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تتبع الهدف ، مجالات مختلفة مثل تحتوي الأنظمة متعددة الروبوتات على العديد من التطبيقات المحتملة في  :ملخص

الرعاية المنزلية ، مراقبة الموارد الطبيعية ، والعمليات الصناعية ستجابة للطوارئ والإنقاذ ، المراقبة البيئية ، الا

.الخارجية مثل تشخيص الأخطاء وإصلاحها   

لاتباع   تابع-قائديركز هذا المشروع على التحكم في مجموعة من الروبوتات المتنقلة غير الشاملة بناءً على حركة  

.المسار المطلوب في بيئة ما ، مع الحفاظ على التكوين الهندسي المحدد مسبقًا   

تابع .-؛ قائد الروبوتات المتنقلة غير الشاملة؛  الأنظمة متعددة الروبوتات كلمات المفتاحية:   

Résumé : Les systèmes multi-robots ont de nombreuses applications potentielles dans 

divers domaines tels que le suivi des cibles, la surveillance de l'environnement, les 

interventions d'urgence et le sauvetage, les soins à domicile, la surveillance des ressources 

naturelles et les opérations industrielles en plein air telles que le diagnostic et la réparation 

des pannes. 

  Ce projet se concentre sur le contrôle d'un groupe de robots mobiles non holonomiques 

basés sur le mouvement leader-suiveur pour suivre une trajectoire souhaitée dans un 

environnement, tout en conservant une configuration géométrique prédéfinie. 

Mots clés : Systèmes multi-robots; Robots mobiles non holonomiques; Leader-suiveur. 

Abstract: Multi-robot systems have many potential applications in various fields such as 

target tracking, environmental monitoring, emergency response and rescue, homecare, 

natural resource monitoring, and outdoor industrial operations such as fault diagnosis and 

repair. 

 This project focuses controlling a group of non-holonomic mobile robots based on the 

leader-follower motion using “Lyapunov’s Direct Method” to follow a desired trajectory in 

an environment, while maintaining a predefined geometrical configuration. 

Keywords: Multi-Robot Systems; Non-Holonomic Mobile Robots; Leader-Follower; 

Lyapunov’s Direct Method. 



 

List of acronyms and abbreviations 

MRS: Multi Robot Systems 

UAV: Unmanned Air Vehicles 

AUV: Autonomous Underwater Vehicles 

MAS: Multi Agent Systems 

P.E: Potential Energy 

SSC: Separation – Bearing Controller 

SBC: Separation – Separation Controller 

RWS: Rolling Without Slipping 

ICR: Instantaneous Center of Rotation 

EKF: Extended Kalman Filter 

SVSF: Smooth Variable Structure Filter 
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General Introduction 

   The cooperative control of mobile Multi-Robot Systems is one of the most important 

themes of this generation of research, due to the wide array of applications, such as 

rescue missions, transporting large objects, surveillance, sensor networks, cooperative 

transport, manufacturing,  waste management, space exploration and military transport 

... etc. 

   The prospects for multi-robot systems have multiplied in recent years. Moreover, MRS are 

more flexible, more adaptable, more scalable, and more affordable than single robots, which 

can be increased by modularization [1] [2]. In fact, MRS are useful not only when the robots 

can accomplish different functions, but also when they have the same capabilities [1] [3].  

One of the main areas of research in order to achieve successful autonomous robots with the 

positive characteristics mentioned above is Path Planning. It is defined as the optimal 

collision-free navigation for the autonomous vehicles to be able to maneuver from a source 

to a desired destination. In this document, we will use the leader-follower approach where 

the leader robot moves along a predefined trajectory, on the other hand, the follower robots 

track the path of the leader while maintaining a predefined spacing between him and the 

leader. Using this formation gives us with two main options regarding the distribution 

structures of the tasks between the leader and the followers. The first one is to let the leader 

control the formation and make all the decisions and calculations using the data and 

informations sent from the followers, the second structure focuses on distributing the tasks 

between the leader and the followers (the leader is given the task of navigation and path 

planning, while the tasks of followers involve following the leader, collecting data and 

managing communication).   

   Moving a group of robots in a desired formation would be beneficial in many real world 

applications that would reduce the human interference in dangerous environments such as 

search and rescue missions during natural disasters, battlefield exploration missions, 

planetary missions, and minesweeping. It is also used in industrial applications including 
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factory floor, resource monitoring, transporting large objects, conveying and outdoor 

industrial operations such as fault diagnosis and repair. 
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Chapter I: Autonomous Multi-Robot 

Systems 

I.1-Introduction 

   Our main objective in this dissertation is to build a stable control architecture that will allow 

us to maintain a desired formation in a busy work environment; for example, Robots (R1 to 

R6) will maintain the pre-defined formation as it is illustrated in (Figure1.1). We want to make 

this architecture as flexible as possible 

 

Figure 1. 1: A Multi Robot System 

   Multi-Robot Systems are the subject of many studies in many application domains in the 

recent decades due to its utility and flexibility in the work environment. As a matter of fact, 

these systems have many potential advantages over a single robot, including performing tasks 

that cannot be performed with a single robot and it allows a high level of flexibility in the 

execution of tasks, improving the efficiency of tasks in terms of time and quality, in addition 

to high adaptivity and easier maintenance.  



4 

 

Moreover, a MRS has a better spatial distribution and can achieve better overall system 

performance (total time required to complete a task [4], the energy consumption of the 

robots [5]), it also introduces robustness that can benefit from data fusion and information 

sharing among the robots, and fault-tolerance that can benefit from information redundancy. 

For example, multiple robots can localize themselves more efficiently if they exchange 

information about their position whenever they sense each other [6] [7] [8]. Finally, these 

systems (MRS) have a lower cost, Using a number of simple robots can be simpler to program 

and cheaper to build than using a single robot that is complex and expensive to accomplish a 

task. 

   Using formation of multiple robots to accomplish an objective offers obvious advantages. 

These include increasing feasibility, accuracy, robustness, flexibility, cost and energy 

efficiency that is why it is used in many real world applications such as Unmanned Air Vehicles 

(UAV) and Autonomous Underwater Vehicles (AUV) (Figure 1.2). 

 

 

Figure 1. 2: Examples of formations in real world applications; (a) UAV, (b) AUV 
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 We can notice that the idea of cooperation in Multi-Agent Systems is largely inspired by 

nature and the world around us. In these very powerful systems, individuals follow distant 

leaders without hitting their neighbors, including, but not limited to, schools of fish (a), 

swarms of bees (b), flocks of birds (c) and teams of ants (d) etc… (Figure 1.3). 

 

Figure 1. 3: Examples of formations in the nature 
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I.2-Fundamental analysis perspectives 

   The study of Multi-Agent Systems (MAS) has taken a large interest in the scientific 

community in the last two decades [9] [10] [11] , the use of MAS is particularly appropriate 

in situations where different robots need to coordinate and possibly cooperate in order to 

achieve individual objectives or a shared goal. Coordination typically takes place when it 

comes to using a resource in turn, or to order the actions performed by each robot. 

Cooperation goes further in the sense that the robots share at least a subset of their goals 

and coordinate to achieve them, Based on [3], there are two fundamental analysis 

perspectives: control structures and control approaches.  

In the following, we shall present a general overview of main notions concerning these two 

perspectives. 

I.2.1-Control Structures 

   The robustness of multiple mobile robot systems is related to the control structure that 

organize the robots and to obtain the desired formation behaviors. When we talk about 

mobile robots formation control, the control structures can be identified as centralized 

control structure or distributed control structure. 

 I.2.1.a-Centralized control structure 

   In a centralized control model, an agent (Leader Robot) is in charge of organizing the work 

of the other agents; the leader is involved in the decision process for the whole team, while 

the other members can act only according to the directions of the leader. The classification 

of centralized systems can be further refined depending on the way the leadership of the 

group is played. Specifically, Strong centralization is used to characterize a system in which 

the same pre-defined leader agent takes decisions during the entire mission duration, while 

in a weakly centralized system more than one agent is allowed to take the role of the leader 

during the mission. 

    The advantages of a centralized structure typically include faster convergence and 

enhanced stability. These benefits come with a greater financial cost due to the required 
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processing and communications resources needed by the single computational unit. Although 

these guarantee a complete solution, centralized control schemes require higher computation 

power and are less robust due to the heavy dependence on a single controller. Additionally, 

architectures involving a single computational unit typically do not work well for large systems 

due to limited communication range and limited processing power of the single computational 

unit. 

 I.2.1.b- Distributed control structure 

   This structure is the most used structure to control multi-robot systems. It is composed of 

agents, which are completely autonomous in the decision process with respect to each other, 

in this class of systems each robot acts based only on knowledge of local teammate’s state 

and of the state of the environment. 

   This structure is typically more budget friendly and works better for larger systems than a 

centralized structure. However, this approach can result in slower convergence and reduced 

stability. 

There are a lot of related results about formation control using distributed control structure 

we take for example [8] [11] [12] [13]. 

I.2.2-Control Approaches 

There are various strategies and approaches, which can be roughly categorized as virtual-

structure, graph theory, behavior-based approach, artificial potential and leader-follower 

approach have been emerged for the formation control of multiple mobile robots. 

 I.2.2.a-Virtual structure 

   The virtual structure approach treats the complete formation as one rigid entity [14]. 

Desired motion is allotted to the virtual structure as a whole; and therefore the trajectories 

for every robot to follow are outlined. The virtual structure will evolve as an entire body in 

any direction with some given orientations and maintaining a rigid geometric relationship 

among cluster members.  
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The advantage of this approach is that it is easier to explain the coordinated behavior for the 

cluster of formation, however the biggest disadvantage of the virtual structure’s 

implementation is centralization that results in a single point of failure for the entire system. 

 I.2.2.b-Graph Theory 

   Graph theory is the study of graphs, which are mathematical structures used to model 

pairwise relations between objects. A graph in this context is made up of vertices (also called 

nodes or points) which are connected by edges (also called links or lines). A distinction is made 

between undirected graphs, where edges link two vertices symmetrically, and directed 

graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects 

of study in discrete mathematics. 

 

Figure 1. 4:General representation of a graph 

 

  In the graph theory approach, every robot is taken into account as a node, and every 

communication or sensing info link between robots is represented as an edge. The analysis 

approach uses graph theory, control theory, and dynamic systems theory along to review the 

formation controller and its stability. 

Using this approach makes the representation of any formation easy, which has well-

developed and stable results [15]. The disadvantage is that it is difficult to fully consider all 

the limitations of the real robot configuration.   
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 I.2.2.c- Behavior-based 

   The basic idea of the behavior-based approach is to dictate many desired behaviors for 

every robot (for example: goal seeking, obstacle avoidance, collision avoidance and formation 

keeping), and so the final action of every robot is derived by weighting the relative importance 

of all the behavior. A behavior is implemented, as a sub-controller for achieving a particular 

goal, which makes this technique, is appropriate for a large group of mobile robots. 

The advantages of this sort of approach are its parallel, distributed and real-time 

characteristics, and fewer data must be communicated among robots. Therefore, it is very 

helpful to guide a multiple mobile robots, the limitation of the behavior-based approach is 

that it is troublesome to investigate the system’s performance mathematically. Thus, it is hard 

to ensure a precise formation control. 

   

 I.2.2.d- Artificial potential 

   Using this approach, each body within the environment produces a special kind of Potential 

energy (P.E); the target point produces an attractive force that pulls the robot toward the 

target point. On the other hand, the obstacles within the environment produces a repulsive 

force that pushes the robot far from them. The repulsive and attractive forces are delineated 

as a repulsive potential function and an attractive potential function. These functions are used 

together in practical applications to satisfy the convergence, collision-free and obstacle-free: 

the robot will move on the direction that minimize the P.E. 

The advantages of this approach are that it needs fewer calculations, and can be used for real-

time control applications. The drawbacks is that it is tough to design potential field functions 

satisfying native minimums. 
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 I.2.2.e- Leader-Follower 

   In the leader-following approach, one or a few robots are designated as the leader/leaders, 

with the rest being followers. The follower robots need to position themselves relative to the 

leader and maintain a desired relative position with respect to the leader. 

  To prescribe a formation maneuver we only need to specify the leader’s trajectory and the 

desired relative positions and orientations between leader/leaders and followers. When the 

motion of the leader is known, the desired positions of the followers relative to the leader 

can be achieved by local control of each follower. Therefore, in a certain sense, the formation 

control problem can be essentially viewed as an extension of the traditional trajectory-

tracking problem. According to scientific literature [16] [17], two modeling methods can be 

used to generate the control algorithm: “Separation-Bearing Controller (SBC)” and 

“Separation- Separation Controller (SSC)”. 

   The SBC is used for two robots. The follower "�" follows the leader"�" while maintaining a 

desired relative distance and separation-bearing angle with respect to the leader robot. Such 

type of leader-follower formation control strategy is also denoted by“�– �” control strategy.  

�: The separation-bearing angle between the leader and follower robot.  

	: The separation distance between the center of axis between the rear wheels of the leader, 

and the front castor of the follower robot. 

(�, ): The position coordinates for the front castor of the follower robot.  

�: The distance between the front castor and the center of axis between the rear wheels for 

each robot. 

 (�	, 	): represent the mid-point on the axis between the rear wheels. 

 The leader robot pose is expressed by �	 = [�	, 	, �	]�.  

The follower robot pose is represented by �� = [��, �, ��]�. 
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Figure 1. 6: Representation of the SSC [18] 

 

Figure 1. 5: Representation of the SBC [18] 

  The SSC is used when multiple robots are present in the formation. Such type of control 

strategy is also denoted by �– �. In the � –  � formation strategy, the leader robot 2 is actually 

a follower relative to leader robot 1. The leader robot 2 can be modeled using �– � controller.                      

The follower robot can be expressed relative to the leader robot1 and leader robot2 as            

�� = [	��, 	��, ��]�. In the � –  � control strategy, the aim is to maintain the desired lengths 

����  and ����  with respect to leader robot 1 and leader robot 2. 
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The leader-follower approach has become popular because it can be explored empirically and 

the stability of the formation can be theoretically guaranteed. 

We will see in the following chapters that we try to make the proposed control architecture 

as distributed as possible using the Leader-Follower approach. 

I.3-Multi-Robot Systems 

Real-world applications that are ideal for robotic solutions are very complicated and difficult. 

Several of those applications are set in dynamic environments that require capabilities 

distributed in functionality, space, or time. These applications, therefore, typically need 

groups of robots to work together cooperatively to successfully complete the mission. 

Nowadays, extensive research is focused on multi-robot systems. These systems offer many 

advantages, as they have a high potential to solve a problem. Multitude of problems such as 

industrial warehouses, surveillance and missions of search and rescue. They can even be used 

in underwater missions such as seabed mapping, the recovery of stranded beacons or even 

black boxes following the spitting of planes. Multi-robot systems offer high reliability and 

performance for complex tasks, even if their design is simple. 

 

Figure 1. 7: Examples of Real- world applications of Multi-Robot systems 
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I.3.1-Mobile Robot control modules 

The control of a mobile robot naturally requires the total or partial perception of the 

environment in which it is located, as well as its location in this environment, in order to 

decide on the action to be taken (Figure 9). We then retain three main modules that are 

essential to the control of the mobile robot: perception, decision-making and action. 

 

Figure 1. 8: Robot interactions with the environment 

I.3.1.a- Perception 

   In the mobile robot, the perception module is responsible for transforming the data, coming 

from the sensors (camera, ultrasonic sensor, infrared sensor, laser sensor… etc.), into 

symbolic data. It also contains modules for reaching a point or following a trajectory, or else 

avoiding an awkward obstacle, the mobile robot generally has sensors making it possible to 

recover appropriate stimuli in order to feed a model and produce a representation of this 

environment. 

I.3.1.a- Decision making 

   The autonomy of the mobile robot is a faculty that allows it to adapt or to make a decision 

in order to reach a point of known coordinates in a known environment. The decision is made 

according to the task to be accomplished in the context of execution as a function of the local 
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information of the environment delivered by its own sensors and of its communication with 

its neighbors (determined by elements of perception). 

I.3.1.a- Action 

   The mobile robot can be represented by a classic closed loop control diagram (Figure 1.9). 

And the control law block generates the command to be applied to the actuators of the 

actuator block as a function of the information supplied by the sensors (perception) and set 

point (decision). 

 

 

Figure 1. 9: Classic closed loop control diagram for a robot 

I.3.2-Modelling 

Usually for the control of mobile robots, a speed control model is used rather than a torque 

control model. The main reasons for this choice are as follows: 

 The computation of the order is simpler for a kinematic model than for a dynamic 

model. 

 There are no complicated geometric or inertial parameters to identify for a kinematic 

model. 
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    For these reasons, we only consider kinematic models thereafter, taking into account the 

following simplifying assumptions: 

 The mobile robot is considered as a rigid vehicle moving on a plane horizontal. 

 Conventional wheels are assumed to be dimensionally stable and of radius �. 

 Each wheel / ground contact is reduced to one point. 

 The wheels roll without slipping on the ground. 

Keep in mind! In reality: 

 Contact is made on a surface. 

 Undeformability hypothesis is false with wheels fitted with tires (made from synthetic 

rubber, natural rubber, fabric and wire). 

 Continuous contact with the ground: essential for the odometry of a robot. 

I.3.2.a-Setting up frames 

   We denote ��( , !�, "�, #�) a fixed global frame whose # axis is vertical, 

and �$(%&, !$ , "$ , #$), a mobile local frame linked to the robot. A remarkable point on the 

robot's platform is generally chosen for %&  typically the center of the axis of the drive wheels 

if there is one, as illustrated in (Figure 1.10). 

By analogy with manipulation, we call the robot's situation, or often posture [12], the 

vector:  

 

'&  =  (!&"&)&* 

   

1 - 1 

   

   The configuration of a mobile robot is known when the position of all its points in a given 

frame of reference is known, the configuration of the mobile robot will be defined by a vector: 
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+ =  ,+-⋮⋮+/
0 

 

1 - 2 

 

 

the n coordinates called generalized coordinates. The configuration is thus defined on a 

space N of dimension n, called the space of the configurations. 

 

 

Figure 1. 10: Location of a mobile robot 
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I.3.2.b-Rolling without slipping (RWS) and Non-holonomic constraints 

   Locomotion occurs through friction between the vehicle's wheel and the ground, and the 

efficiency of movement depends in particular on the type of ground. For the hypothesis of 

non-slip rolling to be validated, it is theoretically necessary that the wheel / ground contact 

only occurs at one point, that the ground is perfectly flat and that the radius of the wheel is 

perfectly constant over its entire periphery [21]. That is, the relative speed of the wheel 

compared to the ground at the point of contact is null. Theoretically, to verify this condition, 

it is necessary to meet the following hypotheses: 

 Each wheel is assumed dimensionally stable and the wheel to ground contact area is 

assumed point. 

 The linear speed of the point of contact of a wheel with the ground is zero. 

However, practically the contact is made on a surface, which generates slight slips. Likewise, 

the assumption that solid wheels cannot deform is largely false, especially when the wheels 

are fitted with tires. 

Mathematically, we can translate the condition of RWS on a wheel. Let %1  (!, ", �) be the 

center of the wheel, 21(!, ", 0) the point of contact of the wheel with the ground, � is the 

proper angle of rotation of the wheel and ) the angle between the plane of the wheel and 

the plane ( , !⃗, "⃗) as indicated in (Figure 1.11)  

 

Figure 1. 11: RWS properties 
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The nullity of the relative speed  567777⃗  wheel / ground at the point of contact makes it possible 

to obtain a vector relation between the speed 58977777⃗  of the center %1 of the wheel and the vector 

of rotation speed  :77⃗  of the wheel: 

If we use the expression of the points%1 . Q, we find: 

If we calculate the cross product of equation (1 - 4), we have that: 

( !=  +  ��=  ?@A ))!⃗  +  ( "= +  �B˙ ADE ))"⃗  = 07⃗  1 - 5 

This gives us the following scalar constraint system: 

!=  +  ��= cos ) = 0 

1 - 6 "= +  �B˙ ADE ) = 0 

Where �=  is the angular speed of the wheel and � is the radius of the wheel. 

We can transform these constraints to show the speed components in the plane of the wheel 

on the one hand and perpendicular to the wheel on the other hand: 

 Slipping constraints:  

− !=ADE ) + "= ?@A ) =  0 1 - 7 

 Rolling constraints: 

!=?@A ) + "= ADE) = ��=  1 - 8 

 

567777⃗  =   58977777⃗  + :77⃗ ×  %1277777777⃗ =  0 1 - 3 

!= !⃗  + "= "⃗ +  ()= #⃗ +  �= ( !⃗ ADE ) − "⃗?@A )))K(−�!⃗ )  =  07⃗   1 - 4 
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The kinematic model of a mobile robot can be obtained from the non-holonomic 

constraints, can be described as: 

L!= = 5 ?@A)"= = 5 ADE))= =  M  1 - 9 

We write it in matrix form: 

'= =  (?@A) 0ADE) 00 1* . O5:P = Q(+). R 1 - 10 

   We will be more particularly interested in the non-holonomic constraints characterizing 

among others the movements of a mobile robot of the unicycle type. 

I.3.2.c-Kinematic model of a unicycle robot 

   A unicycle type robot is powered by two independent wheels. Its center of rotation is 

located on the axel connecting the two driving wheels. It is a non-holonomic robot, in fact, it 

is impossible to move it in a direction perpendicular to the wheels of locomotion. Its control 

can be very simple; it is quite easy to move it from one point to another by a series of simple 

rotations and straight lines.  

 

Figure 1. 12: Examples of unicycle type robots [(a) khepera II, (b) TurtleBot3 Burger, (c) TurtleBot3 Waffle] 
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 To model the movement of the mobile robot taking into account these constraints; the pure 

rolling stress represents the fact that each wheel maintains a point of contact 2 with the 

ground as shown in (Figure 12). There is no slippage of the wheel in its longitudinal axis "$ nor 

of skidding in its orthogonal axis !$. The speeds of the contact points in the frame of the robot 

are linked to the wheel speeds: 

5S = −��S=  

1 - 11 5T = ��T=  

   The wheels have the same axis of rotation and the instantaneous center of rotation (ICR) of 

the robot is a point on this axis (Figure 14). Let U be the radius of curvature of the robot 

trajectory, V the center distance and M the speed of rotation of the robot around the ICR. The 

speeds of the right and left wheels are: 

5S = −��S= =  (U +  V)M  
1 -12 5T = ��T= =  (U −  V)M 

We define U and M from the speeds of the wheels: 

 

U = V �S= − �T=�S= + �T=  

1 -13 

M = −� �S= + �T=2V  

 

To develop a strategy more than moving, it is interesting to know how the posture of the 

robot is linked to the control of its wheels. 
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Figure 1. 13: Representation of the ICR 

I.3.2.d-The actuation model 

   Actuation modeling is the study of the movement of mechanical systems without 

considering the forces that affect the movement. The main goal of actuation modeling is to 

relate the posture of the robot to the control of its wheels, therefore to represent the speeds 

of the robot as a function of the speeds of the driving wheels as well as of the geometric 

parameters of the robot. From these two equations (1-7) and (1-8) we can then deduce the 

actuation model of our robot. The motion of a differential drive robot is characterized by two 

non-holonomic constraints. We can then deduce the actuation model of our robot by: 

5 = !$= =  5S + 5T2 =  � �T= − �S=2  

1–14 

M = )= =  5S − 5T2V =  −� �S= − �T=2V  

Generally, we define the necessary control of the robot by establishing the linear and angular 

speeds R =  (5 M)X  the control of the wheels is then deduced thanks to the model 
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described by equation (1-11). The inverse kinematic model makes it possible to change 

operational speeds v and ω to the speeds of each wheel. We admit the following equations: 

�S= = MS = − 5 + VM�  

1 – 15 

�T= = MT =  5 + VM�  

I.4-Chapter conclusion 

This chapter has firstly allowed us to have a general introduction to mobile robotics and its 

applications and the main specifications of SRMs. Since the objective of this dissertation is to 

achieve a hybrid control architecture allowing the maintenance of group formation of mobile 

robots in a congested environment, we first saw the different control structures existing in 

the literature; they are classified according to their method of implantation: centralized or 

distributed their advantages and disadvantages. 

This chapter is also an opportunity to present the main control approaches and their 

metrology which shares common issues in the cooperation of a group of mobile robots in a 

more specific way and that the leader-follower approach has always become popular. 

Because they can be explored empirically and the stability of internal formation can be 

theoretically guaranteed. 
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Chapter II: Modelization of the Non 

holonomic mobile robot Leader-

Follower formation  

 

II.1-Introduction 

    The formation control problem can be seen primarily as a natural extension of the 

traditional trajectory following problem. Only a few researchers have examined the problem 

of following the trajectory when dealing with the problem of multi-robot formation [47], in 

this chapter we will extend the traditional problem of tracking control of the trajectory for a 

single robot to a problem of formation control for several mobile robots.  

However, in our leader-follower training system, the trajectories of the followers are generally 

not predefined; they are decided by their leader in real time. This chapter extends trajectory 

following control for a single non-holonomic mobile robot to the control for multiple  

Non-holonomic mobile robots in which the follower can follow its leader in real time by the 

proposed kinematic controller. 

In this chapter, we will try to propose a mathematical model for a system that is as distributed 

as possible, using the Leader-Follower approach, some simple frame transformations , 

trigonometric formulas and the Slipping and Rolling constraints to find the error dynamics to 

be used later to build a controller for our system. 
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II.2-Leader-Follower formation control 

II.2.1-Mathematical model of a nonholonomic robot 

 

Figure 2. 1 :Representation of a Nonholonomic mobile robot �� 
The two-wheel-drive mobile robot illustrated in (Figure 15) is a typical example of non-

holonomic mechanical systems. Under the RWS and non-slipping hypothesis, the kinematic 

constraints of the non-holonomic mobile robot �� is given as:  

− ��� sin ��  + ��� cos ��  =  d ���  2 – 1 

 

For the description of the motion of each robot on a 2D plane two coordinate frames have to 

be used: a global inertial frame (�, �, �) and a local frame fixed to the ��� follower robot. The 

configuration of the ��� robot (equation 2-1) represents the position and orientation in the 
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local coordinate system in the global frame, where the orientation ��  is taken 

counterclockwise from the global X-axis (using the right hand rule). 

�� = �����
���   2 – 2 

The motion of the mobile robot is controlled by its linear and angular velocities �(�) and �(�) 

respectively. The relation between �v(t) �(t)"#and the velocities in Cartesian frame is given 

by (equation 2-2). 

��� = $������
�� �% = �cos(��)sin(��)0

001� (v(t)
�(t))    2 – 3 

II.2.2- Leader-follower formation control and error dynamics 

According to the formation control diagram shown in (Figure 16), the follower robot �* 

follows its leader �+ with the desired separation ,+*-  , the desired bearing ψ+*-  and the desired 

orientation /*- (in this case /*- =  /+  ). 
We denote the posture and the control law of the leader robot �+  : 

 �+ = ��+ �+ /+"#  
 0+ = ��+ 1+"# 

And the posture of the follower robot �* as: 

 �* = ��* �* /*"#  

 0* = ��* 1*"# 

 

The desired position of the follower in the leader's coordinate system is (�- , �-), and the 

actual position in the global coordinate system  �*-  =  (�2 , �2) can be obtained using the 

following equation (equation 2-4): 
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�*- = 3�2�24 = 3�+�+4 + 5cos /+ −sin /+sin /+ cos /+ 6 . 3�-�-4 
2-4 

 By knowing the constant values of  (�-, �-) we can easily calculate the desired separation ,+*-  

and bearing ψ+*- using the following equations: 

l+*- = 9�-: + �-: 2-5 

ψ+*- = tan<= (�-�-) + > −  /+  2-6 

 

 

Figure 2. 2: Representation of the Leader-Follower non-holonomic mobile robot formation 

Thanks to the geometric relationship between the robots [26], it is easy to obtain the desired 

position �*- of the follower robot: 
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�*- = ?�+ − @ cos /+ + l+*- cos(ψ+*- + /+)�+ − @ sin /+ + l+*- sin(ψ+*- + /+)/+
A 2-7 

The real-time posture of the follower robot �* is defined by: 

�* = ?�+ − @ cos /+ + ,+* cos(ψ+* + /+)�+ − @ sin /+ + ,+* sin(ψ+* + /+)/+
A 2-8 

Taking the time derivative of (equation 2-4) and using (equation 2-3) and some simple 

trigonometric formulas which are obtained as follows: 

��2 = ��+ − �- /+� sin /+ − �- /+�  cos /+  

��2 = ��+ + �- /+� cos /+ − �- /+�  sin /+  
��2 = �+ cos /+ − �-1+ sin /+ − �-1+  cos /+  
��2 = �+ sin /+ + �- 1+  cos /+ − �-1+  sin /+  

��2 = (�+ − �-1+)  cos /+ − �-1+ sin /+  

��2 = (�+ − �-1+)  sin /+ + �-1+ cos /+  

 

                          5��2��26 = 5cos /+ −sin /+sin /+ cos /+ 6 . 3�+ − �-1+�-1+ 4 2-9 

 

If the distance between the point in the front of the robot (the red dot in Figure 15) and the 

point in the center of wheels axle (the black dot in Figure 15) is @ in the global coordinate 

system, the relation can be presented as follows: 
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B�C**DE� = �* + @ cos /*�C**DE� = �* + @ sin /*  2-10 

We calculate the time derivative of (equation 2-10): 

F��C**DE� = �*� − @ /*� sin /*��C**DE� = �*� + @ /*� cos /* 2-11 

We use equation (equation 2-3): 

F��C**DE� = �*  cos /* − @ /*� sin /*��C**DE� = �*  sin /* + @ /*� cos /*  2-11 

Tracking error for leader follower formation in the global coordinate system is obtained as 

follows: 

3�*EG�*EG4 = 3�2 − �C**DE��2 − �C**DE�4 2-12 

Now we transform the tracking error from the global frame to the follower’s frame: 

3�*E�*E4 = 5 cos /+ sin /+− sin /+ cos /+6 . 3�2 − �C**DE��2 − �C**DE�4 2-13 

 

In the leader-follower approach, the angular and linear velocity of the leader is given, we will 

only need to control the angular and linear velocity of the follower to maintain the relative 

separation and relative bearing between them in order to satisfy the desired formation. 

We calculate the time derivative of (equation 2.13): 

B �*E = �2 cos /* − �C**DE� cos /* + �2 sin /* − �C**DE� sin /*�*E = −�2 sin /* + �C**DE� sin /* + �2 cos /* − �C**DE� cos /* 

��*E = ��2 cos /* + ��2 sin /* − �21* sin /* + �21* cos /* − ��C**DE� cos /* − ��C**DE� sin /*+ �C**DE�1* sin /* − �C**DE�1* cos /* 
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��*E = −��2 sin /* + ��2 cos /* − �21* cos /* − �21* sin /* + ��C**DE� sin /* − ��C**DE� cos /*+ �C**DE�1* cos /* + �C**DE�1* sin /* 

We denote  H = /+ − /* , that means  H� = 1+ − 1* : 

��*E = (�+ − �-1+) cos H − �-1+ sin H − �* + 1*(−�2 sin /* + �C**DE� sin /*+ �2 cos /* − �C**DE� cos /*) 

��*E = (�+ − �-1+) sin H − �-1+ cos H − 1*(@ + �2 cos /* − �C**DE� cos /*+ �2 sin /* − �C**DE� sin /*) 

We can obtain the error dynamics of the mobile robot as follows: 

?��*E��*E/�*E
A = ? (�+ − �-1+) cos H − �-1+ sin H − �* + 1* �*E(�+ − �-1+) sin H − �-1+ cos H − 1*(@ + �*E)1+ − 1*

A 2-14 

II.3-Chapter conclusion  

  In this chapter, we have proposed a mathematical model for our MRS making it as distributed   

using the Leader-Follower approach.  

First, we have described the pose of a non-holonomic Mobil robot in the global frame 

(equation 2 – 2) then we used the derivative of this pose to get the displacement of the robot 

(equation 2–3). After that, we managed to find the Tracking error (equation 2–13) using 

frame transformations, trigonometric formulas and the non-holonomic constraints .Finally, 

we used the derivative of the Tracking error to extract the error dynamics (equation 2–14). 

 In the next chapter, we will try to propose two different controllers for the nonholonomic 

mobile robot formation. 

 



30 

 

Chapter III: Controller Conception 

III.1-Introduction 

The subject of nonlinear control deals with the analysis and the design of nonlinear control 

systems .this means, control systems containing at least one nonlinear component. 

In the analysis, a nonlinear closed-loop system (Figure 1.9) is assumed to have been designed, 

and we wish to determine the characteristics of the system's behavior. In the design, we are 

given a nonlinear System to be controlled and some specifications of closed-loop system 

behavior, and our task is to construct a controller so that the closed loop system meets the 

desired characteristics. In practice, of course, the issues of design and analysis are intertwined, 

because the design of a nonlinear control system usually involves an iterative process of 

analysis and design. 

In this chapter, we will use the mathematical model calculated in the previous chapter to create 

two controllers each one of theme uses a different method then the other. For the first one we 

will use the feedback linearization method which is a common approach used in controlling 

nonlinear systems. The approach involves coming up with a transformation of the nonlinear 

system into an equivalent linear system through a change of variables and a suitable control 

input .and for the second one we will us a Lyapunov’s direct method based controller that 

guarentees the asymptotical stability of the system . 

 

III.2-Feedback Linearization Control  

   The modeling of real systems is more or less precise, it is done by neglecting certain 

nonlinearities and disturbances, often even, by reducing the number of state variables of the 

system. And it is from this approximate representation of physical reality that we want to build 

as simply as possible a robust and efficient control. When the controlled part of the process is 

weakly disturbed, conventional control algorithms. One of the most well-known non-linear 

control methods is Exact Feedback Linearization control in either the input-state direction or 

the input-output direction, can be sufficient if the demands on the accuracy and performance 

of the system are not too strict. 

   Feedback Linearization is an approach to nonlinear control design that has received a great 

deal of research interest in recent years. The central idea of this approach is to algebraically 

transform a dynamic of a nonlinear system into a (fully or partially) linear dynamic, so that 

linear control techniques can be applied. This differs entirely from conventional linearization in 

that feedback linearization is achieved by state transformations and exact feedback, rather than 
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linear approximations of dynamics. The idea of simplifying the form of the dynamics of a system 

by choosing a different state representation is not entirely unknown. In mechanics, for 

example, it is well known that the form and the complexity of a system model depends 

considerably on the choice of reference frames or coordinate systems. Feedback linearization 

techniques can be seen as a means of transforming original system models to an equivalent 

models of a simpler form. So they can also be used in the development of robust or adaptive 

nonlinear controllers [20]. 

We take a mobile robot described by the equation of state (equation 3-1) � = ���, ��   \� ∈ ℝ�  ,   � ∈ ℝ 3 – 1 

The idea is to cancel non-linearities and impose a desired linear dynamic, perhaps simply 

applied to a class of non-linear systems described by the so-called canonical form of 

controllability, we say that a system is in companion form if its dynamic is represented by: 

����� = ����. � + ����� = ℎ���  3 – 2 

 �: The scalar control input. 

 �: The state vector �� �� … ��������. 

  : The number of times of derivative to make the entry u appear. 

 !��� "# $�%�: Nonlinear functions 

Keep in mind! : The singularity of Feedback Linearization control                                                 

                det)����* ≠  0                                                                                                                             

The form is unique in that although derivatives of � appear in this equation, no derivative of the 

input � is present. Note that, in the state space representation, (equation 3-2) can be written in 

the following form (equation 3-3): 

--� . ��⋮������
0 = . �1⋮������. � + ����0 3 – 3 

For systems that can be expressed in the canonical form of controllability, we use the control 

entry: � = ������. �2 − ����� 3 – 4 

 

Then we can cancel the non-linearities and obtain the simple input-output relation using the 

multiple integrator form [25]: �� = 4 3 – 5 
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With the vector 4 being our new input and of the same dimension as � which itself of the same 

dimension as �, from this we can consider our looped control system as follows: 

 

Figure 3. 1: Feedback Linearization control model 

We will use a PD type regulator (Proportional, Derivative), the use of such a regulator. It is 

necessary to have derivative outputs. As we have assumed to have, access to all the state 

variables � of the system, a formal expression of these derivatives as a function of � is easily 

obtained using the equations of state. 

We first propose to stabilize this system by a proportional and derivative regulator of the type: 4 = 56�7 − �� + 5��78 − �8 � + ⋯ + 51)7����� − ������* + 7��� 3 – 6 

Where 7 is the desired set point for � . And 7 can be time dependent like our leader follower 

system. The fact that this regulator requires the derivatives of � is not a problem in the context 

of linearization loopback. Indeed, all these derivatives can be written like analytical functions of 

the state � of the system and of the entry �. Regarding the set point 7 �:�, it is chosen by the 

user and an analytical expression of 7 �:� may be assumed to be known. 

Thus, the calculation of the derivatives of 7 is done in a formal way and no sensitivity of the 

operator derivation with respect to noise is to be feared. ���� = 4 = 56�7 − �� + 5��78 − �8 � + ⋯ + 5���)7����� − ������* + 7��� 3 – 7 

 

We define the error ; between the set point 7 and the output � by ; =  7 −  �, this equation 

becomes: 56; + 5��;8� + ⋯ + 5���);�����* + ;��� = 0 3 – 8 

 

This differential equation (equation 3–8) is called the error dynamics. 
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II.2.1-Applying the feedback linearization control to the non-holonomic mobile robot formation 

 Feedback linearization control can be used to tackle this model (equation 2-14), but first 

we need write the system as shown in (equation 3-2), we get the following equation: 

<�8=>�8=>? = <−1 �=>0 −�- + �=>�? A4=B=C + .�4D − �EBD� cos 5 − �EBD sin 5�4D − �EBD� sin 5 − �EBD cos 5BD − B= 0 3 – 9 

 Where: 

 ���� = <−1 �=>0 −�- + �=>�? 

 � = A4=B=C 

 ����= .�4D − �EBD� cos 5 − �EBD sin 5�4D − �EBD� sin 5 − �EBD cos 5BD − B= 0 

Consider the following linearizing loopback control inputs: 

A4=B=C = <−1 �=>0 −�- + �=>�?�� K2 − .�4D − �EBD� cos 5 − �EBD sin 5�4D − �EBD� sin 5 − �EBD cos 5BD − B= 0L 3 – 10 

Where V is the new entry, our looped system is rewritten in the following form: 

2 = <2�21? = <�8=>�8=>? 3 – 11 

 

 

To prove that the path following control system (equation 2-14) under the law of the controller 

(equation 3-10) is asymptotically stable and that the following error converges to zero, we 

choose the Proportional-Derivative controller: 

2 = 56 A�=>�=>C + M�8  3-12 

 Where M�  is the desired pose in the followers frame. 

Using pole placement (using identification or Pascal’s triangle [25]) we find that 56 = 1, we 

take M�8 = 0. 
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II.2.2- Simulation results on MatLab 

   We take the distance - from the rear axle to the front of the robot is (0.2m), the linear speed 

and the angular speed of the leader robot are respectively (1.25, 0.4), and the initial posture of 

the leader robot is at (0, 0, 0) and the follower robot is at (-3, -5, 0). In order to maintain the 

leader-follower formation, the follower must maintain the desired separation ND=E =  1.5 P  and 

the desired orientation with the leader QD=E = RST  UV- = 210°. 

 

 

 

Figure 3. 2: Tracking Errors 
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Figure 3. 3: Control Law 

 

Figure 3. 4: Trajectories 
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II.2.3- Results discussion: 

Figure (3.2) is the follower errors. It shows that the tracking errors of the follower converge 

towards zero after (t = 6s). 

Figure (3.3) is the angular velocity and linear velocity of the follower. From this, the follower 

starts with a high linear velocity and a high angular velocity. This implies that the initial linear 

acceleration and angular acceleration are very large, which means that the follower’s force and 

torque are very large. 

Figure (3.4) is the trajectory of the robots. It shows that the follower can follow the leader well 

and maintain the desired separation and bearing with the leader. 

 

III.3- Lyapunov’s Direct Method based controller 

Given a control system, the primary and most vital question concerning its numerous 

properties is whether it is stable or not, because an unstable control system is typically useless 

and potentially dangerous. Qualitatively, a system is delineated as stable if starting the system 

close to its desired operating point implies that it will stay around the point ever after. The 

movements of a pendulum starting near its two equilibrium points, (the vertical up “12” and 

down”6” positions) are frequently used to illustrate the stability of a dynamic system. 

 

Figure 3. 5: Equilibrium points of a pendulum 

 For aircraft control systems, a typical stability problem is intuitively related to the following 

question: will a trajectory perturbation due to a gust cause a significant deviation in the later 

flight trajectory? Here, the desired operating point of the system is the flight trajectory in the 
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absence of disturbance [25]. Every control system, whether linear or nonlinear, involves a 

stability problem that should be carefully studied. 

The most useful and general approach for studying the stability of nonlinear control systems is 

the theory introduced in the late 19th century by the Russian mathematician Alexandr 

Mikhailovich Lyapunov. Lyapunov's work, The General Problem of Motion Stability, includes 

two methods for stability analysis (the so-called linearization method and direct method) and 

was first published in 1892. The linearization method draws conclusions about a nonlinear 

system's local stability around an equilibrium point from the stability properties of its linear 

approximation. The direct method is not restricted to local motion, and determines the stability 

properties of a nonlinear system by constructing a scalar "energy-like" function for the system 

and examining the function's time variation [20]. 

The objective of this part of the chapter is to present Lyapunov stability theory and illustrate its 

use in the analysis and the design of controllers for nonlinear systems in general then apply it to 

control our nonholonomic mobile robot formation. 

III.3.1- Equilibrium Points 

   A nonlinear dynamic system can usually be represented by a set of nonlinear differential 

equations in the form: 

�8 = ���, �� 3-13 

 Y: Is a [ × 1 nonlinear vector function. 

 % ∶Is the [ × N state vector 

It is possible for a system trajectory to correspond to only a single point. Such a point is called 

an equilibrium point. Many stability problems are naturally formulated with respect to 

equilibrium points. 

A state �∗ is an equilibrium state (or equilibrium point) of the system if once � �:� is equal to �, 

it remains equal to � for all future time.  
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Mathematically, this means that the constant vector �∗satisfies  

���∗� = 0  3-14 

Equilibrium points can be found by solving the nonlinear algebraic equations (equation 3-14). 

 

III.3.2-Lyapunov’s direct method 

Stability is a binary property of a system, that is, a system cannot be simultaneously stable or 

not stable. However, a stable system is characterized by a degree or index that shows what 

quantity close to instability the system is (relative stability). A system is outlined to be bounded-

input bounded-output (BIBO) stable if any bounded input leads invariably to a bounded output. 

A linear time-invariant system is BIBO stable if and only if all the poles of its transfer function or 

the eigenvalues of the matrix A of its state-space model lie strictly on the left-hand complex 

semi plane. The matrix A with the above property is named a Hurwitz matrix. The Routh and 

Hurwitz algebraical criteria specify the conditions that the coefficients of the system’s 

characteristic polynomial should satisfy in order for the system to be stable [19].But the Routh 

and Hurwitz stability criteria will solely be used for time-invariant linear single-input single-

output (SISO) systems.  

   Lyapunov’s stability method may be applied to time-varying systems and to nonlinear 

systems. Lyapunov has introduced a generalized notion of energy (called Lyapunov function) 

and studied dynamic systems without external input. Combining Lyapunov’s theory with the 

idea of BIBO stability, we are able to derive stability conditions for input-to-state stability (ISS). 

Lyapunov has introduced two stability methods. The first method needs the availability of the 

system’s time response (i.e., the solution of the differential equations). The second method, 

conjointly known as direct Lyapunov method, does not need the knowledge of the system’s 

time response. 
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Reminder:   

Definition 1: Positive definiteness 

A scalar function ���� is said to be positive definite in a particular region which includes 

the origin of state space if ���� > 0 for all non-zero states x in that region and ��0� = 0  

Definition 2: Negative definiteness 

A scalar function ���� is said to be negative definite if −���� is positive definite. 

Definition 3: Positive Semi-definiteness 

A scalar function ���� is said to be positive semi-definite if it is positive at all states in 

the particular region except at the origin and at a certain other states where it is zero. 

Definition 4: Negative Semi-definiteness 

A scalar function ���� is said to be negative semi-definite if – ���� if positive semi-

definite. 

                                                                                                                                                                                                          

 

Theorem: (Lyapunov’s Direct Method) [19] [20] 

1. If a scalar function 2 ��, :� satisfies the following conditions:  

 2 �0, :� = 0 .  
 2 ��, :�  Positive definite.  

 28  ��, :�  Negative definite. 

The system is asymptotically stable. 
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2. If a scalar function 2 ��, :� satisfies the following conditions:  

 2 �0, :� = 0 .  
 2 ��, :�  Positive definite.  

 28  ��, :�  Negative semi-definite. 

The system is locally stable. 

3. If a scalar function 2 ��, :� satisfies the following conditions:  

 2 �0, :� = 0 .  
 2 ��, :�  Positive definite for � ≠ 0.  

 28  ��, :�  Negative definite for � ≠ 0. 

 lim‖d‖→f 2 ��, :�  →  ∞   
The system is globally asymptotically stable. 

 

III.3.3-Conception of the Lyapunov’s direct method based controller: 

 

The first step is to choose a viable candidate for the Lyapunov function 2 that must be positive 

definite, for this we chose the following function: 

2 = 12 ��>1 + �>1� 3-15 

Now we calculate the derivative of the Lyapunov function mentioned in (equation 3-15): 

28 = �>�4D − �E . BD� cos�5� + �E . BD . �> . sin�5� − 4= . �> + B= . �> . �>+ �4D − �E . BD�. �> . sin�5� + �E . BD . �> . cos�5� − �> . B= . - − �> . B= . �> 
3-16 

 

28 = �>�4D − �E . BD� cos�5� + �E . BD . �> . sin�5� − 4= . �> + �4D − �E . BD�. �> . sin�5�+ �E . BD . �> . cos�5� − �> . B= . - 

 

3-17 

Finally, we choose 4= and B= in a way that makes 28  Negative definite to guarantee the asymptotical 

stability of the system: 

 

h 4= = �4D − �E . BD� cos�5� + �E . BD. sin�5� + i�. �>7= = ��4D − �E. BD�. sin�5� + �E . BD. cos�5� + i1. �>�/- 3-18 

 

With i� > 0 and i1 > 0 . 
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III.3.4- Simulation results on MatLab 

   We take the distance - from the rear axle to the front of the robot is (0.2m), the linear speed 

and the angular speed of the leader robot are respectively (1.25, 0.4), and the initial posture of 

the leader robot is at (0, 0, 0) and the follower robot is at (-3, -5, 0). In order to maintain the 

leader-follower formation, the follower must maintain the desired separation ND=E =  1.5 P  and 

the desired orientation with the leader QD=E = RST  UV- = 210°. 

 

 

Figure 3. 6: Tracking errors 
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Figure 3. 7: Control Law 

 

Figure 3. 8: Trajectories 
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III.2.3- Results discussion: 

Figure (3.6) is the follower errors. It shows that the tracking errors of the follower converge 

towards zero after (t = 0.53s) which is excessively fast comparing to the feedback linearization 

method but the tracking on theta is a little bit less accurate. 

Figure (3.7) is the angular velocity and linear velocity of the follower. From this, the follower 

starts with a high linear velocity and a high angular velocity. This implies that the initial linear 

acceleration and angular acceleration are very large, which means that the follower’s force and 

torque are very large then converges to a lower value. 

Figure (3.8) is the trajectory of the robots. It shows that the follower can follow the leader well 

and maintain the desired separation and bearing with the leader. 

III.4-Smooth Variable Structure Filter (SVSF) [26] [23] [30]: 

Saeid R. Habibi introduced the SVSF (Smooth Variable Structure Filter) in 2007 [26]. This filter is 

based on the sliding mode control and estimation techniques. It is formulated in a predictor-

corrector mode, where gain switching is used to ensure that the estimated values converge to 

the real state values. As shown in (Figure3.9). 

 

Figure 3. 9: Estimation using the SVSF filter 

The SVSF uses an existing subspace and a smoothing boundary layer to maintain the limited 

estimates in a region of the actual state path. The estimation process is summarized in 

equations (3.28) - (3.37). SVSF is very different from the Extended Kalman Filter [31], which 

neither has nor uses covariance matrix. The SVSF uses a switching gain (SVSF filter gain) to 

converge the estimates within a band around the actual path. This band is called “Existence 

Subspace k ”. 
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Figure 3. 10: Presence of chattering (β>Ψ) [26] 

 

Figure 3. 11: Post estimation smoothed Trajectory (β<Ψ) [26] 

Mathematical formulation of the SVSF filter [26]: 

In 2003, the Variable Structure Filter (VSF) was introduced as a new predictor-corrector method 

used for the estimation of states and parameters. A corrective term is then applied to calculate 

the posterior state estimate, and the estimation process is repeated iteratively. SVSF was later 

derived from VSF, and uses a simpler and less complex gain calculation. In this form, the SVSF is 

stable and robust to uncertainties and noise. 

- We consider a system, linear or nonlinear, modeled in its following state form: 

���l� = m���, ��, 7��n�l� = o. �� + 4�  
3-19 

-The SVSF passes through three steps: 

1- Initialization 

��6｜0 = �6p6｜0 = p6 
3-20 
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2- Prediction 

1-The estimation of the current state (k) is predicted using the estimated model of the system: 

2- Using (equation 3-21) we can calculate the current estimation of the measures (k) 

3- Now we calculate the current measurement error  

 

3- Updating the Values 

4- For the state estimation, the correction gain “qrsrt” is calculated as follows: 

 

Keep in mind: 

- ′v′ Is referred to as the convergence rate (values between 0 and 1). 

- ‘ + ’ Indicates the pseudo-inverse of a matrix [32]. 

- ‘°’ Represents the element-by-element product between two vectors. 

                                                                                                                                                                                   

5- The estimation of the state after the instance k+1 is calculated as follows 

6- Finally we calculate the error after the instance k+1 is calculated as follows  

 

The discontinuous correction gain qrsrt  is formulated to guarantee the convergence and the 

stability of the estimation process, this means that the estimated state does not diverge and 

always remains in the vicinity of the real state within an uncertainty band. However, the use of 

the gain qrsrt  with thesignum "z{|[" function (Figure 3.12) introduces chattering. In order to 

remedy this phenomenon, the use of a form of saturation "}V:"  (Figure 3.13) within the 

uncertainty band can attenuate this chatter. 

This means that (equation 3.24) becomes: 

�~�l�｜k = m����｜k, ��� 3-21 

n̂�l�｜k = o.� �~�l�｜k 3-22 

p�l�｜k = n�l� − n̂�l�｜k 3-23 

qrsrt = o�l�γ. �p�｜k� + �p�l�｜k��°Sign(p�l�｜k,) 3-24 

n̂�l�｜k+1 = o�. �~�l�｜k+1 3-25 

p�l�｜k = n�l� − n̂�l�｜k+1 3-26 

qrsrt = o�l�γ. �p�｜k� + �p�l�｜k��°Sat(p�l�｜k , Ψ) 3-27 
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Figure 3. 12: Signum function 

 

Figure 3. 13: Saturation function 

III.5- Chapter conclusion 

In this chapter, we have used the mathematical model from the previous chapter to propose 

two controllers .the first one was made using the feedback linearization method and the 

second one was made using Lyapunov’s direct method that guarantees the stability   of the 

system. Finally, we introduced the concept of leader position estimation using the SVSF FILTER 

to reduce the chattering phenomena. 

In the next chapter, we will try implement our two controllers in the ROS Gazebo simulator. 
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Chapter IV: Simulation in “Robot 

Operation System” 

IV.1-Introduction 

In the first chapter, we approached the different types of formation structures and the control 

approaches of multi-robot systems. Then, in the second chapter, we have addressed the 

modeling and control of unicycles robots. And in the third one, we studied the Lyapunov direct 

method and the SVSF corrector-predictor filter. Based on all of these informations, we chose 

a specific method for our project: "control of a multi-robot system by Lyapunov’s direct 

method ".   

The leader robot is equipped with a laser to assist him in his autonomous navigation, and a 

wireless access point to share his odometry with the followers. These latter followers are 

equipped with a receiver (in order to receive the information sent by the leader to enable 

them to follow his path). 

In this fourth and last chapter, we will define the software environment necessary to achieve 

the desired scenario (in this case ROS). Then write the implementation of the simulation 

environment in 3D as well as the simulation results. 

IV.2-Robot Operating System 

   Robot Operating System (ROS) is an open source robotics middleware. This means that it is 

designed to manage the complexity and heterogeneity of the hardware and applications, 

promote the integration of new technologies, simplify software design, hide the complexity 

of low-level communication and the sensor heterogeneity of the sensors, improve software 

quality, reuse robotic software infrastructure across multiple research efforts, and to reduce 

production costs. Although ROS is not an operating system as the name suggests, but it is a 

collection of software frameworks for robot software development. it provides services 

designed for a heterogeneous computer cluster such as low-level device control, 
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implementation of commonly used functionality, message passing between processes, 

package management and hardware abstraction, which is the main feature.  

Hardware abstraction are sets of routines in software that provide programs with access to 

hardware resources through programming interfaces. The programming interface allows the 

access to all devices through identical interfaces; this allows developers to write device-

independent, high performance applications by providing standard operating system (OS) 

calls to hardware [29].  

Running sets of ROS-based processes are represented in a graph architecture where 

processing takes place in nodes that may receive, post and multiplex sensor data, control, 

state, planning, actuator, and other messages. 

Software in the ROS Ecosystem can be separated into three groups: 

 language-and platform-independent tools used for building and distributing ROS-

based software; 

 ROS client library implementations such as roscpp, rospy, and roslisp. 

 Packages containing application-related code, which uses one or more ROS client 

libraries. 

Both the language-independent tools and the main client libraries (C++, Python, and Lisp) are 

released under the terms of the BSD license [27], and as such are open source software and 

free for both commercial and research use. The majority of other packages are licensed under 

a variety of open source licenses. These other packages implement commonly used 

functionality and applications such as hardware drivers, robot models, datatypes, planning, 

perception, simultaneous localization and mapping, simulation tools, and other algorithms. 

IV.2.1-ROS Building blocks and tools 

(Figure 3.1) shows the main components of ROS and their interconnections. The red outlined 

blocks correspond to the different parts between the simulation and the real-life environment. 
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Figure 4. 1: ROS building blocks 

IV.2.1.a-catkin 

Catkin is the official build system of ROS and the successor to the original ROS build system, 

“rosbuild”. Catkin was designed to allow a better distribution of packages, better cross-

compiling support, and better portability. catkin's workflow is very similar to CMake's but 

adds support for automatic 'find package' infrastructure and building multiple, dependent 

projects at the same time. 

 

Figure 4. 2: catkin workspace 
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IV.2.1.b-Rviz 

Rviz, abbreviation for ROS visualization, is a powerful 3D visualization tool for ROS. It allows 

the user to view the simulated robot model, log sensor information from the robot's sensors, 

and replay the logged sensor information. By visualizing what the robot is seeing, thinking, 

and doing, the user can debug a robot application from sensor inputs to planned (or 

unplanned) actions. 

IV.2.1.c-Gazebo 

Gazebo is a 3D simulator that allows the user to create a 3D scenario with robots, obstacles and 

many other objects. Gazebo also uses a physical engine for illumination, gravity, inertia, etc. 

You can evaluate and test your robot in difficult or dangerous scenarios without any harm to 

your robot. Most of the time it is faster to run a simulator instead of starting the whole scenario 

on your real robot.  

 

Figure 4. 3: Gazebo Simulator 
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IV.2.1.c-rqt 

rqt is a Qt-based framework for GUI development for ROS.it contains two main function that 

are widely used: 

 Rqt_graph 

It is a graphical interface allowing the analysis of the application graph and data transfer. 

 Rqt_multiplot 

rqt_multiplot provides a GUI plugin for visualizing numeric values in multiple 2D plots. 

IV.2.2-ROS basics 

IV.2.2.a-Package 

Software in ROS is organized in packages. A package might contain ROS nodes, a ROS-

independent library, a dataset, configuration files, a third-party piece of software, or anything 

else that logically constitutes a useful module. The goal of these packages it to provide this 

useful functionality in an easy-to-consume manner so that software can be easily reused. In 

general, ROS packages follow a "Goldilocks" principle: enough functionality to be useful, but 

not too much that the package is heavyweight and difficult to use from other software. 

Or simply, a package is the folder that contains our project. Packages are located in our catkin 

workspace in the src file (figure 4.2). 

IV.2.2.b-Node 

A node is a process that performs computation. Nodes are combined together into a graph and 

communicate with one another using streaming topics, RPC services, and the Parameter 

Server. These nodes are meant to operate at a fine-grained scale; a robot control system will 

usually comprise many nodes. The use of nodes in ROS provides several benefits to the overall 

system. There is additional fault tolerance as crashes are isolated to individual nodes. Code 

complexity is reduced in comparison to monolithic systems. 
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IV.2.2.c-topic 

Topics are named buses over which nodes exchange messages. Topics have anonymous 

publish/subscribe semantics, which decouples the production of information from its 

consumption. In general, nodes are not aware of who they are communicating with. Instead, 

nodes that are interested in data subscribe to the relevant topic; nodes that generate data 

publish to the relevant topic. There can be multiple publishers and subscribers to a topic. 

ROS currently supports TCP/IP-based and UDP-based message transport. The TCP/IP-based 

transport is known as TCPROS and streams message data over persistent TCP/IP connections. 

TCPROS is the default transport used in ROS and is the only transport that client libraries are 

required to support. The UDP-based transport, which is known as UDPROS and is currently only 

supported in roscpp. 

IV.2.2.d- Service 

The publish / subscribe model is a very flexible communication paradigm, but its many-to-many 

one-way transport is not appropriate for RPC request / reply interactions, which are often 

required in a distributed system. Request / reply is done via a Service, which is defined by a pair 

of messages: one for the request and one for the reply. A providing ROS node offers a service 

under a string name, and a client calls the service by sending the request message and awaiting 

the reply. Client libraries usually present this interaction to the programmer as if it were a 

remote procedure call. Services are defined using srv files, which are compiled into source code 

by a ROS client library. 

A client can make a persistent connection to a service, which enables higher performance at 

the cost of less robustness to service provider changes. 

IV.2.2.e- Message 

A message is a simple data structure, comprising typed fields. Standard primitive types (integer, 

floating point, Boolean, etc.) are supported, as are arrays of primitive types. Messages can 

include arbitrarily nested structures and arrays. 

In this project, we will use the following message types: 

 geometry_msgs/Pose2D 

This message gives the current two-dimensional pose of the robot as a vector of three 

components�� � �ℎ���� 
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 x: the position on the x-axis 

 y: the position on the y-axis 

 theta: the orientation of the robot  

 geometry_msgs/Twist 

This expresses velocity in free space broken into its linear �� � 
� and angular�� � 
� 

parts: 

 linear: 

 x: linear velocity on the x-axis 

 y: linear velocity on the y-axis 

 z: linear velocity on the z-axis 

 angular: 

 x: angular velocity around the x-axis 

 y: angular velocity around the y-axis 

 z: angular velocity around the z-axis 

 std_msgs/Float32MultiArray 

The MultiArray declares a generic multi-dimensional array of a particular data type.   

IV.2.2.f- Parameter server 

A parameter server is a shared, multi-variate dictionary that is accessible via network APIs 

(Application Programming Interface). Nodes use this server to store and retrieve parameters at 

runtime. As it is not designed for high-performance, it is best used for static, non-binary data 

such as configuration parameters. It is meant to be globally viewable so that tools can easily 

inspect the configuration state of the system and modify if necessary. 

IV.2.2.f- Launch file 

Launch files are very common in ROS to both users and developers. They provide a convenient 

way to start up multiple nodes and a master, as well as other initialization requirements such 

as setting parameters. 
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IV.3-TurtleBot3 

TurtleBot is a ROS standard platform robot. Turtle is derived from the Turtle robot, which was 

driven by the educational computer programming language Logo in 1967. In addition, the 

TurtleSim node, which first appears in the basic tutorial of ROS, is a program that mimics the 

command system of the Logo turtle program. It is also used to create the Turtle icon as a 

symbol of ROS. The nine dots used in the ROS logo derived from the back shell of the turtle. 

TurtleBot, which originated from the Turtle of Logo, is designed to easily teach people who 

are new to ROS through TurtleBot as well as to teach computer-programming languages using 

Logo. Since then TurtleBot has become the standard platform of ROS, which is the most 

popular platform among developers and students. 

There are three versions of the TurtleBot model. Tully (Platform Manager at Open Robotics) 

and Melonee (CEO of Fetch Robotics) from Willow Garage developed TurtleBot1 on top of the 

iRobot’s Roomba-based research robot, Create, for ROS deployment. It was developed in 

2010 and has been on sale since 2011. In 2012, TurtleBot2 was developed by Yujin Robot 

based on the research robot, iClebo Kobuki. In 2017, TurtleBot3 was developed with features 

to supplement the lacking functions of its predecessors, and the demands of users. The 

TurtleBot3 adopts ROBOTIS smart actuator DYNAMIXEL for driving. 

TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot for use in 

education, research, hobby, and product prototyping. The goal of TurtleBot3 is to dramatically 

reduce the size of the platform and lower the price without having to sacrifice its functionality 

and quality, while at the same time offering expandability. The TurtleBot3 can be customized 

into various ways depending on how you reconstruct the mechanical parts and use optional 

parts such as the computer and sensor. In addition, TurtleBot3 is evolved with cost-effective 

and small-sized SBC that is suitable for robust embedded system and a 360-degree distance 

sensor. 

The technical characteristics of the TurtleBot3 robot are as follows: 
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 Maximum translational velocity: 0.22 m/s 

 Maximum rotational velocity: 2.84 rad/s (162.72 deg/s) 

 Maximum payload: 15kg 

 Size (L x W x H): 138mm x 178mm x 192mm 

 Weight (+ SBC + Battery + Sensors): 1.8kg 

 Expected operating time: 2h 30m 

 Expected charging time: 2h 30m 

 IMU(Inertial Measurement Unit): Gyroscope (3Axis), Accelerometer (3Axis), 

Magnetometer (3Axis) 

 Battery: Lithium polymer 11.1V 1800mAh / 19.98Wh 5C 

 MCU(microcontroller unit): 32-bit ARM Cortex®-M7 with FPU (216 MHz, 462 DMIPS) 

 

Figure 4. 4: Side and top view of the TurtleBot3 Burger [29] 
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Figure 4. 5: TurtleBot3 components [29] 

IV.4-Simulation 

The simulation was carried out with a pre-build PC with the following specifications: 

 Centrale Processing Unit: Intel(R) core i7-4790 CPU 

 Graphic Processing Unit: intel hd 4000 2gb 

 RAM: (2x8gb) 16gb Crucial DDR3 1200 MHz  

 Storage: Kingstone 500 GB HDD. 

We used four (04) TurtleBot3 burger robots. The overall diagram of the environment and 

control of the Leader-Follower multi-robot system built with ROS (Gazebo) is shown in 

(Figure4.6).We considered three (02) scenarios to test the performance of the formation 

control algorithm and the correction-estimator filter (SVSF). 
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Figure 4. 6: Gazebo Simulation of the Multi-Robot System 
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IV.4.1-Package components 

IV.4.1.a-The nodes  

We used the following nodes: 

 

Figure 4. 7: The node List 

IV.4.1.b-The topics 

We used the following topics: 

 

Figure 4. 8: The topic List 
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IV.4.1.c-Launch files 

We have used two types of launch file. The first one is to launch the gazebo environment 

(env_O.launch and env_S.launch) and the second one is to launch the formation 

(form_O.launch and form_S.launch). 

IV.4.1.c-rqt_multiplot 

We will use four plots to describe the behavior of our MRS: 

1. Trajectories of the robots 

2. Tracking errors 

3. Linear velocity 

4. Angular velocity  

 

Figure 4. 9: The rqt_multiplot window 
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IV.4.1.c-rqt_graph 

This dynamic graph represents the state of our MRS. 

 

Figure 4. 10: rqt_graph of our ROS package 
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IV.4.2-Lyapunov’s Direct Method controller simulation 

IV.4.2.a: rounded shape trajectory: 

The four robots we used are TurtleBot3 Burger robots. They are placed in a free space 

environment. The leader will try to follow a predefined rounded trajectory while the other 

three try to follow him with the desired separation and bearing. 

The initial positions of the robot are as follows: 

 Initial pose Desired separation Desired bearing 

Leader X=2 m; y=1m ;θ=-1 rad   

Fol_1 X=0 m; y=0.5m ;θ=1.2 rad 1.5 
8�

7
 

Fol_2 X=2 m; y=-2m ;θ=-1 rad 1.5 
3�

2
 

Fol_3 X=0 m; y=3m ;θ=0 rad 1.5 
�

2
 

Table 4. 1: Initial parameters for the first scenario 

 

We chose the following controller parameters: 

 �� = 5 

 �� = 1.5 

 

Keep in mind!  The simulation’s accuracy totally depends on the computational power and 

the graphic processing power of the PC. It is recommended to restart the PC after two 

simulations to free up some space in the RAM that is why we didn’t try the effects of the SVSF 

Filter on removing the chattering phenomena. 
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The results of the simulation are shown in the four figures below: 

 

Figure 4. 11: The trajectories 

 

 

Figure 4. 12: The tracking errors 
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Figure 4. 13: The linear velocity 

 

 

Figure 4. 14: The angular velocity 
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1. The first figure (Figure 4.11) shows a good coordination between the trajectories of 

the followers (red, green, blue) and that of the leader, all that while maintaining the 

desired separation and bearing. 

2. The second figure (Figure 4.12) represents the tracking errors between the leader and 

the followers, we notice that all the tracking errors converge to zero after a given time. 

3. The third and fourth figure (Figure 4.13) (Figure 4.14) represents the linear and 

angular velocities of the robots, the first part of these two graphs shows that both 

velocities start at a high value so the followers can catch up with the leader respecting 

the desired separation and bearing as fast as possible. Meanwhile, the second part 

shows slight modification of both velocities to achieve the desired separation and 

bearing. 

IV.4.2.b: “S shaped” trajectory: 

The goal of this scenario is to compare between the behavior of the robots when we change 

the leader’s trajectory. 

The initial positions of the robot are as follows: 

 Initial pose Desired separation Desired bearing 

Leader X=2 m; y=4m ;θ=-0.7 rad   

Fol_1 X=1 m; y=7m ;θ=-0.7 rad 2 
8�

7
 

Fol_2 X=-1 m; y=5.5m ;θ=-1 rad 1.8 
4�

3
 

Fol_3 X=7m; y=6m ;θ=0 rad 1.8 
2�

3
 

Table 4. 2: Initial parameters for the second scenario 
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Figure 4. 15: The trajectories

 

Figure 4. 16: The tracking errors 
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Figure 4. 17: The linear velocities 

 

 

Figure 4. 18: The angular velocities 

When we changed the desired trajectory of the leader, the followers keep up with the leader 

while maintaining the desired separation and bearing in a fast time. This shows the robustness 

of out controller. 
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The chattering problem can be negated using the SVSF but unfortunately we can’t show the 

effects of the filter because of the weak performance of the processor in our PC . 

IV.4.3-Feedback Linearization controller simulation 

IV.4.3.a: rounded shape trajectory: 

We will use the same parameters as the first scenario (IV.4.2.a) while using the feedback 

linearization method. 

We get the following results: 

 

 

Figure 4. 19: The trajectories 
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Figure 4. 20: The tracking errors 

 

Figure 4. 21: The linear velocities 
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Figure 4. 22: the angular velocities 

1. The first figure (Figure 4.19) shows a decent coordination between the trajectories of 

the followers (red, green, blue) and that of the leader, all that while maintaining the 

desired separation and bearing. 

2. The second figure (Figure 4.20) represents the tracking errors between the leader and 

the followers, we notice that all the tracking errors converge to zero after a given time, 

but the convergence time is a lot slower than the previous control. 

3. The third and fourth figure (Figure 4.21) (Figure 4.22) represents the linear and 

angular velocities of the robots, the first part of these two graphs shows that both 

velocities start at a high value so the followers can catch up with the leader respecting 

the desired separation and bearing as fast as possible. Meanwhile, the second part 

shows slight modification of both velocities to achieve the desired separation and 

bearing. 
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IV.4.2.b: “S shaped” trajectory: 

The goal of this scenario is to compare between the behaviors of the robots when we change 

the leader’s trajectory. 

The initial positions of the robot are as follows: 

 Initial pose Desired separation Desired bearing 

Leader X=5 m; y=5m ;θ=-1 rad   

Fol_1 X=-40 m; y=15m ;θ=1.2rad 1.8 240 ��� 

Fol_2 X=1m; y=-2m ;θ=-1 rad 2 205 ��� 

Fol_3 X=10m; y=-25m ;θ=0 rad 1.8 140 ��� 

Table 4.3: Initial parameters for the fourth scenario 

We got the following results: 

 

Figure 4. 23: The trajectories 
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Figure 4. 24: The tracking errors 

 

Figure 4. 25: The linear velocities 
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Figure 4. 26: The angular velocities 

When we changed the desired trajectory of the leader, the followers keep up with the leader 

while maintaining the desired separation and bearing after a decent amount of time(slower 

than the first controller).  

IV.5-Chapter conclusion 

In this Fourth and last chapter we have introduced some basic informations about ROS and 

its building blocks and tools. 

Then we simulated our Leader-Follower formation controllers on two different trajectories 

(“S” shaped & rounded) using the TurtleBot3 Burger because it better meets the needs of our 

project, and the availability of ready to use library in the ROS official web site. 

The direct Lyapunov’s method controller gave us better results than the Feedback linearization 

controller (faster response times and better tracking). 
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General Conclusion 

This thesis presents a multi-robot control framework using the leader-follower approach. The 

main objective of this dissertation is to study the feasibility of developing a leader tracking 

robot system using a sliding mode control system. In order to achieve this objective, the 

following objectives have been achieved in this thesis: 

 Giving general introduction to the world of the multirobot systems. 

 Introducing two methods of controlling the Leader-Follower formation using the 

feedback linearization method and the Lyapunov direct method. 

 Simulation on MatLab. 

 Simulation on ROS. 

In this dissertation, we have well defined the multi-robot systems and we have presented the 

control structures in order to choose the hybrid structure, which was the most efficient. Then 

we exposed the control approaches that are available and we chose the leader follower 

approach. Which is the main subject of the dissertation. We have defined the feedback 

linearization and Lyapunov’s direct method and their principle, we have developed its algorithm 

after the results of simulations on MatLab have shown the robustness of this control. 

In the world of robotics, gazebo is the best-known software and the most efficient in 3D 

simulations intended to implement realistic scenarios. We built the environment there that 

made this project a reality. The Robot used is TurtleBot3, we carried out several scenarios in 

order to demonstrate the robustness of the control by Feedback linearization and Lyapunov’s 

direct method using python. The simulation results on ROS and MatLab demonstrated the 

efficiency and stability of the robots and the tracking algorithm using the leader-follower 

approach, which also proved their correct functioning. 

The prospects of this modest work are numerous until the writing. We can cite a few that are 

achievable (in the short and medium term) below: 

 Leverage neural networks to remedy the Chattering problem, while keeping the 

advantages of the previous controllers. 

 Creating an obstacle avoidance algorithm using artificial potential and creating a 

switching algorithm between formation tracking and obstacle avoidance using the Fuzzy 

Logic control 

 Creating a SLAM robot equipped with a manipulator arm. 
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Appendix  

Trigonometric formulas: 

1. Periodicity Identities (in Radians) 

These formulas are used to shift the angles by π/2, π, 2π, etc. They are also called co-function identities. 

 ��� (�/2 –  
)  =  �� 
 & �� (�/2 –  
)  =  ��� 
 

 ��� (�/2 +  
)  =  �� 
 & �� (�/2 +  
)  = –  ��� 
 

 ��� (3�/2 –  
)  = –  �� 
 & �� (3�/2 –  
)  = –  ��� 
 

 ��� (3�/2 +  
)  = –  �� 
 & �� (3�/2 +  
)  =  ��� 
 

 ��� (� –  
)  =  ��� 
 &  �� (� –  
)  = –  �� 
 

 ��� (� +  
)  = –  ��� 
 & �� (� +  
)  = –  �� 
 

 ��� (2� –  
)  = –  ��� 
 & �� (2� –  
)  =  �� 
 

 ��� (2� +  
)  =  ��� 
 & �� (2� +  
)  =  �� 
 

2. Sum & Difference Identities 

 ���(� + �) =  ���(�)��(�) + ��(�)���(�) 

 ��(� + �) =  ��(�)��(�)– ���(�)���(�) 

 ���(� + �) =  (��� � +  ��� �)/ (1 − ��� � • ��� �) 

 ���(�– �) =  ���(�)��(�)– ��(�)���(�) 

 ��(�– �) =  ��(�)��(�) +  ���(�)���(�) 

 tan(� − �)  =
��� �–���  

(1 + ��� � •  ��� �) 
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