
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University Blida 1

FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS

THESIS
In order to obtain a Master’s degree

Specialty: Mathematics

Option: Stochastic Modeling and Statistics

TITLE

A New Approach For Generating Designs Of
Computer Experiments From Area-Interaction Point

Processes

Presented by: Boudali Aimen and Lafri Amrane Abderrahmane
Defended before the jury composed of:

Mr. BOUDJMEAA R. Assistant Professor A President
Mr. FRIHI R. Assistant Professor B Examiner
Mr. ELMOSAOUI H. Assistant Professor A Supervisor
Mr. AIT AMEUR A. PhD student Co-supervisor

2022/2023

Acknowledgements

We would like to express our gratitude, first and foremost, to God Almighty for granting
us the courage, patience, and determination to complete this humble work.

We would like to thank Mr. Elmossaoui Hichem, Assistant Professor at Blida1 University,
our thesis advisor, who has guided and advised us wisely throughout this work.

We would like to thank Mr. AIT AMEUR A., our co-supervisor, for his constant support,
valuable advice, and expertise throughout this experience.

We extend our deep gratitude and sincere thanks to Mr. O. Tami, the Head of the
Mathematics Department at Blida1 University, for all the assistance provided to us.

We take this opportunity to express our profound gratitude and sincere thanks to all the
teachers who have contributed to our education.

We would also like to thank the staff members of the Mathematics Department, in par-
ticular, Mr. H. Hadj Allah, Ms. N. Djenas, and Ms. S. Takarli.

Lastly, we would like to express our utmost gratitude to the members of the jury for the
honor they bestow upon us by agreeing to evaluate this work.

Dedication

To my dearest mother, whose unwavering love and support have guided me every step of the
way. To my dear departed father, though you are no longer with us, your memory and legacy
live on in our hearts. To my beloved brothers and sisters, who have shared both the joys and
challenges of life with me. To my cherished friends, who have stood by my side through thick

and thin. Your friendship has been a source of joy, laughter, and comfort in my life. I dedicate
my achievements to all of you, for your unconditional love and unwavering support. Forever

grateful and forever in my heart.

Aimen Boudali

This thesis is dedicated to my family and friends who have been my rock, my guiding light,
and my unwavering support. Your love, belief in me, and encouragement have been

instrumental in my journey. Thank you for always being there for me.

Lafri Amrane Abderrahmane

Abstract
Many engineers and technicians rely on experimental designs to improve their products or
production processes based on experience. However, traditional strategies for conducting ex-
periments often prove to be expensive, inefficient, and yield limited exploitable results. To
address these challenges, the planning of experiments has become essential.

Experimental designs offer a structured approach to conducting tests in scientific research
and industrial studies. They find applications in various disciplines and industries when in-
vestigating the relationship between a quantity of interest (y) and controllable variables (xi).
The objective is to establish mathematical models that relate these quantities of interest to the
variables.

This thesis introduces new digital experimental designs based on the theory of stochastic
processes, specifically area interaction point processes, also known as object processes. These
designs leverage both the distribution of points within the experimental region and specific
characteristics associated with those points. The designs are obtained using a Monte Carlo
Markov chain method (MCMC), and a thorough investigation of the Markov chain’s convergence
has been conducted. Furthermore, a comparative analysis between our approach and other
existing computer designs has been performed.

Keywords: Experimental Designs, Numerical Experimental Designs, Point Processes,
Area-Interaction Point Processes, Voronoi Tessellation, Markov Chain Monte Carlo (MCMC),
Metropolis-Hastings Algorithm.

Contents

Acknowledgements 1

Abstract 1

Table of Contents 2

List of Figures 4

List of Tables 5

Introduction 6

1 Generalities of Experimental Designs 9
1.1 History . 9
1.2 Interest of the experimental design method . 10
1.3 Fundamental terminology of experimental designs 11
1.4 Mathematical Tools for Experimental Design . 16
1.5 Response Surface Designs . 21
1.6 Conclusion . 25

2 Generalities about point processes 26
2.1 Point Process . 26
2.2 Examples Of Point Processes . 28
2.3 Markov Point Process . 30
2.4 Markov Chains . 31
2.5 MCMC - Metropolis Hasting . 34

3 New Configuration of Computer Experiment Designs 39
3.1 Area Interaction Process . 39

1

3.2 Voronoi Tessellation . 41
3.3 Simulation of point processes using MCMC method and Metropolis-Hasting al-

gorithm. 41
3.4 Algorithm for constructing experimental designs using Markov point process with

area interaction . 42
3.5 Convergence study . 47

4 Optimality Criteria And Digital Results 51
4.1 Optimality criteria . 51
4.2 Intrinsic study of designs using distance, discrepancy, and coverage criteria. . . . 53
Appendices . 61

Bibliography 88

2

List of Figures

1.1 The system environment . 11
1.2 Variation domain of the factor. 12
1.3 Experimental space definition. 13
1.4 Experimental point in experimental space. 13
1.5 Two factors study domain. 14
1.6 Definition of the response surface. 14
1.7 Design of experiments theory shows that the best point are those situated in the

corners A,B,C and D. 15
1.8 Example of central composite experimental designs. 22
1.9 Halton sequences. 24
1.10 Sobol sequences. 24
1.11 Faure sequence. 25

2.1 An Example Of Point Configuration. 27
2.2 Simulation of Strauss model. 30

3.1 Simulated realizations of an area-interaction process conditional on n = 100

points, with r = 5 in a window of size 256 x 256. Left: ordered pattern, γ =

0.9711, γ25π = 10; Right: clustered pattern, γ = 1.02975, γ25π = 0.1. 40
3.2 Examples of Voronoi tessellation generating 5, 10 and 20 points on the unit square. 41
3.3 Initial configuration with area = 0.49 & final configuration with area = 0.61

(γ = 3, r = 0.1). 44
3.4 Initial configuration of 50 points with area = 0.6631 & final configuration with

area = 0.87 (γ = 3, r = 0.08). 44
3.5 Initial configuration of 100 points with area = 0.52 & final configuration with

area = 0.69 (γ = 3, r = 0.05). 45
3.6 Initial configuration of 25 points & final configuration of 3 factors (γ = 2, r = 0.1). 45

3

3.7 Initial configuration of 50 points & final configuration of 3 factors (γ = 2, r =

0.07). 46
3.8 Initial configuration of 25 points & final configuration of 3 factors (γ = 2, r =

0.02). 46
3.9 Left: (r = 0.3, γ = 3, Area = 2.33). Right: (r = 0.05, γ = 3, Area = 0.15). 47

4.1 Boxplots of the calculated quality criteria for 100 designs in 2 dimensions with
25, 50, and 100 points. 54

4.2 Boxplots of the calculated quality criteria for 100 designs in 3 dimensions with
25 points. 57

4.3 Boxplots of the calculated quality criteria for 100 designs in 3 dimensions with
50 points. 58

4.4 Boxplots of the calculated quality criteria for 100 designs in 3 dimensions with
100 points. 59

4

List of Tables

1.1 Experimental Matrix . 16
1.2 The 22 experimental design plan . 21

4.1 Comparison of the means of optimality criteria for different points in 2D 54
4.2 The values of discrepancy for the proposed designs Area Interaction, Halton

sequences, MSD, Sobol sequences and Latin hypercube for three dimensions. . . 55
4.3 The values of distance criterion for the proposed designs Area Interaction, Halton

sequences, MSD, Sobol sequences and Latin hypercube for three dimensions. . . 55
4.4 The value of coverage criterion for the proposed designs Area Interaction, Halton

sequences, MSD, Sobol sequences and Latin hypercube for three dimensions. . . 55

5

Introduction

In recent years, numerical simulation has been used to model increasingly complex phenom-
ena. Such problems, often of very high dimensions, require sophisticated simulation codes that
are computationally expensive. The currently favored approach is to define a reduced number
of simulations organized according to an experiment computer design. Therefore, it is impor-
tant to have methods that optimize the selection of these simulations using the methodology of
experimental design. This methodology is useful for anyone undertaking scientific research or
industrial studies. The use of experimental designs for the empirical study of a response dis-
tribution presents specific challenges for statisticians and researchers. While they have limited
information about this distribution, they generally have access to only a small sample of obser-
vations compared to the number of parameters in the models they consider for their analyses.
Before any observation of the response, they must specify not only which models to use but also
how to organize the experiments. Indeed, the quality of the statistical analysis depends heavily
on the experimental design used to observe the response. Additionally, combinatorial analysis
is generally necessary to construct the proposed experimental designs.

Authors such as Fisher [1], Kiefer [2], Box [3], and others have studied experimental
designs. Classical designs tend to position points on the boundaries of the domain to account for
random variation and provide a more reliable trend in the presence of measurement errors. Most
criteria for these designs use experimental error that exists in the context of real experiments,
whereas, in computer experiment designs, the error is associated with the model rather than
the experimentation itself. Therefore, repeating classical experiments is of great interest for
evaluating experimental error, while in the case of computer experiment designs, repeating an
experiment under the same conditions is meaningless as it would yield the same response.

The diversity of experimental designs proposed in the literature arises from the fact that
there is no perfect design where all optimality criteria are simultaneously satisfied. Each de-
sign has advantages for some optimality criteria and disadvantages for others. Therefore, it is
necessary to find a compromise based on the specific requirements of each study.

6

The main objective of our work is to propose a new computer experiment design based on
the theory of stochastic processes, particularly area-interaction point processes. By using this
type of process instead of simple point processes, we can introduce not only geometric knowl-
edge but also priory knowledge about the n experimental points that constitute the proposed
computer experimental design. Thus, the experiments in these designs should best cover the
experimental domain in order to obtain information, especially to detect possible irregulari-
ties. Therefore, we seek a design in which the points are uniformly distributed within the unit
hypercube. The first who proposed a computer experimental design using point processes is
Franco in 2008 [4] following its work El Moussaoui et al. in 2020 [5, 6, 7] proposed a numer-
ical experimental design based on the utilization of marked Strauss processes [8] and recently
in 2023 they proposed a new numerical experimental design method that uses the continuum
random cluster point process [9]. To generate such designs, we will use simulation techniques
such as Markov Chain Monte Carlo (MCMC), by including Voronoi tessellations [10] inside the
Metropolis-Hastings algorithm [11, 12].

The thesis is composed of four chapters organized as follows:

. Chapter One introduces the theory of experimental design methodology and provides an
overview of commonly used experimental designs in digital experimentation.

. Chapter Two introduces the theory of point processes. The chapter begins by presenting
point processes followed by Markov processes. The simulation of these processes is de-
scribed in the form of a Markov chain, with the basic concepts and convergence conditions
presented. Subsequently, the main algorithms for simulating Markov chain Monte Carlo
will be described.

. Chapter 3 provides a comprehensive overview of various techniques and algorithms re-
lated to point processes, spatial interactions, simulation methods, experimental design
construction, and convergence analysis. These concepts play a crucial role in understand-
ing and applying point processes. By exploring optimality criteria, intrinsic properties,
and conducting a comparison between space-filling techniques.

. Chapter 4 provides valuable insights into the assessment and selection of experimental
designs. These concepts aid researchers and practitioners in choosing the most appro-
priate design for their specific objectives and constraints, leading to efficient and reliable
experiments.

Finally, a conclusion concludes this work, providing some perspectives for future research.

7

In the appendix, we present the programs developed in the PYTHON software used to
perform the numerical illustrations provided in the third and fourth chapters.

8

Chapter 1

Generalities of Experimental Designs

In this chapter, the various hypotheses involved in the use of the experimental design
method are synthesized and summarized. This method is useful for any experimenter under-
taking scientific research or industrial studies. It is applicable to all disciplines as long as one
is looking for the relationship that exists between a quantity of interest y and variables xi that
can modify the values of the former. To do this, it is necessary to follow mathematical rules
and adopt a rigorous approach.

1.1. History

The methodology of experimental design has a rich historical background, incorporating
both ancient and modern influences. As far back as the Middle Ages, Nicolas Oresme (1325-
1382) acknowledged the importance of this approach in his writings [13]. Notably, Francis
Bacon (1561-1626), an influential figure inspiring Descartes and Leibniz, stands as one of the
precursors of the experimental method [14]. However, it was Sir Ronald Fisher who laid the
foundation for contemporary experimental design. Fisher’s work dates back to 1919 when he
conducted agricultural research in a northern London research center, aiming to enhance agri-
cultural yields by experimenting with various factors such as fertilizers, plant varieties, and soil
types [1]. Faced with practical constraints that hindered conducting all possible experiments,
Fisher proposed rigorous statistical models, including Latin squares, to derive experimental
configurations.

Following in Fisher’s footsteps, a group of statisticians, including Yates, Youden, Cochran,

9

Plackett, Burman, and others, have played significant roles in advancing and advocating for
the application of experimental planning techniques beyond agronomy. Notably, during the
1950s, Box and his collaborators expanded on the groundwork laid by Yates, developing specific
methodologies for constructing fractional factorial designs at two levels [3]. However, it was the
pioneering work of Taguchi and Masuyama that truly revolutionized the use of experimental
designs, as they introduced tables for constructing orthogonal experimental designs tailored to
address the majority of industrial problems [15]. These influential tables were published in 1959
and 1961.

In recent times, a multitude of researchers have dedicated themselves to advancing this
specific field of statistics through diverse avenues. Their efforts encompass a range of develop-
ments, including adapting experimental designs to address mixture problems [16], incorporating
block effects [17], employing nonlinear models [18], exploring models that incorporate neigh-
borhood effects, and devising experimental designs tailored for computer experiments, among
other innovative approaches.

1.2. Interest of the experimental design method

The study of a phenomenon can be schematized as follows: the experimenter is interested
in a quantity, for example the yield of wheat from a plot of land, the cost of a chemical product,
or the wear of an automobile engine part. This quantity depends on a large number of variables.
The study of the phenomenon then comes down to measuring the quantity as a function of the
different values that can be given to the variables.

The main advantage of the method is that it allows for the variation of all the variable
levels at each experiment, but in a programmed and reasoned manner. As surprising as it may
seem at first, the fact of varying all the variables at once is not a disadvantage, but on the
contrary offers many advantages, including:
•Reduction in the number of trials
•Large number of factors studied
•Detection of interactions between factors
•Better precision on the results
•Modeling of results and obtaining the optimum
Experimental designs allow the study of many factors while maintaining the number of trials

10

Figure 1.1: The system environment

at reasonable levels. One of their main applications is the search for influential factors. Un-
derstanding the method of experimental designs is based on two essential concepts, that of
experimental space and that of mathematical modeling of the studied quantities [19].

1.3. Fundamental terminology of experimental designs

The technique of experimental designs has a specific vocabulary in experimental research
methodology. Its specific terms are classic but in some statistical domains, they may have
slightly different meanings. To ensure that our presentation is well understood, we prefer to
recall the meaning of some important terms.

1.3.1. Response

An experimental response of a system is a measurable manifestation that is observed when
varying the factors studied to determine their effect on the system. The response can be of a
continuous quantitative type, such as yield, mechanical characteristic,...etc., or of a qualitative
type. Quantitative responses are generally easier to handle.

11

1.3.2. Factors and experimental space

Factors are the variables that we want to study and are supposed to have an influence on
the system. The value given to a factor to perform a test is called ”Level”. A factor can be:
•A controllable factor: It is a factor that we can manage, control or modify.
•A non-controllable factor: It is a factor considered as not retained for the study, because it
is non-influential and left at its usual value, or an unknown factor that we undergo during the
experimentation.
•A quantitative factor: It is translated by a measurable numerical quantity, such as speed,
temperature, intensity, etc.
•A qualitative factor: It cannot be directly quantified, we can only identify its different levels,
such as a brand, a process, a method, a supplier, etc.
When studying the influence of a factor, we generally limit its variations between two limits
(the lower limit is the low level, and the upper limit is the high level).

Figure 1.2: Variation domain of the factor.

The effect of a factor is the change in response caused by a change in level in one of the
factors. The interaction between two factors characterizes the coupling of the effects of these
two factors on the response. If there is a second factor, it is also represented by an axis. We
define, as for the first factor, its low level, its high level, and its range of variation. This second
axis is arranged orthogonally to the first. We thus obtain a Cartesian coordinate system that
defines a Euclidean space with two dimensions. This space is called the experimental space
(Figure 1.3).

12

Figure 1.3: Experimental space definition.

The level X1 of factor 1 and the level X2 of factor 2 can be considered as the coordinates
of a point in the experimental space (Figure 1.4)

Figure 1.4: Experimental point in experimental space.

A given experiment is then represented by a point in this axis system. An experimental
design is represented by a set of experimental points.

1.3.3. Domain of study and Response surface

The grouping of the factor domains defines the ”study domain”. Given the definition of
the k factors and their respective variations, it becomes natural to define a k-dimensional space,
in which each point corresponds to a configuration of the k factors. This space is called the
study domain or research space. The experimental points can be located either inside or on the

13

boundaries of the domain (figure 1.5).

Figure 1.5: Two factors study domain.

Each point in the study domain corresponds to a response. The set of all points in the
study domain corresponds to a set of responses that are located on a surface called the response
surface. There are two types of response surfaces:

•Actual response surface: The actual response surface of the process is the set of values
that the response takes.

•Theoretical response surface: In the case where the variables are continuous, a the-
oretical response surface can be calculated. In practice, this response surface is constructed
from a few experimental points selected by the experimenter. Generally, the fundamental prob-
lem of experimental design is to seek to identify a polynomial model that allows for a better
approximation of the actual response surface (Figure 1.6).

Figure 1.6: Definition of the response surface.

14

1.3.4. Centered reduced coordinates

When assigning the value of -1 to the low level of a factor and the value of +1 to the high
level, two important modifications are made: the origin of the measurements is shifted and
the unit of measurement is changed. These two modifications lead to the introduction of new
variables called centered and scaled variables, centered to indicate the change in origin and scaled
to denote the new unit. The transformation from the original variables Z to the centered and
scaled variables X (dimensionless variables), and vice versa, is given by the following formula:

x =
z − z0
step

(1.1)

and z0 =
highlevel + lowlevel

2
, step =

highlevel − lowlevel

2

1.3.5. Experimental Designs

Each point in the study area represents possible operating conditions, and thus an experi-
ment that the operator can perform.

Figure 1.7: Design of experiments theory shows that the best point are those situated in the
corners A,B,C and D.

The choice of the number and location of experimental points is the fundamental problem
of experimental designs. We usually refer to sets of experimental points that meet specific
properties as experimental designs. These are classical experimental designs, which are well-
known and widely published. When the experimental points are arranged differently from
classical experimental designs, they are called unconventional designs. Their properties are

15

often inferior to those of classical designs. However, unconventional designs are encountered
because it is not always possible to meet the requirements of classical experimental designs [20].

1.3.6. Experimental Matrix

An experimental matrix is a mathematical object that represents, in coded or normalized
form, the set of experiments to be performed. It is a table consisting of n rows, corresponding
to the n experiments, and k columns, corresponding to the k variables (factors) being studied.
The experimental matrix (Table 1.1) defines the trials represented in Figure 1.6. The element
ij of the resulting matrix corresponds to the value of the level that the j-th variable takes on
in the i-th experiment. The experimental matrix then defines the trials to be carried out. The
term ”trial” is equivalent to ”experimental point” [21].

Table 1.1: Experimental Matrix

Trials Factor 1 Factor 2
1(A) -1 -1
2(B) +1 -1
3(C) -1 +1
4(D) +1 +1

1.4. Mathematical Tools for Experimental Design

This section presents the basic mathematical concepts necessary for a good understanding
of the experimental design method.

1.4.1. Concept of Mathematical Modeling

The model is a relationship between the factors x1,x2 , ... ,xk and the response that one
wishes to study.

1.4.2. Statistical Model

Consider a random phenomenon dependent on k variables, and suppose we seek to model this
phenomenon as accurately as possible. The statistical approach then involves conducting n

experiments, judiciously chosen in the case of experimental designs. Each experiment is rep-
resented by a point x in Rk (this is possible if the variables studied are quantitative; for the
qualitative case, a subset of Nk is used).

16

Designating by Y (x) the response measured at x, it is conventionally assumed that this
response results from the sum of the response law f at x (i.e. the actual response sought) and
the residual ϵ at x (i.e. the error made). Therefore:

Y (x) = f(x) + ε(x)

The residual can account for many causes such as errors due to the experimenter, a poor
postulated model, the omission of certain variables, etc. We generally assume that the residuals
are real random variables satisfying the following three hypotheses [22]:

∀ x E(ε(x)) = 0

∀ x 6= x′, Cov(ε(x), ε(x′)) = 0

∀ x, V ar(ε(x)) = σ2

1.4.3. Linear modeling

The linear model can be specified quite straightforwardly by the equations

yi = f ′(x)β + εi, i = 1, ..., n (1.2)

Where:

• yi is the ith observation taken at the k explanatory variables specified by the vector
xi = (xi1, xi2, ..., xik)

• f(xi) is a (p+ 1)× 1 vector of functions of those variables.

• β = (β0, β1, ..., βp) a conformable vector of unknown parameters.

• and εi is an error term which has mean zero and is not necessarily independent of other
error terms.

Equation (2) is generally referred to as the observational equation and can be readily as-
sembled in matrix form as

y = Xβ + εi

17

Where:

• y = (y1, ..., yn)
′ .

• The matrix X is n× (p+ 1) with ith row f ′(xi) .

• ε = (ε1, ..., εn) is distributed as a random vector with E(ε) = 0 and V ar(ε) = σ2In .

Estimation of Parameters

Once the model is established, the problem now consists of determining an estimator β̂ of β
that is as good as possible. The classical approach is to seek β̂ in such a way that the vector
of observed responses Y and the vector of predicted mean responses Ŷ = Xβ̂ are as close
as possible. This leads to the estimator of the least squares of β according to the following
definition:

Definition 1.1. We say that β̂ is a least squares estimator of β if and only if β̂ minimizes the
function:

Q (β) = ‖Y −Xβ̂‖2

where ‖.‖ is the Euclidean norm in Rn.

The least squares estimator of β provides the minimum of the function Q, and this mini-
mum value is given by:

Q
(
β̂
)
=

∥∥∥Y −Xβ̂
∥∥∥2

=
∥∥∥Y − Ŷ

∥∥∥2

=
n∑

i=1

(
Yi − Ŷi

)2

This demonstrates that this quantity is closely related to the (quadratic) error between the
observed responses Yi and the average responses predicted by the model Ŷ . Regarding the
practical determination of this estimator, it will be shown that:

Proposition 1.1. Let the statistical model be Y = Xβ + ε, where X is a full-rank matrix1.
The least squares estimator of β̂ is given by:

β̂ =
(
tXX

)−1 tXY

Proof. We seek β̂ that minimizes the quantity
∥∥∥Y − Ŷ

∥∥∥2

=
n∑

i=1

(
Yi − Ŷi

)2

Since
n∑

i=1

(
Yi − Ŷi

)2

is a scalar product, we can write it as:
1A matrix is said to be full-rank if no column is linearly dependent on the other columns, i.e., the rank of

the matrix is equal to the number of columns of the matrix.

18

〈
Y − Ŷ , Y − Ŷ

〉
= t

(
Y − Ŷ

)(
Y − Ŷ

)
And since Ŷ = Xβ̂ we have

n∑
i=1

(
Yi − Ŷi

)2

= t
(
Y −Xβ̂

)(
Y −Xβ̂

)
=

(
tY − tβ̂ tX

)(
Y −Xβ̂

)
= tY Y − tβ̂ tXY − tY Xβ̂ + tβ̂ tXXβ̂

We have:
tY Xβ̂ = t

(
tβ̂ tXY

)
= tβ̂ tXY

Therefore:
n∑

i=1

(
Yi − Ŷi

)2

= tY Y − 2 tβ̂ tXY + tβ̂ tXXβ̂

To minimize the value of
n∑

i=1

(
Yi − Ŷi

)2

we calculate its derivative with respect to β̂

∂
n∑

i=1

(
Yi − Ŷi

)2

∂β̂
=

∂ tY Y

∂β̂
− 2

∂ tβ̂ tXY

∂β̂
+

∂ tβ̂ tXXβ̂

∂β̂

Thus:

• ∂ tY Y

∂β̂
= 0 because tY Y is constant with respect to β̂

• ∂ tβ̂ tXY

∂β̂
= tXY because tβ̂ tXY is a linear form with respect to β̂

• ∂ tβ̂ tXXβ̂

∂β̂
= tXXβ̂ because tβ̂ tXXβ̂ is a quadratic form with respect to β̂ which gives

∂
n∑

i=1

(
Yi − Ŷi

)2

∂β̂
= −2 tXY + 2 tXXβ̂

β̂ is a local minimum of
∥∥∥Y − Ŷ

∥∥∥ if

∂
n∑

i=1

(
Yi − Ŷi

)2

∂β̂
= 0 ⇒ −2 tXY + 2 tXXβ̂ = 0

⇒tXXβ̂ = tXY ⇒ β̂ =
(
tXX

)−1 tXY

19

We now need to verify that this value of β̂ is a minimum, which is why we will calculate

the second derivative of
∥∥∥Y − Ŷ

∥∥∥, which is equivalent to calculating
∂2

n∑
i=1

(
Yi − Ŷi

)2

∂β̂2

∂2
n∑

i=1

(
Yi − Ŷi

)2

∂β̂2
= −2

∂ tXY

∂β̂
+ 2

∂ tXXβ̂

∂β̂

= 2 tXX = 2 ‖X‖2 > 0

therefore it is indeed a minimum

Proposition 1.2. If the assumptions on the residuals (errors) are satisfied and if β̂ is the least
squares estimator of β, then:

1. β̂ is an unbiased estimator of β

2. β̂ has the variance-covariance matrix: V
(
β̂
)
= σ2 (tXX)

−1

Proof. 1. We calculate E
(
β̂
)
:

E
(
β̂
)
= E

((
tXX

)−1 tXY
)
=

(
tXX

)−1 tXE (Y) =
(
tXX

)−1 tXXβ = β

2. Similarly, we calculate V
(
β̂
)
:

V
(
β̂
)
= E

[(
β̂ − β

)t (
β̂ − β

)]

1.4.4. Different types of experimental designs

In this section, we introduce the main types of experimental designs. These designs can be
classified into two categories:

•Factorial designs,

20

•Response surface designs,

These two categories are related to possible objectives for using the method of experimental
designs.

Two-Level Full Factorial Designs

A two-level full factorial design with n factors requires 2n experimental runs to cover all
possible combinations of the input factors. This is illustrated in the factor columns in Table
2.5 for the case of two factors (n = 2) at two levels each. If there are five factors at n = 5, the
total number of runs will be 25 = 32.

Table 1.2: The 22 experimental design plan

Run A B Response
1 +1 +1 y1
2 -1 +1 y2
3 +1 -1 y3
4 -1 -1 y4

Fractional Factorial Design

Fractional factorial designs of rare designs in which no main effects are confounded with
any other main effect. However, main effects are confounded with two-factor interactions and
two-factor interactions may be confounded with each other.[23].

1.5. Response Surface Designs

In statistical practice, it is common to complement Design of Experiments (DOE) with the
application of Response Surface Modelling (RSM). RSM encompasses various techniques used to
interpolate or approximate the data obtained from a DOE. These techniques can include linear,
nonlinear, polynomial, stochastic, and other methods, each offering distinct approaches within
RSM. The main concept behind RSM is to construct a hypersurface in an (n + 1)-dimensional
space, where n represents the variables of interest and the additional dimension represents the
objective function. The advantage of creating this interpolating or approximating hypersurface
is the ability to apply optimization techniques to the response surface, enabling the identification
of optimal conditions or settings.[24].

21

Central Composite

A central composite design is an experimental design technique that combines a 2k full
factorial design with additional central and star points. In this design, the star points represent
sample points where all parameters, except one, are set at the mean level denoted as ”m.” The
value of the remaining parameter is defined based on its distance from the central point. [24].

Figure 1.8: Example of central composite experimental designs.

Space Filling DOE Techniques

These methods utilize various techniques to uniformly fill the design space. As a result,
they do not rely on the concept of levels, eliminate the need for discretized parameters, and
allow the experimenter to independently choose the sample size regardless of the number of
parameters in the problem. Space filling techniques are often a suitable choice for constructing
response surfaces. This is because, given a certain sample size N, the occurrence of empty areas
far from any sample, which could lead to inaccurate interpolation, is unlikely. However, since
space filling techniques do not rely on levels, evaluating main effects and interaction effects of
the parameters is not as straightforward as in the case of factorial experimental designs.

Latin Hypercube

In Latin hypercube sampling, the design space is divided into an orthogonal grid consisting
of N elements of equal length per parameter. Within this multidimensional grid, N sub-volumes
are identified such that only one sub-volume is selected along each row and column of the grid.

Halton, Faure, and Sobol Sequences

Several efficient space filling techniques are based on pseudo-random numbers generators.
The quality of random numbers is checked by special tests. Pseudo-random numbers generators
are mathematical series generating sets of numbers which are able to pass the randomness tests.

22

A pseudo-random number generator is essentially a function ϕ : [0, 1) −→ [0, 1) which is applied
iteratively in order to find a serie of γk values

γk = ϕ(γk−1), for k = 1, 2, ...

starting from a given γ0. The difficulty is to choose ϕ in order to have a uniform distribution
of γk. Some of the most popular space filling techniques make use of the quasi-random low-
discrepancy mono-dimensional Van der Corput sequence. In the Van der Corput sequence, a
base b ≥ 2 is given and successive integer numbers n are expressed in their b-adic expansion
form

n =
T∑

j=1

ajb
j−1

where aj are the coefficients of the expansion. The function

φ : N⊬ −→ [0, 1)

φ(n) =
T∑

j=1

aj
bj

gives the numbers of the sequence.
Let us consider b = 2 and n = 4 : 4 has binary expansion 100, the coefficients of the expansion
are a1 = 0, a2 = 0, a3 = 1. The fourth number of the sequence is ϕ2(4) =

0
2
+ 0

4
+ 1

8
= 1

8
. The

numbers of the base-two Van der Corput sequence are: 1
2
, 1
4
, 3
4
, 1
8
, 5
8
, 3
8
, 7
8
, ...

The basic idea of the multi-dimensional space filling techniques based on the Van der
Corput sequence is to subdivide the design space into sub-volumes and put a sample in each of
them before moving on to a finer grid.

The Halton sequence employs a Van der Corput sequence with a base of two for the first
dimension, a base of three for the second dimension, a base of five for the third dimension,
and so on, using prime numbers as the base for subsequent dimensions. One of the primary
challenges is to prevent multi-dimensional clustering. In high-dimensional spaces, the Halton
sequence exhibits notable correlations between the dimensions. To address this issue, alterna-
tive sequences have been developed in an attempt to mitigate such correlations.

23

Faure and Sobol sequences use only one base for all dimensions and a different permutation
of the vector elements for each dimension.[25]
The base of a Faure sequence is the smallest prime number ≥ 2 that is larger or equal to
the number of dimensions of the problem. For reordering the sequence, a recursive equation
is applied to the j coefficients. Passing from dimension d − 1 to dimension d the reordering
equation is:

a
(d)
j (n) =

T∑
j=1

(j − 1)!

(i− 1)!(j − 1)!
a
(d−1)
j mod b (1.3)

Sobol sequence uses base two for all dimensions and the reordering task is much more
complex than the one adopted by Faure sequence, and is not reported here. Sobol sequence is
more resistant to high-dimensional degradation.

Figure 1.9: Halton sequences.

Figure 1.10: Sobol sequences.

24

Figure 1.11: Faure sequence.

1.6. Conclusion

In summary, the design of experiments method is a set of complementary techniques that
assist users in determining experiments to carry out and in understanding and exploiting the
results obtained. The tools used in this method are essentially based on statistical and algebraic
foundations. The developments in this chapter have presented the foundations, principles, and
possibilities for analysis of the design of experiments method. Its multiple aspects make it a
perfectly adapted method of analysis for studying systems.

25

Chapter 2

Generalities about point processes

Statistics uses its own types of models, which are of a different nature but often not more
complicated than the models in classical statistics. These models may be used to formulate
scientific hypotheses in terms of model parameters. Statistical approaches may then be used
to test whether properties of the pattern derived from these hypotheses are reflected in the
pattern, and hence whether the patterns support or disprove the hypotheses. In particular,
these models enable the simulation of point patterns, which may be a helpful way to understand
the underlying natural processes that have formed the pattern.

2.1. Point Process

point process or point field is a group of mathematical points distributed at random on
a mathematical space, such as the real line or Euclidean space, in statistics and probability
theory. Point processes can be applied to the analysis of geographical data, which is useful in a
variety of fields including forestry, plant ecology, epidemiology, geology, seismology, materials
science, astronomy, telecommunications, computational neuroscience, economics, and others.
A point process can be interpreted mathematically in a variety of ways, such as a random set
or a random counting measure. Although it has been noted that the distinction between point
processes and stochastic processes is not entirely obvious, some authors view a point process
and a stochastic process as two separate objects, with a point process being a random entity
that comes from or is related to a stochastic process. The process is indexed by sets of the
underlying space on which it is defined, such as the real line or n-dimensional Euclidean space,
in the view of some who consider a point process as a stochastic process. In the theory of point
processes, other stochastic processes including renewal and counting processes are examined.

26

Point processes are also known as random point fields since the term ”point process” is not
always favored because historically the word ”process” signified an evolution of some system
through time.

Definition 2.1. Mapped data such as that depicted in Figure can be described mathematically
as a finite, unordered set of points

x = {x1, ..., xn}, n = 0, 1, ...

in some space X (e.g. a square in R2). For brevity, such sets will be referred to as configurations.
Thus, we would like to model the stochastic mechanism underlying the data as a random
configuration of objects parameterized by points in X .

Figure 2.1: An Example Of Point Configuration.

It is assumed that X is equipped with a metric d such that (X , d) is complete and separa-
ble*. For example, X could be a compact subset of Rd equipped with the Euclidean distance.
The metric defines a topology and hence a Borel σ-algebra. A configuration x ⊆ X is said to
be locally finite if it places at most a finite number of points in any bounded Borel set A ⊆ X
[26].

Definition 2.2. Let (X , d) be a complete, separable metric space. A point process on X is a
mapping X from a probability space (Ω,A,P) into N lf such that for all bounded Borel sets
A ⊆ X , the number N(A) = Nx(A) of points falling in A is a (finite) random variable.

Definition 2.3. A point process X is a random configuration of points such that for each
bounded Borel set A ⊆ X , the number of points in A is a random variable. In other words, a

27

point process is a random variable with values in the measurable space (N lf ,N lf), where N lf

is the smallest σ-algebra such that for all bounded Borel sets A ⊆ X the mapping X 7→ NX(A)

is measurable. The induced probability measure on N lf is called the distribution of X .

Definition 2.4. The family of finite-dimensional distributions (or ’fidis’) of a point process
X on a complete, separable metric space (X , d) is the collection of joint distributions of
(N(A1), ..., N(Am)) for all finite vectors (A1, ..., Am) of bounded Borel sets Ai ⊆ X , i = 1, ..,m

of any length m ∈ N .

Definition 2.5. The distribution of the point process is the induced probability measure π on
N lf .

2.2. Examples Of Point Processes

In this section we are going to see some examples of point processes.

2.2.1. Binomial Point Process

binomial point process is defined as the union X = X1, ..., Xn of a fixed number n ∈ N of
independent , uniformly distributed points X1, ..., Xn. Since P (Xi = Xj) = 0 for all i 6= j,X is
simple. Furthermore, as P (N(X) = n) = 1, the binomial process is finite with

pm =

{
0 if m 6= n

1 if m = n

The points Xi are distributed uniformly, hence

Jn(xi, ..., xn) ≡
(

1

µ(X)

)n

(x1, ..., xm ∈ X). Clearly, jn(·, ..., ·) is permutation invariant.x The binomial process derives its
name from the fact that for any Borel set A ⊆ X ,

N(A) =
n∑

i=n

⊮{Xi ∈ A}

follows a binomial distribution with parameters n and µ(A)/µ(X).

28

2.2.2. Poisson Point Process

The Poisson process has a central role in point process statistics. It is fundamental to any
successful analysis of point pattern data that the user is familiar with the basic properties of
this process.

We shall derive a Poisson process on Rd in an intuitive way from the binomial process
discussed above. The results will serve as the basis for a formal definition.
Let then, for n ∈ N,P n()̇ be the distribution of a binomial process of n points in a ball Bn ⊆ Rd

centred at the origin, with radius chosen in such a way that the volume µ(Bn) =
n
λ
for some

0 < λ < ∞ Furthermore, let A be a bounded Borel set, and k a non-negative integer. Since the
sequence of balls is increasing towards Rd, an integer number n0 ≥ k can be found such that
for n ≥ n0, A ⊆ Bn. Hence, for n ≥ n0

P (n)(N(A) = k) = P n(N(A) = k;N(Bn \ A) = n− k)

=

(
n

k

)(
µ(A)

µ(Bn)

)n(
µ(Bn\A)
µ(Bn)

)n−k (2.1)

Hence the number of points in A is binomially distributed with parameters n and µ(A)/µ(B).
Hence

lim
n→∞

P (n)(N(A) = k) = e−λµ(A) (λµ(A))
k

k!

The properties derived above suggest the following definition. A point process X on
X = Rd is a homogeneous Poisson process with intensity (or rate) λ > 0 if

• N(A) is Poisson distributed with mean λµ(A) for every bounded Borel set A ⊆ X ,
writing µ(A) for the volume (Lebesgue measure) of A;

• for any k disjoint bounded Borel sets A1, ..., Ak, the random variables N(A1), ..., N(Ak)

are independent.

2.2.3. Strauss Process

Strauss point process (Strauss, 1975) (Kelly and Ripley, 1976) [27] is an example of the
pairwise interaction models in which each single point contributes the same interaction function
to the density ˆG(r) =

∑
i e(xi, r)⊮{ti ≤ r} (Nearest neighbour distance function) irrespective

of its position, and each pair of distinct points, which are not more than ’r’ apart and are thus
defined to be neighbor, contributes a constant interaction = γ. Based on the above definition,

29

the Strauss process is defined by the density given as:

f(x) = αβn(x)γs(x)

where α is the normalizing constant, β is the intensity of the process, n(x) is the number of
points and s(x) is the number of pairs of distinct points in x which are not more than r units
apart. The parameter γ controls the strength of interaction between points. If γ = 0 the model
is a hard core process. For 0 < γ < 1, the process exhibits inhibition (repulsion) between points.
If γ = 1 the model reduces to a Poisson process with intensity β. For γ > 1, the density is not
integrable. Originally the Strauss model was proposed as a model for clustering when γ > 1

but later it turned out to be a model for inhibition and is defined only for 0 < γ < 1 (Turner,
2007).
The figure shows some simulated realizations of a simple Strauss model in a square region of
10 units for different values of intensity, interaction parameter, and interaction radius given as
Strauss (β, γ, r) [28].

Figure 2.2: Simulation of Strauss model.

2.3. Markov Point Process

This class of models is specially designed to take into account inter-point interactions but
includes the Poison process and certain Poisson cluster models as well.

Definition 2.6. The neighbourhood δ(A) of a set A ⊆ X is defined as

δ(A) = {x ⊆ X : x ∼ a for some a ∈ A}

30

. In particular, the neighbourhood of a singleton A = {a} contains all neighbours of a,

δ({a}) = {x ⊆ X : x ∼ a}

.

Definition 2.7 (Ripley-Kelly). Let (X , d) be a complete, separable metric space, v(.) a finite,
non-atomic Borel measure, and πv(.) the distribution of a Poison process on X with intensity
measure v(.). Let X be a point process on X specified by means of a density p(.) with respect
to πv(.). Then X is a Markov point process with respect to the symmetric, reflexive relation ∼
on X if for all x ∈ N f such that p(x) > 0,

(a) p(y) > 0 for all y ⊆ x;

(b) for all u ⊆ X,
p(x

⋃
{u})

p(x)
depends only on u and δ(({u})

⋂
x = {x ⊆ x : u ∼ x}.

Condition (a) translates that if a configuration can occur, then all the sub-configurations

it contains can also occur. The quotient p(x
⋃
{u})

p(x)
in condition (b), known as the Papangelou

conditional intensity [29], is the probability density that a point u occurs given that x is realized
elsewhere. This condition expresses a local Markov property: the behavior of a point u with
respect to the entire configuration depends only on its close neighbors in that configuration.

2.4. Markov Chains

We call a discrete-time Markov chain any sequence of random variables (Xn)N∈N taking
values in a set A, such that, for any integer K ∈ N and A ∈ A, the sequence satisfies the
following Markov property:

P (XN+1 ∈ A|X0, X1, ..., XN) = P (XN+1 ∈ A|XN), ∀A ∈ A

In other words, the value of a random variable in this sequence depends only on the
preceding one. We will focus on homogeneous chains, which means that their evolution does
not depend on the position in the chain, but only on the current state.

P (Xt1 , Xt2 , ..., Xtk |Xt0) = P (Xt1−t0 , Xt2−t0 , ..., Xtk−t0 |X0)

From a computer science perspective, such a chain has the advantage of making it unnec-

31

essary to recall all previous configurations since it only uses the current state to generate a new
configuration. Generating the new configuration requires the definition of a transition kernel.
A transition kernel is a function P : χ× A → [0, 1], such that:

• For any A ∈ A,P (·, A) is measurable.

• For any X ∈ χ, the function P (X, ·) is a probability measure.

Thus, a homogeneous Markov chain is completely defined by the value or distribution of
X0 and its transition kernel P . We can approximate a density π by using a Markov

chain whenever we can construct a transition P such that, for any initial distribution
X0 = ν, νP k → π. Before presenting the various theoretical results and simulation algorithms,
let us review some preliminary definitions about Markov chains.

• Invariance: A distribution π is invariant for the Markov chain if:

π = πP

This condition is necessary to achieve the convergence of the chain towards π

• Reversibility: The chain is reversible for π if the transition kernel P satisfies:

∀A,B ∈ A :

∫
P (x,A)π(dx) =

∫
P (x,B)π(dx)

This condition implies invariance for π and means that under the stationary distribution
π, the probability of transitioning from A to B is the same as transitioning from B to A. Most
simulation algorithms are actually designed to produce reversible Markov chains.

• Irreducible: he chain is said to be π-irreducible if:

∀x ∈ Ω and ∀A ∈ A, such that π(A) > 0, ∃ t/ pt(x,A) > 0

This means that the chain has a non-zero probability of reaching any π-probable set in finite
time. This condition is clearly necessary for the chain to converge in distribution to π with any
initial condition. In the context of this project, we will only consider irreducible chains, which
means chains that have only one class of states.

• A Periodicity: Periodicity ensures that the transitions between states are not too
constrained. Formally, the chain is said to be aperiodic if there does not exist a disjoint partition

32

A =
⋃k

i=0 Ai for r ≥ 2 such that:

P (x,Ai) = 1, ∀x ∈ Ai

There is a connection between irreducibility and aperiodicity, in the sense that if a Markov
chain is irreducible and there exists a state Xk such that the density P (Xk, Xk) > 0, the Markov
chain is strongly aperiodic (this is particularly relevant in the context of Metropolis-Hastings
type algorithms that we will study later)

• A π irreducible and π invariant chain is positive recurrent if ∀A ∈ A such that π(A) > 0,
it satisfies:

∀x, Px{X ∈ infinitely often } > 0 and Px{X ∈ infinitely often } = 1

• In a discrete space, the transition kernel P is primitive (or regular) if ∃ k ≥ 1 such that
P k has all its terms strictly positive.

2.4.1. Convergence of a Markov chain

Before presenting the methods for simulating MCMC chains, we introduce the necessary
conditions for a chain to converge and reach the desired distribution π. If P is π-irreducible,
pi-invariant, and recurrent, then the invariant measure is unique, and the chain is said to be
positive recurrent if the total mass of this measure is finite. This holds true if π is a probability.
The ergodicity results are obtained [30]:

Proposition 2.1. If P is π-irreducible and P is π-invariant, then P is positive recurrent and
π is the unique invariant distribution of P . If P is aperiodic, then for x ∈ χ, we have:

‖Pm(x, .)− π‖ → 0 when m → ∞

Controlling the convergence of ‖Pm(x, .)− π‖ → 0 is a central and very challenging ques-
tion. This control ensures that νPm for sufficiently large m provides an acceptable simulation
of π. There exist numerous theoretical results, some of which utilize lower bounds of P on a
small set E. The contraction coefficient on a finite state space allows for the control of this
convergence [31].

• Geometric ergodicity, uniform ergodicity: Geometric ergodicity is characterized

33

by:
‖Pm(x, .)− π‖ ≤ M(x)lm

Where M(x) is π-integrable and l < 1. Uniform ergodicity is achieved if we can choose a finite
constant for M .

• Coefficient of Contraction: In a finite state space, the coefficient of contraction for
a transition kernel P is given by [32]:

C(P) =
1

2
max
x,y∈E

‖P (x, ·)− P (y, ·)‖

Lemma 2.1 (Winkler). [33] Let ν and µ be two distributions, P and Q be two transition
kernels. Then,

‖µP − νP‖ ≤ ‖µ− ν‖C(P) and C(PQ) ≤ C(P)C(Q)

In particular,

‖µP − νP‖ ≤ ‖µ− ν‖ and ‖µP − νP‖ ≤ 2C(P)

And if P is primitive, then C(P) ≤ 1.

According to this result, if we take µ = π, the invariant distribution of P , we can deduce:

‖νPm − πPm‖ = ‖νPm − π‖ ≤ 2C(Pm) ≤ 2C(P)m

In this case, as m → ∞, the chain is uniformly ergodic if P is primitive.

2.5. MCMC - Metropolis Hasting

2.5.1. Markov Chain Monte Carlo

In recent decades, Markov Chain Monte Carlo (MCMC) methods have received a great deal
of attention due to advances in understanding and increased computing power. These algorithms
primarily allow for the approximation of expectations (probability integrals) through numerical
simulations. As their name suggests, these methods combine both the Monte Carlo principle

34

- approximating an integral by the mean of a sample - and the concept of a Markov chain - a
temporal sequence of independent random variables. The Markov chain produces the Monte
Carlo sample used to approximate the desired expectation.

Monte Carlo Approach

In statistics, several situations lead to the calculation of expectations of the form

π(f) =

∫
X
f(x)π(dx)

where π is a probability measure on a state space X and f : X → R is a π-measurable function.
However, it may happen that the analytical calculation of this expectation is not possible, and
alternative methods must be used to obtain an approximation of π(f). A common approach is
the use of numerical integration methods, which involve dividing the space X into rectangles and
approximating the function f with simpler functions. However, this method can pose problems
when the dimension of X is high or the integration domain is unbounded. Monte Carlo methods,
which are specifically tailored to expectations, are generally less affected by these issues. [34]

Monte Carlo Method

Monte Carlo methods are based on the fundamental principle of the law of large numbers. In
fact, the law of large numbers is a mathematical result that states that, under certain conditions,
the average of a large number of independent realizations of the same random variable converges
to its expected value.

1

N

N∑
n=1

f(xn) −→ π(f), n → ∞,

In other words, the average of the function f taken over a sample {xn}nn=1 converges, under
certain conditions, to the expectation of this function taken under the distribution π, for a
mode of convergence c ∈ {Almost everywhere}. This sample average can, in turn, be seen as
the following expectation:

1

N

N∑
n=1

f(xn) =

∫
X
f(x)π̂N(dx) = π̂N(f),

Where π̂N is the empirical mass function of the Monte Carlo sample {xn}nn=1, given by

π̂N =
1

N

N∑
n=1

δxn(x)

35

The delta mass function at y is denoted by δy(.). Thus, the empirical measure π̂N is used
instead of π in the expectation. In order for the Monte Carlo estimator π̂N(f) to satisfy the
law of large numbers, the properties of the sample {xn}nn=1 must be such that the empirical
measure π̂N provides a good approximation of the distribution π. Therefore, different Monte
Carlo methods generally differ only in the way the sample is generated. A second property
often sought for an estimator is a central limit theorem. This type of result shows that the
asymptotic distribution of the estimator is a Gaussian distribution:

N−1/2π̂N(f)
D−→ N (π(f), σ2

f), n → ∞

The notation D−→ is used to denote convergence in distribution, and σ2
f is the asymptotic

variance of the estimator. When a central limit theorem is satisfied, it is possible to add a Monte
Carlo standard error to the point estimate π̂N(f), given by σ̂2

f/
√
N , where σ̂2

f is an estimate of
σ such that the sampling variance:

σ̂2
f =

1

N

N∑
n=1

(f(xn)− π̂N(f))
2

It is therefore possible to provide an assessment of the quality of the estimation made by
the Monte Carlo estimator when such a result is verified.

Note that most of the terms used in Monte Carlo methods are also used more generally in
statistics (estimator, standard error, sample, etc.). To distinguish the two concepts, the mention
”Monte Carlo” is often added after these terms. This distinction is particularly relevant when
the expectation π(f) itself depends on a real sample from an experiment; the Monte Carlo
sample is a collection of points in X and not the set of units in the experiment. Similarly, the
Monte Carlo standard error does not correspond to the standard error of the sample mean.

Monte Carlo Algorithm

The simplest versions of the law of large numbers require that each element of the sample
be a realization of independent and identically distributed random variables according to the
target distribution π, denoted by Xn

i.i.d−−−→ π. The empirical distribution will therefore be
representative of the target distribution since the sample is generated from π itself. This type
of sampling, called i.i.d. sampling and described in the algorithm below constitutes the standard
Monte Carlo method.

36

Algorithm 1 Monte Carlo Algorithm i.i.d
Data: Distribution target π and size of the Monte Carlo sample N .
Procedure: for n = 1, ..., N sample Xn

i.i.d−−−→ π.
Output: The sample x1:N and Monte Carlo estimator.

MCMC Algorithm

Markov chain Monte Carlo (MCMC) methods generate the sample Monte Carlo sample
sequentially using a Markov chain which contains sequential dependence. The algorithm below
details the general procedure.

Algorithm 2 General MCMC algorithm
Data: Target distribution π, Markov transition P and sample size Monte Carlo N .
Procedure:

1 initialization. Initial value of the chain, x0.
2 For n = 0, ..., N − 1,

Sampling. Generate the new state of the string:

Xn+1|Xn = xn ∼ P (.|n)

.
Output: The sample x0:N .

2.5.2. Metropolis Hasting

One of the most widely used MCMC algorithms whose properties are best known is the
Metropolis-Hastings (MH) algorithm. It is an algorithm based on the principle of acceptance/re-
jection of candidates using a Markov chain. As for any Markov chain, a new state of the chain
is generated from the current state. To do so, a candidate generated conditionally to the cur-
rent state is proposed as the new state of the chain; then, the new state of the chain is chosen
according to a certain probability between this proposal and the current state. The exact proce-
dure is described in Algorithm 2. For a certain choice of acceptance probability and for certain
conditions on the instrumental distribution generating the candidates, the produced Markov
chain will be ergodic to the target distribution.

Definition 2.8. Let Π be a target distribution that admits a density π with respect to a σ-finite
measure µ and let Q be a Markov transition kernel admitting a density q with respect to µ,
called the instrumental density, i.e,

Q(dy|x) = q(y|x)µ(dy)

37

The Metropolis-Hastings acceptance probability is defined as

α(y|x) = min

{
1,

π(y)q(x|y)
π(x)q(y|x)

}
A Metropolis-Hastings kernal takes the following form

P (B|x) =
∫
B

α(y|x)Q(dy|x) + r(x)⊮(x ∈ B)

and has the following (pseudo) density

p(y|x) = α(y|x)q(y|x) + r(x)δx(y)

Where δx(.) is the Dirac delta mass function at x and r(x) is the probability of the chain remain
in x, given by

r(x) = 1−
∫
X
α(y|x)Q(dy|x)

Algorithm 3 Metropolis-Hastings algorithm
Data: The target density π, instrumental density q, and sample size Monte Carlo N .
Procedure:

1 initialization. Initial value of the chain, x0.
2 For n = 0, ..., N − 1,

(a) Proposal. Generate proposal

Y |Xn = xn ∼ q(.|xn)

(b) Acceptance. With probability

α(y|x) = min

{
1,

π(y)q(x|y)
π(x)q(y|x)

}
accept the proposition(xn+1 = y); otherwise reject the proposition (xn+1 = xn)

Output: The sample x0:N .

38

Chapter 3

New Configuration of Computer
Experiment Designs

Area interaction processes are a type of point process model used to analyze the spatial
distribution of points in a given area. These models can be analyzed using Markov Chain
Monte Carlo (MCMC) algorithms, which are a class of computational methods used to simulate
complex probability distributions. MCMC algorithms are particularly useful for analyzing area
interaction processes because they allow for the estimation of posterior distributions of model
parameters, which can be used to make inferences about the underlying spatial processes. In
this way, MCMC algorithms provide a powerful tool for analyzing complex spatial data and can
be used to address a wide range of research questions in fields such as ecology, epidemiology,
and spatial statistics.

3.1. Area Interaction Process

In this section, We introduce a family of Markov point processes that can produce patterns
that are both moderately clustered and moderately ordered. It is possible to say that they
interact in infinitely complex ways. In the most basic case the probability density of a point
pattern x = {x1, ..., xn} (n ≥ 0) in a window A ⊆ R2 is defined to be [35]

π(x) = αβnγ−u(x)

where u(x) is the area of the plane set formed by taking the union of discs of radius r centred
at the points xi. Here β.γ.r > 0 are parameters and α is the normalising constant.

39

Definition 3.1. The area-interaction process in a compact region A ⊆ Rd is the process with
density

π(x) = αβn(x)γ−m(Ur(x)) (3.1)

Where m in this case is Lebesgue measure, and

Ur(x) =
n⋃

i=1

B(xi, r)

where B(xi, r) is a disc of radius r centered at each data point xi such that

B(xi, r) = {a ∈ Rd : ‖a− xi‖ ≤ r}

And Ur(x) is the union of spheres or discs of radius r centred at the points of the realisation.
The area of the union of discs may be expressed as the decomposition of the union of grains,
Ur(x), in an inclusion-exclusion style This is expressed concisely as:

m (Ur(x)) =

n(x)∑
i=1

m(B(xi, r))−
∑
i<j

m(B(xi, r) ∩ B(xj, r)) + ...+ (−1)n(x)+1m

n(x)⋂
i=1

B(xi, r)



Figure 3.1: Simulated realizations of an area-interaction process conditional on n = 100
points, with r = 5 in a window of size 256 x 256. Left: ordered pattern, γ = 0.9711, γ25π = 10;

Right: clustered pattern, γ = 1.02975, γ25π = 0.1.

40

3.2. Voronoi Tessellation

The Voronoi diagram, also known as a Dirichlet tessellation, is a fundamental geometric
structure with numerous applications in various domains such as form modeling, motion plan-
ning, scientific visualization, geography, chemistry, and biology. This mathematical construct,
named after German mathematician Peter Gustav Lejeune Dirichlet, is used to divide a space
into regions based on the proximity of points. In a Dirichlet tessellation, each point in a set of
distinct points defines a region of space that is closer to it than any other point, forming tiles
that partition the space. The tessellation can be extended to any number of dimensions, with
the planar case being the first nontrivial one. Green and Sibson developed an efficient algorithm
for computing the tessellation in the planar case in 1978. These tessellations have been applied
in various fields, including statistics and data analysis, where they help in understanding spatial
relationships and patterns [36].

A point seed xi defines a Voronoi cell, V the subset of the domain that is closer to that
seed than any other seed. The cell equation is related to the maximal sampling condition

Vi = {p} ∈ D : ∀j, ‖p− xi‖ ≤ ‖p− xj‖

Figure 3.2: Examples of Voronoi tessellation generating 5, 10 and 20 points on the unit square.

3.3. Simulation of point processes using MCMC method
and Metropolis-Hasting algorithm.

The method involves constructing a chain {X0, X1, · · · , XN} that converges to the desired
distribution π. In fact, the Metropolis-Hastings algorithm can construct this chain using a

41

π-reversible transition kernel. The algorithm proceeds in two steps:

• A proposal for a state change is made: from x to y, according to a probability distribution
Q (x, .) with density q (x, y) called instrumental density.

• y is accepted with probability a (x, y), otherwise the state remains at x (where a :

Ω × Ω → [0, 1]). The transition kernel is given by [Chib, 1995]:

PMH (x, y) = a (x, y) q (x, y)+
[∫

Ω
1− a (x, z) q (x, z) dz

]
δx (y)Where, δx(.) is the Dirac measure

at x, and for simplicity of the calculations, we use the mass of the point at x. (δx (y) = 1

if x = y, and 0 otherwise). The choice of (Q, a) will ensure the π-reversibility of PMH if the
following equilibrium equation is satisfied:

∀x, y ∈ Ω : π (x)× q (x, y)× a (x, y) = π (y)× q (y, x)× a (y, x)

The choice of the acceptance probability a is more limited and essentially dictated by the goal
of simulating a given probability distribution π asymptotically. The usual choice is:

a (x, y) =
π (y)× q (y, x)

π (x)× q (x, y)

There are a few noteworthy aspects to consider. Firstly, the calculation of a(x, y) does not
depend on the normalization constant of (3.1). Secondly, in this study, we focus on scenarios
where the configurations x and y exhibit variations at multiple points, termed as homogeneous
birth and death dynamics of point sets. Consequently, the selected density function q is typically
symmetric, enabling a more manageable calculation process: q(x, y) = q(y, x). As a result, the
acceptance probability is reduced to:

a(x, y) =
π(y)

π(x)
=

βn(y)γ−m(Ur(y))

βn(x)γ−m(Ur(x))
=

γ−m(Ur(y))

γ−m(Ur(x))

3.4. Algorithm for constructing experimental designs us-
ing Markov point process with area interaction

The numerical experimental designs proposed in this work are generated using the following
algorithm, which is actually a version of the Metropolis-Hastings algorithm.

42

Algorithm 4 Constructing Experimental Designs Using Markov Point Process with area in-
teraction

Initialization step: Choose an initial configuration (a design of experiments) X0 = x
according to a given probability distribution, for example, the uniform distribution.
Iteration step:
for i = 1, 2, . . . , NMCMC do

for each configuration x do
Subdivide the configuration x into neighborhoods ϑ(xk) for each point xk, k ∈

{1, 2, . . . , n} using the Voronoi-Dirichlet tessellations given by:

ϑ(xk) = {s ∈ [0, 1]p : ∀q ∈ x, ‖s− xk‖ ≤ ‖s− q‖}

For each neighborhood ϑ(xk), simulate an experiment yk according to the proposal
distribution q ∼ Uϑ(xk).

Take y = x ∪ {y1, y2, . . . , yn}.
Choose a pair of points {u, v} from the configuration y uniformly at random, then

choose u or v with probability 0.5 and remove it from y (i.e., y =

{
y \ {u} if u is chosen
y \ {v} if v is chosen

).

Repeat the fourth step n times.
The new configuration is then taken to be y.

end for
Calculation of the acceptance probability a(x, y) = min

(
1, γm(Ur(x))−m(Ur(y))

)
.

Accept the proposal x = y with probability a(x, y).
end for

Result: Take XN = x.

For N = 3000, Figure 3.3,Figure 3.4 and Figure 3.5 demonstrate the convergence of a
configuration that features the fulfillment of the area interaction process starting from an initial
configuration of 20 points.

43

Figure 3.3: Initial configuration with area = 0.49 & final configuration with area = 0.61
(γ = 3, r = 0.1).

Figure 3.4: Initial configuration of 50 points with area = 0.6631 & final configuration with
area = 0.87 (γ = 3, r = 0.08).

44

Figure 3.5: Initial configuration of 100 points with area = 0.52 & final configuration with area
= 0.69 (γ = 3, r = 0.05).

For 3 dimensions and N = 1000 Figure 3.6, Figure 3.7 and Figure 3.8 show the configura-
tion of 25, 50, and 100 points.

Figure 3.6: Initial configuration of 25 points & final configuration of 3 factors (γ = 2, r = 0.1).

45

Figure 3.7: Initial configuration of 50 points & final configuration of 3 factors (γ = 2, r = 0.07).

Figure 3.8: Initial configuration of 25 points & final configuration of 3 factors (γ = 2, r = 0.02).

3.4.1. Influence of parameters

The figure above shows the influence of parameter r on the final distribution. The choice of
the radius proves to be important. A radius that is too small generates a distribution without
interaction. However, a radius that is too large leads to a distribution with clusters.

46

Figure 3.9: Left: (r = 0.3, γ = 3, Area = 2.33). Right: (r = 0.05, γ = 3, Area = 0.15).

3.5. Convergence study

For each iteration N of the algorithm described above, the chain of experimental designs
(X)N≥0 generated is the realization of a Markov chain with a transition kernel: P (x, y) =

PMH (x, y) The essential question is whether the chain converges to the distribution π (x) defined
in (3.1).

At this level, the fundamental question that arises is whether the chain converges to
the distribution π(x) defined in (3.1). The chain converges to the invariant distribution π if:
P t(x,A) −→

t→∞
π(A). Here, A is a Borel set in B, and Kt(x,A) = P (Xt = A|X0 = x) is a

transition kernel with a step size of t. Let’s state the main result of interest here:

Theorem 3.1. If the transition kernel P = P n
MH on a finite space has a unique invariant

distribution π, and P is positive recurrent, then the Markov chain (XN)N ≥0 obtained from the
construction algorithm is uniformly ergodic, and this kernel realizes the simulation of a marked
Strauss process with density π (x) = αβn(x)γ−m(Ur(x)) (i.e., vPm converges to π as m tends to
infinity, where v is the initial distribution).

Proof. Firstly, we show three important properties for the kernel PMH : π-reversibility, π-
stationarity, and π-irreducibility.

• π-reversibility
By definition, the transition PMH is π-reversible if:

∀x, y ∈ Ω : π (x)PMH (x, y) = π (y)PMH (y, x)

47

we have: ∫
Ω

1B(x,y)π (x)PMH (x, y) dx =

∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dx+

∫
Ω

1B(x,y)π (x)

1− ∫
Ω

a (x, z) q (x, z) dz

 δx (y) dx

=
∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dx+

∫
Ω

1B(x,x)π (x)

1− ∫
Ω

a (x, z) q (x, z) dz

 dx

And as :

π (x) a(x, y)q(x, y) = αβn(x)γ−m(Ur(x)) min
(
1, βn(y)−n(xi)γm(Ur(xi))−m(Ur(y))

)
q(x, y)

= αmin
(
βn(x)γ−m(Ur(x)), βn(y)γ−m(Ur(y))

)
q(x, y)

= αβn(y)γ−m(Ur(y)) min
(
γm(Ur(y))−m(Ur(x)), 1

)
q(x, y)

= αβn(y)γ−m(Ur(y)) min
(
1, γm(Ur(y))−m(Ur(x))

)
q(x, y)

and since q (x, y) = q (y, x), we have π (x) a (x, y) q (x, y) = π (y) a (y, x) q (y, x),
which gives

∫
Ω
1B(x,y)π (x)PMH (x, y) dx =

∫
Ω
1B(x,y)π (y)PMH (y, x) dy

Thus, π (x)PMH (x, y) = π (y)PMH (y, x),
so the chain is π-reversible.

• π-stationarity
The transition PMH is π-stationary if πPMH = π.
Let x ∈ Ω et B ∈ A. We have:∫
Ω

1B(x,y)π (x)PMH (x, y) dx =
∫
Ω

1B(x,y)π (x)

[∫
Ω

a (x, y) q (x, y) dy

]
dx+∫

Ω

1B(x,y)π (x)

[∫
Ω

1− a (x, z) q (x, z) dz

]
δx (y) dx=

∫
Ω

1B(x,y)π (x)

[∫
Ω

a (x, y) q (x, y) dy

]
dx

+
∫
Ω

1B(x,x)π (x)

[∫
Ω

1− a (x, z) q (x, z) dz

]
dx =

∫
Ω

∫
Ω

1B(x,y)π (x) a (x, y) q (x, y) dydx+∫
Ω

1B(x,x)π (x) dx−
∫
Ω

∫
Ω

π (x) a (x, z) q (x, z) dzdx =
∫
Ω

1B(x,x)π (x) dx

Therefore, the chain admits π as a stationary distribution.

• π-irreducibility
The transition PMH is said to be π-irreducible if: A Let A be a Borel set in Ω, and for
x, y ∈ Ω, we obtain:

48

∫
Ω

1B(x,A)PMH (x,A) dx =
∫
Ω

1B(x,A)a (x,A) q (x,A) dx

+
∫
Ω

1B(x,A)

[
1−

∫
Ω

a (x, z) q (x, z) dz

]
δx (A) dx∫

Ω

1B(x,A)a (x,A) q (x,A) dx+
∫
Ω

1B(x,x)

[
1−

∫
Ω

a (x, z) q (x, z) dz

]
dx∫

Ω

1B(x,A)a (x,A) q (x,A) dx+ 1−
∫
Ω

∫
Ω

a (x, z) q (x, z) dzdx

Since a(x,A) = min
(
1, γm(Ur(x))−m(Ur(A))

)
and a(x, z) = min

(
1, γm(Ur(x))−m(Ur(z))

)
, we

can distinguish four possible cases:

– If a (x,A) = 1 and a(x, z) = γm(Ur(x))−m(Ur(z)) so:∫
Ω

1B(x,A)PMH (x,A) dx =

∫
Ω

1B(x,A)q (x,A) dx+ 1−
∫
Ω

∫
Ω

γm(Ur(x))−m(Ur(z))q (x, z) dzdx

=
∫
Ω

1B(x,A)q (x,A) dx+ 1− γm(Ur(x))−m(Ur(z)) > 0

– if a(x,A) = γm(Ur(x))−m(Ur(A)) and a (x, z) = 1 so:∫
Ω

1B(x,A)PMH (x,A) dx =

∫
Ω

1B(x,A)γ
m(Ur(x))−m(Ur(A))q (x,A) dx+ 1−

∫
Ω

∫
Ω

q (x, z) dzdx

=γm(Ur(x))−m(Ur(A))

∫
Ω

1B(x,A)q (x,A) dx > 0

– if a(x,A) = γm(Ur(x))−m(Ur(A))and a(x, z) = γm(Ur(x))−m(Ur(z)) so :∫
Ω

1B(x,A)PMH (x,A) dx =

∫
Ω

1B(x,A)γ
m(Ur(x))−m(Ur(A))q (x,A) dx+ 1

−
∫
Ω

∫
Ω

γm(Ur(x))−m(Ur(z))q (x, z) dzdx

= γm(Ur(x))−m(Ur(A))

∫
Ω

1B(x,A)q (x,A) dx+ 1− γm(Ur(x))−m(Ur(z))

∫
Ω

∫
Ω

q (x, z) dzdx

= γm(Ur(x))−m(Ur(A))

∫
Ω

1B(x,A)q (x,A) dx+ 1− γm(Ur(x))−m(Ur(z)) > 0

Therefore, PMH is π-irreducible.

Therefore, the chain admits π as a stationary distribution. Since π is the invariant measure
of PMH , it is also invariant for P = P n

MH . Indeed, πPMH = π, and by induction on the integer
n,

πPMH = πPMH
2 = πPMH

3 = . . . = πPMH
n = π

. Thus, πP = π. By the construction of P = P n
MH , the π-irreducibility of PMH implies the

49

π-irreducibility of P . If P is π-irreducible and has a π-invariant distribution, then P is recurrent
positive and π is the unique invariant distribution of P [33]. Let v be an initial distribution, for
any integer m and ∀ x ∈ N lf , we have:

‖vP n (x, .)− π‖ = ‖vP n − πP n‖ ≤ 2C (P n) ≤ 2(C (P))n

Here, 0 ≤ C (P) < 1 (lemma 2.1) is the contraction coefficient therefore, the chain is uniformly
ergodic, and ‖vPm − π‖ tends to zero as m tends to infinity. Thus, the chain converges to the
area interaction point processes.

50

Chapter 4

Optimality Criteria And Digital
Results

The optimality of a design depends on the statistical model and is assessed with respect to
a statistical criterion, which is related to the variance-matrix of the estimator. Specifying an
appropriate model and specifying a suitable criterion function both require an understanding of
statistical theory and practical knowledge of designs of experiments. In the DOE for estimating
statistical models, optimal designs allow parameters to be estimated without bias and with
minimum variance. A non-optimal design requires a greater number of experimental runs to
estimate the parameters with the same precision as an optimal design. In practical terms,
optimal experiments can reduce the costs of experimentation . One of the most important
aspects of DOE is the selection of an appropriate optimality criterion. Uniform experimental
designs are one kind of space-filling designs that can be used for computer experiments and also
for industrial experiments when the uniform distribution is desired

. The uniform experimental design is one important kind of space-filling design and has
been applied in computer experiments, laboratory experiments under model uncertainty, and
industrial experiments

4.1. Optimality criteria

The evaluation of the quality of a set of points obtained from a database or an experimental
design requires the use of quantitative criteria. There are many criteria that allow us to evaluate
the quality of an experimental design. For space-filling designs, we seek the uniformity of a point

51

distribution (such as the discrepancy criterion, distance criterion).

• Distance criterion (Mindist): represents the smallest distance between a pair among
a design of n points. This criterion is defined by

Mindist = min
1≤i≤n

min
j ̸=i

d (xi, xj)

Where d(xi, xj) is the Euclidean distance between point xi and xj. A higher value of
Mindist should correspond to a more regular dispersion of the points in the design.

• Coverage criterion: allows us to measure the difference between the points of the
design and those of a regular grid. This criterion is zero for a regular grid. The objective
is therefore to minimize it to approach a regular grid and thus ensure space-filling, without
reaching it to respect a uniform distribution, particularly in projection onto the factorial axes:

cov =
1

δ̄

√√√√ 1

n

n∑
i=1

(δi − δ̄)2

Where δi = min
i ̸=j

d (xi, xj) and δ̄ = 1
n

∑n
i=1 δi. For a regular grid, δ1 = δ2 = ... = δn, then

cov = 0.

In the same context, one can use the ratio R, defined by:

R =
max1..n δi
min1..n δi

For a regular grid R = 1, thus, the closer R is to 1, the closer the points are to those of a regular
grid.

• Discrepancy criterion (Disc): The discrepancy measures the difference between the
empirical distribution function of the points on the design and that of the uniform distribution.
Unlike the previous two criteria, the discrepancy is not based on the distance between points.
There are different measures of discrepancy. We retain the L2-norm discrepancy.

Disc =
(1
3

)p

− 21−p

n

n∑
i=1

p∏
j=1

(
1− (xi

j)
2
)
+

1

n2

n∑
i=1

n∑
k=1

p∏
j=1

(
1−max(xj

i , x
j
k)
)

In order to evaluate the quality of our computer experimental design, it is crucial to employ
optimality criteria that ensure adequate space coverage and uniform distribution. The purpose

52

of this section is to compute the values of these criteria for the proposed design To achieve this,
we utilize three types of criteria:

• Discrepancy criterion (Disc)

• Distance criterion (Mindist)

• coverage criterion (coverage)

4.2. Intrinsic study of designs using distance, discrepancy,
and coverage criteria.

The objective of this section is to evaluate the intrinsic criteria presented in this chapter
for the proposed designs. These analyses will allow us to confirm or refute the relationship
between the intrinsic properties of these designs and their predictive capacity in applications.
We examine three types of criteria: discrepancy, distance, and coverage.

In order to give meaning to the results, the criteria were calculated on a sample of 100
two-dimensional designs.

4.2.1. Designs with 25, 50, and 100 points in 2 dimensions.

The figures below visually present the most significant criteria that have been calculated.
These graphical representations help to better understand and interpret the results, highlighting
the distribution and observed variations for each criterion.

53

(a) Disc (b) Cov

(c) Mindist

Figure 4.1: Boxplots of the calculated quality criteria for 100 designs in 2 dimensions with 25,
50, and 100 points.

The following table presents a comparison of the mean values of optimality criteria among
the proposed designs, calculated for 100 designs in this study, for various point configurations
in 2 dimensions:

Table 4.1: Comparison of the means of optimality criteria for different points in 2D

Disc Cov Mindist
25 points 0,21666137 0,107201618 0,217134022
50 points 0,220877652 0,046055877 0,284731164
100 points 0,271505188 0,032026729 0,359933737

4.2.2. Comparison between space-filling techniques and our proposed
computer design for 3 factors

The Table presents a comparison based on the discrepancy criterion between our proposed
design in this work (referred to as Area interaction) and low-discrepancy sequences (Halton

54

sequence, Sobol sequence, and Latin hypercube).

Table 4.2: The values of discrepancy for the proposed designs Area Interaction, Halton
sequences, MSD, Sobol sequences and Latin hypercube for three dimensions.

Number of points Area Interaction MSD Halton sequence Sobol sequence Latin hypercube
25 0,007704809 0,002398653 0,002158069 0,001118936 0,001345872
50 0,005517269 0,00098329 0,00081556 0,000419937 0,000683383
100 0,005714501 0,000589917 0,000178113 0,000112592 0,000330035

The table shows the discrepancy values for each design and the number of points con-
sidered. The discrepancy values indicate the uniformity and coverage of the points within the
design space. Lower discrepancy values generally suggest better point distributions. By com-
paring the discrepancy values across the different designs, we can observe differences in their
performance. For example, in all cases (25, 50, and 100 points), the Area Interaction design has
the highest discrepancy values, indicating potentially less uniform point distribution compared
to other designs. On the other hand, Sobol sequences and Latin hypercube designs consistently
have the lowest discrepancy values, suggesting better point distributions.

Table 4.3: The values of distance criterion for the proposed designs Area Interaction, Halton
sequences, MSD, Sobol sequences and Latin hypercube for three dimensions.

Number of points Area Interaction MSD Halton sequence Sobol sequence Latin hypercube
25 0,158064285 0,207993197 0,171961272 0,103644525 0,09797959
50 0,069540641 0,200097292 0,154433996 0,103644525 0,067816526
100 0,028080964 0,033162775 0,054089568 0,040594941 0,040826521

The table displays the values of the distance criterion for each design and the number
of points considered. The distance criterion measures the average distance between points
in the design. Lower distance criterion values indicate closer proximity between points. By
comparing the discrepancy values across the different designs, we can observe differences in
their performance. For example, in all cases (25, 50, and 100 points), the Area Interaction
design has the highest discrepancy values, indicating potentially less uniform point distribution
compared to other designs. On the other hand, Sobol sequences and Latin hypercube designs
consistently have the lowest discrepancy values, suggesting better point distributions.

Table 4.4: The value of coverage criterion for the proposed designs Area Interaction, Halton
sequences, MSD, Sobol sequences and Latin hypercube for three dimensions.

Number of points Area Interaction MSD Halton sequence Sobol sequence Latin hypercube
25 0,347394892 0,199980509 0,275645621 0,410169256 0,43659704
50 0,389000221 0,12933013 0,16954721 0,323542636 0,360887895
100 0,468159086 0,332237677 0,271089016 0,287382553 0,370043181

55

The table displays the values of the coverage criterion for each design and the number
of points considered. The coverage criterion measures the extent to which the points cover
the design space. Higher coverage criterion values indicate better coverage and distribution of
points. As the number of points increases (25, 50 and 100), we can see a trend of increasing
coverage criterion values for most designs. This indicates that increasing the number of points
generally leads to better coverage of the design space.

The stochastic designs used in the study, were employed in the study of 100 designs to
evaluate their performance based on the calculated criteria.

• Random designs (RD)

• Latin Hypercube Sampling (LHS)[25]

• Maximin Latin Hypercube Sampling [37]

• Maximum Entropy Designs (Dmax) [38]

• Strauss designs (SD) [4]

• Marked Strauss designs (MSD) [5]

56

(a) Disc (b) Cov

(c) Mindist

Figure 4.2: Boxplots of the calculated quality criteria for 100 designs in 3 dimensions with 25
points.

The boxplots provide a visual comparison of our proposed computer experimental design
(Area Interaction) with MSD, Latin hypercube, RD, MLHS, DMAX, and SD based on three
criteria: discrepancy, distance, and coverage. The median, positioned towards the lower end
of the box, suggests a slightly left-skewed distribution. The wide box indicates significant
variability and a broad range of values in the data. Additionally, the presence of outliers on the
upper end of the plot indicates the existence of extreme values in the dataset. Notably, for 25
points, Area interaction performed very well on the discrepancy criterion.

57

(a) Disc (b) Cov

(c) Mindist

Figure 4.3: Boxplots of the calculated quality criteria for 100 designs in 3 dimensions with 50
points.

The boxplots provide a comparative analysis of our proposed computer experimental de-
sign (Area Interaction) with the other stochastic designs. The wide box in the boxplots indicates
a substantial variability and a broad range of values in the data, while also exhibiting some out-
liers. In terms of coverage criterion, our proposed design (Area Interaction) outperformed nearly
all of the stochastic designs except the Latin hypercube for a configuration of 50 points. How-
ever, when evaluating the coverage criterion, our design ranked second, trailing behind another
approach. Nevertheless, our design closely matched the other designs in terms of discrepancy
criterion.

58

(a) Disc (b) Cov

(c) MinDist

Figure 4.4: Boxplots of the calculated quality criteria for 100 designs in 3 dimensions with 100
points.

For 100 points our proposed design (Area Interaction) highlights its strengths in terms of
coverage criterion while acknowledging its relatively lower performance in the distance criterion
and discrepancy. The presence of outliers further underscores the variability in the data.

59

Conclusion

The methodology of experimental design, combined with the use of area interaction point
processes, provides researchers and practitioners with powerful tools for designing optimal ex-
periments, selecting relevant experimental points, and effectively modeling complex phenomena
through computer simulations. This approach draws on a rich historical heritage and influences
both ancient and modern, demonstrating its relevance and validity in scientific research and
industrial studies. Using these methods, it becomes possible to generate patterns with moder-
ate aggregation and organization, which is a considerable advantage for the design of computer
experiments. The point process proposal we have presented has proven its effectiveness in a
variety of optimality criteria, enabling the selection of the most relevant experimental points
for obtaining reliable and accurate results. In addition, computer experimental designs play a
crucial role in modeling complex phenomena using computer simulations. They considerably
reduce the number of simulations required to obtain reliable results, resulting in significant time
and cost savings in the simulation process. They are particularly effective when it comes to
solving complex simulation code problems. However, it is important to consider the specific
requirements of each situation and choose an appropriate experimental design accordingly, as
there is no one-size-fits-all solution. By exploiting these approaches and carefully considering
the specific requirements of each situation, researchers can improve the effectiveness and effi-
ciency of their research efforts. Ultimately, experimental design methodology and the use of
area interaction point processes offer promising prospects for the future of scientific research
and industrial studies, opening up new possibilities for knowledge discovery and innovation.

The use of Area Interaction designs using Voronoi tessellations appears to be promising
in computational experimentation. Additionally, we believe that it could be interesting to
make improvements by finding ways to simulate designs for 4 Dimensions and higher. Also
identifying issues related to points inside the infinite regions of the Voronoi tessellation within
a closed hypercube.

60

Appendix

General functions of the 2D Algorithm

Libraries

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.spatial import Voronoi, voronoi_plot_2d
4 import random
5 from matplotlib.patches import Polygon
6 import math
7 from matplotlib.path import Path
8 from matplotlib.patches import Circle
9 from shapely.geometry import Point

10 from shapely.ops import cascaded_union , unary_union
11 from matplotlib.path import Path

Voronoi Functions

1 def voronoi_finite_polygons_2d(vor, radius=None):
2 # Function implementation goes here
3 if vor.points.shape[1] != 2:
4 raise ValueError("Requires 2D input")
5

6 new_regions = []
7 new_vertices = vor.vertices.tolist()
8

9 center = vor.points.mean(axis=0)
10 if radius is None:
11 radius = vor.points.ptp().max() * 2
12

13 # Construct a map containing all ridges for a given point

61

14 all_ridges = {}
15 for (p1, p2), (v1, v2) in zip(vor.ridge_points , vor.ridge_vertices):
16 all_ridges.setdefault(p1, []).append((p2, v1, v2))
17 all_ridges.setdefault(p2, []).append((p1, v1, v2))
18

19 # Reconstruct infinite regions
20 for p1, region in enumerate(vor.point_region):
21 vertices = vor.regions[region]
22

23 if all(v >= 0 for v in vertices):
24 # finite region
25 new_regions.append(vertices)
26 continue
27

28 # reconstruct a non-finite region
29 ridges = all_ridges[p1]
30 new_region = [v for v in vertices if v >= 0]
31

32 for p2, v1, v2 in ridges:
33 if v2 < 0:
34 v1, v2 = v2, v1
35 if v1 >= 0:
36 # finite ridge: already in the region
37 continue
38

39 # Compute the missing endpoint of an infinite ridge
40 t = vor.points[p2] - vor.points[p1] # tangent
41 t /= np.linalg.norm(t)
42 n = np.array([-t[1], t[0]]) # normal
43

44 midpoint = vor.points[[p1, p2]].mean(axis=0)
45 direction = np.sign(np.dot(midpoint - center, n)) * n
46 far_point = vor.vertices[v2] + direction * radius
47

48 new_region.append(len(new_vertices))
49 new_vertices.append(far_point.tolist())
50

51 # sort region counterclockwise
52 vs = np.asarray([new_vertices[v] for v in new_region])
53 c = vs.mean(axis=0)
54 angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0])
55 new_region = np.array(new_region)[np.argsort(angles)]

62

56

57 # finish
58 new_regions.append(new_region.tolist())
59

60 return new_regions , np.asarray(new_vertices)
61

62 def voronoi_function(X):
63 # Create Voronoi tessellation and plot it
64 vor = Voronoi(X)
65

66 # Apply the voronoi_finite_polygons_2d function
67 new_regions , new_vertices = voronoi_finite_polygons_2d(vor)
68 # Iterate over each region and add a point
69 new_points = []
70 for region in new_regions:
71 polygon = [new_vertices[i] for i in region]
72 path = Path(polygon)
73 while True:
74 random_point = np.random.uniform(0, 1, 2)
75 if path.contains_point(random_point):
76 new_points.append(random_point.tolist())
77 break
78 # Convert the new points to a NumPy array
79 new_points = np.array(new_points)
80 # Add the new points to the original set of points
81 X = np.vstack((X, new_points))
82

83 # Randomly select and remove one of two given points with 50% probability
84 while len(X) > n:
85 indices = np.arange(len(X))
86 chosen_points = set()
87 i = np.random.choice(indices)
88 if i in chosen_points:
89 continue
90 chosen_points.add(i)
91 if i >= len(X):
92 continue
93 distances = np.linalg.norm(X - X[i], axis=1)
94 distances[i] = np.inf
95 min_distance_index = np.argmin(distances)
96 indices = np.delete(indices, min_distance_index)
97 X = np.delete(X, min_distance_index , axis=0)

63

98

99 return X

Area Interaction Functions

1 def calculate_overlap(points , radius):
2

3 circles = [Point(point).buffer(radius) for point in points]
4 union = unary_union(circles)
5 total_area = union.area
6 return total_area

Metropolis-Hasting Algorithm and plot of the Initial and Final configurations

1 n = 25 #Number of points
2 N = 10000 #Number of iterations of MH
3 r = 0.095 #Radius
4 gamma =1.5
5

6 X = np.random.uniform(size=(n, 2))
7 X_intial = X.copy()
8 X_final = X.copy()
9

10

11 # Plot the initial configuration
12 fig1, ax1 = plt.subplots()
13 ax1.scatter(X[:, 0], X[:, 1], color='blue', label='Initial Configuration')
14

15 # Draw circles on the initial points
16 for point in X:
17 circle = Circle((point[0], point[1]), r, color='red', fill=False)
18 ax1.add_patch(circle)
19

20 ax1.set_aspect('equal')
21 ax1.set_title('Initial Configuration')
22

23 # Set x and y limits
24 ax1.set_xlim([-0.01, 1.01])
25 ax1.set_ylim([-0.01, 1.01])
26

64

27 # Calculate and print the initial area
28 area = calculate_overlap(X, r)
29

30 print("The initial area is:", area)
31 for iteration in range(N):
32 X_intial = X
33 area = calculate_overlap(X, r)
34 #print("Iteration:", iteration + 1)
35 # Perform the voronoi_function
36 X = voronoi_function(X)
37

38 # Calculate and print the final area
39 area1 = calculate_overlap(X, r)
40

41 if gamma >1:
42 # Acceptance probability
43 a = min(1, gamma ** (area1 - area))
44 # print("The probability of acceptance is:", a)
45

46 else:
47 a = min(1, gamma ** (area - area1))
48

49 if a == 1:
50 #print("We accept the final Configuration")
51 X_final = X
52 # print("the accepeted area is:",area1)
53 else:
54 #print("Playing Daft Punk: ONE MORE TIME")
55 X_final = X_intial
56 # print("the accepeted area is :",area)
57

58 #print('a1=',area1,'a0=',area)
59 X = X_final
60 area_final = calculate_overlap(X,r)
61

62

63 print("The final area is:", area_final)
64 # Plot the final configuration
65 fig2, ax2 = plt.subplots()
66 ax2.scatter(X[:, 0], X[:, 1], color='blue', label='Final Configuration')
67

68 # Draw circles on the final points

65

69 for point in X:
70 circle = Circle((point[0], point[1]), r, color='red', fill=False)
71 ax2.add_patch(circle)
72

73 ax2.set_aspect('equal')
74 ax2.set_title('Final Configuration')
75

76 # Set x and y limits
77 ax2.set_xlim([-0.01, 1.01])
78 ax2.set_ylim([-0.01, 1.01])
79

80 plt.show()

Distance Criterion

1

2 def mindist(x):
3 n = x.shape[0] # Nombre de points dans x
4 w = x.shape[1] # Dimension de x
5 M = np.zeros((n, n))
6

7 for i in range(n - 1):
8 for k in range(i + 1, n):
9 s = 0

10 for j in range(w):
11 s += (x[i, j] - x[k, j]) ** 2
12 M[i, k] = np.sqrt(s)
13 M[k, i] = np.sqrt(s)
14

15 for i in range(n):
16 M[i, i] = np.inf
17

18 y = np.min(np.min(M))
19 return y

Discrepancy Criterion

1

2 def dsc(x):
3 n = x.shape[0] # Nombre de points dans x

66

4 w = x.shape[1] # Dimension de x
5 s1 = 0
6

7 for i in range(n):
8 p1 = 1
9 for j in range(w):

10 p1 *= (1 - x[i, j]) * (1 + x[i, j])
11 s1 += p1
12

13 s2 = 0
14 for i in range(n):
15 for j in range(n):
16 p2 = 1
17 for k in range(w):
18 m = max(x[i, k], x[j, k])
19 p2 *= (1 - m)
20 s2 += p2
21

22 y = (3 ** (-w)) + (1 / (n ** 2)) * s2 - (1 / (n * 2 ** (w - 1))) * s1
23 return y

Coverage Criterion

1

2 def mdist(x):
3 n = x.shape[0] # Nombre de points dans x
4 w = x.shape[1] # Dimension de x
5 M = np.zeros((n, n))
6

7 for i in range(n - 1):
8 for k in range(i + 1, n):
9 s = 0

10 for j in range(w):
11 s += (x[i, j] - x[k, j]) ** 2
12 M[i, k] = np.sqrt(s)
13 M[k, i] = np.sqrt(s)
14

15 for i in range(n):
16 M[i, i] = np.inf
17

18 t = np.zeros(n)

67

19 for i in range(n):
20 t[i] = np.min(M[i, :])
21

22 q = np.sum(t)
23 q1 = q / n
24 lamda = 0
25 for i in range(n):
26 lamda += (t[i] - q1) ** 2
27

28 y = (1 / q1) * ((1 / n) * lamda) ** 0.5
29 return y

Exporting distributions to Excel files

1

2 n = 100
3 N = 100
4 r = 0.02
5 gamma =2
6

7 # Execute the code N times
8 results_a = []
9 results_b = []

10 results_c= []
11 for _ in range(100):
12 #Generation of an initial configuration of random points in a unit

hypercube.
13 dim = 2 #Dimensions of the hypercube.
14 X = np.random.rand(n, dim)
15 area = calculate_overlap(X, r)
16 print("The initial area is:", area)
17 # Simulation of NMC steps
18 for iteration in range(N):
19 X_intial = X
20 area = calculate_overlap(X, r)
21 X = voronoi_function(X)
22

23 # Calculate and print the final area
24 area1 = calculate_overlap(X, r)
25

26 if gamma >1:

68

27 # Acceptance probability
28 a = min(1, gamma ** (area1 - area))
29

30 else:
31 a = min(1, gamma ** (area - area1))
32

33 if a == 1:
34)
35 X_final = X
36

37 else:
38

39 X_final = X_intial
40

41 X = X_final
42 area_final = calculate_overlap(X,r)
43

44

45 print("The final area is:", area_final)
46

47 # Calcul de la Value de a et b
48 a = mdist(X)
49 b = mindist(X)
50 c = dsc(X)
51 results_a.append(a)
52 results_b.append(b)
53 results_c.append(c)
54

55 # Creat a DataFrame for each result
56 df_a = pd.DataFrame({'Value': results_a})
57 df_b = pd.DataFrame({'Value': results_b})
58 df_c = pd.DataFrame({'Value': results_c})
59 # Export the DataFrames to separate Excel files.
60 file_name_a = 'mdist7dim_35p.xlsx'
61 file_name_b = 'mindist7dim_35p.xlsx'
62 file_name_c = 'disc7dim_35p .xlsx'
63 df_a.to_excel(file_name_a , index=False)
64 df_b.to_excel(file_name_b , index=False)
65 df_b.to_excel(file_name_c , index=False)
66

67 print(f'Result of "a" exported to {file_name_a}')
68 print(f'Result of "b" exported to {file_name_b}')

69

69 print(f'Result of "c" exported to {file_name_c}')

Box plot of discrepancy

1

2 import pandas as pd
3 import matplotlib.pyplot as plt
4

5 # List of paths for the Excel files to import
6 file_paths = [r'C:\Users\StarTech\Desktop\disc2dim_25p .xlsx',
7 r'C:\Users\StarTech\Desktop\disc2dim_50p .xlsx',
8 r'C:\Users\StarTech\Desktop\disc2dim_100p .xlsx']
9

10 # Create a list to store the data from the Excel files
11 data = []
12

13 # Import the Excel data into the 'data' list
14 for path in file_paths:
15 data.append(pd.read_excel(path))
16

17 # Create a figure and an axis for the box plot
18 fig, ax = plt.subplots()
19

20 # Plot a box plot for each dataset
21 for i, dataset in enumerate(data):
22 ax.boxplot(dataset.values, positions=[i+1])
23

24 # Set the x-axis labels
25 ax.set_xticks(range(1, len(file_paths)+1))
26 ax.set_xticklabels(['25 points', '50 points', '100 points'], rotation=45)
27

28 # Add a title to the graph
29 plt.title('Disc')
30

31 # Display the graph
32 plt.show()

Box plot of mdist

1

70

2 import pandas as pd
3 import matplotlib.pyplot as plt
4

5 # List of paths for the Excel files to import
6 file_paths = [r'C:\Users\StarTech\Desktop\mdist2dim_25p.xlsx',
7 r'C:\Users\StarTech\Desktop\mdist2dim_50p.xlsx',
8 r'C:\Users\StarTech\Desktop\mdist2dim_100p.xlsx']
9

10 # Create a list to store the data from the Excel files
11 data = []
12

13 # Import the Excel data into the 'data' list
14 for path in file_paths:
15 data.append(pd.read_excel(path))
16

17 # Create a figure and an axis for the box plot
18 fig, ax = plt.subplots()
19

20 # Plot a box plot for each dataset
21 for i, dataset in enumerate(data):
22 ax.boxplot(dataset.values, positions=[i+1])
23

24 # Set the x-axis labels
25 ax.set_xticks(range(1, len(file_paths)+1))
26 ax.set_xticklabels(['25 points', '50 points', '100 points'], rotation=45)
27

28 # Add a title to the graph
29 plt.title('Mdist')
30

31 # Display the graph
32 plt.show()

Mindist box plot

1

2 import pandas as pd
3 import matplotlib.pyplot as plt
4

5 # List of paths for the Excel files to import
6 file_paths = [r'C:\Users\StarTech\Desktop\mindist2dim_25p.xlsx',
7 r'C:\Users\StarTech\Desktop\mindist2dim_50p.xlsx',

71

8 r'C:\Users\StarTech\Desktop\mindist2dim_100p.xlsx']
9

10 # Create a list to store the data from the Excel files
11 data = []
12

13 # Import the Excel data into the 'data' list
14 for path in file_paths:
15 data.append(pd.read_excel(path))
16

17 # Create a figure and an axis for the box plot
18 fig, ax = plt.subplots()
19

20 # Plot a box plot for each dataset
21 for i, dataset in enumerate(data):
22 ax.boxplot(dataset.values, positions=[i+1])
23

24 # Set the x-axis labels
25 ax.set_xticks(range(1, len(file_paths)+1))
26 ax.set_xticklabels(['25 points', '50 points', '100 points'], rotation=45)
27

28 # Add a title to the graph
29 plt.title('Mindist')
30

31 # Display the graph
32 plt.show()

General functions of the 3D Algorithm

Libraries

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.spatial import Voronoi
4 import random
5 import pandas as pd

Voronoi Function

1 def voronoi_function(points):
2 vor = Voronoi(points)

72

3

4 infinite_regions = [region for region in vor.regions if -1 in region]
5 bounded_regions = []
6

7 for region in infinite_regions:
8 region_points = vor.vertices[region]
9 min_bound = np.min(region_points , axis=0)

10 max_bound = np.max(region_points , axis=0)
11 bounded_regions.append((min_bound , max_bound))
12

13 new_points = []
14 for bounds in bounded_regions:
15 min_bound , max_bound = bounds
16 random_point = np.random.uniform(low=min_bound , high=max_bound)
17 new_points.append(random_point)
18 '''
19 while True:
20 random_point = np.random.uniform(low=min_bound , high=max_bound)
21 if np.all(random_point >= 0) and np.all(random_point <= 1):
22 break
23 new_points.append(random_point)
24 '''
25 finite_regions = [region for region in vor.regions if region and -1 not in

region]
26

27 for region in finite_regions:
28 region_points = vor.vertices[region]
29 min_bound = np.min(region_points , axis=0)
30 max_bound = np.max(region_points , axis=0)
31 random_point = np.random.uniform(low=min_bound , high=max_bound)
32 new_points.append(random_point)
33 '''
34 random_point = None
35

36 while True:
37 random_point = np.random.uniform(low=min_bound , high=max_bound)
38

39 if np.all(random_point >= 0) and np.all(random_point <= 1):
40 break
41 new_points.append(random_point)
42 '''
43 all_points = np.vstack((points, new_points))

73

44

45 X = np.clip(all_points , 0, 1)
46

47 while len(X) > n:
48 indices = np.arange(len(X))
49 chosen_points = set()
50 i = np.random.choice(indices)
51 if i in chosen_points:
52 continue
53 chosen_points.add(i)
54 if i >= len(X):
55 continue
56 distances = np.linalg.norm(X - X[i], axis=1)
57 distances[i] = np.inf
58 min_distance_index = np.argmin(distances)
59 indices = np.delete(indices, min_distance_index)
60 X = np.delete(X, min_distance_index , axis=0)
61

62 return X

Calculating Volume Interaction

1 def calculate_union_volume(points, radius, num_samples=1000000):
2 min_point = np.min(points, axis=0) - radius
3 max_point = np.max(points, axis=0) + radius
4

5 random_points = np.random.uniform(min_point , max_point , size=(num_samples ,
3))

6 distances = np.linalg.norm(random_points[:, np.newaxis] - points, axis=-1)
7 total_volume = np.sum(np.any(distances <= radius, axis=-1))
8

9 bounding_box_volume = np.prod(max_point - min_point)
10 volume_fraction = total_volume / num_samples
11 total_volume = volume_fraction * bounding_box_volume
12

13 return total_volume

Coverage Criterion Function

1

74

2 def mdist(x):
3 n = x.shape[0] # Nombre de points dans x
4 w = x.shape[1] # Dimension de x
5 M = np.zeros((n, n))
6

7 for i in range(n - 1):
8 for k in range(i + 1, n):
9 s = 0

10 for j in range(w):
11 s += (x[i, j] - x[k, j]) ** 2
12 M[i, k] = np.sqrt(s)
13 M[k, i] = np.sqrt(s)
14

15 for i in range(n):
16 M[i, i] = np.inf
17

18 y = np.min(np.min(M))
19 return y

Discrepancy Criterion Function

1 def dsc(x):
2 n = x.shape[0] # Nombre de points dans x
3 w = x.shape[1] # Dimension de x
4 s1 = 0
5

6 for i in range(n):
7 p1 = 1
8 for j in range(w):
9 p1 *= (1 - x[i, j]) * (1 + x[i, j])

10 s1 += p1
11

12 s2 = 0
13 for i in range(n):
14 for j in range(n):
15 p2 = 1
16 for k in range(w):
17 m = max(x[i, k], x[j, k])
18 p2 *= (1 - m)
19 s2 += p2
20

75

21 y = (3 ** (-w)) + (1 / (n ** 2)) * s2 - (1 / (n * 2 ** (w - 1))) * s1
22 return y

Distance Criterion Function

1 def mindist(x):
2 n = x.shape[0] # Nombre de points dans x
3 w = x.shape[1] # Dimension de x
4 M = np.zeros((n, n))
5

6 for i in range(n - 1):
7 for k in range(i + 1, n):
8 s = 0
9 for j in range(w):

10 s += (x[i, j] - x[k, j]) ** 2
11 M[i, k] = np.sqrt(s)
12 M[k, i] = np.sqrt(s)
13

14 for i in range(n):
15 M[i, i] = np.inf
16

17 t = np.zeros(n)
18 for i in range(n):
19 t[i] = np.min(M[i, :])
20

21 q = np.sum(t)
22 q1 = q / n
23 lamda = 0
24 for i in range(n):
25 lamda += (t[i] - q1) ** 2
26

27 y = (1 / q1) * ((1 / n) * lamda) ** 0.5
28 return y

Metropolis-Hasting Algorithm and exporting the Distributions

1 n = 25
2 N = 1000
3 r = 0.1
4 gamma =2

76

5 # Create empty DataFrames to store values
6 df_a = pd.DataFrame(columns=['Value'])
7 df_b = pd.DataFrame(columns=['Value'])
8 df_c = pd.DataFrame(columns=['Value'])
9 # Execute the code 20 times

10 '''results_a = []
11 results_b = []
12 results_c= []'''
13 for _ in range(100):
14 #Generating initial configuration in the unit cube
15 X = np.random.uniform(size=(n, 3))
16 X_initial = X.copy()
17 X_final = X.copy()
18

19 area_intial = calculate_union_volume(X, r)
20 print("The initial area is:", area_intial)
21 # Simulation of NMC steps
22 for iteration in range(N):
23 X_intial = X
24 area = calculate_union_volume(X, r)
25 print("Iteration:", iteration + 1)
26 # Perform the voronoi_function
27 X = voronoi_function(X)
28

29 # Calculate and print the final area
30 area1 = calculate_union_volume(X, r)
31

32 if gamma >1:
33 # Acceptance probability
34 a = min(1, gamma ** (area1 - area))
35 # print("The probability of acceptance is:", a)
36 # ===
37 else:
38 a = min(1, gamma ** (area - area1))
39 #
40 # ===
41 if a == 1:
42 #print("We accept the final Configuration")
43 X_final = X
44 area = area1
45 # print("the accepeted area is:",area1)
46 else:

77

47 #print("Playing Daft Punk: ONE MORE TIME")
48 X_final = X_intial
49 # print("the accepeted area is :",area)
50

51 #print('a1=',area1,'a0=',area)
52 X = X_final
53

54

55 area_final = calculate_union_volume(X,r)
56 print("The final area is:", area_final)
57

58 # Calculate the values of a,b and c
59 a = mdist(X)
60 b = mindist(X)
61 c = dsc(X)
62 df_a = pd.concat([df_a, pd.DataFrame({'Value': [a]})], ignore_index=True)
63 df_b = pd.concat([df_b, pd.DataFrame({'Value': [b]})], ignore_index=True)
64 df_c = pd.concat([df_c, pd.DataFrame({'Value': [c]})], ignore_index=True)
65

66 # Export the DataFrames to the same Excel file
67 file_name_a = 'mdist3dim_25p.xlsx'
68 file_name_b = 'mindist3dim_25p.xlsx'
69 file_name_c = 'disc3dim_25p.xlsx'
70 df_a.to_excel(file_name_a , index=False)
71 df_b.to_excel(file_name_b , index=False)
72 df_c.to_excel(file_name_c , index=False)
73

74 print(f'Result of "a" Exported to {file_name_a}')
75 print(f'Result of "b" Exported to {file_name_b}')
76 print(f'Result of "c" Exported to {file_name_c}')
77

78 results_a.append(a)
79 results_b.append(b)
80 results_c.append(c)
81

82 #Creat a DataFrame for each result
83 df_a = pd.DataFrame({'Value': results_a})
84 df_b = pd.DataFrame({'Value': results_b})
85 df_c = pd.DataFrame({'Value': results_c})
86 # Export DataFrames to separated Excel files
87 file_name_a = 'mdist7dim_35p.xlsx'
88 file_name_b = 'mindist7dim_35p.xlsx'

78

89 file_name_c = 'disc7dim_35p .xlsx'
90 df_a.to_excel(file_name_a , index=False)
91 df_b.to_excel(file_name_b , index=False)
92 df_b.to_excel(file_name_c , index=False)
93

94 print(f'Result of "a" Exported to {file_name_a}')
95 print(f'Result of "b" Exported to {file_name_b}')
96 print(f'Result of "b" Exported to {file_name_c}')

Data of the Three Optimality Criteria for Used Designs

RD, MLHS, LATIN HYPERCUBE, D-MAX, SD

1 import numpy as np
2 import random
3 import pandas as pd
4 from scipy.stats import qmc
5 from pyDOE import lhs
6 from scipy.stats import special_ortho_group
7

8 def mdist(x):
9 n = x.shape[0] # Nombre de points dans x

10 w = x.shape[1] # Dimension de x
11 M = np.zeros((n, n))
12

13 for i in range(n - 1):
14 for k in range(i + 1, n):
15 s = 0
16 for j in range(w):
17 s += (x[i, j] - x[k, j]) ** 2
18 M[i, k] = np.sqrt(s)
19 M[k, i] = np.sqrt(s)
20

21 for i in range(n):
22 M[i, i] = np.inf
23

24 y = np.min(np.min(M))
25 return y
26

27 def dsc(x):

79

28 n = x.shape[0] # Nombre de points dans x
29 w = x.shape[1] # Dimension de x
30 s1 = 0
31

32 for i in range(n):
33 p1 = 1
34 for j in range(w):
35 p1 *= (1 - x[i, j]) * (1 + x[i, j])
36 s1 += p1
37

38 s2 = 0
39 for i in range(n):
40 for j in range(n):
41 p2 = 1
42 for k in range(w):
43 m = max(x[i, k], x[j, k])
44 p2 *= (1 - m)
45 s2 += p2
46

47 y = (3 ** (-w)) + (1 / (n ** 2)) * s2 - (1 / (n * 2 ** (w - 1))) * s1
48 return y
49

50 def mindist(x):
51 n = x.shape[0] # Nombre de points dans x
52 w = x.shape[1] # Dimension de x
53 M = np.zeros((n, n))
54

55 for i in range(n - 1):
56 for k in range(i + 1, n):
57 s = 0
58 for j in range(w):
59 s += (x[i, j] - x[k, j]) ** 2
60 M[i, k] = np.sqrt(s)
61 M[k, i] = np.sqrt(s)
62

63 for i in range(n):
64 M[i, i] = np.inf
65

66 t = np.zeros(n)
67 for i in range(n):
68 t[i] = np.min(M[i, :])
69

80

70 q = np.sum(t)
71 q1 = q / n
72 lamda = 0
73 for i in range(n):
74 lamda += (t[i] - q1) ** 2
75

76 y = (1 / q1) * ((1 / n) * lamda) ** 0.5
77 return y
78 def generate_maximal_entropy_matrix(n, d):
79 # Generate random orthogonal matrix
80 matrix = lhs(d,samples=n,criterion='centermaximin')
81 return matrix.tolist()
82

83 # Generate uniform random numbers
84 # uniform_matrix = np.random.rand(n, d)
85

86 # Transform uniform matrix using orthogonal matrix
87 # matrix = np.matmul(uniform_matrix , ortho_matrix)
88

89 return matrix.tolist()
90

91 def generate_random_matrix(n, d):
92 matrix = [[random.random() for _ in range(d)] for _ in range(n)]
93 return matrix
94

95 def generate_maximin_lhs_matrix(n, d):
96 matrix = lhs(d, samples=n, criterion='maximin', iterations=1000)
97 return matrix.tolist()
98 def generate_strauss_matrix(n, d, r):
99 matrix = np.zeros((n, d))

100 matrix[0] = np.random.rand(d)
101

102 for i in range(1, n):
103 candidate = np.random.rand(d)
104 distances = np.linalg.norm(matrix[:i] - candidate , axis=1)
105 while np.any(distances < r):
106 candidate = np.random.rand(d)
107 distances = np.linalg.norm(matrix[:i] - candidate , axis=1)
108 matrix[i] = candidate
109

110 return matrix.tolist()
111

81

112

113

114

115

116 n = 100
117 d = 3
118

119

120 # Create empty DataFrames to store values
121 df = pd.DataFrame(columns=[])
122

123 for _ in range(100):
124 #RD
125 rd_matrix = np.array(generate_random_matrix(n, d))
126

127 # LatinHyperCube
128 latiner = qmc.LatinHypercube(d, scramble=False)
129 latin = latiner.random(n)
130 #mLHC
131 mlhs_matrix = np.array(generate_maximin_lhs_matrix(n,d))
132 #Dmax
133 dmax_matrix =np.array(generate_maximal_entropy_matrix(n, d))
134 #SD
135 sd_matrix = np.array(generate_strauss_matrix(n, d, r=0.1))
136

137 # Calcul de la valeur de a et b
138 a = mdist(rd_matrix)
139 b = mindist(rd_matrix)
140 c = dsc(rd_matrix)
141

142 a1 = mdist(mlhs_matrix)
143 b1 = mindist(mlhs_matrix)
144 c1 = dsc(mlhs_matrix)
145

146 a2 = mdist(latin)
147 b2 = mindist(latin)
148 c2 = dsc(latin)
149

150 a3 = mdist(dmax_matrix)
151 b3 = mindist(dmax_matrix)
152 c3 = dsc(dmax_matrix)
153

82

154 a4 = mdist(sd_matrix)
155 b4 = mindist(sd_matrix)
156 c4 = dsc(sd_matrix)
157

158 # Ajouter les valeurs à la DataFrame
159 new_row = {'mdist(RD)': a, 'mindist(RD)': b, 'dsc(RD)': c, 'mdist(

mlhs_matrix)': a1, 'mindist(mlhs_matrix)': b1, 'dsc(mlhs_matrix)': c1,
'mdist(latin)': a2, 'mindist(latin)': b2, 'dsc(latin)': c2,'mdist(
dmax_matrix)': a3, 'mindist(dmax_matrix)': b3, 'dsc(dmax_matrix)': c3,'
mdist(sd_matrix)': a4, 'mindist(sd_matrix)': b4, 'dsc(sd_matrix)': c4}

160 df = pd.concat([df, pd.DataFrame(new_row, index=[0])], ignore_index=True)
161 # Export the DataFrame to an Excel file
162 nom_fichier = 'resultats100p.xlsx'
163 df.to_excel(nom_fichier , index=False)
164 print(f"Les résultats ont été exportés vers {nom_fichier}")

MSD

1 import numpy as np
2

3 import pandas as pd
4

5

6 def mdist(x):
7 n = x.shape[0] # Nombre de points dans x
8 w = x.shape[1] # Dimension de x
9 M = np.zeros((n, n))

10

11 for i in range(n - 1):
12 for k in range(i + 1, n):
13 s = 0
14 for j in range(w):
15 s += (x[i, j] - x[k, j]) ** 2
16 M[i, k] = np.sqrt(s)
17 M[k, i] = np.sqrt(s)
18

19 for i in range(n):
20 M[i, i] = np.inf
21

22 y = np.min(np.min(M))
23 return y

83

24

25 def dsc(x):
26 n = x.shape[0] # Nombre de points dans x
27 w = x.shape[1] # Dimension de x
28 s1 = 0
29

30 for i in range(n):
31 p1 = 1
32 for j in range(w):
33 p1 *= (1 - x[i, j]) * (1 + x[i, j])
34 s1 += p1
35

36 s2 = 0
37 for i in range(n):
38 for j in range(n):
39 p2 = 1
40 for k in range(w):
41 m = max(x[i, k], x[j, k])
42 p2 *= (1 - m)
43 s2 += p2
44

45 y = (3 ** (-w)) + (1 / (n ** 2)) * s2 - (1 / (n * 2 ** (w - 1))) * s1
46 return y
47

48 def mindist(x):
49 n = x.shape[0] # Nombre de points dans x
50 w = x.shape[1] # Dimension de x
51 M = np.zeros((n, n))
52

53 for i in range(n - 1):
54 for k in range(i + 1, n):
55 s = 0
56 for j in range(w):
57 s += (x[i, j] - x[k, j]) ** 2
58 M[i, k] = np.sqrt(s)
59 M[k, i] = np.sqrt(s)
60

61 for i in range(n):
62 M[i, i] = np.inf
63

64 t = np.zeros(n)
65 for i in range(n):

84

66 t[i] = np.min(M[i, :])
67

68 q = np.sum(t)
69 q1 = q / n
70 lamda = 0
71 for i in range(n):
72 lamda += (t[i] - q1) ** 2
73

74 y = (1 / q1) * ((1 / n) * lamda) ** 0.5
75 return y
76

77

78

79 n = 100
80 R = 0.2
81 t = 0.1
82 b = 2
83 w = 3
84 eps = 0.04
85 NMC = 1000
86

87 # Create empty DataFrames to store values
88 df_a = pd.DataFrame(columns=['Valeur'])
89 df_b = pd.DataFrame(columns=['Valeur'])
90 df_c = pd.DataFrame(columns=['Valeur'])
91 # Execute the code 20 times
92 '''results_a = []
93 results_b = []
94 results_c= []'''
95 for _ in range(100):
96 # initialisation de la configuration
97 X = np.random.rand(n, w)
98 print("Iteration:", _ + 1)
99 for N in range(NMC):

100 # choix d'un point au hasard
101 k = np.random.randint(n)
102 # création d'une nouvelle configuration Y
103 y = np.random.rand(1, w)
104 Y = np.copy(X)
105 Y[k] = y
106

107 # calcul du nombre d'interactions pour X et Y

85

108 Sx, Sy = 0, 0
109 for i in range(n):
110 if i != k:
111 dx = np.linalg.norm(X[i] - X[k])
112 dy = np.linalg.norm(Y[i] - y)
113 if dx <= R:
114 Sx += 1
115 if dy <= R:
116 Sy += 1
117

118 # calcul des marques pour X et Y
119 somme = 0
120 for i in range(n):
121 m1 = np.sum(X[i] * np.linalg.inv(np.matmul(X.T, X)) * X[i])
122 if m1 <= eps:
123 somme += 1
124

125

126

127 # calcul de la probabilité d'acceptation
128 f1 = b ** somme
129 by = t ** Sy * f1
130 bx = t ** Sx * b ** somme
131 a = min(1, by / bx)
132

133 # mise à jour de la configuration
134 if a == 1:
135 X[k] = y
136

137 # Calcul de la valeur de a et b
138 a = mdist(X)
139 b = mindist(X)
140 c = dsc(X)
141 df_a = pd.concat([df_a, pd.DataFrame({'Valeur': [a]})], ignore_index=True)
142 df_b = pd.concat([df_b, pd.DataFrame({'Valeur': [b]})], ignore_index=True)
143 df_c = pd.concat([df_c, pd.DataFrame({'Valeur': [c]})], ignore_index=True)
144

145 # Export the DataFrames to the same Excel file
146 nom_fichier_a = 'mdist3dim_100p.xlsx'
147 nom_fichier_b = 'mindist3dim_100p.xlsx'
148 nom_fichier_c = 'disc3dim_100p.xlsx'
149 df_a.to_excel(nom_fichier_a , index=False)

86

150 df_b.to_excel(nom_fichier_b , index=False)
151 df_c.to_excel(nom_fichier_c , index=False)
152

153 print(f'Résultats de "a" exportés vers {nom_fichier_a}')
154 print(f'Résultats de "b" exportés vers {nom_fichier_b}')
155 print(f'Résultats de "c" exportés vers {nom_fichier_c}')
156

157 '''results_a.append(a)
158 results_b.append(b)
159 results_c.append(c)
160

161 # Créer un DataFrame pour chaque résultat
162 df_a = pd.DataFrame({'Valeur': results_a})
163 df_b = pd.DataFrame({'Valeur': results_b})
164 df_c = pd.DataFrame({'Valeur': results_c})
165 # Exporter les DataFrames vers des fichiers Excel séparés
166 nom_fichier_a = 'mdist7dim_35p.xlsx'
167 nom_fichier_b = 'mindist7dim_35p.xlsx'
168 nom_fichier_c = 'disc7dim_35p .xlsx'
169 df_a.to_excel(nom_fichier_a , index=False)
170 df_b.to_excel(nom_fichier_b , index=False)
171 df_b.to_excel(nom_fichier_c , index=False)
172

173 print(f'Résultats de "a" exportés vers {nom_fichier_a}')
174 print(f'Résultats de "b" exportés vers {nom_fichier_b}')
175 print(f'Résultats de "b" exportés vers {nom_fichier_c}')'''

87

Bibliography

[1] J. F. Box, “Ra fisher and the design of experiments, 1922–1926,” The American Statistician,
vol. 34, no. 1, pp. 1–7, 1980.

[2] J. Kiefer, “Optimum experimental designs,” Journal of the Royal Statistical Society: Series
B (Methodological), vol. 21, no. 2, pp. 272–304, 1959.

[3] G. E. Box and D. W. Behnken, “Some new three level designs for the study of quantitative
variables,” Technometrics, vol. 2, no. 4, pp. 455–475, 1960.

[4] J. Franco, Planification d’expériences numériques en phase exploratoire pour la simulation
des phénomènes complexes. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-
Etienne, 2008.

[5] H. Elmossaoui, N. Oukid, and F. Hannane, “Construction of computer experiment designs
using marked point processes,” Afrika Matematika, vol. 31, pp. 917–928, 2020.

[6] H. Elmossaoui, Contribution à la méthodologie de la Recherche expérimentale. PhD thesis,
Université Blida 1, 2020.

[7] H. Elmossaoui, N. Oukid, “Construction de plans d’expériences numérique à partir des pro-
cessus ponctuels,” Algerian Journal of Engineering, Architecture and Urbanism, pp. 273–
282, 2021.

[8] D. J. Strauss, “A model for clustering,” Biometrika, vol. 62, no. 2, pp. 467–475, 1975.

[9] H. Elmossaoui and N. Oukid, “New computer experiment designs using continuum random
cluster point process,” International Journal of Analysis and Applications, vol. 21, pp. 51–
51, 2023.

[10] R. Sibson, “The dirichlet tessellation as an aid in data analysis,” Scandinavian Journal of
Statistics, pp. 14–20, 1980.

88

[11] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,” The amer-
ican statistician, vol. 49, no. 4, pp. 327–335, 1995.

[12] W. K. Hastings, “Monte carlo sampling methods using markov chains and their applica-
tions,” 1970.

[13] P. Schimmerling, J. C. Sisson, and A. Zaïdi, Pratique des plans d’expériences. TEC &
DOC, 1998.

[14] W. Tinsson, Plans d’expérience: constructions et analyses statistiques, vol. 67. Springer
Science & Business Media, 2010.

[15] G. Taguchi and Y. Wu, “Introduction to off-line quality control (nagoya, central japan
quality control association),” CRITICAL CORE SAND MIX PARAMETERS, 1980.

[16] J. Goupy, plans d’expérience: Les mélanges. Dunod, 2000.

[17] S. I. Loeza-Serrano, Optimal statistical design for variance components in multistage vari-
ability models. The University of Manchester (United Kingdom), 2014.

[18] J.-P. Gauchi, “Plans d’expériences optimaux pour modèles non linéaires,” 1997.

[19] J. Goupy, “Modélisation par les plans d’expériences,” Techniques de l’ingénieur. Mesures
et contrôle, no. R275, pp. R275–1, 2000.

[20] J. Goupy, Plans d’expériences pour surfaces de réponse. Dunod, 1999.

[21] D. Mathieu and R. Phan-Tan-Luu, “Lprai université d’aix-marseille,” NEMROD®: New
Efficient Methodology for Research using Optimal Design, 1998.

[22] G. Saporta, Probabilités, analyse des données et statistique. Editions technip, 2006.

[23] D. J. Finney, “The fractional replication of factorial arrangements,” Annals of Eugenics,
vol. 12, no. 1, pp. 291–301, 1943.

[24] M. Cavazzuti, Optimization methods: from theory to design scientific and technological
aspects in mechanics. Springer Science & Business Media, 2012.

[25] H. Faure, “Discrépance quadratique de la suite de van der corput et de sa symétrique,”
Acta Arithmetica, vol. 55, no. 4, pp. 333–350, 1990.

[26] M. Van Lieshout, Markov point processes and their applications. World Scientific, 2000.

[27] F. P. Kelly and B. D. Ripley, “A note on strauss’s model for clustering,” Biometrika,
pp. 357–360, 1976.

89

[28] S. Anwar in Implementation of Strauss point process model to earthquake data, ITC, 2009.

[29] X. Descombes, Méthodes stochastiques en analyse d’image: des champs de Markov aux
processus ponctuels marqués. PhD thesis, Université Nice Sophia Antipolis, 2004.

[30] S. Chib and E. Greenberg, “Markov chain monte carlo simulation methods in econometrics,”
Econometric theory, vol. 12, no. 3, pp. 409–431, 1996.

[31] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

[32] R. L. Dobrushin, “Central limit theorem for nonstationary markov chains. i,” Theory of
Probability & Its Applications, vol. 1, no. 1, pp. 65–80, 1956.

[33] G. Winkler, Image analysis, random fields and Markov chain Monte Carlo methods: a
mathematical introduction, vol. 27. Springer Science & Business Media, 2003.

[34] S. Fontaine, “Mcmc adaptatifs à essais multiples,” 2019.

[35] A. J. Baddeley and M. Van Lieshout, “Area-interaction point processes,” Annals of the
Institute of Statistical Mathematics, vol. 47, pp. 601–619, 1995.

[36] D.-M. Yan, W. Wang, B. Lévy, and Y. Liu, “Efficient computation of clipped voronoi
diagram for mesh generation,” Computer-Aided Design, vol. 45, no. 4, pp. 843–852, 2013.

[37] M. D. Morris and T. J. Mitchell, “Exploratory designs for computational experiments,”
Journal of statistical planning and inference, vol. 43, no. 3, pp. 381–402, 1995.

[38] M. C. Shewry and H. P. Wynn, “Maximum entropy sampling,” Journal of applied statistics,
vol. 14, no. 2, pp. 165–170, 1987.

90

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Generalities of Experimental Designs
	History
	Interest of the experimental design method
	Fundamental terminology of experimental designs
	Mathematical Tools for Experimental Design
	Response Surface Designs
	Conclusion

	Generalities about point processes
	Point Process
	Examples Of Point Processes
	Markov Point Process
	Markov Chains
	MCMC - Metropolis Hasting

	New Configuration of Computer Experiment Designs
	Area Interaction Process
	Voronoi Tessellation
	Simulation of point processes using MCMC method and Metropolis-Hasting algorithm.
	Algorithm for constructing experimental designs using Markov point process with area interaction
	Convergence study

	Optimality Criteria And Digital Results
	Optimality criteria
	Intrinsic study of designs using distance, discrepancy, and coverage criteria.
	Appendices

	Bibliography

