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Abstract

As social media platforms continue to grow in popularity and influence, the need to address
problems related to content integrity and user accountability becomes more critical. Author-
ship attribution serves as a powerful tool in tackling such issues by accurately determining the
real author of online posts.

In this dissertation we propose an approach that utilizes deep learning models including
Temporal Convolutional Networks (TCN) and Long Short-term Memory Networks (LSTM)
combined with Convolutional neural networks (CNN) , along with machine learning models
such as Autoencoder and Adaboost to effectively predict the authors of unknown online posts.
To evaluate the effectiveness of our approach, we conducted experiments on various scenarios
using a Twitter dataset, where we achieved an accuracy rate of 52.77% in authorship attribution.

Keywords: NLP, Deep Learning, Authorship Attribution.



Résumé

Alors que les plateformes de réseaux sociaux ne cessent de gagner en popularité et en influence,
la nécessité de résoudre les problèmes liés à l’intégrité du contenu et à la responsabilité des
utilisateurs devient de plus en plus critique. L’attribution d’auteur est un outil puissant pour
résoudre ces problèmes en déterminant avec précision l’auteur réel des messages en ligne.

Dans ce mémoire, nous proposons une approche qui utilise des modèles d’apprentissage pro-
fond, notamment les réseaux convolutifs temporels (TCN) et les réseaux de mémoire à long
terme (LSTM) combinés avec des réseaux neuronaux convolutifs (CNN), ainsi que des modèles
d’apprentissage automatique tels que Autoencoder et Adaboost pour prédire efficacement les
auteurs de messages en ligne inconnus. Pour évaluer l’efficacité de notre approche, nous avons
mené des expériences sur divers scénarios à l’aide d’un ensemble de données Twitter, où nous
avons atteint un taux de précision de 52,77% dans l’attribution d’auteur.

Mots Clée : TAL, Aprentissage Profond, Attribution d’auteur.
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General Introduction

Social networks have seen an extraordinary increase over the years, with the number of users
on social network platforms reaching 4.8 billion in 2023 [Petrosyan, 2023], having almost tripled
in the past decade [Dean, 2023]. It is now possible for individuals to express themselves freely,
to share their opinions, their ideas and to interact with other people worldwide.

However, with this rapid rise in social networks usage, comes a great deal of concerns that
must not be overlooked. The spread of online harassment has become a major problem, af-
fecting the well being of individuals of all ages, identity theft in social networks is a growing
problem that is affecting people more and more everyday. Additionally, intellectual property
violations and plagiarism pose a real threat to original authors’ credibility with the ease of
copying and pasting from online sources.

Problem

Studies have shown that social network platforms are the least trusted source of news and
information worldwide [Watson, 2023]. The extensive spread of misinformation, with the ease
of sharing unverified content have contributed to the decline of trust on social networks. When
confronted with these problems and particularly the growing number of social media users,
which poses an additional challenge in accurately identifying the true author and distinguish-
ing their unique patterns, it is crucial to develop robust solutions that can accurately determine
the true origin of online content. By addressing these problems, we can establish accountability
and create a safe digital environment while promoting responsibility and transparency. This
raises important questions: How can we effectively identify the origin of online content? How
can we address the growing challenges on social network platforms and how can we navigate
the growing complexity introduced by the large number of users online in order to accurately
attribute authorship?

1



GENERAL INTRODUCTION

Objective

In light of these challenges and questions our work aims to propose three distinct archi-
tectures for authorship attribution. We first utilise Temporal Convolutional Networks (TCN)
which has not been used before in this task. In addition we investigate the effectiveness of
Long-short term Memory Networks (LSTM) combined with Convolutional Neural Networks
(CNN). Finally we explore the use of an autoencoder combined with adaboost. In conjunction
with these techniques, we utilize a word embedding method namely GloVe to enhance the se-
mantic understanding of the data and capture contextual information important for authorship
attribution. We train and evaluate our proposed models using a large twitter dataset, which
will further enable them to effectively extract meaningful features and capture unique writing
styles present in the data in order to produce accurate predictions for the authorship attribu-
tion of unknown tweets.

Dissertation Plan

Our dissertation is organised in three chapters followed by a general conclusion.

Chapter 1: In this chapter we provide an overview of the authorship analysis field and its
sub-fields while highlighting the authorship attribution domain which is the focus of our study,
we also present the previous works conducted in authorship attribution while outlining their
different approaches and methods, we conclude it by providing a comparative analysis of the
results obtained.

Chapter 2: In the second chapter we will focus on our proposed approach, including the
dataset that has been used and the various pre-processing techniques utilized. Additionally,
we provide descriptions of the different models that have been used in our task and their
architectures.

Chapter 3: In the last chapter of our dissertation we present the experimental setup, eval-
uation metrics employed to measure the performance of our models, and performance analysis
of the models we used. We conclude this chapter by presenting our authorship attribution
interface.

In the end we summarize this dissertation with a general conclusion highlighting the results
that we achieved, and also reflecting on the limitations of our models while offering insight into
future perspectives.
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Chapter 1

Authorship Attribution And State Of The
Art

1.1 Introduction

Natural language processing (NLP) is a fascinating field of computer science that combines
linguistics, and artificial intelligence in order to help computers comprehend human language.
It has become a crucial instrument for processing and analyzing text data as a result of the
explosion in digital communication and the enormous amounts of data produced.

Authorship Analysis is one the most intriguing applications of (NLP), which entails identi-
fying the author of a specific text. One of its subfields is Authorship Attribution, which has
been an interest of scholars for centuries but it has only recently become feasible to analyze
huge amounts of text data and determine authorship with a high level of accuracy thanks to
the widespread of deep learning techniques.

In this chapter we will be delving into the various applications of authorship analysis and
focus more on the task of authorship attribution that is our field of study, we will also present
related works conducted and the results achieved.

1.2 Natural Language Processing (NLP)

Natural language processing is a branch of artificial intelligence that allows computers to
process and manipulate the same languages that humans use in written or oral communication
to perform a desired task [Coughlin, 1990].

3



CHAPTER 1. AUTHORSHIP ATTRIBUTION AND STATE OF THE ART

NLP is a multidisciplinary field that incorporates computational linguistics, computing sci-
ence, cognitive science, and artificial intelligence [Deng and Liu, 2018]. Machine transla-
tion, natural language text processing and summarization, speech recognition, artificial in-
telligence and expert systems, among other fields of study, are a few examples of applications
of NLP [Chowdhury, 2003].

1.3 Authorship Analysis

Authorship Analysis is a subfield of natural language processing and forensic linguistics,
that is concerned with the evaluation of documents to determine their authorship based on
stylometry, which is a linguistic field that analyzes literary style using statistics and it serves
as the foundation of Authorship Analysis [Abbasi and Chen, 2005].

1.4 Authorsip Analysis Categories

Authorship analysis studies can be classified into three categories according to [Kaur et al.,
2019] (figure 1.1): Authorship Attribution which is our task, Authorship Characterization and
Authorship Verification.

Figure 1.1: Representation of the subfields of Authorship Analysis and their applications [Kaur
et al., 2019].

1.4.1 Authorship Attribution

Authorship Attribution (AA) or identification is the task of identifying the author of a
disputed anonymous document from among a set of candidate authors for whom written text

4



CHAPTER 1. AUTHORSHIP ATTRIBUTION AND STATE OF THE ART

samples are available by analyzing the stylistic features of this document. In the literature it
is viewed as a text categorization or text classification issue [ELMANARELBOUANANI and
KASSOU, 2014], and the first attempts to measure writing style date back to the 19th century
with [Mendenhall, 1887] groundbreaking study on Shakespeare’s plays, which was followed by
statistical studies by [Yule, 1939] and [Zipf, 1932]. Later, the thorough investigation into "The
Federalist Papers" authorship by [Mosteller and Wallace, 1963] was unquestionably the most
impactful work on authorship attribution [Stamatatos, 2009].

Authorship attribution has practical applications across a wide range of domains, including
forensic topics such as detecting plagiarism, identifying the authors of harassment messages,
and determining the provenance of bomb letters in counter-terrorism research [Eder et al.,
2016].

Authorship attribution approaches can be divided into two types [Stamatatos, 2009]:

Open-set authorship attribution which refers to the case where the real author of the docu-
ment is not always included in the list of candidate authors [Stamatatos, 2009].

Closed-set authorship attribution on the other hand refers to the situation where the author is
included in the candidate set, and the system must determine the true author of the anonymous
text [Stamatatos, 2009].

Our work will center on the approach of closed-set authorship attribution. Figure 1.2 illus-
trates the process of authorship attribution.

5



CHAPTER 1. AUTHORSHIP ATTRIBUTION AND STATE OF THE ART

Figure 1.2: Authorship Attribution process [Sharp et al., 2017].

1.4.2 Authorship Characterization

Authorship Characterization or author profiling involves identifying sociolinguistic character-
istics such as gender, age, native language, personality type, occupation, and level of education
given an anonymous text and a set of predefined categorizations [ELMANARELBOUANANI
and KASSOU, 2014]. Author profiling is a topic that has become increasingly significant in
various fields such as forensics, security, and marketing [Rangel et al., 2013].

1.4.3 Authorship Verification

Authorship verification refers to the process of determining whether two documents have
been written by the same author [Stamatatos, 2016]. This task is considered a significant
challenge in authorship attribution, in contrast to authorship attribution models, which seek
to identify the most likely author of an anonymous document, an authorship verification model
must determine whether the anonymous text is comparable enough to texts provided by a

6



CHAPTER 1. AUTHORSHIP ATTRIBUTION AND STATE OF THE ART

specific author to conclude that they were created by the same person [Stamatatos, 2016].

1.5 Styolmetric Features

Stylometric features are linguistic or textual characteristics that are extracted from a piece of
writing to determine the author or the text’s style [Juola, 2008]. When it comes to authorship
attribution stylometric features have proven to be a powerful tool in identifying the author of
a text and have been widely used in previous works conducted in this field [Stamatatos, 2009].
Stylometric features can be devided to four main categories [ELMANARELBOUANANI and
KASSOU, 2014]:

1.5.1 Lexical Features

Lexical Features are used to uncover a person’s preferred word and character choice, they can
either be word or character based. Word-based lexical features include elements like the overall
number of words, the number of words per sentence, the distribution of word lengths, and
vocabulary richness, while character-based lexical features include the overall character count,
the number of characters per sentence, the number of characters per word, and the frequency
of use of specific letters [Abbasi and Chen, 2005].

Lexical features have the advantage that they can be used with any corpus in any language
and with only the presence of a tokenizer as extra criteria [Stamatatos, 2009].

1.5.2 Syntactic Features

Syntactic Features refer to the patterns used to construct sentences, this feature category
includes tools used to structure sentences, such as sentence length, sentence complexity, punc-
tuation and function words [Abbasi and Chen, 2005].

1.5.3 Structural Features

Structural Features describe the organizational and hierarchical structure of a text, such
features include word patterns such as welcomes and signatures, as well as the number of
paragraphs and average paragraph length. Structural features have proven to be particularly
useful in assessing online messages as they are can help identify patterns and characteristics
that are unique to a particular author’s writing style [Abbasi and Chen, 2005].

7
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1.5.4 Content-specific Features

Content-specific are words that are relevant within a certain topic domain [Abbasi and Chen,
2005], they can be used to analyze the vocabulary and topic of a text and can be particularly
useful in authorship attribution tasks where the texts being analyzed are focused on a specific
content area.

1.6 Related Works

In this section we present the related works conducted in the field of Authorship Attribution,
the related works can be classified according to the methods used i.e.,machine learning or deep
learning, as well as the dataset in question whether it is from social media or other sources.

1.6.1 Machine Learning Approaches In Social Media

For Arabic authorship attribution of short texts and more precisely tweets [Kah et al., 2022]
propose using various stylometric features to quantify the writing style of authors, three types of
n-gram models are also used in addition to using both TF-IDF and count vectorizer for feature
extraction, for the final classification they used three models namely the Naïve Bayes classifier,
Support vector machines, and Random forests, which are first implemented individually then
later combined to build a bagging classifier which provides the final prediction based on a
majority voting process. They used a dataset composed of 71,391 Arabic tweets posted by 44
different authors, they also examined the impact of various factors on the accuracy of authorship
attribution, including the size of the training dataset, the number of classes covered, the text
processing techniques applied, the methods used for feature selection and extraction, and the
classifier implemented. The results show that the highest accuracy achieved was 97.4% which
is among the best results reached so far in arabic authorship attribution of short texts.

[Theophilo et al., 2022] propose an extension to the LIME (local interpretable model-agnostic
explanations) technique to improve the explanations of the state-of-the-art methods for author-
ship attribution on social media posts, they suggest incorporating character n-grams into LIME
as interpretable components.They use a dataset composed of 130 million messages from more
than 56,000 Twitter users.

[Rabab’ah et al., 2016] attempt to solve the authorship attribution problem of arabic tweets
by combining different feature sets namely stylometric features, MADAMIRA Features, and
Bag-Of-Words. They used three different classifiers specifically Naïve Bayes classifier, Support

8



CHAPTER 1. AUTHORSHIP ATTRIBUTION AND STATE OF THE ART

Vector Machine, and Decision Tree. To evaluate the models proposed they use a dataset
containing 38,386 tweets from 12 different users, the results demonstrate that combining all
feature sets gives the best results, the highest accuracy achieved was 68.67%, which was reached
by using the SVM classifier on the combined feature sets.

1.6.2 Machine Learning Approaches In Other Sources

For the PAN at CLEF 2019 authorship attribution task [Muttenthaler et al., 2019] developed
three distinct n-gram models, a variable-length n-gram model was created for each of the three
models. They implemented a word n-gram model (1-3 gram), a distorted character n-gram
model (1-3 gram) and a standard character n-gram model (2-5 gram). Then an SVM classifier
was developed for each of the three models. They used the fanfiction dataset from the 2019 PAN
at CLEF competition, according to the results the standard character n-gram model performed
best and achieved an F1-score of 69%.

To address the Authorship Attribution in brief texts problem [Zhang et al., 2018] propose a
new model Author-document topic model (ADT) which develops the model for the corpus at
the document level as well as the author level. Additionally, they suggest a new classification
algorithm to determine text similarity in order to identify the authors of anonymous texts.
For the experimentation with their model, they use two datasets the first one is Pan’11 emails
which contains 11936 emails with 72 authors and the second one is Blog which contains 678161
blogs with 19320 authors. The accuracy obtained by their model on the Pan dataset reaches
an accuracy of 54.7% and 49.2% in the Blog dataset.

1.6.3 Deep Learning Approaches In Social Media

To address the issue of Author Attribution of brief texts [Suman et al., 2022] proposed using a
capsule-based CNN model as well as using a capsule based kervolutional neural network (KNN),
and BERT embeddings for text representation as well as providing a thourough comparaison of
performance of different text representations, including GloVe embedding, BERT embedding,
character unigram, and character bigram. They evaluate the performance of their developed
systems using the [Schwartz et al., 2013] dataset consisting of 9000 Twitter users and 1000 post
each, totaling 9 million posts, from which they randomly selected 50 users with 1000 tweets
each. The results show that the highest accuracy was obtained by the capsule-based CNN using
character unigrams which reached 86.62%.

[Wang and Iwaihara, 2021] suggest a hybrid model that is composed of two main parts, the
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first part is a pretrained language model based on RoBERTa to create post representations
that are aware of tweet-related stylistic features and their contextualities, the second section
is a CNN model constructed using a number of feature embeddings to represent users’ writing
styles they then put these representations together for the final AA classification. They evaluate
their method on the [Schwartz et al., 2013] dataset, their best performing model achieved an
accuracy of 88.2%.

[Huang et al., 2020] applied an enhanced character embedding technique to typical neural
networks specifically CNN and LSTM, A mixed sequence of word and character n-grams is
input to their suggested architecture, they also focus on the textual implicit characteristics
and incorporate ten latent posting styles into the models such as text length, user mentions,
and sentiment orientation. They then obtained a compact feature vector representation by
automatically extracting textual features from the sequence using neural network models. In
order to identify the author, the representation is finally passed to a fully connected module
with the softmax function. They evaluate the performance of their model using the dataset
of [Schwartz et al., 2013] , their best performing model which was CNN using mixed words
combined with character n-grams and latent posting styles achieved an accuracy of 83.6% .

To solve the problem of Authorship Attribution in short texts [Shrestha et al., 2017] proposed
an architecture that is a CNN that uses a sequence of character n-grams as input and is able
to learn to learn the representation of the text starting from the character sequence. They
use the [Schwartz et al., 2013] dataset with variating number of authors and tweets for the
evaluation of their models. Their best performing models being CNN-1 and CNN-2 obtain
the best results with 50 authors and 1000 tweets each with an accuracy of 75.7% and 76.1%
respectively for both models.

1.6.4 Deep Learning Approaches In Other Sources

[Lam et al., 2021]’s method consisted of using two CNN architectures that they note as
CNN-1 and CNN-2 as well as 4 LSTM models two of them being unidirectional LSTM-1 and
LSTM-2 and the other two bidirectional BiLSTM-1 and BiLSTM-2. The dataset used in this
work is that of the 2017 French Elections related tweets it consists of 42923 tweets in total and
11 candidates. The results of the training prove that both CNN’s and LSTM’s perform well
with CNN’s slightly outperforming LSTM’s, the CNN-2 model reached the best performance
out of all the models with an accuracy of 83%, the results also show that bidirectional LSTM’s
have better performance when being compared to unidirectional LSTM’s.

[Fabien et al., 2020] introduce BertAA, a fine-tuning of a pre-trained BERT language model
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that does authorship classification using an additional dense layer and a softmax activation,
Additionally, the authors assess the effects of adding extra features, such as stylometric and
hybrid features.They used different corpora for the task including: Enron Email corpus which
contains 130000 emails, the IMDb Authorship Attribution corpus which contains 271000 movie
reviews produced by 22116 authors also the IMDb62 corpus containing 62 authors and 1000 text
per author, and lastly the Blog Authorship Attribution Corpus which contains 680000 posts
from approximately 19000 authors, the accuracy achieved by their model using 100 authors is
97% in the Enron dataset, 86.1% on the IMDb dataset, and 58.8% on the Blong dataset.

[Sari et al., 2017] proposed using continuous n-grams representations with a feed forward
neural network they also proposed three variations for the continuous n-grams: continuous
word n-grams, continuous character n-grams, and combining both character and word n-grams.
They test their models on four different datasets, the first one is the Judgement dataset which
was collected from judgment writing of three Australian High Court’s judges, the second is
subset of Reuters Corpus Volume 1 and includes newswire articles written by 10 contributors
noted CCAT10, the third one is an expanded variation of the previous one there are 5,000
documents overall from 50 writers noted CCAT50, and lastly the fourth dataset consists of
62,000 movie reviews and 17,550 message board posts written by 62 active users of the Internet
Movie Database (IMDb) noted IMDb62. They presented results of the three different models
across the four datasets, the best accuracy obtained was by the Continuous n-gram char (2,3,4)
model on the IMDb62 dataset as the accuracy reached 94.80%.

Table 1.1 illustrates a summary of the related works and their results.
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Table 1.1: Summary of the related works and their results

Article Approach Model Dataset Results

Suman et
al., 2022

Deep
Learning

KNN,CNN Schwartz et al.,2013
Accuracy:

1-CNN: 86.62%
2-KNN: 83.82%

Wang and
Iwaihara,

2021

Deep
Learning

RoBerta, CNN Schwartz et al.,2013 Accuracy: 88.2%

Lam et
al., 2021

Deep
Learning

CNN, LSTM,
BiLSTM

2017 French
Elections:

42923 Tweets
11 Users

Accuracy: CNN-2: 83%
BiLSTM-2: 81%

F1-score: CNN-2:83%
BiLSTM-2:80%

Precision: CNN-2:82%
BiLSTM-2:80%

Recall: CNN-2: 82%
BiLSTM-2:97%

Huang et
al., 2020

Deep
Learning

CNN, LSTM Schwartz et al.,2013
Accuracy:

1-CNN: 83.6%
2-LSTM: 76.21

Fabien et
al., 2020

Deep
Learning

BertAA
with an additional
dense layer and

softmax activation

Enron Email
corpus, IMDb,

IMDb62

Accuracy:
1-Enron: 97%
2-IMDb: 86.1%
3-Blog: 58.8%

Shrestha et
al., 2017

Deep
Learning

CNN Schwartz et al.,2013
Accuracy:

1-CNN-1:75.7%
2-CNN-2: 76.1%

Sari et
al., 2017

Deep
Learning

FFNN CCAT10, CCAT50,
IMDb62, Judgement

Accuracy: Continuous
n-gram char(2,3,4):

94.80%

Kah et
al., 2022

Machine
Learning

NB, SVM,
RF, Bagging

71,391 Tweets
44 Users

Accuracy:
Bagging:
97.4%

Theophilo
et al., 2022

Machine
Learning

LIME
130 million
Tweets

56000 Users
-

Muttenthaler et
al., 2019

Machine
Learning

SVM
2019 PAN
at CLEF

Fanfiction dataset
F1-score: 69%

Zhang et
al., 2018

Machine
Learning

ADT Pan’11 emails,
Blog

Accuracy:
Pan’11 emails: 54.7%

Blog: 49.2%
Rabab et
al., 2016

Machine
Learning

NB, SVM,
DT

38,386 Tweets
12 Users

Accuracy:
SVM: 68.67%

12



CHAPTER 1. AUTHORSHIP ATTRIBUTION AND STATE OF THE ART

Table 1.1 summarizes the different methods used in the related works as well as their influence
on the results, the table sheds light on the performance of deep learning and machine learning
methods, it can be observed that deep learning methods perform significantly better than
machine learning methods, although the highest accuracy achieved was through the utilization
of machine learning. It is crucial to acknowledge that this result was attained by utilizing
a relatively small dataset consisting of only five users, with 500 tweets each. It can also be
observed that character and also word n-grams are employed in the majority of the related
works for analyzing and distinguishing writing styles among different authors. Among the
various deep learning methods, CNN’s and LSTM’s stand out as the most extensively used in
most of the related works in authorship attribution thanks to their effectiveness in capturing
patterns and features in textual data. The experiments conducted in each of the related works
also reveal that the size of the dataset matters and increasing the number of authors and
decreasing the number of texts negatively impacts the performance of the models. Figure 3.3
illustrates the division in the related works.

Figure 1.3: Representation of the division in the related works.
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1.7 Conclusion

In this chapter we have presented the field of Authorship Analysis as well as its different
subfields (Authorship Attribution, Authorship Verification, Authorhsip Characterization) and
focused precisely on Authorship attribution which represents our task, Later on we presented
and explained the different types of stylistic features used in Authorship Attribution we have
also presented different related works conducted and the methods that have been used to solve
the AA problem in social media as well as other sources.

In the next chapter we will present our proposed approach and the methods we used.
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Chapter 2

Proposed Solution

2.1 Introduction

Traditionally authorship attribution has been performed using stylometric features such as
lexical or syntactic features. However, recent advances in NLP as well as machine learning and
deep learning have led to the development of more advanced techniques for authorship identi-
fication which have been used by the previous works and have demonstrated great potential in
enhancing the results of this task.

In this chapter we will present in detail our proposed architecture to tackle the problem of
authorship attribution in short texts, we will also be describing the dataset that has been used
and the different steps necessary to prepare our data.

2.2 Overall Architecture

As a solution to the Authorship attribution of brief texts problem we adopted an architecture
that integrates the following stages (figure 2.1):

1-Data Pre-processing: Where the unstructured raw text is cleaned, standardized, and
transformed into a structured format.

2-Vectorization: Wherein the processed text is converted into numerical representations,
effectively capturing the essence of linguistic patterns and style in order to be processed by the
proposed models.

3-Train/Test/Validation split: This step includes splitting the data into three distinctive
sets: the train, test, and validation sets.
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4-Model training: In this step we feed the vectorized data into our proposed models in
order to train them.

5- Model evaluation: Lastly in this stage we evaluate our models with new unseen data
(test data) to effectively asses their performances.

Pre-processing 

Twitter
Data

Vectorization

Model Training Model Evaluation

-Removing special
characters

-Removing mentions,
Hashtags

-Removing URL's
-Removing consecutive

white  spaces

-Deviding the text into words

-GloVe Embedding
glove.twitter.27B

Machine Learning
algorithms:

Autoencoder, AdaBoost

Deep learning algorithms:

LSTM-CNN
TCN

Train\Test Split

Train data Test data

Evaluation Metrics:

Accuracy,

F1-score,

Recall,

Precison

Figure 2.1: Global scheme of our proposed approach.

2.3 Dataset

In authorship attribution datasets are essential since they serve as the foundation for the
creation and evaluation of models that can accurately determine the authorship of a given text,
because Twitter has such a large and diverse collection of tweets from users worldwide it has
become a well known source of data for various tasks in NLP. For our authorship attribution of
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short texts problem we chose to use the [Schwartz et al., 2013] Twitter dataset which has been
widely used by researchers in the authorship attribution task. It consists of overall 7026 users
and 1000 tweet for each user, which makes it a total of approximately 7 million tweets. The
dataset provided by [Schwartz et al., 2013] originally contained two main folders described as
follows (table 2.1):

Varying_number_of_authors: This folder contains 1 789 folders each of them repre-
senting one user and each folder containing 10 bz2 files that contain 20 tweets each.

Varying_training_set_size: This folder contains 7026 user folders with 100 tweet in
each bz2 file totaling 1000 tweet per user.

After reviewing the relevant literature in our research area, we chose to experiment with two
different sizes of the dataset, the first one with randomly choosing 50 users with 1000 tweets
each, and the second one using 10 authors with 1000 tweets each.

Table 2.1: Description of the dataset

Folder Name Subfolder Name Subfolder Count Tweet Count

varying_training_set_size User_id 7026 7026x10x100

varying_number_of_authors User_id 1789 1789x10x20

2.4 Pre-processing

Twitter data is usually very unstructured, this step aims to transform twitter data into a
standardized format that is easier to analyze and to remove noise present in the data, below is
a pseudo code describing the steps we followed for data cleaning.
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Algorithm 1 Data pre-processing algorithm
1: procedure PreprocessTweets(Twitter_data)
2: INPUT: Twitter_data
3: OUTPUT: Clean_tweets
4: x← Remove_URL(Twitter_data)
5: x← Remove_mentions(x)
6: x← Remove_Hashtags(x)
7: x← Remove_special_characters(x)
8: x← Remove_consecutive_spaces(x)
9: clean_tweets← Lowercase(x)

10: end procedure

Removing URLs: This step removes urls.

Removing mentions and hashtags: Mentions denoted by the ’@’ symbol are references
to other users, removing them helps alleviate noise within the text, similarly hashtags which
are denoted by the ’#’ symbol are used to index keywords or topics on Twitter, by eliminating
these elements the focus shifts more on the actual text.

Removing special characters: This step eliminates special characters including punctua-
tion marks, emojis, and other non-alphanumeric symbols, in order to reduce noise and further
simplify the text.

Removing extra spaces: This step aims to remove consecutive white spaces and replace
them with a single white space.

Converting the text to lower case: In this step we converts all text to lowercase to
reduce the number of unique tokens in the data and help avoid case-sensitivity issues.

Table 2.2 demonstrates the transformations of this text : "@AMPlifiedPhotos Smh! But ty
this site if you didn’t get one yet http://www.watch-movies-online.tv/ <-that one :)" after each
pre-processing previously mentioned.
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Table 2.2: Representation of the Pre-processing steps applied to text

Pre-processing step Pre-processed text

Removing URLs
@AMPlifiedPhotos Smh! But ty this site if you didn’t get

one yet http://www.watch-movies-online.tv/ <-that one :)

Removing mentions and

hashtags
@AMPlifiedPhotosSmh! But ty this site if you didn’t get

one yet <-that one :)

Removing punctuation and

special symbols
Smh ! But ty this site if you didn’t get one yet <- that one

Removing extra white spaces Smh But ty this site if you didn’t get one yet that one

Converting the text to lower case smh but ty this site if you didn’t get one yet that one

2.5 Vectorization

Vectorization refers to the operation of converting text data into numerical vectors, since
computers can’t understand text data, vectorization is an essential step as it transforms un-
structured data into a format that captures semantic meaning, relationships, and patterns.

Before converting our data into numerical representations we must first go through the tok-
enization step followed by the padding, both these steps are described in the next sections.

2.5.1 Tokenization

Tokenization is the process of dividing our text into smaller units or more commonly known
as tokens such as words, phrases, or even characters. [Bird et al., 2009] It is an important step
to include before vectorization as it helps process and extract valuable information from our
textual data. Our text will be tokenized into words.
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2.5.2 Padding

Padding is the step where extra values are added to the beginning or end of our data sequences
to guarantee that they have consistent dimensions, the shortest sequences are expanded to
match the length of the longest sequences in the dataset by adding a specific padding value
which is often zero. There are two types of padding : pre-padding which involves adding values
to the beginning of our sequences, and post-padding which is where we add values at the end,
in our architecture we opted for the post-padding option.

2.5.3 Word Embedding

Word embedding is a method used to map textual words or phrases into a low-dimensional
continuous space, this mapping makes it possible for similar words to have similar encod-
ing [Birunda and Devi, 2021]. Word embedding is a powerful tool widely used in various
modern natural language processing tasks including text classification, document clustering,
and sentiment classification [Birunda and Devi, 2021]. In our work, we will be using GloVe em-
beddings for word representation, the detailed explanation of GloVe embedding will be provided
below.

2.5.3.1 Glove

GloVe (Global Vectors) is a word embedding model proposed by [Pennington et al., 2014],
it is based on word occurrences in a corpus of text, the primary difference between GloVe and
any other word embedding model such as word2vec is that it considers more than just the
immediate context of each word, it also considers the overall distribution of words across the
entire corpus by using a co-occurrence matrix of words where Xi j is the frequency of the word
i co-occurring with the word j [Naili et al., 2017].

For our task we chose to use the Glove embedding method because it has pre-trained models
available on several different corpora, including Twitter which is more relevant to our task
considering our Twitter dataset. Algorithm 2 shows the functionality of the GloVe embedding.
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Algorithm 2 GloVe embedding algorithm
1: procedure GloVeEmbedding(tokenized_tweets)
2: INPUT tokenized_tweets
3: OUTPUT tweet_embeddings
4: co_occurence_matrix ← []
5: context_words ← []
6: word_vectors ← []
7: for each tweet in tokenized_tweets do
8: for each word in tweet do
9: context_words ← get_context_words(word)

10: for each context_word in context_words do
11: co_occurence_matrix← update(co_occurence_matrix, word, con-

text_word)
12: end for
13: end for
14: end for
15: for each word in co_occurence_matrix do
16: word_vectors[word] ← initialize_random()
17: end for
18: for each word in co_occurence_matrix do
19: for each context_word in co_occurence_matrix[word] do
20: word_vectors[word] ← gradient_descent_update(word_vectors)
21: end for
22: end for
23: end procedure

2.6 The Train/Test/Validation split

In order to examine how well the trained model performs on new unseen data and access
its ability to generalize we must split our data into three subsets each used for specific tasks
described below:

The train set: It represents the largest portion of the dataset and it is used to train the
model by providing input data and the labels that correspond to it, the model learns the
relationships in the data and optimizes its weights and parameters.

The test set: This set is used to evaluate our model’s performance on new data and its
ability to make predictions on data that is separate from the training set.

The validation set: The validation set’s purpose is to estimate our model’s performance
during the training phase and is useful for tuning the hyperparameters, it is also useful in
detecting when our model is overfitting.
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For our task we accorded 70% of the data to the training set, 20% to the test set, and 10%
for the validation set.

2.7 Models

In this section we will present the models we have used to solve the authorship attribution in
brief texts problem, researchers in this field have used various methods and architectures namely
Convolutional Neural Networks (CNN) which have proved to have a very good performance,
as well as Long Short-Term Memory Networks (LSTM) which have also been widely used in
previous works.

For our approach we have used three different architectures: Temporal Convolutional Network
(TCN), the combination of Long Short-Term Memory network (LSTM) and Convolutional
Neural Network (CNN), and an Autoencoder model combined with AdaBoost Classifier. Each
one of these architectures will be explained in detail in the sections that follow.

2.7.1 Temporal Convolutional Network (TCN)

The first architecture that we propose is a Temporal Convolutional Network (TCN). TCN’s
are a type of deep learning model that are designed for the purpose of handling sequential data
or what is known as time series. First proposed by [Bai et al., 2018] they were developed as an
alternative to Recurrent Neural Networks for modeling temporal dependencies in data.

The TCN’s advantage like RNN’s is that they can efficiently handle inputs of varying length,
they have the ability to take in a sequence of any length and map it to an output of the
same length, secondly the convolutions in the architecture are causal, meaning that there is
no information leakage from future to past [Bai et al., 2018]. They are also more memory
efficient than RNN’s thanks to the shared convolution architecture which enables them to
process lengthy sequences in parallel [Lara-Benítez et al., 2020].

Temporal Convolutional Networks consist of three major parts [Zhu et al., 2022]:

2.7.1.1 Causal Convolutions

Causal convolutions are a particular type of convolutions that ensure that the result at any
given time step depends only on prior time steps and not on future time steps, in a more
technical manner: output at time t is convolved only with elements from time t and earlier in
the previous layer [Bai et al., 2018] (figure 2.2).

22



CHAPTER 2. PROPOSED SOLUTION

2.7.1.2 Dilated Convolutions

The use of dilated convolutions is a key feature of TCN, filters slide over adjacent elements
in the input sequence in traditional convolutions. In dilated convolutions, however, the filters
skip a certain number of elements (figure 2.2) which is represented by the dilation rate between
each application, thus, dilation translates to inserting a fixed step between every two adjacent
filter taps [Bai et al., 2018].

Employing a dilated convolution enables the model to have an exponentially large receptive
field, using a larger dilation also allows a top-level output to represent a broader range of
inputs [Bai et al., 2018].

Input

Output

Figure 2.2: Representation of dilated causal convolutions with dilation rates [1,2,4].

2.7.1.3 Residual Connections

Residual Connections are an important component in TCN that was proposed to overcome
the vanishing gradient problem and to make training a deep TCN architecture easier [Zhu et al.,
2022]. They consist of adding the input of a TCN block to its output, the use of residual blocks
thus allows to pass original information from the input directly to the deeper layers [Zhu et al.,
2022].

Within a residual bloc as illustrated in figure 2.3, the TCN has two layers of dilated causal
convolution and non-linearity which was achieved using a ReLU activation, a weight normal-
ization is applied to normalize the convolutional filters, and for regularization a spatial dropout
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is implemented after each dilated convolution, an additional 1x1 convolution is also employed
to ensure that element wise addition receives tensors of the same width as the input-output
widths [Bai et al., 2018].

Figure 2.3: Illustration of a TCN Residual Bloc [Bai et al., 2018].

2.7.2 Proposed TCN Architecture

For our first architecture we have chosen to work with TCN because it has shown competitive
performance in a variety of sequence-based tasks, such as language modeling and sentiment
analysis and for its ability to capture long-range dependencies in sequential data. And when
it comes to authorship attribution where identifying the unique writing styles of an author
requires considering the entire text, the TCN model seems to be suitable for our task.
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Figure 2.4: TCN Architecture for Authorship Attribution

Figure 2.4 represents our proposed TCN architecture, and we further explain it as follows:

• The input which takes in the pre-processed then tokenized and padded tweets with a max
length equal to 100.

• Next an embedding layer using the variant of GloVe that was pretrained on large amounts
of twitter data is applied, the purpose of this layer is to convert our input data into
continuous vector representations that can be easily processed by our model as they can
capture relationships between the different words in the input. We use ’glove.twitter.27B’
and an embedding dimension equal to a 100.

• Next we use a Spatial Dropout which is a regularization technique used in CNN’s that
prevents overfitting by randomly setting some input units to zero during training, we use
a rate equal to 10%.

• A TCN bloc is next applied to extract meaningful features that are present in our data,
our TCN uses causal convolutions with dilation rates 1,2, and 4 with 128 filters and a
kernel size of 3, and a ’ReLu’ activation function.

• After the TCN bloc we apply a dropout with a 10% rate to help prevent overfitting and
make the model generalize better.
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• GlobalMax Pooling 1D is applied which is a pooling operation that minimizes the di-
mensions of the feature maps by taking the maximum value of each feature map and
assembling them to create a new vector, we use it for reducing the feature maps prodcued
by the previous TCN layer.

• We apply a fully connected layer next with 64 nodes and a ’Relu’ activation.

• Finally, we have the output layer with 50 nodes which correspond to the number of our
classes with a Softmax activation.

2.7.3 Long Short Term Memory Networks (LSTM)

Long Short-Term Memory networks also known as LSTM’s are a type of neural network that
emerged as a solution to the vanishing gradient problem and an enhancement to the recurent
neural networks, they have proven to be the best performing technique in speech and language
processing and improve handling of long-term dependencies in sequential data [Arras et al.,
2019].

A typical LSTM unit is made up of a cell and three types of gates: input gates, output gates
(figure 2.5), and forget gates [Onan, 2022], we will explore each of these concepts in the next
sections.

Figure 2.5: LSTM unit [Li et al., 2017].
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2.7.3.1 Memory Cells

The memory cells are the central processing and storage unit in an LSTM [Arras et al.,
2019], the cells determine which information should be stored and when units should access the
information based on gate open and close operations [Onan, 2022]

2.7.3.2 Input Gate

The input gate determines how much of the incoming information should be stored in the
memory cell [Bisong, 2019]. It takes the current input and the previous hidden state as inputs
and passes them through a sigmoid activation function [Arras et al., 2019]. The output of the
sigmoid function is then multiplied by a candidate activation vector, which represents the new
information to be added to the memory cell.

2.7.3.3 Forget Gate

The forget gate controls how much data from the long-term state is stored across time
instants [Bisong, 2019]. It takes the current input and the previous hidden state as inputs
and passes them through a sigmoid activation function. The output of the sigmoid function
is multiplied by the previous memory cell state, determining which information should be
forgotten [Onan, 2022].

2.7.3.4 Output Gate

This gate controls how much information to output from the cell at a particular time instant
[Bisong, 2019]. It takes into account the current input, the previous hidden state, and the
current memory cell state, and decides how much of the information should be passed through
to the output [Goodfellow et al., 2016].

2.7.4 Convolutional Neural Networks (CNN)

Convolutional Neural Networks or CNNs are a type of neural network that has a known, grid-
like structure for processing data their name indicates that the network employs a mathematical
operation called convolution, which is a specific kind of linear operation [Goodfellow et al., 2016].

CNNs have been immensely successful in many computer vision tasks such as image clas-
sification but they have also been used in other areas such as speech recognition and natural
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language processing [Salvaris et al., 2018]. The two main layers in a CNN are the convolutional
layer, and the pooling layer, we will explain these layers below.

2.7.4.1 Convolutional layers

A convolution layer is a fundamental component of the CNN architecture that performs
feature extraction which consists of combining a convolution operation and an activation func-
tion [Yamashita et al., 2018].

The convolution operation is a kind of linear function used for feature extraction it applies
what is known as a kernel or a filter (which is a tensor with specific size), across the input to
produce the output which is called a feature map [Yamashita et al., 2018]. A convolutional
layer can have multiple kernels used to extract different types of features [Bisong, 2019].

When building a convolutional layer, important factors to keep in mind are [Bisong, 2019]:
the filter size, the stride of the filter which determines the step size at which the filter moves
across the input data during the convolution operation, and the padding of the input layer which
is a technique to maintain spatial information at the input’s edges where extra border pixels(
typically zeros) are added to the input data before applying the convolution operation [Bisong,
2019].

2.7.4.2 Pooling layers

Pooling layers are layers that typically follow one or more convolutions, the purpose of the
pooling layer is to downsample or reduce the feature maps produced by the convolutional
layer [Bisong, 2019]. It is possible to think of the pooling layer as an aggregation function
that gathers previously learnt features and extracts the essential features from previous layers
[Bisong, 2019]. The pooling layer performs the aggregation operations that include max, sum,
and average, the max is the most commonly used type of aggregation function and it is referred
to as Max Pooling [Yamashita et al., 2018].

Similarly to convolutional layers hyperparameters in polling layers include filter size, stride,
and padding [Yamashita et al., 2018].

2.7.5 Proposed LSTM-CNN Architecture

The second architecture that we proposed is a combination of LSTM and CNN layers, the
LSTM layers have proven to be good at capturing unique writing styles and patters present in
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tweets, we use them to extract meaningful features which are then fed into CNN layers which
further identify patterns in the data. Finally, the output processes these combined features in
order to produce the final prediction.

We visualize this described architecture with the following diagram in figure 2.6.
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Figure 2.6: Our proposed LSTM-CNN architecture.
30



CHAPTER 2. PROPOSED SOLUTION

The architecture can be further explained along these lines:

• First the input layer receives the pre-processed and tokenized tweets, the max length is
equal to 100.

• Next we pass the input to a GloVe embedding layer we use ’glove.twitter.27B’ with the
embedding dimension equal to 200.

• Following the embedding layer we have the first LSTM layer with a number of units equal
to 64, the LSTM layers capture the unique writing styles and extract meaningful features
present in the tweets.

• A second LSTM layer comes after with 32 units.

• Then we apply a droput with a rate of 0.2 to avoid overfitting.

• A first 1D convolution layer is later applied with 32 filters and a filter size of 3 and a
’Relu’ activation.

• After the convolutional layer we apply a Max pooling layer with a pool size equal to 2
in order to reduce the dimensionality from the convolutional layer’s output and keep the
most important features.

• Next we have another convolutional layer with 64 filters and a kernel size equal to 3 and
’Relu’ activation, followed by another Max pooling layer with a pool size equal to 2.

• We later apply a flatten layer to transform the feature maps produced by the previous
convolutional layers into a 1D array in order to be processed by the fully connected layer.

• Finally, we have the output layer with 50 nodes and a ’Softmax’ activation in order to
produce the final prediction.

2.7.6 Autoencoder

An Autoencoder is a type of neural network that is trained to attempt to copy its input to
its output, an autoencoder consists of two main parts: the encoder function which encodes the
high-dimensional input into a low-dimensional hidden variable and the decoder function that
attempts to produce a reconstruction of the input [Goodfellow et al., 2016].

Autoencoders are designed so that they do not replicate the input data precisely and are
constrained in a way that allows them to copy only approximately, they thus learn the most
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important features to reconstruct the input data [Salvaris et al., 2018]. Figure 2.7 presents the
architecture of an autoencoder using tweets as an example.
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|
|

Tweet

Embedding

Figure 2.7: Architecture of an Autoencoder.

In our architecture we will only use the encoder part of the autoencoder in order to extract the
features from our text. The encoder takes our input text and maps it into a lower dimensional
hidden representation that we will further feed to a classification model that we will talk about
in the next section to perform the authorship attribution task. The encoder architecture we
use is illustrated in figure 2.8.
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Figure 2.8: The architecture of our encoder.

2.7.7 AdaBoost Classifier

Adaboost short for adaptive boosting is a machine learning and the first practical boosting
algorithm, and is now one of the most commonly used and studied, with applications in a wide
range of fields [Schapire, 2013].

It is a classification task ensemble method that combines numerous "weak" classifiers to build
a strong classifier, the algorithm iteratively trains weak classifiers on different subsets of the
training data and throughout each iteration misclassified instances are given greater weights
which allows the algorithm to focus on samples that are difficult to classify correctly [Schapire
et al., 2000].

The weak classifiers are changed in later iterations to pay greater attention to these difficult
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samples, the final classification is established by a weighted combination of the weak classifiers,
with the contribution of each classifier weighted based on its performance [Schapire et al., 2000].

In our architecture we use AdaBoost with decision trees as base estimators.

2.7.8 Proposed Autoencoder-Adaboost Architecture

Our third proposed architecture is composed of the combination between the encoder part
of an autoencoder for the feature extraction from the input text data, and the second part
which is an AdaBoost classifier using decision trees as base estimators for the final authorship
attribution classification.

We present an illustration of the architecture in figure 2.9.
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Figure 2.9: Proposed Autoencoder-AdaBoost Architecture for Authorship Attribution.
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A detailed description of the architecture is provided in the following part :

• The first part is the input layer which receives the pre-processed and tokenized tweets,
the max length is equal to 100.

• The input is then passed to a GloVe embedding layer we use ’glove.twitter.27B’ with the
embedding dimension equal to 100.

• Next we apply a flatten layer to transform the embedding output to a 1D array.

• A dense layer with 84 nodes and using ’Relu’ activation is applied next to map the data
to a lower dimensional representation.

• For the final classification we use an AdaBoost classifier with 5 decision trees as base
estimators.

2.8 Conclusion

In this chapter we introduced our proposed solution including the different models that we
utilized and their respective architectures, we also presented the dataset that we used followed
by the pre-processing steps that were taken in order to clean our data. In addition, we explained
the process of vectorization, which includes tokenization and word embedding techniques, in
detail.

In the next chapter we will present the experimental setup with results achieved by each
model, along with the tools and libraries that have been used. We also provide a comparison
of the performance of our proposed models to the state of the art results.

35



Chapter 3

Experimentation And Results

3.1 Introduction

In this chapter we thouroughly examine our proposed models for effectively predicting the
authorship of unknown tweets we present their performances and compare them to state of the
art results, to accomplish this we used various evaluation metrics that will also be presented.
Additionally, we present the experiments conducted and tools and libraries that have been
useful during the course of our work.

3.2 Hardware Specifications

In this section we will provide a brief overview of the hardware specifications used in the
building and training and evaluation of the machine leaning and deep learning models employed
in our work, we used two computers with the following configurations:

For the first PC:

• Processor: Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz 1.90 GHz

• RAM: 8,00 Go

• System type: 64-bit Operating System, x64-based processor

For the second PC:

• Processor: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz
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• RAM: 8,00 Go

• System type: 64-bit Operating System, x64-based processor

3.3 Software Environment

For our experiments we used python 3.10 as a programming language withing the Google
Colaboratory environment which we will be talking about in this section along with the various
python libraries that have been essential in our work.

3.3.1 Google Colaboratory

Google Colaboratory more commonly known as "colab" [Bisong, 2019], is a research initiative
hosted on the Google Cloud platform. It offers a serverless Jupyter notebook environment for
interactive development [Bisong, 2019]. Colab offers the ability to prototype machine learning
models on powerful hardware such as GPUs and TPUs, thus enabling accelerated computations
for data analysis and model training [Bisong, 2019].

3.3.2 Python Libraries

In this section we present the python libraries that played an important role in our work,
python being a powerful programming language offers a variety of libraries that helped design
and implement our models.

3.3.2.1 NumPy

NumPy 1 is a powerful, free, and open-source library for the Python programming language
that provides support for large multi-dimensional arrays, along with a collection of high-level
mathematical functions which makes it an essential tool for scientific computing and data
analysis.

1https://www.nvidia.com/en-us/glossary/data-science/numpy/
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3.3.2.2 Pandas

Pandas 2 is the most widely used data manipulation and analysis software open-source library
built on the Python programming language, it provides data structures and operations for
strong, flexible, and user-friendly data analysis and manipulation. Pandas enhances Python
by enabling it to work with data similar to spreadsheets, facilitating quick loading, aligning,
manipulating, and merging in addition to other crucial operations.

3.3.2.3 Sickit-learn

Sickit-learn 3 is a powerful and well known machine learning library for python package that
includes a large number of algorithms as well as tools for ML visualizations, preprocessing,
model fitting, selection, and evaluation. Scikit-learn, which is based on NumPy, SciPy, and
matplotlib, includes a number of efficient algorithms for classification, regression, and clustering
such as Support vector machines, rain forests, and gradient boosting.

3.3.2.4 Keras

Keras 4 is a robust open-source deep learning library that builds on top of current frameworks
like TensorFlow and Theano, it offers a high-level interface for designing and training neural
networks, making it easy to build and test different deep learning models.

3.4 Evaluation Metrics

In this section we will delve into the evaluation metrics that we used in order to asses
the performance of our model, evaluation metrics serve as a quantitative measure that helps
determine the efficacy of our classifiers in predicting the authorship of a given tweet. In our work
we focused on four main evaluation metrics namely: accuracy, precision, recall, and F1-score.

Before we define each metric we must first establish a clear understanding of the fundemental
elements used in these metrics:

• True Positive (TP):

True positive refers instances that are correctly predicted as positive by the model.
2https://www.nvidia.com/en-us/glossary/data-science/pandas-python/
3https://www.nvidia.com/en-us/glossary/data-science/scikit-learn/
4https://developer.nvidia.com/blog/scaling-keras-training-multiple-gpus/
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• True Negative (TN):

It refers to the instances that are correctly predicted as negative by the model.

• False Positive (FP):

This value represents the instances that are negative and were incorrectly predicted as
positive by the model.

• False Negative (FN):

This value refers to the instances that despite being positive were falsely predicted as
negative by the model.

3.4.1 Accuracy

Accuracy measures the percentage of correctly predicted labels [M and M.N, 2015]. It is
defined as follows:

TP + TN

TP + FP + TN + FN
(3.1)

3.4.2 Precision

Precision measures the correctly predicted positive labels from the total predicted labels in
a positive class [M and M.N, 2015]. It is defined as follows:

TP

TP + FP
(3.2)

3.4.3 Recall

Recall measures the positive labels that are correctly classified by the model [M and M.N,
2015]. Recall is defined as:

TP

TP + FN
(3.3)

3.4.4 F1-score

The F1 score is a harmonic mean of precision and recall [M and M.N, 2015], it provides a
single metric that balances both metrics, its equation is:

2 ∗ Precision ∗Recall

Precision+Recall
(3.4)
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In a multi classification problem such as ours it wouldn’t be possible to use precision, recall,
and f1-score directly for evaluation, instead we would need to calculate these metrics for each
one of the classes individually by treating each class as the positive class and the rest as negative
classes. Then, we compute the average of precision, recall, and f1-score across all classes to get
the final value for each evaluation metric.

Each of these metrics are available for multi classification problems and are provided by the
Sickit-learn library.

3.5 Experimental Setup

In this section we present the experiments and results of our proposed models, the objective
is to evaluate the performances of each model and explore the impact of using pure unprocessed
tweets compared to pre-processed tweets as well as the influence of using different dataset sizes
by considering 50 users and 10 users. At the end of the experiments we provide a comparison
between the results achieved by our models and the state of the art results.

3.5.1 Experiment 1: Pure tweets Vs pre-processed tweets

In this experiment we evaluate the three models: TCN, LSTM-CNN, and Autoencoder-
Adaboost using a subset of the dataset of 50 users randomly selected. We first test with pure
tweets then with pre-processed tweets.

3.5.1.1 Case 1 : Using pure tweets

Prior research has demonstrated the importance of stopwords, URLs, and other symbols
[Suman et al., 2022], in order to observe the impact of pre-processing on the data we experiment
with first feeding the original tweets directly to the model then with applying pre-processing
steps to the tweets.

• TCN model results:

The results achieved by the TCN model are presented in table 3.1, for this model we have
used ’Sparse categorical crossentropy’ as loss function since we have a multi classification
problem, for the optimizer we used ’adam’, and a number of epochs equal to ’10’.
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Table 3.1: TCN performance on pure tweets using the different evaluation metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 52.02% 53.29% 52.47% 51.92%

The model achieved 52.02% accuracy and a loss equal to 1.73, figures 3.1 and 3.2 illustrate
the accuracy and the loss values throughout the epochs for both training and validation
data:

Figure 3.1: Accuracy graph for 10 epochs using TCN and pure tweets.
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Figure 3.2: Loss graph for 10 epochs using TCN and pure tweets.

• LSTM-CNN model results:

For the LSTM-CNN model we used ’adam’ optimizer and ’Sparse categorical crossentropy’
as loss function and 10 epochs as well, the results achieved by this model are presented
in table 3.2:

Table 3.2: LSTM-CNN performance on pure tweets using the different evaluation metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 52.77% 54.26% 52.47% 52.39%

As it can be noticed from the results table, the performances achieved by the TCN and
LSTM-CNN model show remarkable resemblance, since both models obtained very similar
results across all evaluation metrics.

The accuracy and loss graphs throughout all ephos are presented below in figures 3.3 and
3.4:
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Figure 3.3: Accuracy graph for 10 epochs using LSTM-CNN and pure tweets.

Figure 3.4: Loss graph for 10 epochs using LSTM-CNN and pure tweets.

• Autoencoder-Adaboost model results:

In the encoder part of this model we used ’Mean squared error’ for the loss function, and
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’adam’ optimizer and the number of epochs is 20, we present the results achieved in table
3.3:

Table 3.3: Autoencoder-Adaboost performance on pure tweets using the different evaluation
metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 17.21% 17.22% 17.19% 16.96%

This model exhibits very poor performances, as shown by the results table the model
achieved results considerably worse when compared to the two previous TCN, LSTM-
CNN models.

3.5.1.2 Case 2: Using pre-processed tweets

In this experiment, we apply pre-processing steps to our data namely URL removal as well
as hashtag, emojis, punctuation and special characters, we present the results achieved by all
models using the different metrics previously used.

• TCN model results:

We use the same parameter configuration as the previous experiment in this model in
order to effectively asses the impact of the pre-processing on the model’s performance,
the results after applying the pre-processing steps to our tweets are presented in table
3.4:

Table 3.4: TCN performance on pre-processed tweets using the different evaluation metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 43.95% 44.09% 44.03% 43.20%

The model reached an accuracy of 43.95% and a loss value of 2.04, the accuracy and loss
graphs for the validation and train data are illustrated in figures 3.5 and 3.6:
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Figure 3.5: Accuracy graph for 10 epochs using TCN and pre-processed tweets.

Figure 3.6: Loss graph for 10 epochs using TCN and pre-processed tweets.

• LSTM-CNN model results:

45



CHAPTER 3. EXPERIMENTATION AND RESULTS

For this model we also used the same parameters that have been previously used, we
demonstrate the results achieved by this model in table 3.5:

Table 3.5: LSTM-CNN performance on pre-processed tweets using the different evaluation
metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 42.96% 43.97% 43.05% 42.35%

The accuracy reached by the model was 42.96 and the loss value reached 2.04. The
graphs for accuracy and loss with both validation and train data are visualized as follows
in figures 3.7 and 3.8:

Figure 3.7: Accuracy graph for 10 epochs using LSTM-CNN and pre-processed tweets.
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Figure 3.8: Loss graph for 10 epochs using LSTM-CNN and pre-processed tweets.

• Autoencoder-Adaboost model results:

Similarly to the previous two models, we kept the same parameters for this model. We
showcase the results achieved using table 3.6:

Table 3.6: Autoencoder-Adaboost performance on pre-processed tweets using the different eval-
uation metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 10.20% 10.01% 10.46% 10.04%

The results of the first experiment indicate that the pre-processing steps employed had a
negative impact on the performances of the three models, we were able to observe a decrease in
all the evaluation metrics used for the evaluation for the three models when using pre-processed
tweets compared to using pure tweets. This observation sheds light on an important aspect in
authorship attribution of short texts problems where the normalization steps can potentially
take away some important features that could help distinguish individual writing styles and
further decrease the performance of the AA models. Table 3.7 represents a comparison between
the results achieved using pre-processed tweets and when using pure tweets.
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Table 3.7: Comparison between the results of the first experiment

Model
Pure tweets Pre-processed tweets

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

TCN 52.02% 53.29% 52.47% 51.92% 43.95% 44.09% 44.03% 43.20%

LSLM-CNN 52.77% 54.26% 52.47% 52.39% 42.96% 43.97% 43.05% 42.35%

AE-Adaboost 17.21% 17.22% 17.19% 16.96% 10.20% 10.01% 10.46% 10.04%

Based on these results we will henceforth use unprocessed data for the remaining of the
experiments as it helps preserve the features that could be useful in our task.

3.5.2 Experiment 2: Decreasing the number of users

Since previous research has established that the number of authors affects the performance of
an authorship attribution model, we conduct this experiment by varying the number of users.
in this section we will focus on the case of reducing the number of users to 10, as we have already
presented the results that could be achieved using 50 users in the previous experiments.

• TCN model results:

For the TCN model we kept the same parameters as the previous experiments, the results
using 10 users as showcased in table 3.7:

Table 3.8: TCN performance with 10 users using the different evaluation metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 81.96% 82.77% 81.61% 82.01%

The accuracy for this model reached 81.96% while the loss value reached 0.46, below we
provide the graphs for accuracy and loss respectively for the training and validaion data
in 3.9 and 3.12:

48



CHAPTER 3. EXPERIMENTATION AND RESULTS

Figure 3.9: Accuracy graph for 10 epochs using TCN with 10 users.

Figure 3.10: Loss graph for 10 epochs using TCN with 10 users.

• LSTM-CNN model results:
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In this section we present the results of the LSTM-CNN model using 10 users and the
same parameters as previous experiments, the results are presented in table 3.8:

Table 3.9: LSTM-CNN performance with 10 users using the different evaluation metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 81.95% 81.45% 82.41% 81.57%

The LSTM-CNN model reached an accuracy of 81.95% in this experiment with a loss
value of 0.51. Both graphs for accuracy and loss are provided below:

Figure 3.11: Accuracy graph for 10 epochs using LSTM-CNN with 10 users.
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Figure 3.12: Loss graph for 10 epochs using LSTM-CNN with 10 users.

• Autoencoder-Adaboost model results:

In this last part we present the results of the Autoencoder-Adaboost model which has
worse results in comparison to the previous two models we evaluated, table 3.9 summarizes
its results:

Table 3.10: Autoencoder-Adaboost performance with 10 users using the different evaluation
metrics

Evaluation Metric Accuracy Precision Recall F1-score

Value 46.25% 45.79% 45.76% 45.65%

The experimental results demonstrate a notable improvement in the performance across all
three models when the number of users is decreased to 10, this conclusion aligns with the
previous research, where it has been proven that decreasing the number of authors enhances
the performance of authorship attribution models. Table 3.11 represents a comparison between
the results when using 50 users and when using 10 users.
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Table 3.11: Comparison between the results of the second experiment

Model
50 Users 10 Users

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

TCN 52.02% 53.29% 52.47% 51.92% 81.96% 82.77% 81.61% 82.01%

LSLM-CNN 52.77% 54.26% 52.47% 52.39% 81.95% 81.45% 82.41% 81.57%

AE-Adaboost 17.21% 17.22% 17.19% 16.96% 46.25% 45.79% 45.76% 45.65%

3.5.3 Comparison With The State Of The Art Results

In this section we provide a comparison of the results achieved across all our three models
and the state of the art results, we resume these results in table 3.12 :

Table 3.12: Comparison with the state of the art results

Model Accuracy

Wang and Iwaihara, 2021 88.2%

Huang et al., 2020 83.6%

Suman et al., 2022 86.62%

Shrestha et al., 2017 76.1%

TCN 52.02%

LSTM-CNN 52.77%

Autoencoder-Adaboost 17.21%

Despite our efforts our models fell short of achieving state of the art results, the obtained
results for the three models indicate that there is still room for improvement and also highlight
the complexity of the authorship attribution task. While both the TCN and LSTM-CNN
models had similar and moderate results (52.02% and 52.77% accuracy), the Autoencoder-
Adaboost model performed significantly worse in comparison (17.21% accuracy) suggesting
that it struggled in capturing necessary features and unique writing styles.
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3.6 Application Interface

In this section we present our authorship attribution application’s interface, first figure 3.13
illustrates the interface of the application at launch:

Figure 3.13: The interface at the launch of the application.

From here the user can enter a tweet in the input field and in order to predict its authorship
the user must click on the button labeled "predict" and the output will be displayed below.
We provide an example of a tweet’s author prediction in the following figure:
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Figure 3.14: The interface using an example of the authorship attribution of a tweet.

3.7 Conclusion

In conclusion, in this chapter, we presented the various libraries that have been used in
our models, as well as the evaluation metrics that we employed to asses their performances.
Next we presented in detail the experiments that we conducted while also providing the results
achieved across all three models. Additionally, we provided a comparison between our proposed
models and the state of the art results and also shed light on the complexity of the authorship
attribution task as seen by the results achieved.

In the end we presented our user interface with an example of the execution and the author-
ship attribution of an anonymous tweet.
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General Conclusion

With the exponential growth of social media usage around the world a multitude of issues and
crimes emerged, including online harassment, fake news spread, identity theft, and a numerous
other pressing issues. Addressing these problems has become crucial in order to provide a safe
environment for social media users assuring trustworthiness and accountability.

Authorship attribution on social networks proves to be an effective solution to these problems
by accurately attributing authorship to the content published on social networks, we can hold
users accountable for their actions in these platforms.

The purpose of our work is to propose an authorship attribution model that can effectively
predict the author of unknown post of social network platforms, using machine learning and
deep learning algorithms. We proposed three distinct models to tackle this problem, namely
TCN which we were the first to use in the task of authorship attribution, LSTM combined with
CNN, and Autoencoder combined with Adaboost. Our models were evaluated using data from
a Twitter dataset containing over 7 million tweets from which we selected and experimented
with a varying number of tweets and users, we conducted several experiments in order to asses
the performances of our models across different scenarios and settings.

Despite utilizing advanced machine learning and deep learning algorithms, we faced diffi-
culties in achieving satisfactory results with the TCN model reaching 52.02% accuracy and
the LSTM-CNN reaching a similar value of 52.77%, the worst performing model was the Au-
toencoder combined with Adaboost which reached an accuracy of only 17.21%. These low
performances can be the consequence of the complexity of the authorship attribution problem
applied to social networks due to the variation of users’ writing styles and the briefness of the
content present on Twitter as it imposes a limit of 280 characters per tweet, Moreover, our
experiments have proven that the task of authorship attribution becomes significantly more
challenging as the number of authors increases, we observed how the results varied when al-
tering the number of users. As the number of authors grew, the complexity of distinguishing
individual writing styles and identifying distinct patterns amplified.
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GENERAL CONCLUSION

Our future perspectives in this field include improving the accuracy by considering other
approaches that may produce better performances, we would also like to experiment on larger
datasets beyond Twitter such as other social media platforms. Another interesting research
direction would be to extend our approach to other languages namely the Arabic language
which is known for its rich and unique characteristics. By pursuing these directions we aim to
improve and make significant contributions in the authorship attribution field.
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