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Abstract 

In an increasingly interconnected world, effective communication across language 

barriers is essential. Real-time transcription and translation systems have emerged as 

solutions to facilitate seamless communication in multilingual settings. This thesis presents a 

system designed to transcribe English speech, translate it into French, and address 

challenges in capturing clear audio and handling noisy environments. The system 

incorporates an automatic speech recognition machine learning model capable of 

transcribing vocabulary typically used in meetings. It focuses on achieving real-time 

performance with reasonable latency, even on low-performance hardware. Consequently, 

our system successfully addressed the challenge of capturing clear audio in noisy 

environments and transcribing vocabulary commonly used in meetings. Despite 

acknowledging the constraints in accurately recognizing some words and occasional 

transcription errors, the system's ability to deliver real-time performance with minimal 

latency on hardware of modest capabilities is noteworthy and the translation system is 

robust and Effective at capturing semantics. 
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Résumé 

Dans un monde de plus en plus interconnecté, une communication efficace au-delà 

des barrières linguistiques est essentielle. Les systèmes de transcription et de traduction en 

temps réel ont émergé en tant que solutions pour faciliter une communication fluide dans 

des environnements multilingues. Cette thèse présente un système conçu pour transcrire la 

parole en anglais, la traduire en français et relever les défis liés à la capture d'un son clair et 

à la gestion d'environnements bruyants. Le système intègre un modèle d'apprentissage 

automatique de reconnaissance automatique de la parole capable de transcrire le 

vocabulaire généralement utilisé lors des réunions. Il vise à atteindre des performances en 

temps réel avec une latence raisonnable, même sur du matériel peu performant. En 

conséquence, notre système a relevé avec succès le défi de la capture d'un son clair dans 

des environnements bruyants et de la transcription du vocabulaire couramment utilisé lors 

des réunions. Malgré la reconnaissance des contraintes liées à la reconnaissance précise de 

certains mots et aux erreurs de transcription occasionnelles, la capacité du système à offrir 

des performances en temps réel avec une latence minimale sur un matériel aux capacités 

modestes est remarquable et le système de traduction est robuste et efficace dans la 

capture de la sémantique. 
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 ملخص 

ي عالم يزداد تداولا 
الكلام   علىيعد التواصل الفعال عبر حواجز اللغة أمرا أساسيا. ظهرت أنظمة التعرف  وتواصلا،ف 

جمة ي البيئات متعددة اللغات. تقدم هذه المذكرة نظاما   والبر
ي كحلول لتسهيل التواصل السلس ف 

ي الوقت الحقيقر
ف 

ي وترجمته إلى اللغة  علىمصممًا للتعرف  ي التقاط الصوت الواضح    الفرنسية،الكلام الإنجلب  
كذلك مواجهة التحديات ف 

ي تحتوي 
ي البيئات التر

ي على الكلام  يتضمن الن   ضجيج.  علىومعالجة الصوت ف 
ظام نموذج ذكاء اصطناعي للتعرف التلقائ 

ي  
ي الوقت الحقيقر

ي الاجتماعات. النظام يركز على تحقيق أداء عالىي ف 
قادرا على التعرف على المفردات المستخدمة عادة ف 

ي التقا
ّ
ي التغلب على تحد

ط الصوت  مع تأخب  معقول، حتر على الأجهزة ذات الأداء المحدود. وكنتيجة، نجح نظامنا ف 

ي الاجتماعات. على الرغم من  
ي تحتوي على ضجيج والتعرف على المفردات المستخدمة شائعًا ف 

ي البيئات التر
الواضح ف 

ي التعرف الدقيق على بعض 
ي مع تأخب     الكلمات،بعض القيود ف 

ي الوقت الحقيقر
فإن النظام قادر على تقديم أداء عالىي ف 

ي بدقة عالية معقول على أجهزة ذات قدرات محدودة واما 
ي التقاط المعائ 

جمة فهو فعّال ف   .نظام البر
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In an increasingly interconnected world, effective communication plays a vital role in 

bridging language barriers and fostering understanding between individuals. Language 

diversity, however, poses a significant challenge in situations where people speaking 

different languages need to interact, such as in multilingual meetings. To address this 

challenge, real-time transcription and translation systems have emerged as a promising 

solution, enabling seamless communication between individuals who do not share a 

common language. Typically, these systems are composed of multiple components working 

in tandem. Firstly, real-time audio capture is employed to record the spoken words. 

Subsequently, Automatic Speech Recognition techniques are utilized to transcribe the audio 

into textual format, effectively converting speech into written form. The transcribed text is 

then subjected to machine translation techniques for the purpose of translation. Finally, the 

translated text is presented to the user through a graphical user interface. 

There are different systems available that perform either some or all of the required 

tasks, such as open-source solutions. Open-source systems often rely on high-quality audio 

clarity and encounter difficulties in comprehending diverse accents. Additionally, these 

systems encounter obstacles when dealing with noisy background environments and often 

struggle to operate in real-time with acceptable latency. Furthermore, capturing the 

vocabulary commonly used in meeting settings poses another challenge for these systems 

as they are intended for general use and long-form audio. 

In our work, we specifically focused on addressing these shortcomings by building an 

English to French system that excels in capturing clear audio, even in noisy environments, 

through the use of a machine learning voice activity detection model. Additionally, we 

placed great emphasis on enhancing the Automatic Speech Recognition system's ability to 

accurately transcribe English speech containing vocabulary typically used in meetings by 

applying fine-tuning techniques to a pre-trained machine learning model. Furthermore, we 

prioritized the development of a real-time system with reasonable latency, optimized to 

run efficiently and effectively translate English speech to French, even on low-

performance hardware. 

In this thesis, we begin by providing a comprehensive explanation of speech 

recognition and the machine learning techniques employed in the transcription process. 

Moving forward, our attention shifts to the translation task in the second chapter, where 
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we delve into Natural Language Processing approaches, specifically focusing on machine 

translation and comprehending its underlying processes. In the third chapter, we present 

the system's design and architecture, outlining the real-time audio acquisition and 

preprocessing, as well as the transcription and translation models. Noteworthy decisions 

made for each model are emphasized. Lastly, the fourth chapter encompasses 

implementation, evaluation, and the development of a graphical user interface, 

demonstrating the tools and libraries utilized throughout the project. 
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Chapter I Speech Recognition 

Chapter I 

Speech Recognition 
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I.1 Introduction  

Within this chapter, we explore the field of transcription and specifically delve into 

speech recognition. We cover the speech characteristics used in the transcription pipeline, 

including feature engineering and the extraction of log Mel spectrograms using various 

Fourier transform algorithms. Additionally, we present the application of machine learning 

for speech recognition, starting with an overview of fundamental machine learning concepts 

and categories. Our focus then shifts towards artificial neural networks (ANNs), where we 

examine their building blocks, showcasing an example of a perceptron. Finally, we 

emphasize the transformative potential of the transformer architecture along with some 

previous work on Automatic speech recognition. 

I.2 What Is Speech Recognition 

Speech recognition, also known as automatic speech recognition (ASR), enables 

computers to interpret and understand spoken language [1]. Specifically, it involves 

transforming spoken words or phrases into text that a computer can understand and 

process. To this end, algorithms are used to analyze audio signals to extract characteristics 

of speech [2]. Speech is usually depicted as a sound-wave Figure I.1 which is a 

representation of a physical disturbance that caused a vibration in the air around the source 

of sound [3]. 

 

Figure I.1: Speech signal representation sampled at 8 kHz [4]. 
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I.3 Applications 

Speech recognition has many applications in the real world such as:  

● Personal assistants which are software applications that use speech recognition 

technology to interpret voice commands and respond accordingly like Seri and Alexa [1].  

● Voice biometrics, this means the programs that use voice characteristics and patterns to 

authenticate or confirm a person's identity like forensic investigations or surveillance 

systems [5]. 

● Transcription which is a powerful tool for capturing spoken language and translating it 

into written text, and it is used in a variety of fields including healthcare, legal and 

entertainment. 

I.4 Speech characteristics 

Audio has many characteristics we need in speech recognition such as: 

●    Frequency is the Vibrational motion that repeats itself in a regular interval of time 

called the period [6] and it is measured in hertz (Hz), 

●    Duration refers to the length of time a sound persists. It is typically measured in 

seconds, and it represents how long a sound wave lasts, this is an important factor in 

analyzing and manipulating sound recordings, because the longer the duration, the 

easier it is to lose context due to hardware limitations.  

●    Pitch, is how humans hear the sounds and it can be different from one to another and 

it is scaled by frequencies [6],  

●    Timbre is the difference between two sounds with similar pitch, loudness and 

duration. It helps us more to define the difference between musical instruments [6]. 

Figure I.2 illustrates these characteristics. 
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Figure I.2 : Audio characteristics.  

I.5 Speech recognition design 

The design process begins first by data collection, which is gathering audio samples 

and their corresponding transcription that will be employed to train and test the speech 

recognition system. Then we pre-process the collected data for analysis by Digitization, 

segmentation, noise reduction or data augmentation. We then move on to feature 

extraction, features that are measurable characteristics of speech signal in a form that can 

be processed by a computer [7] and extracting them from the set of pre-processed data is 

needed to train our system. Following that, language modeling, which develops a 

probabilistic word sequence system that predicts the most probable word sequence for the 

input speech signal. After this training and testing phase, we train the speech recognition 

system using a large amount of speech dataset and testing the accuracy of the system using 

a separate dataset. Finally, we implement and deploy a speech recognition system in a real 

environment, such as real-time speech-to-text transcription.  
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Figure I.3: Automatic speech recognition pipeline. 

Features and their extraction process play a crucial role in our system serving as the 

input information that enables accurate transcription of speech. Further details will be 

discussed in coming sections.  

I.6 Feature extraction  

Common features used in speech recognition include Mel-frequency cepstral 

coefficients and log-Mel spectrograms because of their efficacy in representing the 

characteristics of human speech. 

The choice of features can greatly affect the accuracy of speech recognition systems. 

In our study, we chose log-Mel spectrogram because of its logarithmic scale that provides a 

more perceptually relevant representation of the frequency content of the speech signal [8]. 

To clarify, the section below represents how we extract the Log-Mel spectrogram feature 

specifying its steps. 

I.6.1 Fourier transform 

To extract log-Mel spectrogram features we need to convert from the time domain 

which is the representation of the signal in time to the frequency domain which is the 

representation in terms of their frequency components. To be able to do that, we need a 
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computational function called the Fourier transform. However, when we deal with any audio 

signal today, we deal with a discrete signal that is used and manipulated with the digital 

machines, and the signal we get is continuous signal, so we need to pre-process it by 

converting it from continuous signal to digital signal. 

The method used to get a digital signal is sampling and quantizing it by measuring the 

amplitude of the signal at regular intervals in time (period T) to a finite set of discrete values, 

and it is determined by the bit-depth of the digital signal. The higher the bit-depth, the more 

accurate and the closer the digital signal is to the original continuous signal. The rate at 

which these measurements are taken is called the sampling rate (Sr). 

The Fourier transform function works on continuous signals, but for discrete signals, 

we use the Discrete Fourier Transform (DFT) instead. The DFT enables us to analyze the 

frequency components of the signal. By applying the DFT, we obtain a frequency domain 

representation that is independent of time, as shown in Figure I.4. 

 

Figure I.4: Frequency domain representation [9]. 

However, to capture the evolution of frequency components over time, we need to 

use the Short-Time Fourier Transform (STFT). The STFT is essentially the DFT applied to 

segments of the signal called frames [10]. These frames are obtained by dividing the signal 

into equal-sized time windows. The STFT equation I.1. is defined as: 

𝑺𝑻𝑭𝑻(𝒏,𝒘) =  ∑ 𝒙(𝒌)𝒘(𝒌 − 𝒏) 𝒆−𝒊𝒘𝒌∞
𝒌=−∞                       (I. 1)  
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x(k) is the signal, w(k) is a window function of finite support, n denotes the time index, 

omega is the frequency index, i is the imaginary unit.  

Applying this function will lead to another problem called spectral leakage, which is a 

discontinuity in the edges of frame intervals; it manifests as a high-frequency component 

that is not present in the original signal. 

To reduce the spectral leakage, we use a mathematical function called Hann windowing I.2. 

that is zero-valued outside of the chosen interval.  

𝒘(𝒏)  =  𝟎. 𝟓 ∗  (𝟏 −  𝒄𝒐𝒔 (
𝟐𝝅𝒏

(𝑵 − 𝟏)
))                      (I. 2) 

w(n) is the value of the window at index n, n is the index of the sample within the window (0 

≤ n ≤ N-1), N is the total number of samples in the window. 

However, the application of a windowing function to the frames results in a loss of 

frequency information at the frame edges. To mitigate this issue, we adopt an overlapping 

strategy for the frames, ensuring that adjacent frames share a portion of their data. 

By incorporating the Fast Fourier Transform (FFT) algorithm into the DFT computation, 

the STFT can be computed efficiently. The FFT is an algorithm that computes the DFT with 

reduced computational complexity, making it widely used in practice for fast frequency 

analysis. 

As a result of this process, we obtained the spectrogram shown in Figure I.5 where 

Frequencies are shown increasing up the vertical axis, and time on the horizontal axis. The 

legend to the right shows that the color intensity increases with the density. 
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Figure I.5: Spectrogram of an audio file with the spoken phrase "Nineteenth century" [11]. 

I.6.2 Logarithmic Mel-spectrogram 

Normal spectrograms express the frequency linearly which is a problem regarding the 

human’s perception. For a more perceptual representation in which pitch differences are 

easier to discern, we will use the Mel concept and transform the frequency in a logarithmic 

form. This is done with a series of triangular overlapping filters whose peaks are spaced 

according to the Mel scale. The output of these filters is typically logarithmically compressed 

to produce the final logarithmic Mel-spectrogram representation Figure I.6. 

 

     Figure I.6: Representation of Mel spectrogram [12]. 
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I.7 Machine Learning for Speech Recognition 

I.7.1 Fundamentals of machine learning 

Machine learning, a field within artificial intelligence, has emerged as a powerful 

approach for analyzing and extracting insights from complex data [13]. It encompasses a 

wide range of algorithms and techniques that enable computers to learn patterns and make 

predictions without explicit programming. There are three types of machine learning 

algorithms [14]: supervised, unsupervised, and reinforcement learning. 

Supervised learning involves training a model using labeled data, where the input 

features and corresponding output labels are provided. The goal is to learn the mapping 

between the input and output to make accurate predictions on new, unseen data. In our 

case we use supervised learning to train models using labeled dataset to transcribe spoken 

language into written text.  

Supervised learning can be further categorized into two main types: classification 

where the output labels are discrete and represent different classes or categories. The goal 

is to train a model that can assign the correct class label to new input data. For example, 

email spam detection is a classification task where the model predicts whether an email is 

spam or not based on features like subject line, sender, and content. And we also have 

regression where the output labels are continuous numerical values.  

In contrast, unsupervised learning deals with unlabeled data. Without explicit 

guidance, unsupervised learning algorithms aim to discover patterns, structures, and 

relationships within the data. In addition, reinforcement learning focuses on training an 

agent to interact with an environment and learn optimal actions based on rewards or 

punishments. For example, a model called AlphaGo trained to play the board game “Go” 

[15]. 

Labeled datasets are typically divided into two sets: training and testing sets [16], 

with typical ratios of 80%-20% or 70%-30%. Datasets can be clean or noisy. While clean 

datasets are carefully controlled and free of errors, outliers, or inconsistencies, noisy 

datasets mirror real-world difficulties since they contain mislabeled samples and incomplete 

data. The training set is used to train the model so it can generalize and make accurate 
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predictions on unseen data. While the testing set provides an unbiased evaluation of the 

model's performance. It consists of unseen data that the model has not encountered during 

training. Several evaluation metrics exist, and in the context of speech recognition, %WER 

(Word Error Rate) [17] is a common metric used for evaluating the performance of the 

model's predictions by quantifying the rate of errors relative to a reference or ground truth. 

A lower %WER indicates better performance. The following is the %WER equation I.3. 

%𝑾𝑬𝑹 =  (𝑺 +  𝑫 +  𝑰)/𝑵                            (I. 3) 

S is the number of substitution errors (words in the reference transcript that are replaced by 

incorrect words in the output of the system). D is the number of deletion errors (words in 

the reference transcript that are missing in the output of the system). I is the number of 

insertion errors (extra words in the system's output that are not present in the reference 

transcript). N is the total number of words in the reference transcript 

I.7.2 Limitations of traditional machine learning 

Traditional machine learning approaches in general across the fields are subject to 

several limitations [18]. One major drawback is their reliance on handcrafted features, 

which require expert knowledge and manual engineering. This feature engineering process 

can be time-consuming and may not fully capture the intricate characteristics of speech 

signals. Moreover, traditional machine learning models struggle to handle temporal 

dependencies which refer to the relationships and patterns that exist over time in spoken 

language. Contextual information present in speech data, hindering their ability to model 

complex patterns effectively. Additionally, these models may face challenges in adapting to 

variations in acoustic conditions, such as background noise and speaker variability like 

different accents, as they are often trained on clean and controlled data. 

To address these limitations, deep learning has emerged as a powerful solution in 

speech recognition. Deep learning models, such as Transformers, can automatically learn 

high-level representations from raw speech data without the need for explicit feature 

engineering. These models excel at capturing temporal dependencies and extracting 

complex patterns, enabling them to achieve state-of-the-art performance in speech 

recognition tasks. 
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I.7.3 Artificial Neural Networks: From Perceptrons to Transformers 

Artificial Neural Networks (ANNs) [19] are machine learning models that simulate the 

behavior of the human brain. Neurons, or nodes, are the basic components of ANNs. They 

receive input data, perform computations, and produce outputs. Neurons are 

interconnected and organized into layers. The most basic form of an (ANN) is a single-layer 

perceptron illustrated in Figure I.7, often used for binary classification tasks It consists of 

multiple units, where one unit takes input values, another unit multiplies them by 

corresponding weights, and later a unit produces an output based on an activation function 

on the weighted sum of input, The activation function plays a crucial role in determining if 

neurons activate based on a specific threshold. Additionally, the activation function 

introduces non-linear transformations to the weighted inputs of the neurons. This 

nonlinearity enables the neural network to capture complicated patterns and enhance its 

ability to make accurate predictions. One such function is GELU (Gaussian Error Linear Unit) 

I.5. [20] That depends on tanh function I.4. Both defined as: 

𝒕𝒂𝒏𝒉(𝒙)  =  (𝒆𝒙  −  𝒆−𝒙) / (𝒆𝒙  +  𝒆−𝒙)                     (I. 4)  

𝑮𝑬𝑳𝑼(𝒙) =  𝟎. 𝟓 ×  𝒙 ×  

(

 
 
𝟏 +  𝒕𝒂𝒏𝒉(√

𝟐

𝝅
× (𝒙 +  𝟎. 𝟎𝟒𝟒𝟕𝟏𝟓 × 𝒙𝟑))

)

 
 
   (I. 5) 

x is the input and e is Euler's number equal to 2.71828. 

To account for bias in the neural network, a bias term is added to each neuron. The 

bias term is an additional learnable parameter that allows the network to shift the activation 

function's threshold, providing more flexibility in the decision-making process.  
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Figure I.7: Single-layer perceptron [21]. 

The perceptron model is limited in its ability to handle complex non-linear patterns in 

data. To address these limitations, more advanced ANNs, like Multi-layer Perceptrons 

(MLPs) were developed. MLPs address perceptron limitations by introducing multiple 

hidden layers in addition to the input and output layers as illustrated in Figure II.8. MLPs 

utilize hidden layers to capture and represent complex patterns in the data. The input layer 

receives the initial data, the hidden layers transform and learn complex patterns, and the 

output layer generates the final output. 

 

Figure I.8: An example of an MLP with an input layer, one or more hidden layers, and an 

output layer [22].  
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 MLPs are powerful models for non-sequential data but lack the ability to capture 

and leverage the temporal dependencies in sequential data. Sequential data refers to data 

with an inherent order or temporal dependency between elements, such as time series or 

natural language sentences.  To address this limitation, sequential models were developed 

specifically for handling sequential data. These models, such as Recurrent Neural Networks 

(RNNs) and Transformers [23], were developed to handle sequential data by capturing its 

temporal information. RNNs use recurrent connections to maintain memory and capture 

dependencies between elements in the sequence. Transformers, on the other hand, employ 

self-attention mechanisms to handle long-range dependencies more effectively. 

Transformers have gained popularity for their ability to parallelize computations and capture 

global context, making them superior [24] to RNNs in certain scenarios. In our system 

design, we have employed the transformers architecture. 

I.7.4 Transformers  

 Transformer architecture, illustrated in Figure I.9, incorporates components such as 

self-attention and multi-head attention to enable efficient and effective information 

processing. 
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Figure I.9: Transformer model architecture [23]. 

I.7.4.1 Attention 

Self-attention and multi-head attention are crucial constituents that enable the model 

to evaluate the importance of various segments of the input while making predictions. 

I.7.4.1.1 Self-attention 

Self-attention which formula is represented in I.6. Is a technique that empowers a 

transformer architecture to attend to different positions of the input sequence in order to 

compute a representation of the input, refer to Figure I.10. First, the input is transformed 

into three vectors, queries ‘Q’, keys ‘K’, and values ‘V’, by multiplying the input by learned 

weight matrices. Then, the dot or scalar product a measure of vector alignment and 

similarity in direction is calculated between the query vector and the key vector after the 

key vector is transposed, which involves flipping its rows and columns, then dividing each by 
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the square root of ‘dk’ (the dimension of queries and keys), followed by applying a SoftMax 

function represented in I.7. To the result to obtain a set of attention weights. SoftMax 

function takes a vector of real numbers as input and transforms them into a probability 

distribution that adds up to 1. Finally, the weighted sum of the value vectors is taken, and 

the resulting vector is the output that is computed by the function: 

𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑸, 𝑲, 𝑽 ) =  𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸𝑲𝑻

√𝒅𝒌
 )𝑽         (I. 6) 

𝒔𝒐𝒇𝒕𝒎𝒂𝒙 =
𝒆𝒙𝒑(𝒙𝒊)

𝒔𝒖𝒎(𝒆𝒙𝒑(𝒙𝒋))
                         (I. 7) 

For 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function xi represents the score associated with a particular token, 

exp(xi) is the exponential of the score, which ensures that the resulting values are positive. 

sum(exp(xj)) represents the sum of the exponentiated scores across all the tokens. 

 

Figure I.10: Self attention layer [23]. 

I.7.4.1.2 Multi-head attention 

Multi-head attention is an enhanced version of self-attention that allows the model to 

attend to different parts of the input simultaneously, providing a richer representation. In 

this mechanism Figure I.11, the input is divided into multiple subspaces, and the self-

attention operation is independently performed on each subspace. This enables the model 

to focus on different aspects of the input. 
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After applying self-attention to each subspace, the outputs of the sub-attention heads 

are concatenated together. This concatenation captures a diverse set of information and 

perspectives from the input. To restore the original dimensionality, the concatenated 

outputs are linearly transformed using a projection matrix 𝑾𝑶 

Mathematically, the multi-head attention can be defined as in I.8. : 

𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅(𝑸,𝑲, 𝑽 )  =  𝑪𝒐𝒏𝒄𝒂𝒕(𝒉𝒆𝒂𝒅𝟏, . . . , 𝒉𝒆𝒂𝒅𝒉)𝑾
𝑶   (I. 8) 

Where each 𝒉𝒆𝒂𝒅𝒊 represented in I.9. performs the self-attention operation as:  

𝒉𝒆𝒂𝒅𝒊  =  𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑸𝑾𝒊
𝑸
, 𝑲𝑾𝒊

𝑲, 𝑽𝑾𝒊
𝑽)           (I. 9) 

 The projection matrices𝑾𝒊
𝑸,𝑾𝒊

𝑲 and 𝑾𝒊
𝑽 map the inputs Q, K, V to the appropriate 

dimensions (𝒅𝒎𝒐𝒅𝒆𝒍  ×  𝒅𝒌) and (𝒅𝒎𝒐𝒅𝒆𝒍  ×  𝒅𝒗), respectively. 

 

 

Figure I.11: Multi-Head Attention consisting of several attention layers running in parallel 

[23]. 

I.7.4.2 Transformer architecture  

In the context of speech recognition, the network mechanics can be explained as 

follows: The input, such as a log-Mel spectrogram or audio waveform, is first passed through 

the embedding layer to assign a vector representation to each frame. To incorporate 

positional information, the embedding vectors are augmented with positional encoding 

using the following equations represented in I.10. And I.11. 
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𝑷𝑬(𝒑𝒐𝒔, 𝟐𝒊) =  𝒔𝒊𝒏 (
𝒑𝒐𝒔

𝟏𝟎𝟎𝟎𝟎
(

𝟐𝒊
𝒅𝒎𝒐𝒅𝒆𝒍

)
)                (I. 10) 

𝑷𝑬(𝒑𝒐𝒔, 𝟐𝒊 + 𝟏) =  𝒄𝒐𝒔 (
𝒑𝒐𝒔

𝟏𝟎𝟎𝟎𝟎
(

𝟐𝒊
𝒅𝒎𝒐𝒅𝒆𝒍

)
)                (I. 11) 

 

For each position (pos) and dimension (2i or 2i+1) in the embedding, the positional 

encoding values are calculated using the corresponding sine or cosine functions. These 

values are then added to their respective embedding vectors. This ensures that even time 

steps receive positional encoding through the sine function, while odd time steps receive it 

through the cosine function. By incorporating these mathematical operations, the network 

gains positional context, enabling it to capture positional dependencies within the 

sequential data effectively. 

I.7.4.2.1 Encoder 

The encoder layer plays a crucial role in transforming the input sequence into an 

abstract continuous representation that captures the complete information of the sequence. 

It comprises two submodules: multi-head attention (as mentioned earlier) and a feed-

forward neural network (FFNN). The multi-head attention mechanism enables the model to 

attend to different parts of the input simultaneously, providing a more comprehensive 

representation. The feed-forward neural network, consisting of linear layers with a RELU 

activation in between, further processes the attention output, enriching its representation. 

Residual connections are incorporated around each submodule, where the output is 

added to the input. Which acts as a form of memory within the network. Additionally, a 

normalization layer stabilizes the network, contributing to more efficient training. 

These operations are essential for encoding the input into a continuous representation 

with attention information. This encoding assists the decoder in focusing on relevant words 

during the decoding process. By stacking the encoder layer multiple times, we can further 

enhance the encoding by allowing each layer to learn distinct attention representations. This 

has the potential to significantly improve the predictive capability of the transformer 

network. 
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I.7.4.2.2 Decoder 

The decoder's primary objective is to generate text sequences based on the encoded 

information. The decoder consists of multiple sublayers, including two multi-head attention 

layers, a FFNN layer, residual connections, and layer normalization. During the decoding 

process, the decoder takes previous outputs as inputs and utilizes attention information 

from the encoder. The decoding continues until an end token is generated, indicating the 

completion of the text sequence. 

Initially, the input undergoes an embedding layer to obtain vector representations, 

followed by a positional encoding layer that incorporates positional information. 

Next, the input is fed into the first multi-head attention layer. Given the 

autoregressive nature of the decoder, a masking method is employed to prevent future 

token conditioning. This masking ensures that the model focuses solely on the relevant 

words by assigning zero attention to future tokens. The output of the first multi-head 

attention layer provides a masked output vector that guides attention during the decoding 

process.  Moving on to the second multi-head attention layer, the encoder's outputs serve 

as queries and keys, while the output from the first multi-head attention layer serves as 

values. This alignment mechanism allows the decoder to determine the relevant encoder 

inputs to attend to. The output of the second multi-head attention layer is further processed 

through a FFNN layer. 

Finally, the output of the last FFNN layer passes through a linear layer acting as a 

classifier. A SoftMax layer then produces probability scores for each word class. The 

predicted word corresponds to the index with the highest probability score. This output is 

added to the decoder input list, and the decoding process continues until an end token is 

predicted. To enhance the decoder's performance, multiple layers are stacked, with each 

layer taking input from the encoder and the preceding layers. This layer stacking enables the 

model to learn diverse combinations of attention patterns from its attention heads, 

potentially improving the accuracy of text sequence predictions in the context of speech 

recognition. 
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I.7.4.3 Training  

To train a transformer model [25], the key steps involve preparing the training data, 

defining the loss function, and optimizing the model parameters. The training data consists 

of input sequences, such as log-Mel spectrograms or audio features, along with their 

corresponding target outputs. In transformers the encoder and decoder work together to 

generate accurate predictions. During training, the model learns to minimize the difference 

between its predictions and the target outputs. This is achieved by defining a suitable loss 

function, such as the cross-entropy loss [14], which quantifies the difference between 

predicted probabilities and true labels, the following is the equation represented in I.12. 

𝑳 =  − ∑𝒕𝒊𝒍𝒐𝒈(𝒑𝒊)

𝒏

𝒊=𝟏

                                 (I. 12) 

L represents the cross-entropy loss, t denotes the true probability distribution of the 

target labels, p represents the predicted probability distribution. 

Gradients are crucial in minimizing the loss function. They indicate the direction and 

magnitude of adjustments needed to improve the model's predictions. By following the 

gradients, we update the model's parameters to move towards lower loss and enhance the 

model's performance. Backpropagation is the algorithm used to efficiently compute these 

gradients. It involves propagating the errors from the output layer back to the input layer 

of the model. By applying the chain rule of calculus, the errors are distributed across the 

layers, and the gradients are calculated with respect to each parameter. This allows the 

model to understand how changes in the parameters affect the overall prediction error. The 

gradients obtained from backpropagation guide the optimization process. They provide 

information on how the model parameters should be updated to reduce the loss function. 

Optimization algorithms, such as Adam [26], utilize these gradients to iteratively adjust the 

parameters in a way that minimizes the loss, the following is it equation I.13. 

𝑶𝒏𝒆𝒘 = 𝑶𝒐𝒍𝒅 − (𝒍𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝒓𝒂𝒕𝒆 ∗  𝒎) / (√𝒗 +  𝜺)      (I. 13) 

Onew = Oold Are the new and old values of the model parameter o, respectively 

learning rate is the step size that controls the magnitude of parameter updates, m average 

value of the gradients, 𝑣 Variance of the gradients, ε is a small value added for numerical 

stability to avoid division by zero. 
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To train a model, there are two approaches: starting from scratch or utilizing transfer 

learning. In the first approach, the model is trained from random parameters using gradients 

to gradually improve its performance. In the second approach, a pretrained model is used as 

a starting point and its parameters are fine-tuned on a specific task. 

I.8 Previous work on Speech Recognition 

Kaldi [27]: Kaldi is an open-source toolkit for building and working with automatic speech 

recognition (ASR) systems, written in C++ and released in 2011 and it is widely used in both 

research and industry. One of it prominent models for English ASR is ASpIRE Chain Model 

released in September 2019[28], it was trained on Fisher English dataset [29] that has been 

augmented with impulse responses and noises to create multi-condition training. ASpIRE is 

based on TDNN (Time-Delay Neural Network) and BLSTM (Bidirectional Long Short-Term 

Memory). 

 

DeepSpeech [30]: Mozilla DeepSpeech is an open-source implementation of a neural 

network architecture introduced by Baidu in 2017[31], which utilizes Recurrent Neural 

Networks (RNNs) with Long Short-Term Memory (LSTM) units and Mel Frequency Cepstral 

Coefficients (MFCCs) as features. The latest model release from Mozilla was in December 

2020, it was trained on the following datasets: Fisher [29], LibriSpeech [32], Common Voice 

[33], SWITCHBOARD [34] and approximately 1700 hours of transcribed WAMU (NPR) radio 

shows explicitly licensed to Mozilla. 

 

HuBERT [35]: HuBERT released in Jun 2021  , Facebook's latest approach for learning self-

supervised speech representations using offline k-means clustering algorithm inspired by 

DeepCluster [36] method for self-supervised visual learning introduced in 2018 that learns a 

neural network’s parameters and their cluster assignment , HuBERT further benefited from 

Google’s Bidirectional Encoder Representations from Transformers (BERT) [37] by leveraging 

its masked prediction loss over sequences method to showcase the sequential nature of 

speech, Making it possible to use HuBERT for Automatic Speech recognition. Among 

Facebooks released HuBERT models , there are two models pretrained on Libri-Light [38] 

which is more than 60,000 hours of unlabeled speech with limited supervision of only  10h, 
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1h or 10 minutes of labelled speech  , then those models where then  fine-tuned on 960h of 

LibriSpeech [32] dataset . 

 

NVIDIA NeMo [39]: NVIDIA NeMo is a toolkit for speech recognition with pre-trained 

models. Its most prominent ASR models are based on Conformer Architecture introduced by 

Google Brain in 2020[40] which integrate convolutional layers into the Transformer 

architecture to capture both local and global dependencies, NVidia has two variants: 

NVIDIA Conformer-Connectionist Temporal Classification (CTC) released on April 2022 that 

uses CTC loss function  and decoding instead of Recurrent Neural Network Transducer 

(RNNT)/Transducer loss function (non-autoregressive) and NVIDIA Conformer-Transducer 

(autoregressive) released on June 2022 same as the one introduced in Google paper and 

uses RNNT/Transducer loss/decoder. As for the datasets, NVIDIA Conformer has been 

trained on a large and varied list of datasets, Such as: LibriSpeech [32], Fisher [29], 

Switchboard [34], Common Voice [33], People's Speech [41] 12,000 hours dataset and many 

others. 

  

Whisper [42]: Whisper is a general-purpose speech recognition model. It is trained on a 

large dataset of diverse audio and is also a multitasking model that can perform multilingual 

speech recognition, speech translation, and language identification. It is based on a slightly 

modified vanilla transformer architecture. 

I.9 Conclusion  

This chapter offers a fundamental overview of speech recognition, highlighting the 

process of extracting the log-Mel spectrogram, which will serve as input for transcription. 

Furthermore, we delve into the various approaches of machine learning applied to 

transcription, focusing on transformers. We also showed some previous work on Automatic 

speech recognition. In the upcoming chapter, we will shift our focus to the task of 

translation. 

 

Natural Language Processing 
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Chapter II Natural Language Processing  

Chapter II 

Natural Language Processing 
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II.1 Introduction 

In this chapter, we introduce the second part of our system, which focuses on machine 

translation. We explore the field of natural language processing and its various tasks. 

Specifically, we delve into machine translation and discuss the different approaches utilized, 

along with providing an overview of the translation process itself and some previous work. 

II.2 What is natural language processing 

Natural language processing (NLP) is a subfield of AI that focuses on enabling machines 

to understand, interpret, and generate human language. It encompasses a range of tasks 

such as language translation, sentiment analysis, information retrieval, text summarization, 

and more. NLP plays a crucial role in bridging the gap between human communication and 

machine understanding [43]. 

NLP encompasses various tasks with real-world applications. One such task is 

sentiment analysis, which involves determining the sentiment expressed in a given text [44]. 

Another application is text summarization, where extractive summarization systems 

generate concise summaries of provided texts [45]. Lastly, machine translation systems like 

Google Translate offer translation services for text, websites, and documents in multiple 

languages. 

II.3 Machine translation 

Machine translation is the field of study that focuses on developing systems capable of 

automatically translating text or speech from one language to another. It aims to bridge the 

language barrier and enable effective communication across different languages [44]. The 

section below represents Machine translation approaches and its categorization. 

II.3.1 Statistical Machine Translation 

Statistical Machine Translation (SMT) has been a prominent approach in machine 

translation for many years. It relies on statistical models to align and translate text. SMT 

operates on the basis of a large parallel corpora, extracting translation patterns and 

probabilities to generate translations [46]. 
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One widely used SMT model is the phrase-based model, which breaks sentences into 

smaller units and translates them in chunks. Alignment models, such as IBM models, help 

identify word alignments between source and target languages. However, SMT has its 

limitations. It struggles with handling long-range dependencies, maintaining context, and 

generating fluent translations [46], also it tends to be slow. 

II.3.2 Neural Machine Translation 

Neural Machine Translation (NMT) represents a significant advancement in machine 

translation, overcoming some of the limitations of SMT. NMT models use neural networks, 

particularly the encoder-decoder framework, to learn and generate translations [44]. Unlike 

SMT, NMT models operate at the sentence level and consider the entire source sentence 

during translation. 

A crucial component of NMT is attention mechanism, which allows the model to focus 

on relevant parts of the source sentence when generating translations. Attention 

mechanisms help address the issue of long-range dependencies and enable the model to 

capture contextual information more effectively. NMT models have shown improved 

fluency, accuracy, and the ability to handle complex linguistic structures [44], also it tends to 

be fast. 

The introduction of transformers has revolutionized NMT. Transformers leverage self-

attention mechanisms to capture dependencies between words and learn representations 

of the source sentence. Self-attention allows the model to weigh different parts of the 

sentence based on their relevance, enabling more accurate and context-aware translations 

[23]. As shown in the previous chapter. 

Transformers have proven to be highly effective in capturing long-range dependencies, 

making them suitable for machine translation tasks. They have surpassed traditional models 

in terms of translation quality, achieving state-of-the-art results on various benchmark 

datasets [44]. 
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II.4 NLP design for Machine translation  

In order to gain insights into the underlying mechanisms of NLP design for machine 

translation, it is essential to comprehensively investigate the following key components and 

processes: 

II.4.1 Data collection  

Data collection is the first step to train our machine translation system. The quality and 

quantity of the data used for training can significantly impact the accuracy and performance 

of the system. High-quality data that is relevant to the target translation task can reduce the 

need for extensive preprocessing and improve the translation accuracy. 

II.4.2 Pre-processing  

Pre-processing the data is a necessary step for getting a better and efficient 

translating, and this step include: 

● Tokenization is the first step to convert the raw text into a sequence of tokens that 

can be processed by the model. Tokens serve as the basic building blocks for 

language understanding [47]. 

● Elimination stops words: Removing commonly occurring words (articles, 

prepositions, pronouns) with low semantic value. It adds little meaning to the 

translation task and can be safely removed to reduce the vocabulary size and noise in 

the data. 

● Lowercasing: Converting all the text to lowercase. It helps in standardizing the text 

and reducing the vocabulary size by merging words with different capitalizations. 

● Removing punctuation: Eliminating punctuation marks from the text. Punctuation 

marks typically do not carry significant meaning in machine translation tasks. 

Removing them simplifies the text and reduces noise in the data. 

● Text normalization: Applying normalization techniques, such as stemming or 

lemmatization, to reduce inflected or variant forms of words. It helps in reducing the 

vocabulary size and capturing the essence of words by converting them to their base 

or canonical forms [44]. 
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II.4.3 Model Architecture  

This model is often based on transformer architecture that improves handling of long-

range dependencies, accelerates training and inference by parallel computation of the input 

sequence and capturing Global and Local Information efficiently. We cover all these details 

in the previous chapter. 

II.5 Previous work on machine translation 

Moses [48]: Moses, a widely adopted implementation in Statistical Machine Translation 

(SMT), was developed by the University of Edinburgh. It employs a beam search algorithm to 

select the best translation candidates. Moses predominantly utilizes a phrase-based 

translation model, translating short text chunks. Pretrained models are available for 

English-to-French translation [49]. Notably, Moses leverages word alignments generated by 

GIZA++ [50]. 

 

M2M-100 [51]: M2M-100 is a multilingual encoder-decoder (sequence-to-sequence) model 

based on the transformers architecture designed for Many-to-Many multilingual translation, 

introduced by Facebook in 2020. This model possesses the capability to perform direct 

translation across 9,900 language pairs encompassing 100 distinct languages. Its training 

data comprises an extensive corpus of 7.5 billion sentences, sourced from the CCMatrix [52] 

and CCAligned [53] corpuses. 

 

NLLB-200 [54]: Introduced in August 2022, NLLB-200 succeeds M2M-100 as a multilingual 

model. It covers 200 languages with an extensive training dataset of 18 billion sentence 

pairs. Notably, alongside CCMatrix and CCAligned, Facebook incorporated NLLB-Seed a 

professionally translated dataset sourced from Wikipedia text, NLLB-200 is also based on the 

transformers architecture. 

 

Opus-MT [55]: A set of unidirectional language machine translation models, utilizing vanilla 

Transformers architectures, were trained on Opus Corpus[56] a curated dataset that stands 

out for its predominantly noise-free characteristics like translation errors, in contrast to the 

CCMatrix and CCAligned . 
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II.6 Conclusion  

In this chapter, we introduced NLP and its real-life applications. We primarily focused 

on the foundational principles of machine translation, emphasizing the distinctions between 

SMT and NMT approaches. Furthermore, we acknowledged the suitability of the transformer 

model architecture for translation. And we also went through some previous work on 

machine translation. In the following chapter, we will explore the design of our system in 

greater detail. 
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Chapter III Design 

  

Chapter III 

Design 
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III.1 Introduction 

This chapter presents a comprehensive exploration of our system design and the 

architecture of our models, focusing on the two main components: the transcription model 

and the translation model. We initiate our examination by addressing the real-time 

acquisition of audio, followed by a detailed discussion on the preprocessing and feature 

extraction procedures employed for the acquired audio in real-time. Moving forward, we 

delve into the core aspects of our "base models" starting with the ASR model and discussing 

the process of fine-tuning it. Additionally, we delve into the machine translation model and 

how it compares to other models. Finally, we address quantization, optimizing our models 

efficiency and enabling their deployment in resource-constrained environments. 

III.2 Our Transcription System Pipeline: From Audio Input to Transcribed Text 

Our system comprises various interconnected components that operate cohesively in 

a cascading manner. This design choice is made due to limitations in the availability of data 

for an end-to-end approach, as well as the increased complexity associated with its 

maintenance and adaptation in response to emerging technological advancements. 

Additionally, this approach allows us to independently optimize each individual 

component. It starts by audio acquisition in real-time from the microphone device. Then, 

the captured audio undergoes additional pre-processing and feature extraction. The 

processed audio is then fed into the first model, named Whisper [42], developed by OpenAI 

and released on September 21, 2022. Whisper performs English transcription on the input 

audio, generating corresponding written text as its output. The transcribed text from the 

Whisper model serves as the input to the second model, Opus-MT [55], developed by the 

University of Helsinki. Opus-MT is a translation model specifically designed for English to 

French translation. It takes the transcribed English text and produces the translated text in 

French as its output. 

Both of our base models are pretrained models. While we do not make further 

changes to the translation model, we apply the concept of fine-tuning or transfer learning 

to the transcription model. This fine-tuning process allows us to enhance the performance 

of the model by building on its existing knowledge and adapting it to our specific 

requirements. 
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As a final step, we apply model quantization techniques to optimize and adapt the 

models for real-time inference. This optimization reduces the computational requirements 

of the models while maintaining their performance. Our transcription system pipeline is 

illustrated in figure III.1. 

 

Figure III.1: Transcription System Pipeline: From Audio Input to Transcribed Text. 

III.3 Real-time Audio acquisition  

In the context of our real-time transcription solution, audio acquisition plays a crucial 

role. As our system relies on continuous audio streams rather than a 30s pre-recorded 

audio file whisper expects, doing so it is important to consider the quality of the captured 

audio. This quality is influenced by both the microphone used and the recording 

environment. To fulfill the requirements of our model, it is crucial that the microphone 

possesses a frequency response capable of capturing frequencies up to 16 kHz. In the design 

and testing phases of our system, a generic microphone was employed along with standard 

audio specifications. These specifications are summarized in the table provided below. 

Nevertheless, our system maintains its flexibility to accommodate the utilization of 
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alternative microphones. To ensure a seamless audio acquisition process, we have buffering 

as an integral component. The buffering mechanism involves storing a small portion of the 

audio stream in memory before processing it further. By doing so, we facilitate smoother 

data flow and effectively prevent audio dropouts or interruptions during the transcription 

process. 

Table III.1: Microphone and audio specifications. 

Specifications Values 

Microphone frequency response 50Hz - 16KHz 

Microphone sensitivity -55 dB ± 2 dB 

Speech Language English 

Chunk size 1024 Sample 

Channel Mono 

Self-noise 15dB - 30dB 

Sample rate 16000 Hz 

III.4 Real-time audio preprocessing and feature extraction  

In case the microphone used has a higher frequency response than 16 kHz, we apply 

down sampling. Down sampling is the process of reducing the sample rate of an audio 

signal, which involves decreasing the number of samples taken per second. During down 

sampling, consecutive samples are combined or averaged together to generate a reduced 

number of samples. Whisper faces challenges with hallucinations, where predictions may 

include texts that are not actually spoken in the audio input. Although Whisper was trained 

to detect speech and noise in audio, it alone is not sufficient. Therefore, we have integrated 

a voice activity detection (VAD) mechanism to further pre-process the audio. This 

mechanism effectively eliminates background noise and selectively provides only speech 

segments as input to our ASR model "whisper". To accomplish this, we utilize Silero VAD 

[57], an open source pretrained VAD model trained on approximately 13k hours of speech 
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from different domains, including various background noise and quality levels. Silero VAD is 

a multi-head attention (MHA) based neural network [58] capable of handling audio chunks 

of different lengths, such as (30,60,100) ms. It supports multiple sampling rates, including 

8000 Hz and 16000 Hz, providing compatibility with a wide range of audio sources and 

devices. The VAD module in Silero is designed to process audio signals and compute speech 

probabilities for each audio chunk. Each chunk is assigned a probability value, and if the 

value exceeds a specified threshold, it is considered as speech. Conversely, values below the 

threshold indicate silence or non-speech segments. After processing the audio and 

calculating the speech probabilities, Silero VAD applies additional criteria to determine the 

boundaries of speech segments. These criteria include defining the minimum and 

maximum duration for speech segments, as well as specifying the minimum duration of 

silence required to separate speech segments. To ensure smoother transitions and avoid 

abrupt cutoffs, Silero VAD module also incorporates speech padding, which adds a small 

duration of silence before and after each speech segment. The output of Silero VAD is a list 

of speech segments, represented by their start and end timestamps. These segments 

indicate the specific portions of the audio where speech is detected. The primary goal of the 

VAD module is to accurately identify speech while minimizing false positives or negatives, 

thereby providing reliable and precise speech detection capabilities. In the following table 

we define the VAD options we used with Silero. 

Table III.2: VAD options we used with Silero. 

Option Value 

Speech threshold 40% 

Minimum speech duration 100ms 

Maximum speech duration 30s 

Minimum silence duration 100ms 

Window size samples 1024 

Speech padding 50ms 
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After preprocessing the audio and obtaining clear chunks, we utilize the Whisper library for 

feature extraction.  Whisper extracts the log-Mel spectrogram, employing specific feature 

parameters outlined in the table below. 

Table III.3: Feature parameters. 

Parameters Values 

Feature size 80 

Sampling rate 16kHz 

Length of the overlapping windows 160 

Size of the Fourier transform 400 

III.5 Base models 

Our approach incorporates two models: "Whisper" for English transcription and 

"Opus-MT" for English-to-French translation. In this context, we will introduce these models 

and provide an overview of the fine-tuning process involved in training the transcription 

model. 

III.5.1 Automatic Speech Recognition model 

 Whisper is a transformer model that has been trained on a vast amount of weakly 

supervised data, which is data that is labeled or annotated with limited or less precise 

information compared to fully supervised data. Whisper's training dataset consists of a 

staggering 680,000 hours of audio data, accompanied by their respective transcriptions. 

Notably, 438,000 hours of this dataset are dedicated specifically to English speech 

recognition. In contrast to models trained exclusively on pristine, noise-free data adhering to 

strict standards, Whisper derives its strength from the incorporation of a diverse range of 

recordings, including noisy ones. This diversity equips Whisper with a broader capacity for 

generalization and adaptability to various recording environments. 

This model is designed to be multilingual and multitask, capable of transcribing other 

languages and translating them into English. It also includes functionalities like voice activity 

detection and language detection. However, we will mainly focus on the English 
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transcription-only models. Whisper offers a range of model sizes including tiny, base, small, 

medium, and large, with all but large that have an English-only transcription model. Figure 

III.2 illustrates Whisper architecture. 

 

Figure III.2: Overview of the Whisper encoder-decoder architecture. 

Whisper is a model specifically designed to process 16 kHz audio inputs. It begins by 

extracting log-Mel spectrograms using a window size of 25 milliseconds and a stride of 10 

milliseconds, with the same feature parameters we mentioned earlier. These spectrograms 

are then subjected to feature normalization, which scales the values between -1 and 1, 

aiming for an approximately zero mean, to standardize and ensure that the input features 

have similar statistical properties. 

The encoder continues the processing of the input by employing a small stem, which 

consists of two 1D convolution layers. These layers are instrumental in capturing local 

patterns and extracting relevant features from the input sequence. During the convolution 

operation, a fixed-size window (filter) with a width of 3 slides along the sequence, focusing 

on neighboring elements. The GELU activation function is applied in both convolution layers, 

introducing non-linearity to the extracted features. The second 1D convolution layer 
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operates with a stride of two, determining the step size of the sliding window. Sinusoidal 

position embeddings are added to the stem's output, and subsequently, the encoder 

Transformer blocks are applied. To enhance performance, pre-activation residual blocks are 

utilized, and a final layer normalization is employed on the encoder's output. 

The decoder component of Whisper employs learned position embeddings and 

shared input-output token representations. Both the encoder and decoder possess the same 

width and number of transformer blocks, ensuring consistency throughout the model. 

Whisper incorporates several special tokens that play distinct roles during the 

transcription process. These tokens include, the beginning of prediction using 

<|startoftranscript|> token, the Whisper VAD sub-system indicating no speech in audio with 

<|nospeech|> token. <|transcribe|> token specifying the task of transcribing audio instead 

of translation, predicting timestamps or not by including a <|notimestamps|> token. In 

real-time scenarios, it is not worth using whisper timestamps due to their lack of accuracy. 

This is because our chunk size, which is smaller than Whisper's default 30-second duration. 

Our chunk size does not provide sufficient context for reliable timestamp predictions. Lastly 

<|endoftranscript|> token for end of transcription. 

The following table provides a summary of the key aspects and specifications of 

whisper models, including the width of the embeddings, the number of transformer 

encoder-decoder layers, and the total number of parameters in the model. Parameters 

refer to the learnable weights and biases of the transformer model.  

Table III.4: Whisper models [42]. 

Model Model Layers Embedding Width Attention Heads Model Parameters 

Tiny 4 384 6 39 million 

Base 6 512 8 74 million 

Small 12 768 12 244 million 

Medium 24 1024 16 769 million 

Large 32 1280 20 1550 million 
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When it comes to selecting the appropriate model for our purposes, we considered 

our ability to test and fine-tune the model in the next steps. The Tiny model, although too 

small for extensive fine-tuning, proved to be efficient for real-time transcription on weaker 

hardware. Therefore, we utilized it to test our application. On the other hand, the medium 

model is relatively complex for our specific dataset, and we lacked the necessary hardware 

resources to experiment with it adequately. Additionally, the large model did not offer an 

English-only variant. Hence, we opted for the Base and Small models for fine-tuning as they 

best suited our requirements and constraints. 

 When decoding audio input in Whisper, the model predicts probabilities for each 

token, representing the likelihood of that token being the correct output. Whisper employs 

several decoding strategies to transform these probabilities into output sequences, 

including Greedy decoding, Beam search, and Greedy decoding with Best-of-n sampling 

and temperature fallback. Each strategy has its own characteristics, complexity, and impact 

on our application. 

Greedy decoding is a heuristic strategy that selects the token with the highest 

probability at each step. It offers fast decoding but may lack accuracy and diversity. It 

focuses on immediate probabilities and locally optimal choices, potentially missing out on 

better solutions. The output may lack diversity and exhibit bias. While known to be 

computationally efficient [59], greedy decoding may not explore alternative sequences 

effectively. 

Beam search is a decoding strategy that expands multiple candidates at each step and 

maintains a list of the top-k candidates based on accumulated probabilities. It offers 

improved output sequence accuracy compared to greedy decoding, but it is known to be 

slower [59]. Furthermore, beam search employs a patience concept, which determines how 

long the search continues without finding an improved candidate. If no better candidate is 

found within the specified patience limit, the search may terminate early. 

Greedy decoding with best-of-n sampling and temperature fallback is a decoding 

strategy that incorporates a temperature parameter to adjust the diversity of token 

probabilities, by changing SoftMax function represented in III.1. 
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𝑺𝒐𝒇𝒕𝑴𝒂𝒙(𝒙𝒊) =
𝒆𝒙𝒑(

𝒙𝒊

𝒕𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆
)

𝒔𝒖𝒎(𝒆𝒙𝒑(
𝒙𝒋

𝒕𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆
))

                            (III. 1)  

When the temperature is increased during decoding, the output becomes more 

diverse and varied due to the introduction of randomness. On the other hand, decreasing 

the temperature makes the output more deterministic and focused. It is important to note 

that this strategy is only applied when the temperature value is higher than zero. The best-

of-n sampling strategy considers multiple candidates (n) at each decoding step, promoting 

exploration. Additionally, Temperature fallback allows for adjusting token probabilities with 

different temperature values if the initial temperature fails to produce satisfactory results 

according to the average log probability (ALP) over sampled tokens as a criterion for 

determining if the decoding process has been successful, the equation for ALP is as follows 

III.3. And sum of log probabilities is represented in III.2. 

𝒔𝒖𝒎 𝒐𝒇 𝒍𝒐𝒈  𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔 = 𝒍𝒐𝒈(𝒑𝟏) +  𝒍𝒐𝒈(𝒑𝟐)+ . . . + 𝒍𝒐𝒈(𝒑𝒏)            (III. 2) 

 

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒍𝒐𝒈  𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝒔𝒖𝒎 𝒐𝒇 𝒍𝒐𝒈 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒐𝒌𝒆𝒏𝒔
         (III. 3) 

Here, p1, p2..., pn represents the predicted probabilities of each token in the sequence. 

If the average log probability falls below a certain threshold, it is considered a failure 

and another temperature in the list gets applied. This temperature fallback provides 

flexibility in finding an optimal balance between randomness and accuracy in the generated 

output, but it also increases the computational complexity, making the greedy decoding 

process slower. 

Other decoding strategies exist that the whisper paper did not implement, such as 

Stochastic Beam Search (SBS) which introduces randomness during the sampling process, 

enhancing output diversity yet potentially trading of quality [60]. In the Whisper paper, they 

initially start with a beam search of size 5 and a temperature of 0. However, based on the 

result of ALP if it is below the threshold of -1, they transition to greedy decoding with best-

of-n sampling and temperature fallback. Our approach, is to take into consideration and 

focus on latency which will be further explored and explained in the implementation 

chapter. 
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III.5.2 Fine-tuning 

 In the context of fine-tuning an ASR model, several important steps are involved 

illustrated in figure III.3. 

 

Figure III.3: Fine-tuning process. 

  

The Dataset is a thoughtfully curated compilation of audio recordings and their 

corresponding transcriptions. It encompasses a wide variety of sources, including interviews, 

meetings, lectures, and conversational interactions, with the goal of capturing diverse 

speakers, accents, and speech contexts. The audio recordings in the dataset may have 

different sampling rates, typically 8 kHz, 16 kHz, or 44.1 kHz, depending on the specific data 

source and audio channel. Alongside the audio files, the dataset includes comprehensive 

metadata that provides valuable information about the audio recordings. This metadata 

includes information about audio recording segments corresponding to distinct speakers. 

Additionally, timestamps indicating the start and end times of each speech segment are 

available, along with channel IDs, microphone-IDs and other relevant metadata. Several 

datasets exist, such as Common voice [33], TED-LIUM [61], LibriSpeech [32], and our dataset 

of choice is AMI corpus [62] that encompasses a wide range of meeting scenarios, capturing 

different microphone qualities and reflecting real-life settings such as different accents. 

Data pre-processing is a crucial step in ensuring the dataset is prepared effectively for 

training. It involves essential procedures such as down sampling the audio to an appropriate 

rate and segmenting it into speech chunks shorter than or equal to 30s. Signal processing 

techniques are applied to enhance the audio quality such as removing noise. In the case of 

whisper, we also pad shorter audio clips with noise until they reach a duration of 30 

seconds.  Furthermore, feature extraction is employed to convert the audio data into log-
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Mel spectrograms. On the transcriptions side, pre-processing steps include cleaning and 

tokenizing the transcriptions, normalizing the text, and removing punctuation or special 

characters.  The pre-processed dataset is then split into a training set, which are used for 

fine-tuning the model, and a test set, which are reserved for evaluating the performance of 

the trained model. We used a ratio of 80% of data for training and 20% for testing. 

Fine-tuning is the process of adapting a pre-trained model for a specific task by 

training it on a new dataset. During this process, Hyperparameters play a crucial role in 

determining the model's performance. Hyperparameters are settings that control various 

aspects of the training process, such as learning rate, batch size which is the number of 

data examples processed together during one training step in machine learning, and 

regularization techniques. Some of the hyperparameters used during the training of 

"Whisper" are presented in the following table. We will utilize these hyperparameters as a 

starting point for our own fine-tuning experiments, aiming to refine and adapt the model 

further for our specific speech-to-text task.  

Table III.5: Whisper training hyperparameters. 

Hyperparameter Value 

Steps 1048576 

Warmup steps 2048 

Batch Size 256 

Optimizer Adam 

Weight Decay 0.1 

Learning Rate Schedule Linear Decay  

Learning rate (Small Model) 5 × 10−4 

Learning rate (Base Model) 1 × 10−3  

For fine-tuning, we also consider regularization techniques such as Weight Decay [63] 

and Dropout. Weight Decay discourages large weight values in the model by adding a 

penalty term to the cross-entropy loss function. It helps control the model's complexity and 
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prevents overfitting. Dropout randomly deactivates some neurons during training, 

preventing overreliance on specific neurons and promoting robust learning. Dropout is 

usually a percentage of neurons to deactivate. 

For Weight decay the equation is as follows III.4. 

Weight Decay = 
 𝝀

𝟐
 * ||W||²                                  (III.4) 

W represents the weights of the model, ||W||² represents the sum of the squares of the 

weights in the model. And λ is the regularization coefficient. 

III.5.3 Machine translation model 

III.5.3.1 Opus machine translation 

Our system utilizes the Opus-MT (English to French) model for machine translation. 

This model is built on a vanilla transformer architecture, consisting of 6 layers in both the 

encoder and decoder. Each layer is equipped with 8 attention heads, and the embedding 

width is set to 512. The model has a total of 75 million parameters, with source and target 

vocabulary of 32000. The Model was trained on Opus corpus [56], which is a versatile 

collection of translated texts that encompasses a wide range of domains. Making it suitable 

for general use, unlike other vanilla transformer model that only use WMT (Workshop on 

Statistical Machine Translation) dataset. Opus captures the nuances, complexities, and 

vocabulary found in different spoken styles and topics. It provides the necessary capacity to 

handle various domains effectively, making it an excellent choice for English to French 

translation tasks. The Opus dataset underwent preprocessing using Sentence Piece [64] 

tokenizer, known for its precise tokenization and computational efficiency. Unlike 

traditional Byte Pair Encoding (BPE) methods with 𝑶(𝑵𝟐) complexity used in vanilla 

transformers, Sentence Piece employs an optimized algorithm with an efficient 

𝑶(𝑵 𝒍𝒐𝒈(𝑵)) approach. This algorithm substantially reduces the computational cost of 

tokenization and provides better handling of rare and out-of-vocabulary words, allowing for 

improved capture of their morphology and semantic meaning. 

Opus-MT utilizes guided alignment for attention [65] during training, leveraging word 

alignments generated with the efmaral [66] algorithm. This technique incorporates 

alignment information as a form of supervision, guiding the model to attend to relevant 
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parts of the source sentence while generating the target sentence by the attention 

mechanism. Unlike the traditional method that relies solely on self-attention. The inclusion 

of guided alignment improves generalization in Opus MT. By incorporating alignment 

information, the model learns alignment patterns that can be applied to unseen data, which 

in our case is crucial since our fine-tuned ASR model now can generate some in domain 

words that are out of the norm. As for decoding strategies Opus-MT can decode with greedy 

decoding and beam search. 

III.5.3.2 Opus-MT compared to other models 

For our approach, we require a robust translation model that excels in one direction 

translation task as we employ a cascade approach to build our system, where we intend to 

add other one-directional models to our system as the needs of the users or company 

grows keeping the system always efficient hardware wise. However, we aim to strike a 

balance between model inference speed and translation accuracy, without compromising 

the latter significantly. In assessing the accuracy of these models, we refer to using the 

Bilingual Evaluation Understudy (BELU) [67] metric, BELU is a metric used to assess the 

quality of machine-generated translations by comparing them to reference or human-

generated translations. It measures the similarity between the machine-generated text and 

the reference text in terms of n-grams (sequences of words). BLEU is calculated by counting 

matching n-grams in the machine-generated text and the reference text, and then 

computing a precision score based on these counts. The precision score is typically 

multiplied by a brevity penalty to account for differences in length between the machine-

generated and reference text. The equation for BELU is represented in III.5. 

 

𝑩𝑬𝑳𝑼 = 𝑩𝑷 ∗ 𝒆𝒙𝒑(∑
𝟏

𝒏
𝑷𝒏

𝟏

𝒏=𝟏

)                                                                (III. 5) 

 

Where BP stands for Brevity Penalty, which penalizes the score when the Machine 

Translation is too short compared to the Reference (Correct) translations and n ∈ [1,4] 

Pn is the n-gram modified precision score. The mathematical expression for Brevity Penalty 

is given as follows in III.6. And equation for Pn in III.7. 
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𝑩𝑷 = 𝒎𝒊𝒏 (𝟏,
𝑴𝒂𝒄𝒉𝒊𝒏𝒆 𝑻𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 𝑶𝒖𝒕𝒑𝒖𝒕 𝑳𝒆𝒏𝒈𝒕𝒉

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑶𝒖𝒕𝒑𝒖𝒕 𝑳𝒆𝒏𝒈𝒕𝒉
)                          (III. 6) 

 

𝑷𝒏 =
∑𝒏 − 𝒈𝒓𝒂𝒎𝒔 𝒄𝒐𝒖𝒏𝒕 𝒊𝒏 𝑴𝒂𝒄𝒉𝒊𝒏𝒆 𝑻𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒆𝒅 𝑻𝒆𝒙𝒕

∑𝒏 − 𝒈𝒓𝒂𝒎𝒔 𝒄𝒐𝒖𝒏𝒕 𝒊𝒏 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑻𝒆𝒙𝒕
                    (III. 7) 

 

 In the following comparative analysis with Opus-MT, Opus-MT is compared to four 

models, comprising two variants from M2M-100 and two from NLLB-200. Notably, we 

excluded Moses pretrained models from our comparison, as they have lagged behind the 

current state of the art, with the academic community predominantly shifting towards 

transformer-based models, especially that SMT models are not tailored towards real-time 

usage. The evaluation relies on the BLEU metric across 17 machine translation evaluation 

standard datasets with different versions including TICO-19[68], Tatoeba [69], Flores 

101[70], WMT news translation [71], Multi30k [72]. It is important to note that even though 

M2M-100 and NLLB-200 are multilingual models, these models are expected to exhibit 

robust pattern recognition learned from other languages reflecting in higher accuracy in 

high resource languages like English and French. The following tables present in-depth 

details about the models, and the BLEU results where some where tested by us and some 

we obtained from the Opus dashboard for lack of performant hardware. 

Table III.6: Opus-MT comparison models details. 

Model Opus-MT(1) NLLB-200-Distilled(2) NLLB-200(3) M2M-100(4) M2M-100(5) 

Attention 

heads 

8 16 16 16 16 

Embedding 

width 

512 1024 1024 1024 1024 

Model 

layers 

6 12 24 24 48 

Model 

parameters 

75 Million 600 Million 1.3 Billion 418 Million 1.2 Billion 

 

The table above shows two NLLB-200 model variants: one is distilled with 600 million 

parameters, while the other is not distilled and has 1.3 billion parameters. Distillation 
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involves a smaller model learning from a larger model's knowledge. In contrast, both 

M2M-100 models are not distilled but differ in complexity, and both were trained on the 

same dataset 

 

Table III.7: Opus-MT compared to M2M-100 and NLLB-200 variants using BELU metric. 

Dataset Model 1 Model 2 Model 3 Model 4 Model 5 

Flores 101 47.9 45.1 47.4 39.0 44.7 

Multi30k 2016 Flickr 48.8 47.8 50.5 33.3 42.6 

Multi30k 2017 Flickr 49.3 45.9 49.6 34.2 41.9 

Multi30k 2017 Mscoco 51.6 48.7 50.2 36.2 46.8 

Multi30k 2018 Flickr 41.4 39.2 42.7 29.9 37.4 

WMT News Discuss 2015 38.4 36.2 37.9 31.7 35.6 

WMT News SC 2009 29.9 30.2 31.6 26.1 28.4 

WMT News 2009 29.4 29.4 30.5 25.4 27.7 

WMT News 2010 31.7 32.3 33.6 28.4 31.7 

WMT News 2011 34.2 34.1 35.1 29.9 32.2 

WMT News 2012 31.7 32.0 33.3 28.2 30.4 

WMT News 2013 33.1 33.7 35.0 28.4 31.5 

WMT News 2014 39.8 39.4 41.1 33.0 37.4 

Tatoeba 2020-07-28 50.8 47.8 49.6 37.9 43.7 

Tatoeba 2021-03-30 51.4 48.4 50.2 38.3 44.2 

Tatoeba 2021-08-07 51.8 48.6 50.6 38.7 44.6 

Tico 19 37.6 38.1 40.1 34.2 39.1 

Average 41.1 39.8 41.7 32.5 37.6 

  

 As evident from the table above, Opus-MT outperforms Models 2, 4, and 5 by a 

notable margin in terms of Average BLEU scores, with difference of Averages of 1.3, 8.6, 

and 3.5 respectively. While Opus-MT only falls slightly short compared to Model 3 with a 

difference of just -0.6 although According to NLLB-200 paper there is a model with 54.5 

Billion parameters that is better than the 1.3 billion variant. Regardless, this is acceptable in 

exchange for a faster and less complex model as Opus-MT is only 75 Million parameters 

model especially that it’s observable that the larger models didn’t gain much accuracy from 
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recognizing patterns in other languages probably due to the noisy training data CCMatrix 

and CCAligned, Overall, the Real-time performance of our system takes precedence in this 

context, and this trade-off is deemed reasonable. 

III.6 Models quantization 

To achieve faster inference with minimal latency in real-time applications and reduce 

the memory footprint and computational requirements of models, quantization [73] is 

utilized. The process of quantization involves decreasing the precision of numerical values 

in a model such as the weights, while ensuring that the performance impact remains 

minimal. This is achieved by converting high-precision floating-point numbers, commonly 

used in deep learning models, into lower-precision fixed-point or integer representations.  

There are various types of quantization, and in our case, we employed Integer8 (INT8) 

quantization. INT8 quantization represents values using 8-bit signed integers, allowing for a 

range of [-128, 127]. There are several reasons why INT8 quantization was preferred: 

Memory Efficiency: INT8 quantization offers the highest memory efficiency among the 

available formats such as int16 and float16. By utilizing only 8 bits to represent each value, it 

significantly reduces the memory footprint compared to higher-precision formats. 

Computation Efficiency: INT8 operations are generally more efficient due to hardware 

support and optimized instructions for 8-bit integer arithmetic. Modern hardware platforms, 

including both CPUs and GPUs, often provide dedicated acceleration for INT8 operations.  

The process of INT8 quantization involves several steps to convert high-precision 

floating-point values into 8-bit signed integers (INT8). Firstly, scaling is performed to map 

the original range of values to the range of -128 to 127, which is the valid range for INT8 

representation. This scaling factor is computed based on the maximum absolute value 

among all the numbers in the model. Next, the scaled values are rounded to the nearest 

whole number to convert them into discrete integers compatible with the INT8 format. 

Rounding ensures that the values are approximated to the closest integer values. Lastly, 

clipping is applied to ensure that the rounded values fall within the acceptable range of -128 

to 127. If any rounded value exceeds this range, it is adjusted or "clipped" to the nearest 

boundary value (-128 or 127) to maintain the integrity of the INT8 format. By following these 



 

                                                                                                                                                48 

steps of scaling, rounding, and clipping, the original high-precision floating-point values are 

transformed into the INT8 format. To preserve the performance of our transformer model, 

we applied quantization using the following formulas [74] specifically to the weights of the 

embedding and linear layers. These layers involve matrix multiplication operations, which 

are computationally demanding and time-consuming. By quantizing only the weights, we 

aimed to optimize the model's efficiency without compromising its overall performance. 

𝒔𝒄𝒂𝒍𝒆[𝒊] =  
𝟏𝟐𝟕

𝒎𝒂𝒙(𝒂𝒃𝒔(𝑾[𝒊, : ]))
                   (III. 8) 

This equation III.8. Calculates the scaling factor for each row i of the weight matrix W 

𝑾𝑸[𝒊, 𝒋]  =  𝒓𝒐𝒖𝒏𝒅(𝒔𝒄𝒂𝒍𝒆[𝒊]  ∗  𝑾[𝒊, 𝒋])             (III. 9) 

This equation III.9. Rounds each element W [i, j] in the weight matrix W after scaling.  

 

The table below illustrates the impact of quantization on our models in terms of their disk 

storage size. Later on, we will explore how this also influences their Inference time. 

Table III.8: Variation in Models Size Following Quantization 

Model Size Before Size After 

Opus-MT 301 Megabyte 76 Megabyte 

Whisper Tiny 151 Megabyte 40 Megabyte 

Whisper Base 291 Megabyte 75 Megabyte 

Whisper Small 967 Megabyte 242 Megabyte 

 

III.7 Conclusion 

Within this chapter, we presented a comprehensive overview of our system design and 

the architecture of our models. We discussed the various choices made to ensure the 

development of robust models capable of effectively handling the designated tasks. In the 

upcoming chapter, we will proceed with the implementation of the system and conduct a 

series of experiments to evaluate its performance.  



 

                                                                                                                                                49 

Chapter IV Implementation  

Chapter IV 

Implementation 
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IV.1 Introduction  

In this chapter we focus on the implementation and results of our design choices 

where we conduct a series of experiments, assessing the impact of the preprocessing step 

and quantization technique. We also evaluate real-time latency and conduct fine-tuning on 

whisper and later on compare the adapted model to previous work. Furthermore, we 

showcase the graphical user interface (GUI) of the application and provide an overview of 

the tools and libraries employed in the process. Throughout this chapter, we present 

detailed methodologies and insightful results, providing a comprehensive understanding of 

how our project has been implemented. 

IV.2 Tools and libraries  

During the development of our project, we leveraged the power of Python as our 

primary programming language along with a variety of tools and libraries. Here is an 

overview of the key tools and libraries that played a crucial role in our project's 

advancement: 

IV.2.1 Tools: 

• VSCode: VSCode is a lightweight and highly customizable code editor [75]. 

• Anaconda: To simplify the installation and management of Python and related 

packages for data analysis and machine learning, we relied on Anaconda [76]. 

• Jupyter Notebook: We leveraged the interactive web-based environment of Jupyter 

Notebook to create and share documents that combine live code, visualizations, and 

explanatory text [77]. 

• TensorBoard: For monitoring training progress and analyzing performance metrics 

we used TensorBoard, a web-based tool that offers comprehensive visualization 

capabilities [78]. 

• AnyDesk: Due to the geographical distance between us and the company, we utilized 

AnyDesk, a remote desktop software, to access and control one of their systems 

remotely [79]. 
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• PyCharm: PyCharm is an Integrated Development Environment (IDE) tailored for 

Python, with powerful debugging tools, profiling tools, and an integrated version 

control [80]. 

IV.2.2 Libraries: 

• CTranslate2: CTranslate2 is a C++ and Python library for efficient inference with 

Transformer models that adapts to quantized models [81], also allows for padding 

removal, caching mechanism, Parallel and asynchronous execution among other 

things. 

• FasterWhisper: faster-whisper is a reimplementation of OpenAI's Whisper model 

using CTranslate2 [82]. 

• Hugging Face Transformers: Transformers provides APIs and tools to easily 

download and train state-of-the-art pretrained models [83]. 

• JiWER: JiWER is a simple and fast python package to evaluate an automatic speech 

recognition system, it supports %WER measure [84]. 

• PyAudio: PyAudio provides Python bindings for PortAudio v19, the cross-platform 

audio I/O library [85]. 

• NumPy: NumPy adds support for large, multi-dimensional arrays and matrices, along 

with a large collection of high-level mathematical functions to operate on these 

arrays [86]. 

• Pandas: Pandas is a software library written for the Python programming language 

for data manipulation and analysis [87]. 

• Flet: Flet is a python flutter wrapper framework that allows building interactive 

cross-platform multi-user web, desktop and mobile applications [88]. 

• SentencePiece: SentencePiece is an unsupervised text tokenizer and detokenizer 

mainly for Neural Network-based text generation systems where the vocabulary size 

is predetermined prior to the neural model training [89]. 

• Matplotlib: a software library written for the Python programming language for data 

manipulation and analysis [90]. 
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• Onxx Runtime: ONXX Runtime: cross-platform, high performance ML inferencing and 

training accelerator, used to load the Silero model [91]. 

• Librosa: A python package for music and audio analysis [92]. 

Other built-in Python modules, such as Wave, Threading, Queue, Time, Timeit, and 

Datetime, provide functionalities for working with audio files, managing threads, 

implementing queues, handling time-related operations such as sleep function, measuring 

code execution time, and manipulating dates and times. 

IV.3 Experiments 

IV.3.1 Fine-tuning experiment: 

During our fine-tuning experiments, we conducted the training on a computer system 

with specific specifications as shown in the following table. As for the AMI dataset, it was 

initially archived with a size of 9.24 GB. After extraction, the dataset expanded to 

approximately 20.8 GB. However, after the preprocessing step, the dataset size increased 

significantly to approximately 120 GB. With 108502 audio chunks for training, and 25741 

audio chunks for testing, all with their corresponding transcriptions. The AMI corpus 

transcriptions have mostly uppercase text and missing punctuations, but the transformer 

architecture allows the model to learn continuously and leverage its previous knowledge 

regardless of this issue. The guided alignment feature in translation models helps later 

restore proper casing and punctuations, ensuring accurate translations. 

Table IV.1: Training computer specification. 

Specification Value 

Operating system Windows 10 

CPU AMD Ryzen 5 3600 6-Core 4.2 GHz  

RAM 32GB 

DISK ADATA 1 Terabyte SSD 

GPU NVIDIA GeForce RTX 3060 12 GB 
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These considerations highlight the resource requirements and data storage 

considerations involved in working with the AMI dataset for fine-tuning. Regarding freezing 

layers, we decided not to freeze any layers because the model is based on transformers. 

Typically, one would choose to freeze either the encoder or decoder, but we opted not to do 

so in order to allow the model to learn both new audio patterns and new vocabulary 

simultaneously. 

First, we tested the initial %WER of “small” and “base” models table III.4 on our 

dataset. Where we used a beam search of size 5 and when ALP gets below the threshold of 

(-1) we use greedy decoding with temperature fallback while also having best of 5 

sampling, the list of temperatures used is (0.2, 0.4, 0.6, 0.8, and 1.0). We got these results 

for the “small” model where initial %WER is 17.5%, and for the “base” model initial %WER 

is 20.5%. To fine-tune the models, we adjusted the learning rate. Initially, the learning rate 

was set to the paper-training learning rate of each model divided by a factor of 40, as 

recommended by the paper authors. We also utilized the Adam optimizer, following the 

same approach outlined in the paper. Additionally, we ensured diversity in the training 

samples by shuffling the data at the beginning of each epoch where an "epoch" refers to a 

single complete pass through the entire training dataset during the training of a neural 

network. 

We first started by fine-tuning the “small” model but given the hardware limitations 

and the size of the "small" model, we employed a multi-step approach to overcome these 

challenges. Initially, the model underwent fine-tuning, followed by subsequent iterations 

where we gradually increased the batch size, enabling better utilization of available 

resources. The "small" model was fine-tuned with a learning rate of 1e-05, spanning a total 

of 6 epochs. In subsequent figures, we used steps as a means of simplifying the 

representation of metric changes, where 21000 steps corresponds to 6 epochs. 

Now let's analyze the training loss of our model, which serves as an indicator of how 

well the model is learning during the training process, by measuring dissimilarity between 

the predicted outputs of the model and the actual output. 

Overall, the training loss showed a decreasing trend, with occasional rapid drops that 

can be attributed to optimizer-induced decreases in the learning rate and the corresponding 



 

                                                                                                                                                54 

increase in batch size. Details and trends of the training loss can be observed in Figure IV.1, 

where we logged training loss every 25 steps. 

 

 

Figure IV.1: “Small” model training loss over 6 epochs. 

 

Next, we examine the validation loss of our model, which provides insights into the 

model's performance on unseen data during the training process.  During the initial stages, 

the validation loss decreased rapidly, indicating that the model was learning and making 

improvements. However, after a certain number of steps, we observed an increase in the 

validation loss, reaching a local High suggesting it encountered certain difficulties. Following 

that, the validation loss started to decrease again, eventually reaching its lowest point 

suggesting that the model overcome these challenges. Results are illustrated in Figure IV.2, 

where we logged validation loss every 1000 step. 



 

                                                                                                                                                55 

 

Figure IV.2: “Small” model validation loss over 6 epochs. 

Next, let's analyze the %WER of our model throughout the training process. Initially, 

the %WER was observed to be relatively high at 28.12%. This can be attributed to the 

random initialization of the model's weights, which temporarily affected its performance. 

However, as the training progressed, the %WER quickly decreased and continued to decline 

gradually. Eventually, the %WER reached a final value of 11.42%, having a total 

improvement of 6.08%. Results illustrated in Figure IV.3, where we logged %WER every 

1000 steps. 

 

Figure IV.3: “Small” model %WER over 6 epochs. 
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In the next step, we will explore the process of fine-tuning the "base" model. This 

allows us to observe how a smaller and less complex model, with fewer parameters, 

responds to our dataset. Additionally, we aim to assess the impact of weight decay and 

dropout regularization, along with a lower batch size. The use of a lower batch size acts as a 

form of regularization, as it exposes the model to fewer samples. This discourages 

overreliance on specific subsets of the data and promotes better generalization to unseen 

examples. During this fine-tuning process, we will be working with two instances of the 

"base" model. The following table provides a summary of the hyperparameters employed 

for this test for each model. Keep in mind 2 epochs are equal to 14000 steps. 

 

Table IV.2: base models fine tuning hyperparameters. 

Model instances Weight decay Batch size Learning rate Dropout Epoch 

Base 1 none 32 2.5e-0.5 none 2 

Base 2 0.1 8 2.5e-0.5 0.1 2 

 

During the training process, both models exhibited similar trends in terms of the 

training loss. However, Base 1 experienced a slightly higher peak at the beginning 

compared to the other model. Nevertheless, as the training progressed, both models 

converged to similar results, indicating that the implemented regularization techniques had 

little effect. Results are illustrated in Figure IV.4, where we logged training loss every 25 

steps. 
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Figure IV.4: Training loss of base models. 

During the validation process, Base 2 exhibited a significantly higher validation loss 

compared to Base 1 initially, indicating that the implemented regularization techniques had 

a strong impact on Base 2's performance. In contrast, Base 1 did not experience such a high 

validation loss in the early stages. However, as the training progressed, Base 2 showed 

remarkable improvement and eventually achieved a lower validation loss than Base 1. 

Interestingly, Base 1's validation loss increased in the later stages. These findings suggest 

that the regularization techniques were beneficial for Base 2 in terms of generalizing to 

unseen data. Results are illustrated in Figure IV.5, where we logged validation loss every 

2000 steps. 
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Figure IV.5: Validation loss of base models 

 

Lastly, we analyzed the change in %WER for the "base" models. Like the small model, 

both base models initially experienced an increase in %WER. However, Base 2 exhibited a 

larger increase, indicating that the applied regularization techniques had a more noticeable 

effect on its performance. Towards the end of the training, Base 1 managed to reduce its 

%WER but experienced a slight increase again, suggesting potential overfitting to the 

training data. Base 1 reached a %WER as low as 14.66% but then increased to a final %WER 

of 15.79% having a total improvement of 4.71%. On the other hand, Base 2 continued to 

decrease its %WER, indicating better generalization due to the effects of regularization. Base 

2 achieved a final %WER of 14.12% having a total improvement of 6.38%, showcasing its 

improved performance on unseen data. Results are illustrated in Figure IV.6, where we 

logged %WER every 2000 steps. 
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Figure IV.6: %WER of the base models 

IV.3.2 Real-time performance experiments: 

In our implementation, we prioritized real-time performance as a key consideration. 

To assess the application's real-time capabilities, we conducted a series of tests on a 

computer system equipped with a dual-core Intel i7-7500U processor running at a base 

frequency of 2.7GHz and capable of boosting up to 3.5GHz. The system also had 16GB of 

RAM and a 128GB SSD, and it was running a Linux operating system. In the context of our 

chosen models, the primary consideration is the performance of the CPU and GPU. It's worth 

noting that this particular machine lacks a GPU. 

In the First test, we evaluated the inference time of the "tiny" Whisper model and the 

Opus-MT model using the default implementation compared to the CTranslate2 

implementation of both models using int8 quantization. For Whisper, we used beam search 

of size 5 and temperature fallback. For Opus MT, we only employed beam search of size 5. 

We utilized a 3-minute audio sample from the AMI dataset for transcription purposes. The 

resulting transcription contained 383 words. Additionally, we used a 223-word example from 

the Opus dataset for translation. The outcomes of these tests are presented in the following 

table, where we can easily notice that CTranslate2 implementation in both models is 

significantly faster for just a fraction more of Errors, Error rate is the fraction of errors to the 

total number of words. 
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Table IV.3: Inference time results for different implementations. 

Implementation Inference time Error Rate 

Default Whisper implementation 43.14s 0.01827% 

CTranslate2 Whisper with quantization 8.45s 0.02088% 

Default Opus-MT implementation 4.83s 0.00448% 

CTranslate2 Opus-MT with quantization 2.7s 0.00896% 

In the Second test, we tried to measure the impact of the preprocessing step which 

consists of filtering noise with Silero, we used the same strategy and audio sample. As a 

result, we got an inference time of 7.64s and got 4 wrong out of 383 making an error rate 

of 0.01044% which means that Silero has improved both inference time and error rate. 

Silero loading and inference itself did not add any measurable inference time because the 

model is only 1mb in size, which is too low to cause any impact. 

For the Third test we try to measure the worst-case inference time of our system to 

see if the worst case is going to be noticeable by the user and give him a bad experience, for 

testing we used the "tiny" whisper model. 

To conduct the evaluation, we acquired three audio samples, each spanning 30 

seconds in length, from various sources on the internet. These samples were manually 

transcribed and translated. Here are the details of the samples we utilized: 

• Sample 1[93] is of an American president speech with light background audience 

clapping, this sample contains a total of 67 words. 

• Sample 2[94] is of a man talking while another person in the background is talking and 

moving chairs around causing noise. We selected this sample to see if it affects the final 

transcription quality. This sample contains a total of 65 words. 

• Sample 3[95] is a women's motivational speech with background music. This sample 

contains a total of 44 words. 

Our testing approach involved segmenting each audio sample into 0.5-second 

incremental chunks and later processing them. This aligns with our app's functionality, as 
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we wait for a 0.5-second before sending the first audio chunk to whisper. For instance, we 

started by transcribing only the first 0.5 seconds of each audio sample and measured the 

inference time. Subsequently, we transcribed 1 second, then 1.5 seconds, and so on, until 

we covered the entire 30-second duration. This process resulted in 60 measurements of 

inference time for a single 30-second audio. Considering that we conducted this evaluation 

with three different samples, we obtained a total of 180 measurements of inference time,  

In addition, we accounted for an estimated time of 10ms for each inference, representing 

the duration it takes for audio chunks to travel from the microphone to the buffer queue. 

This additional time was considered as part of the overall latency for each inference. 

Additionally, for each audio sample, we computed various latency metrics. This 

included calculating the average latency over the entire 30 seconds of audio, as well as the 

average latency over the initial 20 seconds. Furthermore, we determined the maximum 

latency observed throughout the entire 30 seconds and the maximum latency limited to the 

first 20 seconds. By examining these metrics, we aimed to identify any instances of 

particularly high latency. Moreover, we carefully inspected the results for any errors, such 

as incorrect transcriptions or translations, to ensure the accuracy and reliability of the 

system. 

Results for the three audio samples with greedy decoding for both Opus-MT and 

Whisper while also using Silero pre-processing are illustrated in Figure IV.7, and other 

measurements in table below. 

Table IV.4: latency metrics over audio samples with greedy decoding. 

Measurement Sample 1 Sample 2 Sample 3 

Average latency over 30s 0.78s 0.79s 0.76s 

Average latency on first 20s 0.64s 0.68s 0.63s 

Maximum latency over 30s 1.19s 1.21s 1.13s 

Maximum latency on first 20s 0.92s 0.88s 0.94s 

In Sample 1, there were no mistakes or errors in the transcriptions. The model 

performed accurately without any errors. In Sample 2, we encountered one mistranscribed 
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word and one hallucinated word that the speaker did not actually say. These were identified 

as errors in the transcription. In Sample 3, we noticed one hallucinated word, one miss-

translated word, and one mistranscribed word. 

 

 

Figure IV.7: Accumulated latencies over 30s with greedy decoding 

 

The outcomes for the three audio samples were obtained using beam search with a 

size of 5 for both Opus-MT and Whisper. We also applied a temperature fallback strategy for 

Whisper. Additionally, the Silero pre-processing method was employed. Results are 

illustrated in Figure IV.8. 
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Table IV.5: latency metrics over audio samples with beam search and temperature 

fallback. 

Measurement Sample 1 Sample 2 Sample 3 

Average latency over 30s 0.99s 1.03s 0.99s 

Average latency on first 20s 0.75s 0.78s 0.81s 

Maximum latency over 30s 1.74s 1.79s 1.55s 

Maximum latency on first 20s 1.17s 1.27s 1.21s 

 

In Sample 1 and Sample 3, there were no mistakes or errors in the transcriptions. 

The models performed accurately without any errors. In Sample 2, we noticed two 

hallucinated extra words and one mistranscribed word. These errors occurred in the 

transcription process. 

 

Figure IV.8: Accumulated latencies over 30s with beam search 
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IV.4 Adapted model compared to models of previous work 

In this section, we will perform a comparative analysis between our whisper model 

and previous research models. We will examine various aspects of our system design and 

model selection. 

 

Training Data: When it comes to training data in recent times there is 2 approaches, 

One is to train the models with only gold standard data free from transcription errors and 

misaligned or missing audio the latter is to train the model on noisy-data with less quality 

data but with more quantity but it may contain transcription errors and audio issues. 

For the first approach we have 3 models trained on only gold standard data which 

are Kaldi ASpIRE , DeepSpeech and NVIDIA NeMo Conformer models for the second 

approach we have Whisper and HuBERT models. The primary distinction between the 

training of HuBERT and Whisper lies in the fact that HuBERT underwent pre-training on the 

unlabeled Libri-Light dataset, whereas Whisper's training utilized a large scale labeled 

dataset. In terms of the diversity and quantity of training data, Kaldi ASpIRE was exclusively 

trained on an augmented Fisher dataset with added noise, which is insufficient to 

encompass the full spectrum of real-life speaker diversity. This dataset comprised only 

approximately 1,700 hours of audio. On the other hand, DeepSpeech was trained using a 

broader range of datasets, albeit without noise augmentation. Consequently, DeepSpeech 

exhibits a bias favoring low-noise settings and clear audio inputs, and it also leans towards 

representing US males and this according to DeepSpeech own model description on GitHub. 

The total training duration for DeepSpeech amounted to approximately 7,500 hours. 

 Within the first approach, the NVIDIA NeMo Conformer models boasted the most 

extensive and diverse dataset, encompassing approximately 22,000 hours of audio. 

However, this still falls behind models trained using the second approach, As HuBERT was 

pre-trained on 60,000 hours of unlabeled audio and then fine-tuned on 960 hours of 

LibriSpeech labeled audio data. However, it's worth noting that all models from both the 

first and second approaches pale in comparison to Whisper's training dataset, which 

comprises a staggering 438,218 hours of labeled audio data Plus our 100h of AMI dataset 

fine-tuning. This dataset excels in capturing the utmost diversity in speaker characteristics, 
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environmental conditions, and speaking styles. Importantly, it should be highlighted that 

Whisper's training data is approximately 620% larger than that of HuBERT. 

 

Complexity and Architecture: For real-time application like ours we require that the 

model doesn’t have significant latency , and for latency what it affects it most is the models 

architecture used , for an example Kaldi ASpIRE uses a has TDNN-BLSTM architecture which 

is a hybrid acoustic model consisting of TDNN layers and BLSTM layers with biggest latency 

hurdle been BLSTM because while still struggling with longer-range dependencies they are 

inherently bidirectional, meaning they process input sequences in both the forward and 

backward directions which is slow. On top this architecture only process input sequences 

sequentially, one time step at a time unlike transformer based models that parallelize the 

input sequence processing making them much faster. This applies to DeepSpeech also as 

it’s based on RNN-LSTM which only process sequences sequentially. 

 But when it comes to HuBERT, NVIDIA NeMo Conformer and Whisper they are 

based on the transformers architecture which reduces latency significantly. While HuBERT 

and Whisper are closer to vanilla transformer, the NVIDIA NeMo Conformer lacks 

computational and memory efficiency as it adds convolutional layers on top and its 

autoregressive decoding variant introduces sequential dependencies which means it 

generates output tokens one at a time in a sequential manner. The table below provides a 

concise overview of the key characteristics of various transformer model variants of 

Whisper, HuBERT and NVIDIA Nemo Conformer. With Model(1) been HuBERT Large variant , 

Model(2) HuBERT Extra Large Variant, Model(3) NVIDIA NeMo Conformer-CTC Large variant 

, Model(4) NVIDIA NeMo Conformer-Transducer Extra Large Variant , Model(5) Whisper 

“Base” and Model(6) is Whisper “Small”. For non-transformer based like Kaldi and 

DeepSpeech it’s hard to estimate number of parameters because of their design but we 

estimate that DeepSpeech has 47 million parameters for its acoustic model and 50-100 

million for its language model meaning about 97-147 million parameters in total, Kaldi 

ASpIRE has about 64-75 million parameters. As a fact if we combine both the “base” 

whisper variant and Opus-MT we will have only 149 Million parameter. 
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Table IV.6: Models details of the transformers based variants. 

Model Parameters Attention heads Embedding width   Models Layers 

1 316 Million 16 1024 24 

2 963 Million 16 1280 48 

3 120 Million 8 512 17Encoder,1Decoder 

4 600 Million 8 1024 24Encoder,1Decoder 

5 74 Million 8 512 6 

6 244 Million 12 768 12 

 

When it comes to practicality, the most effective and conventional approach is to rely on 

Word Error Rate (WER), which encapsulates a model's performance within a single metric. 

The table presented below showcases the %WER results for various models tested on the 

AMI dataset. This dataset poses significant challenges, given its inclusion of non-native 

speakers, background noise from other speakers, and frequent pauses. Nonetheless, it 

closely mirrors real-life meeting scenarios, essentially representing spontaneous speech 

situations. In the assessment of DeepSpeech, we encountered difficulties with the inference 

engine, preventing us from obtaining a conclusive %WER result. Instead, we were only able 

to provide an estimated range. 

 

Table IV.7: Comparison of (%WER) between adapted models and models from prior 

research 

Model Word Error Rate (%WER) 

HuBERT Large 33.7% 

HuBERT Extra Large 33.3% 

Kaldi ASpIRE 35.82% 

DeepSpeech 40% to 60% 

Conformer-CTC Large 15.9% 

Conformer-Transducer Extra Large 20.5% 

Adapted “Base”  Whisper 14.12% 

Adapted “Small” Whisper 11.42% 
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 It is evident from the table above that the 'Base' model outperforms all previous 

models despite having only 74 million parameters, making it less complex than any other 

model. Its performance falls short only when compared to our Whisper 'Small' variant. 

IV.5 Graphical user interface 

To simplify the use of our app for the average user, we have developed a Graphical 

User Interface (GUI) that prioritizes a minimalist design. Our primary objective was to create 

an interface that is not only easy to understand but also intuitive to interact with. By 

concealing complex details, we aimed to provide a streamlined user experience, allowing 

users to focus on the core functionality of the application. 

The graphical user interface (GUI) of our application is depicted in Figure IV.9. 

 

Figure IV.9: Graphical user interface for our transcription application. 

Our GUI offers users a range of options to select from, designed to enhance usability 

and avoid confusion. To assist users in understanding the choices available, we have 

included a tooltip icon "?" that provides explanations for each dropdown menu. 

For the "Speech to Text Model" dropdown menu, as shown in Figure IV.10, users can 

choose between different options. The "Basic" model which is whispers "tiny" model 

suitable for general-purpose and the "AMI Base" and "AMI Small" models which are our 

fine-tuned models targeted for meetings. 
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Figure IV.10: "Speech to Text Model" dropdown. 

Within the "Transcription quality" dropdown menu, depicted in Figure IV.11, users 

are presented with three options: "Low," "Medium," and "High." The "Low" setting utilizes 

greedy decoding for Opus-MT and Whisper along a 20-second buffer to enable shorter 

contextual analysis. In contrast, the "Medium" setting also uses greedy decoding but utilizes 

a longer buffer of 30 seconds, leading to improved transcription quality. Lastly, the "High" 

utilizes a 30-second buffer with beam search of size 5 for both Opus-MT and Whisper along 

with a temperature fallback for whisper. 

 

Figure IV.11: "Transcription quality" dropdown. 

Additionally, we have incorporated a "Font Size" dropdown menu, enabling users to 

adjust the font size of the transcription output. This range spans from 8 to 70, catering to 

individual preferences. To facilitate audio input selection, we have included a "Microphone 

to Use" dropdown menu, enabling users to choose from their available microphone options. 

Furthermore, a "Translate to French" checkbox has been included, allowing users to opt for 

the translation of English transcriptions to French. Lastly, we have integrated a "Clear Text" 

button, providing users with the ability to easily clear the output text as desired. 
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IV.6 Conclusion 

This chapter comprehensively examines the effects of our design choices on the 

system through the presentation of experiments results. Furthermore, we provided an 

overview of the tools and libraries employed, and showcased the graphical user interface 

(GUI) of our application. 
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General conclusion 
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In this thesis, our primary objective was to design a system capable of transcribing 

English speech, translating it into French, and effectively handling noisy environments while 

ensuring clear audio quality. Additionally, we focused on developing a system that could 

accurately transcribe the vocabulary commonly employed in live meetings. Furthermore, 

our goal was to achieve real-time performance with reasonable latency for the system. 

Our key contribution involved designing an audio capture mechanism  capable of 

obtaining noise-free, clear audio in real-time, even within noisy environments. We proceeded 

by fine-tuning and adapting a transcription system specifically for meetings, conducting a 

series of experiments to evaluate its performance. Moreover, we incorporated a translation 

system that could capture and translate text while preserving context and meaning. To 

ensure efficient operation, we focused on minimizing latency by conducting multiple 

experiments and optimizing the models for low-performance hardware. Furthermore, we 

created an intuitive and responsive graphical user interface to facilitate user interaction 

with our system. 

While endeavoring to develop a robust system, we encountered various problems 

and challenges that imposed limitations on its performance. The most notable limitations 

include the system's inability to capture all words accurately within a meeting setting, 

despite substantial improvements. This shortfall can be attributed primarily to the significant 

hardware requirements necessary for improving such complex artificial intelligence models. 

Moreover, despite our efforts to mitigate transcription errors through the acquisition of 

clean audio by noise reduction methods, occasional hallucinations still occur where the 

system transcribes words the speaker did not say. In terms of real-time capabilities, while 

we have achieved reasonable latency, there is room for improvement. Deploying our 

system on more robust hardware has the potential to further elevate real-time 

performance. Alternatively, optimizing our machine learning models through techniques 

such as model pruning or distillation is another avenue worth exploring to achieve this 

objective.
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