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Abstract

The project aims to exploit Deep Learning techniques for the segmentation of MRI

images to assist radiology specialists in the detection of strokes. The main aim is to

improve the detection process using the advantages of artificial intelligence.

Several approaches were explored, including the creation of a customized CNN model,

the use of learning transfer and the ensemble learning. An in-depth comparative study

was carried out to evaluate the performance of the different models obtained, focusing in

particular on Dice, IoU and Precision scores. Ultimately, after careful evaluation, two of

our models, Efficientnetb3-50 and Model HT-FLAIR, were selected and proved to

be the best choice thanks to their better scores.

Keywords: Segmentation, Stroke ; MRI ; AI ; Deep Learning
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Résumé

Le projet vise à exploiter les techniques de Deep Learning pour la segmentation des

images IRM d’accidents vasculaires cérébraux (AVC) afin d’assister les spécialistes en

radiologie dans la détection de ces AVC. L’objectif principal est d’améliorer le processus de

détection en utilisant les avantages de l’intelligence artificielle. Plusieurs approches ont été

explorées, notamment la création d’un modèle CNN personnalisé, l’utilisation du transfert

d’apprentissage et l’apprentissage d’ensemble. Une étude comparative approfondie a été

réalisée pour évaluer les performances des différents modèles obtenus, en se concentrant

notamment sur les scores Dice, IoU et la Precision. Finalement deux de nos modèles à

savoir « Efficientnetb3-50 » et « Model HT-FLAIR » ont été retenus et se sont

révélés être le meilleur choix de par leurs bons scores.

Mots clés : Segmentation, AVC ; IRM ; IA ; Apprentissage profond.
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 ملخص: 
 

وع يهدف إلى استغلال تقنيات التعلم العميق ) ن المغناطيسي لمساعدة أطباء Deep Learningالمشر ( لتقسيم صور الرني 

 . ن عملية الكشف باستخدام مزايا الذكاء الاصطناعي ي اكتشاف الجلطات. الهدف الرئيسي هو تحسي 
 الأشعة فن

 

ي ذلك إنشاء نموذج طرقتم استكشاف عدة 
مخصص، واستخدام نقل التعلم وتقنية التعلم المتعدد. تم  CNN، بما فن

ن بشكل خاص على عليها  حصلتإجراء دراسة مقارنة معمقة لتقييم أداء النماذج المختلفة الم كت 
و  Dice تقياسا، مع التر

IoU وPrecisionي النهاية، تم اختيار نموذجين
أنهما بحيث اظهرا ،  Model HT-FLAIRو  Efficientnetb3-50 ا . فن

 . قياساتيهما الجيدةالأفضل بفضل 

 

، تعلم عميق. دماغية تقسيم، جلطة الكلمات المفتاحية:  ، ذكاء اصطناعي ن مغناطيسي  ، رني 
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General Introduction

Stroke is one of the leading causes of death and disability in the world. According to

the World Health Organization (WHO), approximately 15 million people have a stroke

each year, 5 million die and 5 million are permanently disabled [12].

Stroke is a medical emergency that requires prompt and effective management to

reduce the risk of death and disability. In order to diagnose this serious disease, devices

such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are used

by radiologists.

MRI is an invaluable tool for stroke analysis, enabling visualization of brain lesions,

monitoring disease progression and guiding treatment. MRI is a non-invasive technique

that uses a magnetic field and radio waves to visualize the internal structures of the

human body. However, the analysis of MRI images of stroke is a complex challenge

due to the variability of lesions, the anatomical complexity of the brain and the need to

precisely quantify lesions.

Fortunately, with advances in technology, and in order to be able to act quickly in the

event of a stroke, research is being carried out into the application of Deep Learning in

the field of medical imaging. Indeed, Deep Learning is a machine-learning technique that

can detect specific anatomical structures in medical imaging data, such as MRI images of

the brain. The use of Deep Learning for the segmentation of MRI stroke images enables

the precise delineation of areas of infarction or cerebral lesions.

The deep artificial neural networks used in deep learning are trained on annotated

MRI image data (masks), providing recognition models for specific patterns in stroke

images. Using these patterns, segmentation algorithms can automatically identify areas of

infarction or brain damage in MRI images, which can help medical professionals diagnose

1



and treat patients more quickly and accurately.

There are several types of CNN architecture for segmentation. In our work, we will

use the U-Net architecture and the ATLAS v2 dataset as a first step, and the ISLES2015

dataset to tackle another approach.

The aim is to predict the presence or absence of a lesion and generate a corresponding

mask

To structure our work, we have divided it as follows: Chapter 1 provides general

information on stroke and MRI, Chapter 2 discusses artificial intelligence and its sub-

branches for medical image segmentation, Chapter 3 is dedicated to previous studies

conducted in this field, and finally Chapter 4 focuses on our own work.
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Chapter 1 GENERAL INFORMATION ON STROKE AND MRI

1.1 Introduction

Stroke, is one of the most dangerous diseases in the world ranked in 2019 second

with 11% of deaths recorded in the world after ischemic heart disease with 16% by the

WHO [13]. In this chapter we will first discuss in a general way the MRI imaging that

is used for medical imaging in case of a suspicion of a stroke in a patient. Then we will

discuss stroke and its diagnosis with MRI. We will finish with the problems and research

questions as well as the objectives and impact of our research.

1.2 MRI imaging

Magnetic resonance imaging (MRI) is an excellent medical imaging technique that

has proven its effectiveness since its appearance. Indeed, it is a non-invasive technique

based on the phenomenon of nuclear magnetic resonance physics (NMR) which consists

in studying the changes in magnetization of the nuclei of a substance under the joint

action of two magnetic fields, namely, a high static magnetic field and a rotating

electromagnetic field of radio frequency for example [2]. It allows to visualize in 2D or

3D certain parts of the human body rich in water, among others the brain. It is widely

used in the diagnosis and follow-up of stroke because of its high resolution and its

ability to differentiate between normal and damaged brain tissue.

Figure 1.1: Image of an MRI machine [1].

4



Chapter 1 GENERAL INFORMATION ON STROKE AND MRI

1.2.1 How MRI works

The MRI technique is based on the use of a strong, uniform magnetic field to align

the protons contained in the hydrogen atoms in the tissues of the human body. In the

absence of an external magnetic field, when we take protons from a tissue sample, they

are oriented in all directions.

During an examination, the patient is placed in the apparatus containing a strong

and uniform magnetic field. The hydrogen protons are then influenced by the magnetic

field and they all align themselves in the direction of the magnetic field (Figure 1.3).

Subsequently, radio waves are sent through the body to disrupt the alignment of the

hydrogen protons in the body tissue. This is the excitation. After a short time (in the

order of a few milliseconds) the excitation is stopped, the hydrogen protons in the body

tissues gradually return to their state of alignment with the magnetic field, thus emitting

radio signals that are detected.

Through special antennas called receiver coils, which are placed around the body part

to be imaged, the emitted radio signals are captured. They are then sent to a computer

that processes them to produce detailed cross-sectional images of body tissue. These

signals are measured by amplitude and frequency (frequency domain to image), and are

converted into a gray-scale image.

Figure 1.2: Example of brain images respectively from left to right, coronal, sagittal and axial section
in T1 sequence displayed with MRIcon.

MRI is a technique capable of providing several types of images, such as structural,

functional and diffusion images. Structural images show the anatomy of the brain or

other parts of the body, while functional images can show brain activity or connectivity.

Diffusion images show changes in the diffusion of water in body tissues, which can help

locate brain damage caused by a stroke.
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As a technique, MRI is non-invasive and does not produce ionizing radiation, which

makes it safe for use in patients. However, MRI can be limited by cost, availability of

equipment, the need to remain still during the examination (somewhat distressing for the

patient) and the duration of an examination.

Figure 1.3: In the absence of an external magnetic field, the protons in a tissue sample are randomly
oriented in all directions: the sum of the microscopic elemental magnetization vectors is zero and there

is no macroscopic magnetization vector. Subjected to an external magnetic field (prevailing in the
tunnel), the protons orient themselves along the direction of the latter (Oz) with the appearance of a

macroscopic magnetization vector [2].

1.2.2 Use of MRI to diagnose stroke

MRI is a valuable tool for diagnosing stroke because it can provide detailed images

of brain lesions, which appear as areas of abnormal signal in the brain. MRI can also

be used to determine the cause of the stroke, such as blood clots or bleeding. During an

examination, the radiologist can act on several parameters in order to obtain a type of

image (weighted) with specific characteristics. By using a combination of these different

weightings, doctors can obtain a complete view of the anatomical structures and potential

pathologies in a patient’s body.

a. T1 weighting

T1 weighting is a magnetic resonance imaging (MRI) sequence that uses a short

relaxation time and a short echo time. This sequence is often used to visualize the soft

tissues of the brain and is particularly useful for the analysis of the gray and white matter.

In the T1 sequence, tissues that contain a lot of hydrogen protons, such as gray

matter, appear in white, while tissues that contain less hydrogen protons, such as white
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matter, appear in dark gray. This weighting is therefore used to highlight the differences

in proton density in soft tissue.

T1-weighted images are often used to identify brain lesions, such as tumors and

infarcts. This sequence is also used to visualize blood vessels in the brain by injecting a

contrast agent intravenously to produce contrast images.

Figure 1.4: Exponential curve of longitudinal magnetization regrowth as a function of T1 [2].

b. T2 weighting

This weighting is often used to visualize soft tissue abnormalities such as brain lesions,

edema, tumors, infections and inflammatory diseases. In the T2 sequence, tissues that

contain a lot of water, such as white matter, appear as bright white, while tissues that

contain less water, such as gray matter, appear as dark gray. Sequences with long TR

and long TE provide more sensitive and specific T2 weighting.

The long TR relaxation time refers to the time between radio-frequency pulses, i.e.

the time the MRI system takes to reset between each radio-frequency pulse. By increasing

the repetition time, the longitudinal relaxation of hydrogen protons is complete, allowing

for better tissue differentiation.

The long TE echo time is the time between the radio-frequency pulse and the detection

of the signal. By prolonging the echo time, the transverse relaxation of hydrogen protons

is complete, which allows a better distinction between tissues.

c. FLAIR weighting

FLAIR (fluid-attenuated inversion recovery) weighted images are a variant of T2

7



Chapter 1 GENERAL INFORMATION ON STROKE AND MRI

Figure 1.5: Exponential curve of transverse magnetization disappearance as a function of T2 [2].

weighting that removes the signal from the cerebrospinal fluid to highlight abnormalities

in surrounding tissue. This weighting is often used to visualize brain lesions, tumors and

inflammations.

d. T2* weighting

T2* weighted images are used to visualize tissues that contain iron particles, such as

brain lesions caused by hemorrhages. This weighting uses a short TR and a short TE,

and tissues that contain iron particles appear in black.

Both T2 relaxation time and T2* relaxation time are measures of hydrogen proton

relaxation, but T2 is more sensitive to intrinsic tissue properties, while T2* is more

sensitive to local magnetic fields and tissue heterogeneities.

e. DWI weighting

DWI (Diffusion-Weighted Imaging) weighted images are used to visualize the diffusion

of water molecules in tissues. This weighting is often used to detect strokes and tumors.

Figure 1.6: Different MRI modalities.
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1.2.3 Different types of MRI used to diagnose stroke

There are several types of MRI used to diagnose stroke, each with its advantages and

limitations.

a. Diffusion-weighted MRI (DWI)

This technique allows visualization of brain damage in the early hours of stroke by

detecting changes in water diffusion in brain tissue. Areas of ischemic brain tissue appear

as a hyper-intense signal due to reduced water diffusion. This technique is particularly

useful for detecting acute ischemic stroke [14].

b. Perfusion MRI (PWI)

This technique visualizes areas of the brain that are perfused in an altered manner

due to stroke. It uses dynamic MRI sequences to measure how much blood reaches the

brain tissue and how fast it flows. This technique is useful for assessing the extent of

altered brain perfusion in ischemic stroke. Like DWI, it is among the most widely used

techniques when analyzing the pathophysiology of brain parenchyma during acute stroke

[15].

c. Magnetic resonance angiography (MRA)

This technique uses MRI sequences to visualize blood vessels in the brain, either

directly by adjusting the input parameters or by injecting a contrast agent such as

gadolinium [16]. It is useful for detecting blood clots in brain vessels that can cause

ischemic stroke.

d. T2-weighted MRI

This technique allows visualization of areas of brain tissue that have suffered loss of

substance due to stroke. It is useful for detecting brain lesions that are no longer acute

but are already healing.

1.2.4 Limitations of MRI for Stroke Diagnosis

Although MRI is a powerful imaging technique for diagnosing stroke, it also has some

limitations such as

- Motion artifacts: MRI images can be affected by patient motion during the exam,
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which can lead to artifacts that can make image interpretation difficult.

- MRI contraindications: Some people cannot have an MRI because of

contraindications, such as the presence of pacemakers or certain types of metal

prostheses.

- Spatial resolution limitations: Although MRI offers high spatial resolution, it may

not be sufficient to visualize small brain lesions or to distinguish between different types

of brain tissue.

- Time required for the examination: MRI generally requires more time than other

imaging techniques to perform the examination, which may limit its availability for

patients requiring emergency intervention.

- Cost and availability: MRI is an expensive imaging technique and is not always

available in all health care centers.

1.2.5 Use of advanced image processing techniques to improve

stroke diagnosis with MRI

The use of advanced image processing techniques can improve the accuracy and

reliability of MRI stroke diagnosis. These techniques can extract more precise and

detailed features from MRI images, which can help physicians diagnose stroke more

quickly and accurately.

One of the most promising image processing techniques for improving stroke diagnosis

is Deep Learning. Deep Learning is a form of machine learning that uses artificial neural

networks to analyze MRI images and extract features relevant to stroke diagnosis. These

features can be used to develop algorithms for automatic segmentation of MRI images,

which can help detect and characterize brain lesions associated with stroke.

In addition, image processing techniques can also be used to improve the quality of

MRI images by correcting motion artifacts and improving the spatial resolution of images.

The use of these techniques can help physicians diagnose strokes more quickly and

accurately, which can improve clinical outcomes for stroke patients. However, these

techniques require special expertise and resources, which may limit their use in some

health care centers.
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1.3 Stroke lesions

A stroke, or cerebral vascular accident, can cause significant damage to the brain.

Stroke lesions refer to areas of brain tissue that have been damaged due to an interruption

of blood flow to the brain. Stroke lesions can be caused by blood clots (ischemic stroke)

or bleeding (hemorrhagic stroke) [3].

The location of brain lesions can affect the symptoms and consequences of stroke.

Sophisticated imaging techniques such as MRI can be used to visualize stroke lesions

and track their progression over time. Stroke lesions can have significant functional

consequences, including speech, motor and cognitive impairments [3], which may require

specialized rehabilitation and management.

1.3.1 Types of stroke lesions

There are two main types of stroke lesions: ischemic and hemorrhagic.

Ischemic stroke is the most common type of stroke and is caused by an interruption

of blood flow to the brain due to a blood clot or narrowing of the cerebral arteries. This

leads to a shortage of oxygen and nutrients, which can damage brain cells and result in

cell death. Ischemic lesions are responsible for approximately 80% of stroke cases [3].

Hemorrhagic injuries, on the other hand, are caused by a rupture of a blood vessel

in the brain, which can lead to a buildup of blood in the brain and compression of

surrounding brain tissue. Hemorrhagic lesions account for approximately 20% of all

strokes. Despite their rarity, 40% are fatal within the first month, 50% of which occur

within the first 48 hours [3].

It is important to note that ischemic and hemorrhagic lesions may co-exist in some

complex strokes, and may be associated with different clinical presentations and

functional sequels. Stroke lesions may also vary in size, shape and location, which may

have implications for clinical presentation and functional outcome.

1.3.2 Location of stroke lesions

The location of stroke lesions can have a significant impact on the patient’s symptoms

and function, as each area of the brain is responsible for a specific function [3]. Ischaemic
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Figure 1.7: The two types of stroke [3].

and hemorrhagic lesions can occur in different areas of the brain, and their location can

be identified using imaging techniques such as MRI.

Stroke lesions can be classified according to their location, for example as cortical

lesions (affecting the outer layer of the brain) or sub-cortical lesions (affecting the sub-

cortical regions of the brain). Lesions can also be classified according to their anatomical

location, for example into lesions of the brain-stem, cerebellum, frontal, parietal, occipital

or temporal lobes.

The location of stroke lesions can have important implications for symptoms and

functional outcomes. For example, damage to the frontal cortex may affect motor skills

and movement planning, while damage to the parietal cortex may affect sensation and

spatial perception. Lesions of the brain-stem can be particularly severe and can affect

vital functions such as breathing and blood circulation.

By understanding the location of stroke lesions, health professionals can better

predict symptoms and functional consequences, and plan appropriate management to

help patients recover their function.

12



Chapter 1 GENERAL INFORMATION ON STROKE AND MRI

1.3.3 Imaging of stroke lesions

Imaging plays a crucial role in the detection and characterisation of stroke lesions. The

most common imaging techniques used to visualise stroke lesions are magnetic resonance

imaging (MRI) and computed tomography (CT).

MRI images can provide detailed information about the structure of the brain,

including ischaemic, hemorrhagic, or mixed lesions. MRI is also able to detect lesions

very early, before they are detectable by other imaging techniques. Different types of

MRI can be used to visualise different aspects of stroke lesions, such as brain perfusion

or water diffusion in brain tissue [3].

Computed tomography (CT) is a less sensitive imaging technique than MRI for the

detection of stroke lesions, but it can be faster and more readily available in emergency

situations [3]. CT uses X-rays to produce cross-sectional images of the brain, which can

help identify hemorrhagic lesions and areas of brain oedema.

Other imaging techniques, such as positron emission tomography (PET) and single

photon emission computed tomography (SPECT), can also be used to visualise stroke

lesions and assess brain function.

1.3.4 Evolution of stroke lesions

The course of stroke lesions depends on a number of factors, such as the size, location

and type of the lesion, and the speed with which the patient is managed. The course of

ischaemic lesions differs from that of hemorrhagic lesions.

Ischaemic lesions usually develop slowly, over a period of hours or days. The size

and severity of the lesion may increase during this period, which may lead to worsening

symptoms and complications. In some cases, the lesion may partially or completely

resolve if blood flow is restored quickly, for example by thrombolysis or thrombectomy

[3]. However, if the lesion is large or if treatment is delayed, permanent sequels may

occur.

Hemorrhagic lesions progress more rapidly than ischaemic lesions, as they result in

direct compression of brain tissue and increased intracranial pressure. The hemorrhage

can also cause inflammation and an immune response, which can further damage brain
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tissue. Prompt management is essential to minimise damage and prevent life-threatening

complications.

1.3.5 Causes of stroke lesions

Stroke lesions are caused by an interruption of blood supply to the brain. This

interruption can be due to two main types of stroke: Ischemic and hemorrhagic stroke

[3] . Just as other factors can increase the risk of developing a stroke, including:

a. Age

Age is an important risk factor for stroke. The risk of stroke increases with age due to

the deterioration of blood vessels over time. Arteries become stiffer and less elastic, which

can lead to plaque buildup and narrowing of the blood vessels. In addition, the arteries

can also become more fragile and more likely to rupture, leading to a brain hemorrhage.

The risk of stroke doubles for every decade of life after age 55. Strokes are therefore

more common in older people. However, strokes can occur at any age, even in young

people.

b. Gender

Although men younger than 75 years of age have a slightly higher risk of stroke

than women, male sex is not considered a major risk factor. In contrast, women have a

higher risk of subarachnoid hemorrhage. Women have a longer life expectancy than men,

which increases their risk of stroke. In addition, the decline in estrogen at menopause is

associated with elevated cholesterol and triglycerides, which are risk factors for stroke.

c. Family history

People with a family history of stroke have a higher risk of developing stroke.

d. Cardiovascular disease

Heart disease such as high blood pressure, cardiac arrhythmia, heart failure, and heart

valve disease can increase the risk of stroke.

e. Diabetes

People with diabetes have a higher risk of stroke because of complications associated

with the disease. One of the major complications of high blood sugar in diabetes is
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protein glycation and macroangiopathy. This weakens the artery walls and promotes

atherosclerotic plaque formation.

f. Lifestyle

Lifestyle risk factors such as smoking, poor diet, physical inactivity, and alcohol abuse

can also increase the risk of stroke.

1.3.6 Functional consequences of stroke lesions

The functional consequences of stroke lesions can be highly variable depending on the

location and extent of the lesion. Symptoms may be immediate or may appear gradually

over time.

Stroke lesions can result in loss of motor, sensory and cognitive functions. Motor

functions may be impaired by partial or total paralysis of one or more limbs, decreased

muscle strength, loss of coordination or balance problems. Sensory functions, such as

vision, hearing or touch, may also be affected. Cognitive functions, such as memory,

attention, concentration and decision making, may also be impaired.

The functional consequences of stroke injuries can have a significant impact on the

quality of life of the patient and family. They can result in loss of independence, decreased

ability to work, to perform activities of daily living, and to participate in social activities.

Rehabilitation is essential to help patients recover their function and quality of life

after a stroke. Rehabilitation techniques may include physical therapy, occupational

therapy, cognitive rehabilitation and speech therapy. Health care professionals often

work as a team to develop a personalized rehabilitation plan for each patient based on

their individual needs.

1.4 Research problem and questions

Segmentation of MRI images of stroke is a crucial area of research in medical

neuroimaging. Segmentation involves identifying and delineating anatomical structures

of interest in the image. It is used to identify lesions in the brain.

For segmentation of stroke lesions, manual segmentation by an expert is considered

the gold standard method. However, this method is time consuming and dependent on
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the level of expertise of the operator. Therefore, with the evolution of technologies, it

is necessary to develop automatic and accurate segmentation methods for MRI stroke

images. Classical segmentation techniques such as thresholding segmentation, region

segmentation, active contour segmentation, region growing segmentation have shown their

limits in terms of accuracy in this domain. So, lately the research is turned to the use of

Deep Learning.

Deep Learning is a machine learning technique that has revolutionized medical image

segmentation. Deep neural networks have the ability to learn representative features

from images by using deep network architectures to identify and extract features from

the image. This technique has led to more accurate results in the segmentation of medical

images, including MRI images of stroke.

However, there are still challenges and research questions in segmenting stroke MRI

images with Deep Learning. For example, the identification of different lesion areas is

complex due to inter- and intra-patient variability, as well as the presence of other brain

pathologies that may disrupt the segmentation. Thus, research questions arise on how to

improve the accuracy and robustness of segmentation algorithms for stroke.

Another important research question is the generalizability of these algorithms to

other types of stroke and other brain pathologies. Indeed, most current segmentation

algorithms have been developed for a specific type of stroke, which limits their use in

other types of lesions. There is therefore a need to develop segmentation algorithms that

can be used for different types of stroke and other brain pathologies.

Finally, the performance of Deep Learning segmentation algorithms is very sensitive to

the training data. The quality and quantity of training data can have a significant impact

on segmentation performance. Thus, the research question arises on how to obtain high

quality training data in sufficient quantity to develop accurate and robust segmentation

algorithms for stroke.

Segmentation of MRI images of stroke with Deep Learning is an evolving research

question. The major challenge is to succeed in developing accurate and robust

segmentation algorithms for stroke that can be generalized to different types of lesions

and other brain pathologies.
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1.5 Objectives and Impact of the research

The ultimate goal of research on MRI stroke image segmentation with Deep Learning

is to improve the accuracy and speed of brain lesion segmentation, which is essential for

early and accurate stroke diagnosis.

By using Deep Learning for MRI image segmentation, the researchers also aim to

solve segmentation problems that persist in conventional image processing techniques.

Conventional approaches are often prone to errors due to the complexity of MRI images,

inter- and intra-observer variability, and the need for significant processing time. Deep

Learning can overcome these problems through deep learning from large annotated MRI

image datasets. The impact of this research is significant because it can contribute

to better management of stroke patients, enabling faster and more accurate medical

intervention. This can lead to a reduction in stroke-related mortality and disability, as

well as improved quality of life for patients.

In addition, using Deep Learning to segment MRI images can help reduce the

workload of medical professionals, who may be able to diagnose strokes faster and more

efficiently. This can also reduce the costs associated with healthcare by reducing the

length of hospitalizations and treatments.

Finally, research on MRI stroke image segmentation with Deep Learning can have a

broader impact on the fields of medicine and medical imaging, providing more efficient

approaches to image segmentation and clinical decision making based on image analysis.

1.6 Conclusion

This chapter gave a global view on stroke and MRI by starting with an introduction

on magnetic resonance imaging, its functioning, its use for stroke diagnosis and its

limitations. Then we discussed the lesions of stroke, the different types of stroke, their

locations and their causes. Finally, we presented our problematic, some questions about

the research in the field and the impact that our research will have. In the next chapter

we will discuss artificial intelligence, especially its application in the medical field.
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2.1 Introduction

Medical imaging represents an imperative tool for the diagnosis and treatment of

diverse pathologies, However the accurate interpretation of medical images necessitates a

considerable degree of proficiency and experience, with such abilities being available in a

select few people having progressed specialization within the field, The advent of artificial

intelligence (AI) has resulted in a significant paradigm shift in the field of medical imaging

by enabling automated and accurate analysis of medical images.

In recent times, artificial intelligence (AI) methods, specifically deep learning, have

demonstrated promising outcomes in the field of medical image analysis. These

techniques have facilitated a significant improvement in detecting and segmenting

various abnormalities, including tumors, lesions, and other anomalies.

This chapter gives insights into the role of AI and deep learning in medical image

analysis, particularly stroke lesion analysis from brain MRI images, we aim to provide a

comprehensive understanding of the applications and limits of deep learning in this area.

2.2 Overview of artificial intelligence and machine

learning

2.2.1 Definition of Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) refers to the ability of machines to perform tasks that

generally necessitate human intelligence, including visual perception, speech

recognition, decision-making, and natural language processing. AI includes a broad

range of techniques and approaches, including machine learning and deep learning.

Machine learning (ML) is a subset of AI that involves the development of algorithms

that can learn from data and improve their performance over time. In ML, a computer

system is trained on a large dataset of examples and then uses that training to make

predictions or decisions on new data. ML techniques include supervised learning,

unsupervised learning, and reinforcement learning.

Deep Learning (DL) is a branch of Machine Learning (ML) that employs artificial
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neural networks (ANN) to model and address complex problems. Deep Learning

algorithms are based on the way human brain function, they learn to recognize patterns

in data through the processing of vast amounts of information across interconnected

layers. Deep learning has demonstrated an outstanding level of success across a diverse

range of applications, including image and speech recognition, natural language

processing, and recommendation systems.

ARTIFICIAL INTELLIGENCE
A program that can sense, reason, act, and 

adapt

MACHINE LEARNING 
Algorithms whose performance improve as they

are exposed to more data over time

DEEP LEARNING 
Subset of machine 

learning in which

multilayered neural 

networks learn from vast

amounts of data 

Figure 2.1: Artificial Intelligence-Machine learning-Deep Learning.

2.2.2 Brief history of AI and Machine Learning

The roots of AI can be traced back to the 1940s, particularly 1942, when the American

Science Fiction author Isaac Asimov published his brief story Runaround. The plot of

Runaround—a story about a robot created by the engineers Gregory Powell and Mike

Donovan—evolves around the Three Laws of Robotics: (1) a robot may not harm a human

being or, through inaction, permit a human being to come to harm; (2) a robot must

comply to the orders given to it by humans except where such orders would conflict with

the First Law; and (3) a robot must protect its own existence as long as such protection

does not strife with the First or Second Laws. Asimov’s work inspired generations of
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scientists in the field of robotics, AI, and computer science—among others the American

cognitive scientist Marvin Minsky (who afterward co-founded the MIT AI laboratory).

Alan Turing, an English mathematician developed a code breaking machine called

The Bombe during World War II to decipher the Enigma code used by the German army.

The Bombe, which was about 7 by 6 by 2 feet large and had a weight of about a ton,

is generally Considered as the first working electro-mechanical computer, The Bombe

broke the code in a way that was previously impossible for human mathematicians. This

breakthrough made Turing wonder about the intelligence of such machines. leading him

to publish his seminal article in 1950, titled “Computing Machinery and Intelligence”.

In this article, he described how to create intelligent machines and in particular how to

test their intelligence. This Turing Test is a benchmark to identify the intelligence of an

artificial system, if a human is interacting with another human and a machine and unable

to distinguish the machine from the human, then the machine is said to be intelligent.

Six years later, in 1956, the term Artificial Intelligence was officially coined by

Marvin Minsky and John McCarthy (a computer scientist at Stanford), who organized

the Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI) at

Dartmouth College in New Hampshire. This event, funded by the Rockefeller

Foundation, brought together the founding fathers of AI, including the computer

scientist Nathaniel Rochester, who later designed the IBM 701, the first commercial

scientific computer, and mathematician Claude Shannon, who founded information

theory. The purpose of DSRPAI was to establish a new field of research aimed at

creating machines that could replicate human intelligence by bringing together

researchers from different disciplines. [17]

2.3 Role of AI in medical image analysis

During the 1980s AI was applied to diagnostic imaging. Users first define explicit

parameters and features of the imaging based on expert knowledge. For instance, the

shapes, areas, histogram of image pixels of the regions-of-interest (i.e., Tumor regions)

which can be extracted. A subset of the available data entries is allocated for training

purposes, while the remainder is reserved for testing in order to effectively train the

machine learning algorithm, the implementation of a specific algorithm is selected, such
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as principal component analysis (PCA), support vector machines (SVM), convolutional

neural networks (CNN), Upon completion of training, the algorithm becomes capable

recognizing and classifying a given test image.

The primary focus of research in diagnostic imaging has been on detection, with

computer-aided location (CAD) frameworks being created as early as the 1980s.

Traditional machine learning algorithms were applied on image modalities like CT,

MRI, and mammography. Despite considerable research efforts, the real clinical

applications of CAD systems were not fruitful. Several large trials showed that CAD

provided no noteworthy advantage and, in some cases, even reduced radiology accuracy,

driving to higher rates recall and biopsy.

the new era of deep learning in AI has shown significant improvements in the

research area. for example, a deep learning algorithm developed by Ardila et al used a

patient’s prior and current CT volumes to predict the risk of lung cancer. The model

achieved a state-of-the-art performance 94.4% area under the curve (AUC) on 6716

national lung cancer screening trial cases and performed similarly on an independent

clinical validation set of 1139 cases. In contrast, low-dose CT conventional screening

involves several potential adverse outcomes according to cancer.org: false-positive

exams, overdiagnosis, complications of diagnostic evaluation, increase in lung cancer

mortality, and radiation exposure. One false-positive exam example provided on the

web site was 60%. Overdiagnosis was estimated at 67%. There is also radiation induced

risk to develop lung cancer or other types of cancer later in life. AI-based diagnosis

methods demonstrate the potential to mitigate these risks.

Deep learning algorithms have become increasingly important in the field of

radiology imaging analysis. These algorithms have demonstrated remarkable

advancements in various image modalities such as CT, MRI, PET, and ultrasonography

etc. and different tasks like tumor detection, segmentation, disease prediction etc. In

comparison to conventional machine learning algorithms, deep learning has shown

substantial performance improvements. deep learning learns from large sets of image

examples and metadata. However, it might take much less time, as it does not depend

on domain expertise, which usually takes years to develop. As the traditional AI

requires predefined features and have shown plateauing performance over recent years.

With the current success of AI and deep learning in image research, it is anticipated
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that AI will continue to dominate the field of image research in radiology.[18]

2.4 Types of deep learning algorithms used in medical

image analysis

Sequential modeling is a technique in machine learning and artificial intelligence

that analyzes and understands data sequences. It captures temporal dependencies and

patterns to make predictions or generate new sequences. Recurrent Neural Networks

(RNNs) are commonly used for sequential modeling, as they retain information from

previous steps and use it to influence the current step. RNNs pass hidden states or

memory cells from one step to the next, allowing them to capture long-term

dependencies. This enables the model to learn from the entire sequence and perform

tasks like language modeling, speech recognition, and time series analysis. By

employing sequential modeling, we can uncover insights, leverage patterns, and apply it

to applications such as text generation, sentiment analysis, and speech synthesis. In

addition to exploring the main types of deep learning algorithms used in medical image

analysis, we will also cover in this chapter some of the most commonly employed deep

learning algorithms.

2.4.1 Convolutional Neural Networks (CNNs)

Over the past few years, deep learning has gained widespread recognition and

application in the field of medical image processing. Among the various deep learning

methods used in this domain, Convolutional Neural Network (CNN) emerges as a

prominent and widespread method. The CNN methodology has not only exceeded past

methodologies but has also attained incomparable accuracy in tasks involving the

classification and segmentation of images. Additionally, it plays a crucial role in transfer

learning methodologies for image processing. it can be said that without the

development and expansion of CNN, there will be no great prospect of transfer learning

in the field of medical image processing. In fact, a significant amount of transfer

learning approaches are based on CNN. Within the architecture of CNNs[19], several

essential components can be identified:
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a. Convolutional Layers

In Convolutional Neural Networks (CNNs), the convolution layer follows the input

layer and plays a crucial role in extracting features from the input. The convolutional

kernel, similar to a filter in signal processing, scans the image and detects specific

features. Different convolutional layers extract various features from the input image.

CNNs typically consist of multiple convolutional layers, with earlier layers extracting

basic features and later layers extracting more advanced features. For example, when

identifying a cat, the first layer may detect edges and lines, while the second layer may

identify specific parts like the cat’s eyes, nose, and ears. This layer-by-layer approach

allows the CNN to learn and recognize the features associated with a cat. The standard

structure of convolutional layers involves key parameters such as kernel size, input

image size, zero-padding, stride, and output feature map size. The kernel, represented

by a matrix, serves as the feature extractor. Padding is used to add extra pixels of zero

value around the input image, enabling deeper convolutional neural networks. The

convolution operation applies the kernel to the input image, typically with a stride of

one. However, different strides can be used for different performance requirements[19].

Figure 2.2: Basic structure of typical convolutional neural networks [4].

b. Pooling Layers

Pooling layers play a role in downsampling the feature maps generated by convolution

operations. They take the larger-sized feature maps and shrink them to lower-sized

feature maps. While shrinking the feature maps, they always preserve the most dominant

features (or information) at each pooling step. The pooling operation is performed by
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specifying the pooled region size and the stride of the operation, similar to the convolution

operation. Different types of pooling techniques are used in various pooling layers, such

as max pooling, min pooling, average pooling, gated pooling, tree pooling, etc. Among

these, Max Pooling is the most commonly used technique[20].

13 8 12 19

24 89 6 2

54 30 42 14

28 32 20 16

89 19

54 42

Maxpooling (2x2)

Figure 2.3: Max pooling illustration.

c. Activation Functions

The primary role of an activation function in any neural network-based model is to

transform the input to the corresponding output. The input value is determined by

computing the weighted sum of the neuron’s inputs and adding a bias if present.

Essentially, the activation function determines whether a neuron will activate or remain

inactive based on the given input, producing the appropriate output. In CNN

architecture, non-linear activation layers are employed after each learnable layer (such

as convolutional and fully connected layers). These non-linear activation layers

introduce non-linearity to the CNN model, allowing it to learn and map inputs to

outputs in a non-linear fashion. An important characteristic of an activation function is

its differentiability, which facilitates error backpropagation for model training. The

following are the commonly used activation functions in deep neural networks, including

CNN.

In neural networks,there are several commonly used activation functions. The

sigmoid activation function maps the input to a range between 0 and 1, making it

suitable for binary classification tasks. The hyperbolic tangent (tanh) function provides

outputs in the range of -1 to 1 and is commonly used in classification problems and

hidden layers. The rectified linear unit (ReLU) function, which sets negative values to

zero, is widely used in deep learning due to its effectiveness in handling the vanishing
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gradient problem. To address the drawbacks of ReLU, the leaky ReLU function

introduces a small slope for negative values. Lastly, the softmax function is employed in

multi-class classification to generate class probabilities that sum up to 1. These

activation functions play a crucial role in introducing non-linearity and shaping the

output of neural networks.[20]

d. Fully Connected Layers

Typically, in CNN architectures used for classification, the final part (or layers)

primarily consists of fully-connected layers. These layers establish connections between

each neuron in a layer with every neuron in the previous layer. The last layer of

fully-connected layers functions as the output layer, serving as the classifier for the

CNN architecture. The fully-connected layers belong to the category of feed-forward

artificial neural networks (ANNs) and adhere to the principles of a traditional

multi-layer perceptron neural network (MLP). These FC layers receive input from the

last convolutional or pooling layer, which takes the form of a collection of metrics

known as feature maps. To facilitate processing, these metrics are flattened, creating a

vector that is subsequently passed into the FC layer. This process concludes in

generating the final output of the CNN.[20]

Class 1

Class 2

Input Layer Output LayerFully Connected Layer

Flattening The Feature Map

Figure 2.4: The architecture of Fully Connected Layers.
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e. Optimizers

Optimizers are essential in Convolutional Neural Networks (CNNs) as they improve

the model’s performance by adjusting weights during training. They minimize the loss

function by iteratively updating the weights based on gradients. Popular optimizers

include Stochastic Gradient Descent (SGD), Adam, and RMSprop. These algorithms

ensure the CNN learns relevant features and generalizes well to new data.[21]

2.4.2 Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM)

RNNs possess the capability to recognize sequences, with the weights of the neurons

distributed across all dimensions. Variants like LSTM, BLSTM, MDLSTM, and

HLSTM have demonstrated state-of-the-art accuracies in tasks such as character

recognition, speech recognition, and various natural language processing problems.

RNNs excel at capturing temporal dependencies, but they face challenges such as

gradient vanishing and a reliance on large datasets [22].
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Figure 2.5: RNN and LSTM cells.

Key aspects of RNNs and LSTMs include:

a. Sequential Modeling

Sequential modeling is a technique in machine learning and artificial intelligence

that analyzes and understands data sequences. It captures temporal dependencies and

patterns to make predictions or generate new sequences. Recurrent Neural Networks

(RNNs) are commonly used for sequential modeling, as they retain information from
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previous steps and use it to influence the current step. RNNs pass hidden states or

memory cells from one step to the next, allowing them to capture long-term

dependencies. This enables the model to learn from the entire sequence and perform

tasks like language modeling, speech recognition, and time series analysis. By

employing sequential modeling, we can uncover insights, leverage patterns, and apply it

to applications such as text generation, sentiment analysis, and speech synthesis.

b. Recurrent Layers

Recurrent layers in RNNs contain recurrent connections that enable information

flow through time. These layers maintain a hidden state that carries information across

sequential steps. LSTMs are a type of recurrent layer that use memory cells and gates

to selectively remember or forget information over long sequences.

c. Training and Backpropagation Through Time

RNNs are trained using backpropagation through time, which is an extension of the

standard backpropagation algorithm for feedforward neural networks. It involves

unfolding the recurrent structure over time and applying the chain rule to calculate

gradients and update weights.

d. Applications in Medical Image Analysis

RNNs and LSTMs have shown promising results in various medical image analysis

tasks. They can be used for tasks such as time series classification, disease progression

prediction, medical signal analysis, and sequential medical image analysis, where the

temporal aspect of the data is crucial.

2.4.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a type of deep learning algorithm that

consists of two neural networks: a generator and a discriminator. GANs are primarily

used for generating new data samples that resemble the training data. Key aspects of

GANs include:

a. Generator Network

The generator network in a GAN takes random noise as input and generates synthetic

data samples. It learns to map the noise to the target data distribution by generating

samples that are increasingly difficult for the discriminator to distinguish from real data.
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b. Discriminator Network

The discriminator network in a GAN acts as a binary classifier, distinguishing between

real and generated data samples. It learns to differentiate between real and fake samples

by optimizing a binary classification objective. The discriminator’s role is to provide

feedback to the generator, encouraging it to generate more realistic samples.

c. Adversarial Training

GANs are trained in an adversarial manner, with the generator and discriminator

networks competing against each other. The generator aims to generate realistic samples

to fool the discriminator, while the discriminator aims to correctly classify real and fake

samples. This adversarial training process encourages both networks to improve and

reach a state where the generated samples are indistinguishable.

2.5 Applications of deep learning in stroke lesion

analysis

2.5.1 Automated Lesion Segmentation

Automated lesion segmentation plays a crucial role in medical imaging analysis,

primarily in identifying and delineating stroke lesions in MRI or CT scans. Deep

learning algorithms, specifically convolutional neural networks (CNNs), have

demonstrated significant advancements in this domain, offering accurate and efficient

segmentation outcomes. Convolutional neural networks (CNNs) have been successfully

applied to segment brain stroke lesions from MRI images. These deep learning models

leverage their ability to learn complex spatial patterns and features within the images,

enabling accurate identification and delineation of stroke lesions. By training CNNs on

large datasets of labeled MRI images, the models learn to recognize and differentiate

between healthy brain tissue and stroke-affected regions. This allows for precise

localization and segmentation of stroke lesions, providing valuable information for

diagnosis, treatment planning, and monitoring of stroke patients. The use of CNNs in

brain stroke lesion segmentation has shown promising results in terms of accuracy and

efficiency, facilitating improved clinical decision-making and patient care in the field of

neurology.
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Figure 2.6: MRI Image and Mask.

2.5.2 Predicting Clinical Outcomes

The accurate prediction of patient outcomes is of utmost importance in healthcare,

particularly in the context of stroke management. Deep learning models have shown great

promise in utilizing stroke lesion characteristics to forecast patient prognosis, recovery,

and treatment response. By leveraging these models, healthcare professionals can make

informed decisions regarding treatment and devise optimal rehabilitation strategies for

stroke patients.

Predicting clinical outcomes using deep learning extends beyond stroke management.

It has applications in various medical domains, such as:

a. Cancer Prognosis

Cancer Prognosis: Deep learning models can analyze tumor characteristics and patient

data to predict the likelihood of disease progression, recurrence, and survival rates.

b. Heart Disease Risk Assessment

By analyzing patient medical records, lifestyle factors, and genetic information, deep

learning models can help assess the risk of cardiovascular events, such as heart attacks

and strokes.

c. Mental Health Diagnosis

Deep learning techniques can aid in predicting mental health conditions, such as

depression and schizophrenia, based on patient behavior patterns, speech analysis, and
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neuroimaging data.

d. Diabetes Management

Deep learning algorithms can analyze patient data, including blood glucose levels,

dietary patterns, and physical activity, to predict glycemic levels and aid in personalized

diabetes management.

These examples highlight the vast scope of deep learning’s potential applications in

forecasting clinical outcomes throughout various medical disciplines. By harnessing the

power of these models, healthcare professionals can enhance decision-making, elevate the

quality of patient care, and optimize treatment strategies.

2.5.3 Quantitative Lesion Analysis

Quantitative lesion analysis using deep learning has revolutionized stroke assessment

and research. deep learning models effectively extract significant features from stroke

lesion images, thus enabling precise quantification of size, location, volume, and shape

attributes. These measurements aid in clinical assessment and facilitate research studies

by providing objective and standardized data. Deep learning-based quantitative lesion

analysis enhances stroke severity assessment, treatment response evaluation, and

prognosis. It also contributes to understanding stroke mechanisms, assessing

therapeutic interventions, and developing predictive models. Overall, deep learning

empowers quantitative lesion analysis, improving stroke care and advancing stroke

research.

2.6 Advantages and limitations of deep learning for

stroke lesion analysis

The utilization of deep learning techniques has emerged as a highly promising

approach for the purpose of analyzing stroke lesions, presenting a host of advantages in

comparison to conventional methods. Recent advancements in computational models

have employed neural networks to extract significant features from imaging data,

facilitating precise and effective analysis of stroke lesions. Nonetheless, similar to all

methodologies, the deep learning approach has inherent restrictions. In the present
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discourse, we shall examine the advantages and limitations pertaining to deep learning

techniques in the context of stroke lesion analysis. By comprehending these factors, we

can gain a more profound understanding of the promising advantages and hurdles that

are related to the implementation of deep learning algorithms for the analysis of stroke

lesions and the significant consequences it has on both clinical practice and research

endeavors.

2.6.1 Advantages of Deep Learning

Deep learning offers several advantages for stroke lesion analysis. These include:

a. Handling complex and high-dimensional data

Deep learning models excel at analyzing intricate patterns and relationships within

stroke lesion data, enabling more accurate analysis.

b. Learning hierarchical representations

Deep learning models automatically learn hierarchical features, capturing both low-

level and high-level characteristics of stroke lesions for more comprehensive analysis.

c. Automation and efficiency

Once trained, deep learning models can automate lesion analysis tasks, saving time

and reducing the risk of human error. They can efficiently analyze large datasets.

d. Generalizability

Deep learning models can generalize knowledge learned from one dataset to new and

unseen data, making them adaptable to diverse stroke lesion datasets.

These advantages make deep learning a powerful tool for enhancing stroke lesion

analysis, improving stroke management, and advancing research in this field.

2.6.2 Data Requirements and Limitations

Deep learning for stroke lesion analysis faces challenges in data requirements,

including the need for large labeled datasets and potential biases in training data.

Interpretability of deep learning models can be limited, making it difficult to explain

their decisions. Strategies like data augmentation, transfer learning, and model

interpretability techniques help mitigate these limitations.
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2.6.3 Computational Requirements

Deep learning models for stroke lesion analysis require substantial computational

resources and infrastructure. The computational complexity and memory requirements

of deep learning algorithms can be demanding, necessitating powerful hardware and

sufficient storage capacity. Potential limitations in terms of available computational

resources and hardware capabilities should be considered when training and deploying

deep learning models for stroke lesion analysis.

2.7 Conclusion

In this chapter, we discussed the role of AI and ML in medical image analysis, focusing

on Deep Learning algorithms. Deep Learning has revolutionized medical image analysis

by enabling automated and accurate interpretation of complex medical images. It offers

advantages such as improved diagnosis and patient care.

However, Deep Learning has limitations, including the need for large datasets,

potential biases, interpretability challenges, and computational requirements.

Mitigating these limitations requires techniques like data augmentation, transfer

learning, and interpretability methods.

In summary, AI and Deep Learning have transformed medical image analysis, but

further research is needed to overcome existing challenges and fully utilize their potential

in improving healthcare outcomes.
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3.1 Introduction

The use of Deep Learning, a machine learning technique based on artificial neural

networks inspired by the human brain, offers promising prospects for the analysis of MRI

images of stroke. This technique allows to assist a radiologist in his task or to obtain the

first diagnoses in case of absence of an experienced radiologist because strokes are cases

that require a fast management.

In this state of the art, we explore the methods that are used for medical image

segmentation. We first focus on traditional methods, then we give an overview on

current state-of-the-art methods followed by related work. We conclude with our

proposed method for stroke image segmentation.

3.2 Traditional Methods for medical images

Segmentation

Prior to the real emergence and gain in popularity of Deep Learning around the 2010s,

traditional methods were used by researchers for segmentation of medical images.

3.2.1 Thresholding segmentation

The thresholding segmentation method consists in applying a threshold to the image

to separate the pixels of the area of interest from the rest of the image. Different

thresholding techniques can be used, such as thresholding based on pixel intensity or

thresholding based on textural features.

A number of thresholding algorithms have been proposed using global and local

techniques. Global methods apply a threshold to the entire image, while local

thresholding methods apply different threshold values to different regions of the image.

The choice of threshold value is based on the neighborhood of the pixel to which the

thresholding is applied [23]. Thresholds used in these algorithms can be selected

automatically or manually. Manual selection of a suitable threshold value requires

knowledge and sometimes experimental trials, while automatic selection combines image

information to obtain the adaptive threshold value.
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Figure 3.1: Traditional Methods for Stroke Lesion Segmentation.

The use of global thresholding is only effective if the image to be segmented contains

a constant background and a single object. When dealing with images with a diversity

of backgrounds and objects, local thresholding is a good choice [24], although it is time

consuming.

The Otsu algorithm is a very common global thresholding technique and he obtains the

threshold values using an image histogram. But there are also other popular thresholding

techniques such as Kapur, Tsai, Kittler and Illingworth, Huang, Yen and others [23].

Depending on the information used to define the threshold values, thresholding-based

algorithms can be classified into three categories: edge-based algorithms, region-based

algorithms and hybrid algorithms.

3.2.2 Clustering/Unsupervised Methods

Clustering is a technique for grouping objects, either physical or abstract, to form

classes. The objects in a class must be similar and dissimilar to another class to ensure

efficient clustering. Indeed, the ultimate goal is to minimize inter-class similarity and
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maximize inta-class similarity [25]. This technique is a type of unsupervised learning, as

it is used to cluster data without the use of previously defined labels or target variables.

Algorithms and techniques have been proposed by researchers. K-means, Mean

Shift, fuzzy-c means, Gaussian Mixture Models (GMM), Spectral Clustering, Affinity

Propagation are some of the most used algorithms.

3.2.3 Deformable Methods

Compared to the other types we have seen before, these are more flexible and can be

used for complex segmentations. The algorithms treat the structure boundary as the final

state of the initial contours. The approach that these algorithms follow can be thought

of as modeling the evolution of the curves. Depending on how they are used to track

the moving contour, deformable models can be classified into two categories: parametric

models and geometric models [24].

3.2.4 Bayesian approach

The Bayesian approach to medical image segmentation is a probabilistic approach

that combines a priori information and image observations to estimate the posterior

distribution of segmentation variables. This provides robust segmentation results and

allows for the uncertainty associated with the segmentation task. However, it can be

computationally intensive due to the need to compute conditional probability

distributions and perform probabilistic inferences. Numerical optimization and sampling

techniques, such as Monte Carlo methods, can be used to solve these problems.

The Bayesian approach uses directed graphs, which are data structures used to

represent dependency relationships between variables, such as pixels or regions of

interest.

In the Bayesian category of image segmentation, we can cite three main approaches.

These approaches are illustrated in figure (3.2) below.

3.2.5 Markov Random Field

This method essentially uses an undirected graph that determines the Markov values

of some arbitrary variables contained in a graphical model. MAP is quite similar to the
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Figure 3.2: Bayesian Approaches.

Bayesian approach in terms of representation. The non-orientation of its graph is the

only difference compared to the Bayesian method which is composed of directed graphs

[26].

3.2.6 Classifiers

It is an approach to classify images by creating a feature space derived from the

image. This space is then partitioned into different regions according to a function

defined in this space. The feature space can be thought of as encompassing the entire

range of a specific function used for classification purposes, for example, image intensity.

Classification methods are based on pattern recognition. This approach is also referred

to as a supervised method because it uses previously annotated and manually

segmented data for the automatic segmentation process [26]. Figure (3.3) below shows

the different methods that use this approach.
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Figure 3.3: Types of classifiers.

3.3 Modern methods for medical image segmentation

Modern methods for medical image segmentation use advanced approaches and

innovative techniques to extract and identify regions of interest in the images we wish

to segment. Among these methods, we find the use of convolutional neural networks

(CNNs), which are able to learn relevant features from image data. CNNs are often

combined with more complex architectures such as residual neural networks (ResNet) or

encoder-decoders such as U-net [27] which is widely used in the medical field to improve

the accuracy of segmentation. Nevertheless, there are other solutions such as FCN

(Fully Convolutional Network) [28], PSPNet or DeepLabV3+ which offer good results.

Another modern approach is the use of transfer learning based methods, where a

pre-trained model on a large dataset is tailored to the specific segmentation tasks of

medical images. This allows the knowledge and features learned from large general image

datasets to be used to improve medical image segmentation with smaller, specialized

datasets. This is a time-saving approach to training.
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3.4 Related works

3.4.1 Related works based traditional methods

In 2016, X. Zhang et al. developed a multi-scale 3D Otsu segmentation algorithm

based on dimension decomposition [29]. This algorithm uses the spatial information of the

image and works by successive iterations. Each iteration uses the output of the previous

iteration as input. The process starts by applying a Laplacian filter to obtain multiple

scales of the image, then 3D Otsu thresholding is applied to generate segmentation maps.

Finally, these maps are combined to obtain a final segmented image. The main advantages

of this algorithm lie in its improvement of image segmentation, its reduction of noise

when thresholding at two or more levels, and its reduction of the time complexity usually

encountered in other thresholding algorithms.

Jiangdian Song et al in 2016 [30], proposed an approach for accurate segmentation of

lung lesions from CT scans for lung cancer research and clinical care. The study presents

a novel automatic segmentation approach called TBGA, which is based on a three-step

framework. This method is notable for its ability to detect lesions with high sensitivity

(96.35%) and to achieve segmentation accuracy comparable to manual segmentation.

Evaluations conducted on the LIDC-IDRI and in-house clinical datasets confirm these

promising results. Compared to existing methods, TBGA demonstrates a significant

improvement in segmentation accuracy. In addition, this method allows for rapid lesion

segmentation, with an average time of less than 8 seconds.

In their study, Kesavamurthy and SubhaRani [31] explored various image analysis

technologies for processing MRI images of brain tissue. They developed a semi-automated

method that accurately depicted damaged regions of brain tissue, thereby helping to

improve clinical diagnosis and treatment. To do this, they used a Canny-based edge

detection algorithm to extract damaged areas of brain tissue. This approach allowed

them to accurately differentiate the boundaries of adjacent normal brain tissue as well as

the skull.

In 1999 N.A. Mohamed et al [32] performed a study on the application of fuzzy set

theory to medical imaging, more precisely to brain image segmentation. Their study

proposes a fully automatic method based on a modified Fuzzy c-mean (FCM)
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classification algorithm to obtain image clusters. They also incorporated Markov

Random Field (MRF)-inspired techniques to filter the images and improve the filter

parameters at each iteration of the clustering process. The authors applied their

method to noisy CT images and single-channel MRIs. They recommended the use of a

textured MRI-based over-segmentation methodology and a user-guided interface to

obtain the final clusters. One of the applications of their method concerns the

prediction of head injury recovery by taking into account the partial volume. They

observed that the system stabilizes after a number of iterations, with the contours of

the region reflecting the value of the partial volume.

Y. Kabir et al [33] (2007), conducted a study on the automatic segmentation of

stroke lesions on multiple MR sequences. They exploited the fact that lesions manifest

differently depending on the MR modality used. To utilize this feature of lesions on

different MR modalities, the authors proposed a multimodal Markov random field

model that simultaneously integrates all MR modalities. The results obtained by their

multimodal method are compared with those of a one-dimensional segmentation applied

to each MRI sequence individually. This technique showed promising results. Finally,

the authors developed an atlas of blood supply territories to facilitate the identification

of stroke subtypes and associated functional deficits.

3.4.2 Related works based modern methods

Joshi, S. et al [34] (2018), proposed an approach based on dilated convolutions to

do the segmentation. They used only the DPWI MRI image as it generates the most

data and is the most useful for assessing the lesion. Their CNN model is inspired by

encoder-decoder architecture. Diluted convolutions are used, as they found that dilation

reduces the parameters while increasing the field of view of the convolution kernels. The

dice score and jacard score obtained are 0.85 and 0.78 respectively.

Liu, L. [35], proposed in 2019 in their study, a new deep convolutional neural

network (Res-CNN) to automatically segment acute ischemic stroke lesions from

multi-modality MRIs. their network is based on the U-shaped structure and uses a

residual unit to mitigate the degradation problem. They use multimodality to exploit

complementary MRI information. Seven neural networks were thoroughly evaluated on

two acute ischemic stroke datasets. Res-CNN outperformed the other six networks,
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both in single and multimodality. The mean Dice coefficient and Hausdorff distance of

their method are 74.20% and 2.33 mm respectively.

Islam, M. [36], have developed a deep learning approach for the automated

segmentation of intracerebral hemorrhage (ICH) from 3D CT scans. Using the ICHNet

model, the authors developed an innovative approach by combining a dilated

convolution neural network (CNN) with hypercolumn features. This model makes it

possible to sample a limited number of pixels and concatenate the corresponding

features from different layers. By focusing on the brain region and ignoring the

background during training, the model improves temporal convergence and accuracy by

focusing only on healthy and damaged brain tissue. To solve the problem of class

imbalance, equal pixel sampling is performed for each class. In addition, the use of a 3D

conditional random field (3D CRF) smoothes the predicted segmentation as a

post-processing step. ICHNet demonstrated 87.6% accuracy in hemorrhage

segmentation, comparable to that of radiologists.

3.5 Our proposal

Our final goal is to propose a model capable of segmenting MRI images of stroke

lesions. We therefore propose several approaches for comparative study after results have

been obtained.

3.5.1 Proposed CNN model

We propose a model called Model HT, which is based on the U-net architecture

(refer to Figure 3.9). It consists of 80 layers and has a total of 31,058,113 parameters,

out of which 13,184 parameters are not involved in the training process.

For this model, we changed input shape to 128x128x1 for datasets on ATLAS V2.0

and 256x256x1 for ISLES 2015. We used Upsampling2D and then ConvTranspose2D to

see the influence of both on the model. The encoder (see 3.6) is activated by Relu. We

used a binary output because this is a binary segmention, hence the use of Sigmoid as

the output activation function.
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Figure 3.4: Proposed U-Net architecture

The difference between our architecture and the reference architecture is that we’ve

modified the input size, added Batchnormalization and dropouts.
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An overview of the program :

Figure 3.5: Encoder part

Figure 3.6: Bottleneck part
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Figure 3.7: Decoder part

3.5.2 Transfer learning

This is a widespread approach that works well in many areas. So we propose a

transfer based on : Resnet34, VGG19 and Efficientnetb3. To achieve this, we use the

Segmentation Models library [5].

The "Segmentation Models" library is a popular library for deep learning applied

to image segmentation. It provides ready-to-use implementations of various advanced

segmentation models, such as U-Net, PSPNet, FPN, LinkNet and others. The library is

based on TensorFlow and Keras, making it easy to use and integrate into deep learning

projects. Of course, we’ll be using U-Net (see Figure 3.7). The library uses existing

architectures (backbones) such as Resnet34, inceptionv3 (25 backbones) available for each

architecture (U-Net, PSPNet, FPN, LinkNet) for the encoder part (Downsample) and use

the characteristics of the target architecture to develop the decoder part (Upsample).

Some of the main features of the Segmentation Models library :
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Figure 3.8: U-Net architecture proposed for segmentation models library [5].

a. Segmentation model implementations

The library provides complete implementations of several popular segmentation

models, making them easy to use without having to code the model from scratch.

b. Pre-training on large datasets

Library models are often pre-trained on large datasets such as ImageNet, enabling

good performance even with a small training dataset.

c. Various model architectures

The library offers a variety of segmentation model architectures, each with its own

advantages and suitable for different types of segmentation problem.

d. Performance evaluation functions

The library also provides functions for evaluating the performance of segmentation

models, such as the Jaccard index measure (IoU), the area under the ROC curve (AUC-

ROC).
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e. Ease of use

The Segmentation Models library is designed to be easy to use and to integrate into

existing deep learning projects. It follows a clear code structure and provides detailed

examples and tutorials to facilitate learning.

3.5.3 Ensemble Learning

Ensemble learning is an approach that aims to combine the predictions of several

models to achieve better overall performance than a single model. The fundamental idea

behind ensemble learning is that multiple models, if diverse and competent, can deliver

more accurate and robust predictions.

3.6 U-Net Architecture

U-Net is an architecture dedicated to computer vision tasks, and more specifically to

the problem of semantic segmentation. Semantic segmentation consists in assigning to

each pixel of an image a label of a corresponding class. As each pixel must be predicted,

this is called dense prediction. U-net is one of the most widely used neural network

architectures for medical image segmentation. It is a fully convolutional neural network

model that was developed by Olaf Ronneberger, Phillip Fissher and Thomas Brox in

2015.

The U-Net architecture is composed of two parts forming a U, hence its name. The

first is the contraction part, commonly known as the encoder. It is used to extract

image features. It is characterized by a succession of convolution layers followed by

subsampling layers (max pooling) to progressively reduce the spatial resolution of the

image while increasing the number of feature channels. This reduces the number of

network parameters.

The second is the symmetrical expansion part, known as the decoder. It enables

precise localization thanks to upsampling.

This symmetrical expansion can be achieved with :

Upsampling2D :

Upsampling2D is a simple upsampling operation that increases the spatial resolution
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of features by repeating values in spatial dimensions. For example, if a feature has a

size of 2x2, Upsampling2D will resize it to a feature of size 4x4 by repeating the values

in each dimension. This method is fast and requires no additional parameter learning.

Nevertheless, it can lead to a loss of fine detail, as it does not take into account the spatial

relationships between features.

Conv2DTranspose:

Conv2DTranspose is an upsampling operation that uses learned filters to increase

the spatial resolution of features. Unlike Upsampling2D, Conv2DTranspose learns the

filters during model training. This operation performs a reverse convolution, where the

filter weights are adjusted to reverse the convolution process. Conv2DTranspose captures

spatial relationships between features and retains fine detail. However, it can be more

computationally expensive and requires the learning of many parameters.

An important feature of U-Net is the use of the ReLU (Rectified Linear Unit)

activation function between layers, which introduces non-linearity into the model. This

enables it to learn more complex representations and better model spatial relationships.

Finally, the U-Net output layer generally uses a softmax activation function, which

provides probabilities for each class of interest in the segmentation problem.

The advantages of U-NET

U-Net is an architecture that solves the problem of large data demand for classical

networks, as it has proven effective with small datasets.

It preserves the initial output dimensions.

As deconvolution is performed on the decoder side, it avoids the bottleneck problem

encountered with an auto-encoder architecture and thus avoids loss of features.

Disadvantages of U-NET

U-Net tends to be specialized and may have difficulty generalizing to data other than

that on which it was trained.

The model can be sensitive to class imbalances and present difficulties in representing

small regions of interest.

The input size of images is generally fixed, which can lead to loss of information or
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degradation of image quality during resizing.

These drawbacks can be mitigated, but must be taken into account when using U-Net

or any other model.

Figure 3.9: U-Net architecture [6].

3.7 Conclusion

In this chapter, we reviewed the traditional methods used for medical image

segmentation, as well as related work in the field. We found that traditional approaches

were often based on image processing algorithms and required significant manual

intervention. Thanks to recent advances in machine learning, new approaches based on

deep neural networks have emerged. In this context, we propose a number of

approaches for more robust and accurate segmentation. Our methods are based on the

use of advanced neural network architectures and ensemble learning techniques.
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4.1 Introduction

In this chapter, we will describe in detail the implementation of our proposed

methods and present the results obtained. We’ll start by explaining our methodological

approaches, detailing the algorithms, models and techniques we used. Next, we’ll

discuss data collection and preparation, explaining how we obtained the data and how

we prepared it for training and evaluating our models. We will then present the

experimental setup, detailing the specific parameters used for our models, as well as any

other important considerations, such as the use of hardware gas pedals. We will explain

how we trained our models and evaluated their performance using appropriate metrics.

Finally, we will analyze the results obtained, identifying trends, patterns and important

findings. We will discuss the strengths and weaknesses of our approaches, possible

limitations and avenues for future improvement. We will also compare our results with

other similar work in the literature to highlight the specific contributions of our

approaches.

4.2 Tools used in our work

To realize our project we had to use open source tools. Here is a non-exhaustive list

of the tools we used.

4.2.1 Kaggle platform

Kaggle is a popular online platform for data scientists, researchers and machine

learning competition enthusiasts. It offers a dynamic community where users can

collaborate, share knowledge and participate in data science competitions.

Kaggle has a vast collection of datasets from various fields, such as medical imaging,

financial data, social networks and more. Users can explore these datasets, download

them and use them for their own projects.

Kaggle offers an interactive notebook environment based on Jupyter, enabling users

to write and run Python code (and other languages) directly on the platform. Notebooks

are a convenient way of sharing analyses, visualizations and models with the community.
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With Kaggle, we have access to a GPU that allows us to accelerate our calculation

times. We have 30 hours a week. We’ve done all our work on this platform.

4.2.2 ITK-SNAP

ITK-SNAP is a free and open-source software used in medical imaging for

segmentation, visualization, and analysis. It offers a user-friendly interface for

researchers and clinicians working with MRI, CT, and PET scans. Its key features

include image segmentation with manual and semi-automatic tools, 3D visualization

with advanced viewing options, image registration for aligning datasets, quantitative

analysis of segmented regions, and extensibility through an API for custom modules

and scripts. ITK-SNAP is widely used in medical research and clinical settings for tasks

like brain tumor segmentation and treatment planning. Its intuitive interface and

powerful features make it a valuable tool in the field of medical imaging.

4.2.3 Programming language: Python

Python is a programming language widely used in the field of artificial intelligence

(AI), thanks to its simplicity, flexibility and rich library of tools and frameworks.

4.2.4 Python libraries

Numpy

OpenCV

1. Numpy
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Numpy is the essential Python library for numerical computation and data analysis.

It offers multidimensional array data structures, efficient mathematical functions, tools

for array manipulation and integration with other scientific computing libraries. With

Numpy, we can perform complex mathematical operations on arrays, such as vector

and matrix operations, advanced indexing, data selection and filtering. Numpy is also

renowned for its speed of execution, making it an essential tool for performance-intensive

calculations.

2. OpenCV

OpenCV (Open Source Computer Vision Library) is an open source software library

dedicated to computer vision and image processing. It offers advanced features such

as object detection, motion tracking, facial recognition, image segmentation and much

more. OpenCV is widely used in fields such as robotics, augmented reality, surveillance

and industrial automation.

3. Matplotlib

Matplotlib is a widely used data visualization library in Python. It offers a simple

interface for creating a wide variety of graphs, from line graphs to bar charts and box

plots. It lets you customize every aspect of the graphs, including axes, legends, colors

and styles. The library is highly flexible and can be used for simple data visualization as

well as more advanced tasks, such as 3D graphics and animation.

4. Keras

Keras is a popular open-source library for deep learning that makes it easy to create,

train and deploy machine learning models. With a simple, intuitive interface, Keras

enables developers to quickly build neural networks and experiment with different

architectures. It is based on TensorFlow, giving it excellent performance and flexibility.

Thanks to its popularity, Keras has an active community that shares resources, tutorials

and pre-trained models, facilitating the development and learning process for users.

5. Tensorflow

TensorFlow is an open-source machine learning library developed by Google in 2011.

It provides tools and features for creating and training machine learning models, in

particular deep neural networks. TensorFlow offers great flexibility and a wide range of
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features for manipulating and transforming data, and for deploying models on different

platforms. It is widely used in the field of artificial intelligence and is one of the most

popular frameworks for machine learning.

5. Sklearn

Scikit-learn is a Python library widely used in the field of machine learning. It offers

a wide range of machine learning algorithms and features for data preprocessing, cross-

validation, evaluation metrics, clustering and dimensionality reduction. We have used its

metrics to evaluate the performance of our models.

6. Anaconda

Anaconda is a popular distribution for Python programming and data science. It

includes a package manager, a virtual environment and an integrated development

interface (IDE) called Anaconda Navigator. Anaconda Navigator is not a full-fledged

IDE, but rather a user-friendly graphical interface for managing packages, environments

and projects in Anaconda. So we used the Spyder IDE to develop our interfaces in

Python with Anaconda.

6. Spyder

Spyder is an IDE specially designed for data scientists. It offers a complete

development interface with a code editor, variable explorer, debugger, IPython

integration and data science-specific features.

6.PyQt5

PyQt5 is a powerful Python library for creating graphical user interfaces (GUI) for

desktop applications. It is based on the Qt library, a popular framework for cross-platform

user interface development.
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4.3 Organization charts

An MRI image of the human brain can be obtained in several modalities (T1, T2,

FLAIR, DWI, ...), each modality presenting different characteristics but the location of

the lesion remaining the same. We will therefore apply monomodal and multimodal

segmentation to our proposed approaches.

sickly images

ATLAS V2.0

50% sickly images

50% healthy images 

Model HT Resnet34 VGG19 Efficientnetb3

S M & T S M & T S M & T S M & T

Model HT
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S M & T : Save Model & Test on Test set 
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Figure 4.1: Flowchart when using the ATLAS V2.0 dataset.
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Figure 4.2: Flowchart when using the ISLES 2015 dataset.
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4.4 Description of the datasets used for the study

In our work we used two large datasets, ATLAS V2.0 and ISLES 2015.

4.4.1 NIfTI format

The NIfTI (Neuroimaging Informatics Technology Initiative) format is a file format

used to store and share medical imaging data, in particular brain imaging data. It is a

standard format widely used in the field of neuroimaging.

The NIfTI format is based on the Analyze file format, but has been enhanced to be

more flexible and efficient. It supports 3D volumetric data and can also store 4D temporal

data.

The structure of the NIfTI format consists of two files: a header file (extension .nii or

.hdr) and a data file (extension .img or .nii).

The header file contains important information about the imaging data, such as spatial

dimensions, voxel spacing, orientation, data type, units of measurement, etc. It also

defines the order of the dimensions, which can be changed by the user. It also defines

the order of dimensions in the data (e.g. X, Y, Z for 3D volumetric data) and provides

additional metadata.

The data file contains the intensity values of the voxels themselves, which represent

the imaging information. Values can be stored in different formats, such as signed integer,

unsigned integer, float, etc., depending on the data type specified in the header.

We’ll be using this format in the course of our work, as our datasets are in this format.
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4.4.2 ATLAS V2.0 dataset

ATLAS v2.0 is an MRI (Magnetic Resonance Imaging) data set used in stroke

rehabilitation research. Accurate segmentation of brain lesions is of crucial importance

in quantifying lesion burden and facilitating accurate image processing. ATLAS v2.0 is

designed to overcome the limitations of previous methods. This dataset includes a

larger number of 3D MRI scans of T1w strokes (1271 in total), as well as manually

segmented lesion masks. It is divided into three distinct sets: the training set (655

samples), the test set (300 samples with hidden masks) and the generalization set (316

fully hidden samples). The aim of creating ATLAS v2.0 is to enable the development of

more robust algorithms using this larger sample set. The hidden test and generalization

datasets facilitate unbiased evaluation of algorithm performance by organizing

segmentation challenges.

As shown in figure 4.1, we designed two new datasets. To contain the material, we

worked in 2D. As the dataset is in 3D, we extracted the z-axis slices (axial slices), which

are rich in lesion information, to obtain our 2D images. The shape of the 3D images is

197x233x189, so we have 190 slices for each image.

1. Construction of a dataset containing only lesioned images (sickly

images)

A model’s effectiveness in learning and predicting depends on the quality, quantity and

diversity of the data on which it has been trained. In order to keep only those slices that

are useful for our future model, we extracted from each 3D image of the 655, the slices

containing at least one lesion pixel. This yielded 32958 images and their corresponding

mask.

We split our initial dataset of 32958 images into train, validation and test sets. We

used a split of 80%, 15% and 5% respectively. The training set was used to fit the model.

The validation set, was used to evaluate model performance during training. The test

set, was used to evaluate the final performance of the model in an unbiased way.

2. Construction of a dataset containing 50% sickly images 50% healthy

images

In order to allow our models to generalize, we have included non-injured images in
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Figure 4.3: Histogram of dataset split into Train, Validation and Test set.

our dataset. To avoid overloading the dataset with uninformative images, we relied on

the probabilistic lesion localization provided by the researchers who designed the ATLAS

V2.0 dataset (see figure 4.4). We took the uninjured images between slice 35 and 140

(see figure 4.5). This enabled us to eliminate images from low-probability areas as well

as completely black images. We obtained a dataset containing 65978 images, including

the 32958 injured images, i.e. 33020 uninjured images.

Figure 4.4: Probabilistic distribution of lesions in the ATLAS R1 dataset [7].

We split our initial dataset of 65978 images into train, validation and test sets. We

used a distribution of 90%, 5% and 5% respectively.
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Z= 140

Z = 35

Figure 4.5: Region of interest for dataset.

4.4.3 ISLES 2015 dataset

The ISLES 2015 dataset was part of a medical image segmentation challenge focused

on comparing methods for segmenting ischemic stroke lesions from multi-spectral MRI

images. This challenge took place at the International Conference on Medical Image

Computing and Computer Assisted Intervention (MICCAI) in 2015, from October 5th

to 9th.

For our analysis, we utilized the SISS dataset provided in the ISLES challenge, which

consisted of 64 MRI images. Among these images, 28 were allocated for training, while

the remaining 36 were designated for testing. Each case within the dataset included

T1-weighted (T1), T2-weighted (T2), Diffusion-Weighted Imaging (DWI) with b = 1000,

and FLAIR MRI sequences.

The segmentation process was conducted manually by an experienced medical doctor.

Lesions were classified as sub-acute infarcts when there was a simultaneous presence of

pathologic signals in both FLAIR and DWI images. This presence indicated the existence

of vasogenic and cytotoxic edema, accompanied by visible swelling caused by increased

water content. Infarct lesions with signal changes due to hemorrhagic transformation
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Figure 4.6: Histogram of dataset split into Train, Validation and Test set.

were also taken into consideration. However, acute infarct lesions (with only DWI signal

for cytotoxic edema and no FLAIR signal for vasogenic edema) and residual infarct lesions

showing gliosis and scarring after the infarction (without DWI signal for cytotoxic edema

and no evidence of swelling) were excluded from the analysis. [37].

To accommodate the hardware limitations we had to deal with, we made the decision

to primarily work with 2D images. Consequently, we transformed the multi-spectral MRI

images, originally sized at 230x230x154, into 2D images. This conversion resulted in two

new datasets. The first dataset consists of 2D images with a resolution of 230x230x1,

while the second dataset contains 2D images with a resolution of 230x230x3.

Firstly, we sliced the images based on the presence of non-black pixels in the T1-

weighted image along the z-axis. From there, we extracted the corresponding slices from

the T2, DWI, FLAIR modalities, and their respective masks. This process resulted in

3946 images for each of the four modalities and the associated masks,Subsequently, we

partitioned our dataset into training, validation, and testing sets, with proportions of

80%, 15%, and 5% respectively.

Secondly, we constructed a second dataset by concatenating the T2, DWI, and FLAIR

modalities together, this process resulted in 3946 images with three color channels similar

to rgb but with first channel T2, DWI as second channel and Flair in third channel.
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4.5 Preprocessing of the MRI images

Image pre-processing for training stroke lesion segmentation models is a crucial step

in guaranteeing accurate and reliable results. Our datasets have already undergone a

number of pre-processing steps, including registration, intensity normalization, spatial

reorientation and resampling.

These pre-processing steps can vary according to the specific characteristics of the

dataset and the requirements of the segmentation model used. Their main aim is to

improve image quality, reduce artifacts and optimize the results of stroke lesion

segmentation. We made a few additional steps:

- Image resizing to 128x128xC instead of 197x233x1. C is chosen according to the

input characteristics of the model to be trained.

- 90° counter-clockwise rotation to respect the desired orientation.

- Normalization to have pixels between 0 and 1, in float32 format.

4.5.1 Data Augmentation

Data augmentation is a technique commonly utilized in machine learning and

computer vision tasks to increase the size and diversity of a training dataset. It involves

applying a variety of transformations and modifications to the existing data, creating

new images that are slightly different from the original ones. The purpose of data

augmentation is to enhance the model’s ability to generalize and improve its

performance when presented with unseen or slightly altered data during the testing or

deployment phase.

61



Chapter 4 METHODOLOGY: IMPLEMENTATION AND RESULTS

Shear

Horizontal 
flip

Width 
shift

Height 
shift

Zoom

Rotation

Different Data 
Augmentation techniques 

applied to our Datasets 

Figure 4.7: Diagram showing different data augmentation techniques used.

We have used several parameters that define the types and degrees of augmentation

applied to our datasets. We will explore each of these parameters to gain a deeper

understanding of the augmentation techniques employed:

a. Rotation

This parameter specifies the maximum angle in degrees for random rotations applied

to the images. It allows the model to generalize better by recognizing objects from

different angles.

b. Width and Height

These parameters control the range, as a fraction of the total width or height, within

which random horizontal or vertical shifts can be applied to the images. Shifting the

images helps the model learn invariance to translation and improves its ability to detect

objects at different positions.
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c. Shear

Shear transformations introduce geometric deformations by slanting the images along

the horizontal or vertical axis.

d. Zoom

This parameter determines the range for random zooming, allowing the model to learn

to recognize objects at different scales.

e. Horizontal flip

this parameter enables random horizontal flipping of the images. This augmentation

simulates the presence of objects in mirrored orientations, enhancing the model’s ability

to handle horizontal reflections.

By artificially expanding the dataset and introducing variations, data augmentation

helps prevent overfitting and enables the model to learn more robust and representative

features.

4.6 Implementation details of the deep learning model

used for stroke lesion segmentation

We’re going to explain the details of our implementations in relation to the datasets

used. First, ATLAS and then ISLES2015.

4.6.1 Models trained on ATLAS V2.0 dataset

1. Models trained on dataset containing only sickly images

a. Our Model CNN / Model HT

This model is based on the U-Net architecture and has a total of 80 layers. It has

31,054,145 parameters, with 11,776 untrainable parameters due to the use of

BatchNormalization. We used Adam as an optimizer with a learning rate lr = 0.001.

We combined Binary Crossentropy Loss and Jaccard Loss (Loss = (0.4 * Bce) + (0.6

* Jaccard loss)) for the loss function. This is a customized loss function. We’ve named

this model "Model HT-OSI" for future reference.
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BatchNormalization is a technique for normalizing activations in neural networks,

normalizing mini-training batches to accelerate convergence and improve learning

stability.

b. Transfer Learning using Resnet34, VGG19 and Efficientnetb3 as

backbones

With the Segmention-models library, we have implemented 3 transfer models still

based on the U-Net architecture and using other architectures (Resnet34, VGG19 and

Efficientnetb3) for the encoding and decoding part of the network. These models have

the following characteristics:

Name
Numbers of 
parameters

Numbers of 
non-trainable
parameters

BatchNorm-
alization

Optimizer Loss fonction

Resnet34-OSI 24,456,154 17,350 Yes Adam
dice_loss + 
(1 * binary_loss)

VGG19-OSI 29,061,969 4,032 Yes Adam
dice_loss + 
(1 * binary_loss)

Efficientnetb3-OSI 17,867,113 89,280 Yes Adam
dice_loss +
(1 * binary_loss)

OSI : Only Sickly Images dataset

Table 4.1: Characteristics of the three models.

2. Models trained on dataset containing 50% sickly images and 50%

healthy images

Here we’ve used models with the same architectures and Characteristics, except that

we’ve used a new dataset. So in the end we got 4 new models named: Model HT-50,

Resnet34-50, VGG19-50 and Efficientnetb3-50. 50 to refer to the dataset used.

3. Models trained on Kfold dataset

The K-Fold Cross-Validation technique is a commonly used method for evaluating the

performance of segmentation models. This technique divides the dataset into K subsets

(or "folds") of similar size. To create these K subsets, we first used a distribution based

on lesion size and then a mixed distribution. In our case K = 5 and once we’ve obtained

the 5 folds we use the current fold for validation and the other 4 for training. At the end,
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we calculate the average of our metrics on our test dataset, which remains unchanged.

We have obtained two models that we have named : Model HT-Kfolds-Size and

Model HT-Kfolds-Mixed

4.6.2 Models trained on ISLES 2015 dataset

The ISLES 2015 dataset is a multi-modality dataset, which is an asset for

experimenting with different approaches. On this dataset we used only our HT Model

to train it on several datasets in order to obtain a better model.

1. Model trained on Concatenation of 3 modalities DWI T2 FLAIR dataset

Based on the differences between the modalities, we extracted the DWI, Flair and T2

modalities and concatenated them to obtain input images for the three-channel model

(128x128x3). After training, we obtain a model that we call "Model HT-DFT2" for

future use.

Figure 4.8: Concatenation of DWI T2 FLAIR image modalities.

2. Models trained on modalities DWI FLAIR T1 T2 dataset

As each modality has different characteristics, we trained our HT model on the four

modalities separately. This gave us four output models. We named them: Model HT-

DWI, Model HT-FLAIR, Model HT-T1, Model HT-T2 to identify them.
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4.6.3 Using of ensemble Learning

To improve performance, we thought about using the ensemble learning . To achieve

this, we opted for majority voting. We chose four models (Model HT-DWI, Model HT-

FLAIR, Model HT-T1, Model HT-T2) based on the modalities (DWI, Flair, T1, T2)

having the same output mask during training, we made a prediction of the image on the

4 models followed by an aggregation on the mask produced (not in terms of probability).

Threshold
= 0.5

Calculate
Seg

Seg(i,j) >=
Threshold ?

Assign
pixel to
lesion

class (1)

Assign
pixel to

background
(0)

End

yes

no

Figure 4.9: Organigramme algorithmique

For the threshold of 0.5, Seg (i,j) >= Threshold means that at least two models predicted

that the pixel is part of brain lesion.
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4.7 Performance evaluation metrics used for the

models

There are several metrics used to evaluate models in different domains and tasks. In

our work, we used the following performance evaluation measures:

4.7.1 Intersection over Union

Intersection over Union (IoU), also known as Jaccard Index, is a measure used to assess

the quality of a segmentation or mask by comparing the similarity between prediction

and ground truth. The IoU formula is given by :

IoU =
Zone of intersection

Zone of union

where the zone of intersection represents the common area between the prediction

and the ground truth, and the zone of union represents the total area covered by the

prediction and the ground truth.

The Intersection over Union (IoU) formula can also be expressed in terms of true

positives (TP), false positives (FP) and false negatives (FN):

IoU =
TP

TP + FP + FN

Figure 4.10: Visual illustration of TP, FP and TN [8].
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4.7.2 The Dice coefficient

The Dice coefficient, also known as the Sørensen-Dice similarity coefficient, is a

measure commonly used to evaluate the similarity between two sets (masks) during

segmentation. The formula for the Dice coefficient is as follows:

Dice =
2× Intersection

Total pixels in first set + Total pixels in second set

where intersection represents the number of pixels in both the first set and the second

set.

The Dice coefficient ranges from 0 to 1, where a value of 1 indicates a perfect match

between sets, and a value of 0 indicates no match.

The formula for the Dice coefficient as a function of true positives (TP), false positives

(FP) and false negatives (FN) is as follows:

Dice =
2× TP

2× TP + FP + FN

4.7.3 Recall

Recall, also known as true positive rate, is a measure used to assess a model’s ability

to correctly detect true positive examples. Recall measures the proportion of true positive

examples that have been correctly identified by the model. It is particularly useful when

detecting positives is more critical than minimizing false positives.

It is calculated using true positives (TP) and false negatives (FN) as follows:

Recall =
TP

TP + FN

4.7.4 Precision

Precision, also known as positive predictive value, is a measure used to assess the

accuracy of positive predictions made by a model. Precision measures the proportion of

positive examples predicted by the model that are actually positive. It is particularly
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useful when minimizing false positives is more critical than detecting all true positives.

It is calculated using true positives (TP) and false positives (FP) as follows:

Precision =
TP

TP + FP

4.8 Results of the experiments and analysis of the

findings

4.8.1 Model results trained on ATALS V2.0 dataset

Dataset Name Mean IoU % Mean Dice % Mean Precision % Mean Recall %

Dataset OSI

Model HT-OSI 90.69 66.29 85.25 67.24

Resnet34-OSI 89.19 62.62 85.55 62.23

VGG19-OSI 90.67 67.08 84.57 67.81

Efficientnetb3-OSI 91.53 71.70 84.61 73.07

Ensemble_OSI 91.30 66.50 90.91 64.29

Dataset 50_50

Model HT-50 90.34 80.80 92.08 82.36

Model HT-50-Transp 90.63 81.64 93.35 81.95

Resnet34-50 90.32 81.04 93.71 81.27

VGG19-50 90.41 80.83 92.42 82.35

Efficientnetb3-50 91.25 83.42 92.23 84.54

Ensemble_50 91.12 81.91 95.73 81.02

Dataset Kfolds
HT-Kfolds-Size 91.71 69.69 86.54 70.08

HT-Kfolds-Mixed 91.86 69.70 87.56 69.61

The OSI and Kfolds datasets contain 1648 test images and the 50_50 dataset contains 3300 test images.

Table 4.2: ATLAS Models.

4.8.2 Discussion of models trained on the ATALS V2.0 dataset

In this study, we evaluated and compared the performance of several segmentation

models we propose for the analysis of MRI stroke images. Key performance metrics,

such as Dice, IOU, precision and recall, were used to assess the prediction quality of each

model. The main objective of this analysis is to determine the best segmentation model

for MRI stroke images based on these performance metrics.
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Analyzing the results of the different models evaluated, we find that « Efficientnetb3-

50 » shows the highest performance in terms of Dice, IOU and precision. This model

achieved an average Dice of 83.42, an average IOU of 91.25 and an average precision of

92.23. These results indicate a high ability of the model to accurately detect and segment

stroke lesions in MRI images.

The HT-50 model also performed well, with an average Dice of 80.80, an average IOU

of 90.34 and an average precision of 92.08. Although its performance is slightly inferior

to that of the « Efficientnetb3-50 » model, it remains a solid choice for the segmentation

of MRI images of stroke.

Dice, precision and recall have enabled us to observe that our models trained on the

dataset containing only injured images have difficulty generalizing, since the test dataset

contains all images (injured and uninjured). Although they all perform well in training,

we discard them because generalization is important.

As for the models trained with the Kfolds technique, although the similarity (mean

IoU) is acceptable, recall shows us that these models produce a high number of false

negatives (FN). That’s why we can’t choose them.

In the end, the dataset containing 50% sickly images and 50% healthy images enabled

us to achieve good scores and validate the effectiveness of our three proposed approaches

(our CNN model, Transfer learning and Ensemble learning). Although the four models

obtained on this dataset all performed well, we chose Efficientnetb3-50 as the first,

followed by Ensemble_50 model. Our CNN HT-50 model perfomed well but it ranks

last among models trained on the 50_50 dataset. VGG19-50 and Resnet34-50 can also

be used, as the performance gap is not huge. However Using conv2DTranspose instead

of Upsampling2D has enabled us to improve our architecture and obtain Model HT-50-

Transp, which ranks third after Efficientnetb3-50 and Ensemble_50.

Ideally, we’d like to use all four together to make an overall prediction

because the precision of this technique is the highest.
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4.8.3 Model results trained on ISLES 2015 dataset

Dataset Name Mean IoU % Mean Dice % Mean Precision % Mean Recall %

Dataset DFT2 Model HT-DFT2 88.16 87.01 96.60 87.21

Datasets
DWI | FLAIR | T1 | T2

Model HT-DWI 89.23 86.56 94.44 87.09

Model HT-FLAIR 91.93 86.42 95.28 86.95

Model HT-T1 88.93 80.41 96.54 80.44

Model HT-T2 86.90 79.73 94.92 79.80

Datasets
DWI | FLAIR | T1 | T2 Ensemble DFT1T2 90.99 87.91 92.82 89.36

The test dataset contains 199 images that the models didn’t see during training or validation.

Table 4.3: ISLES Models.

4.8.4 Discussion of models trained on the ISLES 2015 dataset

Stroke MRI image analysis is crucial for the detection and accurate segmentation of

brain lesions. In this study, we evaluated and compared the performance of five different

segmentation models: Model "HT-DFT2", "HT-DWI", "HT-FLAIR", "HT-T1", "HT-

T2" and a model based on the set of models called "Ensemble DFT1T2". The aim was

to determine the best-performing model in terms of Dice, IOU, precision and recall.

The results obtained reveal that the "Model HT-FLAIR" achieved the best overall

performance. It had an average IOU of 91.93 and an average Dice of 86.42. These values

indicate that the model is capable of accurately capturing the contours of brain lesions.

In addition, the "Model HT-FLAIR" has a high mean precision of 95.28, indicating that

the majority of the model’s positive predictions are correct. Average recall is also high,

suggesting that the model is able to identify most of the true positives among all the real

true positives.

Comparatively, the other models also performed well, but with some variation. For

example, the "Model HT-DFT2" achieved a slightly higher average Dice of 87.01, but

its average IOU was slightly lower at 88.16. The "HT-DWI", "HT-T1" and "HT-T2"

models also performed respectably, but with slightly lower scores compared with "Model

HT-FLAIR". The "Ensemble DFT1T2" set of models showed an improvement over the

individual models, with a mean IOU of 90.99 and a mean Dice of 87.91.

The results of this study highlight the importance of choosing the right type of MRI

images for segmentation of cerebral stroke lesions. In our case, FLAIR sequence images
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gave the best performance in terms of Dice, IOU and Precision. This can be attributed to

the high-contrast properties of FLAIR images, which enable better distinction between

normal brain tissue and lesions.

Nevertheless, it should be noted that each model has its own strengths and

weaknesses depending on the characteristics of the stroke images. Consequently, the

choice of segmentation model should be based on the specific needs of each study and

the nature of the lesions sought.

In conclusion, the "Model HT-FLAIR" stands out as the best choice for

segmentation of MRI stroke images, with superior performance in terms of Dice, IOU

and Precision. However, other models such as "Ensemble DFT1T2" may also be

considered, depending on the specific needs and characteristics of the MRI stroke

images used in each study.

4.8.5 Some performance graphs for model training

Figure 4.11: Example of ATLAS V2.0 Model performance.

Figure 4.12: Example of metric evolution during training.
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4.8.6 Some test segmentation results

Original Image Original Mask Predicted Mask

Figure 4.13: Example of Flair modality segmentation (ISLES 2015).

Figure 4.14: Example of ATLAS V2.0 image segmentation.
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4.9 Graphical user interface

4.9.1 2D image segmentation interface

To facilitate man-machine communication, we offer a graphical interface. This

interface has three display sections : the image to be segmented, the predicted mask

and the mask overlay on the image. It also features buttons :

- Resolution selection drop down list to select between 128x128 and 256x256 depending

on selected model input.

- Select Image to select an image from a directory.

- Select backbone drop down list for selecting image preprocessing according to the

selected model.

- Select Model to select the desired model.

- Predict to start prediction.

- Reset to reset the interface to its initial state.

- Exit to quit the interface.

- The two buttons are used to go to the next or previous image.

Figure 4.15: Our GUI
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Figure 4.16: Select Image

Figure 4.17: Select Model
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Figure 4.18: Prediction with Model HT-50

Figure 4.19: Prediction with Model Resnet34-50

Figure 4.20: Prediction with Model Vgg19-50
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Figure 4.21: Prediction with Model Efficientnetb3-50

Figure 4.22: No lesion in this image

4.9.2 2D to 3D images converter

We have developed two separate software applications to facilitate the generation of

3D mask images from predicted 2D images and from 2D images back to 3D. Due to

package incompatibility between nibabel, which is used for converting 3D Nifti images

to 2D slices, and TensorFlow, which is utilized to load our trained model for generating

predictions, we had to utilize two distinct environments.

Here’s how the workflow operates:

a. In the first application, called NII file slicer, we open an MRI image in Nifti format

and extract 2D slices from the z-axis. These slices are then saved in a designated folder.

b. In the second application, named Lesion Segmentation on multiple PNG images
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at once, we open the folder containing the 2D slices obtained in the previous step. This

application is responsible for making predictions on these slices, and the resulting

predictions are saved in another folder.

c. Finally, we revisit the first application, NII file slicer. In this step, we select the

folder that contains the prediction images generated in the second application. Using

these prediction images, we generate a Nifti file. This file can be saved and opened using

any software capable of reading the Nifti format.

By following this process, we enable the seamless transformation from 3D Nifti images

to 2D slices, performing predictions on those slices, and ultimately reconstructing a 3D

mask image in the Nifti format for further analysis and utilization in compatible software

applications.

Figure 4.23: NII file slicer
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Figure 4.24: Lesion segmentation on multiple png images at once

Figure 4.25: 3D View of segmented lesion

4.10 Conclusion

In this chapter, we discussed in detail the implementation of our segmentation study

for MRI stroke images. We began by discussing the datasets used, which comprise

previously annotated MRI stroke images. These datasets are essential for training and

evaluating our segmentation models. After training and testing the models, we carried

out an in-depth analysis of their performance using metrics such as Dice, IOU, precision

and recall obtained on the test set. These metrics enable us to assess the quality of the

segmentations produced by the models and their ability to accurately detect brain

lesions in stroke MRI images.

Performance analysis revealed that the Efficientnetb3-50 model (dataset ATLAS

V2.0) and the Model HT-FLAIR (dataset ISLES 2015) achieved the best results in

terms of Dice, IOU, Recall and Precision.

The "Ensemble DFT1T2" set showed an improvement over the individual models,

highlighting the importance of combining multiple sources of information for more

accurate segmentation.

The results obtained provide valuable information for the selection of the best

segmentation model in the context of stroke imaging, highlighting the importance of
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using FLAIR images and the Learning ensemble of models for accurate segmentation.

The results provide a solid foundation for further research in the field of stroke MRI

image segmentation, paving the way for improved stroke patient care.
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General Conclusion

Stroke remains one of the most dangerous diseases, and finding an efficient and

autonomous way to detect it early without a great deal of human intervention is a

priority, as it’s a very tedious task for a specialist. Our aim was therefore to use the

power of artificial intelligence through Deep Learning to propose a segmentation model

for MRI stroke images. In order to achieve our objective, we had to propose several

models based on several approaches, such as the proposal of our CNN model based on

U-Net, Transfer Learning and Ensemble Learning.

We had to use two main datasets (ATLAS V2.0 and ISLES 2015), which enabled us to

build other datasets. In the end, we obtained 18 models. Many of the models performed

well, but especially as we’re in the healthcare field, a proposed solution requires good

accuracy.

We’ve found that transfer learning with Effitientnetb3 as backbone is effective, but the

problem is that it takes a lot of time to train. We therefore used the Dice coefficient, IOU,

Precision and Recall metrics to select our final models, which were « Efficientnetb3-50

» and « Model HT-FLAIR » according the datasets used.

As we mentioned earlier, the medical field demands a very high level of efficiency from

the solutions we propose. This is why we plan to continue our work by proposing new

approaches to improve performance:

- Working in 3D if we can get the necessary equipment,

- Combining traditional approaches and Deep Learning,

- After segmentation we locate the region of the brain that was damaged using brain

atlas map.
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Appendix

Figure 4.26: Architecture of VGG19 [9].
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Figure 4.27: Architecture of Resnet34 [10].

Figure 4.28: Architecture of Efficientnetb3 [11].
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