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Résumé

Dans le présent travail, une étude mathématique approfondie est présentée d'un modèle basé

sur la di�usion anisotrope qui peut être utilisé à des �ns de restauration d'images. Le modèle

est conçu pour traiter les facteurs de corruption d'image courants tels que le bruit et le

�ou. L'analyse mathématique du modèle a démontré son caractère bien posé, sa stabilité

et sa propriétés de convergence. De plus, des expériences numériques ont été menées pour

montrer l'e�cacité du modèle à restaurer les images dégradées. Ces enquêtes ont donné de

précieux un aperçu des aspects théoriques et pratiques de la restauration d'image du modèle

capacités. A ce titre, cette recherche contribue de manière signi�cative au développement

des mathématiques. modèles pour le traitement d'images et fournit une base solide pour la

recherche future dans ce champ.

Mots-clés : Restauration d'images, débruitage préservant les contours, di�usion anisotrope

non linéaire.
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Abstract

In the present work, a thorough mathematical investigation is presented of a nonlinear

anisotropic di�usion-based model that can be utilized for image restoration purposes. The

model is designed to address common image corruption factors such as noise and blurring.

The mathematical analysis of the model has demonstrated its well-posedness, stability, and

convergence properties. Furthermore, numerical experiments have been conducted to show

the model's e�ectiveness in restoring degraded images. These investigations have yielded valu-

able insights into both the theoretical and practical aspects of the model's image restoration

capabilities. As such, this research signi�cantly contributes to the development of mathe-

matical models for image processing and provides a solid foundation for future research in

this �eld.

Keywords: Image restoration, edge-preserving image denoising, nonlinear anisotropic

di�usion.
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Notations

PDE :partial di�erential equations.

RGB : Red, green, blue.

CMYK: Cyan, magenta, yellow, black.

HSV : Hue, saturation, value.

HSL : Hue, saturation, lightness.

DPI : Dots per inch.

Bpp : Bits per pixel.

JPEG: Joint Photographic Experts Group.

GIF : Graphics Interchange Format.

PNG : Portable Network Graphics.

BMP : Bitmap.

SVG : Scalable Vector Graphics.

MRI : Magnetic resonance imaging.

TV : Total Variation.
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Introdution

The partial di�erential equations of high order for image restoration is a fascinating research

�eld aiming to enhance the quality of damaged or degraded images. Images are ubiquitous

in our daily lives, whether they are photographs, videos, screenshots, or medical images.

However, various factors can degrade the image quality, such as noise, blurriness, compression

artifacts, or sensor defects.

In the context of image restoration, high-order partial di�erential equations (PDEs) play

a crucial role. PDEs are powerful mathematical tools used to model and solve complex prob-

lems involving quantities varying in space and time. High-order partial di�erential equations

are particularly suited to capture image features at higher levels of detail, enabling more

precise restoration.

One commonly used approach for image restoration is to formulate the problem as a high-

order PDE. These equations describe the desired properties of the restored image, such as

spatial smoothness, contour continuity, �delity to details, and suppression of unwanted noise.

By using high-order PDEs, researchers and engineers can design sophisticated algorithms to

estimate missing or corrupted information in an image, leveraging its spatial and structural

properties.

The use of high-order PDEs in image restoration o�ers several advantages. Firstly, it

allows for the consideration of complex image characteristics, such as textures, contours, and

shapes, which are often challenging to model with simpler approaches. Additionally, high-

order PDEs provide a solid mathematical framework to incorporate speci�c image constraints

and regularities, leading to more accurate and consistent results.

However, it is important to note that solving high-order PDEs for image restoration also

presents signi�cant challenges. These equations can be complex and require advanced nu-

merical methods for e�cient resolution. Furthermore, applying these methods may demand

1



signi�cant computational resources due to the mathematical complexity and the size of pro-

cessed images.

As part of our work, our main objective is to develop advanced methods and techniques

using high-order partial di�erential equations (PDEs) to improve the quality of damaged

or degraded images. We aim to address complex image restoration problems by precisely

leveraging spatial and structural properties.

Dissertation Structure:

In order to carry out our work, our dissertation is structured into 3 di�erent chapters:

Chapter 1 : Introduction to Images and their properties. In this chapter, we provide an

overview of images, discussing their basic concepts such as digital representation, di�erent

image formats, and pixel properties. We also address the common challenges encountered in

image restoration.

Chapter 2 : Theoretical study of the denoising and image restoration problem. This chap-

ter is dedicated to the study of Partial Di�erential Equations (PDEs) and variational models

used in our approach. We delve into the theoretical principles of EDPs and their applications

in modeling image restoration problems.

Chapter 3 : Numerical resolution and Implementation. This chapter focuses on the practi-

cal aspects of numerically solving EDPs and implementing our developed image restoration

system. We describe the numerical methods employed, optimization algorithms utilized, and

implementation details.

2



Chapter 1

Preliminaries

1.1 Introduction

This preliminary chapter aims to establish de�nitions and fundamental concepts related to

the theme of image and its characteristics. We will also address two important techniques for

image processing, namely image restoration and image noise addition, along with its inverse,

image denoising. Finally, we will examine two types of di�usion used in image processing:

isotropic di�usion and anisotropic di�usion. Additionally, we will brie�y discuss partial

di�erential equations (PDEs), which are essential for understanding certain aspects of image

processing.

1.2 The image and its characteristics

1.2.1 De�nition of an image

An image can be de�ned as a visual representation of an object or a scene [1].

Figure 1.1: representation of a scene

3



Chapter 1: Preliminaries

In the context of digital image processing, an image is represented as numerical data

organized in a matrix of pixels.

Figure 1.2: Intensity matrix

1.2.2 Types of images

There are di�erent types of images, including grayscale images, binary images, and color

images [2].

• Grayscale images:

The Grayscale images are composed of pixels that have varying brightness levels, typically

ranging from black (minimum brightness) to white (maximum brightness). These images

are often represented using a single channel, where each pixel's intensity value represents

its brightness. The intensity values are usually represented as grayscale values, such as 0

(black) to 255 (white) in an 8-bit grayscale image. Grayscale images are commonly used in

4



Chapter 1: Preliminaries

applications where only brightness in.

Figure 1.3: grayscale images

• Binary images:

The binary images are a type of image that contains only two pixel values, usually black and

white. These images are often used to represent objects and backgrounds or to de�ne regions

of interest in an image. Each pixel in a binary image is typically represented by a single bit,

where 0 represents black and 1 represents white. Binary images are commonly used in image

analysis tasks such as edge detection, morphological operations, and object recognition.

5



Chapter 1: Preliminaries

Figure 1.4: binary images

• Color images:
The color images contain additional color information beyond just brightness. They are

typically represented using three color channels: red, green, and blue (RGB). In an RGB

image, each pixel is represented by a combination of red, green, and blue color intensities.

The intensities for each color channel can range from 0 to 255 in an 8-bit representation.

By combining the intensities of the three color channels, a wide range of colors can be

represented. Color images are commonly used In addition to RGB, there are other color

models used for representing color images, such as CMYK (cyan, magenta, yellow, black)

used in printing, and HSV (hue, saturation, value) and HSL (hue, saturation, lightness)

used in color manipulations and image processing. These models provide di�erent ways to

represent and manipulate colors based on di�erent properties and characteristics of human

perception.

6



Chapter 1: Preliminaries

Figure 1.5: color images

1.2.3 Characteristics of an image

Images possess various characteristics that can be used for their analysis and processing [2].

Some common characteristics include :

a-Resolution: It is the number of points within a given length (in inches). It is expressed

in dots per inch (DPI). An inch measures 2.54 cm, which is a British unit of measurement.

Resolution allows establishing the relationship between the pixel de�nition of an image and

its actual size representation on a physical medium (screen display, paper printing, etc.).

Example:

7



Chapter 1: Preliminaries

Figure 1.6: resolution of an image

b-Color coding (or color depth) refers to the amount of memory used by a digital image

based on the coding of its color information. This is commonly referred to as color coding or

color depth, expressed in bits per pixel (bpp): 1, 4, 8, 16 bits, and so on.

c-Histogram of an image:

8



Chapter 1: Preliminaries

d- Texture: statistical or geometric distribution of intensities in the image.

e- Contour: boundary between two (or a group of) pixels with signi�cant di�erence in

grayscale (color) values.

f- Region: group of pixels that exhibit similar characteristics (intensity, motion, etc.).

Figure 1.7: di�erent characteristics of an image

9
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1.2.4 Methods of digital image representation

1-Bitmap formats: Bitmap or raster formats represent images as a grid of individual pixels,

where each pixel stores color information. Common bitmap formats include JPEG, PNG,

BMP, and GIF. These formats are widely used for photographs and complex images as they

can preserve �ne details and color accuracy. However, they may result in larger �le sizes,

which can be a limitation for storage and transmission.

2-Vector formats: Vector formats represent images using mathematical formulas to de�ne

shapes and lines. They are based on geometric primitives such as points, lines, and curves.

Vector formats, such as SVG (Scalable Vector Graphics), are resolution-independent and can

be scaled without loss of quality. They are well-suited for logos, icons, and graphics with

simple shapes. However, they may not be suitable for representing complex photographs or

images with �ne details.

3-Compressed formats: Compressed image formats use various algorithms to reduce �le

size while preserving visual quality. JPEG is a widely used compressed format that allows

variable levels of compression, balancing between �le size and image quality. It is commonly

used for photographs on the web. However, excessive compression can lead to loss of image

details and visible artifacts.

Each representation method has its trade-o�s, and the choice of format depends on the speci�c

requirements of the application, such as storage constraints, visual �delity, and processing

capabilities.

1.3 Image restoration

1.3.1 De�nition of image restoration

Image restoration is a computational technique used in digital image processing to enhance

the visual quality of images that have been a�ected by various degradations or distortions.

These degradations may be caused by factors such as noise, blurriness, compression artifacts,

or other forms of image corruption [3] .

The main goal of image restoration is to recover the original, undistorted information

present in the image. This involves the removal or reduction of unwanted artifacts and

the enhancement of important image features. By restoring the image, it becomes sharper,

10
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clearer, and more visually appealing, making it easier to interpret and analyze.

The process of image restoration typically involves the use of mathematical and statistical

algorithms to estimate and compensate for the degradation e�ects. These algorithms analyze

the image and attempt to reverse the degradation process, based on certain assumptions

about the nature of the degradation. Some common methods used in image restoration

include �ltering, deconvolution, and denoising techniques.

Image restoration is widely used in various applications, including medical imaging, satel-

lite and aerial imagery, forensic analysis, and digital photography. In medical imaging, for

example, image restoration techniques can help improve the clarity and accuracy of medical

scans, aiding in disease diagnosis and treatment planning. In the �eld of digital photography,

image restoration can remove noise and artifacts from photos, enhancing their overall quality.

It is important to note that image restoration is a challenging task, as it involves dealing

with incomplete and corrupted data. The success of the restoration process depends on

the accuracy of the degradation model and the e�ectiveness of the restoration algorithm.

Additionally, there is often a trade-o� between the level of restoration and the potential

introduction of artifacts or loss of �ne details.

Overall, image restoration plays a crucial role in enhancing the visual quality of digital im-

ages, making them more suitable for various applications and improving their interpretability

by both humans and machine-based systems..

1.3.2 Objectives of image restoration

The objectives of image restoration are as follows:

1-Noise removal: One of the main issues encountered in images is the presence of noise,

which can be caused by factors such as sensor sensitivity, lighting conditions, or electromag-

netic interference. The goal is to reduce or eliminate this unwanted noise to improve the

image quality.

2-Blur reduction: Blur is another factor that can degrade the quality of an image. It

can be caused by incorrect focus, camera movements, or unfavorable atmospheric conditions.

The objective is to restore lost sharpness and details by reducing blur.

3-Contrast and brightness enhancement Sometimes, images may have low contrast or

inadequate brightness, making it di�cult to visualize important details. Image restoration

aims to adjust the contrast and brightness to improve readability and interpretation of the

11
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image.

4-Lost detail restoration: When an image is degraded, certain details may be lost or

attenuated. The objective of image restoration is to restore these details to best reconstruct

the original appearance of the scene or object.

1.3.3 Image restoration process

The image restoration process typically involves the following steps:

1-Acquisition of the degraded image: The �rst step is to obtain the degraded image,

which can be obtained from a sensor, camera, or other imaging sources.

2-Degradation modeling: To restore the image, it is essential to understand how it has

been degraded. This involves modeling the di�erent sources of degradation, such as noise,

blur, etc. This step helps determine the necessary processing operations to reverse or reduce

these e�ects.

3-Selection of the restoration algorithm: Depending on the nature of the degradation,

di�erent restoration techniques and algorithms can be used. There is a variety of approaches,

ranging from Fourier transform-based methods to adaptive �ltering techniques or model-

based approaches.

4-Application of the restoration algorithm: Once the algorithm is selected, it is applied

to the degraded image to perform the restoration. This may involve �ltering operations,

regularization, or others.

1.4 Image noise addition and image denoising

1.4.1 Introduction to Image Denoising

Image denoising refers to the removal of unwanted disturbances or interference in an image,

resulting in an improvement of its quality and readability. Noise can be caused by various fac-

tors such as camera sensors, lighting conditions, electromagnetic interference, or transmission

errors.

12
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1.4.2 Types of noise

There are di�erent types of noise that can a�ect an image. Some commonly encountered

types of noise include:

Additive Noise: This type of noise is typically caused by external factors such as electronic

noise or electromagnetic interference. It manifests as random increases in the brightness

levels of image pixels.

Multiplicative Noise: Multiplicative noise is often associated with varying lighting condi-

tions or sensor defects. It a�ects the overall quality of the image by altering the relationship

between pixel brightness levels.

Impulse Noise: Also known as "salt and pepper" noise, impulse noise leads to sporadic

occurrence of extremely bright or dark pixels in the image. It can be caused by transmission

errors or sensor defects.

Figure 1.8: di�erent type of noise
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1.4.3 E�ects of noise on images

Noise in an image can have several negative e�ects, including:

1. Reduction of clarity and details: Noise in an image can add random variations to

pixel values, making it challenging to distinguish �ne details and structures in the image.

High levels of noise can blur edges and obscure subtle features, leading to a loss of image

clarity. As a result, the visual quality of the image is diminished, and it becomes di�cult to

interpret or analyze the content accurately.

2. Alteration of colors: Di�erent types of noise can a�ect the color representation of

pixels in an image. For example, in additive noise, random variations in brightness levels

can alter the intensity of individual color channels, causing color distortion. In multiplicative

noise, variations in lighting conditions can impact the relationship between color channels,

leading to changes in color �delity. Consequently, the image may exhibit unnatural colors or

lose its original color balance.

3. Undesirable increase in contrast: Noise can introduce random �uctuations in pixel

values, resulting in both dark and bright spots throughout the image. This can cause an

undesirable increase in contrast, with some areas becoming overly bright (overexposed) and

others becoming excessively dark (underexposed). Such variations in contrast can make it

di�cult to perceive the overall content and may hinder image analysis and interpretation.

4. Reduction in measurement accuracy: In scienti�c or quantitative applications, im-

ages are often used for measurements and analysis. However, noise can introduce inaccuracies

in the measured data, leading to reduced measurement precision. The noise can mask true

details and introduce false information, which a�ects the accuracy of any quantitative results

obtained from the image. This reduction in measurement accuracy can be particularly prob-

lematic in �elds such as medical imaging, remote sensing, and scienti�c research.

Overall, the presence of noise in an image can signi�cantly impact its quality and usabil-

ity. To mitigate the negative e�ects of noise, image processing techniques, such as denoising

algorithms and restoration methods, are employed to enhance the image's visual quality, re-

cover lost details, and improve its overall �delity. These techniques aim to e�ectively reduce

noise while preserving essential image features, making the image more suitable for various

applications, including visual inspection, computer vision tasks, and accurate data analysis.
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1.4.4 Image denoising techniques

Image denoising is an essential process in image processing, as it aims to restore the visual

quality of an image by reducing or eliminating undesirable noise e�ects. Here are more details

on some of the image denoising techniques mentioned earlier:

1. Linear Filters:

- Mean Filter: This �lter calculates the average of neighboring pixel values to replace the

value of the central pixel. It is straightforward to implement, but it may not be very e�ective

in reducing noise if the image contains �ne details.

- Median Filter: The median �lter replaces the value of the central pixel with the median

of neighboring pixel values. It is particularly e�ective in reducing impulse noise, such as "salt

and pepper" noise.

- Gaussian Filter: The Gaussian �lter applies convolution with a Gaussian kernel to at-

tenuate noise while preserving image edges. It is commonly used for reducing additive noise.

2. Thresholding denoising:

- Simple Thresholding denoising: This method applies a �xed threshold to pixel values.

Pixels with values below or above the threshold are considered noisy and are corrected or

replaced.

- Adaptive Thresholding Denoising: Here, the threshold is adjusted based on the local

properties of the image, allowing for better adaptation to noise variations in di�erent regions

of the image.

3. Non-Local means denoising:

- Non-local means denoising is based on the principle that similar regions in the image will

have similar statistics. It involves searching for similar image patches throughout the image

and averaging them to estimate the value of the central pixel. This method is highly e�ective

in reducing noise while preserving image edges and structures.

Each image denoising technique has its advantages and disadvantages in terms of denois-

ing performance, preservation of image details, and computational time. The choice of the

technique depends on the type of noise present in the image, the complexity of the image,

and the speci�c objectives of the application. In general, a combination of di�erent denois-

ing techniques can be used to achieve the best results based on the use-case scenario. The

performance of denoising methods can be evaluated using objective measures such as Signal-

to-Noise Ratio (SNR), Structural Similarity Index (SSIM), and the perceived visual quality
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by human observers.

1.5 Isotropic di�usion

1.5.1 De�nition:

Isotropic di�usion is a technique used in image processing to reduce noise and improve image

quality through di�usion processes. It is based on the principle of propagating information

equally in all directions throughout the image, without favoring any speci�c direction.

In isotropic di�usion, each pixel in the image exchanges information with its neighboring

pixels, and this process is repeated iteratively. The di�usion process acts as a smoothing

mechanism, adjusting the pixel values based on the values of nearby pixels. The objective is

to reduce the impact of noise on the image while preserving essential structures and features.

Unlike anisotropic di�usion, which considers the image's local gradients to guide the di�usion

direction, isotropic di�usion treats all directions equally. As a result, isotropic di�usion

tends to uniformly blur the image, which can be bene�cial for noise reduction and producing

smoother images.

The isotropic di�usion process can be mathematically formulated using partial di�erential

equations (PDEs), where the di�usion rate is constant in all directions. Various numerical

algorithms, such as explicit or implicit �nite di�erence methods, can be used to implement

isotropic di�usion in practice.

Overall, isotropic di�usion is a widely used technique in image processing and computer vision

applications for denoising, smoothing, and enhancing image quality. Its ability to uniformly

reduce noise in all directions makes it particularly useful in scenarios where preserving �ne

details is not a primary concern, and noise reduction is the main goal.

1.5.2 Principles of isotropic di�usion

Isotropic di�usion involves applying a di�usion operator to the image, which acts locally

on each pixel based on its neighbors. This operator modi�es the pixel values based on

the di�erences in brightness between neighboring pixels. The di�usion process is iteratively

repeated, gradually reducing noise while preserving important contours and structures in the

image. The di�usion operator typically uses a partial di�erential equation (PDE) to model
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the di�usion. The most commonly used equation is the heat equation, also known as the

di�usion equation, which describes the propagation of heat in a medium. This equation is

suitable for isotropic di�usion as it ensures equal information propagation in all directions.

1.5.3 Applications of isotropic di�usion in image restoration

Isotropic di�usion has various applications in image restoration, including:

1-Noise reduction: One of the main applications of isotropic di�usion is noise reduction in

images. Noise, such as Gaussian or impulse noise, can degrade the visual quality of images

by adding random variations in brightness. Isotropic di�usion acts as a �lter that attenuates

these undesirable variations, thereby improving the clarity and sharpness of the image.

2. Contour Smoothing: Isotropic di�usion is also used to smooth object contours in an

image. The contours of an image can be noisy or irregular, making object analysis and recog-

nition challenging. By applying isotropic di�usion, the contours are regularized, making the

image more coherent and facilitating further processing.

3. Enhancement of visual quality: By eliminating noise and smoothing contours,

isotropic di�usion contributes to enhancing the overall quality of the image. Important

details are preserved while undesirable artifacts are eliminated, making the image more vi-

sually appealing and easier to interpret.

4. Preprocessing for other operations: Isotropic di�usion can be used as a preprocessing

step before applying other image processing operations. For example, in image segmentation,

isotropic di�usion can improve the image quality before applying contour detection or object

separation algorithms.

5. Restoration of old or damaged Images: Isotropic di�usion can be used to restore

old or damaged images by reducing imperfections and improving the overall quality of the

image. This can be valuable in the �eld of cultural heritage conservation or for restoring old

photographs.

It is important to note that isotropic di�usion may also have limitations, particularly

in terms of loss of �ne details in the image. Therefore, it is essential to carefully select

the di�usion parameters to achieve a balance between noise reduction and preservation of

important image features. Depending on the speci�c characteristics of the image and the

requirements of the application, other denoising or image restoration techniques may also be

considered to achieve the best results.
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1.6 Anisotropic di�usion

1.6.1 anisotropic di�usion:

Anisotropic di�usion is a powerful image processing technique that addresses the limitations

of isotropic di�usion by taking into account the directional characteristics of an image . It

is particularly e�ective in preserving and enhancing the edges and structures in the image

while reducing noise.

In isotropic di�usion, information is propagated equally in all directions, leading to a smooth-

ing e�ect that can blur edges and �ne details in the image. However, in real-world images,

edges and structures often have a preferred direction, and smoothing them uniformly can

lead to loss of important information [4].

Anisotropic di�usion overcomes this limitation by using di�usion processes that consider the

local image gradient. The di�usion rate is modulated based on the gradient magnitude,

allowing for higher di�usion along smooth regions and lower di�usion along edges and con-

tours. This adaptive di�usion process preserves important features while reducing noise in

areas where image variations are less signi�cant.

The anisotropic di�usion equation can be expressed as:

∂u

∂t
= div(c(|∇u|)∇u)

where u is the image, t is the time, ∇u represents the image gradient, and c(|∇u|) is a dif-
fusion coe�cient function that depends on the gradient magnitude. The di�usion coe�cient

function determines the degree of anisotropy and controls the di�usion process in di�erent

image regions.

Anisotropic di�usion is particularly useful in denoising images with complex structures, such

as medical images, textured images, or images with intricate patterns. It e�ectively preserves

the structural details while reducing noise, leading to visually appealing and more informa-

tive results.

However, like isotropic di�usion, anisotropic di�usion may also have some drawbacks. If the

di�usion coe�cient is not appropriately selected, it can lead to over-smoothing or under-

smoothing of certain regions. Finding the right balance between noise reduction and preser-

vation of image features requires careful parameter tuning.

In summary, anisotropic di�usion is a valuable tool in image restoration and denoising, es-
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pecially in scenarios where preserving structural information and �ne details are crucial. Its

ability to adaptively di�use information in di�erent directions makes it a powerful technique

for various applications in image processing and computer vision.

1.6.2 Principles of anisotropic di�usion

Anisotropic di�usion is based on the use of a di�usion operator that considers the local

characteristics of the image, such as brightness gradients. This operator is designed to limit

di�usion along the image's contours to preserve important details and structures. It pro-

motes di�usion in homogeneous regions of the image while limiting di�usion along edges

and contours. The anisotropic di�usion operator typically employs partial di�erential equa-

tions (PDEs) tailored to model di�usion. One of the most commonly used equations is the

Perona-Malik anisotropic di�usion equation, which introduces a conductivity coe�cient

that controls di�usion based on the local characteristics of the image.

1.6.3 Comparison with isotropic di�usion

Anisotropic di�usion di�ers from isotropic di�usion primarily in its consideration of the direc-

tional characteristics of the image [5, 6, 7]. While isotropic di�usion propagates information

equally in all directions, anisotropic di�usion adapts di�usion based on the image's struc-

tures and contours. This allows for better preservation of details and contours, which can be

advantageous in certain image restoration scenarios.

1.6.4 Use of anisotropic di�usion in image restoration

Anisotropic di�usion �nds applications in various areas of image restoration, including:

• Noise reduction with contour preservation : By limiting di�usion along contours,

anisotropic di�usion e�ectively reduces noise while preserving important details and contours

of the image.

• Image segmentation : Anisotropic di�usion can be used as a preliminary step in image

segmentation, favoring di�usion in homogeneous regions and limiting di�usion between re-

gions with high contrasts.

• Enhancement of textured images: Anisotropic di�usion is e�ective in improving the

quality of textured images by reducing noise without altering �ne textures.
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• Restoration of medical images: Anisotropic di�usion is widely used in the restoration

of medical images, such as magnetic resonance imaging (MRI) or tomographic images, to

improve quality and facilitate diagnostic analysis.

Anisotropic di�usion provides a powerful alternative to isotropic di�usion in scenarios where

the preservation of contours and directional structures is crucial. However, it is important

to note that it can introduce certain artifacts, and the choice between anisotropic di�usion

and isotropic di�usion will depend on the speci�cities of each application and the objectives

of image restoration.

1.7 Weak convergence

1.7.1 De�nition of weak convergence

Weak convergence is a concept used to describe the convergence of a sequence of functions

or measures in a weaker sense compared to norm convergence [8]. It is also known as con-

vergence in distribution or convergence in the weak-topology. Weak convergence focuses on

the behavior of functions or measures when integrated against a set of test functions.

1.7.2 Relationship between weak convergence and norm conver-

gence

In the context of function spaces, weak convergence is typically weaker than norm conver-

gence. While norm convergence implies weak convergence, the converse is not always true.

Weak convergence measures the convergence of functionals, such as integrals or function

evaluations, rather than the pointwise convergence of functions. It provides a more �exible

notion of convergence that allows for the convergence of a wider class of functions.

1.7.3 Importance of weak convergence in the analysis of Image restora-

tion algorithms

Weak convergence plays a crucial role in the analysis of image restoration algorithms. It allows

for the study of the convergence behavior of iterative algorithms used in image restoration,

such as denoising or deblurring algorithms. By considering weak convergence, one can analyze
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the convergence properties of these algorithms in terms of functionals, which provides insights

into their stability, accuracy, and robustness.

1.8 Functional spaces (Banach, Hilbert, Sobolev)

1.8.1 De�nition of functional spaces

Complete metric space

Let (E, d) be a complete metric space, meaning a metric space in which every Cauchy sequence

converges to an element of E.

Banach space

A Banach space is a complete normed vector space, which means it has an algebraic structure

and a norm that satis�es certain mathematical properties [10]. Banach spaces are used to

study the properties of functions and operators de�ned on these spaces.

Hilbert space

A Hilbert space is a Banach space that possesses an additional structure called an inner

product, allowing the measurement of angles and lengths of vectors in the space. Hilbert

spaces are used to study concepts such as convergence, orthogonality, and projections [11].

Sobolev space

The Sobolev space, denoted as H1 (Ω) , is a functional space that encompasses functions

whose partial derivatives up to order one are square integrable over a domain Ω. This space

is used to model functions with properties of regularity and continuity [9].

Banach �xed-point theorem

Dé�nition 1.1 Let Φ : E → E be a contractive mapping, which means that there exists a

real constant k with 0 ≤ k < 1, satisfying:

d(Φ(x),Φ(y)) ≤ kd(x, y), ∀ x, y ∈ E

then, there exists a unique �xed point x∗ of Φ such that Φ(x∗) = x∗.
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1.8.2 Role of functional spaces in the analysis and modeling of func-

tions

Function spaces play a crucial role in the analysis and modeling of functions. They provide

a framework for studying the properties and behavior of functions, such as continuity, di�er-

entiability, and integrability. Function spaces also facilitate the formulation and analysis of

mathematical models and algorithms used in image restoration.

1.8.3 Examples o� unctional spaces used in image restoration

In the context of image restoration, various function spaces are employed to represent im-

ages and model their properties. Some examples of function spaces commonly used in image

restoration include:

L2 spaces: These are Hilbert spaces consisting of square-integrable functions. They are

often used to represent images in the frequency domain.

H1 spaces : These are Sobolev spaces that contain functions with square-integrable deriva-

tives up to the �rst order. They are utilized to model functions with certain regularity and

smoothness properties.

1.9 Monotone and semi-continuous functions

.monotone and semi-continuous of H1(Ω)to(H1(Ω))′:
Monotone: This means that the operator satis�es a monotonicity condition. Speci�cally,

for any pair of elements u and v in the space H1(Ω), the operator satis�es the following

inequality: < A(u)−A(v), u− v >≥ 0. This implies that the operator preserves or increases

the order of the elements.

Semi-continuous: This means that the operator is not necessarily continuous but exhibits

some regularity or partial continuity. Speci�cally, this means that the operator can have

jumps or discontinuities at speci�c points, but overall remains regular and continuous in its

behavior.

More speci�cally, in the context of the proof, this means that the considered operator, denoted

A, satis�es both the monotonicity property (for all u, v ∈ H1(Ω), < A(u) − A(v), u − v >≥
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0) and the semi-continuity property (a certain partial regularity of the operator). These

properties are important in the proof because they ensure certain inequalities or relationships

necessary for establishing the results of the proof.

1.10 Partial di�erential equations (PDEs)

1.10.1 Introduction to partial di�erential equations (PDEs)

Partial di�erential equations (PDEs) are mathematical equations that describe the relation-

ships between an unknown function and its partial derivatives with respect to multiple inde-

pendent variables [12]. They are widely used to model complex mathematical and physical

phenomena, such as heat �ow, vibrations of a string, wave propagation, and more.

1.10.2 Types of PDEs (elliptic, parabolic, hyperbolic)

There are di�erent types of PDEs, classi�ed based on their mathematical and physical prop-

erties:

1. Elliptic PDEs:

- Characteristics: Elliptic PDEs are primarily used for stationary problems, meaning sit-

uations where the phenomena do not depend on time but only on space. They can also be

used to model systems in equilibrium.

- Examples: The Laplace equation and the Poisson equation are examples of widely used

elliptic PDEs in physics and engineering to solve problems related to electric potential, heat

di�usion, and �uid �ow.

2. Parabolic PDEs:

- Characteristics: Parabolic PDEs are used to model phenomena that evolve over time.

They describe di�usion or propagation processes over time.

- Examples: The heat equation (or di�usion equation) is an example of a parabolic PDE

commonly used to describe the propagation of heat in a material over time.

3. Hyperbolic PDEs:

- Characteristics: Hyperbolic PDEs describe phenomena that propagate in both space and

time, such as acoustic waves, electromagnetic waves, or seismic waves.

- Examples: The wave equation and the advection equation are examples of hyperbolic
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PDEs. The wave equation models the propagation of mechanical waves, such as sound

waves, and the advection equation describes the transport of a conserved quantity in a �uid.

Each type of PDE has speci�c mathematical and physical properties, making them suitable

for di�erent situations and problems. The choice of the appropriate PDE depends on the

nature of the phenomenon to be modeled and the boundary conditions of the problem. By

solving these PDEs, we can obtain solutions that provide a precise and detailed description

of the studied phenomena, which is essential in many scienti�c and engineering �elds.

1.10.3 Use of PDEs in image restoration

PDEs have found numerous applications in image restoration as they provide a powerful

mathematical framework for modeling and solving restoration problems. They are often

used to describe di�usion, regularization, and denoising processes in image restoration.

1.10.4 Examples of PDEs used in image restoration

Some examples of commonly used PDEs in image restoration are [12]:

1. The heat equation (or di�usion equation):

The heat equation is a parabolic PDE used to model the di�usion of heat in a medium. It is

commonly employed for denoising and regularization of images by attenuating variations in

brightness over time. The equation is given by:

∂u

∂t
(x, y, t) = △u(x, y, t)

u(x, y, 0) = u0(x, y)

where urepresents the image, ∇u is the gradient of the image, and u0(x, y) is the initial state

of the image.

2. The Perona-Malik Equation: The Perona-Malik equation is an anisotropic di�usion

PDE that is often used for image restoration. It is designed to preserve image contours while

reducing noise. The equation is written as:

∂u

∂t
= div(c|∇u|)∇u)

where u represents the image,∇u is the gradient of the image, div denotes the divergence

operator, and c(|∇u|) is a function that controls the di�usion process based on the gradient
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magnitude.

3. The Monge-Ampère equation: The Monge-Ampère equation is an elliptic PDE used

in image restoration to solve optimization problems, such as surface reconstruction or texture

restoration. It is given by:

det(∇2u) = f(x, y)

where u represents the image, ∇2u is the Hessian matrix of u, and f(x, y) is a given function

representing the desired image properties.

4. The total variation (TV) equation: The TV equation is a partial di�erential equation

used for image denoising and restoration. It is a popular method for preserving edges and

reducing noise in images. The TV equation can be written as:

∂u

∂t
= div(|∇u|)∇u)

The TV equation aims to minimize the total variation of the image, which measures the

overall changes in pixel intensities. By promoting sparsity in the gradient of the image, the

TV equation e�ectively smooths the image while preserving sharp edges.

Numerical methods, such as �nite di�erence or �nite element methods, are commonly used

to solve these PDEs. Iterative algorithms, like the Split Bregman method or the Chambolle-

Pock algorithm, are often employed to �nd the solution e�ciently.

The TV equation has been widely applied in various image processing tasks, including de-

noising, deblurring, inpainting, and image segmentation. It has shown to be e�ective in

removing noise while preserving important details, making it a popular choice in the �eld of

image restoration.
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Theoretical study of the problem of

denoising and image restoration

2.1 Introduction to the nonlinear anisotropic di�usion

model

We present an introduction to the nonlinear anisotropic di�usion model and its application in

image restoration. We begin by discussing the motivation underlying the use of anisotropic

di�usion for image restoration tasks.

2.1.1 Motivation for anisotropic di�usion

We highlight the motivation behind the use of anisotropic di�usion for image restoration.

Traditional linear �ltering techniques, such as averaging and Gaussian blur, have limitations

when it comes to preserving edges and details while removing noise. These techniques apply

a uniform blur to the entire image, resulting in the loss of important details and a reduction

in image quality.

Anisotropic di�usion o�ers a more advanced and adaptable approach to image restora-

tion. Instead of applying a uniform blur, anisotropic di�usion takes into account the local

characteristics of the image, such as edges and textures, to adjust the di�usion process. This
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allows for the preservation of important edges and details while reducing noise.

One of the main challenges in image restoration is the preservation of edges, which can

be damaged or blurred during the �ltering process. Anisotropic di�usion overcomes this

challenge by adapting the di�usion rate based on intensity variations and the image gradient.

As a result, edges are better preserved, and details are more faithfully represented.

Furthermore, anisotropic di�usion allows for the treatment of complex textures and struc-

tures present in images. By using adaptive di�usion coe�cients, it is possible to better pre-

serve the speci�c characteristics of each region in the image.

2.1.2 Nonlinear models for Image restoration

1. Advantages of nonlinear models:

• Nonlinear models o�er a more �exible and adaptive approach to image restoration com-

pared to linear �ltering techniques. Unlike linear �lters that apply a uniform transformation

to the entire image, nonlinear models allow for selective modi�cation of pixels based on their

local characteristics.

• Nonlinear models are capable of better handling the complex structures of the image,

such as edges, textures, and objects of interest, while preserving their integrity and original

appearance. These models are particularly e�ective for restoring images with signi�cant in-

tensity variations or regions containing �ne details and sharp transitions.

2. Handling complex structures:

• Nonlinear models employ sophisticated mechanisms to handle the complex structures of

the image. For example, anisotropic di�usion uses an adaptive di�usion coe�cient that takes

into account local intensity and gradient variations to control the di�usion process. This

helps preserve edges and details while reducing noise.

• Nonlinear models can also use regularization terms to promote spatial coherence in homo-

geneous regions while preserving complex structures. This avoids excessive suppression of

�ne details and maintains a natural appearance in the restored image.

3. Examples of nonlinear models

• In addition to anisotropic di�usion, there are many other nonlinear models used in image

restoration, such as total variation (TV)-based restoration, sparsity-based denoising models,

texture decomposition models, etc. Each model has its own advantages and is suitable for
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speci�c image restoration scenarios.

2.1.3 Anisotropic di�usion

1. De�nition of anisotropic di�usion:

• Anisotropic di�usion is a nonlinear model that allows for di�erent di�usion rates in di�erent

regions of the image. Unlike isotropic di�usion, which applies a uniform di�usion rate in all

directions, anisotropic di�usion adapts to the local characteristics of the image.

• Anisotropic di�usion is particularly e�ective in preserving edges and details while reducing

noise. It allows for the preservation of important image structures while smoothing homoge-

neous regions.

2. Principle of edge and detail preservation:

• One of the key advantages of anisotropic di�usion is its ability to preserve edges and �ne

details in the image. During the di�usion process, regions containing edges or sharp transi-

tions are less smoothed compared to homogeneous regions.

• This preservation of edges is achieved by using a di�usivity function that is sensitive to local
intensity and gradient variations. The di�usivity function controls the amount of di�usion

applied in each region of the image, prioritizing regions with signi�cant variations.

3. Use of the di�usivity function:

• The di�usivity function is a crucial element of anisotropic di�usion. It determines how

the di�usion rate varies based on the local characteristics of the image. Adaptive di�usivity

functions are used to adapt to the image's edges and details.

• The di�usivity function is typically based on the properties of the image's intensity gradi-

ent. It can be de�ned in various ways, such as exponential function, threshold function, or

function based on statistical models.

2.2 Problem treated

The non linear anisotropic di�usion method is an image processing technique that preserves

the contours and complex structures of an image while reducing noise. This method is

based on a nonlinear anisotropic di�usion equation that adaptively regulates local image

variations based on local characteristics [14, 15][?]. The di�usion conductivity depends on

image characteristics such as texture, contour direction, and regularity.
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In the �eld of image processing, it is common to encounter problems of degradation and

noise that a�ect the quality of images. One of the commonly used approaches to restore such

images is by applying anisotropic di�usion techniques. This method aims to reduce noise

while preserving important features of the original image.

The original image (a) represents the raw and unaltered visual information that we intend

to analyze or process. However, due to various factors such as transmission, compression, or

sensor imperfections, the original image can be degraded and contain noise.

The noisy image(b) is a version of the original image in which noise has been introduced.

Noise can originate from various sources such as the capture environment, electromagnetic

interference, or compression artifacts. Noise makes the image more challenging to interpret

and can compromise the accuracy of subsequent analysis.

To restore the noisy image and recover as much as possible the details and clarity of the

original image, anisotropic di�usion is applied (c). This image processing method is based

on di�usion processes that gradually reduce noise while preserving the important contours

and structures of the image. Anisotropic di�usion uses adaptive di�usion coe�cients to bet-

ter adapt to di�erent regions of the image, allowing for more e�cient and precise restoration.

Figure 2.1: : image processed with AD
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2.3 The model of anisotropic di�usion

The proposed image noise reduction algorithm uses nonlinear anisotropic di�usion. This

method is mathematically described by a parabolic equation given by:
∂u

∂t
= div(ψK(u)(|∇u|2)∇u),

u(0, x, y) = u0, (x, y) ∈ Ω,

∇u · v = 0 , on (0, T )× ∂Ω.

(2.1)

where u0 is the initial noisy image, its domain is Ω ⊂ R2 and υ is the normal to ∂Ω. This

equation is based on nonlinear anisotropic di�usion, which is a method used to remove noise

while preserving image edges.The di�usivity (or edge-stopping) function ψk(u) is de�ned as

follows:

ψK(u)(s
2) =


α

√
K(u)

β.s2 + η
, s > 0,

1, if s = 0,

(2.2)

where α, β ∈ [0.5, 0.8], and η ∈ [0.5, 1].The conductance di�usivity in this model depends

on the state of the image u at time t. When the gradient magnitude exceeds a certain

threshold, the corresponding edge is enhanced. Various approaches exist for determining the

conductance parameter, such as using a �xed value or making it a function of time. In this

model, we propose an automatic computation of the conductance parameter based on image

noise estimation at each iteration.

The conductance parameter k(u) is computed using the following formula :

K(u) = ||u||F
median(u)

ε · n(u)
, (2.3)

where ε ∈ (0, 1] , ||u||F is the Frobenius norm of image u, median(u) represents its median

value and n(u) is the number of its pixels in the image. This parameter estimation method

utilizes statistics of the image to determine the conductance di�usivity.
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2.4 Existence and uniqueness of the solution

Théorème 2.1 Suppose that (2.2) is satis�ed. Then, for any initial condition u0 ∈ L2(Ω),

there exists a unique weak solution u to problem (2.1). Furthermore, if u0 ≥ 0, then u ≥ 0.

Proof.

We de�ne the set χ as the set of functions u that satisfy the following conditions:

χ =
{
u ∈ C([0, T ];L2(Ω)) ∩ L2(]0, T [;H1(Ω))

∣∣ ∥ u ∥L2(]0,T [;H1(Ω))≤ R
}
,

where R is a �xed constant.

The set χ is a collection of functions that satisfy two requirements. Firstly, these functions

must be continuous over the interval [0, T ] and belong to the space L2(Ω) for all t within this

interval. This ensures that the functions u are well-behaved throughout the spatial domain

Ω and at any given time t.

Secondly, the functions u must also belong to the space L2(]0, T [;H1(Ω)), which means their

spatial derivatives must also be integrable over ]0, T [. This is important to ensure that

weak solutions possess spatial derivatives that are regular enough to be considered within

the framework of the given equatio Finally, the L2(]0, T [;H1(Ω)) norm of the functions u is

bounded by a constant R. This allows for controlling the size of solutions and ensures that

the set χ is well-de�ned and bounded.

In summary, the set χ contains all functions u that are both su�ciently regular in time and

space to be considered as potential candidates for the weak solution of the given problem.

Weak formulation

To demonstrate the existence of a weak solution u to problem (2.1), we use the method

of variations. Let v ∈ χ, where χ is the set de�ned previously.

We multiply equation (2.1) by a test function φ ∈ H1(Ω) such that φ = 0 on ∂Ω. Next, we

integrate the equation over the domain Ω.∫
Ω

∂u

∂t
φ dxdy =

∫
Ω

div
(
ψK(v)|∇u|2∇u

)
φdxdy. (2.4)

By using the divergence theorem, we can rewrite the right-hand side term as :∫
Ω

∂u

∂t
φ dxdy =

∫
Ω

∇ ·
(
ψK(v)|∇u|2∇u

)
φdxdy −

∫
Ω

∇
(
ψK(v)|∇u|2∇u

)
· ∇φdxdy. (2.5)
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By using the divergence theorem again, we can rewrite the �rst term on the right-hand side:∫
Ω

∇ ·
(
ψK(v)|∇u|2∇u

)
φdxdy =

∫
∂Ω

(
ψK(v)|∇u|2∇u

)
· nφ, ds (2.6)

where n is the outward normal vector of the domain Ω.

Now, we can rewrite equation (2.5) as follows :∫
Ω

∂u

∂t
φ dxdy = −

∫
∂Ω

(
ψK(v)|∇u|2∇u

)
· nφds−

∫
Ω

∇
(
ψK(v)|∇u|2∇u

)
· ∇φdxdy. (2.7)

Since we have assumed that u satis�es homogeneous Dirichlet conditions on ∂Ω (i.e., u ·n = 0

on ∂Ω), the �rst term on the right-hand side becomes zero. We thus obtain the weak

formulation:∫
Ω

∂u

∂t
φ dxdy +

∫
Ω

∇
(
ψK(v)|∇u|2∇u

)
· ∇φdxdy = 0 ∀φ ∈ H1(Ω). (2.8)

In summary, the weak formulation (or variational formulation) consists of �nding a function

u ∈ χ such that for all φ ∈ H1(Ω) (with φ = 0 on ∂Ω), equation (6) is satis�ed.

We can also show that there exists a constant α > 0 such that:

H1(Ω) < Aν(t)u, u >H1(Ω)≥ α ∥ u ∥2H1(Ω) ∀u ∈ H1(Ω)

By using a well-known result due to Lions, we conclude that for each v ∈ χ, problem (2.6)

has a unique weak solution u = Φ(v).

then to prove the invariance of the set χ, we aim to show that Φ is a contraction on χ and

preserves this set. By performing calculations using equation (2.9) and the monotonicity of

the function r 7→ ψK(u)(|r|2)r), we can establish the existence of a positive constant α0 such

that the following inequality holds :

1

2

∂

∂t
∥ u(t)− u ∥2L2 +α0

∫
Ω

|∇(u(t, x, y)− u(t, x, y)|2dxdy

≤
∫
Ω

|∇(u(t, x, y))− u(t, x, y)||K(v(t, x, y)−K(v(t, x, y))|dxdy, (2.9)

for all t ∈ (0, T ).

This inequality implies the following inequality:

∥ u(t)− u(t) ∥2L2 +
α0

2

∫ t

0

∫
Ω

|∇(u(t, x, y)− u(t, x, y)|2dxdydt,
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≤ C

∫ t

0

∫
Ω

|∇(v(t, x, y)− v(t, x, y)|2dxdydt, (2.10)

where u = Φ(v) and u = Φ(v), and C is a constant.

De�nition of operator Aν(t) :

The operator Aν(t) is a linear operator that acts on a function u ∈ H1(Ω) and maps it

to an element of (H1(Ω))′, which is the dual space of H1(Ω). It is de�ned as follows:

⟨Aν(t)u, φ⟩ =
∫
Ω

ψK(v)|∇u|2∇u · ∇φdxdy ∀φ ∈ H1(Ω) (2.11)

where ⟨·, ·⟩ represents the inner product in (H1(Ω))′, which is the dual space of H1(Ω). Note

that to de�ne Aν(t)u in (H1(Ω))′, we use the inner product ⟨·, ·⟩.
Properties of operator Aν(t):

The operator Aν(t) is a linear operator that acts on a function u ∈ H1(Ω) and maps it

to an element of (H1(Ω))′, which is the dual space of H1(Ω). It is de�ned as follows:

⟨Aν(t)u, φ⟩ =
∫
Ω

ψK(v)|∇u|2∇u · ∇φdxdy ∀φ ∈ H1(Ω), (2.12)

where ⟨·, ·⟩ represents the inner product in (H1(Ω))′, which is the dual space of H1(Ω). Note

that to de�ne Aν(t)u in (H1(Ω))′, we use the inner product ⟨·, ·⟩.
Properties of operator Aν(t)

1. Linearity: The operator Aν(t) is linear, which means that for any u, u ∈ H1(Ω) and any

scalar α,

Aν(t)(u+ αu) = Aν(t)u+ αAν(t)u. (2.13)

2. Monotonicity: The operator Aν(t) is monotone, meaning that for any u, u ∈ H1(Ω),

⟨Aν(t)u− Aν(t)u, u− u⟩ ≥ 0. (2.14)

This monotonicity property is essential for demonstrating the contraction of the operator Φ

in the proof.

3. Continuity: The operator Aν(t) is continuously linear from H1(Ω) into (H1(Ω))′. This
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means that there exists a positive constant C such that for any u ∈ H1(Ω),

∥Aν(t)u∥(H1(Ω))′ ≤ C∥u∥H1(Ω), (2.15)

where ∥ · ∥(H1(Ω))′ is the norm in the space (H1(Ω))′.

Théorème 2.2 (Banach �xed-point theorem) Let (X, d) be a complete metric space and

Φ : X → X be a contraction mapping on X with a contraction factor 0 < ρ < 1, that is, for

all x, y ∈ X,

d(Φ(x),Φ(y)) ≤ ρ · d(x, y). (2.16)

Then, Φ has a unique �xed point in X, which means there exists a unique element x∗ ∈ X

such that Φ(x∗) = x∗.

Application of the Banach �xed-point theorem:

In our proof, we have de�ned the operator Φ : χ→ χ, which maps each v ∈ χ to the solution

u of problem (2.6). To show that Φ has a �xed point, i.e., a weak solution u ∈ χ such that

Φ(u) = u, we need to demonstrate two important properties :

1. Invariance of χ: We must show that the operator Φ preserves the set χ. In other words,

if v ∈ χ, then the weak solution u = Φ(v) also belongs to χ.

2. Contraction of Φ: We must show that the operator Φ is contracting on χ, meaning that

there exists a contraction factor 0 < ρ < 1 such that for any v, v ∈ χ,

∥Φ(v)− Φ(v)∥L2(0,T ;H1(Ω)) ≤ ρ · ∥v − v∥L2(0,T ;H1(Ω)), (2.17)

where ∥ · ∥L2(0,T ;H1(Ω)) is an appropriate norm for the space χ.

Once we establish the invariance of χ and the contraction of Φ, we can apply the Banach

Fixed-Point Theorem to conclude that there exists a unique weak solution u ∈ χ such that

Φ(u) = u.

we also have serval Remarks:

1.Model modi�cations: We made modi�cations to the initial model by replacing the

function (2.1) with the function (2.8). This modi�cation is justi�ed because, in certain

image denoising or restoration applications, the gradient amplitude typically does not exceed
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a certain value, even for sharp edges. Thus, the choice of ψk(u) is appropriate in such situations

and leads to results that are more tailored to the speci�cities of the problem at hand.

2. Existence of a weak solution: Thanks to Proposition 3.1 and its proof, we can assert

that the solution u of equation (2.1) can be obtained iteratively as the limit as n approaches

in�nity of un, where un represents the weak solution of problem (2.1). This convergence

allows us to conclude that the solution u of (2.1) can also be obtained as the limit of the

�nite di�erence scheme mentioned in the previous section:

u(t+ 1) = u(t) + div(ψK(u)(|∇u|2)∇u) in Ω, u(t) · v = 0 on ∂Ω. (2.18)

This observation is crucial in demonstrating the convergence of the numerical scheme to the

weak solution of equation (2.1).

3. Reformulation of equation (2.1): Equation (2.1) can be reformulated in an alternative

form :

∂

∂t

√
k(u) =

1

2
div(g0(|∇u|2)∇u) +

1

4

k′(u)√
k(u)

g0(|∇u|2)(|∇u|2) in (0, T )× Ω, (2.19)

subject to the initial condition u(0) = u0 in Ω and the Neumann boundary condition ∇u·v = 0

on (0, T )×∂Ω, where g0(s) =
α√

βs+ η
for s > 0. Neglecting the lower-order term, we obtain

the simpli�ed equation:

∂

∂t

√
k(u) =

1

2
div(g0(|∇u|2)∇u). (2.20)

with the Neumann boundary condition. This reformulation of equation (2.1) in an alternative

form allows us to better understand its behavior and analyze it using methods speci�c to

nonlinear parabolic equations. These methods can be applied to establish the existence of

solutions for equation (2.1) under more general conditions on K(u) (e.g., K(u) > 0). It is

crucial to note that when K(u) is constant, problem (2.1) reduces to the model of bounded

variation �ow, which is well-posed in the space of functions of bounded variation.

□
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Numerical solution and implementation

3.1 Numerical solution

A robust numerical approximation scheme is used to discretize the continuous mathematical

model described by equation (2.1). The scheme involves a 4-nearest-neighbors discretization

of the Laplacian operator, denoted by ∆u.By applying this discretization, equation (2.1) can

be approximated as:

∂u

∂t
= div(ψK(u)(|∇u|2)∇u) ⇒ u(x, y, t+ 1)− u(x, y, t) ∼= div(ψK(u)(|∇u|2)∆u)

,

which leads to the following approximating scheme:

ut+1
i,j = uti,j + λ

∑
q∈N(i,j)

ψK(u)

(∣∣∇uqi,j(t)∣∣)2 ∣∣∇uqi,j(t)∣∣ (3.1)

.

In this scheme u represents the image at time t and λ ∈ (0, 1),N(p) represents the set of

pixels representing the 4-neighborhood of pixel (i, j) = (x, y),to illustrate the concept of a

4-neighborhood, let's consider a 2D image represented by a matrix. Each element of the

matrix represents a pixel in the image.

Suppose we have a 5x5 matrix representing our image. Each element in the matrix can

be identi�ed by its coordinates (i, j), where i represents the row and j represents the column
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of the element.

For a pixel located at position (i, j), the four 4-neighborhood neighbors are the pixels

located at positions:

(i-1, j): neighboring pixel located in the upper row

(i+1, j): neighboring pixel located in the lower row

(i, j-1): neighboring pixel located in the previous column

(i, j+1): neighboring pixel located in the next column

These four neighbors represent the pixels directly adjacent to the central pixel (i, j) in the

vertical and horizontal directions. and the gradient magnitude of the image in a particular

direction at iteration t is computed as follows:

∇up,q(t) = u(q, t)− u(p, t) (3.2)

. The restoration algorithm given by (2.4) is applied to the current image for t = 0, 1, ..., N,

where N is the maximum number of iterations. Our iterative noise removal approach con-

verges quite rapidly to the desired solution. More about the convergence of this �nite di�er-

ence scheme is discussed in the next section. It produces the smoothed image uN from the

degraded image u(0) = u0 in a relatively low number of steps, so the N value should be kept

relatively low.

3.2 Numerical solving algorithms

The numerical solving algorithm corresponding to the anisotropic di�usion equation you

presented can be described as follows:

1. Initialization:

De�ne the algorithm parameters such as the number of iterations, the coe�cient λ, and load

the input image.

2. Preprocessing:

Convert the input image to grayscale if necessary.

3. Iteration loop:

a. For each time iteration t:
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i. Traverse each pixel (i, j) of the image.

ii. Calculate the image gradient ∇uqi,j(t) for each neighboring pixel q of (i, j).

iii. Calculate the anisotropic di�usion term ψK(u)

(∣∣∇uqi,j(t)∣∣)2 ∣∣∇uqi,j(t)∣∣ for each neighboring

pixel (q) of (i, j).

iv. Calculate the new pixel valueut+1
i,j using the update equation:

ut+1
i,j = uti,j + λ

∑
q∈N(i,j)

ψK(u)((|∇uqi,j(t)))2(|∇u
q
i,j(t))

b. Update the image with the new pixel values.

c. Repeat steps a and b for the speci�ed number of iterations.

This algorithm iterates over each pixel of the image at each time iteration, calculating

the anisotropic di�usion term for neighboring pixels and updating the pixel value using the

approximation equation. The algorithm repeats for a de�ned number of iterations until the

solution converges to a desired state.

It is worth noting that this algorithm is a general representation of the numerical solving

method for the anisotropic di�usion equation, and variations may exist depending on the

speci�cs of the implementation and choices of parameters.

3.3 Computer implementation

The implementation of the anisotropic di�usion model using Python as the programming

language can be done by following the following steps :

1. Importing libraries: The appropriate Python libraries need to be imported to facil-

itate the implementation of the anisotropic di�usion model. Some commonly used libraries

for image processing include NumPy, OpenCV, scikit-image, matplotlib, etc. These libraries

provide functionalities such as image manipulation, matrix calculations, result visualization,

etc.

2. Loading the input image: Use a function from the appropriate library to load the

image from a �le. For example, using OpenCV, one can use the `cv2.imread()` function to

load the image.

3. Preprocessing the image: If necessary, apply preprocessing operations on the input

image, such as converting to grayscale, resizing, normalization, etc. These operations can be
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performed using the appropriate functions from the library used.

4. Implementing the anisotropic di�usion algorithm: Use an iteration loop to

implement the numerical solving algorithm for the anisotropic di�usion equation. At each

iteration, traverse each pixel of the image, calculate the anisotropic di�usion terms for neigh-

boring pixels, and update the pixel value using the approximation equation.

5. Displaying the results: At the end of the iterations, display the input image and

the resulting image after anisotropic di�usion. Use the appropriate visualization functions

from the chosen library, such as `imshow()` from matplotlib or `cv2.imshow()` from OpenCV.

Regarding the software architecture, it depends on the complexity of your image process-

ing system. For a simple implementation of the anisotropic di�usion model, a linear software

architecture may su�ce, where the di�erent steps of the process (loading the image, prepro-

cessing, anisotropic di�usion, displaying the results) are executed sequentially. However, for

more complex systems, a modular architecture based on functions, classes, or modules can

be used to organize and reuse code e�ectively.

3.4 Results

In this section, we present a collection of �gures that visually depict the results obtained

from applying our model to image restoration tasks. Each �gure provides a side-by-side

comparison between the original degraded image and the restored image using our approach.

Figure 3.1: Representation of an image "apple" processed by AD model
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Figure 3.2: Representation of an image "animal" processed by AD model

Figure 3.3: Representation of an image "blimp" processed by AD model

Figure 3.4: Representation of an image "road" processed by AD model
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Conclusion

Our work is primarily focused on developing mathematical methods for image restoration

based on di�erential equations. Speci�cally, we have developed a non-linear anisotropic

di�usion-based model for image restoration. This model aims to enhance the quality of

degraded images by reducing noise and preserving important contours and details.

To achieve this, we conducted a thorough study of partial di�erential equations (PDEs)

and variational models, with a speci�c focus on anisotropic di�usion, for image restoration

tasks. We gained a deep understanding of the theoretical principles behind these models and

the underlying mathematical concepts. Subsequently, we designed our customized non-linear

anisotropic di�usion model tailored to our image restoration application.

To analyze our model, we conducted a comprehensive mathematical study of its prop-

erties, including well-posedness, stability, and convergence. We ensured the existence and

uniqueness of solutions to the model's equations, studied how the model responded to per-

turbations in initial conditions or parameters, and analyzed whether the model's solution

converged to the desired result as computations progressed.

Following that, we performed numerical experiments to evaluate the e�ectiveness of our

image restoration model. We applied the model to arti�cially corrupted images with di�erent

types of noise and compared the restored results with the original, uncorrupted images.

The results of our numerical experiments demonstrated that our non-linear anisotropic

di�usion model e�ciently reduced noise and blur in corrupted images while preserving es-

sential contours and details.

In conclusion, our work successfully generated advanced mathematical methods for image

restoration, based on di�erential equations. We developed a non-linear anisotropic di�usion

model, rigorously analyzed its mathematical properties, and demonstrated its e�ectiveness

through numerical experiments. These results con�rm the relevance and utility of our model
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in the �eld of image restoration. This research provides a solid foundation for future re-

search aimed at improving our model, exploring its application in various image restoration

scenarios, and utilizing it in practical image processing applications.
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