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Abstract: 

The purpose of this memorandum is the study of the open bosonic string 

theories in the presence of D-branes. 

Essential results are obtained: 

- The mass operator is modified leading to a theory with no tachyon. 

- Coherence between the development of the partition function and the 

degeneration of states for each mass level.  

- Apart from the ordinary case that we find and which confirms that the 

presence of parallel D-branes of the same dimensionality does not 

modify the positive anomaly in the central term of the Virasoro algebra. 

Keywords: 

D-branes, spectrum, partition fonction, Virasoroalgebra. 
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Résumé : 

L'objet de ce mémoire est l'étude de la théorie  d'une corde bosonique 

en présence de D-brane. 

Les résultats obtenus se résument comme suit : 

- Modification  de l’opérateur de masse impliquant entre autre l’absence 

de tachyons. 

- Cohérence entre le développement de la fonction de partition et la 

dégénérescence des états pour chaque niveau de masse. 

- En dehors du cas ordinaire qu’on  retrouve et qui confirme que la 

présence de D-branes parallèles de même dimensionnalités ne modifie 

en rien l’anomalie positive dans le terme central de l'algèbre de 

Virasoro. 

 

:Mots clés 

 D-branes, spectre, fonction de partition, algèbre de Virasoro. 
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Introduction 

The study of strings and D-branes has been a topic of interest in physics for several 

decades. Dirichlet-branes, or D-branes for short, have moved to center stage in 

string theory In a relatively short time they have gone from being esoteric, and 

largely ignored, extended objects that existed in certain string theories to playing a 

key role in the present understanding of non-perturbative dynamics and duality in 

string theory. 

One reason that the importance of D-branes was overlooked is that they are 

associated with open strings and, at the perturbative level, closed string theory 

appears much less promising than open string theories, such as the heterotic string 

theory. With the development of string duality, attention shifted towards non-

perturbative issues including solutions, and it was realized that D-branes had 

precisely the required attributes to be partners with fundamental string states 

under duality transformations. This realization, along with the fact that D-branes 

are considerably simpler to describe than other string solutions and often allow 

explicit calculations in places where only speculations went before, led to an 

explosion of activity involving D-branes that is still going strong. 

The aim of this work is to provide an introduction to open bosonic strings and D-

branes. We will begin with a brief overview of the fundamental principles of string 

theory, including the concept of spacetime and the quantization of strings. We will 

then introduce the concept of D-branes, which are subspaces of spacetime on 

which open strings can end. We will discuss the properties of D-branes and their 

role in string theory. Finally, This paper is intended to provide a foundation for 

further study of the physics of open bosonic strings and D-branes in the context of 

D-branes and their role in string theory. 

In this paper, we set up the notation needed to describe D-branes, and then we 

state the appropriate boundary conditions. We let d denote the total number of 

spatial dimensions in the theory, in the present case, d= 25. The total number of 

space time dimensions is D=d+1=26. A Dp-brane with p < 25 extends over a p-

dimensional subspace of the 25-dimensional space.  

The thesis is presented as follows: 

The first chapter aims to introduce open string theory and Quantization 
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In the second chapter we start with openbosonic string on Dp-branes, we will study 

the spectrum and its degeneracy which will be confronted with the development of 

the partition function. 

In the third chapter, we will focus on the study of open bosonic string between two 

parallelIDp-branes, in this case, where the open string is between two Dp-branes in 

parallel we will also develop the calculation of the Virasoro algebra. 

Chapter four will examine the open bosonic string between two Dp-, Dq-branes in 

paralle. 
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Open string 
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1.1.Open string 

1.1.1.Equations of motion of the open bosonic string 

The bosonic string action is given by: 

   ∫   
   

   
 ∫   

 

  
                                                                                 (1.1) 

when: 

   
  

    
0( ̇    )

 
 ( ̇      )1

 

 
                                                                   (1.2) 

From a variation    (principle of least action       ) corresponding to a small 

variation. 

              with     (     )      (     )and      (        )arbitrary 

The action have to be: 
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The first term vanished when the initial and finale position of the string are taken 

fixed. The equations of motion are given by: 
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                                                                        (   ) 

With the boundary conditions: 
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(       )                                                              (1.5) 

We define: 
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( ̇  )    (  )  ̇ 
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(  ) 
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Which is the conjugate moment     (     )  describing the dynamics of the system 

and verifying the canonical Poisson brackets: 

*   (     )     (      )+  *   (     )     (      )+                                   (1.7) 

*   (     )     (      )+        (    )                                                        (1.8) 

   (     ) and    (     )are considered as independent dynamic variables. 

And:      

    (     )   
  

    
  

 

    

( ̇  )    ( ̇)
 
   

√( ̇  )
 
 ( ̇)

 
(  ) 

                                                       (1.9) 

(   denotes the points of the string). 

The invariance of the action under the Lorentz transformations (            )  

with the relations (1.4) and (1.5) leads to the energy and angular momentum of the 

string. We can demonstrate, in particular, which the flow of energy momentum 

and moment angle inside the string, which is specified by: 

    ( )   ∫   
  

  
    (     )Total energy moment of the string  

     ( )   ∫   
  

  
 (             )Total angular momentum of the string  

The parameterization symmetry of the action results in the existence of equations 

of Constraints between     (     )       (     )  given by the identities: 

2    
   

  
  

         

                                                                      (    ) 

Now the Equations of motion (1.4) are nonlinear, a particular choice of gauge 

orthogonal makes it possible to reduce them to the following Dalembert 

equations: 

  ̈(     )      (     )                                                              (1.11) 

And the relations (1.10) reduce to the equations 

{ ̇
        
 ̇    

                                                                               (1.12) 
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Which describe a system of orthonormal coordinates on the world-sheet. So the 

equations (1.6) and (1.9) become: 

  (     )  
 

    
 ̇                                                                                      (1.13) 

   (     )   
 

    
                                                                                  (1.14) 

1.1.2. Solutions to the Equations of Motion 

The general solution of the equation of motion (1.10) is given by: 

  (     )   
 

 
(  (   )    (   ))                                           (1.15) 

In the case of the open string, where the coordinate   varies between         , 

the fields    (      ) Satisfy boundary conditions. There are two types of ends for 

open strings: 

1- Those which obey the Neumann boundary condition when the two 

extremities of the string are free 

   
  (             )                                                       (1.16) 

2- Those which remain fixed in a hyper plane satisfy the boundary condition of 

Dirichlet when both ends of a moving string are fixed 

   (             )                                                           (1.17) 

Note here that the Neumann condition respects the Poincare invariance and 

therefore the conservation of the energy-momentum tensor. That of Dirichlet 

breaks this invariance and there is a possibility of momentum loss for directions 

parallel to the edge of the surface. This is the indication of the presence of an 

extended object on which the string rests. This is also the origin of the name Dp-

brane, the D refers to the Dirichlet conditions. When both ends of the string are 

free, the Neumann boundary conditions allow equation (1.15) to be written in the 

following form. 

   (     )             √   ∑*  
 ( )    (    )    

  ( )    (   )+      

 

   

 

(1.18) 
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Where     is an arbitrary constant with length dimension. Xu and pu are two 

integration constants that correspond to the coordinate of the centre of mass and 

the momentum total length of the string respectively,   
  represent the modes of 

vibration of the string. If we define: 

  
 
   

 ( )    (    )       
  ( )    (   )                                                    (1.19) 

  
 
                                                                                                                   (1.20) 

  
 
 √      

 
                       

 
   

  
                                   (1.21) 

We can write the equation (1.18) in the form: 

    (     )    
 
 √     

 
   √   ∑    

 
   (    )       

                    (1.22) 

especially: 

 ̇    (     )     (     )  √   ∑   
 
   (   (    )) 

                                   (1.23) 

The Virasoro generators are given by: 
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        (   ) (   
(   ) 

    
) 

                                   
 

   
 ∑       

  
                                                                   (1.24) 

The open string Hamiltonian is given by  

   ∫   (   
     )

  

  

 

  ∫   (   
    

 

    
((     )     ))

  

  

 

   ∫   .     
   

     /
  

  
                                                            (1.25) 

The special case       and the condition        allows the mass of the string 

to be written as follows 
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The equation: 

       
 

  
∑       

  

   

                                                               (    ) 

Which is the relativistic equivalent of the energy expression of a vibrating violin 

string, and the angular momentum can be written: 

                ∑
 

 
(   

 
   

     
   

 
)

 

   

                       (    ) 

1.2. Quantification 

When    (     ) and    (     ) are treated as independent, the Virasoro 

constraints are incompatible with Poisson brackets and hence canonical 

quantization is not more direct, which leads us to use two methods of 

quantification: 

Covariant quantization: 

This method treats coordinates and conjugate moments as independent and the 

constraints (Virasoro conditions) will be considered as initial conditions on the 

wave functions. 

Quantization in the transverse gauge: 

Before quantifying the system, we solve the constraint equations within the 

framework of a specific choice of a parameterization and, this will lead us to keep 

only the variables effectively independent dynamics. 

1.2.1. Covariant gauge 

Recall that    (     )   is the space-time string coordinate and    (     ) is the 

moment associated with the string. 
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Commutations relations 

We postulate the following commutations relations: 

,   (     )     (      ) -         (    )                                                (    ) 

,   (     )     (      ) -   ,    (   )    (      )-                            (    ) 

In terms of the dynamic variables    ,   and 
 
   they become : 

,          -                                                                                                     (    ) 

[
 
     

 
   ]           

                                                                                   (    ) 

Where   and   are the center of mass variables and the   can be perceived 

(analogy to the quantum case of the harmonic oscillator) as creation or 

annihilation operators for negative or positive n respectively. 

Now, it is fundamental to note that the Fock space generated by the application at 

the ground state of the   

  
 is not positive, because the temporal components 

have   

 
 minus sign, unusual in their commutation relation: 

,  
       

    -                                                                                                (    ) 

And therefore a state of the form   
    0 has a negative norm. It is must therefore 

be taken to eliminate these Ghost states. 

You can now match classic Virasoro generators with operators 

   ∑         
 

    
  

 

    

                                                                                (    ) 

The definition of the operator    poses a problem of order ambiguity, an arbitrary 

constant could then be added to eliminate this problem:        ( )the 

Hamiltonian becomes: 

       ∑      
 ( )

  

 

   

                                                              (    ) 

Contrary to the above, the angular momentum remains the same: 



16 
 

               ∑
 

 
(   

 
  
     

   
 
)                               (    )

 

   

 

The annulation condition of    which gave the condition on the mass   of the 

string written as: 

(    ( ))⟨ ⟩                                                            (    ) 

And the physical states 
  

satisfy the following constraints: 

 n 
  

                                                                                                (    ) 

(    ( )) 
  

                                                                                       (    ) 

Because the metric    is not a positive, we cannot say that there are no ghosts 

among these physical states. The no-ghost-theorem allows building a Set of so-

called transverse operators verifying some fundamental properties which ensure 

that the transverse operators transform a physical state into other physical states 

and in particular, when applied to vacum| ⟩ they describe a subspace   of physical 

states with a positive norm. The theory is then free of ghosts only if ( ( )  

        )  or ( ( )          )  is the space-time dimension. And this is 

precisely the necessary condition for a consistent string theory. 

Virasoro algebra : 

Virasoroa algebra provides an extremely powerful frame work for uniting the 

concepts of Symmetry and locality, where the solution of the equations of motion 

of an open bosonic string leads the appearance of some constraints which are 

expressed in terms of an infinite set of Initial condition. 

Virasoro operators are defined by: 

                           
 

 
∑    

 
                                                                                    (    )

   

 

And the commutator between two operators is given by [1] 

                    ,      -  (   )                                                               (    ) 
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This commutator is called Virasoro’s algebra but with a possible quantum 

correction in the case where m + n≠ 0. Such a correction has, in the most general 

case, the form of function of    we therefore obtain: 

           ,     -  (   )        ( )                                                             (    ) 

The algebra obtained is called the central extension of the Virasoro algebra and 

    ( ) the anomaly of this algebra. We have trivially   ( )     (–   )  and 

  ( )     , and it is therefore we determine   ( ) for         Using the Jacobi 

identity  

0   ,     -1                                                                                (    ) 

We obtain: 

,(   ) ( )  (   ) ( )  (   ) ( )-         

Which is equivalent to: 

(   ) (   )  (    ) ( )  (    ) ( )    

For        

(   ) (   )  (   ) ( )  (   ) ( )    

and so 

                        (   )  
(   ) ( )  (   ) ( )

(   )
                                         (    ) 

The general form of the solution of this recurrence relation is 

                    ( )     
                                                                                       (    ) 

The determination of the constants is done by calculating the following mean 

values ⟨ |,     -| ⟩  and ⟨ |[       ]| ⟩ [1] 

Virasoro’s algebra then takes the following form: 

,      -  (   )      
 

  
 (    )                                (    ) 
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1.2.2. The transverse gauge 

Here, on the other hand, we first solve the constraint equations, by making a 

specific choice for the parameterization  and   what leads us to the dynamic 

variables effectively independent   (     )    (     )    
  ,       

    This is the 

transverse gauge, and in this gauge, instead of considering directions 

            , we use the directions              of the cone of light where 

          and 

   
 

√ 
(     ) 

   
 

√ 
(     ) 

Commutation relations  

We postulate the following commutation relations: 

[  (   )    (    )]       (    )                               (    ) 

[  (   )    (    )]  [  (     )    (    )]                                 (    ) 

And 

,   
     -                                                                              (    ) 

Other commentators are zero 

[   
     ]                                                                                                (    ) 

[  
     (   )]   [  

     (    )]                                                     (    ) 

[      (   )]   [      (    )]                                                  (    ) 

The commentator between the modes is given by 

[
 
    

 
 ]                                                         (    ) 

Note that the mode   
  Commutes with all oscillators, so it is proportional to the 

moment of the string according to the formula 


 
  √      
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Mass operator 

The mass operator is defined by : 

                                                                          (    ) 

Where    is the canonical conjugate in the direction    and    is the canonical 

conjugate in the direction   . These are connected by the generator    through the 

relation: 

 

  
         

The operator    can be decomposed in the following form: 

   
 

 
∑   

   
 

   

 

 
 

 
  

   
  

 

 
∑   

   
 

 

   

 
 

 
∑  

    
 

 

   

 

And to order the last term we write: 
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∑   

    
 

 

   

 
 

 
∑(          )

 

   

 

 

 
 

 
∑   

    
 

 

   

 
(   )

 
∑   

 

   

  

The expression of the quantum    becomes: 

   
 

 
  

   
  ∑   

    
 

 

   

 
(   )

 
∑ 

 

   

                                     (    ) 
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This expression contains a divergent term, this term plays the role of the additive 

constant mentioned before and which will be denoted a: 

  
(   )

 
∑ 

 

   

 

By introducing the zeta  ( ) function: 

 ( )  ∑
 

  

 

   

 

If  s = -1 

 (  )        

  
 

  
 

The equation (1.55) becomes: 

   
 

 
  

   
  ∑   

   
  

(   )

  

 

   

                             (    ) 

So substituting (1.57) into (1.54) leads to the mass operator formula which we 

write in terms of operators of creations and annihilations: 

   
 

  
0 

(   )

  
 ∑   

    
 

 

   

1                                       (    ) 

Spectrum  

Consider Equations (1.58) and determine the mass spectrum of bosonic string 

states. 

Ground state 

  |       
 ⟩  

  

  

(   )

  
|       

 ⟩ 

When  |       
 ⟩ is vacuum state with impulse   
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(   )

  
 

     |       
 ⟩ Represent a tachyonic state. 

1St level excited 

After using the relation (1.52) which allows us to write the annihilation operators 

right of the creation operators we find: 

  (  
  |       

 ⟩)  
 

  
* 

(   )

  
  + (  

  |       
 ⟩) 

For the bosonic string D = 26 

     

  
  |       

 ⟩ Represents a vector state with spin equal to 1 and mass equal to 0 

(photon state) 

2ndExcited level 

The two excited levels are represented by two types of states: 

(  
  

  
  |       

 ⟩),(  
  |       

 ⟩) 

  (  
  

  
  |       

 ⟩)  
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(   )

  
  + (  

  
  
  |       

 ⟩) 

 
 

  
(  

  
  
  |       

 ⟩) 

   
 

  
 

(  
  

  
  |       

 ⟩)represents a state tensoriel with mass 

  (  
  

  
  |       

 ⟩)  
 

  
* 

(   )

  
  + (  

  
  
  |       

 ⟩) 

 
 

  
(  

  
  
  |       

 ⟩) 

(  
  |       

 ⟩)Represents a vector state with mass 
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3rd excited level 

The states are defined as follows: 

(  
  

  
    

  |       
 ⟩) (  

  
  
  |       

 ⟩),(  
  |       

 ⟩) 

  (  
  

  
    

  |       
 ⟩)  

 

  
(  

  
  
    

  |       
 ⟩) 

  (  
  

  
  |       

 ⟩)  
 

  
(  

  
  
  |       

 ⟩) 

  (  
  |       

 ⟩)  
 

  
(  

  |       
 ⟩) 

The three states represent states with mass. 

Degeneracy 

The degeneracy of each type of state regrouped in table below: 

Level Type d'état Degeneracy 

0 |       
 ⟩ 1 

1   
  |       

 ⟩ (   ) 

2   
  |       

 ⟩ 

  
  

  
  |       

 ⟩ 

(   ) 

(   ) +
(   )(   )

 
 

3   
  |       

 ⟩ 

  
  

  
  |       

 ⟩ 

  
  

  
    

  |       
 ⟩ 

(   ) 

(   ) (   )

 (   )(   )

 
(   )(   )(   )

 
 

Table 1.1: Degeneracy of four first levels in open bosonic string in D-branes 
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Partition function 

The study of the spectrum is based on the construction of the generative function 

of the system. The degeneracy of states for each level of mass increases 

exponentially, this degeneracy is obtained from a generating function called the 

partition function, which is given by: 

 ( )  ∑  ( )        

 

   

 

Where d(n) is the degeneracy at excited level n. 

 For bosonic strings, the function is defined by: 

 ( )  ∑   ( )  

 

   

 

With 

  ( ) : Number of states for each level  

       ∑    
                     

      (   )

 

   

 

This leads us to write: 

 ( )     ∑     
   

 

 

   

  

We have: 

    ∑⟨ | | ⟩

 

 

It is easily shown that: 

 ( )  ∑  ⟨  | ∑ ∑     
   

    
   

 
   |   ⟩
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 ∏∏ ∑     

 

    

   

   

 

   

  

 ∏(
 

    
)
    

   

 

The expansion limited to the close proximity of x = 0 gives: 

 ( )    (   )  
 

 
(   )(   )  

 (   ) *  (   )  (   )  
(   )(   )

 
+      

The coefficients of this polynomial effectively represent the degeneracy of the 

states for each mass level that were represented in (Table 1.1) 
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Chapter 2 

Quantizing of open bosonic string on D-branes 
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The annulations of the variations of the boundary term and the two-dimensional 

integral term is required by the equations of motion for the universe's surface in 

order to produce both the equations of motion and the boundary conditions, 

which specify the points in space-time where the ends of the open strings are 

connected. These spots collectively make up what is known as a Dirichlet 

membrane, or D-brane. A D-brane of dimension p, also known as a Dp-brane, 

propagates in the temporal direction and creates a volume of the universe of 

dimension      . 

By extension, we assume that we are dealing with a D25-brane that completely fills 
space-time when we have Neumann boundary conditions on all of the coordinates. 

2.1. Description of Model 

The bosonic coordinates verify boundary conditions of the Neumann type for the 

indices            and Dirichlet type for the d-p transverse coordinates 

           .The coordinates of the string             called tangential, satisfy the 

Neumann conditions at the two free ends of the string (type NN ) 

     (   )|       (   )|                                                              (   ) 

The coordinates   satisfying Dirichlet conditions at the two extremities of the 

string (known as of type DD) break down as follows  

  (   )   ̅  √   ∑
 

 
   

  
    (    )                          (   ) 

These so-called normal coordinates satisfy the Dirichlet boundary conditions 

  (   )|      (   )|     ̅                     (   ) 

Notice that in equation (2.2) the moment has disappeared and therefore the zero 

modes   
    √      and the commutation relations are given by 

0  (   )   .    /1           (    )                                  (   ) 

Which will be equivalent to 

,  
    

 -                                             (   ) 
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2.1. Mass operator: 

In the calculation of    we have two directions tangential and normal. Therefore, 

we have two types of vibration modes. 

   
 

 
  

   
  

 

 
∑    

   
 

 

   

 
 

 
∑    

   
 

 

   

 
 

 
∑   

    
 

 

   

 
 

 
∑   

    
 

 

   

                                                                                           (   ) 

Let's introduce the expression's usual order. For NN-type modes, we obtain 

 

 
∑   

    
 

 

   

  
 

 
∑(   

   
 

 

   

 [  
      

 ]) 

                                   ∑(   
   

   
 

 

 

   

∑     

 

   

       

 

                                                            
 

 
∑    

   
 

 

   

 
(   )

  
                               (   ) 

And for DD type modes

 

 
∑   

    
 

 

   

  
 

 
∑(   

   
   [  

     
 ])

 

   

 

                                     
 

 
∑    

   
   

 

 
∑    

 

   

 

   

       

  
 

 
∑    

   
   

 

   

(   )

  
                            (   ) 
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     ∑    

   
 

 

   

  ∑    
   

   

 

   

(   )

  
                              (   ) 

Here D indicates the dimension of space where       and       

So 

    
 

 
  

   
    ∑    

   
 

 

   

  ∑    
   

                                        (    ) 

 

   

 

The mass operator is given by 

  
             

  
 

  
(    )       

                 
 

  
.    ∑∑ 

 

   

 

   

  
    

  ∑ ∑    
  

 

     

 

   

  
 /            (    ) 

            
 

  
(        ) 

2.2. Spectrum 

Ground state 

  
 |     ⃗⃗⃗⃗ ⟩  

 

  
.    ∑∑ 

 

   

 

   

  
    

  ∑ ∑    
  

 

     

 

   

  
 / |     ⃗⃗⃗⃗ ⟩ 

   
 

  
|     ⃗⃗⃗⃗ ⟩                                             

1st excited level 

This level contains two types of states 

  
  |     ⃗⃗⃗⃗ ⟩                 
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  |     ⃗⃗⃗⃗ ⟩                      

We have 

[      ]              [      ]                                                       (    ) 

So 

  
 (  

  |     ⃗⃗⃗⃗ ⟩)                                    (    ) 

And 

  
 (  

  |     ⃗⃗⃗⃗ ⟩)                                                         (    ) 

Both states are zero mass, except that,   
  |     ⃗⃗⃗⃗ ⟩  is a photonic state that will be 

associated with the Maxwell field on the Brane while,   
  |     ⃗⃗⃗⃗ ⟩is a scalar in 

normal direction. 

2nd excited level 

States of this level are  

(  
  ||     ⃗⃗⃗⃗ ⟩) (  

  |     ⃗⃗⃗⃗ ⟩) (  
    

  |     ⃗⃗⃗⃗ ⟩)  

(  
    

  |     ⃗⃗⃗⃗ ⟩) (  
  

  
  |     ⃗⃗⃗⃗ ⟩) 

1)   
 (  

  |     ⃗⃗⃗⃗ ⟩)  
 

  
(  ∑ ∑    

   
   

 
     

  ∑ ∑    
   

     
 
     

 )(  
  |     ⃗⃗⃗⃗ ⟩) 

 
 

  
0(  

  |     ⃗⃗⃗⃗ ⟩)  ∑  
  

 

   

  
   

  |     ⃗⃗⃗⃗ ⟩  ∑   
  

 

   

  
   

  |     ⃗⃗⃗⃗ ⟩

 ∑  
    

   
  |     ⃗⃗⃗⃗ ⟩

 

   

 ∑  
    

   
  |     ⃗⃗⃗⃗ ⟩

 

   

1 

 
 

  
[(   

  |     ⃗⃗⃗⃗ ⟩)  ∑   
  

 

   

(      
  
  
 )|     ⃗⃗⃗⃗ ⟩] 
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[(   

  |     ⃗⃗⃗⃗ ⟩)  ∑   
  

 

   

   |     ⃗⃗⃗⃗ ⟩  ∑   
    

  

 

   

  
  |     ⃗⃗⃗⃗ ⟩] 

 
 

  
[(   

  |     ⃗⃗⃗⃗ ⟩)     
  |     ⃗⃗⃗⃗ ⟩] 

 
 

  
  
  |     ⃗⃗⃗⃗ ⟩                                                                                                (    ) 

2)   
 (  

  |     ⃗⃗⃗⃗ ⟩)  
 

  (  
  |     ⃗⃗⃗⃗ ⟩)                                                            (    ) 

3)   
 (  

    
  |     ⃗⃗⃗⃗ ⟩)  

 

  (  
    

  |     ⃗⃗⃗⃗ ⟩)                                               (    ) 

4)   
 (  

    
  |     ⃗⃗⃗⃗ ⟩)  

 

  (  
    

  |     ⃗⃗⃗⃗ ⟩)                                               (    ) 

5)   (  
  

   
  |     ⃗⃗⃗⃗ ⟩)  

 

  (  
  

   
  |     ⃗⃗⃗⃗ ⟩)                                            (    ) 

3rd excited level 

1)   (  
  |     ⃗⃗⃗⃗ ⟩)  

 

  (   
  |     ⃗⃗⃗⃗ ⟩)                                                           (    ) 

2)   (  
  |     

 ⟩)= 
 

  
(    

  |     
 ⟩)                                                          (    ) 

3)   (  
    

  |     ⃗⃗⃗⃗ ⟩)  
 

  (   
    

  |     ⃗⃗⃗⃗ ⟩)                                            (    ) 

4)   (  
  

   
  )|     ⃗⃗⃗⃗ ⟩  

 

  (   
  

   
  |     ⃗⃗⃗⃗ ⟩)                                          (    ) 

5)   (  
  

   
  )|     ⃗⃗⃗⃗ ⟩  

 

  (   
  

   
  )|     ⃗⃗⃗⃗ ⟩                                          (    ) 

6)   (  
     

  )|     ⃗⃗⃗⃗ ⟩  
 

  (   
     

  |     ⃗⃗⃗⃗ ⟩)                                         (    ) 

7)   (  
     

  
   

  |     ⃗⃗⃗⃗ ⟩)  
 

  (   
    

  
  
  |     ⃗⃗⃗⃗ ⟩)                             (    ) 

8)   (  
     

     
  )|     ⃗⃗⃗⃗ ⟩  

 

  (   
     

     
  |     ⃗⃗⃗⃗ ⟩)                         (    ) 

9)   (  
     

  
   

  |     ⃗⃗⃗⃗ ⟩)  
 

  (   
     

  
   

  |     ⃗⃗⃗⃗ ⟩)                           (    ) 

10)   (  
     

     
  )|     ⃗⃗⃗⃗ ⟩  

 

  (   
     

     
  |     ⃗⃗⃗⃗ ⟩)                          (    ) 

In ordinary case, there are only the vector fields, but here there are scalar fields 

and vector fields. 
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2.3. degeneracy 

Let us now calculate the degeneration of each level. 

Ground state 

The fundamental state has no degeneration, so the number of states is equal to 1. 

1
st

 excited level 

  
  |     ⃗⃗⃗⃗ ⟩         (   )  

  
  |     ⃗⃗⃗⃗ ⟩         (   )  

2
nd

 excited level 

{  
    

  }|     ⃗⃗⃗⃗ ⟩        (   )   
(   )(     )

 
 (   ) 

{  
    

  }|     ⃗⃗ ⃗⃗  ⟩        (   )  (   )(   )  

3rd excited level  

2

  
  

  
     

  

  
    

    
  

3 |     ⃗⃗⃗⃗ ⟩       2

(   )  (   )  (   )  (   )(     )

 
(   )(     )(     )

 

3   

{
 
 

 
   

  

  
    

  

  
    

  

  
    

    
  

}
 
 

 
 

|     ⃗⃗⃗⃗ ⟩       (   )   (   )(   )  (   )
(   )(     )

 
   

,
  
    

  

  
    

  
  
  

- |     ⃗⃗⃗⃗ ⟩       (   )  (   )(   )  (   )
(   )(   )

 
   

  
    

  
  
  |     ⃗⃗⃗⃗ ⟩      (   )  (   )(   )  

(   )(   )(   )

 
 

For the first three excited levels total degeneration is grouped in the following 

table 
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0 1 2 3 

1                
 

 
  

 

 
            

 

 
  

 

 
      

Table 2.2: Degeneracy of first three excited levels in open bosonic string on a D-

branes 

With 

           

                             

                                            

And 

S : Scalar , V : Vector , T2,T3 : Tensors 

2.4. Partition function 

 ( )  ∑  〈  
    

 |     |  
    

 〉

  
    

 

 

 ∑ ∑ [ 〈  
    

 |∑ ∑    
    

  
   

 
   |  

    
 〉 

〈  
    

 |∑ ∑    
    

  
     

 
   |  

    
 〉
]

 

   
   

 

  
   

 

 0∏∏∑    
 

 

  
 

 

   

 

   

1 0∏ ∏ ∑     
 

 

  
   

 

     

 

   

1 

  ∏(
 

    
)
    

   

∏(
 

    
)
    

   

                                                                     (    ) 

The development of  ( ) extended to       given 

 ( )    (   )  (
 

 
  

 

 
    )   ( 

 

 
  

 

 
     )   

                                                                                                               (    ) 

The coefficients of this function are identical to those in (Table 2.2), proving the 

coherence of model. 
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Chapter 3 

Open bosonic between two parallel Dp-branes 
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3.1. Description of Model 

The decomposition of DD type coordinates is written as follows  

  (   )   ̅ 
  ( ̅ 

   ̅ 
 )

 

 
 √   ∑

 

 
   

  
     (   )                 (   ) 

These coordinates satisfy the Dirichlet boundary conditions 

  (   )|     ̅ 
        (   )|     ̅ 

                            (   ) 

 

Figure 3.1: String between two parallel Dp-branes. 

The constants ̅ 
  and  ̅ 

  fix only D-branes and the separation  ̅ 
   ̅ 

  represents 

the distance between the two ends     and     , -. 

3.2. Mass operator 

The mass of a bosonic excited state is given by 

                                                 
   (

 ̅ 
   ̅ 

 

    
)

 

   
                                          (   ) 

Or .
 ̅ 
   ̅ 

 

    /
 

is the gap of the mass operator in the positive direction. 

3.3. Spectrum 

The string state takes the form |     ⃗⃗⃗⃗  ,   -⟩ or ,  - is the sector of the string on 

the two branes so that        . 
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Now and for the continuation we consider only the sector ,  - 

Ground state 

  
 |     ⃗⃗⃗⃗  ,  -⟩  *(

 ̅ 
 
  ̅ 

 

    
)

 

   
 + |     ⃗⃗⃗⃗  ,  -⟩ 

                                                 [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] |     ⃗⃗⃗⃗  ,  -⟩               (   ) 

If the separation between the two branes disappears, the usual tachyonic state is 

obtained. If the two branes are separated by the following particular distance: 

| ̅ 
   ̅ 

 |

    
 

 

√  
 | ̅ 

   ̅ 
 |    √                                                           (   ) 

Then, in this case, one obtains a state which represents a scalar field without mass 

(elimination of the tachyon). For a large separation, the ground state represents a 

scalar field with mass. 

1
st

 level excited 

             
  

|     ⃗⃗⃗⃗  ,  -⟩ 

  
 (  

  
|     ⃗⃗⃗⃗  ,  -⟩)  (

 ̅ 
   ̅ 

 

    
)

 

(  
  

|     ⃗⃗⃗⃗  ,  -⟩)                                     (   ) 

The state (  
  

|     ⃗⃗⃗⃗  ,  -⟩)represents a vector state with mass. 

  
 (  

  |     ⃗⃗⃗⃗  ,  -⟩)  (
 ̅ 
   ̅ 

 

    
)

 

(  
  |     ⃗⃗⃗⃗  ,  -⟩)                                    (   ) 

The state (  
  |     ⃗⃗⃗⃗  ,  -⟩)represents a scalar with mass. 

2
nd 

level excited 

We characterize five types of states: 

  (  
  

|     ⃗⃗⃗⃗  ,  -⟩)  [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (  

  
|     ⃗⃗⃗⃗  ,  -⟩)                   (   ) 
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  (  
  |     ⃗⃗⃗⃗  ,  -⟩)  [(

 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (  

  |     ⃗⃗⃗⃗  ,  -⟩)                   (   ) 

  (  
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)=[.

 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)               (    ) 

  (  
    

  |     ⃗⃗⃗⃗  ,  -⟩)=[.
 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
    

  |     ⃗⃗⃗⃗  ,  -⟩)                (    ) 

  (  
    

  |     ⃗⃗⃗⃗  ,  -⟩)=[.
 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
    

  |     ⃗⃗⃗⃗  ,  -⟩)               (    ) 

3
rd.

level excited 

  (  
  

|     ⃗⃗⃗⃗  ,  -⟩)  [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (  

  
|     ⃗⃗⃗⃗  ,  -⟩)                   (    ) 

  (  
  |     ⃗⃗⃗⃗  ,  -⟩)  [(

 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (  

  |     ⃗⃗⃗⃗  ,  -⟩)                  (    ) 

  (  
    

  
|     ⃗⃗⃗⃗  ,  -⟩)=[.

 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
    

  
|     ⃗⃗⃗⃗  ,  -⟩)               (    ) 

  (  
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)=[.

 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)                (    ) 

  (  
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)=[.

 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)               (    ) 

  (  
    

  |     ⃗⃗⃗⃗  ,  -⟩)=[.
 ̅ 
   ̅ 

 

    /
 

 
 

  ] (  
    

  |     ⃗⃗⃗⃗  ,  -⟩)               (    ) 

  (  
    

  
  
  |     ⃗⃗⃗⃗  ,  -⟩)

 [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (   

    
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)                      (    ) 

  (  
    

    
  |     ⃗⃗⃗⃗  ,  -⟩)

 [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (   

    
    

  |     ⃗⃗⃗⃗  ,  -⟩)                    (    ) 
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  (  
    

  
  
  |     ⃗⃗⃗⃗  ,  -⟩)

 [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (   

    
  

  
  |     ⃗⃗⃗⃗  ,  -⟩)                (    ) 

  (  
    

    
  |     ⃗⃗⃗⃗  ,  -⟩)

 [(
 ̅ 
   ̅ 

 

    
)

 

 
 

  
] (   

    
    

  |     ⃗⃗⃗⃗  ,  -⟩)                (    ) 

 

Noticed : 

In this case, the operator N is same as when a string is considered on a Dp-brane 

(last chapter), this lead to the same partition function and degeneracy, except that 

here the ground state is defined by |     ⃗⃗⃗⃗  ,  -⟩ . 

3.4. Virasoro  algebra 

Let us consider the Virasoro generators decomposed according to the types of 

coordinates       

  
      

     
                                                                   (    ) 

Remember that Virasoro operators are defined by: 

 

  
   

 

 
∑    

     

   

                                             (    ) 

  
   

 

 
∑    

     

   

                                             (    ) 

The calculation of the Virasoro algebra requires the determination of the following 

commentators ,  
     

  -and ,  
     

  -(all mixed switches are zero) 

 ,  
     

  -    

First, we will calculate the commutation between the Virasoro operators and 

the modes    , - 

[       
 ]  

 

 
∑ [    

       
 
]
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∑(    

 [      
 
]  [    

   
 
  ]    )

   

  

Using the relation (1.31) we find: 

[     
 
  ]  

 

 
∑(     

         
 
     (   )         

  )

   

 

       
 

 

Now, we are going to calculate the commutation between the Virasoro operators. 

 

,       -  
 

 
∑ [       

     ]

   

 

 

 
 

 
∑(    

 [       ]  [        
 

  ]    )

   

 

 

                                 
 

 
∑(      

        (   )      
     )

   

                 (    ) 

By replacing ( ) by (    ) in the first term, we obtain: 

,      -  (   )                                                                             (    ) 

This commentator is called Virasoro’s algebra but with a possible quantum 

correction in the case where m + n≠ 0. Such a correction has, in the most general 

case, the form of function of  , we therefore obtain: 

,     -  (   )        ( )                                                                   (    ) 

To determine the constants we calculate the following mean values  ⟨ |,     -| ⟩ 

And ⟨ |,         -| ⟩ (see annex B) wefind: 

,  
     

  -  (   )    
    

(   )

  
 (    )                           (    )    

By the same way, we obtain: 
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,  
     

  -  (   )    
    

(   )

  
 (    )                             (    )  

This lead to the total algebra: 

,  
      

   -  (   )    
     

(   )

  
 (    )                               (    )   

Compared to the usual Virasoro algebra, and by substitution(   )  (   ) 

The central term is unchanged and the model rest coherent 
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Chapter 4 

The open bosonic string between two parallel Dp-Dq-

branes 
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4. The open bosonic string between two parallel Dp-Dq-branes 

In this part, we examine open bosonic string between two parallel Dp- and Dq-

branes where  and   are integers satisfying             (Figure 2) , -. 

In addition of the NN and DD coordinates, we have a third type of coordinates are 

introduced called Neumann-Dirichlet ND, which we will note  

    or         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  knowing that the coordinates NN, the index       ̅̅ ̅̅̅ and for 

DD coordinates DD the index        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

Figure 4.2: String between two parallel  Dp-, Dq-branes 

The figure above illustrates that the coordinates along the   direction are 

tangential coordinates of type NN, the coordinates along the y direction are mixed 

coordinates of type    (N at      because   is tangent to the D2-brane and D at 

    because   and normal to the D1-brane) and the coordinates following the 

direction   are coordinates normal to bothbranes therefore of type DD: Here, the 

position of the Dp-brane is specified by the coordinates   
 ̅̅ ̅ and the Dq-brane is 

specified by the coordinates   
 ̅̅ ̅and   

 ̅̅ ̅ 

In the case of mixed ND coordinates, the boundary conditions are 
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 | 
(   )|

   

               (   )|       
 ̅̅̅̅                       (   ) 

The particularity of the mixed boundary conditions leads to an appropriate mode 

expansion given by the relation. 

  (   )    
 ̅̅ ̅   √   ∑

 

 
      

  

 

     (   
 

 
 )    .

 

 
 /  (   ) 

Where the summation over one only covers the odd integers, which implies half-

integer indices for the vibration modes . 

However, the expression of 

  (   )     (   )  √   ∑
 

 
      

  

 

     (  
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Remains identical to that of the components   or   so that from the commutator 
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We demonstrate the relationship 
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4.1. Mass operator 

The mass operator receives contributions from all coordinate 

types:     and  . The expression of the product      takes the form: 
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It remains to calculate the contribution    , from the following development 
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The summation over the odd integers is calculated as follows 
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Finally we obtain the expression of the mass operator in the following form: 
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4.2. Spectrum 

We propose to determine the nature of the physical states (scalar, vector, and 

tensor). These states are represented as follows 
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This scalar is generally massive, but can be tachyonic or massless depending on the 

separation between the two branes and the value(   )  
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4.3. Degeneracy 
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For large separations, the mass of each level is always positive, and the states are 

scalars or vectors according to the different types of indices. in addition, we 

haven't a massive gauge fields. The number of states for each level is grouping in 

(table 4.3) 
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Table 4.3:Degeneracy of first four excited levels in open bosonic string between 

parallel Dp- Dq-branes 
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4.4. Partition function 

It is now a question of confronting the results of the table above with the function 

of partition to check the coherence of this model. 
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Where the product over odd integers is reduced to a product over integers after a 

few adjustments. 

Let's do a development of ( ),by asking   √  
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   /       (4.33) 

The coefficients of this polynomial correspond exactly to the degrees of 

degeneracy obtained in (Table4.3). 

If     we obtain 

 ( )    (   )   .
 

 
  

 

 
    /                                                  (4.34) 

And when        the partition function is that of an ordinary string 

 ( )                                                                                       (4.35) 
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General conclusion  

The purpose of this memorandum is the study of open bosonic string in presence 

of D-branes. Three configurations of D-branes are given: 

- First is open bosonic string on a D-branes involving coordinates of type NN 

and DD where only those of type NN take a Lorentz indices. The study of the 

spectrum made it possible to show the consistency of this model, as a result 

the tachyonic state is always present, on the other hand there are new types 

of states which, that is possibility of both massless and massive scalar states 

and massive vector states. 

- The second is open bosonic string between two Dp-branes in parallel also 

implying the same types of coordinates than previously, to be specific the 

NN and DD types, as well the study of the spectrum has made it possible to 

prove the consistency of this model, except that now for this case, the 

distance between the two branes gives a positive contribution to the mass 

operator which leads to the possibility(with a particular choice of this 

distance) to definitively eliminate the tachyon, in addition the disappearance 

of massless vector states. The Virasoro algebra was derived and the central 

term is similar to their in ordinary case. 

- finally The open bosonic string between two Dp-Dq-branes in parallel, now 

implying in addition to the coordinates of the NN and DD type new mixed 

coordinates ND type which (like the DD case) is not a Lorentz index whereas 

the mode indices are now half integers. In addition to the positive 

contribution to the mass operator due to the distance between the two 

branes a second positive term reliant on the parameters   and   (in 

particular on the number of ND type coordinates) gives a second 

contribution to the mass. 
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Annex A: 

Calculation of some masses 

2nd excited level 
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Annex B 

Calculation of mean values 

Calculation of⟨ |,     -| ⟩ 

Note that | ⟩ being a physical state 
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From the expression (3.28) we have : 
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And from equation (1.44), we find that : 
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Calculation of⟨ |,         -| ⟩ 
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Using the relation (1.31) to order the modes, we get: 

⟨ |,      -| ⟩  
 

 
⟨ |  

 (   
 

       
 
)     | ⟩ 

 
 

 
⟨ |[  

    
 

(           )    
 
(       

    
 )]| ⟩ 

 
 

 
⟨ |  

 
  
 | ⟩ 

                                                         
(   )

 
                                                         (   ) 



55 
 

⟨ |,       -| ⟩  ⟨ |(     ( ))| ⟩ 

  ( ) 

 
(   )

 
                                                             (   ) 

From the relation (1.41) and the results (B.7) and (B.8) we obtain : 
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Virasoro’s algebra then takes the following form: 
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