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Abstract

This memory focuses on Step-Stress Partially Accelerated Life Tests (SS-PALT) applied

to products with a two-parameter bathtub-shaped lifetime distribution, specifically

the Chen distribution. The objective is to estimate the distribution parameters and

acceleration factor using maximum likelihood estimation (MLE) based on progressive

Type-II censoring. The thesis also provides the asymptotic variance and covariance

matrix of the estimators. To establish confidence intervals (CIs) for the parameters,

two approaches are employed: the normal approximation to the asymptotic distribu-

tion of the MLEs and the bootstrap method. The estimators are numerically obtained

using the Mathematica Package through an iterative procedure. To demonstrate the

proposed estimation method, a numerical example is presented. Furthermore, a real-

world example is provided to illustrate the suggested approach.

Keywords: Chen distribution; Step-stress partially accelerated life tests; Progres-

sive Type-II censoring; Maximum likelihood estimation; Asymptotic confidence inter-

vals

Résumé:

Ce mémoire porte sur les tests de durée de vie accélérée partiellement par étapes (SS-

PALT) appliqués aux produits présentant une distribution de durée de vie en forme

de bathup à deux paramètres, plus précisément la distribution de Chen. L’objectif

est d’estimer les paramètres de la distribution et le facteur d’accélération à l’aide de

viii Master’s thesis



Abstract with three languages

l’estimation du maximum de vraisemblance (MLE) basée sur une censure progres-

sive de Type-II. La thèse fournit également la variance asymptotique et la matrice

de covariance des estimateurs. Pour établir des intervalles de confiance (IC) pour les

paramètres, deux approches sont utilisées : l’approximation normale à la distribu-

tion asymptotique des MLE et la méthode du bootstrap. Les estimateurs sont obtenus

numériquement à l’aide du package Mathematica par une procédure itérative. Pour

illustrer la méthode d’estimation proposée, un exemple numérique est présenté. De

plus, un exemple concret est fourni pour illustrer davantage l’approche suggérée.

Mots clés: Distribution de Chen ; Essais de durée de vie partiellement accélérés ;

Progressif ; Censure de type II ; Estimation de vraisemblance maximale ; Intervalles

de confiance asymptotiques Type-II ; Estimation du maximum de vraisemblance ; In-

tervalles de confiance asymptotiques.
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CDF Cumulative Distribution Function

PDE Probability Distribution Function

MTTF Mean Time to Failure

MTBF Mean Time Befor Failure

MTTR Mean Time To Repair

ALT Accelerated life test
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GENERAL INTRODUCTION

In order for the researchers to enhance the credibility, validity, and usefulness of their

statistical analyses and research findings,Reliability is required. Reliability is the ex-

tent to which a system, process, or object can be trusted to consistently perform with

accuracy and dependability. It measures the capability of consistently delivering the

intended or expected outcomes over time and across different circumstances, also in

the realm of technology and engineering, which means reliability primarily relates

to the likelihood of a system or component operating without failure during a spec-

ified time frame and under predefined operational conditions without encountering

unforeseen malfunctions or errors. overall, Reliability plays a vital role in guarantee-

ing the consistent and dependable performance of systems, products, or processes. Its

importance lies in minimizing disruptions, reducing downtime, and mitigating any

potential negative consequences for users or stakeholders. By focusing on reliability,

organizations can enhance user satisfaction, maintain operational continuity, and safe-

guard against adverse impacts on productivity or reputation therefore it is crucial for

safety, productivity, and customer satisfaction. It also minimizes failures, accidents,

and downtime, ensuring consistent performance, It is vital in mission-critical applica-

tions where failure can have severe consequences.

Reliability analysis uses failure data to estimate parameters, predict performance,

and evaluate maintenance strategies. It enables engineers to optimize reliability, mit-

igate risks, and enhance overall system performance. The uses of reliability analysis

are diverse and span across different stages of product development and operation.

During the design phase. It aids in selecting appropriate materials and components

with desired reliability characteristics, and one commonly used method in life test-

ing of the products under a process of reliability test is the Accelerated Life Testing

(ALT) method. ALT involves subjecting the product to higher stress levels than it

would typically encounter in normal operating conditions. By accelerating the test-

1



GENERAL INTRODUCTION

ing process, engineers can obtain failure data more quickly and estimate the product’s

reliability characteristics within a shorter time frame with less money it consists of a

variety of test methods for shortening the life of test items or hastening the degrada-

tion of their performance. The aim of such testing is to obtain data quickly, which,

when properly modeled and analyzed, yields the desired information on product life

or performance under normal use conditions, This allows for faster decision-making

regarding design improvements, materials selection, and product release, also to re-

duce the costs to their minimum.ALT (Accelerated Life Testing)is a general term that

refers to any testing approach that accelerates the stress levels experienced by the test

units to shorten the time required to observe failures. It involves subjecting the units

to higher temperatures, increased voltage, intense vibration, or other stress factors to

simulate real-world operating conditions, The accelerated conditions in ALT help to

shorten the testing duration, enabling engineers to obtain reliable information within

a reasonable time frame. By intentionally accelerating the failure mechanisms, engi-

neers can observe failures more frequently, allowing them to collect sufficient data for

statistical analysis and reliability estimation, In ALT the test items are tested only at

accelerated conditions. and there are mainly three ALT methods. The first method

is called the constant-stress ALT, the stress is kept at a constant level throughout the

life of test products. The second one is referred to as progressive-stress ALT, the stress

applied to a test product is continuously increasing over time. The third is the step-

stress ALT, in which the test condition changes at a given time or upon the occurrence

of a specified number of failures, the fourth step-stress partially ALT, the stress levels

are intentionally kept lower than what would be required in traditional ALT, making

it a partially accelerated testing approach this type has been studied by several au-

thors. These ALT methods, including CSALT, PSALT, SSALT, and SSPALT, are valuable

tools in assessing product reliability, identifying potential failure modes, and making

informed decisions about design improvements, material selection, and product en-

hancements.

Progressive censoring is a type of censoring scheme used in survival analysis and re-

liability studies. In progressive censoring, the observation or failure times of the test

units are not fully observed or known. Instead, the failure times are only known to lie

within specific intervals or windows. they are employed in situations where complete

failure time information is difficult or expensive to obtain, or when the test units can-

not be continuously monitored until failure. This type of censoring allows for more

efficient data collection and analysis, as it reduces costs and minimizes the required

sample size.

There are different progressive censoring schemes, one of which is Type I Progres-

sive Censoring, In this scheme, the failure times of test units are censored within spe-

2 Master’s thesis



GENERAL INTRODUCTION

cific intervals. The intervals may be predetermined or determined based on the ob-

served failure times. Type I censoring allows for efficient data collection and reduces

costs compared to complete failure time observation. the second, Type II Progressive

Censoring, This scheme involves progressively narrowing the intervals in which failure

times are censored. Initially, the intervals are wide, and as failures occur, the intervals

are narrowed to obtain more precise failure time information. Type II censoring pro-

vides more accurate estimates of reliability parameters compared to Type I censoring.

The advantages of progressive censoring schemes include efficient data collection,

minimized sample size, flexibility in study design, and improved reliability estima-

tion.

Progressive censoring reduces the cost and effort of obtaining failure time infor-

mation by censoring data within intervals, making data collection more practical. It

also reduces the required sample size, leading to more efficient data analysis and cost

savings. Researchers can tailor censoring intervals based on resources and objectives,

allowing for flexible study design. Progressive censoring provides valuable informa-

tion about failure times, enabling more accurate estimation of reliability measures in

varying conditions.

our work is presented as follows: in Chapter 1, we tackle Reliability and it’s mea-

sures.also commonly used distributions and the main estimation method. After that,

in Chapter 2, we present the Accelerated Life Test, its types and different categories

of censored data ,then Progressive Censoring types, also an overview of the Chen dis-

tribution And statistic inference for step stress partially ALT using Chen distribution

are presented. Finally, we depict the solution to how to estimate the parameters of this

distribution with Maximum Likelihood Estimation. In the last Chapter, We give the

simulation study, we have list of R packages popularly known for fitting distributions.

There might be more packages. But, we decided to focus on these ones. we have tried

to explain the concepts with application in 2 real data set. We complete this work with

a general conclusion.

3 Master’s thesis



CHAPTER1

RELIABILITY SYSTEMS

1.1 Introduction

Reliability refers to the ability of a system or component to perform its intended func-

tion without failure over a specified period of time under given operating conditions.

It is a measure of the system’s ability to consistently operate and meet performance

requirements and is a crucial aspect in various fields, including engineering, manufac-

turing, and quality control. It plays a significant role in ensuring the safety, efficiency,

and durability of products and systems. Reliability analysis involves studying the fail-

ure behavior of components or systems, identifying potential failure modes, and esti-

mating the probability of failure within a specified time frame. To describe the Time to

Failure as a statistical distribution, Reliability Distribution Analysis is required which

is usually characterized by a specific pattern where different distribution types are

supported to finally estimate the entire process by using the maximum likelihood as

well as confidence interval as estimation methods, the same distributions are going to

be tested under some fit techniques .

1.2 Reliability

Reliability is a crucial aspect of product or system performance that focuses on their

ability to function without failure or degradation over a specified period under given

operating conditions. It plays a significant role in various industries, including man-

ufacturing, engineering, aerospace, automotive, electronics, and many others. Relia-

bility analysis provides insights into the probability of failure, expected lifetime, and

performance under different conditions, allowing businesses to optimize design, main-

tenance, and decision-making processes.
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CHAPTER 1. RELIABILITY SYSTEMS

Mathematically, reliability R(t) is the probability that a system will function prop-

erly between time 0 and time t, (also called the survival function),

R(t) = P (T > t), t ≥ 0 (1.1)

where T is a random variable that represents the failure time.

Unreliability F(t), a measure of failure, is defined as the probability that the system

will fail by time t,

F(t) = P (T ≤ t) , t ≥ 0

In other words, F(t) is the failure distribution function. If the failure time random

variable T has a density function f (t), then ,

R(t) =
∫ ∞
t

f (s)ds

or, equivalently,

f (t) = − d
dt

[R(t)].

Mathematically speaking, the density function can be expressed in terms of T:

lim
∆t→0

P (t < T ≤ t +∆t)

This can be seen as the likelihood that the failure time T will happen between the

operating time t and the subsequent operating period, t +∆t.

Consider a new and successfully tested system that operates well when put into

service at time t = 0. The longer the time period, the less probable it is that the system

will continue to work. Naturally, there is no chance of success for an infinitely long

period of time.

As a result, the system operates with a chance of one and gradually drops to zero.

Clearly, If the time to failure is described by an exponential failure time density func-

tion, then

f (t) =
1
θ

exp
(
− t
θ

)
, t ≥ 0,θ > 0, (1.2)

and this will lead to the reliability function is,

R(t) =
∫ ∞
t

1
θ

exp
(
− s
θ

)
ds = exp

(
− t
θ

)
, t ≥ 0 (1.3)

Consider the Weibull distribution where the failure time density function is given by,

f (t) =
βtβ−1

θβ
exp

(
−
( t
θ

)β)
t ≥ 0,θ > 0,β > 0
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CHAPTER 1. RELIABILITY SYSTEMS

Then the reliability function is,

R(t) = exp
(
−
( t
θ

)β)
, t ≥ 0

Hence, the reliability function can be directly determined given a specific failure time

density function or failure time distribution function. For certain distributions, (see1.3)

for additional explanation.

1.2.1 Reliability Measures

reliability measures are utilized to assess the performance and durability of products

or systems. These measures provide insights into the reliability characteristics and

help make informed decisions regarding product design, maintenance, and quality

control,Some commonly used measures of reliability include:

1.2.1.1 System Mean Time to Failure(MTTF)

Suppose that the reliability function for a system is given by R(t), MTTF It is a relia-

bility metric that represents the average time elapsed between the initial operation of

a system, component, or device and its first occurrence of failure. Mathematically, is

given by

MTTF =
∫ ∞

0
tf (t)dt (1.4)

Substituting ,

f (t) = − d
dt

[R(t)]

into equation 1.4 and performing integration by parts, we obtain

MTTF = −
∫ ∞

0
td[R(t)]

= [−tR(t)]|∞0 +
∫ ∞

0
R(t)dt

(1.5)

The first term on the right-hand side of equation 1.5 equals zero at both limits, since

the system must fail after a finite amount of operating time. Therefore, we must have

tR(t)→ 0 as t→ f . This leaves the second term, which equals,

MTTF =
∫ ∞

0
R(t)dt (1.6)

Thus, MTTF is the definite integral evaluation of the reliability function,and is typ-

ically used for non-repairable systems or components, meaning that once they fail,

they cannot be restored to their original state.
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It is important to note that MTTF does not account for repair or restoration time, as it

assumes that failures are not repaired and the system or component is replaced after

failure.

1.2.1.2 Mean Time Between Failures (MTBF)

MTBF represents the average time elapsed between two consecutive failures of a sys-

tem or components. It is a widely used metric for assessing the reliability of systems

with a repairable nature. A higher MTBF indicates a longer average duration between

failures, indicating greater reliability.

MTBF is an expected value of the random variable time between failures. Mathemati-
cally,

MTBF = MTTF + MTTR

A system where faults are rapidly diagnosed is more desirable than a system that has

a lower failure rate but where the cause of a failure takes longer to detect, resulting in

lengthy system downtime. When the system being tested is renewed through mainte-

nance and repairs, E(T) is also known as MTBF.

1.2.1.3 Failure Rate Function

The probability of a system failure in a given time interval [t1, t2] can be expressed in

terms of the reliability function as,

∫ t2

t1

f (t)dt =
∫ ∞
t1

f (t)dt −
∫ ∞
t2

f (t)dt

= R (t1)−R (t2)

or in terms of the failure distribution function (or the unreliability function) as,∫ t2

t1

f (t)dt =
∫ t2

−∞
f (t)dt −

∫ t1

−∞
f (t)dt

= F (t2)−F (t1)

The failure rate is the frequency with which failures take place during a given period

of time [t1, t2]. It is described as the likelihood that a failure will occur once every unit

of time in the interval, assuming no failures have occurred before time zero (t1). the
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failure rate is a result,
R(t1)−R(t2)
(t2 − t1)R(t1)

Note that the failure rate is a function of time. If we redefine the interval as [t, t+∆t],the

above expression become to,
R(t)−R(t +∆t)

∆tR(t)

The rate in the above definitions is expressed as failures per unit of time when in

reality, the time units might be in terms of miles, hours, etc. A lower failure rate indi-

cates higher reliability.

The hazard function is defined as the limit of the failure rate as the interval ap-

proaches zero. Thus, the hazard function h(t) is the instantaneous failure rate and

is defined by

h(t) = lim
∆t→0

R(t)−R(t +∆t)
∆tR(t)

=
1

R(t)

[
− d
dt

R(t)
]

=
f (t)
R(t)

A device’s chance of failing in the brief period from time t to (t + dt)is represented by

the amount h(t)dt.

The hazard function is significant because it shows how the failure rate changes over

the lifespan of a population of components by showing each one’s hazard function

along a single axis. For instance, two designs might be equally reliable at a certain

point in time, but their failure rates prior to this point might be different.

In statistical theory, the force of mortality is equivalent to the hazard function, and the

death rate is equivalent to the failure rate. As a result, the ratio of the probability den-

sity function (pdf) to the reliability function is known as the hazard function, hazard

rate, or failure rate function.

1.2.1.4 Maintainability

When a system fails to perform satisfactorily, the repair is normally carried out to lo-

cate and correct the fault. The system is restored to operational effectiveness by mak-

ing an adjustment or by replacing a component.

When maintenance is carried out in accordance with recommended processes and re-

sources, maintainability is defined as the likelihood that a failed system will be re-

turned to specific conditions within a certain amount of time. In other terms, main-
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tainability is the likelihood of finding and fixing a problem with a system in a specific

amount of time. To guarantee that the system product can be efficiently and economi-

cally maintained by the client, maintainability engineers must collaborate with system

designers. In order to calculate the amount of time needed to complete the opera-

tion, the level of expertise required, the kind of support equipment needed, and the

documentation needed, this function necessitates an analysis of the part removal, re-

placement, tear-down, and build-up of the product. Let T denote the random variable

of the time to repair or the total downtime. If the repair timeT has a repair time den-

sity function g(t), then the maintainability, V (t), is defined as the probability that the

failed system will be back in service by time t, i.e.,

V (t) = P (T ≤ t) =
∫ t

0
g(s)ds

For example, if g(t) = µe−µt where µ > 0 is a constant repair rate, then

V (t) = 1− e−µt,

which represents the exponential form of the maintainability function.

An important measure often used in maintenance studies is the mean time to repair

(MTTR) or the mean downtime. MTTR is the expected value of the random variable

repair time, not failure time, and is given by

MTTR =
∫ ∞

0
tg(t)dt

When the distribution has a repair time density given by g(t) = µe−µt, then, from

the above equation,MTTR = 1
p . When the repair time T has the log-normal density

function g(t), and the density function is given by,

g(t) =
1

√
2πσt

e
− (ln t−µ)2

2σ2 , t > 0

then it can be shown that,

MTTR = me
σ2
2
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1.2.1.5 Availability

Availability is a measure of the system’s ability to undergo repairs after a failure,It is

representing the probability of successful operation at a specific time t,Mathematically,

Availability =
System up time

System up time + System down time

=
MTTF

MTTF + MTTR

Availability is a measure of success used primarily for repairable systems:

▶ For non-repairable systems, Availability A(t) equals reliability R(t).

▶ In repairable systems, A(t) will be equal to or greater than R(t).

Higher availability signifies better reliability and the ability of a system to fulfill its

intended function when required.

1.3 Common Distribution Functions

A statistical absolutely continuous distribution can be fully characterized by its prob-

ability density function. It plays a crucial role in understanding the behavior of life-

testing data in reliability engineering and various other fields. Additionally, it aids

in deriving other essential functions used in reliability analysis, such as the reliabil-

ity function or hazard rate function, mean time to failure function, mean residual life

function, and median life function. In this discussion, we will explore some important

lifetime distributions along with their significant characteristics [1].

1.3.1 Exponential Distribution

The Exponential distribution is a commonly used statistical distribution, especially

in the fields of reliability and survival analysis. It has gained popularity due to its

simplicity, even in cases where its suitability may not be fully justified. Several re-

searchers, including Davis (1952)[2], and Epstein (1958)[3] have provided arguments

in favor of using the Exponential distribution.

The Exponential distribution is closely associated with the Poisson process, which is a

process where events occur continuously and independently at a constant failure rate.

The Exponential distribution is the probability distribution of the time between suc-

cessive events in a Poisson process. In addition to its relevance in the context of the

Poisson process, the Exponential distribution appears in various other scenarios, such

as waiting time problems. For example, Maguire et al. (1952)[4] conducted a study on

mine accidents and demonstrated that the time intervals between accidents followed

an Exponential distribution.
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A random variable T is said to follow an exponential distribution with scale parameter

θ if it has the following CDF,

F(t) = 1− e−
t
θ = λe−λt, t ≥ 0 (1.7)

where θ > 0 is the mean time to failure and the p.d.f. is,

f (t) =
1
θ
e−

t
θ = λe−λt, t ≥ 0 (1.8)

The Reliability function is,

R(t) = e−
t
θ = e−λt, t ≥ 0

where θ = 1
λ > 0 is an MTTF’s parameter and λ ≥ 0 is a constant failure rate. The

hazard function or failure rate for the exponential density function is constant, i.e.,

h(t) =
f (t)
R(t)

=
1
θ e
− 1
θ

e−
1
θ

=
1
θ

= λ

One of the most prominent features of the exponential distribution is the fact that

it is the only continuous distribution with a constant failure rate. It is a particular case

of gamma distribution. It is the continuous counterpart of the geometric distribution,

and it has the key property of being memoryless, i.e. an old unit and a new unit have

the same probability of failure at a future time interval.

Example: A manufacturer performs an operational life test on ceramic capacitors

and finds they exhibit a constant failure rate with a value of 3x10−8 failure per hour.

What is the reliability of a capacitor at 104 hours?

Solution: The reliability of a capacitor at 104 hour is

R(t) = e−λt = e3x10−8t = e3x10−4t = 0.9997

The resulting reliability plot is shown in Figure 1.1.
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Figure 1.1: Reliability function vs time

1.3.2 Weibull Distribution

The exponential distribution is often limited in applicability owing to the memory-

less property. A generalization of the exponential distribution, the Weibull distribu-

tion (Weibull 1951)[5] is frequently used to characterize fatigue life, ball bearing life,

and vacuum tube life. The Weibull distribution is ideal for modeling component life-

times with variable hazard rate functions and for representing a variety of engineering

applications since it is very adaptable. The probability density function with three

parameters is,

f (t) =
β(t −γ)β−1

θβ
exp

(
−
(t −γ

θ

)β)
, t ≥ γ ≥ 0

where θ and β are known as the scale and shape parameters, respectively, and γ is

known as the location parameter. These parameters are always positive. By using dif-

ferent parameters, this distribution can follow the exponential distribution, the nor-

mal distribution, etc. It is clear that, for t > γ , the reliability function R(t) is,

R(t) = exp
(
−
(t −γ

θ

)β)
, for t > γ > 0,β > 0,θ > 0 (1.9)

hence,

h(t) =
β(t −γ)β−1

θβ
, t > γ > 0,β > 0,θ > 0 (1.10)

It can be shown that the hazard function is decreasing for β < 1, increasing for

β > 1, and constant when β = 1.

Note that the Rayleigh and exponential distributions are special cases of the Weibull

distribution at β = 2 , γ = 0 , and β = 1,γ = 0 , respectively. For example, when

β = 1andγ = 0 the reliability of the Weibull distribution function in equation 1.9 re-

duces to
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R(t) = e−
t
θ

and the hazard function given in equation 1.10 reduces to 1/θ , a constant. Thus, the

exponential is a special case of the Weibull distribution. Similarly, when σ = 0 and

β = 2, the Weibull probability density function becomes the Rayleigh density function.

That is

f (t) =
2
θ
e−

t
β t ≥ 0,α,β > 0

The resulting reliability function is shown in Figure 1.2.

Figure 1.2: Weibull reliability function vs time

1.3.3 Binomial Distribution

One of the discrete random variable distributions that are most frequently utilized in

reliability and quality control is the binomial distribution. It can be used in reliability

engineering, for instance, when dealing with scenarios where an event can either be a

success or a failure. The pdf of the distribution is given by,

P (X = x) =
(
n
x

)
px(1− p)n−x x = 0,1,2, . . . ,n

(
n
x

)
=

n!
x!(n− x)!

where n= number of trials; x = number of successes; p = single trial probability of

success.
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The reliability function, R(k), (i.e., at least k out of n items are good) is given by

R(k) =
n∑

x=k

(
n
x

)
px(1− p)n−x

1.3.4 Poisson Distribution

Although the Poisson distribution can be used in a manner similar to the binomial

distribution, it is used to deal with events in which the sample size is unknown. This

is also a discrete random variable distribution whose pdf is given by,

P (X = x) =
(λt)
e−λt

for x = 0,1,2, . . . ,

where λ = constant failure rate, x = is the number of events.

In other words, P (X = x) is the probability of exactly x failures occurring in time t.

Therefore, the reliability Poisson distribution, R(k) (the probability of k or fewer fail-

ures) is given by,

R(k) =
k∑

x=0

(λt)xe−λt

x!

This distribution can be used to determine the number of spares required for the

reliability of standby redundant systems during a given mission.

1.3.5 Normal Distribution

Normal distribution plays an important role in classical statistics owing to the Central

Limit Theorem. The normal distribution is largely used in reliability engineering for

evaluations of product susceptibility and external stress. For many mechanical sys-

tems, this two-parameter distribution is used to represent systems in which a failure

occurs as a result of some wear-out event, The pdf is given by,

f (t) =
1

σ
√

2π
exp

(
−1

2

(t −µ
σ

)2
)
,

where µ is the mean value and σ is the standard deviation. The cumulative distri-

bution function (cdf) is,

F(t) =
∫ t

−∞

1

σ
√

2π
exp

(
−1

2

(s −µ
σ

)2
)
ds,
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The reliability function is,

R(t) =
∫ ∞
t

1

σ
√

2π
exp

(
−1

2

(s −µ
σ

)2
)
ds,

The hazard function for a normal distribution is,

h(t) =
f (t)
R(t)

The Normal distribution is a versatile empirical model, commonly applicable to var-

ious failure mechanisms such as corrosion, migration, crack growth, and chemical

reactions. While it may not always be the ideal choice, its empirical success can be

attributed to its theoretical derivation under matching assumptions for these mecha-

nisms.

1.3.6 Log Normal Distribution

The log-normal lifetime distribution is a very flexible model that can empirically fit

many types of failure data. This distribution, with its applications in maintainability

engineering, is able to model failure probabilities of repairable systems and to model

the uncertainty in failure rate information. The log-normal density function is given

by,

f (t) =
1

σt
√

2π
exp

−1
2

(
ln t −µ

σ

)2 , t ≥ 0 (1.11)

where µ and σ parameters such that ∞ < µ <∞ , and σ > 0. Note that µ and σ are not

the mean and standard deviations of the distribution.

Mathematically, if a random variable X is defined as X = ln(T ), then X is normally

distributed with a mean of µ and a variance of σ2, that is,

E(X) = E(lnT ) = µ

and

V (X) = V (lnT ) = σ2

Since T = et, the mean of the log-normal distribution can be found by using the normal

distribution. Consider that,

E(T ) = E
(
eX

)
=

∫ ∞
−∞

1

σ
√

2π
exp

(
x − 1

2

(x −µ
σ

)2
)
dx
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and by rearrangement of the exponent, this integral becomes,

E(T ) = eµ+ σ2
2

∫ ∞
−∞

1

σ
√

2π
exp

(
− 1

2σ2

[
x −

(
µ+ σ2

)]2)
dx

Thus, the mean of the log-normal distribution is,

E(T ) = eµ+ σ2
2

Proceeding in a similar manner,

E
(
T 2

)
= E

(
e2X

)
= e2(µ+σ2)

thus, the variance for the log normal is,

V (T ) = e2µ+σ2 (
eσ

2
− 1

)
The cumulative distribution function for the log-normal is,

F(t) =
∫ t

0

1

σs
√

2π
exp

−1
2

(
lns −µ

σ

)2ds
can be related to the standard normal deviate Z by,

F(t) = P [T ≤ t] = P (lnT ≤ ln t)

= P

[
Z ≤

ln t −µ
σ

]
Therefore, the reliability function is given by ,

R(t) = P

[
Z >

ln t −µ
σ

]
(1.12)

and the hazard function would be,

h(t) =
f (t)
R(t)

=
Φ

( ln t−µ
σ

)
σtR(t)

The log-normal lifetime model, like the normal, is flexible enough to make it a very

useful empirical model. Figure 1.3 shows the reliability of the log-normal vs time. It

can be theoretically derived under assumptions matching many failure mechanisms.

Some of these are corrosion and crack growth, and in general, failures resulting from

chemical reactions or processes.
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Figure 1.3: log-normal reliability function vs time

1.3.7 Gamma Distribution

A gamma distribution can be used as a failure probability function for components

whose distribution is skewed. The failure density function for a gamma distribution

is,

f (t) =
tα−1

βαΓ (α)
e−

t
β t ≥ 0,α,β > 0 (1.13)

where α is the shape parameter and βs the scale parameter. Hence,

R(t) =
∫ ∞
i

1
βαΓ (α)

sα−1e−
s
β ds

If α is an integer, it can be shown by successive integration by parts that

R(t) = e−
t
β

α−1∑
i=0

(
t
β

)i
i!

(1.14)

and

h(t) =
f (t)
R(t)

=
1

βαΓ (α)t
α−1e−

1
β

e−
t
β
∑α−1

i=0

(
t
β

)i
i!

The gamma density function has shapes that are very similar to the Weibull distribu-

tion. At α = 1, the gamma distribution becomes the exponential distribution with the

constant failure rate 1
β , It is a flexible lifetime model that may offer a good fit to some

sets of failure data and it is frequently used in Bayesian reliability applications, and

the resulting reliability plot is shown in Figure1.4
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Figure 1.4: Gamma reliability function vs time

1.3.8 Beta Distribution

The two-parameter Beta density function, f (t), is given by

f (t) =
Γ (α + β)
Γ (α)Γ (β)

tα(1− t)β , 0 < t < 1,α > 0,β > 0

where α and β are the distribution parameters. This two-parameter distribution is

commonly used in many reliability engineering applications.

1.3.9 Pareto Distribution

The Pareto distribution was initially created as a population income model. The pop-

ulation density in cities, stock market swings, and individual incomes are examples

of phenomena having unusually long right tails. The Pareto distribution’s probability

density function is given by

f (t) =
αkα

tα+1 k ≤ t ≤∞

The reliability of the Pareto distribution are,

R(t) =
(
k
t

)α
The Pareto and log normal distributions have been commonly used to model the

population size and economic incomes. The Pareto is used to fit the tail of the distri-

bution, and the log-normal is used to fit the rest of the distribution.
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1.3.10 Lomax Distribution

The Lomax distribution is also known as the Pareto-II distribution, Lomax (1954)

[6]first presented this to model data on business failure. Some of its applications in-

clude income analysis; reliability modeling and accelerated life testing (Hassan and Al-

Ghamdi, 2009) [7]; fitting firm size data; receiver operating characteristic (Campbell

and Ratnaparkhi, 1993)[8]; distribution properties and recurrence relation moments

of record values (Balakrishnan and Ahsanullah, 1994)[9]. Researcher Bryson (1974)

[10] stated that the Lomax distribution offers a useful alternative to conventional life

distributions such as the Exponential, Weibull, or Gamma distributions in scenarios

where it is assumed that the population distribution is heavily tailed.

A random variable T has Lomax distribution with two parameters λ and θ, if it has

the following CDF given as

F(t) = 1−
(
1 +

t
θ

)−λ
, t > 0,θ > 0,λ > 0.

where λ and θ is the shape and scale parameter, respectively. The p.d.f. is

f (t) =
λ
θ

(
1 +

t
θ

)−(λ+1)
, t > 0,θ > 0,λ > 0.

The reliability function is

R(t) =
(
1 +

t
θ

)−λ
, t > 0.

The hazard rate function is

h(t) =
λ
θ

(
1 +

t
θ

)−1
, t > 0,θ > 0,λ > 0.

In the context of lifetime distribution, the Lomax distribution belongs to the class of

decreasing failure rate distribution (Chahkandi and Ganjali, 2009)[11].

1.3.11 Rayleigh Distribution

The Rayleigh function is a flexible lifetime distribution that can apply to many degra-

dation process failure modes.It is a special case of Weibull distribution with wide ap-

plicability. For more details, one may refer to Johnson et. al. (1994)[12]. The cumula-
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tive distribution function of Rayleigh distribution with scale parameter σ is,

F(t) = 1− exp
(
−t2

2σ2

)
, t > 0,σ > 0.

The Rayleigh probability density function is

f (t) =
t

σ2 exp
(
−t2

2σ2

)
, t > 0,σ > 0.

The hazard rate function and reliability of the Rayleigh function are, respectively,

h(t) =
t2

σ2

and

R(t) = exp
(
−σt2

2

)
, t > 0,σ > 0,

Some important remarks of this distribution:

• The Chi-squared distribution with two degrees of freedom is equivalent to Rayleigh

distribution with a scale parameter equal to one.

• The Weibull distribution is a generalization of the Rayleigh distribution

1.4 The Estimation Methods

The estimation processes are crucial for determining the precision of the estimated

model parameters and for describing the best test strategies in Accelerated life testing.

Thus, in order to find precise estimates that may improve the precision of the test

plans, the researchers proposed various types of estimation procedures in SSPALT,

such as Maximum Likelihood (ML) method.

1.4.1 Maximum Likelihood Method

The method of maximum likelihood estimation is one of the most popular and im-

portant methods of estimation. Fisher (1912)[13] investigated several of its optimality

properties and compared this with its competing methods. In order to introduce this

method, let us assume T1,T2, ....,Tn to be a random sample drawn from a population

with p.d.f. (or p.m.f.) f (t; θ̃), θ̃ ∈ Θ ⊆ R
k. The joint distribution of sample observa-

tions, in this case, is given by
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f (t; θ̃) =


∏n

1 f
(
ti ; θ̃

)
; if T is discrete ,∏n

1 Pθ̃ (ti ≤ Ti ≤ ti + dti) ; if T is continuous
,

=
n∏
1

f
(
ti ; θ̃

)
dti

where dti denotes the length of the interval.

The joint density in the equation above is a function of t for given θ̃ , i.e., the joint den-

sity is a function of n observations. Whenever this is denoted as a function of θ̃ given

t, we call it a likelihood function and denote it by L(θ̃, t). The likelihood function is a

function of parameters (θ1, ...,θk). Generally, k is either 1 or 2.

1.4.2 Definition

A value of θ in Θ, say θ0, is said to be a maximum likelihood estimator (MLE) of θ,

given a set of sample observations t, if

L (θ0,t) = max
θ̃∈Θ

L(θ̃;t).

Here the range of MLE θ0(t) is the same as it is for the parameters. θ0(t) must be

in θ; if not, then it is not the MLE of θ. Since the log is a monotonic function. The

function logsL(θ̃; t)is called log-likelihood. Likelihood-based statistical inference uses

the information as to how the likelihood or log-likelihood changes by varying θ. A

function that represents this change,

S(t, θ̃) =
∂

∂θ̃
logL(θ̃;t)

Is known as a score function. If log L(θ̃; t) (i) is a function of θ̃ which is twice differen-

tiable and (ii) the extrema of L(θ̃; t) does not occur on the boundary, i.e., extrema is an

interior point of the domain of the function log L(θ̃; t) i.e., Θ, then the MLEs of θ are

defined as a solution of the equations,

∂
∂θi

logL(θ̃; t) = 0; i = 1, . . . , k

or

S(t, θ̃) =
(

∂
∂θ1

logL(θ̃), . . . ,
∂

∂θk
logL(θ̃)

)′
= (0, . . . ,0)′
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hence, the k × k matrix is given by

∂
∂θ

S(t, θ̃)
∣∣∣∣∣
θ=θ0(t)

=
[

∂2

∂θi∂θj
logL(θ̃; t)

]
θ=θ0(t)

=
∣∣∣−Jij (θ0)

∣∣∣ (1.15)

is negative definite Jij(θ0) is positive definite, where is the solution of equation

(1.15). The matrix Jij(θ0) is called the observed information matrix. It measures the

amount of information about θ available in the experiment. However, the matrix

I(θ) = Eθ [S(T ,θ)S(T ,θ)′]

=

∣∣∣∣∣∣Eθ

(
∂
∂θi

logL(θ)
)(

∂
∂θj

logL(θ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣Eθ

(
− ∂2

∂θi∂θj
logL(θ; t)

)∣∣∣∣∣∣
=

∣∣∣EθJij(θ)
∣∣∣ = Eθ[J(θ)]

is called the Fisher Information matrix. A large value of |I(θ0)| indicates that the

likelihood function is more curved; thus one can easily calculate the maximum of like-

lihood functions over θ to get the MLE.

1.4.3 Confidence Intervals of Estimates

The asymptotic variance-covariance matrix of the parameters ( λ and β) is obtained by

inverting the Fisher information matrix

Iij = E

[
− ∂2L
∂θi∂θj

]
, i, j = 1,2

where θ1,θ2 = λ orβ (Nelson 1990)[14]. This leads to

 Var(λ̂) Cov(λ̂, β̂)

Cov(λ̂, β̂) Var(β̂)

 =


E

(
− ∂2 lnL

∂2λ

∣∣∣∣
λ̂,β̂

)
E

(
− ∂2 lnL

∂λ∂β

∣∣∣∣
λ̂,β̂

)
E

(
− ∂2 lnL

∂β∂λ

∣∣∣∣
λ̂,β̂

)
E

(
− ∂2 lnL

∂2β

∣∣∣∣
λ̂,β̂

)

−1

We can obtain an approximate (1-α )100% confidence interval on parameter O and β

based on the asymptotic normality of the MLE (Nelson 1990)[14] as follows:

λ̂±Zα/2

√
Var(λ̂) and β̂ ±Zα/2

√
Var(β̂)

where Zα/2 is upper percentile of standard normal distribution.
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1.5 Goodness of Fit Techniques

The goodness of fit techniques is statistical methods used to assess how well a statisti-

cal model fits observed data. These techniques help evaluate the adequacy of a model

in describing the underlying data and can be applied in various fields, including re-

gression analysis, hypothesis testing, and probability distributions. Some commonly

used goodness of fit techniques include:

1.5.1 Chi-squared Test

The chi-square test is used to compare observed frequencies with expected frequencies

based on a specific model. It assesses whether the observed data significantly deviates

from the expected values, indicating a lack of fit. The following statistic

χ2 =
k∑

i=1

(
xi −µi
σi

)2

has a chi-squared χ2 distribution with k degrees of freedom. The steps of the chi-

squared test are as follows:

1. Divide the sample data into mutually exclusive cells (normally 8-12) such that

the range of the random variable is covered.

2. Determine the frequency, fi , of sample observations in each cell.

3. Determine the theoretical frequency, Fi , for each cell (area under density func-

tion between cell boundaries Xn - total sample size). Note that the theoretical

frequency for each cell should be greater than 1. To carry out this step, it nor-

mally requires estimates of the population parameters which can be obtained

from the sample data. log-likelihood

4. Form the statistic

S =
k∑

i=1

(fi −Fi)2

Fi

5. From the χ2 tables, choose a value of χ2 with the desired significance level and

with degrees of freedom (= k−1−r), where r is the number of population param-

eters estimated.

6. Reject the hypothesis that the sample distribution is the same as theoretical dis-

tribution if

S > χ2
1−α,k−1−r ,

23 Master’s thesis



CHAPTER 1. RELIABILITY SYSTEMS

where αis called the significance level.

1.5.2 Kolmogorov-Smirnov d Test

The Kolmogorov-Smirnov test evaluates the similarity between the cumulative distri-

bution function (CDF) of the observed data and the CDF of the model. It measures the

maximum difference between the two distributions and provides a statistical test for

assessing the goodness of fit.

Both the χ2 and “d” tests are non-parameters. However, the χ2 assumes large sam-

ple normality of the observed frequency about its meanwhile the “d” only assumes a

continuous distribution. LetX1 ≤ X2 ≤ X3 ≤ ... ≤ Xn denote the ordered sample values.

Define the observed distribution function, Fn(x), as follows:

Fn(X) =


0 for x ≤ x1

i
n for xi < x ≤ xi+1

1 for x > xn

Assume the testing hypothesis

H0 : F(x) = F0(x)

where F0(x)is a given continuous distribution and F(x) is an unknown distribution.

Let
dn = sup

−∞<x<∞
|Fn(x)−F0(x)|

Since F0(x) is a continuous increasing function, we can evaluate |Fn(x)−F0(x)| for each

n. If dn ≤ dn, D then we would not reject the hypothesis Ho; otherwise, we would reject

it when dn > dn,α, D. The value dn,α can be found in Table of" Kolmogorov-Smirnov d "

where n is the sample size and a is the level of significance.

1.5.3 Anderson-Darling Test(AD)

The Anderson-Darling test is another method for evaluating the fit of a model to data.

It assesses the discrepancy between the empirical distribution function of the observed

data and the theoretical distribution function of the model.

The Anderson-Darling test statistic is calculated using the following formula:

A2 = −n− S,

where
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A2 is the Anderson-Darling test statistic.

n is the sample size.

S is the sum of the terms calculated as:

S =
∑

[(2i − 1)(ln(F(xi)) + ln(1−F(xn+1−i)))],

where

i represents the ith ordered observation in the sample.

F(xi) is the cumulative distribution function (CDF) evaluated at the ith ordered ob-

servation.

F(xn+1−i) is the CDF evaluated at the (n+ 1− i)th ordered observation.

The test calculates a test statistic, denoted as A2, which measures the discrepancy

between the observed data and the expected values based on the chosen distribution.

A larger A2 value indicates a greater discrepancy between the observed data and the

expected distribution.

1.5.4 Information Criteria

Information criteria, such as the Akaike Information Criterion (AIC) and Bayesian In-

formation Criterion (BIC), are used to compare different models based on their good-

ness of fit and complexity. Lower values of these criteria indicate better-fitting models.

1.5.4.1 Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) is a mathematical method for evaluating how

well a model fits the data it was generated from. In statistics, AIC is used to compare

different possible models and determine which one is the best fit for the data.AIC is

calculated using the formula:

AIC = 2k − 2ln(L)

where k is the number of parameters in the model and L is the maximum likelihood

estimate of the model.

1.5.4.2 Bayesian Information Criterion (BIC)

he Bayesian Information Criterion (BIC), also known as the Schwarz criterion, is a sta-

tistical measure used for model selection among a set of candidate models. It provides

a way to balance the goodness of fit of a model with its complexity, penalizing models

with more parameters.
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The BIC is calculated using the following formula:

BIC = −2log(L) + k log(n)

where

log(L) is the log-likelihood of the data given the model.

k is the number of parameters in the model.

n is the sample size or the number of observations.

The BIC is a criterion that balances model fit and complexity by penalizing models

with more parameters. A lower BIC indicates a better model, helping in model selec-

tion among alternatives.

1.5.5 Cramer–von Mises criterion (CVM)

In statistics the Cramer–von Mises criterion is a criterion used for judging the goodness

of fit of a cumulative distribution function F∗ compared to a given empirical distribu-

tion function Fn. It is defined as,

ω2 =
∫ ∞
−∞

(Fn(x)−F∗(x))2dF∗(x)
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CHAPTER2

INFERENCE FOR STEP STRESS PARTIALLY

ACCELERATED LIFE TEST IN THE CHEN

DISTRIBUTION

2.1 Introduction

companies in the manufacturing sector is forced to provide reliable products that meet

customer’s expectations However, testing of products under usual stress conditions

takes a long period of time, often in years or decades. Moreover, these experiments are

expensive, which makes it difficult or even impossible to obtain the failure information

under usage conditions for such products. Therefore, Accelerated Life Testing (ALT)

is frequently used to induce more failures by subjecting the product to extreme con-

ditions of stress, strain, temperature or pressure. Step-stress testing is a special case

of ALT, in which the stress applied to the test units that can increase at pre-specified

times or at a prefixed number of failures. in this study : SSPALT (Step Stress Par-

tially Accelerated Life Testing) with a model based on progressive-time censored data

with all its types and schemes using the model of the Chen distribution and Maximum

Likelihood estimation .

2.2 Accelerated Life Testing (ALT)

Life testing is a procedure used to determine the lifespan of a product or subject by

observing when it fails. However, in some cases, the lifespan of a product can be ex-

tremely long, making traditional life testing procedures costly and time consuming.

ALT introduced by Chernoff (1962)[15] and Bessler et al. (1962)[16], is commonly used

to provide information about the life distribution of a product or material.All or some

of the test units are subjected to more severe conditions than the typical conditions.
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If the experimenter includes all test units under such stresses,the test is called ALT,

but if he/she includes some of them then the test is called partially accelerated life

test (PALT). In ALT test units are run only at accelerated conditions, while in PALT

they are run at both normal and accelerated use conditions,The major assumption in

ALT is that the mathematical model relating the lifetime of the unit and the stress are

known or can be assumed. In some cases, such life–stress relationships are not known

and cannot be assumed, i.e ALT data cannot be extrapolated to use condition. So, in

such cases, PALT is a more suitable test to be performed for which tested units are sub-

jected to both normal and accelerated conditions.Partially accelerated life tests studied

under step-stress scheme by several authors, for example, see Goel [17],DeGroot and

Goel [18], Bhattacharyya and Soejoeti [19], Bai and Chung [20].

For more detailed information about the analysis of ALT, one may refer to the works

of Bagdonavicius (1978)[21], Viertl (1988)[22], Nelson (1980)[23], Meeker and Escobar

(1998)[24]. These references provide further insights into the statistical analysis and

methodologies used in the field of ALT.

2.2.1 ALT Types

According to Nelson [23] There are several types of ALT methods that can be used

depending on the specific objectives and constraints of the testing process. Here are

some commonly used ALT types:

2.2.1.1 Constant-Stress ALT (CSALT)

The stress that is given to the test goods in CSALT is independent of time. A continu-

ous, higher than normal degree of stress is applied to the testing units until either all

units fail (full case) or the test is stopped, producing censored test results(see [25],[26]).

2.2.1.2 Progressive-Stress ALT (PSALT)

In PSALT, the stress applied to a test product continuously increases over time (see

[27],[28]).

2.2.1.3 Step-Stress ALT (SSALT)

In a step-stress accelerated life test, all test unites are first subjected to a predeter-

mined low stress level and then at a pre-specified time, the stress level is increased

and then the test is continued until a next pre-determined time. In this test,if the

stress is changed only once it is known as a Simple SSALT and if the stress is changed
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multiple times, then it is called a multiple SSALT. One of the major issuesin dealing

with data from SSALT is the explanation of the effect of the stress change on the re-

maining lifetime of the test units (see [20],[29]).

There were some proposed solutions for this problem from which the model of tam-

pered random variable model (TRVM) which was introduced by DeGroot and Goel

(1979)[18] for partially accelerated life test, this test is similar to Simple SSALT, except

that the low stress level is actually the normal working condition of the item/machine.

2.2.1.4 Step-Stress Partially ALT(SSPALT)

Step-Stress Partially Accelerated Life Testing. It is a specific type of ALT method that

combines the concepts of step-stress testing and partially accelerated life testing.

In SS-PALT, all of the n test units are initially tested under normal conditions. If a

unit does not fail within a pre-specified time period, it is then subjected to accelerated

conditions until failure. The purpose of this approach is to determine the effects of

switching from normal to accelerated stress levels on the remaining lifetime of the test

units.

Advantages

▶ It provides a cost-effective approach by reducing the testing time compared to full

testing at each stress level.

▶ It allows for the evaluation of multiple stress levels, including the highest level,

which can be useful in understanding the product’s reliability profile.

▶ It provides a way to estimate the product’s life expectancy and reliability at stress

levels beyond its normal operating conditions.

Figure 2.1: Different forms of stress loading
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2.3 Censored data

Censored data refers to observations or measurements in a dataset that are incomplete

or partially known. It occurs when the exact value of an event or outcome of interest

is unknown or unobserved. Censoring can occur in various types of studies, including

survival analysis, reliability engineering, clinical trials, and time-to-event analysis.

Censored data typically arise in situations where the event of interest has not occurred

for some or all of the study participants within the study period. This can happen due

to several reasons, such as the study being ongoing, participants being lost to follow-

up, or the event of interest not yet happening by the end of the study.

2.3.1 Censored Types

2.3.1.1 Right censored data

Right censored data is data for items that have not yet failed. They are considered

“still alive” as their failure time has not yet occurred, though it is expected to occur at

some point in the future. Right censored data is also referred to as “suspensions” or

“survivors”.

2.3.1.2 Left censored data

In left-censored data, the failure event of interest has occurred before the start of the

test or data collection process. It is similar to interval-censored data, where the exact

failure time is unknown, but in the case of left-censored data, the lower interval is fixed

at 0. This means that we only know that the failure event happened before or at the

start of the observation period.We rarely see this type of data in reliability engineering.

2.3.1.3 Interval censored data

Interval-censored data refers to a type of data in which the exact failure time of an

event of interest is not known, but we have information about the lower and upper

bounds of an interval within which the failure occurred. In other words, we have

knowledge that the failure event happened sometime between two specific points in

time.

Generalization We could consider all censored data to be interval censored data,

with the following bounds:

▶Right censored data: lower bound = end of observation time, upper bound = infinity

▶Left censored data: lower bound = 0, upper bound = start of observation time

▶Interval censored data: lower bound = last observation time before failure, upper

30 Master’s thesis



CHAPTER 2. INFERENCE FOR STEP STRESS PARTIALLY ACCELERATED LIFE
TEST IN THE CHEN DISTRIBUTION

bound = first observation time after failure

2.3.1.4 Type I censoring

Type-I censoring occurs when the study is terminated at a specific time, and any event

occurring after that time is considered censored. It is a form of right censoring.

2.3.1.5 Type II Censoring

Type-II censoring occurs when a fixed number of events have occurred, and the study

is terminated. Any remaining participants without observed events are considered

censored. It is a form of right censoring.

2.4 Progressive Censoring Schemes

In general life-time test, it takes a lot of time and money for the experimenters to

wait until all units fail. In order to save the experimental cost, the experiment can be

stopped before all units have failed. The data obtained from experiments in this way

are called censored data. The conventional Type-I and Type-II censoring schemes can

only remove units at the terminal point of the experiment. Removal of units at other

points of the experiment is not allowed, so they are limited and not flexible enough.

Therefore, we consider a more general censoring scheme named progressive type I and

Type-II censored data (is proposed by Cohen 1963 )[30],Subsequently, the relevance

and importance of the PC were discussed in various disciplines by several authors like

Mann 1971[31], Balakrishnan and Cohen [32], Balakrishnan and Aggarwala 2000 [33],

and Balasooriya and Low 2004 [34].

2.4.1 Progressive Type-I censorings

Type I progressive censoring is based on predetermined time points T1,T2......Tm The

failure times are recorded one by one till the experiment is completed at time point Tm.

As a result, the intervention times T1,T2......Tm have fixed values, however, the sample

size as well as the censoring scheme that was utilized were chosen at random (and may

vary from the originally planned censoring scheme at a certain time owing to the lack

of enough surviving units to complete the requisite censorship), and the period of the

test is constrained by Tm whereas it is not fixed (random) in the case of progressive

Type II censoring.
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Figure 2.2 is an explanation of the type I progressive censoring sample where the

n and R are random variables while the completed time of the experiment is a fixed

value.Balakrishnan and Cramer,2014 [35]

Figure 2.2: llustration of Progressive Type-I Censoring

If R1 = R2 = ... = Rm = 0, So, n = m that represents the complete sample.

If R1 = R2 = ... = Rm−1 = 0, we have Rm = n −m that represents to the conventional

Type.

2.4.2 Progressive Type-II Censorings

Deletions are carried out during failure periods that have been identified in the pro-

gressive Type-II censoring procedure. When a failure is detected, the number of units,

that are pre-established, is instantly taken from the remaining units. As a result, the

number of observations is predetermined, but the duration of the experiment is un-

predictable. The following approach can be used to generate Type-II censored order

statistics in a progressive manner.

For example, to test the reliability of products, n units are put down at the same time.

When the first failure has occurred, R1 surviving units are randomly selected and re-

moved from the experiment. After the second failure, immediately R2 units are with-

drawn, and so on. After the mth failure, the process is repeated until all Rm remaining

units are removed. The Ri ’s are specified before starting the experiment. The investi-

gator determines the number of items in the sample n, the number of failures m, and

the scheme of the progressive censoring samples. before starting a life experiment.

(R1,R2, ...,Rm), with n = m+
∑m

i=1Ri .

Figure below is an explanation of a Type II progressive censoring sample where the

n, m and R are fixed values while the completed time of the experiment is a random

variable. (Siyi Chen and Wenhao Gui, 2020) [36]
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Figure 2.3: llustration of Progressive Type-II Censoring

2.5 General Progressive Type II censoring

We can generalize this by assuming that the firstr failed units are not observed. When

(r+1)th failure occurs, Rr+1 units are removed randomly. When the failure occurs next,

we randomly remove some units as before,and so on at the mthfailure. This is General

Progressive Type-II Censoring. It was first popularized by Balakrishnan and Sandhu

[37]. When r = 0, this data reduce to Progressive Type-II Censoring. Schematic dia-

grams are presented in Figures 2.3.

General progressive Type-II censored data have a broad applied value, such as in the

cold standby series system (see in [38],[39]). Some scholars have also done some re-

search on this kind of censored data. Balakrishnan and Lin [40] developed exact in-

terval estimation for the location and scale parameters of an exponential distribution

based on general progressively Type-II censored samples. Balakrishnan and Jie [41]

proved the existence and uniqueness of the MLEs of the parameters for normal pop-

ulation, based on general progressively Type-II censored samples. Ma and Gui [42]

obtained an analytic and explicit estimator of the scale parameter and proposed two

new goodness of fit tests for the scale family based on general progressively Type-II

censored samples.

Suppose n units are placed on a life testing experiment and let T1,T2, ...,Tn be their cor-

responding lifetimes. We assume that Ti , i = 1,2, ...,n are independent and identically

distributed with pdf f (t) and cdf F(t). With progressively Type II censoring,n units are

placed on test. Consider that T1;m,n < T2;m,n < ... < Tm;m,n is the corresponding progres-

sively Type II censored sample, with censoring scheme R = (R1,R2, ...,Rm). Since the

joint pdf of T1;m,n < T2;m,n < ... < Tm;m,n is given by Balakrishnan and Aggarwala [33] as:

f1,2,...,m (t1:m:n, t2:m:n, . . . , tm:m:n) = c
m∏
i=1

f (ti:m:n) [1−F (ti:m:n)]Ri
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0 < t1:m:n < t2:m:n < · · · < tm:m:n <∞,

where

C =n (n−R1 − 1)(n−R1 −R2 − 2) · · ·

c =
m∏
i=1

n−m+ 1
m−1∑
i=1

Ri

 ,m ≤ n

f (·) is the probability distribution function of the underlying distribution,

F(·) is the cumulative distribution function of the underlying distribution.

2.6 Model Description and Basic Assumptions

2.6.1 Chen distribution

In 1999 Chen introduced The Chen distribution,which is relatively a new distribution

in lifetime distributions , It is commonly used in reliability analysis and survival stud-

ies. It is a flexible distribution that can model various shapes of failure rates, including

both increasing and bathtub-shaped failure rates.(see[43])

This distribution has a two parameters: the scale parameter (α) and the shape pa-

rameter (λ). The scale parameter determines the spread or duration of the distribution,

while the shape parameter influences the shape of the hazard rate curve.

Let random variable T have a Chen distribution (CD) with two positive parameters

λ ≥ 0 and α ≥ 0 has the following probability density function (pdf),

f (t;λ,α) = λαtλ−1 exp
{
tλ +α

(
1− et

λ)}
, t > 0,λ,α > 0 (2.1)

The cumulative distribution function(cdf) and the survival function,hazard (failure

rate) function , respectively, given by,

F(t;λ,α) = 1− exp
{
α
(
1− et

λ)}
, t > 0,λ,α > 0 (2.2)

and

S(t;λ,α) = R(t;λ,α) = 1−F(t;λ,α) = exp
{
α
(
1− et

λ)}
, t > 0. (2.3)

and

h(t;λ,α) =
f (t;λ,α)
S(t;λ,α)

= λαtλ−1et
λ
, t > 0

When λ is fixed at some value less than 1 , the relationship between the mean of the
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Chen distribution and α is shown in Figure 2.4. The mean decreases when the value

of α increases. Additionally, letting the cdf of the Chen distribution equal 1
2 , we can

solve for the median

xm =
[
ln

(
1 +

1
α

ln2
)] 1

λ

Similarly, when λ is fixed and α increases, the median decreases.In addition, the Chen

distribution has a great deal of flexibility.

Let T be a nonnegative random variable and follow the Chen distribution. Following

Ahmed et al. [44],

Y = et
λ
− 1

follows the exponential distribution and

Y =
(
et

λ
− 1

) 1
θ

follows the Weibull distribution.

Furthermore, the Chen distribution reduces to the Gompertz distribution when λ = 1.

Figure 2.4: The influence of α on the mean of the Chen distribution when λ is fixed.
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In the figures below, we present the different functions of the Chen distribution:

Figure 2.5: Probability density function of Chen distribution.

Figure 2.6: Cumulative density function of Chen distribution.
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Figure 2.7: Reliability function of Chen distribution.

2.6.2 Assumptions and Test Procedure

The following assumptions are used throughout the paper in the framework of SS-

PALT.

(1):n identical and independent items are put on a life test. The lifetime of each unit

has Chen(λ,α) distribution.

(2): The test is terminated at the time of the mth failure,where m is prefixed (m ≤ n).

(3): Each of the n items is run under normal use condition.If it does not fail or remove

from the test by a prespecified time τ , it is put under accelerated condition.

(4): At the time of the ith failure, a random number of the surviving items Ri , i =

1,2, . . . ,m − 1 are randomly selected and removed from the test. Finally, at the

time of the mth failure, the remaining surviving items Rm = n −m −
∑m−1

i=1 Ri are

removed from the test and the test is terminated.

(5): Let n1 be the number of failures before time τ at normal condition, and let m−n1

be the number of failures after time τ at stress condition, then, the observed

progressive censored data are

yR1;m,n < . . . < yRn1;m,n < τ < yRn1+1;m,n . . . < yRm;m,n,

where R = (R1,R2, . . . ,Rm) and
∑m−1

i=1 Ri = n−m.
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(6):Assume that the random variable Y represents the lifetime of a product which are

identical and independent and has Chen distribution with the parameters λ and

α, respectively. The probability density function (pdf) of Y is,

f (y) = λαyλ−1 exp
{
yλ +α

(
1− ey

λ)}
, y > 0,λ,α > 0 (2.4)

In order to account for the effect of stress change on the remaining lifetime of the test-

ing units of the step stress accelerated model, we have applied the tampered random

variable model (TRVM) which was introduced by DeGroot and Goel (1979)[18]. Ac-

cording to tampered random variable model the lifetime of a unit under SSPALT can

be written as,

Y =

T , if T ≤ τ

τ + β−1(T − τ), if T > τ
(2.5)

where T is the lifetime of the unit under use condition,τ is the stress change time

and β and is the acceleration factor which is the ratio of mean life at use condition to

that at accelerated condition, usually β > 1 .

The pdf of Y (Chen distribution) under SS-PALT is shown as below: The corrected

mathematical form of the expression is as follows:

f (y) =

f1(y), if y ≤ τ,

f2(τ + β(y − τ)), if y > τ,

where

f (y) =

λαy
λ−1 exp

(
yλ +α(1− expyλ)

)
, if y < τ,

λαβ(τ + β(y − τ))λ−1 exp
(
(τ + β(y − τ))λ +α(1− exp(τ + β(y − τ))λ)

)
, if y > τ.

(2.6)

where f1(y), is given by (2.4) and f2(y) is obtained by the transformation variable tech-

nique using equations (2.1) and (2.5).

the CDF given in 2.2, the CDF of a test unit under the SSP-ALT is

F(y) =

F1(y), if y ≤ τ,

F2(τ + β(y − τ)), if y > τ,
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where

F(y) =

1− exp
{
α(1− exp(yλ))

}
, if y ≤ τ,

1− exp
{
α(1− exp((τ + β(y − τ))λ))

}
, if y > τ.

(2.7)

also, the reliability function is given by ,

S(y) =

exp
{
α(1− exp(yλ))

}
, if y ≤ τ,

exp
{
α(1− exp((τ + β(y − τ))λ))

}
, if y > τ.

(2.8)

In progressive Type II censoring the test terminates when the number of observa-

tions is reached to m < n.The observed values of the total lifetime Y are : y1 < y2 < ... <

y<τ < yn1+1 < ... < ym where n1 are the number of items failed at normal conditions and

m−n1 at accelerated conditions. Let us define the two indicator functionsalign

δ1i =

1, if yi ≤ τ,

0, otherwise,
,δ2i =

1, if yi > τ,

0, otherwise.
,∀i = 1,2, ...,m. (2.9)

For the lifetimes y1 < y2 < ... < ym of m items are independent and identically dis-

tributed random variables,then the likelihood function is given by,

L(λ,α,β | y) = c
m∏
i=1

[f1(yi)[S1(yi)]
Ri ]δ1i [f2(yi)[S2(yi)]

Ri ]δ2i (2.10)

y1 < y2 < . . . < yn1
< τ < yn1+1 < . . . < ym <∞

then,

L(λ,α,β | y) = C
n1∏
i=1

[
λαyλ−1

i exp
{
yλi +α(1− exp(yλi ))

}
exp

{
α(1− exp(yλi ))

}Ri
]

×
m∏

i=n1+1

[
λαβ(τ + β(yi − τ))λ−1 exp

{
(τ + β(yi − τ))λ +α(1− exp(τ + β(yi − τ))λ)

}
× exp

{
α(1− exp(τ + β(yi − τ))λ)

}Ri
]

(2.11)
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where

C = n(n− 1−R1)(n− 2−R1 −R2) . . . (n−m+ 1
m−1∑
i=1

Ri) (2.12)

2.7 Maximum Likelihood Estimation

2.7.1 MLEs

From(2.11), and considering the random variables R = (R1,R2, ...,Rm), the likelihood

function L(λ,α,β | y) without the normalized constant can be expressed as,

L(λ,α,β | y) ∝ A


n1∏
i=1

λαyλ−1
i exp(yλi )exp

{
(Ri + 1)

[
α(1− exp(yλi ))

]}
×


m∏

i=n1+1

λαβ(τ + β(yi − τ))λ−1 exp(τ + β(yi − τ))λ−1 exp
{
(Ri + 1)

[
α(1− exp(τ + β(yi − τ))λ)

]}
Then, the log-likelihood of the function L(λ,α,β | y) is given by,

ℓ(λ,α,β | y) = m logλ+m logα + (m−n1) logβ + (λ− 1)
n1∑
i=1

log(yi)

+
n1∑
i=1

yi
λ +α

n1∑
i=1

(Ri + 1)(1− exp(yλi )) + (λ− 1)

×
m∑

i=n1+1

log(τ + β(yi − τ)) +
m∑

i=n1+1

(τ + β(yi − τ))λ

+α
m∑

i=n1+1

(Ri + 1)(1− exp(τ + β(yi − τ))λ)

(2.13)

Calculating the first partial derivatives of (2.13) with respect to λ, α and β , we

obtain,

∂ℓ
∂λ

=
m
λ

+
n1∑
i=1

log(yi) +
n1∑
i=1

(yi)
λ ln(yi)−α

n1∑
i=1

(1 + ri)exp(yi)
λ(yi

λ ln(yi))

+
m∑

i=n1+1

log(τ + β(yi − τ)) +
m∑

i=n1+1

(τ + β(yi − τ))λ ln(τ + β(yi − τ))

−α
m∑

i=n1+1

(1 + ri)exp(τ + β(yi − τ))λ((τ + β(yi − τ))λ ln((τ + β(yi − τ))) = 0

(2.14)
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∂ℓ
∂α

=
m
α

+
n1∑
i=1

(Ri + 1)(1− exp(yi)
λ) +

m∑
i=n1+1

(Ri + 1)(1− exp(τ + β(yi − τ))λ) = 0 (2.15)

and

∂ℓ
∂β

=
m−n1

β
+ (λ− 1)

m∑
i=n1+1

(yi − τ)
(τ + β(yi − τ))

+λ
m∑

i=n1+1

(yi − τ)(τ + β(yi − τ))λ−1

−αλ
m∑

i=n1+1

(Ri + 1)(yi − τ)(τ + β(yi − τ))λ−1 exp(τ + β(yi − τ))λ = 0

(2.16)

From (2.15), we can write

α(λ,β) =
m
D
. (2.17)

where

D =
n1∑
i=1

(ri + 1)(exp(yi
λ)− 1) +

m∑
i=n1+1

(ri + 1)(exp(τ + β(yi − τ))λ − 1) (2.18)

By substituting (2.17) in (2.14) and (2.16) we have,

m
λ

+
n1∑
i=1

log(yi) +
n1∑
i=1

(yi)
λ ln(yi)−

m
D

n1∑
i=1

(1 + ri)exp(yi)
λ(yi

λ ln(yi))

+
m∑

i=n1+1

log(τ + β(yi − τ)) +
m∑

i=n1+1

(τ + β(yi − τ))λ ln(τ + β(yi − τ))

−m
D

m∑
i=n1+1

(Ri + 1)exp(τ + β(yi − τ))λ((τ + β(yi − τ))λ ln((τ + β(yi − τ))) = 0

(2.19)

and
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m−n1

β
+ (λ− 1)

m∑
i=n1+1

(yi − τ)
(τ + β(yi − τ))

−mλ
D

m∑
i=n1+1

(1 + ri)exp(τ + β(yi − τ))λ(yi − τ)(τ + β(yi − τ))λ−1

+λ
m∑

i=n1+1

(yi − τ)(τ + β(yi − τ))λ−1 = 0

(2.20)

By simultaneously solving equations (2.14,2.15,2.16), the MLEs (λ̂, α̂, β̂) of the un-

known parameters (λ,α,β) of the model given here can be found. Unfortunately, be-

cause the system of equations (2.14,2.15,2.16) is n nonlinear, there is no analytical way

to arrive at a closed-form solution. Due to this issue, several iterative techniques must

be utilized to acquire estimates of the model’s unknown parameters (λ,α,β) . There

are various iterative strategies for resolving nonlinear equations.

Thus, likelihoods equations are reduced to a two nonlinear equations (2.19) and

(2.20) which could be solved numerically with respect to λ and β using any iteration

procedure such as quasi-Newton Raphson, to get the MLE, λ̂ and β̂ and hence α̂ by us-

ing (2.17).In this instance, we used the R statistical language and the software’s optim()

function to solve our nonlinear equations.

2.7.2 Confidence Intervals of Estimates

In this subsection, using the asymptotic properties of MLE, we determine the CI of

model parameters. Given specific regularity requirements asymptotic features indi-

cate that MLE are approximately distributed according to the normal distribution with

mean zero and variance I−1, which can be represented mathematically as follows

(α̂ −α,λ̂−λ, β̂ − β) ∼N
(
0, (I)−1

)
where (I)−1is the inverse of the observed Fisher information matrix and is commonly

referred to as a variance-covariance matrix for MLEs. It is possible to derive it as

follows:

(I)−1 =


∂2 logℓ
∂λ2

∂2 logℓ
∂λ∂α

∂2 logℓ
∂λ∂β

∂2 log l
∂α∂λ

∂2 log l
∂α2

∂2 log l
∂β∂α

∂2 log l
∂β∂α

∂2 log l
∂α∂β

∂2 log l
∂β2


−1

α̂,λ̂,β̂

=


var(λ̂) covar(λ̂α) covar(λ̂β̂)

covar(α̂λ̂) var(λ̂) covar(β̂α̂)

covar(β̂α̂) covar(λ̂β̂) var(β̂)


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The elements of I can be expressed by the following equations:

∂2 logℓ
∂λ2 = −m

λ2 +
m∑

n1+1

(yi)
λ log(yi)

2 +
m∑

i=n1+1

(τ + β(yi − τ))λ(log(τ + β(yi − τ)))2

−α
n1∑
i=1

(ri + 1)yi
λ(1 + yλi )(logyi)

2 exp(yλi )

−α
m∑

i=n1+1

(ri + 1)(log(τ + β(yi − τ)))2(τ + β(yi − τ))λ(1 + (τ + β(yi − τ))λ)

∂2 logℓ
∂α2 = − m

α2

∂2 logℓ
∂β2 = −m−n1

β2 − (λ− 1)
m∑

i=n1+1

(yi − τ)2

(τ + β(yi − τ))2

−αλ(λ− 1)
m∑

i=n1+1

(ri + 1)(yi − τ)2(τ + β(yi − τ))λ−2 exp((τ + β(yi − τ))λ)

−αλ2
m∑

i=n1+1

(ri + 1)(yi − τ)2(τ + β(yi − τ))2(λ−1) exp((τ + β(yi − τ))λ)

∂2 log l
∂λ∂α

=
∂2 log l
∂α∂λ

= −
n1∑
i=1

(ri + 1)exp((yi)
λ)yλi ln(yi)

−
m∑

i=n1+1

(ri + 1)exp((τ + β(yi − τ))λ)(τ + β(yi − τ))λ ln(τ + β(yi − τ))
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∂2 log l
∂λ∂β

=
∂2 log l
∂β∂λ

=
m∑

i=n1+1

(yi − τ)
(τ + β(yi − τ))

+
m∑

i=n1+1

(yi − τ)(τ + β(yi − τ))λ−1

+λ
m∑

i=n1+1

(yi − τ)(τ + β(yi − τ))λ−1 log(τ + β(yi − τ))

−α
m∑

i=n1+1

(Ri + 1)(yi − τ)(τ + β(yi − τ))λ−1 exp(τ + β(yiτ))λ

−αλ
m∑

i=n1+1

(Ri + 1)(yi − τ)(τ + β(yi − τ))λ−1 log(τ + β(yi − τ))exp(τ + β(yi − τ))λ

−αλ
m∑

i=n1+1

(Ri + 1)(yi − τ)(τ + β(yi − τ))2λ−1 log(τ + β(yi − τ))exp(τ + β(yi − τ))λ

∂2 log l
∂β∂α

=
∂2 log l
∂α∂β

= −λ
m∑

i=n1+1

(ri + 1)(yi − τ)(τ + β(yi − τ))λ−1 exp((τ + β(yi − τ)λ))

Now, two-sided 100(1−∆)% ACIs for the parameter λ, α and β can be obtained as

follows:

λ̂± z∆/2
√

var(λ);

α̂ ± z∆/2
√

var(α);

β̂ ± z∆/2
√

var(β);

where ±z∆/2 represents standard normal distribution’s upper and lower ∆/2th per-

centile. var(λ̂), var(α̂), and var(β̂) are the diagonal entries of (I)−1

2.8 Bootstrap Confidence Intervals

The bootstrap method is a resampling technique commonly used for statistical infer-

ence. It is widely applied to estimate confidence intervals, assess the bias and vari-

ance of an estimator, and calibrate hypothesis tests. There are various variations of

the bootstrap method, including nonparametric and parametric approaches. Some no-

table references for the nonparametric and parametric bootstrap methods are Davison

and Hinkley [45] and Efron and Tibshirani [46].

In this section, we will focus on two parametric bootstrap methods for estimating

confidence intervals: the percentile bootstrap method proposed by Efron [46] and the
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bootstrap-t method introduced by Hall [47]. Below, we provide algorithms for esti-

mating confidence intervals using both of these methods. the parametric bootstrap

methods are proposed:

(i)percentile bootstrap method Efron [46],(ii) bootstrapt method Hall, [47].

The algorithms for estimating the confidence intervals of parameters using both

methods are illustrated below.

1. Based on the original progressively Type-II sample,y = (y1 < y2 < ... < yn1
< τ <

yn1+1 < ... < ym), obtain λ̂ and β̂ from (2.19) and (2.20) and hence α̂ from(2.17).

2. Based on λ̂ and α̂ and the values of n and m and τ∗ with the same values of r,

(i = 1,2, ...,mj), generate t∗ = (t∗1 < t∗2 < ... < t∗m) using the algorithm described in

Balakrishnan and Sandhu [47], and hence β̂ in (2.5)the sample obtained y∗ = (y∗1 <

y∗2 < ... < y∗n1
< τ∗ < y∗n1+1 < ... < y∗m).

3. As in step 1 based on y∗ compute the bootstrap sample estimates of λ̂, α̂,β̂ and λ̂∗

say α̂∗ and β̂∗.

4. Repeat the above steps 2 and 3 N times representing N different bootstrap sam-

ples. The value of N has been taken to be 1000.

5. Arrange all λ̂∗, α̂∗ and β̂∗ in an ascending order to obtain the bootstrap sample

(ϕ̂∗[1]
k , ϕ̂

∗[2]
k , ......, ϕ̂

∗[N ]
k ),k = 1,2,3 where (ϕ̂∗1 = λ∗, ϕ̂∗2 = α∗, ϕ̂∗3 = β∗).

2.8.1 Percentile bootstrap confidence interval

Let G(z) = P (ϕ̂∗[j]k ≤ z) be cumulative distribution function of ϕ̂∗k. Define ϕ̂∗kboot = G−1(z)

for given z. The approximate bootstrap 100(1−γ)% confidence interval of ϕ̂∗k given by[
ϕ̂∗kboot(

γ

2
), ϕ̂∗kboot(1−

γ

2
)
]

2.8.2 Bootstrap-t confidence interval

First, find the order statistics δ∗[1]
k < δ

∗[2]
k ... < δ

[N ]
k , where

δ
∗[j]
k =

ϕ̂
∗[j]
k − ϕ̂k√

var
(
ϕ̂
∗[j]
k

) , j = 1,2, . . . ,N ,k = 1,2,3
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where (ϕ̂1 = λ̂, ϕ̂2 = α̂, ϕ̂3 = β̂)

Let H(z) = P (δ∗[j]k ≥ z) be the cumulative distribution function of δ
∗[j]
k For a given z,

define

ϕ̂kboot−t = ϕ̂k +
√

Var(ϕ̂k)H−1(z);

The approximate 100(1−γ)% confidence interval of ϕ̂k is given by(
ϕ̂kboot−t(

γ

2
), ϕ̂kboot−t(1−

γ

2
)
)
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SIMULATIONS AND REAL DATA APPLICATIONS

3.1 R packages for fitting distributions

Fitting distributions to data is a very common task in statistics and consists in choosing

a probability distribution modeling the random variable, as well as finding parameter

estimates for that distribution. This requires judgment and expertise and generally

needs an iterative process of distribution choice, parameter estimation, and quality of

fit assessment. In the R (R Core Team 2014[48]):

• Package MASS: (Venables and Ripley 2010[49]), maximum likelihood estima-

tion is available via the fitdistr function; other steps of the fitting process can

be done using other R functions (Ricci 2005[50]). The fitdistr function in the

MASS package estimates distribution parameters by maximizing the likelihood

function using the optim function.

• Package fitdistrplus: (DelignetteMuller, Pouillot, Denis, and Dutang 2015[51])

could be preferred, such as maximum goodness-of-fit estimation (also called

minimum distance estimation), as proposed in the R package actuar with three

different goodness-of-fit distances (Dutang, Goulet, and Pigeon 2008[52]). While

developing the fitdistrplus package, a second objective was to consider various

estimation methods in addition to maximum likelihood estimation (MLE). Func-

tions were developed to enable moment matching estimation (MME), quantile

matching estimation (QME), and maximum goodness-of-fit estimation (MGE) us-

ing eight different distances. Moreover, the fitdistrplus package offers the possi-

bility to specify a user-supplied function for optimization, useful in cases where

classical optimization techniques, not included in optim, are more adequate.

• Package distrMod: The distrMod package (Kohl and Ruckdeschel 2010[53]) pro-

vides an object-oriented (S4) implementation of probability models and includes
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distribution fitting procedures for a given minimization criterion. This criterion

is a user-supplied function which is sufficiently flexible to handle censored data,

yet not in a trivial way. The fitting functions MLEstimator and MDEstimator re-

turn an S4 class for which a coercion method to class ‘mle’ is provided so that the

respective functionalities (e.g., confint and logLik) from package stats4 are avail-

able, too. In fitdistrplus, we chose to use the standard S3 class system because

of its ease of understanding by most R users. When designing the fitdistrplus

package, we did not forget to implement method functions for the S3 classes.

• Package moments: This package focuses on calculating various statistical mo-

ments and related properties of probability distributions. It provides functions

for estimating the parameters of several distributions based on moments.

fit <- fitdistmoments(data, "distribution_name")

• Package actuar: This package is specifically designed for actuarial science and

insurance applications. It offers functions for fitting and working with various

probability distributions commonly used in actuarial modelling.

• Package maxLik It contains Functions for Maximum Likelihood (ML) estima-

tion, non-linear optimization, and related tools. It includes a unified way to call

different optimizers, and classes and methods to handle the results from the Max-

imum Likelihood viewpoint. It also includes a number of convenience tools for

testing and developing your own models.

In applied statistics, it is frequent to have to fit distributions to censored data (Klein

and Moeschberger 2003[54]; Busschaert, Geeraerd, Uyttendaele, and VanImpe 2010[55];

Leha, Beissbarth, and Jung 2011[56]; Commeau, Parent, Delignette-Muller, and Cornu

2012[57]). The fitdistr function in the MASS package does not enable maximum like-

lihood estimation with this type of data. Some packages can be used to work with

censored data, especially survival data (Therneau 2014[58]; Hirano, Clayton, and Up-

per 1994[59]), but those packages generally focus on specific models, enabling the fit

of a restricted set of distributions. A third objective is thus to provide R users with a

function to estimate univariate distribution parameters from right-, left- and interval-

censored data. Few packages on the Comprehensive R Archive Network (CRAN, http://CRAN.R-

project. org) provide estimation procedures for any user-supplied parametric distribu-

tion and support different types of data.
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3.2 Simulation Study

In this section, Monte Carlo simulation techniques were used to determine the un-

known parameters of the Chen distribution. MLE and RMSE, Bais, CI in type-II PC

simulation were run for prefixed values of n,m,τ . The parameters are estimated using

type-II PC data obtained through simulation under SSPALT, estimation process is car-

ried out in accordance with the following steps using numerical simulation:

Step 1: Specify the values of n,m,τ .

Step 2: Specify the values of the parameters λ,α, and β.

Step 3: Generate n independent random observations from a uniform distribution n ∼
Unif orme(0,1) and sort the data.

Step 4: Generate Chen random variable using transformation as follows:

If U represents the uniform random variable from [0,1]. Then U1 and U2 are

selected such that U1 consists of the uniform random numbers that are <= F1(τ)

and U2 consists of the uniform random numbers that are > F1(τ). Then using

inverse transformation ,

y1 =
(
log

(
1− 1

α
ln(1−ui)

)) 1
λ

has CD with cdf given in Equation [2.7] if y < τ . But if y > τ then using inverse

transformation

y2 =
1
β

log
(1
α

ln(1−ui)
) 1
λ
− τ

+ τ,

Step 5: Generate a censored data set can be considered as below

Set: y1 < < yn1
≤ τ < yn1+1 < < ym,

Step 6: Create function in R for the log-likelihood functions 2.13.

Step 7: Use the MaxLiK function; which is found in a package in R to obtain the max-

imum likelihood estimators for unknown parameters (λ̂), (α̂), and (β̂).

Step 8: Repeat steps 1 − 7 up to 50 times, Obtain the average MLEs with their RMSE

and Bias.

Step 9: Obtain CI.
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Taking into account the above-mentioned algorithm, we set the initial values for τ =

(0.3) and the combinations of sample sizes (n,m) = (100,40), (100,30), (100,25),

(80,40), (80,30), (80,25). Assuming that the true values of parameters (λ,α,β) = (1.5,1.2,0.05),

the MLEs of the parameters with their respective Bias are obtained and given in Tables

3.1 under types II of censored data. RMSE and CIs of corresponding 95% are provided

in Tables 3.2.

τ (n,m)
MLE Bias

λ̂ α̂ β̂ λ̂ α̂ β̂

0.3
(100,40) 1.50029 1.18390 0.03143 0.50125 -0.01335 -1.98415
(100,30) 1.51386 1.17243 0.02421 0.51042 -0.02376 -1.97985
(100,25) 1.52491 1.16193 0.01697 0.52961 -0.04046 -1.96987

0.3
(80,40) 1.50076 1.20203 0.03951 0.50154 -0.00546 -1.98367
(80,30) 1.52750 1.16076 0.02671 0.50420 -0.01794 -1.98028
(80,20) 1.52834 1.15905 0.01547 0.52699 -0.03707 -1.97437

Table 3.1: MLE estimator and Bias with the real valus λ = 1.5,α = 1.2,β = 0.05

τ (n,m)
RMSE CI

λ̂ α̂ β̂ λ̂ α̂ β̂

0.3
(100,40) 0.00260 0.00656 0.01123 (1.50052,1.50196) (1.18592,1.18737) (0.01513,0.09257)
(100,30) 0.00536 0.00532 0.01401 (1.50893,1.51190) (1.17475,1.17772) (0.01866,0.08164)
(100,25) 0.01249 0.00863 0.01576 (1.52614,1.53307) (1.15607,1.16300) (0.01066,0.07359)

0.3
(80,40) 0.00336 0.01064 0.00813 (1.50060,1.50247) (1.20452,1.20639) (0.01540,0.09726)
(80,30) 0.00581 0.00972 0.01047 (1.50258,1.50580) (1.18045,1.18367) (0.01811,0.07133)
(80,20) 0.01076 0.00706 0.01573 (1.52400,1.52997) (1.15994,1.16591) (0.01265,0.06861)

Table 3.2: RMSE and CI with real values of λ = 1.5,α = 1.2,β = 0.05

From the results in tables 3.1 and 3.2, it can be observed that the results are con-

sistent and the estimates are quite close to the predefined values, especially for λ and

α , the MLE increases when of n increases till some value and then it decreases, Bias,

RMSE decrease for λ,α,β when the values of n,m increase.
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Figure 3.1: Reliability function plot for simulation study

3.3 Real data application 1

In this section, we considered the data of the tensile strength, measured in GPa, of 69

carbon fibers tested under tension at gauge lengths of 20 mm (Bader and Priest, 1982

[60]), which is fitted by power Chen distribution by Ghitany et al., 2013 [61], before.

The data set is given as

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997,

2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272,

2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514,

2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770,

2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096,

3.128, 3.233, 3.433, 3.585, 3.585.

The summary of the sample is presented by the boxplot is represent in fig3.2 and

the descriptive parameters of the sample are given in the following table:

Min. 1st Qu. Median Mean 3rd Qu. Max. sd
1.312 2.098 2.478 2.451 2.773 3.585 0.495

Table 3.3: Descriptive parameters of carbon fibers sample

To assess the fit of the data on the selected model, we considered Akaike Infor-

mation Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov
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Figure 3.2: Boxplot of the carbon fiber data set

(KS) statistic, Chi-squared Test(chisq) statistic and Anderson-Darling (AD) statistics

as the goodness of fit criteria. The Chen distribution is also compared to the Normal,

log-normal, Weibull, exponential, Gamma,cauchy, log-logistic, student, uniform, and

Chi-Square distributions, and it is noticed that among the mentioned distributions,

Chen is a decent contender to fit this data set as the least value of all information cri-

teria is observed in the case of this distribution.

Empirical density

Data

D
e

n
s
it
y

20 30 40 50

0
.0

0
0

.0
2

0
.0

4
0

.0
6

20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cumulative distribution

Data

C
D

F

Figure 3.3: Histogram, polygon, and cdf of carbon fiber data
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The fitting of the data set with multiple probability distributions is given in the

table below:

logL AIC BIC Chisqv Chisq(p) AD(value) KS(value) H(KS)
Chen -85.28 166.58 161.81 9.57 0.0282

Normal -259.65 523.31 527.97 12.08 0.06 0.60 0.09 not rejected
Cauchy -269.2 542.41 547.07 9.69 0.14 0.96 0.10 not rejected
Logistic -259.27 522.55 527.21 10.36 0.11 0.40 0.06 not rejected

Exponential -356.89 715.79 718.12 299.91 0.00 23.56 0.45 rejected
Chi-square -264.93 531.86 534.2 19.81 0.01 1.65 0.13 not rejected

Uniform NULL NULL NULL 24.30 0.00 Inf 0.13 not rejected
Gamma -263.76 531.52 536.18 16.07 0.01 1.20 0.12 not rejected

Lognormal -266.79 537.59 542.25 18.88 0.00 1.64 0.14 not rejected
Weibull -257.93 519.85 524.52 9.89 0.13 0.39 0.07 not rejected
Student -531.6 1065.2 1067.53 3723.82 0.00 73.59 0.81 rejected

Table 3.4: Results of the fitting of the carbon fiber data

The Maximum Likelihood estimation of the fitted model is given by:

λ̂ 1.3555360
α̂ 0.0219726

Table 3.5: MLE of the Chen distribution

We have generated a progressively censored sample using a random censoring scheme

as follows, see table 3.3.

The statistical inference of the sample of fiber carbon, by the use of the MLE method,

is established by the MaxLik r packages, and we obtain the estimator of the three pa-

rameters. Also by using the bootstrap technique, we establish the confidence bounds

of three parameters, the results are summarized in the table 3.6 and they show that

the estimations are close to the real values:

Parameters Estimate value Confidence bounds
λ̂ 1.491019 (1.2980075,1.5928101)
α̂ 0.054053 (0.0201827,0.0630441)
β̂ 1.971302 (1.9722682,3.0294652)

Table 3.6: Paremeters and confidence bounds of the parameters
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N odata cdata cindicator N odata cdata cindicator
1 16.62 16.62 1 39 47.92 9.25 1
2 24.63 16.62 0 40 52.45 39.25 0
3 24.80 24.63 1 41 44.91 39.31 1
4 27.13 24.80 1 42 29.54 40.00 1
5 27.14 24.80 0 43 27.13 40.00 1
6 28.53 27.13 1 44 35.60 40.00 1
7 28.60 27.14 1 45 45.34 40.00 0
8 29.54 28.53 1 46 43.37 41.34 1
9 29.95 28.60 1 47 54.15 41.34 0

10 30.30 29.54 1 48 42.77 41.51 1
11 31.10 29.54 0 49 42.88 41.89 1
12 32.48 29.95 1 50 44.26 41.89 0
13 34.54 29.95 0 51 27.14 42.26 1
14 34.55 30.30 1 52 39.31 42.64 1
15 35.33 31.10 1 53 24.80 42.88 1
16 35.60 31.10 0 54 16.62 43.02 1
17 35.84 32.48 1 55 30.30 43.02 0
18 36.39 34.54 1 56 36.39 43.05 1
19 36.98 34.55 1 57 28.60 43.05 0
20 36.98 35.33 1 58 28.53 43.05 0
21 36.98 35.33 0 59 35.84 43.05 0
22 37.50 35.60 1 60 31.10 43.05 0
23 37.70 35.84 1 61 34.55 43.05 0
24 37.74 36.98 1 62 52.65 43.05 0
25 38.00 36.98 0 63 48.81 43.05 0
26 38.11 36.98 1 64 43.42 43.05 0
27 38.49 36.98 1 65 52.49 43.05 0
28 38.49 37.50 1 66 38.00 43.05 0
29 38.65 37.70 1 67 38.65 43.05 0
30 38.87 37.70 0 68 34.54 43.05 0
31 38.87 37.74 1 69 37.70 43.05 0
32 39.25 38.11 1 70 38.11 43.05 0
33 39.25 38.49 1 71 43.05 43.05 0
34 39.31 38.49 1 72 29.95 43.05 0
35 40.00 38.87 1 73 32.48 43.05 0
36 40.00 38.87 0 74 24.63 43.05 0
37 40.00 38.87 1 75 35.33 43.05 0
38 40.38 39.25 1 76 41.34 43.05 0

Table 3.7: Results of the scheme of progressively censoring of type II of fiber carbon
sample
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3.4 Real data application 2

In this section, a real data set taken from Lawless [62] is considered to illustrate the

proposed methodology. The data comprise 50 observations, which represent the quan-

tity of 1000s of cycles to failure for electrical appliances in a life test.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210 0.381 0.464 0.479

0.556 0.574 0.839 0.917 0.969 0.991 1.064 1.088 1.091 1.174 1.270 1.275 1.355 1.397

1.477 1.578 1.649 1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785 2.811

2.886 2.993 3.122 3.248 3.715 3.790 3.857 3.912 4.100.

The descriptive summary of the sample are given in the following table:

Min. 1st Qu. Median Mean 3rd Qu. Max. sd
0.0140 0.4983 1.3150 1.5607 2.3342 4.1000 1.2176

Table 3.8: Summary of the dataset
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Figure 3.4: Histogram, polygon, and cdf of electrical appliances data
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To assess the fit of the data on the selected model, we considered Akaike Informa-

tion Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS)

statistic, Cramer-von Mises (CVM) statistics and Anderson-Darling (AD) statistics as

the goodness of fit criteria. The Chen distribution is also compared to the Weibull,

gamma, logistic, and exponential distributions, and it is noticed that among the men-

tioned distributions, Chen is a decent contender to fit this data set as the least value of

all information criteria is observed in the case of this distribution (see Table 3.9):

log-Lik AIC BIC AD(value) KS(value) CVM(value)
Chen -68.2821 140.5643 144.3883 0.40945 0.08522 0.04293

Logistic -81.8383 167.6766 171.5007 0.88219 0.11436 0.10190
Exponential -72.2573 146.5147 148.4267 1.07778 0.12431 0.17472

Gamma -72.2563 148.5127 152.3368 1.07733 0.12564 0.17686
Weibull -72.1150 148.2301 152.0541 1.08798 0.10539 0.14733

Table 3.9: Results of the fitting of electrical appliances data

The Maximum Likelihood estimator of the fitted model is given by (see Table 3.10)

λ̂ 0.6631230
α̂ 0.2915201

Table 3.10: MLE of the Chen distribution

The statistical inference of the sample of electrical appliances, by the use of the

MLE method, is established by the MaxLik r packages, and we obtain the estimator of

the three parameters. Also by using the bootstrap technique, we establish the confi-

dence bounds of three parameters, the results are summarized in the table 3.11, the

estimations are approximately the same as real values which again show the efficiency

of the proposed approach:

Parameters Estimate value Confidence bounds
λ̂ 0.527640 (0.506531,0.881235)
α̂ 0.259439 (0.198425,0.376297)
β̂ 1.520202 (1.216698,1.791564)

Table 3.11: Paremeters and confidence bounds of the parameters
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GENERAL CONCLUSION

In this Master’s thesis, the focus was on addressing the challenges associated with

step-stress accelerated life testing, particularly in the context of partially accelerated

life testing using censoring data. The goal was to develop a robust and efficient model

that can accurately estimate the parameters of interest and provide reliable measures

of reliability.

The thesis introduced the concept of reliability systems and provided an overview

of the fundamental principles of reliability analysis. It discussed various reliability

measures, such as the System Mean Time to Failure (MTTF), Mean Time Between Fail-

ures (MTBF), failure rate function, maintainability, and availability. Additionally, the

thesis explored common distribution functions used in reliability analysis, including

the exponential, Weibull, binomial, Poisson, normal, log-normal, gamma, beta, Pareto,

Lomax, and Rayleigh distributions.

To estimate the unknown parameters of the SSPALT model with type-II progres-

sively censored data, the thesis employed the Maximum Likelihood Estimation (MLE)

method. The MLEs were derived based on the assumption that the lifetimes of the

experimental units follow the Chen distribution, which was described in detail. Con-

fidence intervals for the parameter estimates were also calculated to assess their preci-

sion and reliability.

To evaluate the performance of the proposed model and estimation methods, a

Monte Carlo simulation study was conducted. This simulation study involved gener-

ating synthetic data based on the SSPALT model and Chen distribution assumptions,

and then applying the estimation techniques to estimate the parameters from the sim-

ulated data. The simulation results provided valuable insights into the accuracy and

efficiency of the numerical methods employed.

Furthermore, the thesis included the analysis of real data sets to validate the pro-

posed model and estimation methods. Model selection was performed using various

criteria, including the Akaike Information Criterion (AIC), Bayesian Information Cri-
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terion (BIC), Kolmogorov-Smirnov test, Anderson-Darling test, and information cri-

teria. The results indicated that the Chen distribution performed better than other

competitive lifetime distributions, highlighting its suitability for modeling step-stress

accelerated life testing with progressive censoring type-II data.

The findings of this thesis contribute to the field of reliability systems by providing

a comprehensive framework for analyzing and modeling step-stress accelerated life

testing with partially censored data. The developed SSPALT model, along with the es-

timation methods and model selection criteria, offer practical tools for reliability engi-

neers and researchers to assess and enhance the reliability of systems. Future research

endeavors may involve exploring alternative distributions and considering additional

factors in the analysis of Partial Step Stress for progressively censored data to further

advance the understanding and application of reliability as a quality measure.
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