ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ de BLIDA 1 Faculté de Technologie

Département de Génie des Procédés

Mémoire

En vue de l'obtention du diplôme de

MASTER

Option : Génie Chimique.

Présenté par :

BOUCHAILA Rim

HOURIAT Selma

Analyse de la Performance Energétique de la Centrale de Production d'Electricité de Ras-Djinet

Encadré par : Pr. Djamel TOUIL

Année universitaire 2022/2023

*** Remerciements ***

Pour commencer, on dit **ff hamdou li Allah** qui nous a permis de réaliser notre mémoire de fin d'études. On tient à remercier tous ceux qui nous ont aidées dans notre tâche.

On cite notre promoteur Monsieur le Professeur **Jouil Djamel** pour sa patience, sa gentillesse, sa compréhension et sa collaboration.

Nous remercions monsieur le président de jury Hadji Moundher et son examinateur monsieur Chanane Kamel qui nous a honorées par son examinassions de notre thèse.

Nos remerciements à messieurs Madani Youcef et Boulahia Merouane qui nous ont offert un vaste savoir sur le domaine et qui nous ont aidées dans la réalisation de notre mémoire.

Comme on remercie les professeurs de la faculté de technologie du département génie des procédés.

fnfin on remercie tous ceux qui nous ont aidées de près ou de loin.

Vn grand merci.

Dédicace

Je dédie ce modeste travail :

A mes chers parents pour leurs amours, leurs sacrifices, leurs encouragements, leurs bontés, que dieu les garde.

A ma source de bonheur ma sœur El Batoul et mon frère Yacine.

Houriat Selma

Dédicace

Je dédie ce modeste travail :

Aux mémoires de mon cher père Hassan et mon petit frère

(رحمهما الله) Abdessalem

Ma mère et mon frère Tarek pour leurs amours, leurs sacrifices,

leurs encouragements, leurs bontés, que dieu le tout puissant nous

garde ensemble.

Sans oublier toute ma famille qui n'a jamais cessé de

m'encouragée.

Bouchaila Rim

Résumé

Nous avons effectué un stage pratique à la centrale électrique de Ras-Djinet de la société de production électrique SPE Sonelgaz. Le procédé du cycle combiné de la centrale est modélisé par le logiciel Aspen Hysys 11. La comparaison des données opératoires calculées et collectées sur site montre que le modèle est assez valable pour prédire les paramètres opératoires du cycle combiné de la centrale. Le modèle permet d'analyser la sensibilité de la consommation spécifique d'énergie globale du cycle (CSE) et de la température des gaz d'échappement de la turbine à gaz sous différentes conditions opératoires. Les résultats montrent que l'excès d'air de combustion et la fraction d'hydrogène dans le mélange gazeux combustible à l'entrée de la chambre de combustion de la turbine à gaz ont une influence très significative sur la consommation spécifique d'énergie. Pour les autres paramètres, l'intensité de la CSE reste peu significative.

<u>Mots-clés</u> : cycle combiné, logiciel Aspen Hysys, modélisation, consommation spécifique d'énergie, simulation paramétrique.

منخص

بعد دورة تدريبية في محطة توليد الكهرباء بر اس جينات التابعة لشركة سونلغاز لإنتاج الكهرباء والغاز، استطعنا بواسطة برنامج أسبن هايسيس11 من محاكاة نظام تشغيل المحطة، حيث ان المقارنة بين بيانات التشغيل المعمول بها والبيانات المتحصل عليها بواسطة البرنامج سمحت لنا بتأكيد ان نموذج المحاكاة صالح بما يكفي للتنبؤ بالبيانات العملية للمحطة الكهربائية.

يتيح النموذج فرصة تحليل ودراسة حساسية الاستهلاك المحدد للطاقة ودرجة الحرارة المنبعثة من مخرج التوربينات الغازية تحت ظروف تشغيل مختلفة. تظهر النتائج ان الهواء الزائد وكمية الهيدروجين في الخليط المحترق عند مدخل غرفة الاحتراق في التوربينات الغازية له تأثير كبير على كمية الاستهلاك المحدد للطاقة اما بالنسبة للعوامل الاخرى فان تأثيرها ضئيل.

الكلمات المفتاحية: الدورة المركبة، النمذجة، استهلاك الطاقة المحدد، المحاكاة البارامترية، برنامج أسبن

ھايسيس11.

Abstract

A training in situ at the Ras-Djinet power plant of the electricity production company SPE Sonelgaz is carried out. The combined cycle process of the plant is modelled by the Aspen hysys 11 software. The comparison of the operating data calculated and collected on site shows that the model is valid enough to predict the operating parameters of the combined cycle of the plant. The model makes it possible to analyse the sensitivity of the specific overall energy consumption of the cycle (CSE) and the temperature of the exhaust gases of the gas turbine under different operating conditions. The results show that the excess combustion air and the fraction of hydrogen in the combustible gas mixture at the entrance to the combustion chamber of the gas turbine have a very significant influence on the specific energy consumption. For the other parameters, the intensity of the CSE remains insignificant.

<u>Keywords</u>: combined cycle, Aspen hysys software, modelling, specific energy consumption, parametric simulation.

Remerciements Dédicace Résumé Table des matières Liste des figures Liste des tableaux Liste des abréviations Introduction générale......1 Chapitre I : Analyse énergétique du secteur national de production d'électricité. I.2.3. Centrale à cycle combiné......7 I.3.3 Evolution de la consommation des combustibles......10 I.4. Défis et menaces de la surconsommation du gaz naturel......12 I.5. Enjeux et importance de l'efficacité énergétique......13 Chapitre II : Étude bibliographique sur les techniques d'amélioration de la performance énergétique du cycle combiné. Introduction......14 II.1 Description générale du cycle combiné......14 __ . . _

II.1.1. Principe de fonctionnement	14
II.2 Turbine à gaz (TG)	15
II.2.1 Procédé des composantes de la TG	16
II.2.2 Compresseur	16
II.2.3 Chambre de combustion	

Table des matières

II.2.4 Détente des gaz	
II.2.5 Échappement des gaz	19
II.2.6 Générateur de production électrique	19
II.2.7 Cycle thermodynamique de Baryton	20
II.3 Turbine à vapeur	21
II.3.1 Procédé de l'ensemble de la turbine à vapeur	21
II.3.2 Chaudière et ses équipements	
II.3.3 Turbine de détente de vapeur	22
II.3.4 La condensation et l'évacuation de la vapeur	23
II.3. 5 Cycle thermodynamique de Rankine	23
II.4 Techniques d'amélioration de la performance énergétique	24
II.4.1 Filtration et refroidissement d'air d'admission	24
II.4.2 Préchauffage d'air de combustion	25
II.4.3 Excès d'air comburant	25
II.4.4 Préchauffage du combustible	25
II.4.5. Préchauffage d'eau d'alimentation	25
II.4.6 Recyclage des condensats et minimisation de la purge	26
II.4.7 Cogénération	26
II.4.8 Mix énergétique	26

Chapitre III : Modélisation thermodynamique du cycle combiné de la centrale électrique de Ras-Djinet

Introduction	27
III.1. Description et Paramètres Opératoires de la Centrale Electrique de Ras Djinet	27
III.1.1. Visite du site de la centrale	27
III.1.2. Collecte et relevé des données opératoires	28
III.2. Modélisation thermodynamique du cycle combiné de la centrale	28
III.2.1. Introduction au Logiciel Aspen Hysys	30
III.2.2. Méthodologie de modélisation suivie	31
III.2.2.1 Choix des composants	31
III.2.2.2 Choix de modèle thermodynamique	31
III.2.2.3 Choix de la réaction chimique	34
III.2.3. Configuration et représentation des équipements	35

III.2.4. Construction du Process Flow Diagram (PFD) du cycle combiné	40
III.3 Résultats et interprétation de la modélisation	40

Chapitre IV : simulation paramétrique de l'efficacité énergétique du cycle : résultats et interprétation

Introduction	45
IV.1. Indicateur d'efficacité énergétique étudié	45
IV.2. Paramètres sensibles sélectionnés et domine de variation	45
IV.3. Résultats et interprétation	46
IV.3.1 Influence de l'humidité d'air	46
IV.3.2 Influence de la température du combustible	47
IV.3.3 Influence de la température d'air de combustion	47
IV.3.4 Influence de l'excès d'air comburant	.47
IV.3.5 Influence de la composition du gaz naturel	49
IV.3.6 Influence de l'ajout hydrogène dans le mélange combustible	49
Conclusion générale	51
Bibliographie	

Annexes

Liste des figures

Figure 1.1 : Cartographie nationale des centrales électriques.

- Figure 1.2 : Turbine à vapeur.
- Figure 1.3 : Centrale thermique à vapeur.
- Figure 1.4 : Centrale thermique à gaz.
- Figure 1.5 : Centrale thermique à cycle combiné.
- Figure 1.6 : Répartition de la production électrique nationale par centrale.
- Figure 1.7 : Évolution de la consommation du gaz naturel.
- Figure 1.9 : Évolution de la consommation spécifique d'énergie.
- Figure 1.10 : Évolution des émissions de CO₂ (2000-2021).
- Figure 2.1 : Schéma d'un cycle combiné.
- Figure 2.2 : Fonctionnement d'un cycle combiné.
- Figure 2.3 : Turbine à gaz.
- Figure 2.4 : Processus de la compression.
- Figure 2.5 : Processus de détente dans un diagramme (T, S).
- Figure 2.6 : Générateur électrique.
- Figure 2.7 : Schéma du cycle de Brayton.
- Figure 2.8 : Turbine à vapeur.
- Figure 2.9 : Chaudière de récupération de la chaleur (HRSG).
- Figure 2.10 : Schéma du cycle de Rankine.
- Figure 3.1 : Plan de la centrale électrique Ras-Djinet.
- Figure 3.2 : Diagramme des Flux du cycle combiné de Ras-Djinet.
- Figure 3.3 : Composition du gaz naturel simulée.
- Figure 3.4 : Simulation du modèle thermodynamique Peng-Robinson.
- Figure 3.5 : Simulation de la réaction stœchiométrique du méthane.
- Figure 3.6 : Simulation du compresseur K-100.
- Figure 3.7 : Simulation de chambre de combustion CRV-100.
- Figure 3.8 : Simulation Turbine à gaz Expander GT HP.

Figure 3.9 : Simulation de l'échangeur de chaleur.

Figure 3.10 : Simulation Turbine à vapeur Expander IP ST.

- Figure 3.11 : Simulation de la pompe P-100.
- Figure 3.12 : Simulation du condenseur cooler E-100.
- Figure 3.13 : Procees Flow diagram (PFD) de simulation de la centrale.
- Figure 4.1 : Influence d'humidité d'air sur CSE et TTG.
- Figure 4.2 : Influence de la T du gaz naturel sur CSE et TTG.
- Figure 4.3 : Influence de la T d'air sur la CSE et TTG.
- Figure 4.4 : Influence du débit d'air sur la CSE et la TTG.
- Figure 4.5 : Influence de la composition du gaz naturel sur la CSE et TTG.
- Figure 4.6 : Influence de la fraction d'hydrogène dans le mélange sur CSE et TTG.

Liste des tableaux

Tableau 1.1 : Production Nationale Électricité par Procédé (GWh).

- **Tableau 1.2 :** Évolution de la consommation du combustible (ktep).
- Tableau 1.3 : Émissions nationale de CO2 (2000-2021).
- **Tableau 3.1 :** Les Paramètres de fonctionnement de la centrale.
- Tableau 3.2 : la composition du gaz naturel .
- Tableau 3.4 : Paramètres opératoires des flux de matière dans le cas des Compresseurs.
- **Tableau 3.5 :** Paramètres opératoires dans le cas de la chambre de combustion.
- Tableau 3.6 : Paramètres opératoires dans le cas de la turbine à gaz (détente).
- Tableau 3.7 : Technical data de la turbine à gaz.
- Tableau 3.8 : Paramètres opératoires dans le cas de la chaudière (HRSG).
- Tableau 3.9 : Paramètres opératoires dans le cas de la turbine à vapeur (à 3 niveaux).
- Tableau 3.10 : Technical data de la turbine à vapeur.
- Tableau 3.11 : Paramètres opératoires des flux de matière dans le condenseur.
- **Tableau 3.12 :** Paramètres opératoires des flux de matière dans la pompe.
- **Tableau 3.13 :** Puissance de la production d'énergie électrique.
- **Tableau 4.1 :** Domaines de variation des paramètres opératoires.

Abréviation :

SPE	Sonelgaz-production de l'Electricité
TAG	Turbine à Gaz
TG	Turbine Gaz
ST	Steam Turbine
TV	Turbine à vapeur
TAC	Turbine à Combustion
CC	Cycle Combiné
HRSG	Heat Recovery Stream Generator.
HP	Haute Pression.
IP	Intermédiaire Pression.
BP	Basse Pression
GNL	Gaz Naturel Liquéfié
К ТЕР	Kilo Tonne Equivalent Pétrole
GN	Gaz Naturel
CO_2	Dioxyde de carbone
CH ₄	Méthane
H_2	Hydrogène
H2O	Formule chimique de l'eau
EnR	Energies Renouvelables
IPE	Indicateur de Performance Energétique
PFD	Process Flow Diagram
SFC	Convertisseur de fréquence de démarrage
SEE	Equipement statique d'excitation
GIS	Gas Insulated Switchgear
EOS	Equation Of State
SKTM	Shariket Kahraba wa Taket Moutadjadida
PR	Peng-Robinson
SRK	Soave-Redlich-Kwong

Variable Grecque :

λ	λ Coefficient d'excès d'air			
Δ	Différence			
ρ	Masse volumique kg/m ³			
۸T	Température moyenne °C			
Δım	logarithmique			
ω	Vitesse angulaire rad/s			
ns	Rendement isentropique			
-15	de compresseur			
η cc	Rendement de combustion			
10	L'Efficacité d'une turbine à			
ηTGs	gaz			
η TGmé	Rendement mécanique de			
	la turbine à gaz			
η TVs	L'Efficacité d'une turbine à			
-	vapeur			
$\eta_{ ext{th}}$	Rendement thermique de la			
	turbine à vapeur			
η_p	L'Efficacité de pompage			
τ	Taux de compression			
η_{sc}	Rendement isentropique de			
	compresseur			
¥	γ Coefficient isentropique de l'air			
	Exposants :			
Ex	cès Grandeur d'excès			
Va	ap Vapeur			
tł	n thermique			
at	m atmosphérique			
С	c chambre de combustion			
n	néc mécanique			

com compresseur

Nomenclature :

CSE	Consommation Spécifique Energétique	Thermie/kWh
PCS	Pouvoir Calorifique Supérieur	Thermie/m ³
PCI	Pouvoir Calorifique Inférieur	Thermie/m ³
Т	Température	°C
Р	Pression	bar
D	Débit	kg/s
\mathbf{D}^{v}	Débit volumique du liquide idéal standard	kg/s
V	Volume molaire	l/mol
\dot{m}_{air}	Débit d'air aspiré	kg/s
$\dot{m_{ m GN}}$	le débit du combustible brulé	kg/s
W	Puissance	MW
W	Travail	J
$Q^{\cdot}_{ m cc}$	Puissance fournie par la chambre de combustion	MW
H_{com}	L'énergie développée par le compresseur.	
h	Enthalpie	J
F	facteur de correction.	
$T_{TG} \\$	Température à la sortie de la turbine à gaz	°C
U	Coefficient d'échange global	$W/m^{2\circ}C$
f	fréquence de rotation	tr /min
m	Le débit massique total d'alimentation	
q	Le débit de chaleur requis ou enlevé	
Ср	La capacité thermique des flux	J/K
\mathbf{P}_{f}	La puissance mécanique	
$\mathbf{P}_{\mathbf{w}}$	La puissance hydraulique	

Introduction générale

La production importante d'énergie électrique a menacé l'environnement en étant dépendante du gaz naturel comme matière première. Les émissions de ce dernier ont un impact sur l'environnement comme les gaz à effet de serre, la santé humaine et d'autres. C'est pourquoi les organisations mondiales d'environnement ont sonné l'alarme pour minimiser son impact. En outre, le gaz naturel est l'une des énergies non renouvelables et sa consommation irrégulière aboutit à sa disparition complète. Il faut donc trouver des solutions qui permettent de réduire la consommation tout en maintenant la quantité d'énergie produite

Les centrales électriques à cycle combiné sont les meilleures centrales de production électrique grâce à leurs rendement énergétique élevé. Ces dernières ont subi des développements remarquables afin d'améliorer leurs performances énergétiques et éxergétiques. De nombreux chercheurs ont utilisé diverses méthodes pour améliorer les performances de ces centrales.

Dans le cadre de l'obtention du diplôme de Master, nous avons réalisé un stage au sein de l'entreprise nationale Sonelgaz (SPE) à la centrale électrique de Ras-Djinet, spécialisée dans la production d'énergie électrique. Au cours de ce stage, on s'est intéressé aux procédés de production d'électricité, au fonctionnement de la turbine à gaz et à vapeur et ainsi autres procédés nécessaires à la production. Ce stage nous a permis de bénéficier d'une formation et de découvrir ce domaine d'un point de vue professionnel, qui nous servira plus tard dans notre carrière professionnelle.

Notre travail s'inscrit dans l'optique de l'optimisation énergétique des procédés nationaux de production d'électricité. En utilisant le logiciel Aspen Hysys 11, cette étude a été menée pour étudier l'influence des principaux paramètres opératoires du procédé du cycle combiné sur la consommation d'énergie calorifique du gaz naturel pour la production de la puissance électrique désirée.

Dans ce cadre, le manuscrit se compose de quatre principaux chapitres, précédé d'une introduction générale et clôturé par une conclusion générale.

 ✓ Le premier chapitre présente certaines définitions sur les centrales de production électrique, leurs consommations du combustible et leur impact sur l'environnement.

- ✓ Le deuxième chapitre présente le fonctionnement d'un cycle combiné, explique le fonctionnement du procédé de ses composants et donne une synthèse bibliographique sur les principales techniques d'amélioration de sa performance énergétique.
- ✓ Le troisième chapitre intitulé modélisation thermodynamique, présente la modélisation de la centrale électrique effectuée et réalisée ainsi qu'une comparaison entre les paramètres opératoires réels relevés et simulés.
- ✓ Le dernier chapitre donne les résultats obtenus et analyse la sensibilité de la consommation spécifique d'énergie aux différentes conditions opératoires.
- ✓ Le mémoire se termine par une conclusion générale dans laquelle un récapitulatif des principaux résultats mis en évidence sont discutés.

CHAPITRE I

ANALYSE ENERGETIQUE DU SECTEUR NATIONAL DE PRODUCTION D'ELECTRICITE

INTRODUCTION

Ce chapitre présente une succincte analyse énergétique de la consommation du combustible des centrales électriques du secteur national de production d'électricité.

I.1. CARTOGRAPHIE NATIONALE DES CENTRALES ELECTRIQUES

Une centrale électrique est une installation industrielle pour la production d'énergie électrique. Cette dernière est un facteur essentiel de développement économique, dans tous les pays du monde. Son importance relative s'accroit avec les progrès techniques, l'industrialisation et le besoin de confort moderne. L'augmentation de sa production est synonyme d'amélioration de la qualité de vie et de création de richesse [1].

En 2022, Sonelgaz-Production de l'Electricité (SPE) a exploité et assuré la maintenance des centrales de différentes filières de production d'électricité localisées dans les régions données par la figure (1.1) [2].

Les centrales nationales de production électrique se localisent dans notre pays comme suit :

- Les centrales à turbine à gaz (TAG) fixes sont les plus dominantes dans le nord avec quelques centrales à turbine à gaz mobiles, trois centrales diesel SKTM, deux centrales à turbine hydraulique et deux centrales à cycle combiné.
- Les centrales diesel SKTM sont la source d'énergie électrique du sud algérien avec certaines centrales à turbine à gaz fixe et trois centrales à turbine à gaz mobile.

I.2.PROCEDE DES CENTRALES DE PRODUCTION D'ELECTRICITE

I.2.1. Centrale thermique à vapeur

Les centrales thermiques à vapeur produisent l'électricité à partir de la chaleur qui se dégage de la combustion du charbon, du mazout ou du gaz naturel. La chaleur dégagée par la combustion vaporise l'eau qui atteint alors une très haute température. Cette vapeur se détend progressivement dans les corps haute, moyenne et basse pression de la turbine (figure 1.2) avant de se liquéfier dans le condenseur et d'être renvoyée dans le générateur de vapeur (HRSG).

L'énergie mécanique engendrée par la vapeur circulant dans la turbine, entraîne l'alternateur qui la transforme en énergie électrique.

La plupart des centrales ont une capacité comprise entre 200 MW et 2000 MW et un rendement énergétique qui se situe entre 28% et 32%. On les trouve souvent près d'une rivière ou d'un lac (figure 1.3), car d'énormes quantités d'eau sont requises pour refroidir et condenser la vapeur sortant des turbines [1].

Figure 1.1. Cartographie nationale des centrales électriques

Figure 1.2. Turbine à vapeur

Figure 1.3. Centrale thermique à vapeur

I.2.2 Centrale thermique à gaz

Les centrales thermiques à gaz (figure 1.4) sont des centrales qui fonctionnent avec des turbines à gaz qui se basent sur la combustion du gaz naturel ou fioul dans de l'air sous pression et sur la détente des gaz chauds qui brûlent dans une turbine couplée à un alternateur [1].

Le compresseur aspire l'air, le comprime et l'injecte dans la chambre de combustion. Le gaz naturel y est injecté pour être brûlé. Les gaz de combustion chauds font tourner la turbine, qui entraîne un alternateur pour produire de l'électricité. Dans ce type de centrales, un rendement énergétique est compris entre 35% et 40%. La puissance énergétique de l'air dans la chambre de combustion est convertie en puissance énergétique mécanique utile pendant le processus de détente qui a lieu dans la section turbine. L'énergie mécanique qui en résulte est transmise à l'alternateur de production d'électricité [3].

Figure 1.4. Centrale thermique à gaz

I.2.3 Centrale à cycle combiné

Le terme « cycle combiné » se réfère plus spécialement à un système composé d'une turbine à gaz, d'un récupérateur de chaleur générateur de vapeur et d'une turbine à vapeur. Il consiste à produire de l'électricité sur deux cycles successifs (figure 1.5). Le premier cycle est semblable à celui d'une TAG. Le gaz brûlé en présence d'air comprimé actionne la rotation de la turbine reliée à l'alternateur. Dans le second cycle, la chaleur récupérée en sortie de la TAG alimente un circuit vapeur qui produit également de l'électricité avec une turbine dédiée.

En investissant des équipements additionnels nécessités par le cycle à vapeur, le rendement global des centrales à cycle combiné est de 55 à 60% et les émissions atmosphériques (dioxydes de carbone, d'azote et de soufre) sont réduites par rapport aux centrales classiques [4].

Figure 1.5. Centrale thermique à cycle combiné

I.3. ANALYSE DU POTENTIEL DE PRODUCTION D'ELECTRICITE ET DE CONSOMMATION DE COMBUSTIBLE

I.3.1 Potentiel national de production

La production de l'énergie électrique consiste en la transformation de l'ensemble des énergies primaires en énergie électrique [1]. Cette dernière a des différents modes de production selon le principe de fonctionnement comme les centrales thermiques à vapeur, les centrales thermiques à gaz, les centrales à cycle combiné et autres. La production de l'électricité varie d'une façon irrégulière à cause de plusieurs facteurs : problèmes techniques, la maintenance des centrales, la demande du marché et l'état du pays.

Le tableau suivant présente l'évolution de la production nationale d'électricité (GWh) pour la période 2019, 2020 et 2021 [5].

Type centrale	2019	2020	2021
Thermique à vapeur	7 638	4 496	3 970
Thermique à gaz	34 672	29 315	29 380
Cycle combiné	38 045	39 027	45 614
Hydraulique	152	50	9
Thermique Diesel	326	277	277
Autres (solaires, éolien)	693	673	653
Photovoltaïque	-	-	-
Total	81 526	73838	79903

Tableau 1.1. Production	Nationale Electricite	e par Procede (GWh)

En 2019, la production importante d'énergie électrique de 38045 GWh est affectée aux centrales à cycle combiné, suivies des centrales thermiques à gaz d'une production de 34672 GWh. Une augmentation de cette production est toujours constatée en 2020 et 2021 pour les centrales à cycle combiné, par contre une régression de production est observée pour les autres centrales. Ceci explique l'avantage d'implantation et la construction des centrales à cycle combiné. D'autre part, durant cette période, le secteur national n'a pas enregistré une production d'énergie électrique pour les centrales photovoltaïques. La figure (1.6) donne une répartition de la production nationale d'énergie électrique. Les cycles combinés représentent 53% de cette production, les centrales thermiques à gaz 40% et les centrales thermiques à vapeur 7%.

Figure 1.6. Répartition de la production électrique nationale par centrale

I.3.2. Consommation des combustibles

La combustion reste encore aujourd'hui le principal processus de la conversion d'énergie. Parmi les combustibles les plus utilisables : le gaz naturel et le gasoil.

• Gaz naturel

Le gaz naturel est une énergie primaire non renouvelable bien repartie dans le monde, propre et de plus en plus utilisée. C'est un combustible qui provient des couches réservoirs de la terre, il est composé essentiellement de méthane (CH4), il est incolore et inodore, c'est l'hydrocarbure le plus simple qui existe dans la nature, il a été découvert au moyen orient dans l'antiquité. Il est considéré comme une matière première dans l'industrie pétrochimique et la production d'électricité. Le gaz naturel est transporté et stocké à l'état liquide appelé : gaz naturel liquéfié (GNL). Il est un mélange gazeux d'hydrocarbures saturés [6].

• Gasoil

Le gasoil est une huile lourde composée d'un mélange d'hydrocarbures (paraffiniques, naphténiques, aromatiques et oléfiniques). Il est obtenu à partir de la distillation du pétrole et utilisé comme carburant dans les moteurs diesel [7].

I.3.3 Evolution de la consommation des combustibles

Le combustible est la matière première des industries énergétiques et des usages non énergétiques.

Le tableau 1.2 suivant représente la consommation nationale du gaz naturel et du gasoil en kTep (kilotonne équivalent pétrole égal à 11 600 kWh) [8]. Pour cette dite période, la consommation nationale moyenne totale en combustible est de 25 513 ktep pour le gaz naturel et 9886 ktep pour le gasoil pour les années 2019, 2020 et 2021 [5]. Le gaz naturel représente 72% et le gasoil 28% de la consommation de combustible pour les industries énergétiques et non-énergétiques.

Les combustibles	2019	2020	2021
Gaz naturel (total)	25 947	24 640	26 551
Gaz naturel (Centrale)	18 331	17 922	20 286
Gasoil (total)	10 706	9 243	9 710

 Tableau 1.2 Evolution de la consommation du combustible (ktep)

La figure 1.7 ci-après donne pour la période 2019-2021 l'évolution de la part de consommation des centrales électriques en gaz naturel par rapport à la consommation totale. Elle montre clairement que ce secteur de l'industrie énergétique est très énergivore en gaz naturel, soit 74% de la consommation totale nationale.

Figure 1.7. Evolution de la consommation du gaz naturel.

I.3.4. Evolution de la consommation spécifique d'énergie

Les conditions d'exploitation des centrales électriques sont variables ; la centrale électrique n'est pas utilisée en permanence à sa production maximale ; certaines centrales fonctionnent d'une façon discontinue. On utilise alors la notion de consommation spécifique *CSE* qui est le rapport de l'énergie totale consommée en combustible pendant une année à la quantité produite d'énergie électrique durant la même période. La consommation spécifique est définie par :

CSE = Quantité du combustible consommé * PCS (thermie/m3) production d'électricité (kWh)

Le PCS est le pouvoir calorifique supérieur du gaz naturel égal à 9,4thermie/m³ (1th=10³kcal) L'évolution de la consommation spécifique d'énergie en (thermie /kWh) pour la série temporelle 2015-2021 du secteur de production d'électricité nationale varie entre 2,01 et 2,48 th/kWh (figure 1.9). Elle ajuste une valeur moyenne de l'ordre 2,4 th/kWh. De plus, cette représentation met une évidence une nette amélioration de cette efficacité énergétique pour les années 2019, 2020 et 2021. Cette nette réduction de la consommation spécifique d'énergie est due principalement à l'augmentation du nombre des centrales électriques à cycles combinés construites et mises en œuvre pour ce secteur.

Figure 1.9. Evolution de la consommation spécifique d'énergie.

I.4. DEFIS ET MENACES DE LA SURCONSOMMATION DU GAZ NATUREL

L'Algérie produit 98% de son électricité à partir du gaz naturel (une ressource énergétique nonrenouvelable), ce qui engendre une consommation importante de ce dernier. Année par année, la consommation augmente avec un taux le plus bas à 7% par an [10], si cette tendance haussière se maintient et si le développement des énergies renouvelables continue à enregistrer des retards [11], l'Algérie dans les années à venir va consommer la majeure partie du gaz naturel et on estime qu'elle n'aura plus rien à exporter à l'horizon de 2035 et il deviendra un pays consommateur pour la plupart de ses minerais [12].

Le gaz naturel est le combustible fossile le plus écologique en termes d'émissions de CO2 inférieures à celle du pétrole ou du charbon, c'est pourquoi on le considère souvent comme un combustible de transition pouvant contribuer à réduire les émissions à moyens termes, avant que le gaz ne soit obligatoirement remplacé par des sources sans carbone [13].

Malgré cette position écologiquement avantageuse de ce combustible, les émissions nationales de CO2 enregistrées en 2021 ont atteint 173 001 kilotonnes soit une augmentation de 4 051 kilotonnes par rapport à 2020. Ces valeurs ont conduit l'Algérie à se classer au 32^{eme} rang des pays les plus émetteurs de gaz à effet de serre [14].

Le tableau 1.3 donne les émissions de CO2 nationales estimées durant la période chronologique 2000-2021 [14].

Année	CO2 Total Mt	Année	CO2 Total Mt
2000	83,735	2011	122,971
2001	82,135	2012	137,531
2002	86,644	2013	141,719
2003	93,085	2014	152,133
2004	92,742	2015	161,483
2005	98,609	2016	159,475
2006	103,429	2017	162,802
2007	106,030	2018	173,705
2008	110,872	2019	177,923
2009	114,276	2020	168,950
2010	116,644	2021	173,001

Tableau	13	Emissions	nationale	de	CO2	(2000-2021)	١
Tapleau	1	L11112210112	nationale	ue		2000-2021	J

Les émissions de l'Algérie en matière de gaz à effet de serre équivalent CO2 présentent une tendance haussière d'une année à autre (figure 1.10). L'année 2021 a enregistré une augmentation de 4,051 mégatonnes (2.4%) par rapport à 2020.

Figure 1.10. Evolution des émissions de CO₂ (2000-2021)

I.5.ENJEUX ET IMPORTANCE DE L'EFFICACITE ENERGETIQUE

Aujourd'hui, l'économie algérienne est totalement dépendante du pétrole et du gaz mais il est encore temps d'emprunter une nouvelle trajectoire et ce en développant les énergies alternatives [15]. L'Algérie amorce une dynamique d'énergie verte en lançant un programme ambitieux de développement des énergies renouvelables (EnR) et d'efficacité énergétique. Cette vision du gouvernement algérien s'appuie sur une stratégie axée sur la mise en valeur des ressources inépuisables. Grâce à la combinaison des initiatives et des intelligences, l'Algérie s'engage dans une nouvelle ère énergétique durable. Le programme des énergies renouvelables actualisé consiste à installer une puissance d'origine renouvelable de l'ordre de 22 000 MW à l'horizon 2030 pour le marché national, avec le maintien de l'option de l'exportation comme objectif stratégique si les conditions du marché le permettent. Le programme d'efficacité énergétique actualisé vise à réaliser des économies d'énergies à l'horizon 2030 de l'ordre de 63 millions de TEP pour l'ensemble des secteurs (bâtiment et éclairage publique, transport, industrie). L'Algérie compte se positionner comme un acteur majeur dans la production de l'électricité à partir des filières photovoltaïque et éolienne en intégrant la biomasse, la cogénération, la géothermie et au-delà de 2021 le solaire thermique.

Ces filières énergétiques seront les moteurs d'un développement économique durable à même d'impulser un nouveau modèle de croissance économique. 37 % de la capacité installée d'ici 2030 et 27 % de la production d'électricité destinée à la consommation nationale seront d'origine renouvelable [16].

CHAPITRE II

TECHNIQUES D'AMELIORATION DE LA PERFORMANCE ENERGETIQUE DU CYCLE COMBINE : ETUDE BIBLIOGRAPHIQUE

INTRODUCTION

Ce chapitre décrit le principe de fonctionnement d'un cycle combiné de production d'électricité et les techniques d'optimisation de son efficacité énergétique.

II.1. DESCRIPTION GENERALE DU CYCLE COMBINE :

Le cycle combiné est l'une des technologies utilisées pour une meilleure valorisation énergétique des systèmes de production de l'énergie qui utilisent le gaz naturel comme combustible. C'est un ensemble de deux systèmes thermodynamiques : le premier est une turbine à gaz (Cycle Brayton) et le deuxième une turbine à vapeur (Cycle Rankine) couplées par un générateur de production d'électricité, de configuration simple ou à multi arbres (single-shaft ou multi-shaft).

Figure 2.1. Schéma d'un cycle combiné

II.1.1. Principe de fonctionnement :

L'air frais est injecté dans un compresseur (l'air est filtré avant de rentrer dans le compresseur). Cet air ainsi comprimé à haute pression et alors propulsé dans la chambre à combustion. Un mélange de gaz naturel (le gaz naturel est préchauffé avant de rentrer dans la chambre à combustion) et d'air frais est brulé dans une chambre à combustion, la réaction produit des gaz chauds environ 1300°C. Ces derniers activent la rotation de la turbine qui reliée à un alternateur permet de produire l'électricité. L'énergie produite est évacuée vers le réseau d'électricité par un transformateur qui augmente la tension de cette dernière de 22 kilovolts à 400 kilovolts du réseau national.

Les gaz chauds qui sortent de la turbine environ 600°C sont récupérés dans une chaudière à récupération pour chauffer des milliers de tubes où circule l'eau. L'eau chauffée à haute température est dirigée vers un ballon où se transforme en vapeur. Cette dernière est envoyée sous pression vers la turbine qui est mise en mouvement et transforme l'énergie thermique en énergie mécanique.

A la sortie de la turbine, la vapeur est dirigée vers le condenseur où circule l'eau froide qui permet de la transformer en eau et qui sera réinjectée dans le circuit secondaire.

Dans un cycle combiné simple, la turbine à gaz fournit les deux tiers de la puissance totale. La turbine à vapeur alimentée en vapeur surchauffée à des conditions de 85 - 100 bars et 510 - 540 °C, fournit le tiers restant.

Figure 2.2. Fonctionnement d'un cycle combiné

II.2. TURBINE A GAZ (TG)

Une turbine à gaz est une machine tournante thermodynamique à flux continu appartenant à la famille des moteurs à combustion interne dont le rôle est de produire de l'énergie mécanique (rotation d'un arbre) à partir de l'énergie contenue dans un hydrocarbure (fuel, gaz naturel...) [17].

Figure 2.3. Turbine à gaz

II.2.1. Procédés des composants de la TG

Les turbines à gaz (TAG) sont des installations utilisées le plus souvent en cycle ouvert et quelques fois en cycle fermé fonctionnent sous conduite et surveillance automatisées [18]. Elles comportent trois composants de base : un compresseur, une chambre de combustion et une turbine.

II.2.2. Compresseur

Le compresseur aspire l'air et le comprime. La température de l'air augmente pendant ce processus. Les valeurs courantes de la pression finale du compresseur des turbines à gaz de <10 MW sont inférieures à 20 bars. Pour régler la quantité d'air aspiré, le compresseur est équipé d'un dispositif de réglage des aubages permettant de varier l'ajustage des aubes directrices et donc le débit d'air aspiré [19]. La figure (2.4) montre le processus de la compression d'un gaz

Figure 2.4. Processus de la compression

L'air à l'entrée du compresseur est toujours lié aux conditions ambiantes, y compris la température T_a , la pression P_a et l'humidité relative. D'autre part, les propriétés d'air à la sortie du compresseur dépendent du taux de compression τ , du rendement isentropique de compresseur η_{sc} et du débit d'air aspiré \dot{m}_{air} .

Les propriétés (T_b, T_{bs}, P_b) sont calculées en utilisant les équations suivantes :

$$\mathbf{P}_{\mathrm{b}} = \boldsymbol{\tau} \times \boldsymbol{P}_{\mathrm{a}} \tag{II.1}$$

Pour la transformation isentropique :

$$\frac{T_{bs}}{T_a} = (\tau) \frac{\gamma a i r - 1}{\gamma a i r}$$
(II.2)

Avec y, le coefficient isentropique de l'air : $Vair = \frac{C_p}{C_v}$

Le travail massique isentropique fourni à l'air par le compresseur w_{cs} peut être calculé par :

$$w_{\rm cs} = h_{\rm bs} - h_{\rm a} \tag{II.3}$$

Le travail massique réel fourni s'écrit en fonction du travail et le rendement isentropique η_s

$$w_c = h_b - h_a = w_{cs} \times 1/\eta_s \tag{II.4}$$

En introduisant un rendement mécanique $\eta_{m\acute{e}}$, tenant compte des pertes par frottements, la puissance utile réelle d'entrainement du compresseur s'écrira :

$$W_{comp} = \dot{m}_a \times (h_b - h_a) = \frac{W_{cs}}{\eta sc \times \eta m \acute{e}}$$
 (II.5)

La température de l'air à la sortie du compresseur sera égale :

$$T_b = \frac{(T_{bs} - T_a)}{\eta_s \times \eta_{m\acute{e}}} + T_a \tag{II.6}$$

II.2.3. Chambre de combustion

La chambre de combustion est la partie vitale de la turbine à gaz. Son rôle est d'établir le mélange de l'air comprimé avec le combustible et par combustion, de transformer son énergie chimique en énergie thermique [20]. En raison de l'apport d'énergie dans la chambre de combustion, les gaz brûlés de combustion atteignent des températures supérieures à +1000 °C et leur vitesse augmente [19].

Le terme de combustion s'applique à l'ensemble des réactions chimiques qui se produisent au cours de l'oxydation complète ou partielle d'un combustible [21]. La combustion complète d'un hydrocarbure peut être représentée par

$$C_nH_m + (n+m/4) O_2 = nCO_2 + (\frac{m}{2}) H_2O$$
 (II.7)

La chambre de combustion n'est pas parfaite puisqu'il subsiste des imbrûlés dans les gaz d'échappement, donc seul le débit du gaz naturel brulé « $\dot{m_{GN}}$ » apporte de l'énergie au fluide actif d'où on peut le calculer en fonction du rendement de combustion η_{cc} par l'expression suivante :

$$\dot{m}_{\rm GN} = \frac{Q_{CC}}{\eta_{CC} \times PCI} \tag{II.8}$$

La quantité de chaleur fournie par la chambre de combustion est ainsi calculée par l'expression :

$$\dot{Q}_{\rm CC} = \dot{m}_{\rm GN} \times PCI * \eta_{\rm CC} = \dot{m}_{\rm GC} \times (h_{\rm c} - h_{\rm b}) \tag{II.9}$$

II.2.4. Détente des gaz

La turbine est généralement axiale et dans laquelle sont détendus les gaz qui sortent de la chambre de combustion [22]. Les gaz chauds qui sortent de la chambre de combustion se détendent dans la section de la turbine, c'est-à-dire : leurs énergies cinétique et thermique se transforment en énergie mécanique en utilisant l'arbre de rotation qui a le rôle d'actionner le compresseur d'un côté et de produire l'électricité d'un autre par le générateur électrique [23].

La figure 2.5 illustre dans un diagramme (T, S) la détente dans les cas idéal (w_s) et réel (w)

Figure 2.5. Processus de détente dans un diagramme (T, S)

L'air étant le composé principal des gaz de combustion, on aura pour la détente isentropique :

$$\frac{T_{ds}}{T_c} = \left(\frac{P_{ds}}{P_c}\right)^{\frac{\gamma a i r - 1}{\gamma a i r}} \tag{II.10}$$

Le travail massique isentropique obtenu par la turbine W_{sT}, est donné par l'équation suivante :

$$w_{\rm TGs} = h_{\rm C} - h_{\rm ds} \tag{II.11}$$

D'autre part, dans le cas de détente réelle, le travail s'écrira :

$$w_{\rm TG} = w_{\rm TGs} \times (\eta_{\rm TGs} \times \eta_{\rm TGméc}) \tag{II.12}$$

D'où, La puissance produite par la turbine peut être calculée par l'expression suivante :

$$W_{\rm TG} = \dot{m_{\rm g}} \times (h_{\rm c} - h_{\rm d}) = \dot{m_{\rm g}} \times w_{\rm TG} = \dot{m_{\rm g}} \times w_{\rm TGs} \times (\eta_{\rm TGs} \times \eta_{\rm TGm\acute{e}c}) \qquad ({\rm II.13})$$

La température des gaz d'échappement à la sortie de la turbine sera égale à :

$$T_{\rm d} = T_{\rm c} - \left((T_{\rm c} - T_{\rm ds}) \times (\eta_{\rm TGs} \times \eta_{\rm TGm\acute{e}c}) \right)$$
(II.14)

II.2.5. Echappement des gaz

Les conduits d'échappement des turbines à gaz sont principalement utilisés comme transition entre les systèmes de diffuseur et de dérivation, ou entre le système de dérivation et les conduits d'entrées du générateur de vapeur à récupération de chaleur (HRSG) [24].

Le flux de chaleur contenu dans les gaz d'échappement apporte un intérêt majeur pour son exploitation surtout dans le cas d'un cycle combiné, il peut être déterminé par l'expression :

$$Q_f = m_g \left(h_e \cdot h_r \right) \tag{II.15}$$

Qf, mg : flux de chaleur d'échappement et le débit des gaz d'échappements.

he et hr : enthalpies des gaz d'échappements et de référence respectivement.

II.2.6. Générateur de production électrique

Un générateur ou alternateur est une machine synchrone à courant alternatif (figure 2.6) qui est utilisée dans les centrales de production d'énergie électrique (hydraulique, thermique, nucléaire... etc.). Cette installation convertit l'énergie mécanique fournie au rotor en énergie électrique à courant alternatif. Le rotor de l'alternateur est entrainé en rotation par la turbine et fournit des tensions alternatives de fréquences proportionnelles à leur vitesse de rotation [25].

Figure 2.6. Générateur électrique.

II.2.7. Cycle thermodynamique de Brayton

Le cycle de Brayton est un cycle thermodynamique à gaz caloporteur. Il tient son nom de l'ingénieur américain George Brayton (1830–1892). Le cycle de Brayton théorique est le cycle idéal correspondant à la turbine à gaz élémentaire, utilisé pour la production d'électricité. Dans notre cas, on s'intéresse au Cycle de Brayton ouvert utilisé dans les centrales électriques à Turbines à Gaz. Le cycle est parcouru par un débit d'air aspiré de l'atmosphère, celui-ci subit une compression isentropique dans le compresseur. L'air comprimé est ensuite chauffé dans la chambre de combustion suivant une combustion isobare pour être détendu de manière isentropique dans la turbine qui entraîne le compresseur et l'alternateur.

Le cycle réel se différencie du cycle idéal par l'irréversibilité dans le compresseur et la turbine. Les températures réelles de sortie du compresseur et de la turbine seront plus élevées que prévu car ces machines subissent des pertes par frottements. L'écart par rapport au cycle idéal est quantifié par le rendement isentropique. La combustion n'est pas isobare car la chambre de combustion induit des pertes de charges et donc la pression d'entrée de la turbine sera plus faible et de plus, la présence d'un filtre à l'entrée du compresseur et d'un déflecteur à la sortie crée des pertes additionnelles [26].

La figure 2.7 représente les cycles thermodynamiques (T, S) et (P, V) idéals de Brayton.

Figure 2.7. Schéma du cycle de Brayton.

- 1-2 : Compression isentropique dans le compresseur.
- 2-3 : Apport de chaleur à pression constante (isobarique) dans la chambre de combustion.
- 3-4 : Détente isentropique dans la turbine (HP et BP).
- 4-1 : Echappement dans l'atmosphère (refroidissement isobarique).

II.3. TURBINE A VAPEUR

Une Turbine à vapeur est un moteur constitué d'un grand nombre de roues portant des ailettes. La vapeur saturée ou surchauffée qui entre sous pression traverse les roues mobiles et sort à faible pression [27]. Elle permet d'extraire l'énergie thermique de la vapeur chaude et la convertir en énergie mécanique sous forme de travail, converti en énergie électrique par un générateur d'électricité. Généralement, on trouve trois différents niveaux de turbines dans les centrales électriques à vapeur : turbine à haute pression (THP), turbine à pression intermédiaire (TIP) et turbine basse pression (TBP) [23].

Figure 2.8. Turbine à vapeur.

II.3.1 Procédé de l'ensemble de la turbine à vapeur :

L'ensemble de la turbine à vapeur est équipé d'une chaudière de récupération de chaleur à vapeur (Heat Recovery Steam Generator, HRSG), la turbine de détente de vapeur et les condenseurs.

II.3.2. Chaudières et ses équipements :

La Chaudière de Récupération (HRSG) est au fond un échangeur de chaleur composé de sections de surchauffeurs, d'évaporateurs et d'économiseurs (figure 2.9). Elle est le composant essentiel du rendement du cycle combiné et de l'augmentation de la production [28]. Elle est alimentée par les gaz d'échappements de la turbine à gaz avec une température qui dépasse 500°C et récupère ainsi leur énergie thermique pour produire la vapeur qui génère la turbine à vapeur.

Le préchauffeur est un échangeur de chaleur tube et calandre utilisée pour réchauffer l'eau d'alimentation même dans des conditions difficiles. Les surchauffeurs et les resurchauffeurs sont des échangeurs de chaleur par surface, placés dans le circuit des gaz d'échappement de la turbine. Ces composants ont le même but ; transmettre la chaleur par convection, élever la température du fluide de travail (vapeur). La seule différence est la pression de fonctionnement [23].

Figure 2.9. Chaudière de récupération de la chaleur (HRSG).

Pour calculer les pressions et les températures à l'entrée et à la sortie de ces équipements de transmission de chaleur, nous utilisons les mêmes équations que celles de l'échangeur de chaleur à contre-courant, soit :

$$P_{out} = P_{in} - \Delta P \tag{II.16}$$

$$T_{in,hot} = T_{out,cold} + \Delta T_H \tag{II.17}$$

$$T_{out,hot} = T_{in,cold} + \Delta T_L \tag{II.18}$$

$$Q = U A \Delta T_{ln} \tag{II.19}$$

$$\Delta T_{ln} = \frac{\Delta T_H - \Delta T_L}{ln \frac{\Delta T_H}{\Delta T_I}} \tag{II.20}$$

II.3.3 Turbine de détente de vapeur :

Pour mesurer l'efficacité d'une turbine, nous pouvons regarder son efficacité isentropique [23] :

$$\eta_{TVs} = \frac{h_{in} - h_{out}}{h_{in} - h_{out,s}} \tag{II.21}$$

Où $h_{out, s}$ est l'enthalpie qui se serait produite à la sortie de l'étage de la turbine où le processus est supposé isentropique.

Par ailleurs, son rendement thermique peut être aussi défini par l'équation (22) :

$$\eta_{th} = \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H} = 1 - \frac{Q_C}{Q_H}$$
(II.22)

II.3.4 la condensation et l'évacuation de la vapeur :

Le condenseur utilisé est le condenseur à vapeur d'eau. La vapeur se condense à travers le contact avec la paroi de tube dans le côté condensation. Le condenseur a le rôle de condenser la vapeur qui sort de la turbine et de récupérer sa chaleur pour la transmettre au liquide [23]. Les équations de transfert de chaleur (II.16-II.20) seront toujours applicables pour ce type d'installation.

II.3.5 Cycle thermodynamique de Rankine :

Le cycle de Rankine ou cycle de vapeur de Rankine est le processus largement utilisé par les centrales thermiques à turbine à vapeur. Ce procédé a été mis au point en 1859 par l'ingénieur écossais William J.M. Rankine. Il s'agit d'un cycle thermodynamique qui convertit la chaleur en énergie mécanique qui est généralement transformée en production d'électricité [29]. Les transformations du cycle (figures 2.10) sont décrites ci-après :

a-compression isentropique dans la pompe 1-2 [30] :

L'eau sous forme liquide est comprimée dans la pompe pour élever sa pression de BP à HP. Idéalement cette transformation est adiabatique et réversible, donc isentropique [31].

b- apport de chaleur à pression constante dans la chaudière 2-3 [30] :

L'eau liquide qui est à haute pression est chauffée dans la chaudière à haute température. Ce chauffage est idéalement isobare réversible qui permet un changement de phase liquide-vapeur (transformation 2'-3). A la sortie de la chaudière l'eau est sous forme de vapeur saturée [31].

c-détente isentropique de la vapeur d'eau dans la turbine de HP à BP 3-4 [30] :

La détente isentropique produisant du travail mécanique constitue la phase motrice du cycle [31].

d- *évacuation de chaleur à pression constante dans le condenseur 4-1* [30] :

La vapeur d'eau est ensuite envoyée dans un condenseur où elle va subir une condensation avec une chute de pression. Idéalement cette condensation est isobare réversible [31]

Figure 2.10. Schéma du cycle de Rankine.

II.4 TECHNIQUES D'AMELIORATION DE LA PERFORMANCE ENERGETIQUE

Pour une centrale de production d'électricité, il est tout à fait logique d'un point de vue stratégique de vouloir réduire sa consommation énergétique. En effet, cela lui permet à la fois de maîtriser ses coûts, de réduire ses émissions de gaz à effet de serre et d'améliorer son image. Par ailleurs, elle se trouve moins exposée à la volatilité des prix de l'énergie et bénéficie d'une plus grande indépendance énergétique en important moins.

Les définitions de termes de performance énergétique, tels que « efficacité énergétique », « rendement énergétique », « consommation spécifique d'énergie », « intensité énergétique », suscitent de nombreux débats. Peu importe celle que vous choisissez. Ce qui compte, c'est que la consommation énergétique soit réduite au minimum, afin que la centrale puisse fonctionner de manière productive, sûre et durable, tout en satisfaisant les exigences de qualité de ses clients internes et externes.

Cette partie donne quelques techniques de réduction de la consommation énergétique d'une centrale de production d'électricité à cycle combiné citées par la littérature.

II.4.1 Filtration et refroidissement d'air d'admission

L'air doit être filtré avant de rentrer dans le compresseur avec des filtres de bonne qualité, ces derniers doivent subir des maintenances de temps à autre et doivent être changer carrément s'ils sont détériorés.

Afin d'améliorer les performances des installations de la turbine à gaz par l'augmentation de la masse d'air qui passe par la machine, l'application des systèmes de refroidissement pour l'abaissement de la température d'air en amont du compresseur diminue en conséquence la consommation d'énergie et les émissions des oxydes d'azotes et de gaz à effet de serre dans la chambre de combustion [32].

II.4.2 Préchauffage d'air de combustion

Le préchauffeur d'air ou APH chauffe l'air qui s'écoule vers le brûleur. Une température d'air plus élevée améliore le rendement de combustion, l'efficacité de la chaudière et celle du processus [32]. Par contre une température d'air moins élevée refroidit les gaz de combustion.

II.4.3 Excès d'air comburant

L'augmentation de l'excès d'air diminue le rendement de combustion, en conséquence il augmente la consommation du combustible. En fonction de la rapidité avec laquelle la demande de chaleur du processus fluctue, l'excès d'air peut être réglé manuellement ou automatiquement contrôlé. L'excès d'air peut être minimisé en ajustant le débit d'air en proportion du débit de combustible. Ceci est grandement aidé par la mesure automatisée de la teneur en oxygène dans les gaz de combustion [32].

II.4.4 Préchauffage du combustible

Le préchauffage du combustible permet une augmentation de son contenu calorifique. Son préchauffage par échange de chaleur avec des gaz de combustion quittant le système, améliore la consommation du combustible et diminue en conséquence les gaz à effet de serre.

II.4.5 Préchauffage d'eau d'alimentation

La chaudière à vapeur est alimentée en eau pour remplacer les pertes du système et le condensat de recyclage, etc. La récupération de la chaleur est possible en préchauffant l'eau d'alimentation, ce qui réduit les besoins en combustible du cycle combiné. Les sources de préchauffage de l'eau d'alimentation peuvent constituer la chaleur perdue d'un processus, l'économiseur utilisant de l'air de combustion ou eau d'alimentation désaérée pour condenser le condensat.

II.4.6 Recyclage des condensats et minimisation de la purge :

La réutilisation du condensat et son recyclage permet de réutiliser l'énergie contenue dans le condensat chaud, d'économiser les coûts de l'eau d'appoint et du traitement de l'eau de la chaudière et d'économiser le coût d'évacuation des eaux usées (le cas échéant).

La minimisation du taux de purge peut réduire considérablement les pertes d'énergie car la température de la purge est directement liée à celle de la vapeur produite dans la chaudière. L'installation de systèmes automatisés de contrôle de purge peut également être envisagée, habituellement en surveillant la conductivité. Cela peut conduire à une optimisation entre la fiabilité et la perte d'énergie. Le taux de purge est contrôlé par le composant le plus concentré [32].

II.4.7 Cogénération :

La cogénération consiste à produire et à utiliser simultanément de l'électricité et de la chaleur à partir d'une même énergie primaire et au sein de la même installation. Elle permet ainsi d'optimiser la consommation du combustible initial et de réduire les rejets de gaz à effet de serre. Toutefois, les installations de cogénération doivent produire au plus près des lieux de consommation [33].

II.4.8 Mix énergétique :

Le mix énergétique consiste à combiner une source d'énergie fossile avec une énergie verte. Le mix énergétique entre le gaz naturel et l'hydrogène vert fabriqué à partir d'électrolyse d'eau a pour but de minimiser la consommation du gaz naturel grâce au pouvoir calorifique (PCS) d'hydrogène et les gaz à effet de serre en gardant la même production électrique [34].

CHAPITRE III

MODELISATION THERMODYNAMIQUE DU CYCLE COMBINE DE LA CENTRALE DE RAS-DJINET

INTRODUCTION

Après le relevé et la collecte de toutes les données opératoires actuelles de la centrale électrique de Ras-Djinet à cycle combiné, nous procédons à la modélisation thermodynamique de son procédé au moyen du logiciel *« Aspen Hysys 11 »*. Ceci nous permet d'étudier la sensibilité de sa performance énergétique par rapport aux différentes conditions opératoires.

III.1. DESCRIPTION ET PARAMETRES OPERATOIRES DE LA CENTRALE <u>ELECTRIQUE DE RAS-DJINET</u>

III.1.1. Visite du site de la centrale

La centrale de RAS-DJINET est une centrale électrique à cycle combiné de 1131.1MW. Elle se situe dans la wilaya de Boumerdes, du chef-lieu de la commune de Cap Djinet et 77Km à l'est d'Alger. La centrale se compose principalement de 3 unités (50, 60 et 70) de production électrique à cycle combiné à arbre simple ainsi que les systèmes qui supportent l'équilibre de la centrale. Chaque module de la Centrale a une turbine à gaz (modèle : SIEMENS SGT5-4000F), d'un HRSG associé, d'une turbine à vapeur (Modèle : SIEMENS SST5-3000 H-IL) et d'un générateur commun refroidi par hydrogène (Modèle : SIEMENS SGEN 5-2000 H) situé sur le même arbre entre la turbine à gaz (TG) et la turbine à vapeur (TV).

Les turbines à gaz sont conçues pour bruler le gaz naturel comme combustible de base et le carburant diesel comme combustible de secours. Dont le but d'avoir un bon fonctionnement, la centrale est disposée de plusieurs ouvrages auxiliaires (figure 3.1) telle que [35] :

- Station de Pompage
- Unité de Dessalement
- Unité de Déminéralisation
- Unité d'Electro-chloration
- Unité anti incendie
- Skid Compresseurs
- Skid Diesel de secours
- Skid Gaz
- Skid Gasoil
- Station Mousse
- Skid Hydrogène

- Dosage chimique
- Reminéralisation
- Système de démarrage alternateur SFC et SEE
- Poste d'évacuation d'Energie (GIS)

Figure 3.1 Plan de la centrale électrique Ras-Djinet

La figure 3.2 ci-après donne le diagramme des flux du cycle combine de Ras-Djinet, prise par capture d'écran de la salle de contrôle de l'unité.

III.1.2. Collecte et relevé des données opératoires

La campagne de collecte et de relevé des paramètres opératoires s'est déroulée lors de notre stage in situ. Les données opératoires non relevées sont estimées soit à partir des spécifications de fonctionnement des installations ou prises celles du design. Le tableau 3.1 ci-après regroupe les données opératoires et fonctionnement de la centrale pour une charge de base à 100%.

III.2. MODELISATION THERMODYNAMIQUE DU CYCLE COMBINE DE LA <u>CENTRALE</u>

La modélisation et la simulation de la centrale électrique de Ras Djinet a été effectuée et réalisée au moyen du logiciel « *Aspen Hysys 11* » d'ASPENTECH orientés au Génie des Procédés

Figure 3.2. Diagramme des Flux du cycle combiné de Ras-Djinet.

100 % de la charge de base							
Puissance CC	MW	412					
Puissance TG	MW	274,67					
Puissance TV	MW	137,33					
T ambiante (T1)	°C	17,1					
Tsortie compresseur (T2)	°C	429					
P sortie compresseur (P2)	bar	18,6					
Tsortie turbine (T4)	°C	591					
Т НР	°C	555,6					
РНР	bar	116,4					
Vapeur HP	T/h	263,1					
Tsortie HP	°C	366,2					
P sortie HP	bar	30,11					
TIP	°C	554,6					
P IP	bar	28,44					
Surchauffeur IP	T/H	68,38					
T LP	°C	228,6					
PLP	bar	3,2					
Surchauffeur LP	T/h	36,34					
T du gaz d'échappement	°C	92.67					
Débit de gaz	kg/h	57546					
	kg/S	15,9					
Débit du gaz d'échappement	kg/S	690					
Débit d'air	kg/S	640,31					
Rendement Chambre de combustion	%	98					
Humidité	%	62					
PCI	kJ/kg	46327					

Tableau 3.1 : Les Paramètres de fonctionnement de la centrale

III.2.1 Introduction au Logiciel Aspen Hysys :

Le développement de l'informatique dans le domaine de simulation, nous permet de résoudre le problème de calcul manuel long, en utilisant comme outil des logiciels de simulation. Les simulateurs existants tels que *Aspen Hysys & Aspen Plus, ChemCAD, UniSim, OLGA, PipeSim* sont les plus reconnus et qui deviennent de plus en plus indispensables.

Présentation du logiciel « Hysys » :

Hysys est un logiciel de simulation de procédé de génie des procédés [36], de génie chimique et d'énergétique développé par la société **HYPROTECH** (canada). Il est l'un des plus performants logiciels de simulation. Le simulateur **Hysys** peut être utilisé lors de la conception d'un procédé industriel afin d'établir des bilans de matière et d'énergie d'un procédé industriel et de dimensionner les équipements de ce procédé ou bien dans le suivi des procédés qui sont déjà installés afin de réajuster les paramètres de fonctionnement dans le cas de changement de compositions de l'alimentation ou des conditions de fonctionnement de certains équipements et de déterminer les performances des équipements.

L'exécution du simulateur Hysys suit les étapes suivantes [37] :

- > spécifier les constituants du gaz, du liquide ou du mélange ;
- choisir un modèle thermodynamique ;
- établir le schéma du procédé (PFD) ;
- > spécifier les paramètres nécessaires pour le calcul de chaque opération ;
- résolution du schéma de procédé ;

III.2.2 Méthodologie de modélisation suivie

Nous décrivons ci-après les étapes de la méthodologie suivie pour la modélisation thermodynamique de la centrale électrique :

III 2.2.1 Choix des composants :

Le tableau 3.2 donne la composition (% molaire) des 17 composés de classes d'hydrocarbures représentant le gaz naturel en figure (3.2) de simulation ci-dessous.

III. 2.2.2 Choix de modèle thermodynamique :

La sélection du modèle thermodynamique est une étape cruciale dans la simulation du procédé. La précision des résultats de simulation dépend de l'adéquation de la propriété utilisée. Les simulateurs de procédés contiennent des outils de calcul des propriétés physiques des flux de composants purs et de leurs mélanges ainsi que de l'équilibre de phase. Le package fluide « fluid package » dans Aspen Hysys, se compose de différents modèles pour le calcul des propriétés physiques. Pour les applications pétrolières, gazières et pétrochimiques, les modèles Peng-Robinson (PR) et Soave-Redlich-Kwong (SRK) sont généralement les équations d'état (EOS) recommandées [38]. Parmi les équations d'état notre logiciel a choisi le Peng-Robinson comme un modèle thermodynamique pour notre cas d'étude.

Composants	Désignation	Xi (% molaire)
Méthane	CH4	90,8200
Ethane	C2H6	4,9500
Propane	СЗН8	0,9800
Butane	C4H10	0,3700
I-Butane	I-C4H10	0,0000
Pentane	C5H12	0,0900
I-Pentane	I-C5H12	0,0000
Neo pentane		0,0000
Hexane	C6H14	0,0500
I-Hexane	I-C6H14	0,0000
Heptane	C7H16	0,0300
I-Heptane	I-C7H16	0,0000
Octane	C8H18	0,0100
Azote	N2	2,0200
Oxygène	O2	0,0000
Dioxyde de carbone	CO2	0,6900
Eau	H2O	0,0000

Tableau 3.2 la composition du gaz naturel

atabank: HYSYS					Select:	Pure Components	•	Filter:	All Families	·
omponent	Туре	Group	*		Search for:			Search by:	Full Name/Synonym	•
H2O	Pure Component								1	
Nitrogen	Pure Component				Simula	tion Name	Full Name	/ Synonym	Formula	â
CO2	Pure Component		<	Add		n-C12		C12	C12H26	
Methane	Pure Component		E			n-C13		C13	C13H28	
Ethane	Pure Component					n-C14		C14	C14H30	
Propane	Pure Component		Rep	place		n-C15		C15	C15H32	
i-Butane	Pure Component					n-C16		C16	C16H34	
n-Butane	Pure Component					n-C17		C17	C17H36	
i-Pentane	Pure Component		Ren	nove		n-C18		C18	C18H38	
n-Pentane	Pure Component					n-C19		C19	C19H40	
n-Hexane	Pure Component					n-C20		C20	C20H42	
n-Heptane	Pure Component					n-C21		C21	C21H44	
n-Octane	Pure Component					n-C22		C22	C22H46	
n-Nonane	Pure Component					n-C23		C23	C23H48	
n-Decane	Pure Component					n-C24		C24	C24H50	
	n .		*			n-C25		C25	C25H52	

Figure 3.3 Composition du gaz naturel simulée

Peng-Robinson (PR):

L'équation de Peng-Robinson est recommandée pour les calculs d'équilibres liquide-vapeur des hydrocarbures sous pression (application en pétrochimie, au gaz naturel). Avec cette dernière, l'équation de Peng-Robinson est essentielle et relativement irremplaçable pour les calculs d'équilibres liquide-vapeur sous pression [39].

L'équation de Peng-Robinson

L'équation de Peng-Robinson (généralement appelée PR) est de la forme suivante :

$$P = \frac{RT}{V_m - b} - \frac{a(T)}{V_m^2 + 2bV_m - b^2}$$
(III.1)

$$\begin{vmatrix} a(T) = a^* \times \frac{R^2 T_c^2}{P_c} \alpha(T) \\ b = b^* \times \frac{RT_c}{P_c} \end{aligned} (III.2)$$

$$\alpha(T) = \left[1 + m(1 - \sqrt{T_r})\right]^2$$
(III.3)

$$\mathbf{m} = \mathbf{M}_0 + \mathbf{M}_1 \boldsymbol{\omega} + \mathbf{M}_2 \boldsymbol{\omega}^2 \tag{III.4}$$

Les paramètres M₀, M₁ et M₂ sont données au tableau 3.3 :

R					
$-1 - \sqrt{2}$					
$-1 + \sqrt{2}$					
0.45724					
0.07780					
0.37464					
1.54226					
-0.26992					

Tableau 3.3. Valeurs des paramètres M_0 , M_1 et M_2

Cette équation est considérée adéquate pour le calcul d'équilibre liquide-vapeur des systèmes composés des hydrocarbures. Les améliorations apportées par **HYPROTECH** à cette équation d'état lui permettent d'être très fiable pour une variété de système sur un large domaine de conditions. Elle résout rigoureusement tous les systèmes composés d'une seule phase, bi phasique ou un système à trois phases avec haut degré d'efficacité et de précision et est applicable sur une grande gamme de conditions [36]. La figure 3.3 montre l'utilisation de cette équation dans notre cas d'étude.

Jp Binary Coeffs StabTest Pha	ase Order Tabular Notes		
kage Type: HYSYS		Component List Selection	Component List - 1 [HYSYS Databanks] View
operty Package Selection	Options		Parameters
Chien Null	Enthalpy	Property Packag	EOS
Clean Fuels Pkg	Density	C	stald
PA isso Tabular	Modify Tc, Pc for H2, He	Modify Tc, Pc for	2, He
xtended NRTL	Indexed Viscosity	HYSYS Vi	osity
GCEOS	EOS Solution Methods	Cubic EOS Analytical M	thod
General NRTL	Phase Identification		fault
ilycol Package	Surface Tension Method	HYSYS N	thod
anayson Streed	Thermal Conductivity	API 12A3.2-1 N	thod
(abadi-Danner			
ee-Kesler-Plocker			
1BWR			
IBS Steam			
IRTL			
eng-Kobinson			
PRSV			
our PR +			

Figure 3.4 Simulation du modèle thermodynamique Peng-Robinson.

III 2.2.3. Choix de la réaction chimique :

La combustion complète d'un hydrocarbure conduit à la formation de vapeur d'eau et de dioxyde de carbone et peut être représentée par une réaction globale du type [21].

$$C_n H_m + (n+m/4) O2 = nCO_2 + (\frac{m}{2})H_2O$$
 (III.6)

Les réactions qui se produisent dans la chambre de combustion [40], où le gaz naturel est mélangé à l'air provenant du compresseur sont définies par l'équation (III.6).

Component	Mole Weight	Stoich Coeff	Base Component	wetnane
H20	18,015	2,000	Rxn Phase	Overall
CO2	44,010	1,000	Со	100,0
Methane	16,043	-1,000	C1	<empty></empty>
Oxygen	32,000	-2,000	C2	<empty></empty>
Add Comp				
			(T in Kelvin)	
alance	Balance Error	0,00000		
	Reaction Heat (25 C)	<empty></empty>		

La figure 3.4 donne l'exemple de simulation de la combustion du méthane

Figure 3.5 Simulation de la réaction stœchiométrique du méthane

III.2.3. Configuration et représentation des équipements

• Compresseur [38]

L'énergie développée (H_{com}) par le compresseur pour faire passer un flux gazeux de la pression d'entrée P₁ à la pression de sortie P₂, s'écrit en fonction du volume molaire V est :

$$H_{\rm com} = \int_{P_1}^{P_2} V dP \tag{III.5}$$

L'équation (III.7) n'est applicable que pour les gaz parfaits. Pour la variation d'enthalpie réelle par mole de gaz, le facteur d'efficacité, η_h , doit être utilisé, soit :

$$\Delta h = \frac{H_{com}}{\eta_h}$$
(III.6)

La variation d'enthalpie réelle du gaz, pour un processus polytropique (n exposant polytropique) est

$$\Delta h = \frac{P_1 V_1}{\eta_p \left(\frac{n-1}{n}\right)} \left[\left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}} - 1 \right]$$
(III.7)

La figure 3.5 représente la simulation du compresseur K100

Figure 3.6 Simulation du compresseur K-100

• La chambre de combustion [38]

Le modèle de brûleur de flamme effectue uniquement le calcul de combustion d'hydrocarbures purs (Cx Hy). L'étendue de la combustion dépend de la disponibilité de l'oxygène qui est généralement régie par le rapport air / carburant. Le rapport air / carburant (AF) est défini comme suit :

$$AF = \frac{\left(\frac{d\acute{e}bit massique d'O_2}{\Sigma d\acute{e}bit massique de fuel}\right)}{rapport massique d'O_2 dans l'air}$$
(III.8)

La figure 3.6 représente la simulation de la chambre de combustion CRV-100 :

Figure 3.7 Simulation de chambre de combustion CRV-100

• Turbine à gaz

La turbine à gaz de la centrale électrique de Ras-Djinet (modèle : SIEMENS SGT5-4000F) est simulée dans logiciel *Hysys* selon la figure 3.7 :

Figure 3.8 Simulation Turbine à gaz Expander GT HP

• L'Echangeur de chaleur [38]

Les blocs des unités de chauffage et de refroidissement se composent de bilans de matière et d'énergie ainsi que le calcul thermodynamique de phases. Le bilan matière est donné par l'équation (III.9), dans lequel i,j représentent l'indice du flux et ses composants.

$$\sum_{i,j} m_{i,entrée}^{j} = \sum_{i,j} m_{i,sortie}^{j} = m_{entrée} = m_{sortie} = m$$
(III.9)

Le bilan enthalpique de l'échangeur de chaleur donne l'équation (III.10)

$$q = m(h_{sortie} - h_{entrée}) + q_{perte}$$
(III.10)

Dans le cas d'un équilibre de phase, les enthalpies à l'entrée et à la sortie du système s'écrivent :

$$h_{entrée} = \int_{T_{sortie}}^{T_{entrée}} Cp_{entrée} dT + \Delta v h_{entrée} = h_{sortie} = \int_{T_{entrée}}^{T_{sortie}} Cp_{sortiee} dT + \Delta v h_{sortie} \quad (III.11)$$

m le débit massique total d'alimentation, q le débit de chaleur requis ou enlevé, q_{loss} pertes de chaleur, C_{pin} et C_{pout} la capacité thermique des flux d'entrée et de sortie, Δvh_{in} et Δvh_{out} variation d'enthalpie de changement de phase du flux d'entrée et de sortie.

Si le taux de transfert de chaleur doit être prise en compte, la chaleur transférée, q s'écrira en fonction du coefficient global de transfert thermique, U :

$$q = UA\Delta T_{lm}$$
(III.12)

 Δ Tlm est la Température moyenne logarithmique entre l'entrée (Δ T₁) et la sortie de l'échangeur (Δ T₂)

$$T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln \frac{\Delta T_1}{\Delta T_2}}$$
(III.13)

Pour les échangeurs de chaleur avec plusieurs passes côté tube et / ou côté calandre, l'équation (III.13) est modifiée en introduisant le facteur de correction F :

$$q = UAF\Delta T_{lm}$$
(III.14)

Le facteur F peut être calculé par :

$$F = \frac{\sqrt{R^2 + 1} ln \frac{(1 - S)}{(1 - RS)}}{(R - 1) ln \frac{2 - S(R + 1 - \sqrt{R^2 + 1})}{2 - S(R + 1 + \sqrt{R^2 + 1})}}$$
(III.15)

$$R = \frac{T_{entrée}^{h} - T_{sortie}^{h}}{T_{sortie}^{c} - T_{entrée}^{c}}, \quad R = \frac{T_{sortie}^{c} - T_{entrée}^{c}}{T_{entrée}^{h} - T_{entrée}^{c}}$$
(III.16)

Heat Exchanger: RHTR 2		
Design Rating Wo	rksheet Performance Dynamics Rigorous Shell&Tube	
Design Connections Parameters Specs	Name RHTR 2 8 •	Shell Side Inlet
Notes	Tubeside Flowsheet Case (Main) Case (Main)	
T (Tube Side Outlet Switch streams	Shell Side Outlet
T [Iube Side Fluid Pkg Basis-1	Shell Side Fluid Pkg Basis-1
	Convert to Rigorous Model You can replace any simple exchanger model by a fully rigorous model in your simulation geometry by sizing or by direct specification via input or by importing a prepared file.	n defining a
	Size Exchanger	
Delete		ОК

L'échangeur de chaleur est simulé de la façon suivante :

Figure 3.9 Simulation de l'échangeur de chaleur

• La turbine à vapeur

La turbine à vapeur de la centrale électrique de Ras-Djinet de (modèle : SIEMENS SST5-3000 H-IL) avec ses trois niveaux de pression (HP, IP and LP) est simulée selon la figure (3.9) :

Exp	ander: IF	ST					- 8 %
	Design	Rating	Worksheet	Performance	Dynamic	3	
	Desig	jn		N	ame	IP ST	
	Connect Paramet Links User Var Notes	ions ers iables	Inlet 10 Energy E=ST IP	,	• •	Fluid Package Basis-1	
	D	elete				OK	Ignored

Figure 3.10 Simulation Turbine à vapeur Expander IP ST

• La Pompe [38]

Une pompe augmente la pression du liquide de ΔP , entre son entrée P₁ et sa sortie P₂

$$P_2 = P_1 + \Delta P \tag{III.17}$$

En négligeant l'effet visqueux, l'équation de Bernoulli donne pour ΔP , en régime stationnaire

$$\Delta P = P_2 - P_1 = H\rho g \tag{III.18}$$

H est la tête, ρ est la densité du liquide et g est l'accélération gravitationnelle.

La puissance hydraulique du fluide, calculée en fonction du débit volumique (Q) du liquide :

$$P_{w} = H\rho g Q \qquad (III.19)$$

La puissance mécanique donnée à la pompe par le moteur de l'activateur peut être calculée par

$$P_{\rm f} = \omega T = \frac{2\pi}{60} fT \tag{III.20}$$

ω vitesse angulaire (rad·s⁻¹), f fréquence de rotation (tr /min), T le couple dans l'axe en (N·m). L'efficacité de pompage, η est définie comme le rapport entre P_w , et P_f .

$$\eta_p = \frac{P_w}{P_f} \tag{III.21}$$

La figure 3.10 représente la simulation de la pompe centrifuge P-100.

Figure 3.11 Simulation de la pompe P-100.

• Condenseur

L'utilisation du condenseur dans la centrale a pour but de récupérer la vapeur qui sort de la turbine à vapeur et la condenser pour alimenter HRSG pour avoir un cycle fermé. La figure 3.11 représente la simulation du condenseur cooler E-100.

ooler: E-1	00							- 8
Design	Rating	Worksheet	Performance	Dynamics				
Desi	gn		Name	E-100				
Connect Paramet User Var Notes	ters riables	Inlet final Fluid I Basis	Package -1		Energy Q-101 Outlet 3	→ →	•	
[Delete				OK			🔲 Ignored

Figure 3.12 Simulation du condenseur cooler E-100.

III.2.4 Construction du Process Flow Diagram (PFD) du cycle combiné

Le PFD (Process Flow Diagram) fournit la meilleure représentation du schéma de traitement dans son ensemble. L'utilisation du PFD donne une référence immédiate à l'avancement de la simulation en cours de construction [38]. Le PFD construit pour la centrale électrique étudiée est représenté en figure 3.12 ci-dessous.

III.3 Résultats et interprétation de la modélisation

Les résultats de simulation du cycle combiné étudié sont donnés ci-après. Les tableaux (3.4-3.13) donnent pour les cas actuels et simulés une comparaison des valeurs de leurs paramètres opératoires de flux de matière.

Figure 3.13. Procees Flow diagram (PFD) de simulation de la centrale

Equipement	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
		T(°C)	17,1	17
	Air	P(bar)	1,013	1,013
V 100		D(kg/s)	640,31425	645
K-100	A :	Т	429	442,9
	Alf	P(bar)	18,6	14,96
	comprime	D	640,31425	645

Tableau 3	3.4	Paramètres	opératoires	des flu	ix de i	matière	dans	le cas	des	Compresseu	irs.

Tableau 3.5 Paramètres o	pératoires	dans le cas	de la chan	nbre de combustion.
--------------------------	------------	-------------	------------	---------------------

Equipement	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
	Fuel and Loir	T(°C)	180	180
	comprimé Gaz	P(bar)	34	35,01
CRV-100		D(kg/s)	15,985	15,98
		Т	944	950,4
	d'échappement	D(kg/s)	690	661

Tableau 3.6 Paramètres opératoires dans le cas de la turbine à gaz (détente).

Equipement	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
	Gaz	T(°C)	944	950,4
	d'échappement	D(kg/s)	690	661
GI MP	Vara HDSC	Т	591,5	593,4
	vers HKSG	D(kg/s)	690	661

Tableau 3.7	' Technical	data de	la	turbine	à	gaz.
-------------	-------------	---------	----	---------	---	------

Equipement	Paramètre Opératoire	Design Enregistré	Actuel Enregistré	Actuel Simulé
	T(°C)	600	591,5	593,4
SIEMENS SGT5- 4000F	D(kg/s)	725	690	661
	Puissance (MW)	329	274,666	290

Equipement	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
	Vara	T(°C)	591,5	593,4
	HRSG	P(bar)	1,1	1,898
HDSC		D(kg/s)	690	661
пкэс		T(°C)	92,67	99.13
ATM	vers ATM	P(bar)	1,1	1,898
	D(kg/s)	690	661	

Tableau 3.8 Paramètres opératoires dans le cas de la chaudière (HRSG).

Tableau 3.9 Paramètre	s opératoires dans	le cas de la turbine à	vapeur (à 3 niveaux).
-----------------------	--------------------	------------------------	-----------------------

Equipement	Niveau	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
			T(°C)	555,6	555
		TO HP ST	P(bar)	116,4	117
	IID CT		D ^v (kg/s)	73,083	83,17
	пr 51		T(°C)	366,2	377,1
		6	P(bar)	30,11	31,01
			$D^{v}(kg/s)$	73,083	83,17
			T(°C)	554,6	524,5
		10	P(bar)	28,44	31,01
ST	IP ST		D ^v (kg/s)	73,083	83,17
		13	D ^v (kg/s)	73,083	83,17
		TO LP ST	D ^v (kg/s)	83,17	93,26
	LP ST		T(°C)	32,34	28,91
		Final vap	P(bar)	0,039	0,039
			D ^v (kg/s)	83,17	93,26
D ^v le débit vol	umique du	liquide idéal s	tandard		

Equipement	Paramètre Opératoire	Design Enregistré	Actuel Enregistré	Actuel Simulé
	T(°C)	565	555,6	555
SIEMENS SST5- 3000 H-IL	P(bar)	125	116,4	117
	Puissance (MW)	142	137,33	116,9

Tableau 3.10 Technical data de la turbine à vapeur.

Equipement	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
	Final	T(°C)	32,24	28,91
Condonsor	vap	P(bar)	0,039	0,039
Condenser	2	T(°C)	24	24
	3	P(bar)	0,039	0,039

Tableau 3.11 Paramètres opératoires des flux de matière dans le condenseur.

Tableau 5.12 Farametres operatoires des nux de matiere dans la pomp

Equipement	Stream	Paramètre Opératoire	Actuel Enregistré	Actuel Simulé
	2	T(°C)	24	24
DCB11	3	P(bar)	0,039	0,039
IGDII	4	T(°C)	24,01	24,04
	4	P(bar)	5,841	4,213

Tableau 3.13 Puissance de la production d'énergie électrique.

Paramètre	Actuel	Actuel
Opératoire	Enregistré	Simulé
Puissance (MW) de Cycle combiné	412	406,9

Interprétation :

En dépit de quelques écarts constatés entre les valeurs des paramètres opératoires actuels et simulés pour le cas de la chaudière HRSG et la turbine à vapeur, on peut dire qu'en général le procédé du cycle combiné de la centrale électrique de Ras-Djinet est assez bien représenté par le logiciel Aspen Hysys. Les meilleures conditions opératoires d'exploitation correspondantes à une meilleure performance énergétique du cycle combiné peuvent être déterminées par une étude paramétrique.

CHAPITRE IV

SIMULATION PARAMETRIQUE DE L'EFFICACITE ENERGETIQUE DU CYCLE COMBINE : RESULTATS ET INTERPRETATION

INTRODUCTION

Les résultats présentés au chapitre III précédent ont montré que la modélisation du cycle combiné effectuée est assez valable pour prédire, les conditions opératoires du procédé et la production d'énergie électrique globale de la centrale. Ainsi, en utilisant le logiciel Aspen-Hysys 11, la recherche donc d'une meilleure efficacité énergétique du cycle peut se traduire par l'identification des paramètres opératoires qui affectent cet objectif.

IV.1 INDICATEUR D'EFFICACITE ENERGETIQUE

L'indicateur d'efficacité énergétique est l'un des facteurs sur lesquels les spécialistes comptent pour déterminer la performance énergétique des procédés industriels.

Dans cette partie, la consommation spécifique d'énergie calorifique (CSE) est considérée comme l'indicateur d'efficacité énergétique du cycle combiné. Elle est définie au chapitre I que nous rappelons ci-après :

CSE = Quantité du combustible consommé * PCS(thermie/m3) production d'électricité (kWh)

IV.2 PARAMETRES SENSIBLES ET DOMAINE DE VARIATION

Se basant sur la synthèse bibliographique d'identification des différentes techniques d'amélioration de la performance énergétique du cycle combiné présentée au paragraphe II.4 du chapitre II, nous dégageons les principaux paramètres opératoires pouvant affecter l'efficacité énergétique du procédé et qui constituent une base théorique importante pour une meilleure conduite de la production d'énergie électrique dans des conditions optimales de fonctionnement.

Le taux de compression du compresseur, le rendement de combustion et les rendements isentropiques de compression et de détente, étant fixés à leurs valeurs nominales, les domaines de variation retenus pour les paramètres opératoires (tableau 4.1) sont ceux qui vérifient les conditions de fonctionnement fixées par le constructeur :

- La température des gaz sortie TAG : Min 565°C, Service 580°C, Max 600°C
- Puissance électrique globale produite voisine de 400 MW.

Paramètre	Unité	Domaine
Humidité de l'air	%	0 ÷ 65
Température du combustible GN	° C	170 ÷ 300
Débit d'air comburant	kg/s	450 ÷ 620
Température d'air comburant	° C	5 ÷ 50
Mix énergétique (H ₂ /(H ₂ +GN)	%	1 ÷ 10
Composition GN (% CH ₄)	%	80 ÷94

 Tableau 4.1 : Domaines de variation des paramètres opératoires

IV.3 RESULTATS ET INTERPRETATION

La sensibilité de la consommation spécifique d'énergie calorifique (CSE) du cycle ainsi que la température des gaz à la sortie de la turbine à gaz (TTG) est examinée sous diverses conditions opératoires. A cet effet, nous représentons en figures ci-après les principaux résultats de leur sensibilité et nous renvoyons le détail de calcul en annexe.

IV.3.1 Influence de l'humidité d'air :

Les évolutions de la consommation spécifique d'énergie et la température TTG en fonction de l'humidité relative d'air ambiant sont représentées en figure 4.1. On constate une légère diminution de la température TTG, soit une diminution de 3°C pour une augmentation d'humidité de 20%. L'augmentation d'humidité d'air conduit à un léger refroidissement de la flamme de combustion, ce qui entraine une faible diminution de température des gaz. La CSE est pratiquement constante à sa valeur moyenne de 1.25 th/kWh.

Figure 4.1 Influence d'humidité d'air sur CSE et TTG

IV.3.2 Influence de la température du combustible :

Les évolutions de la consommation spécifique d'énergie et la température TTG en fonction de la température du gaz naturel sont représentées en figure 4.2. On constate une faible augmentation de la température TTG par rapport au préchauffage du combustible, soit une augmentation de TTG de 7°C pour une élévation de température du gaz naturel de 25°C. Le préchauffage du combustible conduit à une élévation de température des gaz. La CSE est pratiquement aussi constante à sa valeur moyenne de 1.25 th/kWh.

Figure 4.2 Influence de la T du gaz naturel sur CSE et TTG.

IV.3.3 Influence de la température d'air de combustion :

L'influence de la température d'air de combustion sur la CSE et la température des gaz sortie TG est représentée en figure 4.3. L'augmentation de la température d'air comburant de 5 à 40 °C entraine une élévation de température des gaz de 16 °C et une très faible réduction de la CSE de 0.3%. La combustion étant un processus chimique contrôlé principalement par l'air comburant, son préchauffage est toujours favorable à une réduction de la consommation d'énergie.

IV.3.4 Influence de l'excès d'air comburant :

La figure 4.4 représente l'effet du débit d'air comburant sur la CSE et la TTG. Cette représentation dénote l'effet défavorable de l'augmentation d'excès d'air sur la CSE. En effet, une augmentation de 37% pour la CSE est constatée lors de l'augmentation du débit d'air comburant de 450 à 620 kg/s. Cet effet néfaste est attribué à la dilution thermique de la flamme

Figure 4.3. Influence de la T d'air sur la CSE et TTG

Figure 4.4 Influence du débit d'air sur la CSE et la TTG.

IV.3.5 Influence de la composition du gaz naturel

La figure 4.5 représente l'évolution de la CSE et la TTG en fonction de la fraction du méthane (CH4) dans le mélange combustible du gaz naturel. Le méthane étant le composé majoritaire ayant le PCS le plus élevé par rapport aux autres hydrocarbures, il est sélectionné comme composé représentatif du mélange gazeux.

Cette représentation montre que l'augmentation de la teneur du méthane dans le mélange de 80% à 94% conduit à une forte élévation de la température TTG de 130 °C. Ceci peut être expliqué par l'augmentation du pouvoir calorifique supérieur du gaz naturel et en conséquence la flamme de combustion. Quant à la CSE, on constate une diminution de 1.27 à 1.24 thermie/kWh, soit une atténuation de 3%.

Figure 4.5 Influence de la composition du gaz naturel sur la CSE et TTG.

IV.3.6 Influence de l'ajout hydrogène dans le mélange combustible :

Dans le but de décarboniser partiellement le mélange du gaz naturel pour réduire le dégagement de CO2 et les imbrulées, nous proposons d'étudier l'effet de l'ajout hydrogène comme combustible vert dans le mélange gaz naturel. L'influence de cet ajout combustible sur la CSE et la température TTG est illustrée en figure 4.6 ci-après.

Le pouvoir calorifique supérieur de l'hydrogène étant nettement supérieur à celui du gaz naturel, l'augmentation de son débit dans le mélange combustible entraine une augmentation de la CSE calorifique. Elle passe de 1.1 à 1.3 thermie/kWh, soit une augmentation de 20% pour une variation du débit de H2 de 1 à 10%. Pour la production d'une puissance électrique désirée, La température TTG des gaz est pratiquement constante à une valeur moyenne de 582°C.

Figure 4.6 Influence de la fraction d'hydrogène dans le mélange sur CSE et TTG.

Conclusion générale

Dans le cadre du projet de fin d'étude, nous avons effectué un stage au sein de la société de production d'électricité (SPE) de la Sonelgaz, précisément dans la centrale électrique à cycle combiné de Ras-Djinet de la wilaya de Boumerdes. Ce stage fructueux nous a été très bénéfique car il nous a permis de mettre en exergue nos connaissances acquises de thermodynamique appliquée, des procédés de combustion et de chaudières de production de vapeur

Une compagne de relevé et de collecte des données opératoires du cycle combiné a été effectuée in-situ durant notre séjour à la centrale électrique pour la constitution d'une base de données opératoires et de mieux comprendre et maitriser le processus du cycle combiné de production d'électricité.

La modélisation et la simulation des conditions opératoires du procédé du cycle combiné de la centrale électrique ont été effectuées par le logiciel Aspen Hysys 11. Les résultats de simulation ont montré une prédiction acceptable des paramètres opératoires calculés après leur comparaison avec les données réelles de la centrale.

Une synthèse bibliographique succincte sur les principales techniques d'amélioration de la performance énergétique nous a permis de dégager et de déduire les paramètres opératoires à étudier, qui peuvent affecter la consommation spécifique d'énergie calorifique du cycle combiné.

Une analyse de la sensibilité de la consommation spécifique d'énergie globale du cycle et de la température des gaz d'échappement de la turbine à gaz qui alimentent la chaudière à vapeur est réalisée par simulation paramétrique au moyen du logiciel pour les différentes conditions opératoires sélectionnées à l'entrée du système. Les résultats ont montré que l'excès d'air de combustion et la fraction d'hydrogène dans le mélange gazeux combustible ont une influence sur la consommation d'énergie calorifique et la température des gaz d'échappement. Quant à l'humidité d'air, sa température et la température du gaz naturel et sa fraction de méthane, ils ont une influence peu significative.

Enfin comme poursuite de ce travail et devant la difficulté et la complexité de la divergence des résultats de simulation constatés lors de la variation des rendements de combustion, isentropique de compression et de détente ainsi que le rendement thermique de la chaudière à vapeur, nous préconisons le développement d'un modèle plus représentatif, applicable pour un large domaine des conditions opératoires et qui tient compte de la variation de l'ensemble des paramètres opératoires sensibles et d'influence.

Bibliographie

[1] D. Tebani, Production de l'énergie électrique, cours, Université Hassiba Benbouali, Chlef, 2019/2020.

[2] https://www.spe.dz/page/17

[3] Y. Bedjou & M. Belaid, Etude thermodynamique et amélioration du rendement de la turbine à gaz MS5002C par récupération des gaz d'échappements dimensionnement d'un échangeur de chaleur tubes calendres. Mémoire de master, Université Abderrahmane Mira, Bejaia,2012/2013.

[4] Algerian Energy Company Spa, nos activité, disponible sur : https://aec.dz/notre-activite

[5] Ministère de l'Energie, energy.goz.dz, bilan énergétique national du secteur 2019/2020/2021.

[6] L. Chebli & Y. Abbassi, Calcul des paramètres de fonctionnement du dépropaniseur (unité 38 traitement GPL) « Module *III à Hassi R'Mel* ». Mémoire de master, Université Mohamed Kheider, Biskra, 2012.

[7] S. Lalaoui, Caractérisation physico-chimiques des carburants des véhicules cas : essence super et gazole. Mémoire de master, Université Abderrahmane Mira, Bejaia,2015.

[8] https://teo-paysdelaloire.fr/glossaire/tonne-equivalent-petrole.

[9] Rapport d'inventaire national des gaz a effet de serre Volume 1.

[10] www.elwatan-dz.com, Potentiel du projet de 15000 MW adopté pour la période 2021 à 2035, publié le 06.01.2021.

[11]https://elwatan-dz.com/la-progression-de-la-consommation-domestique-menace-lesexportations-des-hydrocarbures-quelles-energies-de-substitution.

[12] La Revue du développement et des Prospectives Pour Recherches et études Vol : 02. N° :
03.12.2017 Élaboré par : D. M Rassoul & D. H Rassoul.

[13] Le gaz naturel dans le paysage énergétique african, commission africaine de l'énergie (afrec) african energy commission, commission africaine de l'energie deuxième note d'orientation politique de l'afrec 2021.

[14] Groupe international des émissions de CO2 publier sur : https://fr.countryeconomy.com/energie-et-environnement/emissions-co2/algerie.

 $\label{eq:label} \ensuremath{\texttt{[15]}}\ https://www.larevuedelenergie.com/wp-content/uploads/2019/03/Energie-renouvelable-en-Algerie.pdf.$

[16] www.energy.gov.dz, énergie renouvelable et maitrise de l'énergie.

[17] www.techno-science.net, turbine à gaz définition.

[18] https://direns.mines-paristech.fr , turbine à gaz.

[19] www.testo.com , description d'application turbine à gaz.

[20] http://staff.univ-batna2.dz , Etude énergétique de la chambre de combustion.

[21] Pr. Djamel Touil, Combustibles et Energie de combustion chapitre 1, cours, Université Saad Dahlab, Blida 1.

[22] N. Boumediene & A. Nourine, Calcul du rendement de turbine à gaz par la méthode de Chambadal à différentes températures, mémoire de master, Université Abdelhamid Ibn Badis, Mostaganem, 2020.

[23] A. Bouhala & Y. Cheurfi, simulation des Performances d'une centrale thermique à cycle combiné, mémoire de master, Université Mohamed Seddik Ben Yahia, Jijel,2021.

[24] https://www.cecoenviro.com/fr, conduits d'échappement de turbine à gaz.

[25] A. Khadraoui, Etude technique de la centrale électrique de Chegaa-Oumache II, mémoire de master, Université Mohamed Khider, Biskra,2019.

[26] M. Zodi Saddam & Laouali Chaibou Adamou, Simulation numérique d'un cycle combiné, mémoire de master, Université Aboubakr Belkaid, Tlemcen,2016.

[27] https://fr.scribd.com ,définition de la turbine à vapeur.

[28] Y. Elhacoumo et K. Elghabri, Etude d'une Centrale Thermique (Bilan thermodynamique de la centrale de TERGA), mémoire de master, Université d'Ain Témouchent, 2014.

[29] https://energyeducation.ca , cycle de Rankine.

[30] http://elearning.centre-univ-mila.dz, cycle de Rankine.

[31] https://fr.scribd.com , cycle de Rankine.

[32] Livrable D2.3 Base de données des Meilleures Techniques Disponibles (MTD) applicables dans le secteur des MMA, première version, 2016

[33] https://www.connaissancedesenergies.org, Qu'est-ce que la cogénération?

[34] https://books.openedition.org/ , Introduction au mix énergétique.

[35] Documentation de la centrale électrique Ras-Djinet, description générale de la centrale.

[36] Y. Madani, Oil & Gas Process and Plant Development Engineer, Cours, Université Abbas Laghror, Khenchela, 26 Novembre 2022.

[**37**] **A. Mellouki,** Optimisation des paramètres de fonctionnement du turbo-expander de l'unité GPL2 (CIS-DP-HMD), mémoire de master, Université Badji-Mokhtar, Annaba,2018.

[**38**] Abdessalem Abdelhak & Benkacimi Karim, Modélisation du Procédé de Reformage Catalytique d'une Raffinerie Algérienne, Mémoire de Master 2, Option Génie Chimique, Département de Génie des Procédés, Faculté de Technologie, USDB1, Juin 2020.

[**39**] Mines Saint-Etienne, Introduction Aux Méthodes Thermodynamique Pour Le Génie Des Procédés, choix d'un modèle thermodynamique et simulation, version 2022/2023.

[40] Ing G. Pannacchia & Prof. Ing. R. Lensi, Modèles De Simulation Pour L'analyse Et L'optimisation Des Systèmes Énergétiques, Thèse de doctorat en génie chimique, Université Pisa, Italie, 30Avril 2009.

Annexes

Annexe A: l'influence d''humidité sur la puissance, la CSE et T_{TG} Annexe B: l'influence de la T du GN sur la puissance, la CSE et la T_{TG} Annexe C: l'influence de la T d'air sur la puissance, la CSE et la T_{TG} Annexe D: l'influence d'excès d'air sur la puissance, la CSE et la T_{TG} Annexe E: l'influence de la variation du CH₄ sur la puissance, la CSE et la T_{TG}

Annexe F: l'influence de la variation d'hydrogène sur la puissance, la CSE et la T_{TG}

Annexe A

Humidité (%)	Puissance (MW)	CSE	$T_{TG}(^{\circ}C)$
		(Thermie/KWh)	
0	403.174	1.175	536.081
5	403.147	1.175	535.560
15	403.092	1.175	534.519
25	403.037	1.175	533.482
35	402.983	1.175	532.450
45	402.928	1.175	531.422
55	402.874	1.175	530.399
65	402.82	1.176	529.379

À 14 kg/s du gaz naturel.

À 14.5 kg/s du gaz naturel.

Humidité (%)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
0	404.2	1.213	552.502
5	404.172	1.214	551.965
15	404.116	1.214	550.895
25	404.059	1.214	549.829
35	404.003	1.214	548.767
45	403.947	1.214	547.710
55	403.891	1.214	546.657
65	403.836	1.215	545.609

Humidité (%)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
0	405.231	1.252	568.792
5	405.202	1.252	568.240
15	405.144	1.252	567.141
25	405.087	1.252	566.046
35	405.029	1.253	564.955
45	404.971	1.253	563.869
55	404.914	1.253	562.787
65	404.857	1.253	561.710

À 15 kg/s du gaz naturel.

À 15.5 kg/s du gaz naturel.

Humidité (%)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
0	406.266	1.291	584.953
5	406.237	1.291	584.387
15	406.178	1.291	583.258
25	406.118	1.291	582.134
35	406.059	1.291	581.015
45	406	1.291	579.9
55	405.941	1.292	578.790
65	405.882	1.292	577.685

À 16 kg/s du gaz naturel.

Humidité (%)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
0	407.306	1.329	600.986
5	407.276	1.329	600.406
15	407.215	1.329	599.249
25	407.154	1.329	598.096
35	407.093	1.33	596.949
45	407.033	1.33	595.806
55	406.972	1.33	594.668
65	406.912	1.33	593.534

ANNEXE B

À 14.5 kg/s du gaz naturel

Gaz naturel	Puissance	CSE	T _{TG} (°C)
(°C)	(MW)	(Thermie/KWh)	
170	403.984	1.214	548.798
175	403.984	1.214	549.048
180	403.984	1.214	549.299
185	403.984	1.214	549.551
190	403.984	1.214	549.806
195	403.984	1.214	550.061
200	403.984	1.214	550.318
205	403.984	1.214	550.576
210	403.984	1.214	550.836
215	403.984	1.214	551.097
220	403.984	1.214	551.360
225	403.984	1.214	551.624
230	403.984	1.214	551.889
235	403.984	1.214	552.157
240	403.984	1.214	552.425
245	403.984	1.214	552.695
250	403.984	1.214	552.967
255	403.984	1.214	553.241
260	403.984	1.214	553.414
265	403.984	1.214	553.792
270	403.984	1.214	554.070
275	403.984	1.214	554.349
280	403.984	1.214	554.631
285	403.984	1.214	554.913
290	403.984	1.214	555.198
295	403.984	1.214	555.483
300	403.984	1.214	555.771

À 14.6 kg/s du gaz naturel.

Gaz naturel	Puissance	CSE	$T_{TG}(^{\circ}C)$
(°C)	(MW)	(Thermie/KWh)	
170	404.204	1.222	552.046
175	404.220	1.222	552.297
180	404.236	1.222	552.549
185	404.252	1.222	552.803
190	404.268	1.222	553.060
195	404.284	1.222	553.317
200	404.300	1.222	553.575
205	404.316	1.221	553.834
210	404.332	1.221	554.096
215	404.349	1.221	554.358
220	404.365	1.221	554.622

225	404.382	1.221	554.888
230	404.398	1.221	555.155
235	404.415	1.221	555.424
240	404.432	1.221	555.694
245	404.449	1.221	555.966
250	404.466	1.221	556.239
255	404.483	1.221	556.514
260	404.501	1.221	556.791
265	404.518	1.221	557.069
270	404.536	1.221	557.348
275	404.553	1.221	557.629
280	404.571	1.221	557.912
285	404.589	1.221	558.196
290	404.607	1.221	558.482
295	404.625	1.221	558.770
300	404.643	1.220	559.059

À 14.7 kg/s du gaz naturel.

Gaz naturel	Puissance	CSE	T _{TG} (°C)
(°C)	(MW)	(Thermie/KWh)	
170	404.409	1.230	555.289
175	404.425	1.230	555.541
180	404.441	1.229	555.795
185	404.457	1.229	556.050
190	404.473	1.229	556.307
195	404.489	1.229	556.567
200	404.505	1.229	556.826
205	404.522	1.229	557.087
210	404.538	1.229	557.350
215	404.555	1.229	557.614
220	404.571	1.229	557.880
225	404.588	1.229	558.147
230	404.605	1.229	558.416
235	404.622	1.229	558.686
240	404.639	1.229	558.958
245	404.656	1.229	559.231
250	404.673	1.229	559.506
255	404.691	1.229	559.782
260	404.708	1.229	560.060
265	404.726	1.229	560.340
270	404.743	1.229	560.621
275	404.761	1.228	560.904
280	404.779	1.228	561.188
285	404.797	1.228	561.474
290	404.815	1.228	561.762
295	404.833	1.228	562.051
300	404.851	1.228	562.342

Gaz naturel	Puissance	CSE	$T_{TC}(^{\circ}C)$
	(MW)	(Thermie/KWh)	$\Gamma_{\rm IG}(C)$
(C)	$(1 \vee 1 \vee V)$		559 576
170	404.614	1.237	558.520
175	404.630	1.237	558.780
180	404.646	1.237	559.035
185	404.662	1.237	559.292
190	404.678	1.237	559.550
195	404.695	1.237	559.811
200	404.711	1.237	560.072
205	404.728	1.237	560.335
210	404.744	1.237	560.599
215	404.761	1.237	560.865
220	404.778	1.237	561.132
225	404.794	1.237	561.401
230	404.811	1.237	561.671
235	404.829	1.237	561.943
240	404.846	1.237	562.216
245	404.863	1.237	562.491
250	404.880	1.236	562.767
255	404.898	1.236	563.045
260	404.915	1.236	563.325
265	404.933	1.236	563.606
270	404.951	1.236	563.889
275	404.969	1.236	564.174
280	404.987	1.236	564.460
285	405.005	1.236	564.747
290	405.023	1.236	565.036
295	405.041	1.236	565.327
300	405.060	1.236	565.620

À 14.8 kg/s du gaz naturel.

À 14.9 kg/s du gaz naturel.

Gaz naturel	Puissance	CSE	$T_{TG}(^{\circ}C)$
(°C)	(MW)	(Thermie/KWh)	
170	404.819	1.245	561.759
175	404.835	1.245	562.014
180	404.852	1.245	562.271
185	404.868	1.245	562.529
190	404.884	1.245	562.789
195	404.901	1.245	563.051
200	404.917	1.245	563.314
205	404.934	.1245	563.578
210	404.950	1.245	563.843
215	404.967	1.245	564.110
220	404.984	1.245	564.379
225	405.001	1.244	564.649
230	405.018	1.244	564.921
235	405.035	1.244	565.194
240	405.053	1.244	565.469
-----	---------	-------	---------
245	405.070	1.244	565.746
250	405.088	1.244	566.024
255	405.105	1.244	566.303
260	405.123	1.244	566.585
265	405.141	1.244	566.867
270	405.159	1.244	567.152
275	405.177	1.244	567.438
280	405.195	1.244	567.725
285	405.213	1.244	568.015
290	405.232	1.244	568.306
295	405.250	1.244	568.598
300	405.269	1.244	568.892

À 15 kg/s du gaz naturel.

Gaz naturel	Puissance	CSE	$T_{TG}(^{\circ}C)$
(°C)	(MW)	(Thermie/KWh)	
170	405.025	1.253	564.986
175	405.041	1.253	565.243
180	405.057	1.253	565.501
185	405.074	1.253	565.761
190	405.090	1.253	566.022
195	405.107	1.253	566.284
200	405.123	1.252	566.550
205	405.140	1.252	566.815
210	405.157	1.252	567.082
215	405.174	1.252	567.351
220	405.191	1.252	567.621
225	405.208	1.252	567.893
230	405.225	1.252	568.166
235	405.243	1.252	568.441
240	405.260	1.252	568.717
245	405.278	1.252	568.995
250	405.295	1.252	569.275
255	405.313	1.252	569.556
260	405.331	1.252	569.839
265	405.349	1.252	570.123
270	405.367	1.252	570.409
275	405.385	1.252	570.697
280	405.403	1.252	570.986
285	405.422	1.252	571.277
290	405.440	1.251	571.570
295	405.459	1.251	571.864
300	405.477	1.251	572.159

ANNEXE C

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	402,468	1,177	524,322
10	402,689	1,176	527,882
15	402,901	1,176	531,204
20	403,097	1,175	534,222
25	403,274	1,175	536,847
30	403,425	1,174	538,97
35	403,542	1,174	540,456
40	403,617	1,173	541,128

À 14 kg/s du gaz naturel.

À 14,1 kg/s du gaz naturel.

$T_{air}(^{\circ}C)$	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	402,671	1,184	527,617
10	402,894	1,184	531,17
15	403,105	1,183	534,482
20	403,302	1,183	537,489
25	403,478	1,182	540,1
30	403,626	1,182	542,205
35	403,743	1,181	543,672
40	403,818	1,181	544,318

À 14,2 kg/s du gaz naturel.

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	402,875	1,192	530,91
10	403,097	1,192	534,451
15	403,309	1,191	537,753
20	403,505	1,19	540,75
25	403,682	1,19	543,348
30	403,83	1,189	545,438
35	403,946	1,189	546,882
40	404,02	1,189	547,503

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	403,079	1,2	534,197
10	403,302	1,199	537,728
15	403,513	1,199	541,021
20	403,71	1,198	544,006
25	403,886	1,198	546,591
30	404,033	1,197	548,664
35	404,15	1,197	550,088
40	404,222	1,197	550,684

À 14,3 kg/s du gaz naturel.

À 14,4 kg/s du gaz naturel.

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	403,283	1,208	537,477
10	403,506	1,207	541,001
15	403,718	1,207	544,284
20	403,914	1,206	547,257
25	404,09	1,205	549,828
30	404,237	1,205	551,884
35	404,353	1,205	553,288
40	404,425	1,204	553,859

À 14,5 kg/s du gaz naturel.

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	403,487	1,216	540,753
10	403,71	1,215	544,268
15	403,922	1,214	547,541
20	404,118	1,214	550,503
25	404,294	1,213	553,06
30	404,441	1,213	555,1
35	404,556	1,212	556,483
40	404,628	1,212	557,029

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	403,692	1,223	544,023
10	403,915	1,223	547,53
15	404,127	1,222	550,793
20	404,323	1,221	553,743
25	404,499	1,221	556,287
30	404,645	1,22	558,31
35	404,76	1,22	559,674
40	404,83	1,22	560,195

À 14,6 kg/s du gaz naturel.

À 14,7 kg/s du gaz naturel.

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	403,896	1,231	547,288
10	404,12	1,23	550,786
15	404,332	1,23	554,04
20	404,528	1,229	556,979
25	404,7	1,229	559,509
30	404,85	1,228	561,516
35	404,964	1,228	562,859
40	405,034	1,228	563,355

À 14,8 kg/s du gaz naturel.

$T_{air}(^{\circ}C)$	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	404,101	1,239	550,548
10	404,325	1,238	554,038
15	404,537	1,238	557,282
20	404,733	1,237	560,209
25	404,908	1,236	562,724
30	405,054	1,236	564,716
35	405,168	1,236	566,039
40	405,237	1,235	566,511

T _{air} (°C)	Puissance	CSE	$T_{TG}(^{\circ}C)$
	(MW)	(Thermie/KWh)	
5	404,307	1,2471	553,803
10	404,53	1,246	557,284
15	404,742	1,245	560,519
20	404,938	1,245	563,435
25	405,113	1,2446	565,936
30	405,259	1,2441	567,911
35	405,372	1,243	569,214
40	405,44	1,243	569,661

À 14,9 kg/s du gaz naturel.

À 15 kg/s du gaz naturel.

T _{air} (°C)	Puissance (MW)	CSE	$T_{TG}(^{\circ}C)$
		(Thermie/KWh)	
5	404,512	1,254	557,052
10	404,736	1,254	560,525
15	404,948	1,253	563,75
20	405,144	1,252	566,655
25	405,318	1,252	569,143
30	405,464	1,251	571,102
35	405,576	1,251	572,385
40	405,644	1,251	572,806

ANNEXE D

Q _{GN} (Kg/s)	Puissance (MW)	CSE	$T_{TG}(^{\circ}C)$
		(Thermie/KWh)	
10,5	403,377	0,880	563,047
10,6	403,628	0,888	567,635
10,7	403,88	0,896	572,212
10,8	404,132	0,904	576,779
10,9	404,384	0,912	581,335
11	404,636	0,919	585,882
11,1	404,889	0,927	590,418
11,2	405,142	0,935	594,944
11,3	405,396	0,943	599,460
11,4	405,65	0,951	603,966

À 450 Kg/s d'air.

À 480 Kg/s d'air.

Q _{GN} (Kg/s)	Puissance (MW)	CSE	$T_{TG}(^{\circ}C)$
		(Thermie/KWh)	
11,2	403,663	0,938	563,045
11,5	404,392	0,962	575,921
11,6	404,636	0,97	580,195
11,7	404,88	0,977	584,460
11,8	405,124	0,985	588,716
11,9	405,369	0,993	592,963
12	405,613	1,001	597,201
12,1	405,858	1,008	601,431

À 500 Kg/s d'air.

Q _{GN} (Kg/s)	Puissance (MW)	CSE	$T_{TG}(^{\circ}C)$
		(Thermie/KWh)	
11,7	403,922	0,98	564,421
11,8	404,16	0,988	568,548
11,9	404,398	0,995	572,666
12	404,636	1,003	576,776
12,1	404,874	1,011	580,877
12,2	405,112	1,019	584,971
12,3	405,351	1,026	589,055
12,4	405,59	1,034	593,132
12,5	405,83	1,042	597,201
12,6	406,069	1,05	601,261

Q _{GN} (Kg/s)	Puissance (MW)	CSE (Thermie/KWh)	$T_{TG}(^{\circ}C)$
12,1	403,938	1,013	561,718
12,5	404,868	1,044	577,564
12,6	405,101	1,052	581,507
12,7	405,335	1,06	585,441
12,8	405,568	1,068	589,368
12,9	405,802	1,075	593,288
13	406,036	1,083	597,2
13,1	406,271	1,091	601,104

À 520 Kg/s d'air.

À 550 Kg/s d'air.

Q _{GN} (Kg/s)	Puissance (MW)	CSE	$T_{TG}(^{\circ}C)$
		(Thermie/KWh)	
12,8	404,1848735	1,071668012	573,038
13,2	405,085	1,103	576,774
13,3	405,311	1,11	580,503
13,4	405,537	1,118	584,225
13,5	405,763	1,125	587,941
13,6	405,99	1,133	591,649
13,7	406,217	1,141	595,351
13,8	406,443	1,148	599,046
13,9	406,671	1,156	602,734

À 580 Kg/s d'air.

Q _{GN} (Kg/s)	Puissance (MW)	CSE (Thermie/KWh)	T _{TG} (°C)
13,5	404,415	1,129	561,853
14	405,508	1,168	579,603
14,1	405,727	1,176	583,134
14,2	405,946	1,183	586,66
14,3	406,166	1,191	590,179
14,4	406,385	1,199	593,692
14,5	406,605	1,206	597,199
14,6	406,825	1,2144	600,7

Q _{GN} (Kg/s)	Puissance (MW)	CSE (Thermie/KWh)	$T_{TG}(^{\circ}C)$	
13,9	404,419	1,163	559,594	
14	404,633	1,171	563,041	
14,6	405,918	1,217	583,604	
14,7	406,133	1,224	587,011	
14,8	406,349	1,232	590,413	
14,9	406,564	1,24	593,808	
15	406,779	1,24	597,198	

À 600 Kg/s d'air.

À 620 Kg/s d'air.

Q _{GN} (Kg/s)	Puissance (MW)	CSE (Thermie/KWh)	$T_{TG}(^{\circ}C)$
14,8	405,500	1,235	574,675
14,9	405,710	1,242	577,991
15	405,921	1,250	581,301
15,1	406,132	1,258	584,606
15,2	406,342	1,265	587,905
15,3	406,554	1,273	591,200
15,4	406,765	1,281	594,488
15,5	406,976	1,288	597,772
15,6	407,188	1,296	601,050

ANNEXE E

Composition	Power (MW)	CSE (Thermie/KWh)	T _{TG} (°C)
0,80	399,2	1.2715	468,9
0,82	400,2	1.2683	485,7
0,84	401,2	1.2652	503
0,86	402,3	1.2617	520,8
0,88	403,4	1.2583	539
0,90	404,6	1.2545	557,8
0,92	405,8	1.2508	577
0,94	407,1	1.2468	596,8

ANNEXE F

Débit	Débit Gaz	Débit	Débit	Puissance	CSE	T_{TG} (°C)
mélange	Naturel	Hydrogène	d'air(Kg/s)	(MW)	(thermie/KWh)	
(Kg/s)	(Kg/s)	(Kg/s)				
10,4	10,2856	0,1144	440	403,603	0,894	569,1
10,8	10,6812	0,1188	440	404,623	0,9268	587,732
11,2	11,0768	0,1232	480	403,65	0,9635	562,848
11,6	11,4724	0,1276	480	404,622	0,9955	579,986
12	11,868	0,132	480	405,598	1,0274	596,981
12,4	12,2636	0,1364	520	404,621	1,0642	573,41
12,8	12,6592	0,1408	520	405,554	1,096	589,153
13,2	13,0548	0,1452	520	406,49	1,1276	604,775
13,2	13,0548	0,1452	560	404,62	1,1328	567,756
13,6	13,4504	0,1496	560	405,512	1,1646	582,420
14	13,846	0,154	560	406,408	1,1962	596,978
14,4	14,2416	0,1584	600	405,4747	1,2332	576,568
14,8	14,6372	0,1628	600	406,3333	1,2648	590,197

À 1,1% d'hydrogène.

À 2% d'hydrogène.

Débit	Débit Gaz	Débit	Débit	Puissance	CSE	T_{TG} (°C)
mélange	Naturel	Hydrogène	d'air(Kg/s)	(MW)	(thermie/KWh)	
(Kg/s)	(Kg/s)	(Kg/s)				
10	9,8	0,2	400	404,594	0,8762	596,35
10,4	10,192	0,208	440	403,573	0,9135	568,484
10,8	10,584	0,216	440	404,591	0,9463	587,092
11,2	10,976	0,224	480	403,619	0,9837	562,241
11,6	11,368	0,232	480	404,59	1,0164	579,357
12	11,76	0,24	480	405,564	1,0489	596,33
12,4	12,152	0,248	520	404,588	1,0865	572,789
12,8	12,544	0,256	520	405,519	1,119	588,512
13,2	12,936	0,264	520	406,454	1,1513	604,114
13,2	12,936	0,264	560	404,586	1,1566	567,145
13,6	13,328	0,272	560	405,477	1,1890	581,790
14	13,72	0,28	560	406,371	1,2213	596,327
14,4	14,112	0,288	600	405,438	1,2591	575,944
14,8	14,504	0,296	600	406,296	1,2913	589,557

Débit	Débit Gaz	Débit	Débit	Puissance	CSE (the array is (KWth)	T _{TG} (°C)
(Kg/s)	(Kg/s)	(Kg/s)	d air(Kg/s)	$(\mathbf{N}\mathbf{I}\mathbf{W})$	(unermie/Kwn)	
10	9,703	0,297	400	404,56	0,8956	595,609
10,4	10,09112	0,30888	440	403,539	0,9338	567,786
10,8	10,47924	0,32076	440	404,556	0,9672	586,367
11,2	10,86736	0,33264	480	403,584	1,0055	561,551
11,6	11,25548	0,34452	480	404,553	1,0389	578,643
12	11,6436	0,3564	480	405,526	1,0721	595,591
12,4	12,03172	0,36828	520	404,550	1,1105	572,085
12,8	12,41984	0,38016	520	405,480	1,1437	587,785
13,2	12,80796	0,39204	520	406,413	1,1768	603,363
13,2	12,80796	0,39204	560	404,548	1,1822	566,446
13,6	13,19608	0,40392	560	405,437	1,2154	581,070
14	13,5842	0,4158	560	406,33	1,2484	595,588
14,4	13,97232	0,42768	600	405,398	1,2870	575,233
14,8	14,36044	0,43956	600	406,254	1,3199	588,826

À 2,97% d'hydrogène.

À 3,96% d'hydrogène.

Débit	Débit Gaz	Débit	Débit	Puissance	CSE	T_{TG} (°C)
mélange	Naturel	Hydrogène	d'air(Kg/s)	(MW)	(thermie/KWh)	
(Kg/s)	(Kg/s)	(Kg/s)				
10	9,607	0,3804	400	404,524	0,9112	594,855
10,4	9,9912	0,3956	440	403,504	0,9501	567,074
10,8	10,3755	0,4108	440	404,519	0,9841	585,627
11,2	10,7598	0,4260	480	403,548	1,0230	560,848
11,6	11,1441	0,4413	480	404,515	1,057	577,915
12	11,5284	0,4565	480	405,487	1,0909	594,837
12,4	11,9126	0,4717	520	404,512	1,1300	571,366
12,8	12,2969	0,4869	520	405,440	1,1637	587,043
13,2	12,6812	0,5021	520	406,372	1,1974	602,598
13,2	12,6812	0,5021	560	404,508	1,2029	565,736
13,6	13,0655	0,5173	560	405,397	1,2366	580,338
14	13,4498	0,5326	560	406,288	1,2702	594,835
14,4	13,8340	0,5478	600	405,356	1,3095	574,509
14,8	14,2183	0,5630	600	406,211	1,3430	588,082

Débit mélange (Kg/s)	Débit Gaz Naturel (Kg/s)	Débit Hydrogène (Kg/s)	Débit d'air(Kg/s)	Puissance (MW)	CSE (thermie/KWh)	T _{TG} (°C)
10	9,505	0,495	400	404,488	0,9352	594,088
10,4	9,8852	0,5148	440	403,468	0,9750	566,349
10,8	10,2654	0,5346	440	404,482	1,0100	584,874
11,2	10,6456	0,5544	480	403,511	1,0499	560,133
11,6	11,0258	0,5742	480	404,477	1,0848	577,173
12	11,406	0,594	480	405,448	1,1196	594,070
12,4	11,7862	0,6138	520	404,473	1,1597	570,635
12,8	12,1664	0,6336	520	405,399	1,1943	586,288
13,2	12,5466	0,6534	520	406,330	1,2288	601,819
13,2	12,5466	0,6534	560	404,468	1,2345	565,013
13,6	12,9268	0,6732	560	405,355	1,2691	579,593
14	13,307	0,693	560	406,245	1,3036	594,067
14,4	13,6872	0,7128	600	405,314	1,3439	573,773
14,8	14,0674	0,7326	600	406,167	1,3784	587,325

À 4,95% d'hydrogène.

À 5.94% d'Hydrogène.

Débit	Débit Gaz	Débit	Débit	Puissance	CSE (Thermie (KWh)	T _{TG(°C)}
melange	naturel	Hydrogene	d'air	$(\mathbf{M}\mathbf{W})$	(Inermie/Kwn)	
(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)			
10	9.406	0.594	400	404,452	0.9550	593,307
10.4	9.78224	0.61776	440	403,432	0.9957	565,611
10.8	10.15848	0.641552	440	404,444	1.0314	584,107
11.6	10.91096	0.68904	480	404,438	1.1078	576,419
12	11.2872	0.7128	480	405,407	1.1433	593,289
12.4	11.66344	0.73656	520	404,433	1.1842	569,890
12.8	12.03968	0.76032	520	405,358	1.2196	585,519
13.6	12.79216	0.80789	560	405,313	1.2960	578,835
14	13.1684	0.8316	560	406,202	1.3312	593,287
14.4	13.54464	0.85536	600	405,271	1.3724	573,024
14.8	13.92088	0.87912	600	406,123	1.4076	586,555

Débit	Débit Gaz	Débit	Débit	Puissance	CSE	$T_{TG^{\circ}C}$
mélange	naturel	Hydrogène	d'air	(MW)	(Thermie/KWh)	
(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)			
10	9.307	0.693	400	404.414	0.9748	592.512
10.4	9.67928	0.72072	440	403.395	1.0163	564.860
10.8	10.05156	0.74844	440	404.406	1.0528	583.327
11.6	10.79612	0.80388	480	404.399	1.1308	575.650
12	11.1684	0.8316	480	405.366	1.1670	592.494
12.4	11.54068	0.85932	520	404.392	1.2088	569.132
12.8	11.91296	0.88704	520	405.316	1.2450	584.736
13.2	12.28524	0.91476	520	406.243	1.2809	600.219
13.6	12.65752	0.74248	560	405.270	1.322	578.063
14	13.0298	0.9702	560	406.157	1.3589	592.491
14.4	13.40208	0.99792	600	405.227	1.400	572.261
14.8	13.77436	1.02564	600	406.078	1.4368	585.770

À 6.93% d'Hydrogène.

À 7.92% d'Hydrogène.

Débit mélange (Kg/s)	Débit Gaz naturel (Kg/s)	Débit Hydrogène (Kg/s)	Débit d'air (Kg/s)	Puissance (MW)	CSE (Thermie/KWh)	T _{TG°C}
_	_	_	_			
10	9.208	0.792	400	404.376	0.9946	591.702
10.8	9.94464	0.85536	440	404.367	1.0742	582.532
11.6	10.68128	091872	480	404.359	1.1538	574.868
12	11.0496	0.9504	480	405.324	1.1907	591.685
12.4	11.41792	0.98208	520	404.351	1.2732	568.360
12.8	11.78624	1.01376	520	405.273	1.2306	583.939
13.2	12.15456	1.04544	520	406.199	1.3070	599.396
13.6	12.52288	1.07712	560	405.226	1.3498	577.276
14	12.8912	1.1088	560	406.112	1.3865	591.682
14.4	13.25952	1.14048	600	405.183	1.4294	571.484
14.8	13.62784	1.17216	600	406.032	1.4660	584.972

Débit	Débit Gaz	Débit Hudrogàna	Débit d'air	Puissance	CSE (Thormio/KW/h)	$T_{TG^\circ C}$
(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)		(Therme/Kwii)	
10	9.11	0.89	400	404.338	1.0142	590.878
10.8	9.8388	0.9612	440	404.327	1.0954	581.723
11.2	10.2032	0.9968	440	405.339	1.1331	599.960
11.6	10.5676	1.0324	480	404.318	1.1766	574.071
12	10.932	1.068	480	405.281	1.2142	590.860
12.4	11.2964	1.1036	520	404.309	1.2577	567.574
12.8	11.6608	1.1392	520	405.229	1.2954	583.127
13.2	12.0252	1.1748	520	406.153	1.3328	598.559
13.6	12.3896	1.2104	560	405.182	1.3765	576.476
14	12.745	1.246	560	406.066	1.4139	590.857
14.4	13.1184	1.2816	600	405.137	1.4576	570.693
14.8	13.4828	1.3172	600	405.985	1.4950	584.158

À 8.90% d'Hydrogène.

À 9.89% d'Hydrogène.

Débit	Débit Gaz	Débit	Débit	Puissance	CSE	$T_{TG^{\circ}C}$
mélange	naturel	Hydrogène	d'air	(MW)	(Thermie/KWh)	
(Kg/s)	(Kg/s)	(Kg/s)	(Kg/s)			
10	9.011	0.989	400	404.298	1.0340	590.038
10.8	9.73188	1.06812	440	404.286	1.1168	580.898
11.2	10.09232	1.10768	440	404.296	1.1581	599.105
11.6	10.45276	1.14724	480	405.276	1.1966	573.260
12	10.8132	1.1868	480	404.238	1.2410	590.020
12.4	11.17364	1.22636	520	404.266	1.2823	566.773
12.8	11.53408	1.26592	520	405.185	1.3207	582.301
13.2	11.89452	1.30548	520	406.107	1.3589	597.706
13.6	12.25496	1.34504	560	405.136	1.4034	575.660
14	12.6154	1.3846	560	406.019	1.4415	590.018
14.4	12.97584	1.42416	600	405.091	1.4861	569.887
14.8	13.33628	1.46372	600	405.937	1.5242	583.330