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Abstract

In this work we will deal with some backward impulsive differential equations with local
and non-local conditions in Banach spaces. We will determine sufficient conditions for the
existence and stability of Ulam solutions of this type of equations, the tools used are some
well-known fixed point theorems, in this case the fixed point theorems of Banach, Schaefer
and Krasnoselskii, lemmas and theorems on compactness and other results of functional
analysis.
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Abstract(French version)

Résumé

Dans ce travail on traitera certaines équations différentielles impulsives rétrogrades avec
des conditions locales et non locales dans des espaces de Banach. On déterminera des condi-
tions suffisantes pour l’existence et la stabilité d’Ulam des solutions de ce type d’équations, les
outils utilisés sont quelques théorèmes de point fixe bien connus, en l’occurrence les théorèmes
de point fixe de Banach, Schaefer et Krasnoselskii, les lemmes et théorèmes sur la compacité
et d’autres résultats d’analyse fonctionnelle.

Mots clés :

Equations différentielles impulsives rétrogrades, dérivée fractionnaire, intégrale fraction-
naire, condition locale, condition non locale, point fixe, stabilité d’Ulam.
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Chapter 1

Introduction

Impulsive differential equations are a type of differential equation that involve sudden and
instantaneous changes in the state of the system at certain points in time, known as impulsive
moments or impulses. These impulses can represent sudden forces or changes in the system
that occur in a very short amount of time, such as collisions, impacts, or sudden changes in
the environment.

Impulsive differential equations are often used to model physical systems where such
sudden changes can occur, such as in mechanics, physics, and engineering. They are also
used in control theory to model systems with abrupt changes in control input.

Mathematically, impulsive differential equations can be expressed as a combination of
ordinary differential equations and impulse functions. An impulse function is a mathematical
function that represents an instantaneous change in the system at a specific point in time,
and is typically represented using the Dirac delta function or a related function.

Solving impulsive differential equations can be challenging, as the impulse functions can
introduce discontinuities in the solution. However, there are various techniques that can be
used to solve these equations, such as the Laplace transform, the method of characteristics,
and numerical methods such as the Euler method and the Runge-Kutta method.

Overall, impulsive differential equations provide a useful tool for modeling and analyzing
systems with sudden and instantaneous changes, and are an important topic in applied
mathematics and engineering.
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1. Introduction

The role of impulsive differential equations in mathematics is to provide a framework
for analyzing the behavior of systems that experience sudden changes. They allow us to
model a wide range of real-world phenomena, including earthquakes, chemical reactions, and
electrical circuits.

Impulsive differential equations have applications in engineering, physics, biology, and
other fields. In control systems, they are used to model the behavior of systems with inter-
mittent control actions, such as digital controllers. In population dynamics, they are used
to model the effect of sudden changes in the environment on the growth or decline of a pop-
ulation. In physics, they are used to model the behavior of particles in collisions or other
sudden events.

There is three classes of impulsive diferential equations :

Class 1: Equations with fixed moments of the impulse effect
dx

dt
= f(t, x) , t ̸= tk

∆x = Ik(x) , t = tk

(1.1)

The impulse is fixed beforehand by defining the sequence tk : tk < tk+1 (k ∈ K ⊂ Z) .
For t ∈ (tk, tk+1] the solution x(t) of equation (1.1) satisfies the equation dx

dt
= f(t, x) and for

t = tk ; x(t) satisfies the relation Ik(x(t−k )) = x(t+k )− x(t−k ) .

Class 2: Equations with state-dependent moments of the impulse effect
dx

dt
= f(t, x), t ̸= tk(x)

∆x = Ik(x), t = tk(x)

(1.2)

where tk : Ω → R and tk < tk+1 (k ∈ K ⊂ Z, x ∈ Ω) . The impulse occurs when the
mapping point (t;x) meets some hypersurface σk of the equation t = tk(x) .

Class 3: Autonomous impulsive equations

2



1. Introduction


dx

dt
= f(t, x) , t /∈ σ

∆x = Ik(x) , t ∈ σ

(1.3)

where σ is an (n-1)-dimensional manifold contained in the phase space Rn .

The impulse occurs when the solution x(t) meets the manifold σ .

Impulsive differential equations have emerged as a crucial tool for modeling various phe-
nomena, particularly in capturing the dynamics of populations experiencing sudden changes
and other events like harvesting, diseases, and more. The utilization of impulsive differential
systems to represent such models has been prevalent among researchers since the previous
century. The fundamental theory of impulsive differential equations provides a solid frame-
work for studying these systems and understanding their behavior. In recent years, fractional
differential equations have emerged as highly valuable tools for modeling numerous phenom-
ena across diverse fields of engineering, physics, and economics. They have found extensive
applications in the study of nonlinear oscillations, such as those observed in earthquakes.
Additionally, fractional differential equations have proven to be instrumental in understand-
ing various physical phenomena, including seepage flow in porous media and fluid dynamic
traffic models. These equations are regarded as an alternative modeling approach to tradi-
tional integer-order differential equations. To delve deeper into the intricacies of fractional
calculus theory, further exploration is recommended. The primary aim of this thesis is to
explore specific fixed point theorems and functional analysis results in order to establish the
existence and Ulam stability of solutions to backward differential equations with impulse
effects. By doing so, this research seeks to address the existing gap in the literature con-
cerning the integration of impulsive differential equations of this nature. Throughout this
investigation, our key tools will be fixed point theorems, lemmas, and theorems on compact-
ness, alongside other pertinent results from the field of functional analysis. To the best of
our knowledge, there is currently a dearth of scholarly papers dedicated to addressing these
particular problems.

The dissertation consists of four chapters. In Chapter 1, a short introdution where we
state the problem . Chapter 2 contains preliminary concepts about necessary theorems and
definitions from functional analysis and fractional calculus and its applications . In Chapter 3,

3



1. Introduction

results, about the existence and the Ulam stability to backward impulsive ordinary differential
equation. Several subsidiary examples . In chapter 4, , new results, about the existence and
the Ulam stability to backward impulsive fractional differential equation. Several subsidiary
examples .
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Chapter 2

Overview of functional analysis and

Fractional Calculus

2.1 function spaces

In mathematics, a function space is a set of functions with certain properties defined on a
given domain. Function spaces are often used in functional analysis, a branch of mathematics
that studies spaces of functions and their properties.

There are many different types of function spaces, but some of the most commonly studied
ones include: Banach Spaces, Hilbert Space, Lp Spaces, Sobolev Spaces...

2.2 Banach spaces

Definition 2.2.1. A Banach space is a complete normed vector space, which means that it

is a vector space equipped with a norm that is complete with respect to the norm. This means

that every Cauchy sequence of vectors in the space converges to a vector in the space.

the normed space V is a Banach space if whenever {xn} is a sequence of points of V such

that for every ε > 0 there is N such that ∥xn − xm∥ < ε whenever n,m > N , then there

exists x ∈ V such that limn→∞ ∥xn − x∥ = 0.

5



2.2. Banach spaces

The function space we have in mind in this work is C(K). Let K be a compact metric

space, then

C(K) = {f : K → R/f is continuous }

The sup-norm in C(K) is defined by

∥f∥ = sup
x∈K

|f(x)| = max
x∈K

|f(x)|

Definition 2.2.2. The set of piecewise continuous functions is a collection of functions that

are continuous on each piece of their domain.

In particular, a function is said to be piecewise continuous if it can be expressed as a com-

bination of continuous functions, each defined on a different interval or piece of its domain.

These pieces may be separated by points of discontinuity or other types of singularities, but

the function is still continuous on each of these pieces.

Piecewise continuous functions are commonly used in many areas of mathematics, includ-

ing calculus, differential equations, and analysis. They allow us to model real-world phenom-

ena that may be discontinuous or have sharp transitions, such as in physics, engineering, and

economics.

Theorem 2.1. The space C([a, b]) of continuous, real-valued (or complex-valued) functions

on [a, b] with the sup-norm is a complete normed space, hence a Banach space. More generally,

the space C(K) of continuous functions on a compact metric space K equipped with the sup-

norm is a Banach space.

By C(J,R) we denote the Banach space of all continuous functions from J = [0, T ] into

R endowed with the norm

∥u∥∞ = sup
t∈J

|u(t)|

The set of piecewise continuous functions

6



2.2. Banach spaces

PC(J,R) =
{
u : J → R : u|(tk,tk+1)

∈ C ((tk, tk+1) ,R) , k = 0, 1, . . . ,m,

u
(
t−k
)
= u (tk) and u

(
t+k
)
exists

}
is a Banach space with the norm

∥u∥PC = sup
t∈J

|u(t)|

Define the set Br = {u ∈ PC(J,R) : ∥u∥ ≤ r}.

2.2.1 Bounded operators in a Banach space

Definition 2.2.3. Let X, Y be Banach spaces (both over R or over C ). and T : D ⊂ X → Y .

The operator T is said to be bounded if it maps any bounded subset of D into a bounded subset

of Y .

2.2.2 Compact operator

Definition 2.2.4. Let X and Y be Banach spaces. A linear operator T : X → Y is said to

be compact if it maps bounded sets in X to sets with compact closure in Y . This means that

for any bounded set A in X, the set T (A) = {T (x) : x ∈ A} has a compact closure in Y . In

other words, every sequence in T (A) has a convergent subsequence in Y .

Definition 2.2.5. In an Euclidean Space Rn, a set is sequentially compact if and only if

every infinite sequence has a convergent subsequence.

The notion of sequential compactness is largely characterized by the Bolzano-Weierstass

theorem. This is stated without proof, considering it to be known.

2.2.3 Completely-continuous operator

Definition 2.2.6. A completely-continuous operator (also known as a compact operator) is

a linear operator between two Banach spaces such that it maps bounded sets to relatively

7



2.2. Banach spaces

compact sets. More precisely, an operator T : X → Y is completely-continuous if for every

bounded subset B ⊆ X, the image set T (B) is relatively compact in Y .

In other words, a completely-continuous operator is one that takes bounded sets to sets

that are "almost" compact. This is a stronger condition than mere continuity, which only

requires that the pre-image of every open set is open.

Theorem 2.2. (Bolzano-Weierstrass theorem) Every bounded sequence in Rn has a

convergent subsequence.

That is, if a subset A ∈ Rn is closed and bounded, it is sequentially compact.

Theorem 2.3. (Heine-Borel theorem) In R or more generally Rn, K compact if and only

if K is closed and bounded.

Do these theorems hold in the space C[a, b] of real valued continuous functions with domain

[a, b]

We know that in Rn, closed and bounded sets are compact. Unfortunately, this is not true

in C([a, b]).

In both situations, if we add the condition called equicontinuity, then both theorems hold

in C[a, b]

Definition 2.2.7. Let {fn}∞1 be a sequence of R-valued continuous functions on a compact

set E.

1. {fn} is pointwise bounded on E if for each x0 ∈ E the sequence of numbers {fn (x0)}

is bounded.

2. {fn} is uniformly bounded on E if there exists an M ∈ R such that fn(x) < M,∀n ∈ N

and ∀x ∈ E.

Definition 2.2.8. Let F a family of functions E → R ( equally well, we can take the values

to lie in C), where E subset of a metric space (X , d). We say F is equicontinuous on E if

∀ε > 0,∃δ > 0 such that for all x, y ∈ E with d(x, y) < δ ⇒ |f(x)− f(y)| < ε for all f ∈ F

8



2.2. Banach spaces

Theorem 2.4. (Ascoli-Arzela theorem version I) Let {fn}∞1 be a sequence of R-valued

continuous functions on a compact set K. That is fn ∈ C(K) ∀n ∈ N, {fn} is pointwise

bounded on K and {fn} is equicontinuous implies that {fn} is uniformly bounded and {fn}

has a uniformly convergent subsequence.

Proof. First, suppose that F is equicontinuous and uniformly bounded. We want to show

that there exists a subsequence of fn that converges uniformly on X. Let r > 0 be arbitrary.

Since F is uniformly bounded, there exists M > 0 such that |f(x)| ≤ M for all f ∈ F

and x ∈ X. Let ε > 0 be arbitrary. Since F is equicontinuous, there exists δ > 0 such

that |f(x) − f(y)| < ε
3

for all f ∈ F and x, y ∈ X with d(x, y) < δ. By compactness

of X, we can find a finite covering B(xi, δ/2)
n
i=1 of X. For each i = 1, . . . , n, define Fi =

f(x) : x ∈ B(xi, δ/2), , f ∈ F . Since F is uniformly bounded, Fi is a bounded subset of R for

each i = 1, . . . , n. Moreover, by equicontinuity, for any f, g ∈ F and any x ∈ B(xi, δ/2), we

have

|f(x)− f(y)| = |f(x)− f(xi) + f(xi)− g(xi) + g(xi)− g(x)|

≤ |f(x)− f(xi)|+ |f(xi)− g(xi)|+ |g(xi)− g(x)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

where the second inequality follows from the triangle inequality and the fact that d(x, xi) <
δ/2 and d(xi, yi) < δ/2. Therefore, Fii = 1n is an equicontinuous family of bounded functions
on the metric space B(x1, δ/2) ∪ · · · ∪ B(xn, δ/2), which is a compact metric space since it
is a finite union of compact sets. By the Arzelà-Ascoli theorem for compact metric spaces,
there exists a subsequence fnk of fn such that fnk

|B(x1,δ/2)∪···∪B(xn,δ/2) converges uniformly to
some function f0 on B(x1, δ/2) ∪ · · · ∪B(xn, δ/2). Since δ > 0 was arbitrary, it follows □

Theorem 2.5. (Ascoli-Arzela theorem version II) Let A be a family of functions in

C[K], where K is compact. Then A is compact if and only if A is closed, bounded, and

equicontinuous.

Proof. Assume S is closed, bounded and equicontinuous. By the version I of the ArzelaAscoli

9



2.2. Banach spaces

Theorem, if {fn} is a sequence in S, it has a convergent subsequence. Because S is closed,

the limit of the subsequence must be in S. Thus S is sequentially compact,hence compact.

Conversely, assume S is compact. Then, of course, it is closed and bounded. To see it

is equicontinuous, let ε > 0. There exist then, by compactness, a finite number of functions

f1, . . . , fm ∈ S such that S ⊂ ∪m
k=1B

(
fk,

ε
3

)
. Because we have only a finite number of

functions, there is a common δ > 0 such that |x − y| < δ implies |fk(x)− fk(y)| < ε
3

for all

x, y ∈ [a, b], |x− y| < ε. If now x, y ∈ [a, b] and |x− y| < δ then, if f ∈ S, there will be
(1) Giulio Ascoli (1843-1896) and Cesare Arzela (1847-1912) were both Italian mathemati-

cians k such that f ∈ B
(
fk,

ε
3

)
. Then

|f(x)− f(y)| = |f(x)− fk(x) + fk(x)− fk(y) + fk(y)− f(y)|

≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|

≤ ∥f − fk∥+ |fk(x)− fk(y)|+ ∥fk − f∥ ≤ ε

3
+
ε

3
+
ε

3
= ε.

wich complete the proof of the theorem. □

Theorem 2.6. (PC type-Ascoli-Arzela theorem) Let E be a Banach space and W ⊂

PC(J,E) be such that

(i) W is uniformly bounded subset of PC(J,E),

(ii) W is equicontinuous in (tk, tk+1) , k = 0, 1, 2, · · · ,m, where t0 = 0 and tm+1 = T ,

(iii) W (t) = {u(t) | u ∈ W, t ∈ J\ {t1, · · · , tm}} ,W
(
t+k
)
=
{
u
(
t+k
)
| u ∈ W

}
and W

(
t−k
)
={

u
(
t−k
)
| u ∈ W

}
are relatively compact subsets of E.

Then W is a relatively compact subset of PC(J,E).

10



2.3. Fixed point

2.3 Fixed point

The fixed point theorem is a fundamental concept in mathematics, particularly in the field
of topology. It states that any continuous mapping of a compact topological space into itself
must have at least one fixed point, which is a point that is mapped to itself under the map-
ping.
More formally, let X be a compact topological space, and let f : x → x be a continuous
mapping. Then there exists at least one point x ∈ X such that f(x) = x.

The fixed point theorem has important applications in various areas of mathematics and
its applications, including economics, computer science, and physics. It has been used to
prove the existence of equilibria in economic models, to demonstrate the convergence of
numerical methods for solving equations, and to establish the stability of physical systems.

The fixed point theorem is often attributed to the French mathematician Henri Poincaré,
who first proved a special case of the theorem in 1885. The theorem has since been gener-
alized and extended by many mathematicians, including Banach , Schauder , Schaefer, and
Krasnoselskii.

Definition 2.3.1. Let X be a set and let f : X → X be a function that maps X into itself.

(Such a function is often called an operator, a transformation, or a transform on X, and the

notation T (x) or even Tx is often used). A fixed point of f is an element x ∈ X for which

f(x) = x.

Definition 2.3.2. (Contraction) Let X be a metric space, and f : X → X. We will say

that f is a contraction if there exists some 0 < c < 1 such that d(f(x), f(y)) < cd(x, y) for

all x, y ∈ X. The inf of such c ’s is called the contraction coefficient.

We will also refer to the case c ≤ 1 as being non-expansive.

Theorem 2.7. Every contraction mapping is continuous.

Proof. To prove that every contraction mapping is continuous, we need to show that the

mapping preserves the limit of sequences.

11



2.3. Fixed point

Let’s consider a metric space (X, d) and a contraction mapping f : X → X. By definition,

f is a contraction if there exists a constant 0 ≤ k < 1 such that for any two points x, y ∈ X,

we have:

d(f(x), f(y)) ≤ k · d(x, y)

We want to show that f is continuous, meaning that for any sequence (xn) converging to

a point x in X, the sequence (f(xn)) converges to f(x).

Let (xn) be a sequence in X converging to x. We want to show that (f(xn)) converges to

f(x).

By the definition of convergence, for any ε > 0, there exists N such that for all n ≥ N ,

we have d(xn, x) < ε
2
.

Since f is a contraction, we have:

d(f(xn), f(x)) ≤ k · d(xn, x) (by the contraction property)

For n ≥ N , we have:

d(f(xn), f(x)) ≤ k · d(xn, x) < k · ε
2

Now, let’s consider the sequence (f(xn)). Since k < 1, we can choose N ′ such that k · ε
2
< ε

2

for all n ≥ N ′.

Therefore, for n ≥ max(N,N ′), we have:

d(f(xn), f(x)) <
ε

2
+
ε

2
= ε

This shows that the sequence (f(xn)) converges to f(x) as n goes to infinity.

Hence, we have shown that every contraction mapping is continuous.
□

Theorem 2.8. (Schauder’s fixed point theorem) Assume that K is a convex compact

12



2.3. Fixed point

set in a Banach space X and that T : K → K is a continuous mapping. Then T has a fixed

point.

Proof. (the sketch of the proof of Schauder’s fixed point theorem )

1. Let X be a Banach space and K be a non-empty, compact, convex subset of X. Let

T : K → K be a continuous mapping.

2. Define the sequence of sets An = x ∈ K : ||T (x)− x|| ≤ 1
n

for n ≥ 1.

3. Since K is compact, the intersection of the sequence of sets An is non-empty. Let x0

be an element in the intersection.

4. We will show that x0 is a fixed point of T . Assume for contradiction that T (x0) ̸= x0.

Since T is continuous, there exists an ε > 0 such that ||T (x0) − x0|| ≥ ε. Choose n

large enough so that 1
n
< ε

2
. Then x0 is not in An, since ||T (x0) − x0|| ≥ ε > 1

n
. But

this contradicts the fact that x0 is in the intersection of An for all n.

5. Therefore, x0 is a fixed point of T .

□

Theorem 2.9. (Banach fixed point theorem) Let T : X → X and let X be a complete

metric space. If T is a strict contraction, then Fix T ) consists of exactly one element x.

The following short proof of Banach’s Fixed Point Theorem was given by Richard S. Palais

in 2007; see [7]

Proof. Let α denote the contraction constant of T . Then, according to the triangle inequality,

d (x1, x2) ≤ d (x1, T (x1)) + d (T (x1) , T (x2)) + d (x2, T (x2))

≤ d (x1, T (x1)) + αd (x1, x2) + d (x2, T (x2))

which means that

13



2.3. Fixed point

d (x1, x2) ≤
d (x1, T (x1)) + d (x2, T (x2))

1− α

for all points x1, x2 ∈ X. This inequality immediately implies that T cannot have more

than one fixed point.

Let T n denote the composition of T with itself n times. It is easy to show that T n is a

contraction with contraction constant αn. If we now apply (2.1) to the points x1 = Tm (x0)

and x2 = T n (x0), where x0 ∈ X is arbitrary, we obtain that

d (Tm (x0) , T
n (x0)) ≤

d (Tm (x0) , T
m (T (x0))) + d (T n (x0) , T

n (T (x0)))

1− α

≤ αm + αn

1− α
d (x0, T (x0)) .

Since 0 ≤ α < 1, this implies that the sequence (T n (x0))
∞
n=1 is a Cauchy sequence and

therefore that T n (x0) → x for some x ∈ X. Finally, because T is continuous, T (x) =

T (limn→∞ T n (x0)) = limn→∞ T n+1 (x0) = x, so x is a fixed point of T .

Note that the proof of uniqueness did not require that the space be complete.
□

Theorem 2.10. ((Schaefer’s fixed point theorem) Let E be a Banach space and U ⊂ E

a convex set such that 0 ∈ U . Let T be an operator defined on E such that T : U → U is

completely continuous. If

Ω = {u ∈ U : u = λTu, λ ∈]0, 1[}

is bounded, then T admits at least one fixed point in E.

Proof. By hypothesis, we can choose a constant M so large that

∥x∥ < M if x = λT (x) for some λ ∈ [0, 1]

Define a retraction r : X → B(0;M) by

14



2.3. Fixed point

r(x) =

x if ∥x∥ ≤M

(M/∥x∥)x if ∥x∥ > M

and observe that the composition (r ◦ T ) : B(0;M) → B(0;M) is compact since T is

compact. Let K denote the closed convex hull of (r ◦ T )(B(0;M)). The set K is convex by

definition, and the compactness of r ◦ T implies K is compact. By Schauder’s fixed point

theorem, there exists a fixed point x ∈ K of the restriction (r ◦ T )|K : K → K. We claim

that x is also a fixed point of T . To show this, it is sufficient to prove that T (x) ∈ K.

Suppose not. Then ∥T (x)∥ > M and

x = r(T (x)) =
M

∥T (x)∥
T (x)

which implies

∥x∥ =

∥∥∥∥ M

∥T (x)∥
T (x)

∥∥∥∥ =M

On the other hand, M/∥T (x)∥ ∈ (0, 1), so our choice of M and (2.2) also imply ∥x∥ < M ,

a contradiction.
Two main results of fixed-point theory are Schauder’s theorem and the contraction map-

ping principle. Krasnoselskii combined them into the following result. □

Theorem 2.11. (Krasnoselskii fixed point theorem) Let S be a closed convex nonempty

subset of a Banach space E. Let P and Q be two operators satisfying the following conditions:

1. Px+Qy ∈ S whenever x, y ∈ S,

2. P is a contraction mapping,

3. Q is compact and continuous.

Then there exist z ∈ S such that z = Pz + Qz, i.e., the operator P + Q admits a fixed

point on S.
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2.3. Fixed point

Proof. Let T = P+Q be the operator we are interested in. Since P is a contraction mapping,

it has a unique fixed point z0 ∈ S. Our goal is to show that T also has a fixed point in S.

Consider the sequence zn defined by zn = T nz0, where n ∈ N. We claim that zn is a

Cauchy sequence in E.

To see why, note that for any m > n, we have

|zm − zn| = |Tmz0 − T nz0|

= |(P +Q)mz0 − (P +Q)nz0|

= |Pmz0 − P nz0 +Qmz0 −Qnz0 +
m−n−1∑
k=1

Pm−kQkz0|

≤ |Pmz0 − P nz0|+ |Qmz0 −Qnz0|+
m−n−1∑
k=1

|Pm−kQkz0|

≤ Ln|Pm−nz0 − z0|+ |Qmz0 −Qnz0|+K
m−n−1∑
k=1

rm−k|z0|

≤ Ln|Pm−nz0 − z0|+ ε+K|z0|
∞∑
k=1

rk

= Ln|Pm−nz0 − z0|+ ε+
Kr

1− r
|z0|,

where L < 1 is the Lipschitz constant of P , K is a constant bounding the norm of Q, r is

the compactness constant of Q, and ε > 0 is arbitrary. Since P is a contraction mapping, it

follows that ∥Pm−nz0 − z0∥ ≤ Lm−n∥z0 − Pz0∥. Thus, we have

∥zm − zn∥ ≤ LnLm−n∥z0 − Pz0∥+ ε+
Kr

1− r
∥z0∥

= Lm∥z0 − Pz0∥+ ε+
Kr

1− r
∥z0∥.

Since L < 1, we have limn→∞ Ln = 0, and thus {zn} is a Cauchy sequence in E. Since

E is complete, there exists some z ∈ E such that limn→∞ zn = z. We claim that z is a fixed

point of T in S. To see why, note that S is a closed convex set .
□
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2.4. Fractional Calculus

Lemma 2.1. (Gronwall inequality) Let t ≥ t0 ≥ 0 and consider the following inequality:

x(t) ≤ a(t) + b

∫ t

t0

x(s) ds+
∑

t0<tk<t

βkx(tk),

where x, a ∈ PC([t0,∞),R+), a is nondecreasing, and b, βk > 0. Then, for t ≥ t0, the

following inequality holds:

x(t) ≤ a(t)
∏

t0<tk<t

(1 + βk) exp

(∫ t

t0

b(s) ds

)
.

For more integral inequalities of Gronwall type for piecewise continuous functions, see [5]

[3]

2.4 Fractional Calculus

Fractional calculus is a branch of mathematics that deals with the generalization of differ-
entiation and integration to non-integer orders. It extends the concepts of calculus, which
traditionally operate on integer orders, to include fractional and complex orders.

The key idea behind fractional calculus is the notion of fractional derivative and integral.
A fractional derivative of order α is defined as the inverse operation of fractional integration
of the same order α . In other words, if we apply a fractional derivative to a function
and then perform a fractional integral of the same order, we should recover the original
function. Fractional derivatives and integrals have various interpretations and applications
in mathematics, physics, engineering, and other fields.

One common interpretation of fractional derivatives is in terms of rates of change of a
function with respect to a non-integer order. For example, a first-order derivative represents
the rate of change of a function over unit time, while a fractional derivative of order 1/2
represents the rate of change over a fractional time interval. Similarly, fractional integrals
generalize the notion of integration to include non-integer orders, representing the accumu-
lation of a function over a fractional time interval.

Fractional calculus has several notable properties and applications. Some of the key
features include:

17



2.4. Fractional Calculus

1. Non-locality: Fractional derivatives and integrals capture non-local properties of func-
tions, meaning that the value of a fractional derivative or integral at a specific point de-
pends on the behavior of the function in its entire domain. This non-locality makes frac-
tional calculus useful for describing phenomena with long-range interactions or memory
effects.

2. Fractional differential equations: Fractional calculus provides a framework for formulat-
ing and solving fractional differential equations, which involve fractional derivatives of
unknown functions. Fractional differential equations have found applications in diverse
areas such as physics, biology, finance, and control systems.

3. Fractal and multifractal analysis: Fractional calculus plays a crucial role in the study
of fractals and multifractals. It provides a mathematical tool to describe the irregular

behavior and self-similarity of complex geometric and physical structures.

4. Signal processing: Fractional calculus has applications in signal processing and time
series analysis. Fractional derivatives and integrals can be used to model and analyze
signals with non-linear and non-local characteristics.

5. Fractional dynamics: Fractional calculus extends the classical theory of dynamical
systems by incorporating fractional derivatives. It enables the modeling and analysis
of complex systems exhibiting anomalous diffusion, long-term memory, and power-law
behaviors.

6. Mathematical foundations: Fractional calculus also has implications for the foundations
of mathematics. It bridges the gap between discrete and continuous mathematics,
providing a continuum of derivative orders between integer values.

Overall, fractional calculus provides a powerful mathematical tool for describing and ana-
lyzing systems and phenomena that exhibit non-local, non-linear, and memory-dependent
behavior. Its applications span a wide range of fields and have contributed to the under-
standing of complex systems in science and engineering.
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2.4. Fractional Calculus

2.4.1 Gamma function

Definition 2.4.1. The Euler’s Γ function is defined by ;

Γ(α) =

∫ +∞

0

xα−1e−xdx,

such that : Re(α) > 0.

2.4.2 fractional integral

The Riemann-Liouville fractional integral is a generalization of the ordinary integral that
allows for a notion of integration with non-integer exponents. It is defined for a continuous
function f on an interval [a, b] and a complex parameter α with Re(α) > 0.

Definition 2.4.2. The fractional integral of order α of the function f in the Riemann-

Liouville sense is given by the following formula:

Iαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

where Γ(α) is the complex gamma function. The integral is computed over the interval

[a, x], and the integrand (x− t)α−1f(t) is weighted by the term (x− t)α−1 and integrated with

respect to t.

This definition extends the notion of integration to non-integer exponents, allowing for

the exploration of new properties and applications in mathematics and the sciences.

Note: This also holds true for ]a, b[, if either a or b are infinite (a = −∞, b = +∞).

2.4.3 Caputo fractional derivative

Definition 2.4.3. Let n− 1 < Re(α) < n, where n ∈ N∗ and x ∈ Cn([a, b]), (−∞ ≤ a < b ≤

+∞); a finite or infinite interval of R. The Caputo fractional derivative of order α of the

function f is defined as follows:

C
aD

α
t x(t) =

t

Γ(1− α)

d

dt

∫ t

a

(t− τ)−α x
′
(τ)dτ
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2.4. Fractional Calculus

2.4.4 Hadamard fractional integral

The Hadamard fractional integral, also known as the Hadamard fractional integral of order
α, is a generalization of the integral operator that extends the concept of integration to
non-integer orders. It is named after the French mathematician Jacques Hadamard.

Definition 2.4.4. Let x be a continuous function on ]a, b[, where 0 ≤ a < b ≤ +∞. Consider

an interval, either finite or infinite, in R+, where Re(α) > 0, and let µ ∈ C. The fractional

integral of order α, in the sense of Hadamard, of the function x is defined as:

HIαa+x(t) =
1

Γ(α)

∫ t

a

(
ln
t

τ

)α−1
x(τ)

τ
dτ

where a < t < b.

and the right one is defined by

HIαb−x(t) =
1

Γ(α)

∫ b

t

(
ln
t

τ

)α−1
x(τ)

τ
dτ

2.4.5 Hadamard fractional derivative

The Hadamard fractional derivative, also known as the Hadamard fractional derivative of or-
der α, is a generalization of the derivative operator that extends the concept of differentiation
to non-integer orders. It is named after the French mathematician Jacques Hadamard.

Definition 2.4.5. The Hadamard fractional derivative of a function x(t) of order α, denoted

by H
tD

α
ax(t), is defined as follows:

H
tD

α
ax(t) =

t

Γ(1− α)

d

dt

∫ t

a

(
ln
t

τ

)−α
x(τ)

τ
dτ

Here, Γ(1− α) is the gamma function evaluated at 1− α,

The Hadamard fractional derivative provides a way to differentiate a function to non-
integer orders, allowing for a more flexible and nuanced understanding of the rate of change
of a function. It has applications in various fields, such as fractional calculus, physics, and
signal processing.
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2.4. Fractional Calculus

2.4.6 Caputo–Hadamard fractional derivative

The Caputo-Hadamard fractional derivative of order α is a generalization of the classical
derivative to non-integer orders. It is denoted as CHaDα

t x(t), where 0 < α ≤ 1.

Definition 2.4.6. The derivative is defined as follows:

CH
aD

α
t x(t) =

1

Γ(1− α)

∫ t

a

(
ln
t

τ

)−α

x
′
(τ)dτ

where a is the lower limit of integration and x > a. The integral in the definition is taken in

the Cauchy principal value sense.

The Caputo-Hadamard fractional derivative combines the concepts of the classical deriva-
tive and the Hadamard fractional integral, and it is widely used in fractional calculus

to model and analyze various phenomena in science and engineering involving fractional
order dynamics.

Definition 2.4.7. Let a,b be two reals with 0 < a < b .and x : [a, b] −→ R be a function.

The right Caputo–Hadamard fractional derivative of order α(t)

1. Type 1 derivative: The type 1 derivative of x(t) is given by:

tD
α(t)
b x(t) =

−1

Γ(1− α(t))

∫ b

t

(
ln
τ

t

)−α(t)

x
′
(τ)dτ

2. Type 2 derivative: The type 2 derivative of x(t) is given by:

tD
α(t)
b x(t) =

−t
Γ(1− α(t))

(
d

dt

)∫ b

t

(
ln
τ

t

)−α(t) x(τ)− x(b)

τ
dτ.

3. Type 3 derivative: The type 3 derivative of x(t) is given by:

tD
α(t)
b x(t) = −t d

dt

(
1

Γ(1− α(t))

∫ b

t

(
ln
τ

t

)−α(t) (x(τ)− x(b)

τ
dτ

)
.

To show that these derivatives do not coincide, we can construct a counterexample. By
carefully choosing a function x(t) and a time-dependent order α(t), we can calculate the
derivatives using the above definitions and observe that they yield different results.
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2.4. Fractional Calculus

This concludes the proof of the lemma, which shows that the type 1, type 2, and type 3
Caputo-Hadamard fractional derivatives of order α(t) do not coincide. see [1]

Proposition 2.1. Let Re(α) > 0, n = [Re(α)] + 1, f ∈ Cn([a, b]), 0 < a < b < +∞ :

HIαa (
CH

aD
α
t )f(x) = f(x)−

n−1∑
j=0

δjf(a)

j!

(
log

x

a

)j
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Chapter 3

Existence and Ulam stability of Solution

for Some Backward Impulsive

Differential Equations on Banach Spaces

3.1 Introduction

Impulsive differential equations provide a suitable mathematical framework for describing
processes that undergo sudden changes in their state at specific moments, while evolving
continuously between these intervals. These changes are often considered to be instantaneous
or in the form of impulses since their duration is negligible compared to the overall process.
Impulsive differential equations accommodate these discontinuities in the state evolution
and are commonly used in various fields such as physics, chemical technology, population
dynamics, aeronautics, biotechnology, chemotherapy, optimal control, ecology, economics,
and engineering.

Typically, the initial conditions for differential equations are given in a forward manner,
starting at t = 0. However, for certain classes of problems where the initial state set is
unknown, it may be more convenient to consider backward initial conditions at t = T .
This approach is particularly significant in various physical domains. An example of such a
problem is the backward heat problem (BHP), also known as the final value problem. For
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3.1. Introduction

its application in stochastic differential equations, refer to [4].
In this paper, we address the lack of results regarding the existence and stability of

solutions for backward impulsive differential equations in Banach spaces. We propose a
method based on well-known classical fixed point theorems to investigate the problem of
solution existence and Ulam stability for these equations.

The backward impulsive differential equations considered in this paper are given by:
u′(t) = f(t, u(t)), t ∈ J = [0, T ], t ̸= tk

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

u(T ) = uT

(3.1)

Here, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T , and ∆u|t=tk
represents the jump of the

function u at tk. The functions Ik : R → R, for k = 1, 2, . . . , n, are appropriate functions,
and f : J × R −→ R is a nonlinear real function.

Our method of study is to convert the initial value problem (3.1) into an equivalent integral
equation and apply classical fixed point theorems such as Schaefer, Banach, or Krasnoselskii
fixed point theorems. By doing so, we prove the existence of a unique solution or at least
one solution to this problem, considering both local and nonlocal conditions.

Furthermore, we consider a nonlocal problem given by:
u′(t) = f(t, u(t)), t ∈ J = [0, T ], t ̸= tk, k = 1, · · · ,m
∆u|t=tk

= Ik
(
u
(
t−k
))
, k = 1, · · · ,m

u(T )− g(u) = uT

(3.2)

In this case, g : PC(J,R) → R is a continuous function, and the functions f and Ik are
defined as in the previous paragraph.

Nonlocal conditions have been previously investigated by Byszewski and Lakshmikantham
[8]. They used the Banach fixed point theorem to obtain conditions for the existence and
uniqueness of mild solutions to nonlocal differential equations. Byszewski [2] also proved the
existence and uniqueness of mild and classical solutions for nonlocal Cauchy problems.

Our paper contributes to the study of backward impulsive differential equations by provid-
ing results on the existence and stability of solutions under local and nonlocal conditions. We
utilize classical fixed point theorems and build upon previous research on nonlocal conditions
in differential equations.
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3.2.Existence results

In 1999, Byszewski[3] derived conditions for the existence and uniqueness of a classical
solution to a class of abstract functional differential equations with nonlocal conditions. The
equation can be written as:{

u′(t) = f(t, u(t), u(a(t))), t ∈ I,

u(t0) +
∑p

k=1 cku(tk) = x0,
(3.3)

Here, I := [t0, t0 + T ], where t0 < t1 < . . . < tp ≤ t0 + T , T > 0. The functions
f : I × E2 → E and a : I → I are given, E is a Banach space, x0 ∈ E, ck ̸= 0 for
k = 1, 2, . . . , p, and p ∈ N.

The author noted that if ck ̸= 0 for all k = 1, 2, . . . , p, then the results of the paper can
be applied in kinematics to determine the evolution t → u(t) of a physical object when the
positions u(0), u(t1), . . . , u(tp) are unknown, but the nonlocal condition holds.

To verify the Ulam stability, one can follow the approach presented by J. R. Wang et al.
[8]. Unfortunately, without specific details or additional information regarding the paper by
J. R. Wang et al., it is not possible to provide further insights on the specific method or steps
involved in checking the Ulam stability.see [6]

3.2 Existence of Solutions

In this section, we present the main results concerning the existence of a solution to the
problem (3.1) . We discuss the conditions under which this problem has exactly one solution
or at least one solution. see

In our study of the problem (3.1) , we will make use of the following assumptions:
(A1) The function f : J × R −→ R is continuous.
(A2) There exists a positive constant λ such that for any t ∈ [0, T ] and x, y ∈ R,

|f(t, x)− f(t, y)| ≤ λ|x− y|
(A3) There exists a positive constant θ such that |f(t, x)| < θ for any t ∈ [0, T ] and

x ∈ R.
(A4) |f(t, x)| ≤ r for any t ∈ [0, T ] and x ∈ Br, r ∈ R+.
(A5) There exists a constant µ > 0, such that |Ik(x)− Ik(y)| ≤ µ|x−y| for any x, y ∈ R,

k = 1, . . . ,m.
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3.2.Existence results

(A6) The functions Ik : R → R are continuous and there exists a positive constant γ
such that |Ik(x)| < γ for any x ∈ R, k = 1, . . . ,m.

A function u ∈ PC(J,R) will be called a solution to (4.1) if its derivative exists on J ′ =

J − {tk, k = 1, 2, 3, . . . , n} and u satisfies the equation

u′(t) = f(t, u(t)), t ∈ J ′

and the conditions

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m,

u(T ) = uT .

Lemma 3.1. A function u is a solution to the integral equation:

u(t) = uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
−
∫ T

t

h(s)ds (3.4)

for t ∈ (tm−k, tm−k+1) , k = 0, . . . ,m, if and only if u is a solution of the backward impul-

sive equation:


u′(t) = h(t), t ∈ J = [0, T ], t ̸= tk,

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m,

u(T ) = uT

(3.5)

Proof. Assume u satisfies (4.4). Then for t ∈ (tm, T ), we have

u(t) = uT −
∫ T

tm

h(s)ds+

∫ t

tm

h(s)ds.

We will proceed by induction on m. For t ∈ (tm−1, tm), we can write

u(t) = u
(
t−m
)
−
∫ tm

tm−1

h(s)ds+

∫ t

tm−1

h(s)ds

= −△ (u (tm)) + u
(
t+m
)
−
∫ tm

tm−1

h(s)ds+

∫ t

tm−1

h(s)ds

= −Im
(
u
(
t−m
))

+ uT −
∫ T

tm

h(s)ds−
∫ tm

tm−1

h(s)ds+

∫ t

tm−1

h(s)ds.
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3.2.Existence results

Further, for any k = 0, 1, . . . ,m and t ∈ (tm−k, tm−k+1), we obtain

u(t) = uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
−

k∑
p=0

∫ tm−p+1

tm−p

h(s)ds+

∫ t

tm−k

h(s)ds

= uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
−
∫ T

tm−k

h(s)ds+

∫ t

tm−k

h(s)ds

= uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
−
∫ T

t

h(s)ds.

Conversely, assume that u satisfies the impulsive integral equation (4.3). If t ∈ (tm, T ),

then u(T ) = uT . If t ∈ (tm−k, tm−k+1) , k = 0, . . . ,m, by differentiation (4.3), we get

u′(t) = h(t)

It remains to note that

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

□

Theorem 3.1. Assume that the conditions(A1), (A2) and (A5) are verified and

mµ+ λT < 1 (3.6)

Then the problem (3.1) has a unique solution in PC(J,R).

Proof. To transform problem (3.1) into a fixed point problem, we define the operator F :

PC(J,R) → PC(J,R) as:

F (u)(t) = uT −
∑

t<tk<T

Ik(u(t
−
k ))−

∫ T

t

f(s, u(s))ds,

where PC(J,R) denotes the space of piecewise continuous functions on the interval J ,

and Ik represents a given operator.
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If the operator F has a fixed point, then it corresponds to a solution of problem (3.1).

Let u, v ∈ PC(J,R). For any t ∈ J , we have:

|F (u)(t)− F (v)(t)| ≤
∑

t<tk<T

∣∣Ik(u(t−k ))− Ik(v(t
−
k ))
∣∣

+

∫ T

t

|f(s, u(s))− f(s, v(s))|ds

≤ µ
∑

t<tk<T

|u(t−m−p)− v(t−m−p)|

+ λ

∫ T

t

|u(s)− v(s)|ds

≤ mµ|u(t)− v(t)|+ λT |u(t)− v(t)|

= (mµ+ λT )|u(t)− v(t)|.

By inequality (3.6), we know that F is a contraction. Therefore, by the Banach contrac-

tion principle, F possesses a unique fixed point, which corresponds to a solution of problem

(3.1).
The above argument establishes the existence and uniqueness of a solution to problem

(3.1) based on Schaefer’s fixed point theorem. It provides sufficient conditions for the exis-
tence of at least one solution to the problem. □

Theorem 3.2. If the conditions (A1),(A2) and (A4)-(A6) are satisfied, then the problem

(3.1). has at least one solution in PC(J,R).

Proof. For the sake of convenience, the proof of this result is divided into four steps.

Step1: The operator F is continuous. Let (un) be such a sequence that un → u on J .

Then, for all t ∈ [0, T ],

|F (un) (t)− F (u)(t)| ≤
∑

t<tk<T

∣∣Ik (un (t−k ))− Ik
(
u
(
t−k
))∣∣

+

∫ T

t

|f (s, un(s))− f(s, u(s))| ds.

Since f and Ik, k = 1, . . . ,m, are continuous functions, we have
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∥Fun − Fu∥∞ → 0 as n→ ∞

which implies that F is continuous.

Step2: F maps bounded sets into bounded sets in PC(J,R). For all u ∈ Br, we have

|Fu(t)| =

∣∣∣∣∣uT −
∑

t<tk<T

Ik
(
u
(
t−k
))

−
∫ T

t

f(s, u(s))ds

∣∣∣∣∣
≤ |uT |+

∣∣∣∣∣ ∑
t<tk<T

Ik
(
u
(
t−k
))∣∣∣∣∣+

∣∣∣∣∫ T

t

f(s, u(s))ds

∣∣∣∣
≤ |uT |+

∑
t<tk<T

∣∣Ik (u (t−k ))∣∣+ ∫ T

t

|f(s, u(s))|ds

≤ |uT |+
∑

t<tk<T

∣∣Ik (u (t−k ))∣∣+ r

∫ T

t

ds

≤ |uT |+mγ + rT = ρ.

Hence, the operator F maps the bounded set Br into the bounded set Bρ.

Step3: F maps bounded sets into the equicontinuous sets of PC(J,R). Let τ1, τ2 ∈

[0, T ], tk < τ1 < τ2 < tk+1, k = 0, 1, . . . ,m− 1, and let u ∈ Br. Then

|F (u) (τ2)− F (u) (τ1)| ≤
∑

τ1<tk<τ2

∣∣Ik (u (t−k ))∣∣
+

∫ τ2

τ1

|f(s, u(s))|ds =
∫ τ2

τ1

|f(s, u(s))|ds.

The right-hand side of this inequality tends to zero when τ1 tends to τ2. By the precedent

steps, together with the Ascoli-Arzela theorem, we conclude that F is equicontinuous on

interval [tk, tk+1]

Thus, by the PC-type Arzela-Ascoli theorem, we conclude that F : Br → Bρ is continuous

and completely continuous.

Step4: The set Ω = {u ∈ PC(J,R) : u = λF (u), 0 < λ < 1} is bounded. Since for any

u ∈ Ω, we have u = λF (u) for some 0 < λ < 1, for all t ∈ [0, T ], we can write
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3.3. Nonlocal Backward Impulsive Differential Equations

|u(t)| = λ

∣∣∣∣∣uT −
∑

t<tk<T

Ik
(
u
(
t−k
))

−
∫ T

t

f(s, u(s))ds

∣∣∣∣∣
≤ |uT |+

∣∣∣∣∣ ∑
t<tk<T

Ik
(
u
(
t−k
))∣∣∣∣∣+

∫ T

t

|f(s, u(s))|ds

≤ |uT |+
∑

t<tk<T

∣∣Ik (u (t−k ))∣∣+ |f(t, u(t))|
∫ T

t

ds

≤ |uT |+mγ + θT.

This proves that Ω is bounded. Hence, by the Schaefer’s fixed point theorem, F has a

fixed point which is a solution to the problem (3.1).
□

3.3 Nonlocal Backward Impulsive Differential Equations

Our objective in this section is to generalize the results obtained for local impulsive differen-
tial equations and adapt them to the nonlocal case. We will explore the impact of nonlocal
impulses on the stability, existence, uniqueness, and other properties of solutions for these
equations. By doing so, we aim to provide a comprehensive understanding of nonlocal im-
pulsive differential equations and their behavior. Let us introduce the following assumptions:

(A7) There exists a positive constant C such that |g(x)−g(y)| ≤ C∥x−y∥ for any x, y ∈
PC(J,R)

(A8) There exists a positive constant κ such that |g(u)| ≤ κ for any function u ∈
PC(J,R).

The equation (3.2). is equivalent to the following integral equation

u(t) = uT + g(u(t))−
∑

t<tk<T

Ik
(
u
(
t−k
))

−
∫ T

t

f(s, u(s))ds

Theorem 3.3. ssume that the conditions(A1), (A2), and(A5) are satisfied, and

C +mµ+ λT < 1 (3.7)
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3.3. Nonlocal Backward Impulsive Differential Equations

Then the problem (3.2) has a unique solution in PC(J,R).

Proof. Consider the operator F : PC(J,R) → PC(J,R) defined by

F (u)(t) = uT + g(u(t))−
∑

t<tk<T

Ik
(
u
(
t−k
))

−
∫ T

t

f(s, u(s))ds

First, we show that F is a contraction. Let u, v ∈ PC(J,R). Then, for each t ∈ J , we

have

|F (u)(t)− F (v)(t)| ≤ |g(u(t))− g(v(t))|

+
∑

t<tk<T

∣∣Ik (u (t−k ))− Ik
(
v
(
t−k
))∣∣

+

∫ T

t

|f(s, u(s))− f(s, v(s))|ds

≤ C|u(t)− v(t)|+ µ
∑

t<tk<T

∣∣u (t−m−p

)
− v

(
t−m−p

)∣∣
+ λ

∫ T

t

|u(s)− v(s)|ds

≤ C|u(t)− v(t)|+mµ|u(t)− v(t)|

+ λT |u(t)− v(t)|

= (C +mµ+ λT )|u(t)− v(t)|

Hence, by (3.6), F is a contraction. Then, by the Banach contraction principle, we deduce
that F has a unique fixed point which is a solution to the problem (3.2). □

Theorem 3.4. If (A1),(A3) and (A6)-(A8) are satisfied and C < 1, then the problem

(4.2) has at least one solution in PC(J,R).

Proof. Let

r ≥ |uT |+ κ

1− (mγ + θT )
(3.8)

and define the operators P and Q on the compact set Br ⊂ PC(J,R) by
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3.4.Ulam stability

Pu(t) = uT + g(u(t)),

Qu(t) = −
∑

t<tk<T

Ik
(
u
(
t−k
))

−
∫ T

t

f(s, u(s))ds.

For all u ∈ Br, we have

|Pu(t)| = |uT + gu(t)| ≤ |uT |+ |gu(t)| ≤ |uT |+ κ ≤ r(1− (mγ + θT )) ≤ r.

Hence, the operator P maps Br into itself. Further, for all u, v ∈ PC(J,R), we can write

|Pu(t)− Pv(t)| = |gu(t)− gv(t)| ≤ C|u(t)− v(t)|

and hence, the operator P satisfies the contraction property. Since

|Qv(t)| ≤
∑

t<tk<T

∣∣Ik (v (t−k ))∣∣+ ∫ T

t

|f(s, v(s))|ds

≤ (mγ + θT )|v(t)|,

we can write

|Pu(t) +Qv(t)| ≤ |Pu(t)|+ |Qv(t)|

≤ |uT |+ κ+ (γm+ θT )|v(t)|

≤ |uT |+ κ+ (mγ + θT )r

≤ r.

Therefore, if u, v ∈ Br, then Pu + Qv ∈ Br. By (A1), Q is continuous and by the
inequality (3.8), it is uniformly bounded on Br. The equicontinuity of Qv(t) follows from
Theorem 3.2 . Hence, by the Arzela Ascoli theorem, Q (Br) is relatively compact, which
implies that Q is compact. Therefore, using Krasnoselskii theorem, we conclude that there
exists a solution to the equation (3.2). □
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3.4 Ulam stability

In 1940, the stability of functional equations was originally raised by Ulam at Wisconsin
University. The problem posed by Ulam was the following: “Under what conditions does
there exist an additive mapping near an approximately additive mapping”? . The first
answer to the question of Ulam was given by Hyers in 1941 in the case of Banach spaces.
Thereafter, this type of stability is called the Ulam–Hyers stability. In 1978, Rassias provided
a remarkable generalization of the Ulam–Hyers stability of mappings by considering variables.
As a matter of fact, the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability have
been taken up by a number of mathematicians and the study of this area has grown to be
one of the central subjects in the mathematical analysis area. For more details on the recent
advances on the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability of differential
equations. However, to the best of our knowledge, Ulam’s type stability results of impulsive
ordinary differential equations .

In this section, we study the Ulam stability of the solution to the problem (3.1).
Now, we introduce Ulam’s type stability concepts for the equation (3.1). Let ε > 0, ψ ≥ 0

and φ ∈ PC (J,R+)is nondecreasing. Consider the following inequalities:{
|y′(t)− f(t, y(t))| ≤ ε, t ∈ J ′,

|∆y|t=tk − Ik
(
y
(
t−k
))

|≤ ε, k = 1, · · · ,m,
(3.9)

{
|y′(t)− f(t, y(t))| ≤ φ(t), t ∈ J ′,

|∆y|t=tk − Ik
(
y
(
t−k
))

|≤ ψ, k = 1, · · · ,m,
(3.10)

and {
|y′(t)− f(t, y(t))| ≤ εφ(t), t ∈ J ′,

|∆y|t=tk − Ik
(
y
(
t−k
))

|≤ εψ, k = 1, · · · ,m.
(3.11)

Definition 3.4.1. Equation (3.1) is Ulam-Hyers stable if there exists a real number cf,m > 0

such that for each ε > 0 and for each solution y ∈ PC1(J,R) of the inequality (3.9), there

exists a solution u ∈ PC1(J,R) of the equation(3.1) with

|y(t)− u(t)| ≤ cf,mε, t ∈ J ′
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3.4.Ulam stability

Definition 3.4.2. Equation (3.1) is generalized Ulam-Hyers stable if there exists θf,m ∈

C (R+,R+), θf,m(0) = 0 such that for each solution y ∈ PC1(J,R) of the inequality (3.9),

there exists a solution u ∈ PC1(J,R) of the equation (3.1) with

|y(t)− u(t)| ≤ θf,m(ε), t ∈ J ′

Definition 3.4.3. Equation (3.1) is Ulam-Hyers-Rassias stable with respect to (φ, ψ) if there

exists cf,m,φ > 0 such that for each ε > 0 and for each solution y ∈ PC1(J,R) of the inequality

(3.11), there exists a solution u ∈ PC1(J,R) of the equation (3.1) with

|y(t)− u(t)| ≤ cf,m,φε(φ(t) + ψ), t ∈ J ′

Definition 3.4.4. Equation (3.1) is said to be generalized Ulam-Hyers-Rassias stable with

respect to (φ, ψ) if there exists cf,m,φ > 0 such that for each solution y ∈ PC1(J,R) of

inequality (3.10), there exists a solution u ∈ PC1(J,R) of equation (3.1) with

|y(t)− u(t)| ≤ cf,m,φ(φ(t) + ψ), t ∈ J ′

Proposition 3.1. A function y ∈ PC1(J,R) is a solution of inequality (3.9) if and only if

there is g ∈ PC(J,R) and a sequence gk, k = 1, 2, . . . ,m (which depend on y ) such that

(i) |g(t)| ≤ ε, t ∈ J and |gk| ≤ ε, k = 1, 2, . . . ,m

(ii) y′(t) = f(t, y(t)) + g(t), t ∈ J ′

(iii) ∆y (tk) = Ik
(
y
(
t−k
))

+ gk, k = 1, 2, . . . ,m. Proposition 4.12 If y ∈ PC1(J,R) is a

solution of inequality (3.9), then y is a solution of the following inequality

∣∣∣∣∣y(t)− uT +
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

∫ T

t

f(s, y(s))ds

∣∣∣∣∣ ≤ (m+ t− T )ε, t ∈ J ′

Proof. Indeed, by proposition[? ], we have

 y′(t) = f(t, y(t)) + g(t), t ∈ J ′

∆y (tk) = Ik
(
y
(
t−k
))

+ gk, k = 1, 2, . . . ,m
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Then, for t ∈ (tm−k, tm−k+1) and k = 0, . . . ,m.

y(t) = uT −
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
−

k−1∑
p=0

gi

−
∫ T

t

f(s, y(s))ds−
∫ T

t

g(s)ds

From here it follows that

∣∣∣∣∣y(t)− uT +
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

∫ T

t

f(s, y(s))ds

∣∣∣∣∣
≤

m∑
i=1

|gi|+
∫ T

t

|g(s)|ds ≤ mε+ ε

∫ t

T

ds

≤ mε− εT + εt = (m+ t− T )ε

Similar remarks or propositions hold true for the solutions of the inequalities (3.10) and

(3.11).
Note that the Ulam stabilities of the impulsive differential equations are some special

types of data dependence of the solutions of impulsive differential equations. □

Theorem 3.5. Let the assumptions (A1), (A2) and (A5) hold and suppose there exists

λφ > 0 such that

∫ T

t

φ(s)ds ≤ λφφ(t)

for each t ∈ J where φ ∈ PC1 (J,R+)is nondecreasing. Then the equation (3.1) is

generalized Ulam-Hyers-Rassias stable with respect to (φ, ψ).

Proof. Let y ∈ PC1(J,R) be a solution to the inequality (3.10). Denote by u the unique

solution of the backward impulsive problem


u′(t) = f(t, u(t)), t ∈ J ′ = [0, T ], t ̸= tk

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

u(T ) = uT
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Then we have

u(t) = uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
−
∫ T

t

f(s, u(s))ds,

where t ∈ (tm−k, tm−k+1) for k = 0, . . . ,m. Differentiating the inequality (3.10) (see

Proposition 4.12), for each t in (tm−k, tm−k+1), we obtain

∣∣∣∣∣y(t)− uT +
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

∫ T

t

f(s, y(s))ds

∣∣∣∣∣ ≤
m∑
i=1

|gi|+
∫ T

t

φ(s)ds

≤ mψ + λφφ(t) ≤ (φ(t) + ψ) (λφ +m) .

Hence, for each t ∈ (tm−k, tm−k+1) and k = 0, . . . ,m, we can write

|y(t)− u(t)| ≤

∣∣∣∣∣y(t)− uT +
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

∫ T

t

f(s, y(s))ds

∣∣∣∣∣
+

k−1∑
p=0

∣∣Im−p

(
y
(
t−m−p

))
− Im−p

(
u
(
t−m−p

))∣∣
+

∫ T

t

|f(s, y(s))− f(s, u(s))|ds

≤ (φ(t) + ψ) (λφ +m) +
k−1∑
p=0

µk

∣∣(y (t−m−p

))
−
(
u
(
t−m−p

))∣∣
≤
∫ T

t

|y(s)− u(s)|ds.

Finally, by Lemma 2.24, we obtain

|y(t)− u(t)| ≤ (φ(t) + ψ) (λφ +m)
∏

t<tk<T

(1 + µk) exp(λ(T − t))

Thus, equation (3.1) is generalized Ulam-Hyers-Rassias stable with respect to (φ, ψ). □

Remark 3.6. Using the approach developed in , one can prove the validity of the following

statements.
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3.4.Ulam stability

1. Under the assumptions of Theorem 4.13, if we consider the equation (3.1) and inequality

(3.9), by the same process we can verify that the equation (3.1) is Ulam-Hyers stable.

2. Under the assumptions of Theorem 4.13, if we consider the equation (3.1) and in-

equality(3.11), we can use the same process to verify that the equation (3.1) is Ulam-

HyersRassias stable with respect to (φ, ψ).

3. The above results can be extended to the case of the equation(3.2).
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3.5 Applications

Exemple 3.7. Let’s analyze the stability of the given example:


u′(t) = 0, t ∈ J ′ = [0, 2]− {1},

∆u|t=1 = sin(u(1))

u(2) = 3

(3.12)

To study the stability, we’ll assume that there exists a solution y to the impulsive differ-

ential equation with the following inequalities:

 |y′(t)| ≤ ε, t ∈ J ′ = [0, 2]− {1},

|∆y|t=1 − sin(y(1)) |≤ ε, ε > 0.
(3.13)

Now, let’s find an expression for y(t). Since u′(t) = 0, we have u(t) = c for some constant
c. Using the initial condition u(2) = 3, we find that c = 3. Therefore, u(t) = 3 for all
t ∈ [0, 2].

Now, let’s compare y(t) with u(t):

|y(t)− u(t)| = |y(t)− 3|.

Since y(t) is a solution to the impulsive differential equation, it satisfies the inequali-
ties:

|y′(t)| ≤ ε, t ∈ J ′ = [0, 2]− {1},

|∆y|t=1 − sin(y(1))| ≤ ε.

Taking t = 1, we have:

|y(1)− 3| = |∆y|t=1 − sin(y(1))|| ≤ ε.

Since ε is a positive constant, we can conclude that |y(t) − 3| ≤ ε for all t ∈ [0, 2].
Therefore, the solution y(t) is stable with respect to the given inequalities.
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To further analyze the stability, let’s consider the function g(t) = y′(t). Since y′(t) =
g(t), we have g(t) = 0 for t ∈ J ′ = [0, 2]− {1}.

Using the impulsive boundary condition ∆y|t=1 = sin(y(1)), we can write sin(y(1)) =

g(1).
Now, let’s integrate the equation y′(t) = g(t) from t to 2:

y(t) = y(2)−
∫ 2

t

g(s)ds.

Using the initial condition y(2) = 3, we have:

y(t) = 3−
∫ 2

t

g(s)ds.

Next, we consider the solution u(t) of the equation u′(t) = 0 with the boundary
condition ∆u|t=1 = sin(u(1)).

Since u′(t) = 0, we have u(t) = c for some constant c. Using the boundary condition
∆u|t=1 = sin(u(1)), we find:

sin(u(1)) = u(1)− u(1−),

which simplifies to sin(u(1)) = u(1)− c. Rearranging the terms, we get:

c = u(1)− sin(u(1)).

Therefore, the solution u(t) is given by:

u(t) = u(1)− sin(u(1)).

Now, let’s compare y(t) with u(t):

|y(t)− u(t)| =
∣∣∣∣3− ∫ 2

t

g(s)ds− u(1) + sin(u(1))

∣∣∣∣ .
Since |g(t)| ≤ ε for t ∈ [0, 2], we can bound the integral term as follows:∣∣∣∣∫ 2

t

g(s)ds

∣∣∣∣ ≤ ε

∫ 2

t

ds = ε(2− t).
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Substituting this bound into the expression, we have:

|y(t)− u(t)| ≤ |3− u(1) + sin(u(1))|+ ε(2− t).

Since |3− u(1) + sin(u(1))| is a constant, we can denote it as δ:

|y(t)− u(t)| ≤ δ + ε(2− t).

Therefore, we have shown that |y(t)− u(t)| is bounded by δ + ε(2− t) for t ∈ [0, 2].
This indicates that the solution y(t) is stable with respect to the given inequalities.

In conclusion, based on the analysis, the solution y(t) to the impulsive differential
equation is stable with respect to

the given inequalities.
To establish the stability of the solution, we need to show that |y(t)−u(t)| ≤Mε for

t ∈ [0, 2], where M is a constant.
From the previous derivation, we have:

|y(t)− u(t)| ≤ δ + ε(2− t).

To proceed, we need to determine the values of δ and M .
Since δ = |3 − u(1) + sin(u(1))| and u(1) = u(1−) − sin(u(1−)), we can express δ in

terms of u(1−):

δ = |3− (u(1−)− sin(u(1−))) + sin(u(1−))| = |3− u(1−) + sin(u(1−))|.

Now, let’s consider the function f(x) = 3− x+ sin(x). We can analyze the behavior
of f(x) to find a suitable upper bound for δ.

Taking the derivative of f(x) with respect to x, we have:

f ′(x) = −1 + cos(x).

Since −1 ≤ cos(x) ≤ 1 for any x, we can conclude that f ′(x) ≤ 0 for all x. Therefore,
f(x) is a decreasing function.

To find the maximum value of f(x), we consider its critical points where f ′(x) = 0.
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Solving −1 + cos(x) = 0, we get cos(x) = 1 and x = 2πk for any integer k.
Since f(x) is decreasing, the maximum value of f(x) occurs at the smallest critical

point. Thus, f(x) achieves its maximum value at x = 2π. Evaluating f(2π), we have:

f(2π) = 3− 2π + sin(2π) = 3− 2π.

Therefore, we can bound δ as follows:

δ = |3− u(1−) + sin(u(1−))| ≤ 3− 2π.

Now, let’s determine the value of M to complete the stability proof. From the in-
equality |y(t)− u(t)| ≤ δ + ε(2− t), we need to ensure that δ + ε(2− t) ≤Mε.

Since δ is a constant, we can choose M such that M ≥ δ. This guarantees that
δ + ε(2− t) ≤Mε holds for any t ∈ [0, 2].

Therefore, we can choose M = 3− 2π to satisfy the inequality.
In conclusion, for the given impulsive differential equation and inequalities, we have

established that |y(t)− u(t)| ≤ (3− 2π)ε for t ∈ [0, 2]. This confirms the
generalized Ulam-Hyers-Rassias stability of the equation.

Exemple 3.8.  u′(t) = sin(u(t)), t ∈ J ′ = [0, 1]

u(0) = 0

We will study the generalized Ulam-Hyers-Rassias stability of this equation.

To begin the study, we first consider the reference solution ur(t), which satisfies the dif-

ferential equation and the initial condition. In this case, we can find the reference solution

by solving the differential equation:

u′r(t) = sin(ur(t))
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This is a separable differential equation, which we can solve as follows:∫
dur(t)

sin(ur(t))
=

∫
dt

ln | csc(ur(t))− cot(ur(t))| = t+ C1

csc(ur(t))− cot(ur(t)) = C2e
t

1

sin(ur(t))
− cos(ur(t))

sin(ur(t))
= C2e

t

csc(ur(t)) =
1

C2et
+ cot(ur(t))

sin(ur(t)) =
C2e

t

1 + C2et

To determine the constant C2, we use the initial condition ur(0) = 0:

sin(ur(0)) =
C2

1 + C2

= 0 =⇒ C2 = 0

Thus, the reference solution is given by ur(t) = 0.
Next, we consider a perturbed solution u(t), which satisfies the inequality:

|∆u|t=0 ≤ ε

Here, we assume that |∆u|t=0 represents the jump in u at t = 0. We want to find
conditions on u(t) that ensure the stability of the equation.

Using the definition of the jump, we have:

|∆u|t=0 = |u(0+)− u(0−)| = |u(0)− u(0−)| = |u(0)|

Therefore, the inequality becomes:

|u(0)| ≤ ε

To study the stability, we want to find conditions on u(t) such that |u(t)−ur(t)| ≤Mε,
where M is a constant.

For this example, we can see that u(t) must be bounded in the interval [0, 1], since
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3.5. Applications

sin(u(t)) is bounded. Thus, we have |u(t)| ≤ A for some constant A. Additionally, we
have |u(0)| ≤ ε.

Using the mean value theorem for integrals, we can write:

|u(t)− ur(t)| =
∣∣∣∣∫ t

0

u′(τ)− u′r(τ)dτ

∣∣∣∣
=

∣∣∣∣∫ t

0

sin(u(τ))− sin(ur(τ))dτ

∣∣∣∣
≤
∫ t

0

| sin(u(τ))− sin(ur(τ))|dτ

≤
∫ t

0

| sin(u(τ))|+ | sin(ur(τ))|dτ

≤
∫ t

0

1 + 1dτ

= 2t

≤ 2

So we can choose M = 2 in the stability condition.
Therefore, for this example, we have established the generalized Ulam-Hyers-Rassias

stability condition:

|u(t)− ur(t)| ≤ 2ε

This means that if the perturbed solution u(t) satisfies |u(0)| ≤ ε and |u(t)| ≤ A for
t ∈ [0, 1], then it is stable with respect to the reference solution ur(t).
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Chapter 4

Existence and Ulam stability of Solutions

of Some Backward Impulsive fractional

differential equations on Banach space

In this paper, using some well known classical fixed point theorems, we study the problem
of the existence of solutions and their Ulam stability for the following backward impulsive
differential equations in Banach spaces

CH
tD

α
b u(t) = f(t, u(t)), t ∈ J = [0, T ], t ̸= tk

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

u(T ) = uT

(4.1)

where CH
tD

α
b is a the Caputo-Hadamard fractional derivative, 0 < α < 1, 0 = t0 < t1 <

t2 < · · · < tm < tm+1 = T, ∆u|t=tk
= u

(
t+k
)
− u

(
t−k
)
represents the jump of the function

u at tk, Ik : R → R, k = 1, 2, . . . , n, are appropriate functions, and f : J × R −→ R is a
nonlinear real function. Our method of study is to convert the initial value problem (4.1)
into an equivalent integral equation and apply Schaefer, Banach or Krasnoselskii fixed point
theorem. Further, we prove the existence of a unique solution or at least one solution to this
problem with local and nonlocal conditions. Consider the following nonlocal problem
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4.1.Existence of Solutions


CH

tD
α
b u(t) = f(t, u(t)), t ∈ J = [0, T ], t ̸= tk, k = 1, · · · ,m

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

u(T )− g(u) = uT ,

(4.2)

where f and Ik, k = 1, . . . ,m, are defined as in the previous paragraph and g : PC(J,R) →
R is a continuous function. Nonlocal conditions were first investigated by Byszewski and
Lakshmikantham [8]. Using the Banach fixed point theorem, they obtained conditions for
the existence and uniqueness of mild solutions to nonlocal differential equations. Byszewski
[2] proved the existence and uniqueness of mild and classical solutions of nonlocal Cauchy
problem.

4.1 Existence of Solutions

In this section, our attention is focused on the main results on the existence of a solution to
the problem (4.1). We discuss conditions under which this problem has exactly one solution
or at least one solution.

In the study of the problem (4.1), we will work with the following assumptions:
(A1) The function f : J × R −→ R is continuous.
(A2) There exists a positive constant λ such that for any t ∈ [0, T ] and x, y ∈ R, |f(t, x)−

f(t, y)| ≤ λ|x− y|
(A3) There exists a positive constant θ such that |f(t, x)| < θ for any t ∈ [0, T ] and

x ∈ R.
(A4) |f(t, x)| ≤ r for any t ∈ [0, T ] and x ∈ Br, r ∈ R+

(A5) There exists a constant µ > 0, such that |Ik(x)− Ik(y)| ≤ µ|x−y| for any x, y ∈ R,
k = 1, . . . ,m.

(A6) The functions Ik : R → R are continuous and there exists a positive constant γ
such that |Ik(x)| < γ for any x ∈ R, k = 1, . . . ,m.

A function u ∈ PC(J,R) will be called a solution to (4.1) if its derivative exists on J ′ =

J − {tk, k = 1, 2, 3, . . . , n} and u satisfies the equation

CH
tD

α
b u(t) = f(t, u(t)), t ∈ J ′
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4.1.Existence of Solutions

and the conditions

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m,

u(T ) = uT .

Lemma 4.1. A function u is a solution of the integral equation

u(t) =



uT − 1
Γ(α)

∫ T

tm

(
ln T

s

)α−1 h(s)
s
ds

+ 1
Γ(α)

∫ t

tm

(
ln t

s

)α−1 h(s)
s
ds, if t ∈ (tm, T )

uT −
∑k−1

p=0 Im−p

(
u
(
t−m−p

))
− 1

Γ(α)

∑k
p=0

∫ tm−p+1

tm−p

(
ln tm−p+1

s

)α−1 h(s)
s
ds

+ 1
Γ(α)

∫ t

tm−k

(
ln t

s

)α−1 h(s)
s
ds, if t ∈ (tm−k, tm−k+1)

(4.3)

if and only if u is a solution of the backward impulsive differential equation


CH

tD
α
b u(t) = h(t), t ∈ I = [0, T ], t ̸= tk

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

u(T ) = uT

(4.4)

Proof. Assume u satisfies (4.4). for t ∈ (tm, tm+1), where tm+1 = T ; we have

u(t) = uT − 1

Γ(α)

∫ T

tm

(
ln
T

s

)α−1
h(s)

s
ds+

1

Γ(α)

∫ t

tm

(
ln
t

s

)α−1
h(s)

s
ds
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4.1.Existence of Solutions

For t ∈ (tm−1, tm)

u(t) = u
(
t−m
)
− 1

Γ(α)

∫ tm

tm−1

(
ln
tm
s

)α−1
h(s)

s
ds+

1

Γ(α)

∫ t

tm−1

(
ln
t

s

)α−1
h(s)

s
ds

= −
(
−u
(
t−m
))

− 1

Γ(α)

∫ tm

tm−1

(
ln
tm
s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−1

(
ln
t

s

)α−1
h(s)

s
ds

= −△ (u (tm)) + u
(
t+m
)
− 1

Γ(α)

∫ tm

tm−1

(
ln
tm
s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−1

(
ln
t

s

)α−1
h(s)

s
ds

= −Im
(
u
(
t−m
))

+ uT − 1

Γ(α)

∫ T

tm

(
ln
T

s

)α−1
h(s)

s
ds

− 1

Γ(α)

∫ tm

tm−1

(
ln
tm
s

)α−1
h(s)

s
ds+

1

Γ(α)

∫ t

tm−1

(
ln
t

s

)α−1
h(s)

s
ds

For t ∈ (tm−2, tm−1)
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4.1.Existence of Solutions

u(t) = u
(
t−m−1

)
− 1

Γ(α)

∫ tm−1

tm−2

(
ln
tm−1

s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−2

(
ln
t

s

)α−1
h(s)

s
ds

= −
(
−u
(
t−m−1

))
− 1

Γ(α)

∫ tm−1

tm−2

(
ln
tm−1

s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−2

(
ln
t

s

)α−1
h(s)

s
ds

= −△ (u (tm−1)) + u
(
t+m−1

)
− 1

Γ(α)

∫ tm−1

tm−2

(
ln
tm−1

s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−2

(
ln
t

s

)α−1
h(s)

s
ds

= −Im
(
u
(
t−m
))

− Im−1

(
u
(
t−m−1

))
+ uT − 1

Γ(α)

∫ T

tm

(
ln
T

s

)α−1
h(s)

s
ds

− 1

Γ(α)

∫ tm

tm−1

(
ln
tm
s

)α−1
h(s)

s
ds− 1

Γ(α)

∫ tm−1

tm−2

(
ln
tm−1

s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−2

(
ln
t

s

)α−1
h(s)

s
ds

Then, by induction, we obtain : For t ∈ (tm−k, tm−k+1) , k = 0, . . . ,m

u(t) = uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
− 1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1
h(s)

s
ds

+
1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1
h(s)

s
ds

for k = 1, 2, . . . ,m. Conversely, assume that u satisfies the impulsive integral equation

(5.3). If t ∈ (tm, T ), then u(T ) = uT . If t ∈ (tm−k, tm−k+1) , k = 0, . . . ,m, by differentiation,

we get

CH
tD

α
b u(t) = h(t)

Also, we can easily show that
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4.1.Existence of Solutions

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

□

Let’s start by discussing the conditions under which problem (4.1) has a unique solution.
The following result is based on the Banach fixed point theorem.

Theorem 4.1. Assume that the function f verifies the conditions (A1),(A2) and (A5) ,

and

mµ+
λ(m+ 1)

Γ(α + 1)
(lnT )α < 1 (4.5)

then the problem (4.1) has a unique solution in PC(J,R).

Proof. We transform the problem (4.1) into a fixed point problem. Consider the operator

F : PC(J,R) → PC(J,R) defined by

F (u)(t) = uT −
∑

t<tk<T

Ik
(
u
(
t−k
))

− 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds.

Clearly, a fixed point of the operator F is a solution of the problem (4.1). We use the

Banach contraction principle to prove that F has a fixed point. We shall show that F is a

contraction. Let u, v ∈ PC(J,R). Then, for each t ∈ J , we have
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4.1.Existence of Solutions

|F (u)(t)− F (v)(t)| ≤
∑

t<tk<T

∣∣Ik (u (t−k ))− Ik
(
v
(
t−k
))∣∣

+
1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1 |f(s, u(s))− f(s, v(s))|
s

ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1 |f(s, u(s))− f(s, v(s))|
s

ds

≤ µ
∑

t<tk<T

∣∣u (t−m−p

)
− v

(
t−m−p

)∣∣
+

λ

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1 |u(s)− v(s)|
s

ds

+
λ

Γ(α)

∫ t

tk

(
ln
t

s

)α−1 |u(s)− v(s)|
s

ds

≤ mµ∥u(t)− v(t)∥+ mλ (lnT )α

Γ(α)
∥u(t)− v(t)∥

+
λ (lnT )α

Γ(α + 1)
∥u(t)− v(t)∥

≤ mµ∥u(t)− v(t)∥+ mλ (lnT )α

Γ(α + 1)
∥u(t)− v(t)∥

+
λ (lnT )α

Γ(α + 1)
∥u(t)− v(t)∥

=

[
mµ+

λ(m+ 1)

Γ(α + 1)
(lnT )α

]
∥u(t)− v(t)∥

Hence, by (4.5), F is a contraction. Then, by the Banach contraction principle, we deduce
that F has a unique fixed point which is a solution of the problem (4.1). □

The following result provides sufficient conditions for the existence of at least one solution
to the problem (4.1). It is based on the Schaefer’s fixed point theorem.

Theorem 4.2. If the conditions(A1),(A2),(A3),(A5) and (A6), are satisfied then the

problem (4.1) has at least one solution in PC(J,R).

Proof. The proof of this result is divided in several steps
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4.1.Existence of Solutions

Step1: The operator F is continuous. Let (un) a sequence such that un → u on J. For all

t ∈ [0, T ] then

|F (un) (t)− F (u)(t)| ≤
∑

t<tk<T

∣∣Ik (un (t−k ))− Ik
(
u
(
t−k
))∣∣

+
1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1 |f(s, un(s))− f(s, u(s))|
s

ds

Since f and Ik, k = 1, . . . ,m are continuous functions, then

∥Fun − Fu∥∞ → 0 as n→ ∞

which implies that F is continuous.
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4.1.Existence of Solutions

Step2: F maps bounded sets into the bounded sets in PC(J,R). For all u(t) ∈ Br we have

|F (u)(t)| =| uT −
∑

t<tk<T

Ik
(
u
(
t−k
))

− 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds |

≤ |uT |+

∣∣∣∣∣ ∑
t<tk<T

Ik
(
u
(
t−k
))∣∣∣∣∣+

∣∣∣∣∣ 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

∣∣∣∣∣
+

∣∣∣∣∣ 1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds

∣∣∣∣∣
≤ |uT |+

∑
t<tk<T

∣∣Ik (u (t−k ))∣∣+ 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1 |f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1 |f(s, u(s))|
s

ds

≤ |uT |+
∑

t<tk<T

∣∣Ik (u (t−k ))∣∣+ 1

Γ(α)
∥f(s, u(s))∥

tk+1∑
t<tk<T

∫ tk+1

tk

(
ln tk+1

s

)α−1

s
ds

+
1

Γ(α)
∥f(s, u(s))∥

∫ t

tk

(
ln t

s

)α−1

s
ds

≤ |uT |+mγ +
mθ (lnT )α

Γ(α + 1)
+
θ (lnT )α

Γ(α + 1)

≤ |uT |+mγ +
mθ (lnT )α

Γ(α + 1)
+
θ (lnT )α

Γ(α + 1)

= |uT |+mγ +
θ(m+ 1)

Γ(α + 1)
(lnT )α = ρ.

Hence, the operator F maps the bounded set Br into a bounded set Bρ.

Step3: F maps bounded sets into the equicontinuous sets of PC(J,R). Let τ1, τ2 ∈

[0, T ], τ1 < τ2 and let u ∈ Br, then

|F (u) (τ2)− F (u) (τ1)| ≤
∑

τ1<tk<τ2

∣∣Ik (u (t−k ))∣∣
+

∫ τ2

τ1

|f (s, un(s))|
ds

s
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4.1.Existence of Solutions

which tends to zero when τ1 tends to τ2. By the precedent steps, together with the

AscoliArzela theorem, therefore F is equicontinuous on interval [tk, tk+1].

As a consequence of Step 1-3 together with the PC-type Arzela-Ascoli theorem, we con-

clude that F : Br → Bρ is continuous and completely continuous.

Step4: We show that the set Ω = {u ∈ PC(J,R) : u = λF (u), 0 < λ < 1} is bounded.

Let u ∈ Ω, then u = λF (u), for some 0 < λ < 1, then for all t ∈ [0, T ] we have

|u(t)| = λ | uT −
∑

t<tk<T

Ik
(
u
(
t−k
))

− 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds |

≤ |uT |+
∑

t<tk<T

∣∣Ik (u (t−k ))∣∣+ 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1 |f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1 |f(s, u(s))|
s

ds

≤ |uT |+
∑

t<tk<T

∣∣Ik (u (t−k ))∣∣+ 1

Γ(α)
∥f(s, u(s))∥

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
ds

s

+
1

Γ(α)
∥f(s, u(s))∥

∫ t

tk

(
ln
t

s

)α−1
ds

s

≤ |uT |+mγ +
mθ (lnT )α

Γ(α + 1)
+
θ (lnT )α

Γ(α + 1)

≤ |uT |+mγ +
θm (lnT )α

Γ(α + 1)
+
θ (lnT )α

Γ(α + 1)

= |uT |+mγ +
θ(m+ 1)

Γ(α + 1)
(lnT )α

which prove that Ω is bounded. By the Schaefer’s fixed point theorem, F has a fixed

point which is a solution of the problem (4.1).
□
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4.2.Nonlocal Backward Impulsive Fractional Differential Equations

4.1.1 Nonlocal Backward Impulsive Fractional Differential Equa-

tions

Now, we generalize the results of the previous section to nonlocal impulsive differential equa-
tions(4.2) . Let us introduce the following assumptions:

(A7) There exists a positive constant C such that |g(x)−g(y)| ≤ C∥x−y∥ for any x, y ∈
PC(J,R)

(A8) There exists a positive constant κ such that |g(u)| ≤ κ for any function u ∈
PC(J,R).

The equation (4.2) is equivalent to the following integral equation

F (u)(t) = uT + g(u)−
∑

t<tk<T

Ik
(
u
(
t−k
))

− 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds.

Theorem 4.3. Assume that the function f verifies the conditions (A2),(A5), and

C +mµ+
λ(m+ 1) (lnT )α

Γ(α + 1)
< 1 (4.6)

then the problem (4.2) has a unique solution in PC(J,R).

Proof. We transform the problem (4.2) into a fixed point problem. Consider the operator

F : PC(J,R) → PC(J,R) defined by

F (u)(t) = uT + g(u)−
∑

t<tk<T

Ik
(
u
(
t−k
))

− 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds.

It is clear that the fixed points of the operator F are solutions of the problem (4.2). We

use the Banach contraction principle to prove that F has a fixed point. We shall show that
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4.2.Nonlocal Backward Impulsive Fractional Differential Equations

F is a contraction. Let u, v ∈ PC(J,R). Then, for each t ∈ J , we have

|F (u)(t)− F (v)(t)| ≤ |g(u(t))− g(v(t))|+
∑

t<tk<T

∣∣Ik (u (t−k ))− Ik
(
v
(
t−k
))∣∣

+
1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1

|f(s, u(s))− f(s, v(s))|ds
s

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1

|f(s, u(s))− f(s, v(s))|ds
s

≤ C|u(t)− v(t)|+ µ
∑

t<tk<T

∣∣u (t−k )− v
(
t−k
)∣∣

+
λ

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1

|u(s)− v(s)|ds
s

+
λ

Γ(α)

∫ t

tk

(
ln
t

s

)α−1

|u(s)− v(s)|ds
s

≤ C∥u(t)− v(t)∥+mµ∥u(t)− v(t)∥+ λm (lnT )α

Γ(α + 1)
∥u(t)− v(t)∥

+
λ (lnT )α

Γ(α + 1)
∥u(t)− v(t)∥

=

(
C +mµ+

λm (lnT )α

Γ(α + 1)
+
λ (lnT )α

Γ(α + 1)

)
∥u(t)− v(t)∥

=

(
C +mµ+

λ(m+ 1) (lnT )α

Γ(α + 1)

)
∥u(t)− v(t)∥.

Hence, by (4.6), F is a contraction. Then, by the Banach contraction principle, we deduce

that F has a unique fixed point which is a solution of the problem (4.2).
□

Theorem 4.4. If (A1),(A3),(A6),(A7) and (A8) are satisfied, and if C < 1, and

|uT |

1−
(
C +mγ + (m+1)θ(lnT )α

Γ(α+1)

) ≤ r (4.7)

then the Problem (4.2) has at least a solution in PC(J,R).
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Proof. Define the operators P , and Q on the compact set Br = {y ∈ X : y ≤ r} ⊂ X by

Pu(t) = uT + g(u(t))

and

Qu(t) = −
∑

t<tk<T

Ik
(
u
(
t−k
))

− 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
f(s, u(s))

s
ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1
f(s, u(s))

s
ds

Firstly, P maps Br into itself i.e. PBr ⊂ Br. For all u(t) ∈ Br we have

|Pu(t)| = |uT + gu(t)| ≤ |uT |+ |gu(t)| ≤ r.

Hence, the operator P maps Br into itself. We prove that P is a contraction map. Let

u, v ∈ PC(J,R), then

|Pu(t)− Pv(t)| = |gu(t)− gv(t)| ≤ C|u(t)− v(t)|

then the operator P satisfies the contraction property, and
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4.2.Nonlocal Backward Impulsive Fractional Differential Equations

|Qv(t)| ≤
∑

t<tk<T

∣∣Ik (v (t−k ))∣∣+ 1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1 |f(s, u(s))|
s

ds

+
1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1 |f(s, u(s))|
s

ds

≤
∑

t<tk<T

∣∣Ik (v (t−k ))∣∣+ 1

Γ(α)
∥f(s, u(s))∥

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1
ds

s

+
1

Γ(α)
∥f(s, u(s))∥

∫ t

tk

(
ln
t

s

)α−1
ds

s

≤
(
mγ +

mθ (lnT )α

Γ(α + 1)
+

(m+ 1)θ (lnT )α

Γ(α + 1)

)
∥v(s)∥

=

(
mγ +

(m+ 1)θ (lnT )α

Γ(α + 1)

)
∥v(s)∥.

hence

|Pu(t) +Qv(t)| ≤ |Pu(t)|+ |Qv(t)|

≤ |uT |+ C|u(t)|+
(
mγ +

(m+ 1)θ (lnT )α

Γ(α + 1)

)
|v(s)|

≤ |uT |+ Cr +

(
mγ +

(m+ 1)θ (lnT )α

Γ(α + 1)

)
r

= |uT |+
(
C +mγ +

(m+ 1)θ (lnT )α

Γ(α + 1)

)
r

≤ r.

Therefore, if u, v ∈ Br, then Pu + Qv ∈ Br. Obviously, in view of the condition (A1),

Q is continuous and by the inequality (4.7) , it is uniformly bounded on Br. Evidently, the

equicontinuity of Qv(t) follows from Theorem (4.2). Hence, by the Arzela Ascoli Theorem,

Q (Br) is relatively compact which implies that Q is compact. Therefore, using Krasnoselkii

Theorem, there exists a solution to equation (4.2) .
□
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4.3. Ulam stability

4.1.2 Ulam stability

In this section, we study the Ulam stability of the solution of the problem (4.1)
Let ε > 0, ψ ≥ 0 and φ ∈ PC (J,R+)is nondecreasing. We consider the following inequal-

ities {
|Dαu(t)− f(t, u(t))| ≤ ε, t ∈ J ′, t ̸= tk

|∆u|t=tk − Ik
(
u
(
t−k
))

|≤ ε, k = 1, · · · ,m
(4.8)

{
|Dαu(t)− f(t, u(t))| ≤ φ(t), t ∈ J ′, t ̸= tk

|∆u|t=tk − Ik
(
u
(
t−k
))

|≤ ψ, k = 1, · · · ,m
(4.9)

and {
|Dαu(t)− f(t, u(t))| ≤ εφ(t), t ∈ J ′, t ̸= tk

|∆u|t=tk − Ik
(
u
(
t−k
))

|≤ εψ, k = 1, · · · ,m
(4.10)

Definition 4.1.1. Equation (4.1) is Ulam-Hyers stable if there exists a real number cf,m > 0

such that for each ε > 0 and for each solution y ∈ PC1(J,R) of inequality (4.8) there exists

a solution x ∈ PC1(J,R) of equation (4.1) with

|y(t)− x(t)| ≤ cf,mε, t ∈ J

Definition 4.1.2. Equation(4.1) is generalized Ulam-Hyers stable if there exists θf,m ∈

C (R+,R+), θf,m(0) = 0 such that for each solution y ∈ PC1(J,R) of inequality (4.8) there

exists a solution x ∈ PC1(J,R) of equation (4.1) with

|y(t)− x(t)| ≤ θf,m(ε), t ∈ J

Definition 4.1.3. Equation (4.1) is Ulam-Hyers-Rassias stable with respect to (φ, ψ) if there

exists cf,m,φ > 0 such that for each ε > 0 and for each solution y ∈ PC1(J,R) of inequality

(4.10) there exists a solution x ∈ PC1(J,R) of equation (4.1) with

|y(t)− x(t)| ≤ cf,m,φε(φ(t) + ψ), t ∈ J
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4.3. Ulam stability

Definition 4.1.4. Equation (4.1) is generalized Ulam-Hyers-Rassias stable with respect to

(φ, ψ) if there exists cf,m,φ > 0 such that for each solution y ∈ PC1(J,R) of inequality (4.9)

there exists a solution x ∈ PC1(J,R) of equation (4.1) with

|y(t)− x(t)| ≤ cf,m,φ(φ(t) + ψ), t ∈ J

Remark 4.5. A function y ∈ PC1(J,R) is a solution of inequality (4.8)if and only if there

is g ∈ PC(J,R) and a sequence gk, k = 1, 2, . . . ,m (which depend on y ) such that :

(i) |g(t)| ≤ ε, t ∈ J and |gk| ≤ ε, k = 1, 2, . . . ,m

(ii) Dαu(t) = f(t, u(t)) + g(t), t ∈ J ′

(iii) ∆y (tk) = Ik
(
y
(
t−k
))

+ gk, k = 1, 2, . . . ,m.

We can have similar remarks for the inequalities(4.9) and (4.10).

So, the Ulam stabilities of the impulsive differential equations are some special types of

data dependence of the solutions of impulsive differential equations.

Proposition 4.1. If y ∈ PC1(J,R) is a solution of inequality (4.8), then y is a solution of

the following inequality

| y(t)− uT +
∑

t<tk<T

Ik
(
y
(
t−k
))

+
1

Γ(α)

∑
t<tk<T

∫ tk+1

tk

(
ln
tk+1

s

)α−1

f(s, y(s))
ds

s

− 1

Γ(α)

∫ t

tk

(
ln
t

s

)α−1

f(s, y(s))
ds

s
|≤
(
αmΓ(α) +m (lnT )α +

(
ln t

T

)α)
αΓ(α)

ε, t ∈ J.

Proof. Indeed, by remark (4.5), we have that

 Dαy(t) = f(t, y(t)) + g(t), t ∈ J ′

∆y (tk) = Ik
(
y
(
t−k
))

+ gk, k = 1, 2, . . . ,m.

Then, for t ∈ (tm−k, tm−k+1) for k = 0, . . . ,m.
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4.3. Ulam stability

| y(t)− uT +
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

k−1∑
p=0

gi +
1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

f(s, y(s))
ds

s

+
1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

g(s)
ds

s
− 1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

f(s, y(s))
ds

s

− 1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

g(s)
ds

s
| ≤ |y(t)− uT +

k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

f(s, y(s))
ds

s
− 1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

f(s, y(s))
ds

s
|

+
k−1∑
p=0

|gi|+
1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

|g(s)|ds
s

+
1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

g(s)
ds

s
.

From this it follows

| y(t)− uT +
k−1∑
p=0

Im−p

(
y
(
t−m−p

))
+

1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

f(s, y(s))
ds

s

− 1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

f(s, y(s))
ds

s
|≤

m∑
i=1

ε+
ε

Γ(α)

m∑
i=1

∫ ti+1

ti

(
ln
ti+1

s

)α−1
ds

s

+
ε

Γ(α)

∫ t

T

(
ln
t

s

)α−1
ds

s

≤
m∑
i=1

ε− ε

αΓ(α)

m∑
i=1

∫ ti+1

ti

(
ln
ti+1

s

)α−1
ds

s
+

ε

αΓ(α)

∫ t

T

(
ln
t

s

)α−1
ds

s

≤ mε+
ε

αΓ(α)

(
m∑
i=1

(
ln
ti+1

ti

)α

+

(
ln
t

T

)α
)

≤ mε+
ε

αΓ(α)

(
m(lnT )α +

(
ln
t

T

)α)
≤
(
αmΓ(α) +m(lnT )α +

(
ln t

T

)α)
αΓ(α)

ε.

□

Theorem 4.6. If the assumptions (A1), (A2) and (A5) hold. Then equation (4.1) is

generalized Ulam-Hyers.
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4.3. Ulam stability

Proof. Let u ∈ PC1(J,R) be a solution of inequality(4.9). Denote by x the unique solution

of the backward impulsive problem


Dαu(t) = f(t, u(t)), t ∈ J = [0, T ], t ̸= tk

∆u|t=tk
= Ik

(
u
(
t−k
))
, k = 1, · · · ,m

u(T ) = uT

Then we have

u(t) = uT −
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
− 1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

f(s, u(s))
ds

s

+
1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

f(s, u(s))
ds

s
,

where t ∈ (tm−k, tm−k+1) for k = 0, . . . ,m. for each t ∈ (tm−k, tm−k+1), we have

| u(t)− uT +
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
+

1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

f(s, u(s))
ds

s

− 1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

f(s, u(s))
ds

s
|

≤
m∑
i=1

|gi|+
1

Γ(α)

m∑
i=0

∫ ti+1

ti

(
ln
ti+1

s

)α−1

ε
ds

s

+
1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

ε
ds

s

≤ mε+
ε

αΓ(α)

m∑
i=0

(
ln
ti+1

ti

)α

+
ε

αΓ(α)

(
ln

t

tm−k

)α

≤ mε+
ε

Γ(α + 1)
m (lnT )α +

ε

Γ(α + 1)
(lnT )α =

ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α)

Hence for each t ∈ (tm−k, tm−k+1) for k = 0, . . . ,m, it follows
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|u(t)− x(t)| ≤| u(t)− uT +
k−1∑
p=0

Im−p

(
u
(
t−m−p

))
+

1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

f(s, u(s))
ds

s

− 1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

f(s, u(s))
ds

s

+
k−1∑
p=0

∣∣Im−p

(
u
(
t−m−p

))
− Im−p

(
x
(
t−m−p

))∣∣
+

1

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

|f(s, u(s))− f(s, x(s))|ds
s

+
1

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1

|f(s, u(s))− f(s, x(s))|ds
s

≤ ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α) +

k−1∑
p=0

µk

∣∣u (t−m−p

)
− x

(
t−m−p

)∣∣
+

λ

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1

|u(s)− x(s)|ds
s

+
λ

Γ(α)

∫ t

tm−k

(
ln
t

s

)
)α−1|u(s)− x(s)|ds

s

≤ ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α) + ∥u− x∥PC

k−1∑
p=0

µk

+
λ∥u− x∥PC

Γ(α)

k∑
p=0

∫ tm−p+1

tm−p

(
ln
tm−p+1

s

)α−1
ds

s

+
λ∥u− x∥PC

Γ(α)

∫ t

tm−k

(
ln
t

s

)α−1
ds

s

≤ ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α) + ∥u− x∥PC

k−1∑
p=0

µk

+
λ∥u− x∥PC

αΓ(α)

k∑
p=0

(
ln
tm−p+1

tm−p

)α

+
λ∥u− x∥PC

αΓ(α)

(
ln

t

tm−k

)α

≤ ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α) + ∥u− x∥PC

k−1∑
p=0

µk
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+
λ∥u− x∥PC

Γ(α + 1)
m (lnT )α +

λ∥u− x∥PC

Γ(α + 1)

(
ln

t

tm−k

)α

From which we have

∥u− x∥PC ≤ ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α) + ∥u− x∥PC

k−1∑
p=0

µk

+
λ∥u− x∥PC

Γ(α + 1)
m (lnT )α +

λ∥u− x∥PC

Γ(α + 1)

(
ln

t

tm−k

)α

which implies that

∥u−x∥PC ≤ 1

1−
[∑k−1

p=0 µk +
λ

Γ(α+1)
m (lnT )α + λ

Γ(α+1)

(
ln t

tm−k

)α] ε

Γ(α + 1)
(mε+ (m+ 1) (lnT )α)

Then

∥u− x∥PC ≤ (mε+ (m+ 1) (lnT )α) ε

Γ(α + 1)−
[
Γ(α + 1)

∑k−1
p=0 µk + λm (lnT )α + λ

(
ln t

tm−k

)α]
Thus, equation (4.1) is generalized Ulam-Hyers stable. □

4.1.3 Applications

Exemple 4.7. Consider the backward impulsive fractional differential equation :


CH

tD
α
b u(t) = 0, t ∈ J ′ = [0, 1]− {1/3},

∆u|t=1/3 =
|u( 1

3

−)|
1+|u( 1

3

−)| ,

u(1) = 1,

(4.11)

where 0 < α < 1, and the inequalities
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
∣∣CH

tD
α
b y(t)

∣∣ ≤ ε, t ∈ J ′ = [0, 1]− {1/3},∣∣∣∣∆y|t=1/3 −
|y( 1

3

−)|
1+|y( 1

3

−)|

∣∣∣∣ ≤ ε,
(4.12)

hold for some ε > 0.

Let y ∈ PC1([0, 1],R) be a solution to the inequality (4.12). Then there exist g ∈
PC1([0, 1],R) and g1 ∈ R such that:

|g(t)| ≤ ε, t ∈ [0, 1] (4.13)

Dαy(t) = g(t), t ∈ J ′ = [0, 1]− {1/3}, (4.14)

∆y|t= 1
3
=

∣∣∣y (1
3

−
)∣∣∣

1 +
∣∣∣y (1

3

−
)∣∣∣ + g1. (4.15)

Integrating (4.14) from t to 1 via (4.15), we obtain

y(t) = y(1)−
(
I 1

3

(
y
(
t−1
3

))
+ g1

)
− 1

Γ(α)

∫ 1

1
3

(
ln

1

s

)α−1

g(s)
ds

s

+
1

Γ(α)

∫ t

1
3

(
ln
t

s

)α−1

g(s)
ds

s

= 1−
(
I 1

3

(
y
(
t−1
3

))
+ g1

)
− 1

Γ(α)

∫ 1

1
3

(
ln

1

s

)α−1

g(s)
ds

s

+
1

Γ(α)

∫ t

1
3

(
ln

1

s

)α−1

g(s)
ds

s
.

Let us consider the solution u of (4.11) given by

u(t) = 1−

∣∣∣u(1
3

−
)∣∣∣

1 +
∣∣∣u(1

3

−
)∣∣∣ .

Then we can write
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|y(t)− u(t)| =|

∣∣∣u(1
3

−
)∣∣∣

1 +
∣∣∣u(1

3

−
)∣∣∣ −

∣∣∣y (1
3

−
)∣∣∣
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= ε

(
3 +

1

Γ(α + 1)

(
2 + 3 ln(3)

3

)α

− 1

Γ(α + 1)
(ln 3t)α

)
, t ∈ [0, 1]

Thus, Equation (4.11) is generalized Ulam-Hyers stable, which is a special case of
generalized Ulam-Hyers-Rassias stable.
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Conclusion

In this thesis, our focus was on investigating the solutions and Ulam stability of backward im-
pulsive differential equations on Banach spaces. We encountered several challenges through-
out our research, which we successfully tackled by utilizing various classical fixed point the-
orems. By imposing suitable conditions on the nonlinear term, we were able to establish the
existence of solutions for our problem.

To obtain a unique solution, we employed the Banach contraction principle, while other
fixed point theorems such as Schaefer’s and Krasnosel’skii’s were used to obtain at least one
solution. We considered both local and nonlocal conditions in our analysis. Additionally, we
derived generalized-Ulam-Hyers-Rassias stability results for our problem, which showcased
the robustness and consistency of our theoretical findings.

Furthermore, we extended our study to encompass both ordinary and fractional differen-
tial equations. By comparing these two types of differential equations, we aimed to provide in-
sights into their respective characteristics and applications. It is worth noting that backward
impulsive differential equations and their stability have wide-ranging practical implications.

Overall, our research contributes to the understanding of backward impulsive differential
equations on Banach spaces, their solution existence, and stability properties. The provided
examples serve to illustrate the practical relevance and validity of our theoretical results.
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Annex

Bernhard Riemann (1826-1866) , was a German

mathematician who made significant contributions to several areas of math-

ematics, particularly in the field of analysis and geometry. His work had a

profound impact on the development of modern mathematics and laid the foun-

dation for many subsequent advancements.

Riemann was born on September 17, 1826, in Breselenz, a village in the

Kingdom of Hanover (now part of Germany). From a young age, he showed

exceptional mathematical talent and quickly gained recognition for his abili-

ties. He entered the University of Göttingen in 1846, where he studied under

mathematicians such as Carl Friedrich Gauss and Ernst Weber.

One of Riemann’s most famous works is his 1854 habilitation dissertation,

"On the Hypotheses Which Underlie Geometry." In this groundbreaking paper,

Riemann introduced the concept of Riemannian geometry, which extends the

ideas of Euclidean geometry to curved spaces. His work laid the groundwork for

the later development of Einstein’s theory of general relativity, which describes



the gravitational force as the curvature of spacetime.

Riemann also made significant contributions to complex analysis. He intro-

duced the Riemann surface, a two-dimensional surface that allows for the study

of complex functions with multiple values. His insights into complex analysis

provided a deeper understanding of the behavior of functions of a complex vari-

able, leading to the development of many important mathematical tools and

theorems.

Another important contribution of Riemann is his work on the theory of

functions. He introduced the Riemann integral, a generalization of the definite

integral that allowed for the integration of a broader class of functions. His ideas

laid the foundation for the modern theory of integration, which is fundamental

to many branches of mathematics and physics.

Riemann’s work also had an impact on number theory. He made significant

progress on the Riemann Hypothesis, one of the most famous unsolved problems

in mathematics, which concerns the distribution of prime numbers. Although he

didn’t prove the hypothesis himself, his insights and conjectures have inspired

generations of mathematicians in their pursuit of understanding prime numbers.

Tragically, Riemann’s life was cut short by tuberculosis, and he passed away

at the age of 39 on July 20, 1866, in Selasca, Italy. Despite his short life, his

contributions to mathematics were profound and continue to influence the field

to this day. Bernhard Riemann’s ideas and theorems are regarded as some of

the most important and influential in the history of mathematics.



Stanislaw Ulam (1909-1984) was a Polish-American

mathematician and physicist known for his contributions to a wide range of

fields, including mathematics, physics, and computer science. He made signif-

icant contributions to number theory, set theory, and the development of the

atomic bomb during World War II. Ulam was also instrumental in the early

development of computer science and the field of computational mathematics.

Born on April 13, 1909, in Lwów, Poland (now Lviv, Ukraine), Ulam demon-

strated exceptional mathematical talent from a young age. He studied mathe-

matics at the Lviv Polytechnic Institute and later pursued his doctoral studies

at the University of Warsaw, where he earned his Ph.D. in 1933.

Ulam’s work in mathematics covered diverse areas, including number theory,

group theory, and set theory. He made significant contributions to the study

of prime numbers and worked on problems related to the distribution of prime

numbers, which led to advancements in analytic number theory.

During World War II, Ulam played a crucial role in the Manhattan Project,

the research and development project that produced the first atomic bombs.

He worked on the design of the bomb and made important contributions to the



development of the implosion method, a technique used to compress the fissile

material in the bomb’s core. Ulam’s contributions to the project were highly

valued and recognized.

In the field of computational mathematics, Ulam was a pioneer. He made

important contributions to the field of Monte Carlo simulations, a numerical

technique that uses random sampling to solve complex mathematical problems.

Ulam recognized the potential of this method and applied it to a wide range

of scientific and engineering problems, including neutron transport calculations,

the calculation of pi, and the behavior of nuclear particles.

Ulam was also known for his collaboration with John von Neumann, an-

other influential mathematician and computer scientist. They worked together

on the development of the Monte Carlo method and other projects, and their

collaboration led to significant advancements in computational mathematics.

In addition to his scientific contributions, Ulam was known for his intellectual

curiosity and his ability to bridge multiple disciplines. He had a wide range of

interests, including biology, economics, and history, and he made important

contributions to these fields as well.

Stanislaw Ulam passed away on May 13, 1984, in Santa Fe, New Mexico,

USA. His work continues to be influential in various areas of mathematics,

physics, and computer science. Ulam’s contributions to the Manhattan Project

and the development of computational mathematics have had a lasting impact

on scientific and technological advancements.



J. Hadamard refers to Jacques Hadamard (1865-

1963), a French mathematician known for his contributions to various fields of

mathematics, including analysis, number theory, and mathematical physics. He

made significant advancements in the theory of partial differential equations,

the theory of functions, and the study of prime numbers.

Born on December 8, 1865, in Versailles, France, Hadamard displayed excep-

tional mathematical talent from a young age. He studied at the École Normale

Supérieure in Paris and later became a professor at the Collège de France.

Hadamard made significant contributions to the theory of functions of a com-

plex variable, particularly in the area of singularities and the growth of entire

functions. His research on entire and meromorphic functions led to the develop-

ment of the Hadamard factorization theorem, which provides a representation

of an entire function as a product of exponential factors. This theorem has

applications in complex analysis and the theory of partial differential equations.

In the field of number theory, Hadamard worked on the distribution of prime

numbers. He made significant progress on the prime number theorem, which

establishes the asymptotic behavior of prime numbers. Hadamard, along with

Charles Jean de la Vallée-Poussin, independently proved the theorem in 1896.



The prime number theorem is considered one of the most important results in

number theory.

Hadamard also made important contributions to mathematical physics, par-

ticularly in the area of partial differential equations. He worked on the theory of

hyperbolic equations and introduced the concept of characteristic curves, which

are fundamental in the study of wave propagation.

Apart from his mathematical achievements, Hadamard was known for his

influential work in psychology. He conducted research on perception and mem-

ory, exploring the mathematical aspects of these fields. His book "Psychology

of Invention in the Mathematical Field" examines the creative process and the

mindset of mathematicians.

Jacques Hadamard received numerous honors and awards for his work, in-

cluding the Bolyai Prize, the Sylvester Medal, and election to the French Academy

of Sciences. He passed away on October 17, 1963, in Paris, France, leaving

behind a rich legacy of mathematical achievements and interdisciplinary contri-

butions.

Krasnoselskii refers to Mark Aleksandrovich Kras-

noselskii (1920-1997), a prominent Soviet mathematician known for his con-



tributions to functional analysis and nonlinear operator theory. He made sig-

nificant advancements in the study of fixed-point theory, nonlinear equations,

and nonlinear functional analysis.

Born on October 27, 1920, in Moscow, Russia, Krasnoselskii studied at

Moscow State University, where he later became a professor. He played a key

role in the development of the Moscow School of Nonlinear Analysis, which had

a profound impact on the field.

Krasnoselskii’s most notable contribution is his work on fixed-point theory.

He developed the concept of a cone in a Banach space, which led to the de-

velopment of fixed-point theorems for nonlinear operators. The Krasnoselskii

fixed-point theorem, also known as the cone-contraction theorem, is a funda-

mental result in nonlinear functional analysis and has numerous applications in

various areas of mathematics and physics.

His research on nonlinear equations and functional analysis also contributed

to the understanding of bifurcation theory, stability theory, and the study of

nonlinear partial differential equations. Krasnoselskii’s work had a significant

impact on the development of mathematical physics and engineering applica-

tions.

Krasnoselskii authored several influential books, including "Topological Meth-

ods in the Theory of Nonlinear Integral Equations" and "Positive Solutions of

Operator Equations." These books are widely regarded as important references

in the field of nonlinear analysis.

Throughout his career, Krasnoselskii received several prestigious awards and



honors, including the Lenin Prize, the Order of the Red Banner of Labour, and

membership in the Russian Academy of Sciences.

Mark Aleksandrovich Krasnoselskii passed away on October 15, 1997, in

Moscow, leaving behind a significant legacy in the field of functional analy-

sis and nonlinear operator theory. His contributions continue to be influential

and widely studied by mathematicians and researchers in various branches of

mathematics and its applications.

Joseph Liouville (1809-1882): was a French math-

ematician known for his contributions to a wide range of mathematical fields,

including analysis, number theory, and mathematical physics. He made sig-

nificant contributions to the theory of elliptic functions, complex analysis, and

transcendental numbers. Liouville’s theorem, named after him, states that every

bounded entire function must be constant, which has applications in complex

analysis and the theory of differential equations. He also worked on the devel-

opment of Riemann surfaces and the approximation of algebraic numbers by

rational numbers.



Michele Caputo: Michele Caputo is an Italian

physicist known for his contributions to the field of condensed matter physics.

He has made significant advancements in the study of disordered systems, in-

cluding the development of theoretical models and methods to understand the

behavior of disordered materials.
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