prediction of human VNTRs. Genomics, 85: 24–35.
- Nicklas J. A, Buel E (2003). Quantification of DNA in forensic samples. Anal. Bioanal. Chem., Epub 376(8), 1160.

Р

- **Parson W, Niederstätter H, Brandstätter A, Berger B (2003).** Improved specificity of Y-STR typing in DNA mixture samples. Int. J. Legal Med.; 117:109–114.
- Schneider P.M., (2009). Expansion of the European Standard Set of DNA Database Loci—the Current. Promega Germany, 16, 1-2.
- Petkovski E., (2006). Analysis of Y-SNPs in ancient samples. Progress in Forensic Genetics 11; ICS; 10(5): 15-46.
- Pham-Hoai, E., Pussiau A., & Curci J.Y., (2017). ADN, une perpétuelle avancée. *Revue Francophone des Laboratoires*, 2017(489), 67-76.
- **Pitel F. & Riquet J., (2000).** Polymorphismes génétiques : Les marqueurs Anonymes et la détection de leur polymorphism. INRA Génétique Cellulaire BP, vol 3 (27), 310-380.
- **Pizzamiglio M., Mameli A., Denari D. & Garofano L. (2004).** Forensic identification of a murderer by typing volunteers of a small village of Northern Italy. International Congres Series 1261 : 440–442.
- **Poirier K., (2013).** Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria. Eur J Hum GenetApr. 21(4):381-5.
- **Poirier N., (2014).** L'utilisation de La Preuve Par l'ADN. Université De Sherbrooke Faculté De Droit. New England Innocence, 93 P.
- **Primorac D., Schanfield M.S. & Prmorac D., (2014).** Application of forensic DNA testing in the legal system. Croatian medical journal, (41)1 : 32-46.

• **Primorac D. & Schanfield M.S., (2014).** Forensic DNA Application: An Interdisciplinary Perspective. CRC Press, vol 5(8): 55-105.

0

R

- Quintana-Murci L., Jamain S. & Fellous M., (2012) : "Origine et évolution des chromosomes sexuels des mammifères The origin and evolution of mammalian sex chromosomes. Médecine/sciences 15 : 974-82.
- **Renard K.**, (2007). The Effect of Common Fingerprint Detection Techniques on the DNA Typing of Fingerprints Deposited on Different Surfaces, Journal of Forensic Identification 54(1).
- Rolf B., Keil W., Brinkmann B., Roewer L. & Fimmers R., (2001). Paternity testing using Y-STR haplotypes: assigning a probability for paternity in cases of mutations. Int. J. Legal Med. 2001;115(1):12-5.
- Rouger P. (2000). Les empreintes génétiques. Presses Universitaires de France, 40 p.

- Santos F.R., Epplen J.T. & Pena S.D., (1993). Testing deficiency paternity cases with a Y-linked tetranucleotide repeat polymorphism. EXS ,1993; 67:261-5.
- Schraml E., Daxberger H., Watzinger F. & Lion T., (2003). Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: The Vienna experience Leukemia NCBI.17(1):224-7.
- Shawky R.M., el-Aleem K.A., Rifaat M.M., el-Naggar R.L. & Marzouk G.M., (2002). Rapid carrier screening using short tandem repeats in the phenylalanine hydroxylase gene. East Mediterr. Health J.8(1):49-54.
- Sibille I., Duverneuil C., Lorin de la Grandmaison G., Guerrouache K., Teissiere F., Durigon M. & De Mazancourt P., (2002). Y-STR DNA amplification as biological evidence in sexually assaulted female victims with no cytological detection of spermatozoa. Forensic Sci. Int.125(2-3):212-6.
- Simmons R., Deacon P., Phillips D.J. & Farrugia K., (2014). The effect of mark enhancement techniques on the subsequent detection of saliva. Forensic Sci Int. 2014; 244:231-46).
- Smith P.J. & Ballantyne J., (2007). Simplified low-copy-number DNA analysis by post-PCR purification. J Forensic Sci. 2007; 52:820–829.
- **Stoilovic M. (1991)** Detection of semen and bloodstain using the polilight as light source. Forensic Sci Int 1991; 51:289 96.
- Sullivan K.M., Mannucci A., Kimpton C.P. & Gill P., (1993). A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques ;15 :636–41.
- Suzuki M., Muto S., Hara K., Ozeki T., Yamada Y., Kadowaki T., Tomita K., Kameyama S. & Kitamura T., (2005). Single-nucleotide polymorphisms in the 17betahydroxysteroid dehydrogenase genes might predict the risk of side-effects of estramustine phosphate sodium in prostate cancer patients. Int. J. Urol. 2005;12(2):166-72
- Swango, K. L., Hudlow, W. R., Timken, M. D., & Buoncristiani, M. R. (2007). Developmental validation of a multiplex qPCR assay for assessing the quantity and

S

quality of nuclear DNA in forensic samples. *Forensic science international*, 170(1), 35-45.

- SWGDAM (Scientific Working Group on DNA Analysis Methods), (2012). Validation guide-line. URL: https://www.swgdam.org/publications, 12/06/19.
- SWGDAM (Scientific Working Group on DNA Analysis Methods), (2016). Interpretation Guidelines for Autosomal. URL: https://www.swgdam.org/publications, 17/06/19.
 - Т
- Tamakia K., and Jeffreys A.J., (2005). Human tandem repeat sequences in forensic DNA typing. Legal Medicine, 7: 244–250.
- Tan J.Y.Y., Tan Y.P., Ng S., Tay A.S., Phua Y.H., Tan W.J., Ong T.Y.R., Chua L.M., Syn C.K.C., (2017). A preliminary evaluation study of new generation multiplex STR kits comprising of the CODIS core loci and the European Standard Set loci, Journal of Forensic and Legal Medicine.193(85),30-68.
- Thermo Fisher ScientificTM, (2019). Kit FTA pour collecte, transport, stockage et extraction d'ADN à température ambiante. URL: https://www.thermofisher.com/dz/en/home/life-science/dna-rna-purification-analysis.html, 12/06/19.

U

- Urquhart A., Kimpton C.P., Downes T.J. & Gill P., (1994). Variation in short tandem repeat sequences--a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Legal Med. 1994; 107(1):13-20.
- Van Oorschot R, Ballantyne KN, Mitchell RJ (2010). Forensic trace DNA: a review. Investig Genet. 2(5) ;1 : 14.

V

• Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001). The sequence of the human genome. Science;291(5507):1304-51.

W

- Walsh P.S., Metzger D.A., Higuchi R., (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques.,10:506–513.
- Watson, J.D. & Losick G.L., (2013). Molecular Biology of the Gene, The Benjamin/Cummings Publishing Company, Inc. Seventh edition. 389 p.
- Werret D.J. (1997). The National DNA Database. Forensic Sci. Int, 88: 33-42.
- Whitaker J.P., Cotton E.A., Gill P., (2001). A comparison of the characteristics of profiles produced with the AmpFlSTR SGM Plus multiplex system for both standard and low copy number (LCN) STR DNA analysis. Forensic Sci Int.,123:215–223.
- Wickenheiser R.A., (2002). Trace DNA: A Review, Discussion of Theory, and Application of the Transfer of Trace Quantities of DNA Through Skin Contact, Journal of Forensic Sciences, 47(3):442–450.
- William K., Michael C. & Spencer C (2006). Génetique -8éme Ed. Pearson Education. France.420p.

Annexes

		···· J··1	,		0
	Bleue	Vert	Noir	Rouge	Violet
Amp-1	6	7	4	8	7
Amp-2	6	7	5	8	8
Amp-3	8	10	7	9	10
Amp-4	10	12	8	9	13
Amp-5	12	10	10	10	9
Amp-6	8	11	7	10	9
Amp-7	8	9	4	9	8
Amp-8	7	7	5	8	8
Amp-9	7	10	4	9	8
Amp-10	6	9	7	10	7
Amp-11	6	9	6	9	10
Amp-12	6	8	5	10	10
Amp-13	9	9	7	11	8
Amp-14	5	8	7	10	8
Amp-15	5	9	6	9	8
Amp-16	7	7	4	8	9
Amp-17	11	10	5	8	6
p			-	3	U V

Annexe 1 : Seuil analytique, échantillons négatifs.

		Positif									
	Bleue	Vert	Noir	Rouge	Violet						
Amp+1	15	20	16	10	12						
Amp+2	10	16	13	10	20						
Amp+3	10	10	8	9	11						
Amp+4	8	10	7	10	12						
Amp+5	19	16	17	16	12						
Amp+6	15	10	13	15	12						

Annexe 3 : Calcul du seuil analytique

Breakdo	Breakdow n Table of Descriptive Statistics (4 Seuil Analytique.sta)												
N=115 (No missing data in dep. var. list)													
Coul	Sign	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur						
	N Mean Std. Dev. Minimum Maximum Std. Err.												
Bleu	Bleu – 17 7,5 2,0 5,0 12 0,5												
Vert	- 17 8,9 1,5 7,0 12 0,4												
Noir	—	- 17 5,9 1,7 4,0 10 0,4											
Rouge	—	17	9,1	0,9	8,0	11	0,2						
Violet	—	17	8,6	1,6	6,0	13	0,4						
Bleu	+	6	12,8	4,2	8,0	19	1,7						
Vert	+	6	13,7	4,3	10,0	20	1,7						
Noir	+	6	12,3	4,1	7,0	17	1,7						
Rouge	+	6	11,7	3,0	9,0	16	1,2						
Violet	+	6	13,2	3,4	11,0	20	1,4						

Annex	Annexe 4 : Hauteur des pics des échantillons RB								Hauteur antillons	des pics RD	des	
]	Hauteur]	Hauteur			
Marqueur	Allèle	RB1	RB2	RB3	RB4	RB5	5 RD1 RD2 RD3 RD4					
D3S1358	16	6413	5185	8656	4763	6715	16009	9500	9206	8649	12457	
	14	2169	1666	2330	1296	1848	5228	3415	3524	1939	4817	
VWA	16	2580	2377	2552	1671	2435	5931	3498	4518	2369	4667	
D168520	9	1786	1454	1738	1335	1677	4245	2460	3135	1954	3402	
D105559	13	1192	1160	1506	1077	1461	3804	2214	2123	1551	2755	
CSF1PO	10	3388	2981	2957	1782	2929	7041	4172	3670	3408	5754	
TDOY	8	1127	850	863	707	940	2702	1542	1889	1329	1676	
прох	9	1056	712	1197	562	982	2466	1270	1436	945	2007	
Yindel	2	5737	3410	5768	3142	4696	18516	7013	7979	5965	11812	
AMEI	X	6497	5277	5778	3578	5560	13682	8374	10701	6729	10999	
ANIEL	Y	4365	5277	5577	3443	5280	13410	7218	8637	5726	10326	
D851170	11	5253	5136	5946	3872	4885	10131	7933	7317	6217	8804	
D051179	13	5923	5433	6607	3786	4447	10594	6545	7716	5372	8244	
D21C11	29	3258	2537	3162	1570	1887	7417	3606	4455	2806	5365	
D21511	30	2489	2615	2710	1774	2416	7357	3381	3712	2563	6140	
D19951	16	2005	1866	2468	1425	1877	5262	3015	3649	2401	4614	
D18551	18	2428	1582	2362	1950	2214	5901	2796	3924	2338	3453	
DYS391	9	3455	2784	2569	1950	2701	4911	3110	5026	2747	4562	
D25441	11	7124	5278	6869	5234	5377	7162	7210	6793	5993	5661	
D25441	13	6110	5628	7635	4503	5394	7321	6532	6430	6237	5825	
D105422	15	5560	4211	4744	3563	3832	4423	5235	5275	4636	3761	
D195455	15.2	4841	4103	4538	3918	3794	4074	5194	4441	4519	4203	
TH01	6	3605	3268	3050	3417	3560	3550	3793	3620	4060	3218	
	8	4212	3491	3170	3037	3218	3844	3581	4496	3447	3139	
FCA	20	5722	4503	4246	3069	4052	4085	4339	4949	4291	4689	
FGA	24	3650	4044	4750	3210	3668	3807	5339	4475	3829	3578	
D2281045	11	3545	2887	3650	2097	2991	8815	3908	5606	3193	8448	
D2251045	14	3015	2371	3485	1944	2658	7717	4820	4803	3892	6389	
D55919	11	4512	2490	4269	2703	3271	9068	4566	6529	4942	8399	
D35010	13	4109	3486	4398	2382	3685	9362	5157	6512	4468	7810	
D13S317	12	6490	5390	7848	4396	6580	16789	8130	10932	8708	14710	
D75820	9	3373	2677	3036	1804	2754	7644	3426	5954	3460	5917	
D75620	12	2090	2258	1911	1738	2368	6219	3410	4283	2924	5842	
SE33	18	2636	2196	2344	1795	2227	4765	3711	3875	2880	4813	
SE35	30.2	2028	1791	2113	1418	2276	4464	2347	3211	2657	4183	
D1051249	14	3625	3084	4312	2770	3655	14768	5896	7933	4849	11438	
01031240	15	3584	3094	4239	2605	4028	11560	4926	6529	4448	10576	
D1\$1656	15	3199	2625	3297	2013	2813	9644	4828	6064	3767	7646	
D191090	16	2374	2236	2914	1867	2807	8936	4626	4701	3079	6470	
D12S301	17	1790	1564	2497	1097	1589	6109	2536	2904	2671	4353	
1/1/03/1	23	1738	1390	1930	1304	1629	6513	1924	3242	1776	4644	
D261220	19	2424	2552	3026	2371	3213	5619	3060	3840	3398	4284	
D201330	25	2055	1908	2211	1846	2899	5704	3122	2617	3351	2754	

	Descr	iptive Sta	tistics (1 Re	épét.sta)	-		
	Valid	Mean	Standard	Median	Minimum	Maximum	Coef.
Variable	N		Error				Var.
D3S1358(16)	5	6346,4	683,0	6413,0	4763,0	8656,0	24,1
vWA(14)	5	1861,8	183,3	1848,0	1296,0	2330,0	22,0
vWA(16)	5	2323,0	167,2	2435,0	1671,0	2580,0	16,1
D16S539(9)	5	1598,0	86,9	1677,0	1335,0	1786,0	12,2
D16S539(13)	5	1279,2	85,8	1192,0	1077,0	1506,0	15,0
CSF1PO(10)	5	2807,4	269,8	2957,0	1782,0	3388,0	21,5
TPOX(8)	5	897,4	68,6	863,0	707,0	1127,0	17,1
TPOX(9)	5	901,8	115,9	982,0	562,0	1197,0	28,7
Yindel(2)	5	4550,6	556,6	4696,0	3142,0	5768,0	27,3
AMEL(X)	5	5338,0	484,1	5560,0	3578,0	6497,0	20,3
AMEL(Y)	5	4788,4	393.2	5277,0	3443,0	5577,0	18,4
D8S1179(11)	5	5018.4	336.3	5136.0	3872.0	5946.0	15.0
D8S1179(13)	5	5239.2	505.7	5433.0	3786.0	6607.0	21.6
D21S11(29	5	2482.8	335.7	2537.0	1570.0	3258.0	30.2
D21S11(30)	5	2400.8	164.7	2489.0	1774.0	2710.0	15.3
D18S51(16)	5	1928.2	166.9	1877.0	1425.0	2468.0	19.4
D18S51(18)	5	2107.2	154.9	2214.0	1582.0	2428.0	16.4
DYS391(9)	5	2691.8	240.5	2701.0	1950.0	3455.0	20.0
D2S441(11)	5	5976.4	419.0	5377.0	5234.0	7124.0	15.7
D2S441(13)	5	5854.0	516.0	5628.0	4503.0	7635.0	19.7
D19S433(15)	5	4382.0	355 1	4211.0	3563.0	5560.0	18.1
D19S433(15.2)	5	4238.8	196.4	4103.0	3794.0	4841.0	10,1
TH01(6)	5	3380.0	101.4	3417.0	3050.0	3605.0	67
TH01(8)	5	3425.6	210.0	3218.0	3037.0	4212.0	13.7
FGA(20)	5	4318.4	426.7	4246.0	3069.0	5722.0	22.1
FGA(24)	5	3864.4	257.8	3668.0	3210.0	4750.0	14.9
D22S1045(11)	5	3034.0	277 7	2991.0	2097.0	3650.0	20.5
D22S1045(14)	5	2694.6	264.3	2658.0	1944.0	3485.0	21.9
D5S818(11)	5	3449.0	406.8	3271.0	2490.0	4512.0	26.4
D5S818(13)	5	3612.0	346.3	3685.0	2382.0	4398.0	21.4
D13S317(12)	5	6140.8	584.7	6490.0	4396.0	7848.0	213
D7S820(9)	5	2728.8	261.5	2754.0	1804.0	3373.0	21,0
D7S820(12)	5	2073.0	114.0	2090.0	1738.0	2368.0	123
SF33(18)	5	2070,0	135.6	2000,0	1795.0	2636.0	13.5
SE33(30.2)	5	1925.2	149.0	2028.0	1418.0	2000,0	17.3
D10S1248(14)	5	3/80.2	265.0	2020,0	2770.0	/312.0	17,5
D10S1240(14) D10S1248(15)	5	3510.0	203,0	3584.0	2605.0	4312,0	10.1
D1S1656(15)	5	2780 /	233,0 220 g	2813.0	2003,0	3207 0	18.1
D1S1656(16)	5	2/30 6	101 5	2374.0	1867.0	2014.0	176
D12S301(17)	5	1707 /	0770	1520.0	1007,0	2014,0	20.0
D120391(17)	5 F	1509.2	221,0 1111	1620.0	12040	2491,0	29,0
D120091(20)	5 F	1090,2	160.5	1029,0	1304,0	1930,0	10,0
D201000(19)	5	2111,2	109,5	2052,0	23/1,0	3213,0	13,9
D251338(25)	5	2183,8	189,6	2055,0	1846,0	∠899,0	19,4

Annexe 6 : Calculs du paramètre de répétabilité

	Descriptive Statistics (1 Reprod.sta)									
	Valid N	Mean	Standard	Median	Minimum	Maximum	Coef.			
			Error				Var.			
Variable										
D3S1358(16)	5	11164,2	1379,7	9500,0	8649,0	16009,0	27,6			
vWA(14)	5	3784,6	581,4	3524,0	1939,0	5228,0	34,3			
vWA(16)	5	4196,6	598,4	4518,0	2369,0	5931,0	31,9			
D16S539(9)	5	3039,2	394,2	3135,0	1954,0	4245,0	29,0			
D16S539(13)	5	2489,4	380,1	2214,0	1551,0	3804,0	34,1			
CSF1PO(10)	5	4809,0	690,7	4172,0	3408,0	7041,0	32,1			
TPOX(8)	5	1827,6	236,8	1676,0	1329,0	2702,0	29,0			
TPOX(9)	5	1624,8	271,8	1436,0	945,0	2466,0	37,4			
Yindel(2)	5	10257,0	2288,7	7979,0	5965,0	18516,0	49,9			
AMEL(X)	5	10097,0	1190,4	10701,0	6729,0	13682,0	26,4			
AMEL(Y)	5	9063,4	1326,9	8637,0	5726,0	13410,0	32,7			
D8S1179(11)	5	8080,4	663,5	7933,0	6217,0	10131,0	18,4			
D8S1179(13)	5	7694,2	878,2	7716,0	5372,0	10594,0	25,5			
D21S11(29	5	4729,8	795,7	4455,0	2806,0	7417,0	37,6			
D21S11(30)	5	4630,6	905,3	3712,0	2563,0	7357,0	43,7			
D18S51(16)	5	3788,2	519,4	3649,0	2401,0	5262,0	30,7			
D18S51(18)	5	3682,4	617,5	3453,0	2338,0	5901,0	37,5			
DYS391(9)	5	4071,2	476,2	4562,0	2747,0	5026,0	26,2			
D2S441(11)	5	6563,8	313,8	6793,0	5661,0	7210,0	10,7			
D2S441(13)	5	6469,0	244,9	6430,0	5825,0	7321,0	8,5			
D19S433(15)	5	4666,0	280,5	4636,0	3761,0	5275,0	13,4			
D19S433(15,2)	5	4486,2	194,2	4441,0	4074,0	5194,0	9,7			
TH01(6)	5	3648,2	138,9	3620,0	3218,0	4060,0	8,5			
TH01(8)	5	3701,4	228,8	3581,0	3139,0	4496,0	13,8			
FGA(20)	5	4470,6	154,1	4339,0	4085,0	4949,0	7,7			
FGA(24)	5	4205,6	320,3	3829,0	3578,0	5339,0	17,0			
D22S1045(11)	5	5994,0	1147,3	5606,0	3193,0	8815,0	42,8			
D22S1045(14)	5	5524,2	679,6	4820,0	3892,0	7717,0	27,5			
D5S818(11)	5	6700,8	899,1	6529,0	4566,0	9068,0	30,0			
D5S818(13)	5	6661,8	886,3	6512,0	4468,0	9362,0	29,7			
D13S317(12)	5	11853,8	1690,1	10932,0	8130,0	16789,0	31,9			
D7S820(9)	5	5280,2	812,4	5917,0	3426,0	7644,0	34,4			
D7S820(12)	5	4535,6	650,7	4283,0	2924,0	6219,0	32,1			
SE33(18)	5	4008,8	360,5	3875,0	2880,0	4813,0	20,1			
SE33(30,2)	5	3372,4	414,6	3211,0	2347,0	4464,0	27,5			
D10S1248(14)	5	8976,8	1833,2	7933,0	4849,0	14768,0	45,7			
D10S1248(15)	5	7607,8	1462,4	6529,0	4448,0	11560,0	43,0			
D1S1656(15)	5	6389,8	1039,0	6064,0	3767,0	9644,0	36,4			
D1S1656(16)	5	5562,4	999,8	4701,0	3079,0	8936,0	40,2			
D12S391(17)	5	3714,6	681,0	2904,0	2536,0	6109,0	41,0			
D12S391(23)	5	3619,8	889,9	3242,0	1776,0	6513,0	55,0			
D2S1338(19)	5	4040,2	445,3	3840,0	3060,0	5619,0	24,6			
D2S1338(25)	5	3509,6	563,8	3122,0	2617,0	5704,0	35,9			

Annexe 7 : Calculs du paramètre de reproductibilité

	T-tests;	Grouping	Type (1	Répét Rep	orod.sta))						
	Group 1:	: Répét; G	Group 2: F	Reprod								
	Hotelling	1 ² canno	t be com	puted (cov	. matrix	III-C	ondition	ned)	10			
	Mean	Std.Dev.	Mean	Std.Dev.	t-value	df	р	t separ.	df	р	Brn-Fors	р
Variable	Repet	Repet	Reprod	Reprod				var.est.		Z-sided	F(1,01)	Brn-Fors
FGA(20)	4318.4	954 1	4470 6	344.5	-0.3	8	0 746	-0.3	5.0	0.7508	1.37	0 276
D19S433(15)	4382.0	793.9	4666.0	627.2	-0.6	8	0 548	-0.6	7.6	0.5486	0.18	0,679
EGA(24)	3864.4	576.5	4205.6	716.2	-0.8	8	0 431	-0.8	77	0.4318	0.08	0 780
TH01(8)	3425.6	469.6	3701.4	511.7	-0.9	8	0 400	-0.9	7.9	0.4006	0.05	0.835
D19S433(15.2)	4238.8	439.1	4486.2	434.2	-0.9	8	0.397	-0.9	8.0	0.3965	0.06	0,806
D2S441(13)	5854.0	1153.8	6469.0	547.7	-11	8	0.313	-11	57	0.3250	1.06	0,333
D2S441(11)	5976 4	937.0	6563.8	701.6	-11	8	0 294	-11	74	0.2969	0.13	0 730
TH01(6)	3380.0	226.8	3648.2	310.7	-1.6	8	0 158	-1.6	73	0.1611	0.20	0.665
D12S391(23)	1598.2	255.2	3619.8	1989 8	-2.3	8	0.054	-2.3	4 1	0.0852	6 11	0.039
D2S1338(25)	2183.8	424.0	3509.6	1260.8	-2.2	8	0.056	-2.2	49	0.0775	0.90	0.371
D21S11(30)	2400 8	368.2	4630 6	2024.3	-2.4	8	0.042	-2.4	4.3	0.0686	3 46	0 100
Yindel(2)	4550.6	1244 6	10257.0	5117.7	-2.4	8	0.042	-2.4	4.5	0.0659	1 71	0.227
D18S51(18)	2107.2	346.3	3682.4	1380.8	-2.5	8	0.038	-2.5	4.5	0.0617	2.54	0 150
D22S1045(11)	3034.0	620.9	5994 0	2565.5	-2.5	8	0.037	-2.5	4.5	0.0598	7 22	0.028
TPOX(9)	901.8	259.2	1624.8	607.7	-2.4	8	0.040	-2.4	54	0.0544	1.76	0.222
D8S1179(13)	5239.2	1130.9	7694.2	1963 7	-2.4	8	0.042	-2.4	64	0.0492	0.74	0 415
D10S1248(15)	3510.0	670.3	7607.8	3270.0	-27	8	0.025	-27	4.3	0.0473	5.03	0.055
D21S11(29	2482.8	750.6	4729.8	1779.3	-2.6	8	0.032	-2.6	54	0.0449	1 71	0.228
DYS391(9)	2691.8	537.7	4071.2	1064.8	-2.6	8	0.032	-2.6	5.9	0.0420	1.50	0.256
CSF1PO(10)	2807.4	603.3	4809.0	1544.4	-2.7	8	0.027	-2.7	5.2	0.0412	2.18	0,178
D10S1248(14)	3489.2	592.5	8976.8	4099.2	-3.0	8	0.018	-3.0	4.2	0.0394	5.60	0.046
D12S391(17)	1707.4	509.3	3714.6	1522.8	-2.8	8	0.023	-2.8	4.9	0.0392	1.38	0.273
D2S1338(19)	2717.2	378.9	4040.2	995.7	-2.8	8	0.024	-2.8	5.1	0.0379	1.54	0.250
D1S1656(16)	2439,6	428,3	5562.4	2235,6	-3,1	8	0.015	-3,1	4.3	0,0340	2,45	0,156
vWA(16)	2323.0	373.8	4196.6	1338.0	-3.0	8	0.017	-3.0	4.6	0.0327	2.97	0.123
D7S820(9)	2728,8	584,8	5280,2	1816,5	-3,0	8	0,017	-3,0	4.8	0,0319	2,68	0,141
D16S539(13)	1279,2	191,8	2489,4	849,9	-3,1	8	0,015	-3,1	4,4	0,0316	2,21	0,176
AMEL(Y)	4788,4	879,2	9063,4	2967,0	-3,1	8	0,015	-3,1	4,7	0,0295	3,14	0,114
vWA(14)	1861,8	410,0	3784,6	1300,0	-3,2	8	0,014	-3,2	4,8	0,0268	2,74	0,136
D13S317(12)	6140,8	1307,4	11853,8	3779,1	-3,2	8	0,013	-3,2	4,9	0,0245	3,73	0,090
D1S1656(15)	2789,4	513,8	6389,8	2323,4	-3,4	8	0,010	-3,4	4,4	0,0240	5,07	0,054
D5S818(13)	3612,0	774,4	6661,8	1981,7	-3,2	8	0,013	-3,2	5,2	0,0226	3,53	0,097
SE33(30,2)	1925,2	333,2	3372,4	927,1	-3,3	8	0,011	-3,3	5,0	0,0217	4,29	0,072
D3S1358(16)	6346,4	1527,3	11164,2	3085,2	-3,1	8	0,014	-3,1	5,8	0,0210	0,65	0,442
D18S51(16)	1928,2	373,2	3788,2	1161,4	-3,4	8	0,009	-3,4	4,8	0,0202	4,76	0,061
D16S539(9)	1598,0	194,4	3039,2	881,5	-3,6	8	0,007	-3,6	4,4	0,0200	4,39	0,069
D5S818(11)	3449,0	909,7	6700,8	2010,5	-3,3	8	0,011	-3,3	5,6	0,0184	3,37	0,104
D7S820(12)	2073,0	255,0	4535,6	1455,0	-3,7	8	0,006	-3,7	4,2	0,0183	7,85	0,023
TPOX(8)	897,4	153,5	1827,6	529,5	-3,8	8	0,005	-3,8	4,7	0,0147	1,69	0,230
AMEL(X)	5338,0	1082,5	10097,0	2661,9	-3,7	8	0,006	-3,7	5,3	0,0126	2,10	0,185
D22S1045(14)	2694,6	590,9	5524,2	1519,6	-3,9	8	0,005	-3,9	5,2	0,0109	1,32	0,284
D8S1179(11)	5018,4	751,9	8080,4	1483,7	-4,1	8	0,003	-4,1	5,9	0,0064	1,66	0,234
SE33(18)	2239,6	303,2	4008,8	806,1	-4,6	8	0,002	-4,6	5,1	0,0056	2,96	0,123

Annexe 8 : Tests de Student de comparaison des hauteurs de pics pour 43 allèles

Annexe 9 : Rapport des hauteurs de pics (%) des 43 allèles entre les 2 échantillons de reproductibilité

	Descrip	Descriptive Statistics (Spreadsheet1)										
	Valid N	Valid N Mean Standard Confidenc Confidence Coef.Var.										
Variable			Error	-95,000%	95,000%							
Rapport	43 176,8 6,1 164,4 189,2 22,8											

		Hauteur										
Marqueur	Allèle	D1.1	D1.2	D1.3	D1.4	D1.5	D1.6	D1.7	D1.8	D1.9		
D201250	15	10024	4005	1629	597	302	121	139	0	92		
D351358	16	8712	3712	2015	667	104	105	73	0	0		
	14	7385	3780	1270	552	51	68	0	0	0		
VWA	16	6923	2427	1736	1083	157	137	0	0	0		
D168520	9	9047	3868	1163	703	165	221	57	0	0		
D105559	10	8341	3838	1632	808	155	63	0	0	0		
CEE1DO	11	8567	4704	1446	1070	99	193	79	0	0		
CSFIPO	12	6945	3131	1677	773	179	107	95	0	0		
ТРОХ	8	12540	5697	3045	1439	178	264	78	0	0		
Yindel	2	11168	4882	2068	640	79	105	90	0	0		
	Х	14279	6207	2835	1305	341	141	139	0	0		
AMEL	Y	13307	5622	2148	692	194	138	0	0	0		
D0C1170	12	12602	5111	2321	1569	393	274	71	0	0		
D851179	13	14424	6226	2158	1516	160	149	97	0	0		
D21011	28	11812	3401	1646	1075	127	57	51	0	0		
D21511	31	8830	4111	2082	442	145	149	0	0	0		
D10051	12	9748	3788	2250	513	299	64	0	0	0		
D18551	15	12583	3174	1609	761	164	0	0	0	0		
DYS391	11	7150	3528	1329	511	130	137	0	0	0		
D36441	14	9069	4152	1556	1123	471	336	95	100	0		
D25441	15	8498	3657	1819	922	419	93	0	0	0		
D100422	14	8168	3594	1790	771	561	76	182	0	0		
D198433	15	7462	3120	1934	804	316	320	0	0	0		
71101	7	5688	3993	1779	519	200	67	50	0	0		
THOT	9.3	6754	3633	1101	563	111	0	0	0	0		
ECA	24	7493	4445	1437	706	409	302	169	0	66		
FGA	26	7738	2875	1772	982	357	310	0	0	0		
D2261045	11	8173	3550	1534	1039	251	92	0	57	0		
D2251045	16	7322	3591	1767	671	193	0	0	0	0		
D5S818	11	21273	8739	5948	1913	459	220	158	87	0		
D13S317	11	25428	11486	5432	2638	574	161	0	0	0		
D75920	7	11148	4704	2974	856	185	117	0	0	0		
D75620	12	10111	3828	2176	775	167	207	0	0	0		
SE22	17	10444	3897	2439	1097	222	124	56	0	0		
SE33	25.2	8109	4600	1516	901	184	77	128	0	0		
D1051249	12	11345	6192	2257	777	69	170	0	0	0		
D1051240	15	10288	6155	2816	700	149	0	0	0	0		
D191656	13	11904	4457	1547	935	213	56	0	0	0		
D151050	16	11019	4628	2324	867	259	122	0	0	0		
D126201	18	9152	3828	2259	645	254	234	65	0	0		
0120091	19	8103	3284	2022	545	134	119	0	0	0		
D2\$1229	20	11329	3810	2827	827	478	270	59	0	0		
0201000	23	8685	5145	1884	1142	315	189	0	0	0		

Annexe 10 : Hauteur des pics pour la série 1 de sensibilité

	Hauteur											
Marqueur	Allèle	D2.1	D2.2	D2.3	D2.4	D2.5	D2.6	D2.7	D2.8	D2.9		
Dagiaro	15	8100	2812	1911	773	173	104	57	0	0		
D3S1358	16	9507	3645	1695	958	110	0	0	0	0		
	14	6586	2956	1730	672	195	103	0	0	0		
VWA	16	6899	3002	1526	737	87	81	0	0	0		
D1/(520	9	7981	2975	1601	621	73	91	0	0	0		
D105559	10	7629	3422	1471	732	91	90	0	0	0		
CSE1DO	11	8652	3043	1961	524	115	52	114	0	0		
CSFILU	12	6864	3721	2297	678	100	67	0	0	0		
ТРОХ	8	12288	5051	2614	594	99	66	0	0	0		
Yindel	2	13063	3875	2023	709	150	92	71	0	0		
AMET	Х	13733	4638	2456	1159	141	116	60	0	0		
ANILL	Y	11747	3946	2259	767	175	80	63	0	0		
D8S1170	12	13280	4595	2653	1215	241	58	82	0	0		
D051179	13	12050	4328	1744	1231	271	84	0	0	0		
D21611	28	8342	3705	1285	646	97	79	0	0	0		
D21511	31	9459	4381	2043	600	93	125	0	0	0		
D19651	12	8772	4143	2267	1039	175	58	167	0	0		
D10551	15	9586	3983	2515	546	66	72	94	0	0		
DYS391	11	5958	3421	1607	1239	134	0	0	0	0		
D2S441	14	10856	3999	2063	968	208	63	165	0	71		
D25441	15	8522	4163	2901	990	135	75	81	0	0		
D106422	14	7206	3558	1927	1261	265	234	143	67	0		
D195455	15	6225	3160	1928	623	258	76	0	0	72		
TUA1	7	7525	4089	1642	1301	89	96	0	86	71		
11101	9.3	5606	2637	1740	711	0	76	0	0	0		
FCA	24	8239	3175	1434	982	86	164	80	60	0		
FGA	26	6074	3596	2027	1353	348	85	0	0	0		
D22S1045	11	6295	3468	1245	557	81	102	62	0	0		
D22510 4 5	16	7026	3226	1073	728	104	118	0	0	0		
D5S818	11	19654	10166	5025	1300	136	131	200	0	83		
D13S317	11	19202	10303	3988	1242	154	192	302	0	0		
D7S820	7	9835	5113	2055	653	145	179	81	0	0		
D75020	12	9025	4005	1899	441	69	66	146	0	0		
SF33	17	8861	5111	2244	1042	176	77	185	0	0		
51255	25.2	8350	4061	2346	826	190	58	0	0	0		
D10S1248	12	10852	3889	1627	507	87	51	58	0	0		
17101240	15	8299	4490	1635	424	0	0	0	0	0		
D1S1656	13	10107	4519	2148	517	110	133	128	53	0		
D101000	16	9295	4776	1699	967	0	0	95	0	0		
D12S301	18	9018	4731	1726	484	154	158	0	0	0		
0120071	19	8444	3967	1301	656	66	0	0	0	0		
D2S1228	20	12171	4198	2640	723	133	90	186	0	0		
0231330	23	9907	3527	1854	869	0	76	0	0	0		

Annexe 11 : Hauteur des pics pour la série 2 de sensibilité

	Hauteur											
Marqueur	Allèle	D3.1	D3.2	D3.3	D3.4	D3.5	D3.6	D3.7	D3.8	D3.9		
	15	7622	5301	1751	990	346	197	0	0	0		
D3S1358	16	8908	4523	2166	582	302	297	0	0	0		
***	14	6714	3402	1201	948	121	68	74	53	0		
vWA	16	5406	2921	1046	682	226	119	0	0	0		
D1/0520	9	6714	3007	1646	784	339	103	95	0	0		
D168539	10	6220	4228	1581	430	403	127	0	0	0		
CELIDO	11	6729	3244	1585	1199	385	175	0	0	0		
CSFIPO	12	5973	3749	1534	563	450	139	0	0	0		
ТРОХ	8	11924	6869	2682	1266	494	179	0	0	0		
Yindel	2	8829	5250	1959	1046	636	95	0	0	0		
	Х	10603	6617	3236	1258	374	434	74	0	0		
AMEL	Y	10154	5857	2453	1414	530	0	90	0	0		
D001170	12	12719	7115	2742	1596	298	123	335	0	55		
D851179	13	10368	7039	2395	1547	318	160	82	0	0		
D21611	28	6926	4693	1857	857	347	91	99	0	0		
D21511	31	8052	4683	2148	776	500	345	210	0	0		
D19951	12	8742	6032	2386	954	499	253	83	0	0		
D18551	15	7898	5166	1538	611	232	137	0	0	0		
DYS391	11	7291	4136	1482	520	413	171	0	0	0		
D25441	14	9101	4775	1791	1145	526	209	128	0	0		
D25441	15	8298	5013	1427	922	246	260	0	0	0		
D106422	14	8558	3864	2050	773	289	87	109	0	0		
D195455	15	8493	4417	1614	905	531	97	0	0	0		
TUA1	7	8149	5154	2223	646	249	97	56	0	0		
11101	9.3	7821	3997	2184	577	172	0	0	0	0		
FCA	24	9024	2959	1660	741	398	256	74	0	0		
TGA	26	7510	3660	1327	851	484	271	0	0	0		
D22S1045	11	7879	4126	1944	584	368	86	0	0	107		
D22510 4 5	16	6296	3919	1549	706	246	73	0	0	0		
D5S818	11	17939	10504	4833	1909	613	222	126	0	0		
D13S317	11	18449	11170	5100	2921	632	614	58	0	0		
D7S820	7	8603	5082	2810	1133	540	154	121	0	0		
D75020	12	8317	4793	2387	940	234	78	108	0	0		
SF33	17	10120	5162	2602	1547	296	99	52	0	0		
51255	25.2	6976	7167	1746	851	268	138	0	0	0		
D10S1248	12	8095	4112	2043	865	265	180	0	0	66		
1001240	15	145	4399	2072	698	361	0	0	0	0		
D1S1656	13	7374	3404	2614	1115	382	152	0	0	0		
D101000	16	105	4583	2070	988	369	218	0	0	0		
D12S301	18	8530	4443	2221	751	336	211	0	0	0		
1400/1	19	6996	3812	2092	685	442	146	0	0	0		
D2S1338	20	9173	5195	1305	1737	365	94	230	68	0		
1/201330	23	8645	6171	1654	955	331	162	0	0	0		

Annexe 12 : Hauteur des pics pour la série 3 de sensibilité

Breakdowr	n Table of D	escriptive S	5						
N=27 (No r	missing dat	ta in dep. va	ar. list)		Breakdowr	n Table of [Descriptiv	e Statistics	
Dilution	Nbre_pics	Nbre_pics	% pics	% pics	N=27 (No missing data in dep. var. li				
	Mean	Std.Err.	Mean	Std.Err	Dilution	% all_obt	%	% all_ob	
						Mean	all_obt	Std.Err.	
1	0,0	0,0	0,0	0,0	1	100,0	3	0,0	
1/2	0,0	0,0	0,0	0,0	1/2	100,0	3	0,0	
1/4	0,0	0,0	0,0	0,0	1/4	100,0	3	0,0	
1/8	0,0	0,0	0,0	0,0	1/8	100,0	3	0,0	
1/16	1,3	1,3	3,1	3,1	1/16	96,9	3	3,1	
1/32	4,0	0,6	9,3	1,3	1/32	90,7	3	1,3	
1/64	22,7	0,9	52,7	2,1	1/64	47,3	3	2,1	
1/128	40,0	0,6	93,0	1,3	1/128	7,0	3	1,3	
1/256	40,0	0,6	93,0	1,3	1/256	7,0	3	1,3	

Annexe 13 : Allèles non détectés

Annexe 14 : PHR (%) pour les 3 séries de mesures de dilution de 1 au 1/256^{ème}

Série 1			Facter	ur de d	ilution			Série 2			Facteu	r de dil	ution		
	1	1⁄2	1⁄4	1/8	1/16	1/32	1/64		1	1/2	1/4	1/8	1/16	1/32	1/64
D3S1358	86,9	92,7	80,8	89,5	34,4	86,8	52,5	D3S1358	85,2	77,1	88,7	80,7	63,6	0	0
vWA	93,7	64,2	73,2	51	32,5	49,6		vWA	95,5	98,5	88,2	91,2	44,6	78,6	
D16S539	92,2	99,2	71,3	87	93,9	28,5	0	D168539	95,6	86,9	91,9	84,8	80,2	98,9	
CSF1PO	81,1	66,6	86,2	72,2	55,3	55,4	83,2	CSF1PO	79,3	81,8	85,4	77,3	87	77,6	0
AMEL	93,2	90,6	75,8	53	56,9	97,9	0	AMEL	85,5	85,1	92	66,2	80,6	69	95,2
D8S1179	87,4	82,1	93	96,6	40,7	54,4	73,2	D8S1179	90,7	94,2	65,7	98,7	88,9	69	0
D21S11	74,8	82,7	79,1	41,1	87,6	38,3	0	D21S11	88,2	84,6	62,9	92,9	95,9	63,2	
D18S51	77,5	83,8	71,5	67,4	54,8	0		D18S51	91,5	96,1	90,1	52,6	37,7	80,6	56,3
D2S441	93,7	88,1	85,5	82,1	89	27,7	0	D2S441	78,5	96,1	71,1	97,8	64,9	84	49,1
D19S433	91,4	86,8	92,6	95,9	56,3	23,8	0	D198433	86,4	88,8	99,9	49,4	97,4	32,5	0
TH01	84,2	91	61,9	92,2	55,5	0	0	TH01	74,5	64,5	94,4	54,7	0	79,2	
FGA	96,8	64,7	81,1	71,9	87,3	97,4	0	FGA	73,7	88,3	70,7	72,6	24,7	51,8	0
D22S1045	89,6	98,9	86,8	64,6	76,9	0		D22S1045	89,6	93	86,2	76,5	77,9	86,4	0
D7S820	90,7	81,4	73,2	90,5	90,3	56,5		D7S820	91,8	78,3	92,4	67,5	47,6	36,9	55,5
SE33	77,6	84,7	62,2	82,1	82,9	62,1	43,8	SE33	94,2	79,5	95,7	79,3	92,6	75,3	0
D10S1248	90,7	99,4	80,1	90,1	46,3	0		D10S1248	76,5	86,6	99,5	83,6	0	0	0
D1S1656	92,6	96,3	66,6	92,7	82,2	45,9		D1S1656	92	94,6	79,1	53,5	0	0	74,2
D12S391	88,5	85,8	89,5	84,5	52,8	50,9	0	D12S391	93,6	83,9	75,4	73,8	42,9	0	
D2S1338	76,7	74,1	66,6	72,4	65,9	70	0	D2S1338	81,4	84	70,2	83,2	0	84,4	0

Série 3		Facteur de dilution 1 1/2 1/4 1/8 1/16 1/32 1/64 55,6 85,3 80,8 58,8 87,3 66,3 66,3 30,5 85,9 87,1 71,9 53,5 57,1 0 92,6 71,1 96,1 54,8 84,1 81,1 0										
	1	1/2	1/4	1/8	1/16	1/32	1/64					
D3S1358	85,6	85,3	80,8	58,8	87,3	66,3						
vWA	80,5	85,9	87,1	71,9	53,5	57,1	0					
D16S539	92,6	71,1	96,1	54,8	84,1	81,1	0					
CSF1PO	88,8	86,5	96,8	47	85,6	79,4						
AMEL	95,8	88,5	75,8	89	70,6	0	82,2					
D8S1179	81,5	98,9	87,3	96,9	93,7	76,9	24,5					
D21S11	86	99,8	86,5	90,5	69,4	26,4	47,1					
D18S51	90,3	85,6	64,5	64	46,5	54,2	0					
D2S441	91,2	95,3	79,7	80,5	46,8	80,4	0					
D19S433	99,2	87,5	78,7	85,4	54,4	89,7	0					
TH01	96	77,6	98,2	89,3	69,1	0	0					
FGA	83,2	80,8	79,9	87,1	82,2	94,5	0					
D22S1045	79,9	95	79,7	82,7	66,8	84,9						
D7S820	96,7	94,3	84,9	83	43,3	50,6	89,3					
SE33	68,9	72	67,1	55	90,5	71,7	0					
D10S1248	95,6	93,5	98,6	80,7	73,4	0						
D1S1656	79,8	74,3	79,2	88,6	96,6	69,7						
D12S391	82	85,8	94,2	91,2	76	69,2						
D2S1338	94,2	84,2	78,9	55	90,7	58	0					

Annexe 15 : Hauteur des pics de l'échantillon DNA007-1 série 1 de l'étude de mélange

	DNA007-1	1.1	1.2	1.3	1.4	1.5	1:10	1:20
D261259	15	1642	2227	2279	1086	949	647	216
D351356	16	2003	2295	2590	1692	1092	1237	968
D168530	9	1481	1568	1745	1082	832	548	231
D105559	10	1684	2003	1409	1054	1309	848	0
D961170	12	2338	3475	2450	2084	1635	877	191
D051179	13	2516	2332	2306	2138	1671	1018	432
D25441	14	2687	2858	807	1226	1628	446	321
D25441	15	2638	2305	1060	1286	949	752	233
TU01	7	1699	1849	1283	1486	1224	729	454
Invi	9.3	1661	1770	1236	721	1326	357	189
SE22	17	2248	1909	2144	1587	1056	791	239
SE33	25.2	2109	2222	2314	921	1147	917	102
D1051249	12	2249	2058	2553	1907	761	432	359
D1051240	15	1760	2576	4385	2186	1146	1449	0
D1\$1656	13	2316	1754	2156	1718	855	604	632
D151050	16	2034	2125	2474	1963	817	1208	305
D261220	20	2491	2503	1516	789	1039	1052	563
D251558	23	2640	3121	3131	2103	1611	1500	0

	WA-1	1.1	1.2	1.3	1.4	1.5	1.10	1.20
D2C1250	15	2664	6300	8310	7328	5886	8500	8035
D221229	16	2576	6226	7833	7373	5360	8114	6416
D168520	9	2240	4480	5542	5154	3843	5374	4670
D105559	10	1774	4293	5785	5207	3430	6123	4759
D9C1170	12	4062	9361	11668	11794	9161	12413	10008
D051179	13	3167	9405	11649	9284	8011	12074	10683
D26441	14	3740	7394	6609	7223	9520	9773	10040
D23441	15	3897	7304	5840	8246	9773	10104	8515
TU01	7	3256	6908	4789	7699	8474	8712	8049
1 1101	9.3	3211	8201	4593	7483	8102	8571	6848
SE22	17	2451	6086	6722	7063	5498	7913	6429
SE33	25.2	2143	6014	6838	6271	4427	7047	6156
D1001240	12	2758	6727	13186	9866	5404	9572	7640
D1051240	15	2904	6488	12265	10535	4997	9761	7505
D191656	13	3123	7151	15252	10235	5560	10743	8525
D151050	16	3160	6845	12494	9311	6224	9862	7771
	20	2868	7319	9105	8577	7704	9997	8251
D2S1338	23	2624	7378	8839	9317	7636	9887	8218

Annexe 16 : Hauteur des pics de l'échantillon WA-1 série 1 de l'étude de mélange

Annexe 17 : Hauteur des pics de l'échantillon DNA007-2 série 2 de l'étude de mélange

	DNA007-2	1.1	1.2	1.3	1.4	1.5	1:10	1:20
D3\$1358	15	2281	1513	1084	1609	1131	0	
D351330	16	2362	2174	1733	1938	1535	484	
D168530	9	2234	1535	1897	1235	822	685	
D105559	10	2224	1598	1606	1057	1351	1011	
D8S1170	12	3831	2240	2383	2526	1080	938	
D031179	13	3284	3830	2975	2073	2135	936	
D25441	14	2293	2061	2188	1188	1186	907	
D25441	15	2436	1991	1616	1468	891	395	
ТН01	7	2838	1690	1465	1596	1933	891	
11101	9.3	2561	1521	2050	1290	1448	627	
SF33	17	3132	2163	1581	1556	1630	1034	
51.55	25.2	2348	1780	1688	1504	1289	636	
D1051248	12	1932	1560	1995	1575	1323	701	
D1051240	15	2684	2043	2727	2049	1527	1942	
D1\$1656	13	2946	2479	1459	1174	1770	1693	
D151030	16	2488	2094	1495	1341	1466	681	
D2\$1339	20	1858	2047	1617	1501	1731	906	
1231330	23	2404	1774	2921	1974	1992	1254	

	WA-2	1.1	1.2	1.3	1.4	1.5	1:10	1:20
D261259	15	3665	5659	7418	8457	7695	8471	
D351356	16	3118	6138	6629	7244	6747	9907	
D168530	9	2252	3769	5065	6165	5070	6010	
D105553	10	2590	3786	4325	5278	4781	6197	
D8S1170	12	5204	7820	9676	13074	10808	13401	
D051173	13	5928	7895	9614	9813	9730	12239	
D2S441	14	5295	6665	8035	8581	9441	10370	
D20771	15	5235	6386	7610	8649	8326	10264	
TH01	7	4351	4688	7620	7118	7825	8817	
	9.3	4270	5796	7429	7892	7483	8321	
SE33	17	3165	4470	6075	6527	6256	8482	
5155	25.2	3491	4384	5336	7085	6187	7761	
D10S1248	12	4207	6564	7465	10230	9646	12589	
D1001240	15	3775	6575	6493	8959	8359	11405	
D1S1656	13	4849	6735	7788	10802	9795	11938	
D151050	16	3995	6130	6782	9674	8072	10595	
D2S1338	20	5205	5988	7020	8511	9651	10316	
1/201000	23	3944	5476	7803	8179	8539	8563	

Annexe 18 : Hauteur des pics de l'échantillon WA-2 série 2 de l'étude de mélange

Annexe 19 : Hauteur des pics de l'échantillon DNA007-3 série 3 de l'étude de mélange

	DNA007-3	1.1	1.2	1.3	1.4	1.5	1:10	1:20
D261259	15	3188	1522	1304		940	599	268
D351356	16	4103	1555	1726		1173	1220	9376
D168520	9	2489	1506	886		1235	528	309
D105559	10	3096	1644	1243		1354	804	6218
D8S1170	12	4282	2315	2051		2236	969	281
D051173	13	3312	2871	1500		2163	1171	445
D25441	14	2942	2206	1416		1061	748	409
D25441	15	3772	1938	1268		1580	693	193
ТЦ()1	7	2876	1987	986		1200	905	534
11101	9.3	2556	1102	1402		1340	690	0
SF33	17	4403	1785	1489		1498	892	148
SE35	25.2	3684	2129	1139		1718	958	0
D1051248	12	3005	1917	1317		1557	454	254
D1051240	15	3220	1904	2111		1736	1359	0
D1S1656	13	2862	2049	1239		1170	1111	298
D151030	16	3079	1242	1542		1432	911	437
D2\$1338	20	3569	1533	1088		1322	777	536
D201330	23	3424	2110	1814		2057	1256	1162

	WA-3	1.1	1.2	1.3	1.4	1.5	1:10	1:20
D261259	15	5042	5017	5001		7977	8530	9376
D351350	16	4718	3989	5499		7518	8746	7962
D168530	9	3428	3114	4078		5663	6690	6218
D105557	10	3840	2746	3751		4227	6520	5361
D8S1170	12	6205	7562	8147		11986	12976	14114
D051177	13	6729	6396	9126		12332	11951	12780
D2S441	14	5633	7216	7490		10429	11251	12361
D20441	15	4910	5838	7547		9559	10337	10160
TH01	7	4754	4851	6110		9018	9447	9384
	9.3	4010	5168	6002		7951	9333	8754
SE33	17	4700	5150	5411		6867	7896	7013
5166	25.2	4243	4263	4599		5759	7084	6109
D10S1248	12	5631	5688	6875		10188	10665	10968
D1001240	15	5806	4767	6126		8453	11283	9017
D1S1656	13	4680	5009	7368		9438	12299	9923
2101000	16	6387	5339	6907		8898	10244	9927
D2S1338	20	5544	5652	6951		9126	10713	9258
1201330	23	4626	4829	5743		9324	10295	8817

Annexe 20 : Hauteur des pics de l'échantillon WA-3 série 3 de l'étude de mélange

Annexe 21 : Proportion des contributeurs

Série	Ratio	D3S1358	D16S539	D8S1179	D2S441	TH01	SE33	D10S1248	D1S1656	D2S1338
1	1:1	41,0	44,1	40,2	41,1	34,2	48,7	41,5	40,9	48,3
1	1:2	26,5	28,9	23,6	26,0	19,3	25,5	26,0	21,7	27,7
1	1:3	23,2	21,8	16,9	13,0	21,2	24,7	21,4	14,3	20,6
1	1:4	15,9	17,1	16,7	14,0	12,7	15,8	16,7	15,8	13,9
1	1:5	15,4	22,7	16,1	11,8	13,3	18,2	15,5	12,4	14,7
1	1:10	10,2	10,8	7,2	5,7	5,9	10,2	8,9	8,1	11,4
1	1:20	7,6	2,4	2,9	2,9	4,1	2,6	2,3	5,4	3,3
2	1:1	40,6	47,9	39,0	31,0	38,5	45,2	36,6	38,1	31,8
2	1:2	23,8	29,3	27,9	23,7	23,4	30,8	21,5	26,2	25,0
2	1:3	16,7	27,2	21,7	19,6	18,9	22,3	25,3	16,9	23,4
2	1:4	18,4	16,7	16,7	13,4	16,1	18,4	15,9	10,9	17,2
2	1:5	15,6	18,1	13,5	10,5	18,1	19,0	13,7	15,3	17,0
2	1:10	2,6	12,2	6,8	5,9	8,1	9,3	9,9	9,5	10,3
2	1:20									
3	1:1	42,8	43,5	37,0	38,9	38,3	47,5	35,2	34,9	40,7
3	1:2	25,5	35,0	27,1	24,1	23,6	29,4	26,8	24,1	25,8
3	1:3	22,4	21,4	17,1	15,1	16,5	20,8	20,9	16,3	18,6
3	1:4									
3	1:5	12,0	20,7	15,3	11,7	13,0	20,3	15,0	12,4	15,5
3	1:10	9,5	9,2	7,9	6,3	7,8	11,0	7,6	8,2	8,8
3	1:20	0,9	1,7	2,6	2,6	2,9	1,1	1,3	3,6	8,6

	Somme des carrés				
Source	de type III	ddl	Carré moyen	F	Signification
Modèle corrigé	85737,0ª	18	4763,2	74,68	0,000
Constante	152310,1	1	152310,1	2388,1	0,000
Série	1,81	2	0,906	0,014	0,986
Ratio	84603,7	6	14100,6	221,1	0,000
Série * Ratio	626,66	10	62,67	0,983	0,461

Annexes 22 : ANOVA factorielle, test des effets inter sujets

Rapport

			Sous-ensemble				
	Ratio	Ν	1	2	3	4	5
Différence significative	20	16	5,9				
de Tukey ^{a,b,c}	10	27	12,0				
	5	27		21,8			
	4	18		22,1			
	3	27			29,9		
	2	27				40,4	
	1	27					77,9
	Sig		0,137	1,000	1,000	1,000	1,000

Annexe 23 : Profil génétique complet obtenu à partir de l'échantillon WA2.

Annexe 24 : Profil génétique complet obtenu à partir de l'échantillon BER1.

Annexe 25 : Profil génétique complet obtenu à partir de l'échantillon HF1.

Annexe 26 : Profil génétique complet obtenu à partir de l'échantillon AS3.

Annexe 27 : Profil génétique obtenu à partir de l'ADN de contrôle positif « *ABI*TM *DNA Control* 007».

Annexe 28 : Profil génétique obtenu à partir d'un échantillon négatif contenant de l'eau ultra pure.

GeneMapper® ID-X 1.5

Annexe 29 : Profil génétique obtenu à partir d'un échantillon de mélange d'ADN avec un ratio 1:1.