Christiane Bonnelle
Guy Blaise
Claude Le Gressus
Daniel Tréheux

Les isolants

Physique de la localisation des porteurs de charge

Applications aux phénomènes d'endommagement

Lavoisier

Index

A I molecume on I	Cathodoluminescence 9
V southers manuary 1	Centre
Accumulation 2	– E 19
Adherence 223	– E' 22
Adnesion 3	– F 19
Adsorption 8	- F ⁺ 19
Al_2O_3 18	- H 20
Anisotropie 100	
Arborescence 2	- R 19
Arrhenius 32	-n 24
Artefact 1	profond 24
Atomes métastables 93	Céramique 2
Auger 42	Champ
Autopropagation 86	- cristallin 1
to the outer trivery to the	- critique 7
But mundarswine land	- de déplacement 33
Bande de conduction 14	- de Lorentz 34
Bande d'énergie 8	de polarisation 7
Bande interdite 16	- interne de double couche 131
Belby 227	Charges
Biomatériaux 2	- d'espace 35
Bloch 13	- décharges 100
Boersch 3	- d'influence 120
Bragg 11	Claquage 1
Brillouin 11	- de surface 3
	- en volume 261
(C	Collisions élastiques 42
Capacité calorifique 27	Composite 2

© Lavoisier - La photocopie non autorisée est un délit

-Stark 23	- Schottky 63	- Poole-Frenkel 45	- couronne 94	Effet	Éclateurs à gaz 3	- mésoscopique 2	- macroscopique 2	- atomique 2	Échelle	т	Duane-Hunt 163	Désorption 8	Depiégeage 43	Densité critique 4	 de type moléculaire 19 	– de Schottky 19	- de Frenkel 19	- chargé 4	- atomique 18	Défaut 1	Debye-Waller 12	Debye 12	D	Curie-von Schweidler 162	Courant chimique 8	- de potentiel 139	- cristallographique 139	Contraste	Contraintes résiduelles 87	- ohmique 87	- injectant 87	-bloquant 87	Contact	- diélectrique optique 34	- diélectrique 33	Constante	- thermique 8	- ionique 32	- électronique 28	-électrique 28	Conduction	
Haute tension 2	1		Gurney 63	Griffith 225	Gauss 145	Gap optique 16	G		Fréquence de saut 19	Franck-Condon 47	Fowler-Nordheim 64	Fonction travail 62	Fluence 72	Flexion 227	Fermi-Dirac 14	Faisceau d'électron 4	-d'influence 121	- de pertes 40	Facteur	T		Expresion 2 Extension 14	Exothermique 2	Exo-émission 3	Exciton 17	Éthylène-propylène fluoré 111	- d'énergie électronique 10	- métastable 2	État	Espace de Fourier 10	Entropie 31	Enthalpie 31	- libre 31	- de cohésion 17	- d'activation 19	Énergie	Endommagement 2	Émission explosive 3	Électron-phonon 8	Électroaffinité 62	-tunnel 28, 46	100
-	_			_	-		-	chane	restin	0.000										_	_				_	_	_	_	_	_		_		_				_	_	_	_	
Nylon 104	- « profond » 23	- de Fermi 14	Niveau	Neutralisation d'ions 93	Nernst-Einstein 32	Z		Multiphonon 47	MOS 117	Miroir 119 Mobilité 1	Microscopie à balayage 2	MgO 9	Meyer-Neldel 49	– pondérale 109	– électroacoustique 109	– de l'onde thermique 109	- de l'onde de pression 109	Méthode	Maxwell 33	Maille 0	Madelino 17	≤	Localisation 1	Liaisons pendantes 20	Laser 5			Kröger-Vink 184	Klystron 3	Kerr 108	~	Illiniseque 101	Intrincación 101	Interactions inélastiques 42	Indiana de défente 3	Indice de réfraction 39	Indentation 226	- secondaires 139	- rétrodiffusés 139	Images en électrons		

S

Saphir 1 Silice amorphe 123

SiO₂ 17

Spectroscopie d'émission X 18

Surface spécifique 183

Température isocinétique 49 Temps de relaxation 35 Thermalisation 42 TiO₂ 154 Transitions multiphonons 8

Travail de sortie 88

Triboélectricité 92

Van der Waals 244

Verre 2

Vieillissement 3

Volume

- d'activation 98

- d'interaction 99

Von Hippel 218

W

Weibull 180 Wigner-Seitz 11

 $Y_2O_3 107$

U

Usinage 227 Usure 1

Composition et mise en pages

SMB

17, rue Auguste Frot 77590 Bois le Roi

Imprimé en France par EMD S.A.S. 53110 Lassay-les-Châteaux Dépôt légal : octobre 2010 N° d'imprimeur : 24002 N° 1229 – GP 80°

Christiane Bonnelle est professeur émérite à l'université Pierre et Marie Curie où elle a notamment dirigé le laboratoire de chimie physique matière et rayonnement.

Guy Blaise est docteur és sciences et professeur émérite de l'université Paris XI où il a effectué sa carrière d'enseignant et de chercheur Claude Le Gressus est docteur ès sciences appliquées et ingénieur à l'INSA de Lyon. Il est également consultant dans le domaine des isolants.

Daniel Tréheux est docteur ès sciences physiques et diplômé de métallurgie spéciale (INSTN).
Il est également ingénieur à l'École Centrale de Lyon (ECL).

Spécialistes reconnus des isolants, les quatre auteurs ont uni leurs compétences dans les domaines fondamentaux et appliqués pour que la recherche conduite sur des matériaux modèles aboutisse à des considérations pratiques validées par l'expérience et appliquées à des matériaux industriels complexes.

Les problèmes technologiques associés à la fabrication et à l'utilisation des matériaux isolants demeurent nombreux et sont souvent récurrents dans beaucoup de secteurs industriels. Cette situation reflète les insuffisances des théories de l'endommagement des isolants.

Les isolants propose ainsi un nouveau modèle d'endommagement des isolants permettant d'en prévoir le comportement et décrit une méthode de mesures des grandeurs préconisées par ce modèle. L'ouvrage présente :

- · les phénomènes de claquage, de fracture et d'usure expliqués à travers ce modèle ;
- des applications à des problèmes technologiques variés et plusieurs stratégies d'amélioration des matériaux;
- · les caractérisations à effectuer dans un microscope électronique à balayage pour évaluer la qualité des isolants.

L'exposé de cette méthode comporte plusieurs développements originaux essentiels à la maîtrise technologique de ce type de matériaux. Les résultats obtenus sur échantillons de laboratoire permettent ainsi de poser les bases d'une ingénierie des défauts destinée à adapter tout isolant industriel (polymère, céramique, porcelaine, composite...) aux contraintes qui lui sont imposées (température, pression, champ électrique et rayonnements ionisants).

Cet ouvrage constitue un mémento original destiné à servir de guide pratique à des ingénieurs et à des chefs de projet concernés par la maîtrise technologique des isolants. Il contribuera aussi à la formation des étudiants et à la sensibilisation des chercheurs à de nouvelles approches fondamentales des isolants.

