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Abstract 

This thesis investigates drone-based remote sensing in vegetation monitoring and the 

potential of artificial intelligence in plant disease detection. The study encompasses the assembly 

of a quadcopter unmanned aerial vehicle, the selection of suitable sensors for precise vegetation 

monitoring, and the development of a platform that integrates satellite imagery for vegetation 

analysis. The results highlight the effectiveness of drones in vegetation monitoring and the 

significance of AI-supported disease detection that could be integrated to the developed aerial 

surveying system. The research provides valuable insights for enhancing agricultural practices 

and disease management strategies, underscoring the importance of advancing sensor 

technologies and data analysis techniques in this domain. 

Résumé 

Cette thèse examine la télédétection par drones dans le suivi de la végétation et le 

potentiel de l'intelligence artificielle dans la détection des maladies des plantes. L'étude englobe 

l'assemblage d'un véhicule aérien sans pilote de type quadricoptère, la sélection de capteurs 

adaptés pour un suivi précis de la végétation, et le développement d'une plateforme intégrant des 

images satellite pour une analyse de la végétation. Les résultats mettent en évidence l'efficacité 

des drones dans le suivi de la végétation et l'importance de la détection des maladies soutenue par 

l'intelligence artificielle, qui pourrait être intégrée au système de relevé aérien développé. Cette 

recherche offre des perspectives précieuses pour améliorer les pratiques agricoles et les stratégies 

de gestion des maladies, soulignant l'importance de l'avancement des technologies de capteurs et 

des techniques d'analyse des données dans ce domaine.  
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INTRODUCTION 

Agricultural production plays a vital role in sustaining human society by supplying 

essential needs such as food, fuel, and fiber. However, in the current century, agriculture 

encounters the demanding task of ensuring an adequate supply and high-quality food to support 

the ever-growing population of nearly 8 billion people [1], while limited resources necessitate the 

need for efficient resource utilization, which is particularly crucial in areas such as food 

production and soil management. 

To face this problem modern agriculture is often relying on the expanded utilization of 

digital technology for monitoring and managing the diverse activities that occur on a farm. This 

approach commonly referred to as "smart farming”. 

The emergence of “smart farming”, which represents the current agricultural revolution in 

information technology, commenced its development during the 1980s. Subsequently, 

commercial availability of these technologies started to unfold in the early 1990s [2]. 

“Smart farming” Also known as digital agriculture is an innovative approach that 

leverages advanced technologies to optimize agricultural practices. It involves the integration of 

various technologies, such as remote sensing (RS), Internet of Things (IoT), artificial intelligence 

(AI), data analytics, and automation, to enable precise and efficient management of farming 

operations. Typically, smart farming encompasses the practices of acquiring, analyzing, and 

evaluating data, along with employing precision application technologies. While the terms "smart 

farming" and "precision agriculture (PAg)" are occasionally used interchangeably, it is important 

to clarify that precision agriculture is actually a subset or sub-category within the broader concept 

of smart farming [1, 3]. 

By utilizing real-time data and insights, smart farming aims to enhance productivity, 

reduce resource waste, minimize environmental impact, and improve overall farm profitability. It 

allows farmers to make data-driven decisions, tailor interventions, and maximize crop yields 

while minimizing inputs such as water, fertilizers, and pesticides. 

Technological advancements in smart farming offer solutions to the challenges faced by 

farmers using various ways such as: 
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a) Data-driven Decision-making: Smart farming enables farmers to collect and analyze 

a vast amount of data, including  soil conditions, weather patterns, crop health, and pest 

infestations. This data-driven approach helps farmers gain actionable insights into their 

operations, leading to informed decision-making regarding irrigation scheduling, crop protection 

measures, and nutrient management [1, 3]. 

b) Precision Application of Inputs: Technologies like GPS1, GIS2 and RS3 allow 

farmers to precisely apply inputs, such as fertilizers and pesticides, only where and when needed. 

This reduces wastage, minimizes environmental impact, and optimizes resource utilization, 

resulting in cost savings and improved sustainability [1, 3]. 

c) Remote Monitoring and Automation: IoT sensors and connected devices enable real-

time monitoring of various parameters, including soil moisture, temperature, and crop health. 

This remote monitoring allows us to detect issues early, such as disease outbreaks or water stress, 

and take immediate corrective actions [1, 3]. 

d) Predictive Analytics and Machine Learning: Advanced data analytics techniques, 

including predictive modeling and machine learning algorithms, can analyze historical and real-

time data to predict crop performance, disease outbreaks, or yield potential. This helps farmers 

anticipate and mitigate risks and optimize resource allocation [1, 3]. 

By embracing these technological advancements, farmers can overcome various 

challenges such as unpredictable weather patterns, resource constraints, labor shortages, and 

market fluctuations empowering them to achieve higher productivity, economic profitability, and 

environmental sustainability, making agriculture more efficient and resilient. Ultimately 

contributing to worldwide food and nutrition security. 

 

 

 
1 GPS: Global Positioning System is an accurate worldwide navigational and surveying facility based on the 

reception of signals from an array of orbiting satellites. 

 

              2 GIS: A geographic information system is a computer system for capturing, storing, checking, and 

displaying data related to positions on Earth's surface. 

 
3 RS: the scanning of the earth by satellite or high-flying aircraft in order to obtain information or data. 
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1. 1 Problem statement and objectives 

The global food crisis has revealed the vulnerabilities of Algerian agriculture. The 

nostalgic image of Algeria as the "breadbasket of Europe" is far from the truth and the substantial 

food bill serves as a stark reminder of the current reality. Algeria remains heavily reliant on 

international markets, ranking among the top ten countries in terms of cereal imports. This 

dependence extends to other agricultural products like powdered milk, oils, sugar, and coffee, etc. 

To alleviate this situation, it is crucial for Algeria to find ways to export its own agricultural 

produce and achieve a better-balanced agricultural trade [4]. 

Algerian agriculture still relies heavily on traditional farming methods. Traditional 

farming practices, passed down through generations, continue to dominate the agricultural 

landscape. Many farmers employ manual labor, basic tools, and rudimentary techniques in their 

cultivation processes. Additionally, there is a limited adoption of modern agricultural 

technologies and practices, such as mechanization, precision farming, and advanced irrigation 

systems. This reliance on traditional methods hinders the efficiency, productivity, and 

sustainability of the agricultural sector in Algeria. . 

As based on the analysis provided in India clearly demonstrates that the average income 

of modern farmers significantly surpasses that of traditional farmers [6]. The yearly earnings of 

modern farmers are 17.36 times higher than the yearly earnings of traditional Indian farmers [6]. 

Likewise, the income per acre for modern farmers is 13.88 times greater than that of traditional 

farmers [6]. Also big American companies like Monsanto and DuPont are currently leveraging 

Big Data to enhance crop yields. As early as 2014, Monsanto envisioned that providing farmers 

with data-driven insights from field observations would result in a significant reduction in input 

expenses and an annual yield increase of 20 million USD [5]. 

The financial well-being of a nation greatly depends on the income of its residents and its 

agricultural field, and a significant portion of the population derives their livelihood from 

agriculture or related agricultural businesses [8]. 

The implementation of Precision Agriculture is needed to achieve its intended objectives, 

continuous monitoring of the crop plantation is necessary, particularly during the growth season. 

By constantly monitoring the plantation and obtaining information from plant images, farmers 
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can gain insights into the health of the plants and take necessary and in-time actions to address 

any issues as water stress or plant diseases and prevent potential losses [6, 7]. 

Various imaging technologies, including satellites, mobile phones, and Unmanned Aerial 

Vehicles (UAVs), are employed to capture a range of images using both active and passive 

sensors operating across different regions of the electromagnetic (EM) wave spectrum, from 

microwave to ultraviolet [6, 7]. These images possess distinct spatial, spectral, radiometric, and 

temporal resolutions, allowing for differential utilization of the sensors [6-8]. 

In order to overcome the limitations  of satellite and mobile phone methods and acquire 

images in near real-time with the desired resolution, the utilization of Unmanned Aerial Vehicles 

was suggested [6, 9, 10]. 

To collect precise field data UAVs are recognized as the most effective and efficient 

approach [6, 11]. The integration of aerospace engineering and sensor technology has 

significantly reduced the cost of implementing UAVs in agriculture, leading to their widespread 

adoption [6, 12, 13]. 

UAVs employ cameras to capture images and sensors to gather data, facilitating the 

monitoring process, disease detection and supporting on time decision-making on the farm [6]. 

1. 2 Main Objective 

This thesis falls with the "Startup Master" initiative to provide solutions for the problems 

stated above; the main objective of this thesis is to comprehensively explore drone-based 

vegetation health monitoring and develop a solution for vegetation disease detection. It aims to 

address the challenges faced by farmers in detecting and managing plant diseases and highlights 

the advantages of using drones in smart farming. The thesis also examines the state of the art in 

drone-based remote sensing and explores relevant technologies used in smart farming. 

Furthermore, it focuses on the assembly of a quadcopter UAV and the selection of 

suitable sensors for precision agriculture. Additionally, it involves the creation of a desktop 

application for mission planning and a platform that integrates satellite technology for 

agricultural monitoring. 
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1. 3 Thesis chapters outlining 

The thesis consists of several chapters that together provide a comprehensive exploration 

of the topic of drone-based smart farming and disease detection. 

CHAPTER 1 examines the state of the art in drone-based disease detection in smart 

farming and the relative technologies used. 

CHAPTER 2 focuses on the assembly of a quadcopter UAV and the selection of suitable 

sensors for precision agriculture. It discusses the assembly process, calibration procedures, and 

modifications made to enhance the capabilities of the system. The chapter also explores various 

sensors, determining the most suitable one for disease detection. 

CHAPTER 3 presents an integrated solution that combines a desktop application and a 

website to facilitate efficient and effective crop monitoring and mission planning. It covers the 

functionalities of the desktop application, the analytics provided by the website, and the disease 

detection capabilities.  

CHAPTER 4 provides the results of the mission planning with the desktop application 

and the generated maps from the drone surveys. 
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CHAPTER 1. REMOTE SENSING FOR AGRICULTURAL 

APPLICATIONS 

1. 1 What is remote sensing 

Remote sensing and geospatial techniques play a crucial role in gathering and analyzing 

data, enabling the identification of variations in crop and soil properties within the field [14]. 

Remote sensing refers to the measurement of parameters from a distance rather than through 

direct contact. While it commonly involves the measurement of optical signals, it is not limited to 

that alone. Remote sensing technologies encompass radar-based remote sensing, visible and 

infrared spectroscopy, LiDAR (Light Detection and Ranging), and multispectral and 

hyperspectral imaging. Each of these technologies operates within a specific region of the EM 

and has its own specifications for target characterization. 

All the mentioned remote sensing technologies have made significant contributions to the 

advancement of PAg. Synthetic aperture radar (SAR), a specific radar technology, utilizes 

various wavelengths in the radar spectrum to detect surface features and small-scale structures. 

SAR can penetrate vegetation and soil by using longer wavelengths like the L-band or P-band, 

which allows for the detection of underground features and moisture content. 

Visible/infrared spectroscopy and hyperspectral imaging are widely used in the analysis 

of vegetation in PAg. These techniques enable the rapid analysis of crops and vegetation, and 

when combined with machine learning, they yield satisfactory classification results. 

To overcome the limitations of   crops monitoring using traditional strategies, these 

remote sensing techniques are employed. For example, the near infrared (NIR) operates within 

the electromagnetic spectrum with wavelengths ranging from 800 to 2500 nanometers and offers 

high-throughput capabilities for quality control in agricultural products. It has been applied in 

various agricultural sectors, including parameter measurement, differentiation of wheat cultivars, 

and detection of fungal infection. 

The integration of NIR with imaging techniques like multispectral and hyperspectral 

imaging enhances the analysis capabilities, facilitating quality control in crops such as fruits and 

the assessment of their ripeness and sweetness. 
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Additionally, remote sensing technologies have significantly enhanced precision 

agriculture by enabling disease detection, vegetation analysis, and quality control in agricultural 

products. 

Sensing can be defined simply as the measurement of something from a distance rather 

than in direct contact. Although it typically refers to the measurement of optical signals, it is not 

limited to that. In this manuscript, remote sensing is discussed in the context of measuring visible 

and NIR radiation using a modified RGB camera. In this case, it is more accurate to refer to this 

topic as remote imaging since the data obtained represents a "picture" of the analyzed object [15]. 

In remote sensing, we measure the radiation reflected by surface targets in order to 

characterize them. The collected data is then aggregated and represented as discrete images or a 

pixel grid with two spatial dimensions (X and Y). In the case of multispectral remote sensing, 

each resolution cell (pixel) contains multidimensional data (λi) consisting of multiple bands or 

layers captured by the sensor. This data enables us to obtain spectral information for each pixel, 

facilitating qualitative and quantitative analyses.  

Figure 1.1 illustrates a pixelated representation of an image, where a 3-band image is 

depicted as an array of pixels [16]. 

 

Figure 1.1 illustrates a pixelated representation of an image, where a 3-band image is depicted as an array of pixels 

[15]. 
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Each pixel in the image contains reflectance information for three distinct monoband 

channels. Since the monoband pixels are discrete representations of radiation, which inherently 

has a continuous nature, the process of discretization typically involves averaging the values 

within the boundaries of each band. 

The categorization of cameras in remote sensing is based on their number of channels, 

also known as spectral resolution. Researchers differentiate between multispectral sensors, which 

have a limited number of channels, and hyperspectral sensors, which possess hundreds of 

channels. An example of a multispectral sensor is the RGB camera, which consists of three 

channels that capture reflected radiation in the red, green, and blue wavelengths, respectively 

[15]. 

Remote sensing relies on the principle that various chemical compounds exhibit distinct 

reactions to radiation by either transmitting, absorbing, or reflecting a portion of the incoming 

radiation. This behavior leads to the selective absorption of specific wavelengths, known as 

absorption bands, by different materials or components. 

As a result, each material possesses a unique pattern or "spectral signature" across the EM 

spectrum (refer to Figure 1.2). Consequently, by measuring the reflected radiation from an object 

and analyzing its spectral signature, it becomes possible to differentiate and identify various 

materials or components [15]. 

 

Figure 1.2 Example of spectral signature of different materials [15]. 
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1. 2 Satellite based remote sensing 

Satellite-based remote sensing is a conventional approach for obtaining remotely sensed 

data [14]. Satellite imagery has been utilized since the 1970s to extract agricultural information 

[2, 16].  However, the freely available images typically have a spatial resolution of 30 m or 

lower, which is considered too coarse for many applications [14]. The initial satellite, Landsat 1, 

captured data in four spectral bands (red, green, and two infrared bands) at a spatial resolution of 

80 m, with a revisit frequency of 18 days [16].  

Additionally, since satellites are positioned between ~480 to ~ 900 kilometers above the 

Earth's surface, there exists a substantial expanse of atmosphere between the satellite sensor and 

the Earth's surface. Consequently, interferences arising from weather conditions are frequently 

encountered in satellite imaging (refer to Figure 1.3) [15]. 

Nevertheless, certain commercial satellites offer sub-meter resolution satellite imagery, 

with spatial resolutions of less than 1 m for panchromatic and over 1 m for multispectral data, for 

specific locations and times at a cost. However, these high-resolution commercial satellite images 

are often infrequent in availability [14, 17]. 

 

Figure 1.3 Example of atmosphere effects in radiation. Incoming radiation from sun (red-yellow arrows) are reflected 

unequally [16] 

Satellites like QuickBird (~480 km of altitude) and RapidEye (~630 km), offering 

improved capabilities  such as shorter revisit times ranging from one to three days, finer spatial 

pixel resolutions below 1 m, and a greater number of spectral bands. However, acquiring and 

processing data from these satellites can be complex and expensive.  
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Since 2017, the availability of data from Sentinel 2 has provided a cost-effective and more 

accurate option for assessing vegetation and nutrient status, offering a spatial resolution of 10 m 

and 13 potentially relevant spectral bands [2, 18], but this is still objectively low on field imaging 

resolution and disease detection .  

Table 1.1 Sentinel-2 (S-2) (786 km) spectral band characteristics [19]. 

Spectral Bands Wavelength (nm) Spatial Resolution (m) 

Band 1 (Aerosol) 443 60 

Band 2 (Blue) 490 10 

Band 3 (Green) 560 10 

Band 4 (Red) 665 10 

Band 5 (Vegetation Red-Age) 705 20 

Band 6 (Vegetation Red-Age) 740 20 

Band 7 (Vegetation Red-Age) 783 20 

Band 8 (NIR) 842 10 

Band 8A (Vegetation Red-Age) 865 20 

Band 9 (NIR) 945 60 

Band 10 (MIR) 1375 60 

Band 11 (MIR) 1610 20 

Band 12 (MIR) 2190 20 

 

  

Figure 1.4 Soil moisture map over the Kairouan Plain, derived from the combined use of 

Sentinel-1 and Sentinal-2 data, with the upper maps representing 01/12/2017 (in the left) and 

20/09/2017 (in the right) [20]. 
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In Figure 1.4, a soil moisture map of Kairouan Plain from September 14, 2017, is 

depicted. The white-colored area on the map represents urban areas, water bodies, and certain 

reliefs that have been masked. The upper right corner of the figure displays two distinct cases of 

soil moisture. The first case, represented by green colors, corresponds to a wet date (January 12, 

2017), while the second case, represented by red colors, corresponds to a dry date (September 20, 

2017) [19]. 

Utilizing high-resolution satellite imagery proves advantageous in examining fluctuations 

discrepancies in crop and soil conditions. Nevertheless, challenges related to the accessibility, 

high cost and expenses associated with obtaining such imagery at the desired spatial and temporal 

resolution indicate the necessity for an alternative approach [14, 20], especially when considering 

the impact of cloud cover.  

One potential solution is the utilization of  small unmanned aerial systems (UAS) in 

operational Precision Agriculture [14, 17], images captured by low altitude remote sensing 

platforms such as small UAVs or small crewed aircraft present an alternative solution. UAVs 

have the advantage of low operational costs and can capture data with very high spatial resolution 

and the desired temporal frequency [14, 20]. 

1. 3 UAV based remote sensing 

In recent years, significant progress has been observed in the development of Unmanned 

Aerial Vehicles, with advancements in miniaturization, improvements in components such as 

GNSS4 and INS5 systems, and the availability of lightweight sensors [21, 22]. This technological 

evolution has positioned UAVs as a valuable platform for collecting data in agricultural 

applications, bridging the gap between remote sensing and terrestrial techniques.  

Utilizing UAVs provides a favorable compromise between the broad coverage achievable 

with remote platforms like satellites and aircraft, and the accuracy of terrestrial data, while also 

offering advantages in terms of time-consumption and survey costs [21].  

 
4 GNSS: Global Navigation Satellite System refers to a constellation of satellites providing signals from 

space that transmit positioning and timing data. 

 
5 INS: Inertial navigation system is an electronic system that uses sensors that can detect & measure the 

change in an object's motion. 
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Figure 2.4 illustrates a comparison of different survey systems, correlating the area of 

interest's extent with the spatial resolution of acquired images [21, 23].  

 

Figure 1.5 Earth observation involves the utilization of remote sensing technologies such as satellites and aerial 

sensors, combined with manual observations conducted on the ground [24]. 

Table 1.2 Limitations of satellite data vs drone-based sensing [14]. 

Sub-meter resolution commercial 
satellite image 

Drone-based high-resolution image 

Cloud cover and atmospheric dust 
particles create a bottleneck on image 
acquisition for some frequencies band 
such as optical RS. 

Low flight height makes a limited 
effect of cloud cover 

Real-time image acquisition and 
processing are not possible and usually 
takes some days delay 

Images can be obtained and processed 
in a few hours, depending on the size 
of the farm 

Images captured at some fixed time of 
day depending on the frequency of 
revolution of the satellite. 

Images can be captured at the desired 
time of day 
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Table 1.2 Continuation 

Maximum available Panchromatic 
geometrical resolution is 30 cm, while 
Multispectral resolution would be 1.2 m 

Sub-cm spatial resolution can be 
achieved as per requirement 

Minimum area map which can be 
ordered is 25 km2 or more. If only 
natural color map required, then 10 km². 

The map can be generated for a small 
and medium area which would be 
much cheaper than satellite imaging 

Optical images are generally taken from 
zenith 

Images at a different angle can be 
taken, which will help in getting 
architectural information of canopies 

 

Therefore, unlike satellites and airplanes, UAVs possess higher resolution capabilities, 

compensating for smaller coverage areas and making them an ideal platform for identifying 

within-field variations in agriculture. 

Unmanned aerial vehicles offer the capability to incorporate diverse sensors that prove 

valuable in examining crop-related parameters. Multiple existing literatures demonstrates that 

drones can be equipped with optical sensors such as RGB, multispectral, hyperspectral, and 

thermal sensors, enabling  the identification of  water stress and other forms of stress in crops . 

LiDAR sensors, when integrated with drones, facilitate the estimation of canopy height and 

structure, which contributes to the estimation of crop biomass.  

Moreover, when utilizing UAV interferometric or tomographic acquisition, it is 

advantageous to employ multiple acquisitions simultaneously at a low cost. This approach helps 

to avoid temporal decorrelation, which can have a detrimental impact on the 

tomographic/interferometric product. By utilizing multiple acquisitions simultaneously, the issue 

of decorrelation between targets and the subsequent challenge of co-registration can be 

effectively mitigated. In addition to collecting digital data, drones have been employed for 

aerobiological sampling over agricultural fields to detect pest infestations at an early stage. 

Furthermore, drones can be utilized to implement corrective measures in farms, such as targeted 

pesticide spraying in areas experiencing stress [14]. 
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Table 1.3 Provides an overview of the various sensors used on drones to monitor different crop characteristics [14]. 

Type Weight in KG Types of sensors which can 
be mounted on the drone 

Area coverage capacity of 
the drone 

Nano >0,25 Area coverage capacity of the 
drone Nano Less than 0.25 
This has not been used in 
agriculture till now as sensors 
are usually of more weight 
and cannot be lifted by nano 
drones 

NA 

Micro 0,25< Weight <2 Small RGB, lighter 
multispectral camera, and 
small LiDAR sensor can be 
mounted on this drone 

Can cover up to 4-5 acre of 
ground area depending on 
the height of flight. Flight 
height is generally kept 
lower than 100 meters 

Small 2< Weight < 25 High-resolution RGB 
camera, multispectral 
camera, LiDAR sensor, a 
lightweight hyperspectral 
imager, microwave sensor, 
and small thermal imager can 
be mounted on the drone 

Can cover up to 10- 20 acre 
of ground area depending 
on the height of flight 

Medium 25 < Weight < 150 Bigger high-resolution RGB 
camera, multispectral 
camera, LiDAR sensor, 
medium weight hyperspectral 
imager, microwave sensor, 
and the thermal camera can 
be mounted on the drone. It 
can also be used for spraying 
of pesticides 

Can cover up to 100 acres 
of ground area depending 
on the height of flight. 
Flight height is generally 
higher than 50 meters 

Large Weight > 150 Bigger and heavyweight 
cameras and sensors can be 
mounted on the drone. It can 
be used for spraying of 
pesticides 

Can cover more than 100 
acres of ground area. Flight 
height is generally higher 
than 100 meters 

The utilization of UAVs has revolutionized agricultural surveys by enabling information 

collection from an aerial perspective. 

1. 4 Types of UAV Applications in Precision Agriculture 

Recently, UAV technologies have demonstrated their effectiveness in various Precision 

Agriculture applications. These applications encompass targeted herbicide applications, 

identification of water deficiencies, detection of diseases, and more. By utilizing data obtained 

from UAVs, valuable insights can be gained to address detected issues and optimize crop 

harvesting through yield estimation. The literature highlights several prevalent applications of 

UAVs in Precision Agriculture, which include the following main uses [23]: 
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• Weed mapping and management [23, 25, 26]. 

• Vegetation growth monitoring and yield estimation [23, 27-29]. 

• Vegetation health monitoring and diseases detection [23, 30, 31]. 

• Irrigation management [23, 24, 32]. 

• Crops spraying [23, 33, 34] and others  

• Weed mapping and management: 

Weed mapping stands out as one of the prominent applications of UAVs in Precision 

Agriculture. Weeds, unwanted plants that proliferate within agricultural crops, pose various 

challenges. They compete with the cultivated plants for essential resources such as water and 

space, leading to reduced crop yields and hindered growth. Furthermore, weeds can cause 

complications during the harvesting process. Traditional weed management approaches in 

conventional farming involve uniformly spraying herbicides across the entire field, without 

considering weed-free areas. However, excessive herbicide usage can contribute to the 

development of herbicide-resistant weeds and negatively impact crop growth and yield. 

UAVs can take pictures and collect data from the entire field, which can then be used to 

create a detailed map showing where chemicals are needed for weed control: some areas require 

more chemicals, some require less, and some should not be treated at all [23]. 

Ana I. De Castro et al. (2018) conducted an experiment that highlights the importance of 

high spatial resolution for automated weed mapping during the early stages of crop growth. This 

level of resolution shown in figure 2.5 can be achieved effectively using a UAV [35].   
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Figure 1.6 Classified image by applying the auto-trained Random Forest classifier Object Based Image Analysis 

(RF-OBIA) algorithm to UAV images at 30 m flight altitude: (a) sunflower field; (b) cotton field [35]. 

• Monitoring the growth of the vegetation and providing yield estimation: 

The lack of ways to monitor crop growth and weather conditions makes it difficult to 

increase agricultural productivity. However, using UAVs to collect information and visualize 

crops can help overcome this obstacle. Recent studies have focused on monitoring biomass (the 

amount of plant material) and nitrogen levels in crops, as well as estimating yield. By measuring 

biomass and nitrogen, farmers can determine if additional fertilizer is needed. UAVs can also 

create detailed maps of crops in three dimensions and measure various parameters like crop 

height, spacing between rows and plants, and Leaf Area Index (LAI), which indicates how much 
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leaf surface area is present. With this information, farmers can make informed decisions about 

crop management, such as nutrient use and timing of harvesting, and identify any potential 

mistakes in their approach [23]. 

In a study made by Aijing Feng et al. (2020) the crop information from the UAV imagery 

data was compared to the yield data [36]. The yield data was georeferenced and matched with the 

corresponding  points on the orthomosaic images shown in Figure 1.7 and plant height map using 

a method developed in a previous study by Feng, Zhang, et al. (2019) [37]. 

 

Figure 1.7 Orthomosaic images and plant height map based on data collected on Aug. 12, 2017 (flowering stage). (a) 

–(c) orthomosaic images acquired from RGB, multispectral, and thermal cameras; and (d) plant height map [36]. 

Results of the study found that the height and temperature measurements taken by UAVs 

matched the manual measurements. By analyzing eight different data features, including 

vegetation indices, canopy cover, plant height, temperature, and a cotton fiber index, it was 

discovered that plant height during the flowering stage and the cotton fiber index near harvest 

provided the most accurate predictions of crop yield compared to the other image features. 

• Monitor vegetation health: 

Crop health is crucial for ensuring a good harvest, but diseases can cause significant 

damage to crops, leading to lower yields and poor quality. Traditionally, experts inspect crops 

manually, which is time-consuming and limits continuous monitoring. Another approach is to 

apply pesticides at specific times, but this can be costly and may contaminate groundwater. In 
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Precision Agriculture, a more targeted approach is taken for disease control. Automated non-

destructive detection of crop diseases plays a vital role in decision-making. Diseases bring about 

changes in the physical and biochemical characteristics of crops, which can be identified through 

UAV-based data processing. By analyzing crop images, UAVs can detect diseases early on, even 

before visible signs appear, and map the extent of the infection. This allows farmers to intervene 

promptly and minimize losses. UAVs are useful in two stages of disease control: first, during the 

initial infection, where they identify potential infections, and second, during the treatment phase, 

where UAVs can be used for precise targeted spraying and closely monitor the progress of 

intervention efforts [23]. 

• Crop irrigation management: 

Crop irrigation management is a crucial application of UAV technologies in PAg. With 

the majority of global water consumption dedicated to crop irrigation, there is a need for precise 

irrigation techniques. Precision irrigation ensures water is used efficiently by targeting specific 

areas, timing, and quantities. By detecting areas that require significant irrigation, farmers can 

save time and water resources while increasing crop productivity and quality. Precision 

agriculture divides fields into different irrigation zones, enabling precise resource management. 

UAVs equipped with suitable sensors can identify areas of crops that need more water and 

produce specialized maps depicting soil characteristics. This supports more efficient irrigation 

planning for each crop individually [23]. 

In addition to the common applications mentioned above, UAVs have also been used for 

soil analysis [20, 38, 39], cotton genotype selection [23, 27], mammal detection [40], and 

assessment of soil electrical conductivity [41] and others . 

1. 5 UAV surveys and data processing techniques 

The various tasks involved in a UAV survey are crucial because they can influence the 

success of the survey and the accuracy of the data collected. The first step is flight planning, 

which is extremely important as it ensures safe flights and reduces the time and cost associated 

with post-processing. The flight plan is based on factors such as the size and shape of the area of 

interest, the characteristics of the sensor, including the focal length and image dimensions, and 

the required Ground Sample Distance for the application. In agricultural applications, vegetation 

characteristics can make image matching difficult, so UAV surveys require high levels of 
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overlap, at least 80% along the flight direction and 60% along the cross direction [21]. 

Nowadays, flight planning is usually done using specialized software like Pix4Dcapture or 

Mission Planner after inspecting the survey area and defining the project objectives. Once the 

flight plan has been established, it is uploaded onto the UAV and the flight is executed 

autonomously using the GNSS and IMU systems on-board. However, during the actual survey, 

factors such as weather cannot be controlled or planned for. Although flights can be conducted 

under moderate rain or wind conditions, the most critical factor that can impact the survey is 

sunlight. It is important to maintain uniform illumination conditions throughout the acquisition 

phase to prevent any irregularities in the images. It is recommended to carry out surveys during 

midday, when the sun is at its highest point, to minimize shadows on the ground and reduce the 

Bidirectional Reflectance Distribution Function effect [21, 42]. 

Before data acquisition, it is necessary to calibrate the sensors in order to improve the 

quality of the data and reduce distortions in the images, both geometric and radiometric. 

Geometric corrections are made using Ground Control Points, which are panels with known 

geographic coordinates that are visible to the on-board sensor. These panels are used for 

georeferencing and camera self-calibration during data processing, and they ensure high overlap 

among images acquired by multi-lens sensors. Radiometric corrections are also necessary, 

especially when using CIR, multi/hyper-spectral, or thermal sensors. Calibration targets, such as 

white or gray panels with known spectral characteristics, are used to normalize collected images 

in relation to illumination conditions and sensor performance. These calibration panels convert 

pixel values expressed as DN into real reflectance values. Radiometric corrections are 

particularly useful in agricultural applications for comparing data collected at different times or 

producing index maps [21, 43].  

Using specialized sensors, UAVs can gather information about different aspects of the 

cultivated field. However, there is currently no set way or established techniques to analyze and 

visualize the acquired information. The following image processing methods are commonly used 

to analyze UAV imagery for Precision Agriculture purposes [23]: 
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• Photogrammetry/interferometry techniques: 

Photogrammetry involves accurately reconstructing a scene or object from multiple 

overlapping pictures. These techniques establish the geometric relationships between the images 

and the object, resulting in 3D models. To create these models, at least two overlapping images of 

the same scene or object are needed from different viewpoints. Photogrammetry is used to extract 

three-dimensional digital surface or terrain models and orthophotos. UAVs, with their low-

altitude data acquisition, allow for higher spatial resolution in constructing 3D models compared 

to other remote sensing technologies [23, 44]. However, collecting multiple overlapping images 

is necessary to cover the entire field. These models provide valuable information about the 3D 

characteristics of crops, such as vegetation height and density, which can be utilized in 

applications relying on RGB imagery.  

 

 

Figure 1.8 (a) A Digital Terrain Model; and (b) a Digital Surface Model [45]. 

The Digital Terrain Model represents the elevation of the Earth's surface without 

considering artificial or natural objects in the field. On the other hand, the Digital Surface Model 

includes the elevation of both the bare Earth and any existing objects captured by the remote 

sensing system. These models can be used to extract 3D information or create orthomosaics of 

the crops. An orthophoto is a geometrically corrected aerial photograph that provides accurate 

measurements and contains the 3D characteristics of the crops [23, 44]. 
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• Machine learning: 

Machine Learning (ML) and Data Mining are widely used in Precision Agriculture with 

UAVs. ML helps extract knowledge from the collected data for various vegetation parameters. 

Regression methods estimate vegetation indices and their correlations with features like nitrogen 

and biomass [23]. Classification methods are used for weed mapping and disease detection, with 

Artificial Neural Networks and Random Forest algorithm being popular choices [12, 35]. These 

methods analyze RGB colors, intensity, and spectral information. They can achieve high 

accuracy, with Convolutional Neural Networks (CNN) being effective for object detection in 

large datasets [23, 44]. 

• Vegetation indices: 

Vegetation Indices (VIs) are widely used in Precision Agriculture for monitoring crop 

growth and health. They are mathematical transformations of EM radiation absorption and 

scattering by vegetation. VIs provide valuable information about vegetation properties such as 

biomass, nitrogen status, and overall health. Simple VIs that combine RGB and spectral bands 

like NIR and Red Edge (RE) improve the detection of green and healthy vegetation. Different 

environments require specific VIs due to their unique characteristics. By combining reflections 

from different bands, VIs reduce noise from external factors and enhance vegetation detection. 

For example, VIs based on red and NIR channels increase contrast between vegetation and soil, 

enabling the elimination of disturbances that affect both zones similarly [23]. Most used VIs in 

Table 1.4: 
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Table 1.4 Most used Vegetation indices [23]. 

Vegetation Index Abbreviation Index 
Vegetation Indices derived from multispectral information 

Ratio Vegetation Index RVI 𝑁𝐼𝑅

𝑅
 

Normalized Difference 
Vegetation Index 

NDVI 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Normalized Difference Red 
Edge Index 

NDRI 𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

Green Normalized 
Difference Vegetation Index 

GNDVI 𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

RGB-based Vegetation Indices 

Excess Greenness Index ExG 2𝐺 − 𝑅 − 𝐵 

Normalized Difference Index NDI 𝐺 − 𝑅

𝐺 + 𝑅
 

 

1. 6 Research Focused on UAV Agricultural Applications 

There exists multiple research studies on this field of applications some of which we can 

mention are: 

Early research by Nebiker et al. (2008) demonstrated the feasibility of mounting 

multispectral sensors on UAVs [21, 46], leading to subsequent studies exploring various 

applications. Notably, studies have focused on in-field weed mapping, vegetation growth 

monitoring, yield estimation, crop water stress analysis, and optimization of irrigation 

management [21-23] For instance; De Castro et al. (2018) developed an algorithm based on 

machine learning techniques to map weeds in sunflowers and cotton fields using high-resolution 

UAV imagery [35]. De Castro and colleagues (2018) utilized high-resolution UAV imagery to 

create a weed mapping algorithm using machine learning techniques.  

Similarly, Stroppiana et al. (2018) employed an automated procedure to detect weeds in 

rice fields using UAV data during the early stages of the growing season [47]. Nebiker et al. 

(2016) investigated the potential of lightweight sensor-equipped UAV surveys for predicting crop 



 

34 

 

yield in rape and barley, revealing a strong correlation between vegetation indices derived from 

UAV images and reference yield measurements [48].  

Stroppiana et al. (2019) employed UAV data to estimate maize vegetation density at the 

onset of the growing season in Northern Italy [49]. In a study by Hoffmann et al. (2016), crop 

water stress maps were generated from RGB and thermal UAV imagery captured at different 

stages of the season in spring barley fields located in Western Denmark [50]. Caruso et al. (2019) 

conducted experiments on olive orchards, both irrigated and rainfed, using UAV images to 

estimate tree height, canopy diameter, and canopy volume [51]. Lastly, Quebrajo et al. (2018) 

emphasized the importance of site-specific irrigation strategies by evaluating the water status of 

sugar beet plants using thermal data acquired through UAV surveys [24]. 

The key strength of UAV surveys lies in their ability to rapidly and extensively capture 

various types of information through versatile sensor deployment, offering a non-invasive 

approach with a high level of detail capable of detecting within-field variations [21]. 

1. 7 Advantages of using UAVs in Agriculture and Limitations in Algeria 

Using UAVs in agriculture in Algeria offers several advantages. Firstly, they can cover 

difficult areas with limited internet and GPS signals, making it easier for farmers in mountainous 

regions like Tizi Ouzou blidéen atlas, or medea to monitor their crops. Additionally, UAVs can 

operate in various weather conditions and gather valuable data, surpassing the limitations of 

satellites and airborne platforms. However, there are limitations to consider. The processing of 

high-resolution images in photogrammetry can be time-consuming, and the cost of sensing 

hardware and software is often expensive. Therefore, farmers need to carefully choose the 

appropriate software and hardware based on their specific needs and financial capabilities [44]. 

In Algeria, the use of drones is currently limited to certain individuals, institutes, and 

research centers. However, there is optimism and ambition for the widespread adoption of this 

technology to modernize and facilitate various agriculture applications, ultimately making them 

more efficient and profitable [44]. The Algerian government has been actively promoting 

agricultural improvement and food security through national programs. The progress of 

production and irrigated areas in recent years is presented in Table 1.5 and Table 1.6. 
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Table 1.5 Evolution of irrigated areas in Algeria from 2000 to 2017 [52]. 

Table 1.6 Evolution of agricultural production (in tons) [52]. 

Products 1995-1999 2011-2015 Growth % 

Cereals 2 590 044 4 196 602 62 

Dried 
vegetables 

44 338 88 008 98 

Vegetables 2 113 454 11 321 378 436 

Potato 1 078 757 4 436 260 311 

Grapes 203 600 509 827 150 

Olives 217 100 547 984 152 

Citrus 432 650 1 202 486 178 

Dates 365 600 857 441 135 

Milk 1 583 500 3 700 000 134 

 

1. 8 Advancements in Smart Farming: Leveraging IoT and AI for Agricultural 

Transformation 

Smart farming, is revolutionizing traditional farming practices by integrating cutting-edge 

technologies such as the IoT and AI. These technologies enable farmers to monitor and manage 

their crops, livestock, and agricultural processes more efficiently, resulting in improved 

productivity, sustainability, and resource optimization. In this section, we discuss the role of IoT 

and AI in smart agriculture and highlight their potential benefits and applications. 

1.8.1 The Internet of Things in Smart Farming 

IoT plays a pivotal role in smart farming by connecting physical objects, sensors, and 

devices to collect and exchange data. In agricultural settings, IoT devices can be deployed 

throughout the farm, collecting real-time information on various parameters such as soil 

moisture, temperature, humidity, crop health, and livestock behavior. These IoT devices transmit 

data to a centralized system or cloud platform, where it is processed and analyzed. 

2000/2001 2002/2003 2004/2005 2007/2008 2010/2011 2012/2013 2015/2016 2016/2017 

350 000 644 978 793 334 905 293 981 736 1 053 523 1 260 508 1 301 231 
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1.8.2 IoT sensors and applications in agriculture: 

Some of the application of IoT can be mentioned such as Greenhouse automation: IoT sensors 

provide real-time information on lighting, temperature, soil condition, and humidity, allowing 

automated adjustments; Climate monitoring: IoT weather stations collect environmental data to 

map climate conditions, aiding in precision farming. 

 

Figure 1.9 Agriculture IoT weather station [53]. 

Crop management: IoT devices placed in the field monitor crop-specific data such as 

temperature, precipitation, and overall crop health. 

Precision farming: IoT sensors collect data on lighting, temperature, soil condition, 

humidity, CO2 levels, and pest infections, enabling precise resource allocation and improved 

crop yield. 

Predictive analytics: IoT data combined with analytics tools enable farmers to make 

predictions about crop harvesting time, disease risks, and yield volume. 

Agricultural drones: Drones equipped with sensors collect agricultural data and perform 

tasks such as planting, pest control, and crop monitoring [52].  
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Figure 1.10 Pesticides spraying drone in action [53]. 

End-to-end farm management systems: These systems providing remote farm monitoring, 

analytics, and reporting features. FarmLogs and Cropio are examples of farm productivity 

management systems [52]. 

 

Figure 1.11 Cropio’s field management Dashboard [53]. 

These IoT applications in agriculture offer improved efficiency, data-driven decision-making, 

and enhanced productivity [53]. 

1.8.3 Artificial Intelligence in Smart Farming 

AI algorithms and machine learning techniques are applied to the vast amounts of data 

collected through IoT devices in smart farming. By analyzing historical and real-time data, AI 
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can extract valuable insights, make predictions, and automate decision-making processes, leading 

to more informed and efficient agricultural practices. 

1.8.4 Benefits and Applications of AI in Smart Farming 

1. Crop Disease Detection and Diagnosis: AI algorithms can analyze images of plants and 

identify diseases or nutrient deficiencies accurately. This enables early intervention and targeted 

treatment, reducing crop losses and the need for excessive pesticide use. 

2. Yield Prediction and Optimization: AI models can analyze various data inputs, 

including weather patterns, soil conditions, and historical yield data, to predict crop yields. This 

information helps farmers optimize resource allocation, manage market demand, and plan harvest 

schedules effectively. 

3. Robotic Automation: AI-powered robots and drones can perform tasks such as seeding, 

spraying, and harvesting autonomously. These robots can navigate fields, identify and remove 

weeds, and gather data for precision farming techniques. 

4. Decision Support Systems: AI-based decision support systems provide real-time 

recommendations to farmers regarding optimal planting times, irrigation schedules, and crop 

rotation strategies. This helps farmers make data-driven decisions and achieve better outcomes. 

1. 9 Conclusion 

In conclusion, we showed that UAV-derived data as well as the integration of IoT and AI 

technologies in smart farming holds tremendous potential to transform traditional agricultural 

practices. Using close range UAV data collecting and harnessing the power of IoT devices to 

collect real-time data and leveraging AI algorithms to analyze and interpret this data, farmers can 

optimize their operations, reduce costs, enhance productivity, and contribute to sustainable 

agriculture.  

By synthesizing the literature in this chapter, we have gained a comprehensive 

understanding of the capabilities and limitations of remote sensing techniques in agriculture. The 

insights gathered will serve as a solid foundation for the subsequent chapters, where we will 

further explore specific methodologies and advancements in UAV-based remote sensing, data 

processing, IoT and AI integration.   
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CHAPTER 2. UAV HARDWARE CHOICE AND ASSEMBLY 

2. 1 Introduction 

UAVs used in agriculture for vegetation monitoring can vary in size, shape, flight time, 

height, speed, and payload capacity. Operators tend to focus on mini and micro UAVs that weigh 

less than 25 kg [21]. Two primary categories of vehicles exist within this weight class: fixed-

wing and multi-rotor. Both have distinct characteristics, advantages, and uses. However, the 

choice between fixed-wing and multi-rotor vehicles depends on factors such as the area's 

dimension and orography, desired image resolution, and available space for take-off and landing. 

In this chapter, our specific focus lies in the assembly of a quadcopter drone for our 

esteemed research project. We shall delve into the rationale behind our choice of a multi-rotor 

aerial vehicle over a fixed-wing aircraft. This decision shall be made following a thorough 

discussion of the two primary categories of UAVs within this weight class, namely fixed-wing 

and multi-rotor vehicles. 

Additionally, we explore the essential components of the drone system, providing detailed 

insights into the functionality and contributions of each element to the quadcopter's overall 

performance. We cover significant aspects including the frame, motors, electronic speed 

controllers (ESCs), and other relevant components. Detailed technical data, dimensions, and 

illustrations are provided throughout to enhance comprehension of component selection and 

integration. 

Finally, we will explore different sensors commonly used in precision agriculture and 

discuss the sensor we have chosen for our application. By examining these sensors, we aim to 

highlight their functions and applications in farming. Furthermore, we will provide an in-depth 

analysis of our selected sensor, explaining how it aligns with our research goals.  

2. 2 UAV Technologies: Implementation and Assembly 

2.2.1 Fixed-wing 

Fixed-wing UAVs (Figure 2.1.d) have wings and are ideal for surveying large areas 

ranging from 1 to 10 km2. They provide ground-level imagery with a resolution in the order of 

decimeters and require about ten square meters of open space for take-off and landing [21]. These 

unmanned aerial vehicles necessitate comprehensive training in order to operate them effectively. 
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They are capable of maintaining a vertical balance in the air for multiple hours. However, they 

lack the ability to move backward, hover, or rotate, making them unsuitable tasks like aerial 

photography [54].  

2.2.2 Multi-rotor 

In contrast to fixed-wing, multi-rotor (Figure 2.1) vehicles are better suited for covering 

smaller areas between 0.01 and 1 km2. They can acquire data with a resolution in the order of 

centimeters and do not require additional space for vertical take-off and landing. Generally, 

multi-rotor vehicles are preferred in PAg applications due to their slower flight speed, ease of 

operation, and maneuverability [21]. Multi-rotor UAVs come in various configurations, including 

tri-copters, quad-copters, hexa-copters, or octo-copters [54]. 

Both fixed-wing and multi-rotor UAVs require the same main components to ensure safe 

flights, including but not limited to: 

• Ground Control Station: a computer on the ground that can communicate with and 

monitor the UAV. 

• Remote Control: flight control systems that manage the UAV's flight operations. 

• GNSS system: an on-board GNSS receiver to define the UAV's flight route. 

• IMU systems: an Inertial Measurement Unit that comprises accelerometers and 

gyroscopes to maneuver the UAV. 

• Safety systems: other miniaturized on-board sensors that help the UAV maintain a safe 

and minimal distance from obstacles during flights. 

• Payload: equipment used for data acquisition. 

Various technical solutions are available on the market for both fixed-wing and multi-

rotor UAVs, including products from major commercial labels and self-made options. Table 2.1 

and Figure 2.1 displays some examples of UAVs that represent both fixed-wing and multi-rotor 

vehicles. 
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Table 2.1 Commercially available drones. 

Type UAV Related Studies 

 
8 rotors 

Mikrokopter Okto XL 
DJI Spreading Wings S1000 
Aerialtronics Altura AT8 
Tarot 680 

[55, 56] 
[57-59] 
[60] 
[61] 

 
6 rotors 

EM6-800 
DJI M600 
Hexacopter P-Y6 
Mikrokopter Hexa-II 

[62] 
[63] 
[64] 
[65] 

 
4 rotors 

Parrot AR.Drone 2.0 
Parrot Anafi 
DJI Matrice 210 
DJI Phantom Series 

[66] 
[66] 
[67] 
[67-71] 

 
Fixed wing 

Quantum Systems Trinity F90+ 
eBee SQ 
Tuffwing Mapper 

[72] 
[73] 
[74, 75] 

 

 

Figure 2.1 Commercial drones used for precision agriculture purposes. (a) Octa-rotor Mikrokopter Okto XL,  (b) 

Hexa-rotor DJI M600, (c) Quad-rotor DJI Matrice 210, and (d) Quantum Systems Trinity F90+. 

2.2.3 Assembly of a Quadcopter Drone 

Incorporating a drone into our thesis project was essential to achieve our research goals. 

Considering the unavailability of one at hand and the high cost of purchasing a commercial 

drone, we opted to undertake the assembly of our own drone. 
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After careful consideration, we made the decision to construct a multi-rotor aerial vehicle 

for our study instead of a fixed-wing aircraft. This choice was primarily driven by the availability 

of the necessary parts and the comparatively lower complexity involved. Moreover, the multi-

rotor’s suitability for surveying tasks was another key factor in our decision. Unlike fixed-wing 

drones that require covering larger areas, the multi-rotor’s maneuverability allows for efficient 

surveying in smaller, confined spaces. Additionally, they offer the advantage of requiring less 

space for takeoff and landing. This advantage further supported our choice to utilize a multi-rotor 

for our study.  

Specifically opting for the quadcopter design. This choice was driven by several factors, 

including its versatility, stability, and maneuverability. The design offers precise control and 

agility, making it well suited for our intended purposes. By selecting this type of copter 

configuration, we aim to leverage its advantages in terms of stability, ease of control, and 

adaptability for various tasks in our study. 

2.2.4 Main components of the drone system 

In this section, we will take a closer look at the main components that make up our drone 

system. We will delve into the details of the frame, motors, propellers, electronic speed 

controllers, flight controller, radio-controller and power system, providing a comprehensive 

understanding of how each of these elements contributes to the overall functionality and 

performance of the quadcoter. 

• Frame 

Drone frames are the structural foundation of the aerial vehicle, influencing its 

performance and capabilities. Choosing the right frame ensures stability, durability, and optimal 

integration of various components, making it a critical consideration in drone assembling. 

We selected the frame for our drone based on its size, payload capacity and commercial 

availability, the X-shaped quadcopter frame emerged as the most widely accessible option. 

Specifically, we opted for a frame design inspired by DJI's flame wheel F450 airframe. Figure 2.2 

displays the design and dimensions of this frame. 
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Figure 2.2 Dimensions of a DJI Flame Wheel F450. 

• Motors 

In order to choose the appropriate motors for our drone, it is essential to have an estimate 

of the overall weight of the quadcopter. This calculation involves taking into account the 

combined weight of all the components. 

Next, we delve into the key parameters of the motors, as these factors heavily influence 

the motor selection process. By evaluating these parameters, we can make informed decisions 

about the most suitable motors for our specific requirements. 

• Thrust to Weight Ratio:  

In every type of multi-rotor, it is crucial to ensure that the motors we use in our drone can 

generate approximately 50% more thrust than the actual weight of the drone. This extra thrust is 

essential for the drone to respond effectively to our control inputs and facilitate a smooth take-off 

[76, 77]. Moreover, it is important for our drone motors to maintain stability and reliable 

functionality even in slightly windy conditions. By having a high thrust-to-weight ratio, the drone 
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will possess enhanced agility and acceleration. However, it is important to note that this increased 

agility may also make the drone more challenging to control [76]. 

Finding the right balance between thrust, weight, and control is key to achieving optimal 

performance and maneuverability for our drone.  

• KV Ratings:  

The KV rating serves as a critical parameter for the motor. It refers to the rotational speed, 

measured in revolutions per minute (RPM), that the motor can generate per volt of input power 

[77]. 

Once the propeller is attached to the motor, the RPM tends to decrease due to air 

resistance. Motors with higher KV ratings spin the propeller at a faster rate and have the 

capability to draw more current. As a result, we commonly observe the use of larger propellers 

with low KV motors, while smaller and lighter propellers are better suited for high KV motors 

[76, 77]. 

If a larger propeller is paired with a high KV motor, it will require greater torque to spin 

at a faster rate. While attempting to generate the necessary torque, the motor will draw more 

current and generate excessive heat. This overheating can potentially cause damage to the motor. 

Therefore, it is important to consider the appropriate combination of propeller size and motor KV 

rating to ensure optimal performance and prevent overheating issues [76, 77]. 

• Motor Size:  

Typically, brushless motors are classified using a four-digit numbering system. For 

instance, let us consider a motor with the name "2212". In this case, the first two digits indicate 

the diameter of the stator in millimeters, while the last two digits represent the stator height, also 

measured in millimeters. Essentially, a wider and taller motor has the capability to generate more 

torque. 



 

45 

 

 

Figure 2.3 REX 220 FLYWARE Rotor and Stator [78]. 

The choice of motor size is directly influenced by the size of the frame. There is a 

dependency between the frame size, propeller size, and the motor size and KV rating. The frame 

size determines the maximum propeller size that can be used, which, in turn, limits the 

appropriate motor size and KV rating [76]. The table below provides some guidance on motor 

size selection. In this context, the frame size refers to the wheelbase, which indicates the distance 

between motors.  

Table 2.2 Combinations of frames, propellers and motors. 

Frame size Propeller size Motor size KV rating 
180 mm – 200 mm 4 inch 1806 - 2204 2600KV+ 
210 mm – 240 mm 5 inch 2204 - 2206 2300KV – 2700KV 
250 mm – 320 mm 6 inch 2204 - 2208 2000KV – 2300KV 
330 mm – 350 mm 7-8 inch 2208 - 2212 1500KV – 1600KV 
450 mm – 500 mm 9-10 inch 2212 -2216 800KV – 1000KV 

 

Taking into consideration the size of our frame and performing calculations to determine 

the required motor pulling capacity, we have concluded that the A2212-1000KV brushless motor 

is the suitable choice. The specific characteristics of this motor are depicted below. 
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Figure 2.4 A2212 brushless motor outline drawing. 

Table 2.3 A2212 brushless motor Technical data [79]. 

KV 1000 rpm/V 
Number of battery cells 2S – 4S 
Max efficiency6 80% 
Max efficiency current7 4 – 10 A (>75%) 
No load current 0,5 A 
Pull 885 g 
Resistance 0,090 ohms 
Max current 13 A for 60 seconds 
Max watts 150 W 
Weight 52,7 g 
Size 28 mm dia × 28 mm bell length 
Shaft diameter 3,2 mm 
Poles 14 

  

 
6 Efficiency refers to how effectively a motor converts electrical power into mechanical power without 

excessive energy losses. 

 
7 Max efficiency current represents the maximum current that the motor can handle continuously without 

exceeding its thermal limits and risking damage or reduced efficiency. 
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• Propellers  

It is important to select propellers that are compatible with the drone's motor 

specifications and the overall design goals. Choosing the right propellers, helps optimize 

performance, efficiency, and stability during flight. Beginning with the drone frame, we consider 

its size to determine the suitable propeller size for our drone. The weight and dimensions of the 

propeller play a crucial role in determining the lifting thrust and flying speed of the drone. 

After referring to the Table 2.2, we have identified the 1045 propellers (Figure 2.5) as the 

appropriate choice for both the frame and motors. The specifications for the propellers are as 

follows: the pitch8 is 4.5 inches, the weight is 14 grams, the shaft diameter is 6 mm, and the total 

length is 10 inches (254 mm). 

 

Figure 2.5  Clockwise and counter clockwise 1045 propellers. 

• Electronic speed controllers 

Electronic Speed Controllers are devices used in drones to regulate the speed of electric 

motors. They have an essential role in controlling the rotation speed of the motors, which directly 

affects the drone's thrust and overall performance. 

ESCs receive signals from the flight controller or transmitter and convert them into 

precise electrical pulses that determine the motor's speed. By adjusting the timing and duration of 

these pulses, ESCs regulate the power sent to the motors, enabling precise control of the drone's 

movements, including acceleration, deceleration, and changes in direction. 

 
8 The term "pitch" refers to the theoretical distance a propeller would travel in one complete revolution in an 

ideal medium. It represents the forward movement of the propeller per revolution and is usually measured in inches. 

A higher pitch indicates a greater forward movement per revolution, while a lower pitch signifies less forward 

movement. 
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ESCs are vital components in drone systems, making it essential to select the appropriate 

ones for our specific drone configuration. To determine the suitable ESCs, we need to consider 

the maximum current that our motors will draw during operation.  

According to Table 2.3 in the technical data of the A2212 motor, the maximum current 

specified is 13 A. Therefore, the suitable ESCs for our setup would be those with a current 

capacity of 20 A or higher. After conducting market research, we have identified the EMAX 30A 

ESCs (Figure 2.6) as commercially available options that align with our requirements. These 

ESCs are well suited for our quadcopter configuration. 

 

Figure 2.6 EMAX 30A ESC. 

• Flight Controller 

The flight controller acts as an indispensable cornerstone for the safe and efficient 

operation of drones. By seamlessly integrating sensor data, executing complex algorithms, and 

providing advanced flight features, it ensures stable flight characteristics, precise control, and an 

elevated piloting experience.  

Selecting the right board depends on the physical restraints of the vehicle, features 

desired, and the applications that we want to run. After considering these factors [80]:  

• Sensor Redundancy9: Many controllers incorporate multiple integrated IMUs for 

increased redundancy and fault tolerance. 

 
9 Sensor redundancy refers to the use of multiple sensors that provide similar or overlapping measurements 

or data in a system or application. By employing redundant sensors, the system can compare the readings from 

multiple sensors and identify any inconsistencies or discrepancies. If one sensor fails or provides erroneous data, the 

redundant sensors can help detect the issue and ensure the continued operation of the system. 
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• Servo/Motor Outputs: The number of available servo/motor outputs is an important 

consideration, as it determines the capability to control and operate various actuators and 

peripherals on the drone. 

• UARTs: UART10 ports serve as essential interfaces for connecting telemetry radios, GPS 

modules, companion computers, and other devices, enabling seamless communication and 

data exchange. 

• External Buses11: External buses like I2C12 and CAN13 provide versatile connectivity 

options for attaching a wide range of devices to the autopilot system. This includes 

airspeed sensors, LED controllers, and other compatible peripherals. 

• Analog I/O: Some controllers offer analog input/output options, allowing the integration 

of features such as receiver signal strength (RSSI) measurement, battery voltage/current 

monitoring, and support for other analog sensors. 

• Integrated Features: Certain controllers come with integrated features such as an on-

screen display (OSD) for real-time flight information and built-in battery monitoring 

sensors to ensure accurate power management. 

• Size: The physical size of the autopilot is a crucial consideration, particularly for smaller 

vehicles with limited space. Compact autopilot designs are desirable to ensure proper 

installation and optimal utilization of available space. 

• Expense: Controller prices vary depending on the set of features and capabilities they 

offer. While basic options can be cheap, more advanced controllers with enhanced 

functionalities may have higher price ranges.  

 
10 UART (Universal Asynchronous Receiver-Transmitter) is a hardware communication protocol commonly 

used for serial communication between electronic devices. It facilitates the transmission and reception of 

asynchronous data, allowing devices to exchange information bit by bit. 

 
11 External Buses are communication pathways that allow multiple devices to connect and exchange data 

within a system. 

 
12 I2C (Inter-Integrated Circuit) is a serial communication protocol that enables communication between 

integrated circuits (ICs) using a master-slave architecture. It is commonly used for short-range communication within 

electronic systems. 

 
13 CAN (Controller Area Network) is a robust and widely used serial communication protocol primarily 

designed for automotive and industrial applications. It enables communication between devices or nodes in a 

network without a central computer controlling the communication. 
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We have determined that the most suitable flight controller for our quadcopter is the 

Pixhawk autopilot. 

Table 2.4 Pixhawk Specifications [81]. 

Processor Sensors Power Interfaces Dimensions 
-32-bit ARM 
Cortex M4 core 
with FPU14 
-168 Mhz/256 
KB RAM/2 MB 
Flash 
-32-bit failsafe 
co-processor 

-MPU6000 as 
main accel and 
gyro 
-ST Micro 16-bit 
gyroscope 
-ST Micro 14-bit 
accelerometer/co
mpass 
(magnetometer) 
-MEAS 
barometer 

-Ideal diode 
controller with 
automatic failover 
-Servo rail high-
power (7 V) and 
high-current ready 
-All peripheral 
outputs over-current 
protected, all inputs 
ESD15 protected 

-5x UART serial 
ports, 1 high-power 
capable, 2 with HW 
flow control 
-Spektrum 
DSM16/DSM2/DSM
-X Satellite input 
-Futaba S.BUS17 
input 
-PPM18 sum signal 
-RSSI input 
-I2C, SPI19, 2x 
CAN, USB 
-3.3V and 6.6V 
ADC inputs 

-Weight 38 g 
-Width 50 mm 
-Height 15.5 mm 
-Length 81.5 mm 

 
14 FPU (floating-point unit) is a part of a computer system specially designed to carry out operations on 

floating-point numbers. Typical operations are addition, subtraction, multiplication, division, and square root. 

 
15 ESD is a sudden discharge of static electricity that can occur when two objects with different electric 

potentials come into contact or close proximity. 

 
16 DSM (Digital Spectrum Modulation) is a digital communication protocol developed by Spektrum to 

provide reliable and robust radio control signals. DSM2 and DSM-X are subsequent versions of the protocol that 

introduce further enhancements. 

 
17 S.Bus (Serial Bus) is a digital communication protocol developed by Futaba. It is primarily used for 

transmitting control signals between a receiver and servos or other control devices in remote-controlled systems, 

particularly in RC aircraft and drones. It operates as a serial communication protocol that allows for the transmission 

of multiple channels of control data over a single wire.  

 
18 PPM (Pulse Position Modulation) is a digital communication protocol used in remote-controlled systems 

for transmitting control signals from a transmitter to a receiver. It is a method of encoding control information into a 

single pulse train. 

 
19 SPI (Serial Peripheral Interface) is a synchronous serial communication protocol commonly used for 

short-distance data transfer between microcontrollers, sensors, memory devices, and other peripherals in embedded 

systems. It allows devices to communicate with each other using a master-slave architecture. 



 

51 

 

 

Figure 2.7 Pixhawk connector assignments [81]. 
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• Radio-controller 

A radio controller (RC), also known as a transmitter, is a handheld device used to 

remotely control and pilot a drone. It wirelessly communicates with the drone through a receiver 

unit installed on the aircraft. The radio controller allows the pilot to send commands and inputs to 

control the drone's movement, such as adjusting throttle, steering, and activating various flight 

modes. It typically consists of joysticks, switches, buttons, and knobs that provide precise control 

over the drone's flight and other functionalities.  

For piloting our quadcopter, any 8-channel RC would be suitable. In our case, we used the 

Radiolink T8FB with the R8EF Receiver, which was readily available to us. 

 

Figure 2.8 Radiolink T8FB with the R8EF Receiver. 

• Power system 

To ensure the proper operation of the Pixhawk flight controller, ESCs, motors, and other 

components, the inclusion of a power module is essential. This power module, which is included 

with the Pixhawk package, is connected to the flight controller itself, the drone's battery, and the 

power distribution board of the frame. The power distribution board efficiently distributes power 

to the various components of the drone, allowing for their proper functioning. 

Furthermore, to provide power to the aerial vehicle, a battery is essential. Considering all 

the components involved, a 3 cell battery is required. Fortunately, CDTA20 supplied us with a 

 
20 Centre de Développement des Technologies Avancées 
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suitable battery (Figure 2.9) for our drone. The supplied battery is a 3-cell LiPo with a capacity of 

3300 mAh and a discharge rate of 35.  

 

 

Figure 2.9 Hobbypower Power Module V1.0 and a 3S LiPo battery 3300 mAh 35C. 

• GPS Module 

The successful execution of outdoor autonomous missions relies heavily on the 

integration of a GPS module with the flight controller. Therefore, it is imperative that we attach a 

suitable GPS module to the Pixhawk flight controller. Fortunately, the Pixhawk package includes 

an M8N GPS module (Figure 2.10) ensuring the availability of reliable positioning and 

navigation capabilities for our drone during autonomous operations. 

• Telemetry module 

The Pixhawk comes bundled with a 433 MHz telemetry module, providing us with the 

capability to remotely control the drone and receive information with a ground control station. 

This telemetry module serves as a communication link, allowing us to maintain real-time 

situational awareness and exercise precise command over the drone's operations from a remote 

location. 
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Figure 2.10 433 MHz telemetry module and GPS module. 

2.2.5 Quadcopter assembly 

The assembly process for our drone involved carefully connecting and integrating various 

components to ensure proper functionality. We started by attaching the frame components, 

including the arms and central body, following the manufacturer's instructions (Figure 2.11). 

Next, we mounted the motors onto the arms and securely fastened them. The ESCs were 

connected to the motors, and the wiring was organized and secured to prevent any interference or 

loose connections (Figure 2.12). 

After completing the mechanical assembly, our next step was to install the flight 

controller. We began by mounting the vibration-dampening mount to minimize any unwanted 

vibrations. Then, we securely attached the Pixhawk flight controller to the frame, ensuring it was 

properly positioned and aligned. 

With the flight controller in place, we precisely connected the necessary wires to establish 

crucial connections. We carefully connected the power wires, ensuring a secure and reliable 

power supply to the flight controller. Additionally, we made the required signal wire connections 

between the flight controller, ESCs, GPS module, telemetry module and receiver (Figure 2.13). 

This carful wiring process allowed for effective communication and control between the 

different components of the drone system. By ensuring the proper installation and connection of 

the flight controller, we established a solid foundation for the subsequent calibration and software 

configurations. 
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Figure 2.11 Mounting the frame and motors [82]. 

 

Figure 2.12 Wiring the ESCs and motors [82]. 
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Figure 2.13 Wiring diagram of our quadcopter. 
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2.2.6 Quadcopter calibration 

The Pixhawk flight controller represents an independent hardware project that offers us 

the flexibility to study and customize its functionalities. It is accompanied by the ArduPilot 

firmware, an open-source project that empowers us to develop and deploy autonomous unmanned 

aerial vehicles. This firmware encompasses a wide range of features and tools suitable for diverse 

vehicle types and applications. Among these tools is the Mission Planner software, which 

facilitates firmware updates, control of the vehicle and autopilot calibration, ensuring precise and 

reliable performance of the system. By exploiting these resources, we are empowered to explore 

and enhance the capabilities of our drone in accordance with our specific requirements. 

In this section, we will explore the calibration process of our drone. It is of utmost 

importance to diligently follow each step without skipping any, as we encountered numerous 

issues when we overlooked certain calibration procedures.  

• Frame Type 

First, we wire the Pixhawk with an USB cable to a computre with Mission Planner, 

Afterward, we click on the "Connect" button within the Mission Planner interface to establish a 

connection with the flight controller, as depicted in Figure 3.14. 

 

Figure 2.14 Connecting the Pixhawk wih Mission Planner. 

Within the Mission Planner software, there is a dedicated tab called "Setup" that provides 

a comprehensive and essential step-by-step guide for performing hardware calibration. We 

initiate the process by going to “Mandatory Hardware” selecting “Frame Type”, then choosing 

the "X" shaped copte configuration.  
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Figure 2.15 Selecting frame type. 

• Accelerometer Calibration 

Following that, we move on to calibrating the accelerometer by navigating to the "Accel 

Calibration" option and initiating the calibration process by clicking on "Calibrate Accel" to 

calibrate the 3-axis as shown in Figure 2.16. 

During the calibration process, we are prompted to position the vehicle on each axis. By 

pressing any key, we indicate that the autopilot is correctly positioned, and then move on to the 

next orientation. 

The calibration positions include: level, right side, left side, nose down, nose up, and 

upside down as shown in Figure 2.17. 
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Figure 2.16 Accelerometer calibration. 

 

Figure 2.17 Accelerometer and Compass calibration positions for copter [83]. 

• Compass calibration 

Following the accelerometer calibration, we proceed to calibrate the compass. It is 

essential to ensure a 3D GPS fix and be far from any objects that generate metallic or magnetic 

fields. To initiate the calibration process, we navigate to the "Compass" tab and click on the 

"Start" button (Figure 2.18). 

We elevate the vehicle and rotate it in the air, ensuring that each side (Figure 3.16) faces 

downward towards the ground for a few seconds, one side at a time. We perform a complete 360-

degree rotation, with each turn directed towards a different direction relative to the ground. This 

process entails six full turns, along with potential additional time and rotations to validate the 

calibration. If the calibration is unsuccessful, we repeat the calibration process. However, if the 

calibration is successful, we proceed to reboot the flight controller. 
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Figure 2.18 Compass calibration. 

• RC calibration 

Next, we calibrate the RC by selecting “Radio Calibration”, we should observe the 

presence of green bars indicating that the ArduPilot is receiving signals from the 

Transmitter/Receiver. Then we click “Calibrate Radio” (Figure 2.19). 

Then we manipulate the control sticks, knobs, and switches on the transmitter to their 

extreme positions. This action triggers the appearance of red lines on the calibration bars, 

indicating the minimum and maximum values recorded so far. Then, we choose the option "Click 

when Done." A window will pop up, displaying the message "Ensure all your sticks are centered 

and throttle is down, and click OK to continue." We proceed by moving the throttle to zero and 

clicking "OK." 

Mission Planner will provide a summary of the calibration data, where typical values for 

minimums are around 1100 and maximums are around 1900. 
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Figure 2.19 RC calibration 

• ESC calibration 

By following the instructions provided in the "ESC Calibration" tab (Figure 2.20), we can 

effortlessly calibrate all the ESCs. 

 

Figure 2.20 ESC calibration. 
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• Flight modes 

Prior to completing the calibration process, it is important to configure the flight modes 

that will be used during our drone surveys. Due to the limited number of available channels in 

our RC system, directly assigning 6 modes is not possible. However, we can overcome this 

limitation by modifying the RC's configurations using a mobile application provided by the 

manufacturer [84]. This allows us to customize the settings and allocate additional flight modes 

according to our requirements. 

 

Figure 2.21 Mixing RC channels. 

To establish a connection, we use Bluetooth to link with the application. Once connected, 

we navigate to the "PROG.MIX" section, where we have the ability to adjust the channels. In 

Figure 3.21, the "PROG.MIX1" option is visible. Here, we designate channel 7 as the master 

"MAS" and channel 5 as the slave "SLA". By modifying the offset values for both the upper 

"UP" and lower "DOWN" settings, we create a mix between the two channels, enabling us to 

configure 6 distinct flight modes. 

After the configuration, we select the "Flight Modes" tab in Mission Planner and select 

six distinct flight modes suitable for our specific application then we click on “Save Modes”. 
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Figure 2.22 Selecting flight modes. 

• Fail safe and battery monitoring 

In this section, we will address the final two configurations required before operating the 

drone, fail-safe and battery monitoring. The fail-safe (Figure 2.23) configuration is important to 

ensure that if the battery voltage drops below a certain threshold or the RC signal is lost, the 

drone will execute a predefined action such as landing, returning to the launch point, or 

continuing the mission in auto mode. This configuration serves as a safety measure to protect the 

drone and mitigate potential risks. 

Next, we enable the battery monitoring feature by navigating to the "Optional Hardware" 

tab. Within this tab, we select "Battery Monitor" and choose "Analog Voltage and Current" from 

the "Monitor" section. In the "Sensor" section, we choose "Other" and for “HR Ver”, we select 

"The Cube or Pixhawk." This configuration ensures that the system effectively monitors the 

voltage and current levels of the battery. 
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Figure 2.23 Fail safe and battery monitor configurations. 
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• Initial flight parameters 

Prior to the initial flight, it is necessary to adjust specific parameters associated with the 

battery and propeller size. To accomplish this, we navigate to the "Setup" tab and select 

"Mandatory Hardware," followed by "Initial Tune Parameters." Within this section, we input the 

propeller size, which in our case is 10 inches, as well as the battery cell count, which are 3. 

Additionally, we specify the fully charged voltage (4.2 V) and the discharged voltage (3.2 V) for 

the battery. These configurations ensure the appropriate settings for optimal performance. 

 

Figure 2.24 Calculating initial tuning parameters. 

Next, we proceed to click on "Calculate Initial Parameters," which prompts a window to 

appear (refer to Figure 3.25). This window displays all the important initial tuning parameters 

necessary for the first flight. To finalize the calibration process, we click on "Write to FC," 

ensuring that the calculated parameters are successfully written to the flight controller. With this 

step completed, the calibration process concludes. 
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Figure 2.25 Initial tuning parameters. 

2. 3 Sensors 

With the integration of specific sensors, UAVs are evolving into robust sensing systems 

that enhance the capabilities of IoT-based techniques. These sensors play a vital role in capturing 

high-resolution images [23], enabling the monitoring of various vegetation attributes. Depending 

on the specific crop parameters that need to be monitored, a range of sensor types can be 

employed in agricultural UAVs. This allows for a comprehensive assessment of different 

characteristics of the crops. As technology progresses, sensors are becoming more advanced and 

affordable [85]. These RS sensors collect specific EM spectrum bands and provide EM radiation 

measurements at specific wavelengths. There are two types of sensors: active and passive, with 

active sensors transmitting radiation and passive sensors relying on natural radiation from 

surfaces [21]. 

2.3.1 RGB sensors 

These sensors function within the visible portion of the EM spectrum, which is also 

known as light, and their wavelengths fall within the range of 400 to 700 nanometers. The 

acronym RGB stands for Red-Green-Blue, which refers to the three spectral bands detected by 
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these sensors that are responsible for producing natural color images. In certain RS applications, 

RGB images are separated into their original channels and either individually utilized or 

combined into a false color composite to highlight specific features. These sensors capture 

extremely high-resolution images that are usually easy to process. RGB sensors are primarily 

used in mapping applications, such as 3D modeling and biomass estimation [21, 43, 55]. 

However, their use in agriculture is often limited because certain vegetation parameters cannot be 

evaluated within the visible spectrum but instead require longer wavelengths, such as NIR or RE 

[23]. Figure 2.26 illustrate some examples of RGB cameras. 

2.3.2 Color InfraRed sensors 

Color InfraRed (CIR) sensors are capable of detecting near infrared wavelengths, which 

typically range from 700 to 1000 nm. Within the EM spectrum, the NIR region exhibits the 

highest peak of vegetation reflectance, making these sensors widely utilized in PAg applications. 

CIR cameras (illustrated in Figure 2.26) are essentially modified RGB cameras, in which the 

infrared filter is removed and replaced with a filter for one of the RGB channels, usually the blue 

channel. In agriculture, CIR sensors are frequently used to derive vegetation properties and are 

often used in combination with RGB sensors [21]. 

2.3.3 Multispectral and Hyperspectral sensors 

Multispectral sensors are complex systems with multiple lenses that are capable of 

capturing images across several EM bands at the same time. These sensors commonly consist of 

four to ten different lenses and can acquire spectral bands beyond the standard R,G,B, and NIR 

channels. One such band is the RE channel, which covers wavelengths around 700 nm between 

red and near-infrared. The development of multispectral sensors has significantly increased in 

recent years, and there are now various typologies available on the market, differing in the 

number and types of bands, weight, and price. Researchers and farmers alike have shown 

increased interest in multispectral sensors due to their high potential for PAg applications, 

particularly for monitoring vegetation vigor's spatial variability. However, processing the 

acquired images is complex, and various calibration and correction procedures are necessary to 

obtain reliable information from multispectral sensor data [21]. 

Hyperspectral sensors, in contrast to multispectral sensors, capture numerous and 

narrower spectral bands. These sensors typically capture hundreds of bands in narrow bandwidth, 
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providing more detailed information on crops and soils and enabling more precise analysis. 

However, the price of hyperspectral sensors is still too high, which limits their diffusion in PAg. 

Additionally, the complexity of data processing increases along with the number of bands [21]. 

Table 2.5 depict commonly used multispectral sensors and hyperspectral sensors. 

2.3.4 Thermal sensors 

Thermal sensors, are a specialized type of cameras capable of detecting variations in 

surface temperature. These sensors can capture radiation emitted by objects within the range of 

8000 to 14000 nm in the EM spectrum, which is known as the TIR (thermal infrared) 

wavelengths. Planck's Law states that the emitted radiation is directly proportional to the 

temperature of objects, allowing thermal sensors to measure surface temperature. In PAg 

applications, these sensors are commonly utilized for monitoring vegetation water stress, 

frequently in conjunction with other sensors [21, 56]. 

2.3.5 LiDAR sensors 

LiDAR sensors, unlike the sensors discussed previously, are active sensors that use lasers 

to measure distances from targets. They are capable of producing georeferenced 3D point clouds 

of surfaces and can reconstruct both plants and ground below in vegetated areas. While LiDAR 

sensors are commonly used in forestry applications, they are also used in agriculture for 

monitoring vegetation growth and estimating biomass. However, the cost of LiDAR sensors 

suitable for UAV platforms is still high, and they are not yet widely adopted in the agricultural 

sector [21, 43, 86]. 

Table 2.5 Commonly used sensors in PAg 

Sensor Type Brand Characteristics 
 
RGB 

Canon Powershot SX540 
Sony Nex-7/ILCE 
Ricoh GR3 
Sony α7r 

20.3 MP 442 g 
24.2 MP 416 g 
16.9 MP 257 g 
36.4 MP 407 g 

 
 
 
Multi/Hyperspectral 

MicaSense RedEdge 
 
 
MCA camera 
 
 
 

R G B Red Edge NIR 
1280 × 960 
230 g 
4, 6, 12 bands (user-
selectable) 
1280 × 1024 
497 g (per camera) 
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Table 2.5 Continuation 

 
 
 
 
 
 
Multi/Hyperspectral 

Mini MCA 
 
 
 
Micro MCA 
 
 
 
Parrot Sequoia 
 
 
 
InGaAs 
 

4, 6, 12 bands (user-
selectable) 
1280 × 1024 
600, 700, 1300 g 
4, 6, 12 bands (user-
selectable) 
1280 × 1024 
497, 530, 1000 g 
R G Red Edge NIR 
2 MP 
72 g (Includes 16 Mp RGB 
Camera) 
Infrared 
640 × 512 

 
 
 
 
CIR 

MAPIR Survey3 
 
 
Tetracam ADC lite 
 
 
Tetracam ADC micro 
 

R G NIR 
4,000 x 3,000 pixels 
76 g 
R G NIR 
2048 × 1536 pixels 
200 g 
R G NIR 
2048 × 1536 pixels 
90 g 

 
 
 
 
Thermal 

DJI Zenmuse XT 
 
 
Xenics Bobcat 640 GigE 
SWIR/vSWIR 
 
Thermoteknix MicroCAM 
Integrator 
 

640 × 512 
7.5–13.5 μm 
Weight: 270 g 
640 × 512 
500–1700 μm 
285 g 
384 × 288 
17 µm 
60 g 

 
 
 
 
LiDAR 

Velodyne VLP-16 
 
 
 
 
LeddarTech VU8 

range: 100 m 
FOV: 360 deg Horizontal ± 
15° Vert 
Accuracy: 3 cm 
830 g 
range: 185 m 
FOV: 16 deg Horizontal 
0.3 deg Vertical 
Accuracy: ±5 cm 
110,3 g 



 

70 

 

 

Figure 2.26 RGB sensor  (a) Sony α7r, CIR sensor  (b) MAPIR Survey3, Multispectral (c) Parrot Sequoia, Thermal 

sensor (d) DJI Zenmuse XT and  LiDAR (e) LeddarTech VU8. 

2. 4 Sensor Selection and Integration 

2.4.1 Sensor selection  

Due to the limitations imposed by the UAV's payload capacity, the sensors used must 

adhere to specific requirements, including high precision, lightweight design, low power 

consumption, and compact size [87]. In our particular application focused on vegetation 

monitoring, it is essential to choose a sensor specifically designed for this purpose. The suitable 

sensors for our needs are multi/hyperspectral and CIR sensors. However, due to the challenge of 

finding available multispectral sensors, we have opted to use a CIR sensor in combination with 

an RGB sensor.  

As mentioned in the CIR sensor section, these sensors are modified RGB cameras capable 

of capturing IR. Therefore, we obtained a webcam and performed the necessary modifications to 
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transform it into a CIR sensor. Additionally, we connected the modified webcam and an RGB 

sensor to a Raspberry Pi computer and developed a program that enables the webcam to capture 

images during UAV missions.  

2.4.2 Sensor integration  

The integration of sensors into our drone system involves careful consideration of several 

aspects, including physical placement, wiring, and data acquisition. Each of these components 

have an important role in ensuring the seamless operation and effective utilization of the sensors. 

We will discuss each aspect in more detail. 

• Physical Placement:  

Determining the optimal physical placement of sensors on the quadcopter is essential to 

achieve accurate and reliable data collection. Factors such as sensor type, purpose, weight, and 

balance need to be taken into account. In our case, the webcam and RGB sensors are mounted on 

stabilized platforms, oriented to face the ground. This configuration minimizes vibrations and 

ensures a steady imagery capture during drone operations. 

 

Figure 2.27 Webcam mounting on the drone. 

• Wiring:  

Proper wiring is essential for sensor integration, as it ensures reliable communication 

between the sensors, Raspberry Pi and the Pixhawk. The wiring is securely connected and routed 

to avoid any potential damage or interference during flight. The diagram below provides a visual 

representation of the payload wiring. 
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Figure 2.28 Payload wiring diagram. 

The diagram illustrates the wiring of the ESP3221 development board with 5 volts to 3 

volts step down converter, which is connected to the flight controller through the second 

telemetry port. We installed a firmware on the ESP32 board called DroneBridge [88] that enables 

software utilizing the MAVLink22 protocol to establish a wireless connection with the Pixhawk. 

This board serves as a bridge, facilitating communication between the Pixhawk and the 

Raspberry Pi computer. 

 
21 ESP32 is a system-on-a-chip (SoC) microcontroller developed by Espressif Systems. It is widely used in 

various Internet of Things (IoT) applications and projects due to its versatility, performance, and built-in features. 
22 The MAVLink (Micro Air Vehicle Link) protocol is a lightweight communication protocol designed for 

unmanned systems and robotics. It is widely used in the field of UAVs and autonomous vehicles to facilitate 

communication between onboard systems, ground control stations, and other devices. 
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• Data acquisition:  

Data acquisition involves capturing and processing information from the integrated 

sensors. This step we utilized the Raspberry Pi to manage sensor inputs and perform initial data 

processing tasks. The acquired data is then stored onboard in an SD card and later on transmitted 

to a ground station for further analysis. 

Throughout the integration process, we ensured that the drone's overall design and 

payload capacity were compatible with the integrated sensors and associated wiring, without 

compromising flight stability, endurance, or safety. Rigorous testing and calibration procedures 

were conducted to validate accuracy, address any potential interference issues, and optimize the 

performance of the sensors. 

2.4.3 Sensor modification  

Due to the unavailability and high cost of commercial multispectral sensors, we explored 

alternative options for vegetation monitoring. After conducting extensive research, we discovered 

that modifying RGB cameras could be a viable and cost-effective solution [89]. With a webcam 

readily available, we performed modifications by removing the infrared-blocking filter from the 

camera, and adding a red filter. This filters out the blue light as shown in Figure 2.29, and 

measures infrared light in its place.  

 

Figure 2.29 Transmission of some color filters. 
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Following that, we proceeded to attach a plastic red filter to the webcam lens, enabling us 

to capture wavelengths in both infrared and red spectra. This modification effectively 

transformed the webcam into a CIR sensor making it suitable for our vegetation monitoring 

purposes. To validate its functionality, we conducted tests using a heat-emitting object as a 

sample (Figure 2.31). 

 

Figure 2.30 Webcam lens with an IR filter and the modified lens with a red filter. 

 

Figure 2.31 Comparison of Radiation Captured by Different Cameras.  
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Figure 2.31 illustrates the comparison of infrared radiation captured by different cameras: 

a regular RGB camera (a) and (c), and a modified RGB camera (b) and (d). In (a), the emitted 

light appears dim, while in (b), the infrared radiation becomes clearly visible. Notably, in (d), the 

infrared radiation becomes even more pronounced as the heat intensity increases. 

2. 5 Conclusion 

In this chapter, our focus was on the selection and assembly of a quadcopter UAV, where 

we discussed the reasoning behind our choices and explored the key components such as the 

frame, motors, and flight controller. We provided comprehensive diagrams and step-by-step 

instructions for the assembly process, followed by the calibration procedures to achieve optimal 

performance 

Furthermore, we explored the different sensors commonly used in precision agriculture, 

including RGB, multispectral, and thermal sensors. Through careful evaluation, we determined 

the most suitable sensor for our vegetation monitoring application. Additionally, we highlighted 

the modifications we made to the webcam to enable the capture of NIR images, enhancing the 

capabilities of our system for vegetation analysis and health assessment. 

By combining the expertise in UAV assembly, sensor selection, and modifications, our 

research project aims to provide a robust and effective solution for disease detection and 

vegetation monitoring in precision agriculture.  

The upcoming chapter will cover the development of a desktop application dedicated to 

mission planning for the quadcopter and a website designed for crop monitoring and disease 

detection.  



 

76 

 

CHAPTER 3. SOFTWARE AND WEBSITE DEVLOPMENT 

3. 1 Introduction 

The integration of technology in agriculture has revolutionized the way we approach crop 

monitoring and management. With the advent of unmanned aerial vehicles and advancements in 

remote sensing, farmers and agricultural researchers now have access to powerful tools for 

precision farming. This chapter presents a comprehensive solution that combines a desktop 

application and a website to facilitate efficient and effective crop monitoring and mission 

planning for drones. 

The desktop application, developed using the PyQt5 [90], which is a Python binding for 

the Qt framework, a popular and powerful cross-platform toolkit for building graphical user 

interfaces (GUIs) and PyMavlink [91] a Python implementation of the MAVLink protocol, 

providing a set of tools and libraries for working with MAVLink messages, serves as a mission 

planner for drones. It provides a user-friendly interface that enables users to plan and customize 

missions, ensuring optimal coverage and data collection for crop monitoring. By leveraging the 

functionalities of PyQt5 and PyMavlink, the application enables seamless communication with 

the drone and allows for real-time adjustments during the mission. 

Complementing the desktop application, the website serves as a robust crop monitoring 

software, offering advanced analytics and insights. Leveraging the Google Earth Engine API23 

[92], the website harnesses the power of Landsat 8 and Sentinel 2 satellite imagery to calculate 

essential vegetation indices such as Normalized Difference Vegetation Index and Normalized 

Difference Water Index (NDWI). These indices serve as indicators of plant health and water 

stress, respectively, aiding farmers in making informed decisions about irrigation and fertilizer 

application. 

Furthermore, the website incorporates the OpenWeatherMap API24 [93], providing real-

time weather data that enhances the accuracy of crop monitoring and management. Farmers can 

 
23 The Google Earth Engine API (Application Programming Interface) is a powerful cloud-based platform 

and set of tools provided by Google for analyzing and processing geospatial data at scale. 

 
24 The OpenWeatherMap API is a service that provides access to weather data and forecast information 

through a web-based API. It allows developers to retrieve weather data programmatically and integrate it into their 

applications, websites, or services. 
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leverage this information to anticipate potential challenges, such as drought or excessive rainfall, 

and adjust their agricultural practices accordingly. 

One significant feature of the website is its ability to detect and classify potato leaf 

diseases. By utilizing a deep learning model based on ResNet 1825 architecture [94], the system 

can accurately identify and categorize the health status of potato leaves. This capability allows 

farmers to quickly detect diseases such as early blight and late blight, enabling timely 

intervention and effective disease management. 

The backend26 of the website is built on the Django27 framework [95], ensuring 

robustness, security, and scalability. Meanwhile, the frontend28 is developed using Next.js 1329 

[96], providing a smooth and responsive user experience. 

Overall, this chapter presents an integrated solution that combines a desktop application 

for mission planning and a website for comprehensive crop monitoring and disease detection. By 

leveraging remote sensing, machine learning, and advanced APIs, this system equips farmers and 

agricultural researchers with the necessary tools to make data-driven decisions, optimize crop 

management practices, and enhance agricultural productivity. 

  

 
25 ResNet-18 (Residual Network-18) is a CNN architecture that was introduced as part of the ResNet family 

by Microsoft Research in 2015.  

 
26 The website backend refers to the server-side components of a website or web application. It 

encompasses the technologies, programming languages, and infrastructure that handle the processing, storage, and 

retrieval of data, as well as the logic and functionality that drive the website's operations. 

 
27 Django is a high-level web framework written in Python that simplifies the process of building web 

applications. 

 
28 The frontend refers to the client-side portion of a web application or website that users interact with 

directly. 

 
29 Next.js is a popular open-source React framework for building server-rendered, static, and hybrid web 

applications. 
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3. 2 Desktop Application and Drone Integration 

The integration between the desktop application30 and the drone is a critical aspect of this 

thesis work. As seen in the previous chapter the drone utilized in this study is equipped with a 

Raspberry Pi 4 and an ESP module, enabling seamless communication and control between the 

desktop application and the drone. 

To establish communication (see Figure 3.1) the desktop application employs Socket31 

technology to connect with the Raspberry Pi. Socket provides a persistent connection, allowing 

real-time data exchange between the desktop application and the drone. This communication 

channel enables the transmission of mission plans, commands, and receives mission data from the 

drone after the flight. 

The Raspberry Pi, acting as an intermediary, facilitates the communication between the 

desktop application and the drone using the Pymavlink library. Pymavlink serves as a robust 

interface for sending and receiving MAVLink messages between the Raspberry Pi and the drone. 

By leveraging the capabilities of Pymavlink, the desktop application can command the drone to 

perform various actions, such as takeoff, landing, waypoint navigation, and return to launch 

(RTL). 

During a mission, the desktop application coordinates the drone's actions based on the 

planned mission points. As the drone reaches the first mission point, the Raspberry Pi initiates the 

onboard camera and starts capturing images at a regular interval of 1 second. This functionality 

enables the collection of aerial imagery for further analysis and crop monitoring purposes. 

Upon reaching the last mission point, the Raspberry Pi concludes the image capture by 

closing the camera. Subsequently, the drone initiates the RTL command, safely navigating back 

to its takeoff location. This automated process ensures efficient data collection and a safe return 

of the drone. 

 
30 You can check the source code for the desktop application following this link: 

https://github.com/oppenheimer3/PFE_IAB_TELECOM 

 
31 Socket is a communication protocol that provides full-duplex communication channels over a single TCP 

(Transmission Control Protocol) connection. It enables real-time, bidirectional communication between a client and a 

server, allowing data to be transmitted and received simultaneously. 

https://github.com/oppenheimer3/PFE_IAB_TELECOM
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To track the drone's progress and monitor its real-time telemetry data, the desktop 

application (Figure 3.2) establishes a connection with the drone using the telemetry module. This 

telemetry connection enables the desktop application to receive live updates on the drone's 

position, altitude, speed, battery status, and other vital parameters. This tracking functionality 

enhances situational awareness and provides users with valuable information during the drone's 

flight. 

By integrating the desktop application with the drone's Raspberry Pi and ESP module, this 

thesis work enables seamless communication, control, and monitoring of the drone's mission. The 

combination of Socket communication, Pymavlink, onboard camera control, and telemetry 

facilitates efficient and reliable data collection, ensuring precise and accurate crop monitoring 

capabilities. 

 

Figure 3.1 Communication Diagram. 
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Figure 3.2 Desktop application. 

 

3. 3 Website Purpose, Features, and Functionality 

The development of the website is a significant component of this thesis work, serving as 

a comprehensive platform for crop monitoring and disease detection. The website is built using 

the Django framework for the backend, providing a robust and scalable foundation for data 

management and processing. 

The website leverages various APIs and technologies to enhance its functionality. The 

Google Earth Engine API is utilized to access and process satellite imagery from Landsat 8 and 

Sentinel 2, enabling the calculation of essential vegetation indices such as NDVI and NDWI. 

These indices serve as key indicators of crop health and water stress, allowing farmers and 

agricultural researchers to make informed decisions regarding irrigation and fertilization. 

In addition, the website integrates the OpenWeatherMap API, providing real-time weather 

data that enhances the accuracy of crop monitoring. By incorporating weather information into 

the analysis, users can better understand environmental factors influencing crop growth and 

adjust their management practices accordingly. 



 

81 

 

A significant feature of the website is its ability to detect and classify potato leaf diseases. 

This functionality is achieved by employing a deep learning model based on the ResNet 18 

architecture. Users can upload images of potato leaves, and the website employs the trained 

model to accurately detect and classify diseases such as early blight and late blight. This 

capability enables timely intervention and effective disease management, contributing to 

improved crop yield and quality. 

To facilitate efficient data storage and retrieval, the website integrates with a PostgreSQL 

database [97]. PostgreSQL is a reliable and scalable relational database management system, 

ensuring optimal data management for crop monitoring, weather information, and disease 

detection results. 

Furthermore, the website's frontend is developed using Next.js 13, a powerful React 

framework. This choice of frontend technology enhances the user experience, providing a 

responsive and interactive interface for accessing and analyzing agricultural data. Next.js 13 

enables server-side rendering, optimizing the website's performance and ensuring smooth 

navigation for users. 

The combination of the Django backend, APIs, PostgreSQL database, and the Next.js 13 

frontend forms a robust ecosystem that empowers users to effectively monitor crops, assess their 

health, and detect diseases. The website serves as a central platform for accessing and analyzing 

agricultural data, providing valuable insights to farmers and agricultural researchers. 

By integrating diverse technologies and APIs, including Next.js 13, this thesis work 

presents a comprehensive website that enables efficient crop monitoring, accurate disease 

detection, and informed decision-making in agriculture. The seamless integration of these 

components contributes to the overall effectiveness and usability of the website, empowering 

users to optimize their agricultural practices and enhance productivity. 
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Figure 3.3 Selecting an Area of Interest. 

The website allows you to conveniently choose an area of interest (AOI) and the crop 

type, facilitating the monitoring of any field. 
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Figure 3.4 Log of different fields. 

Logs to help organize and categorize agricultural fields, making it easier to manage and 

retrieve specific information about individual fields or groups of fields. This organization can 

include details such as crop type, field boundaries, farmer information, and relevant metadata. 

 

Figure 3.5 Website Dashboard. 

The dashboard features the weather API and a dedicated section where you can easily 

select the desired date to view the NDVI or NDWI data. 
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Figure 3.6 illustration of the NDVI within the AOI and the average NDVI value for the AOI. 

The dashboard also provides the average NDVI which serves as a reliable indicator of the 

overall health and vigor of the vegetation present in that field 
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3. 4 Potato Leaf Disease Detection Algorithm 

The potato leaf disease detection algorithm developed in this thesis is an essential tool in 

automatically identifying and classifying potato leaf diseases. Leveraging a deep learning model 

based on the ResNet 18 architecture which is built with PyTorch32 deep learning framework [98], 

the algorithm accurately detects and categorizes diseases such as early blight and late blight from 

uploaded leaf images. 

To train the model, a diverse dataset of potato leaf images was collected from Kaggle33 

[99, 100]. This dataset includes labeled samples of healthy leaves, as well as leaves infected with 

early blight and late blight. The ResNet 18 model was trained on this dataset using transfer 

learning techniques, fine-tuning it to learn disease-specific features. 

 

Figure 3.7 Model Architecture. 

After training, the model was evaluated using a separate validation set to assess its 

performance in terms of loss and accuracy metrics. The evaluation ensures that the model can 

effectively detect and classify potato leaf diseases. 

 

 
32 PyTorch is an open-source deep learning framework that provides a flexible and efficient platform for 

developing and training neural networks. 

 
33 Kaggle is an online community and platform that hosts data science and machine learning competitions, 

provides datasets, and offers a collaborative environment for data scientists, researchers, and practitioners. 
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Figure 3.8 Training and validation metrics. 

Once the model was trained and evaluated, it was integrated into the website's backend 

infrastructure. Users can upload potato leaf images through the website, and the deployed model 

analyzes these images to provide disease detection and classification results. The algorithm 

enables timely intervention and effective disease management, contributing to improved crop 

health and productivity. 

The utilization of the Kaggle dataset, along with the ResNet 18 architecture, empowers 

the potato leaf disease detection algorithm to automate the identification and classification of 

potato leaf diseases accurately. This algorithm provides farmers and agricultural researchers with 

an efficient and reliable tool for disease monitoring and management. 

Continuous refinement and updates to the algorithm can be achieved by incorporating 

additional labeled data and fine-tuning the model as new information becomes available. The 

potato leaf disease detection algorithm, integrated into the website, serves as a valuable asset for 

enhancing crop health and optimizing agricultural practices. 
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Figure 3.9 Potato disease detection tool identifying disease type. 

With the understanding that AI plays a significant role in plant disease detection, drones 

equipped with high-resolution RGB sensors can be employed to create comprehensive plant 

datasets. By capturing detailed imagery of plants and employing AI algorithms, it is possible to 

analyze the data and identify signs of diseases accurately. 

3. 5 Conclusion  

The comprehensive solution presented in this chapter combines a desktop application and 

a website to facilitate efficient and effective crop monitoring and mission planning for drones. 

The desktop application, developed using PyQt5 and PyMavlink, serves as a user-friendly 

mission planner for drones. It allows users to plan and customize missions, ensuring optimal 

coverage and data collection for crop monitoring. The seamless communication with the drone 

and real-time adjustments during the mission enhance the efficiency and effectiveness of data 

collection. 

Complementing the desktop application, the website acts as a robust crop monitoring 

software, providing advanced analytics and insights. Leveraging the power of Landsat 8 and 

Sentinel 2 satellite imagery through the Google Earth Engine API, the website calculates 

essential vegetation indices like NDVI and NDWI. These indices serve as indicators of plant 

health and water stress, aiding farmers in making informed decisions about irrigation and 

fertilizer application. 
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The website also incorporates real-time weather data from the OpenWeatherMap API, 

enhancing the accuracy of crop monitoring and management. By anticipating potential 

challenges, farmers can adjust their practices accordingly, mitigating the impact of adverse 

weather conditions. 

A significant feature of the website is its ability to detect and classify potato leaf diseases. 

Utilizing a deep learning model based on the ResNet 18 architecture, the system accurately 

identifies and categorizes the health status of potato leaves. This capability enables farmers to 

detect diseases such as early blight and late blight promptly, facilitating timely intervention and 

effective disease management. 

Built on the Django framework for the backend and Next.js 13 for the frontend, the 

website ensures robustness, security, and scalability. The user experience is smooth and 

responsive, providing an intuitive platform for farmers and agricultural researchers to access 

valuable insights and data. 

In the next chapter, we delve into the analysis and presentation of the results derived from 

the drone surveys conducted using the modified webcam. This chapter focuses on the mission 

planning and the outcomes of our data collection efforts and provides a comprehensive 

understanding of the findings obtained.  
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CHAPTER 4. RESULTS AND DISCUSSION 

4. 1 Introduction 

The preceding chapters of this thesis have presented a comprehensive exploration of 

drone based remote sensing for agricultural purposes. In CHAPTER 1 we delved into the 

theoretical framework and methodology employed to investigate UAV based monitoring of the 

vegetation. Building upon this foundation, the purpose of this chapter is to present and analyze 

the findings obtained through our drone surveys and data collection with the modified RGB 

sensor to capture red and infrared wavelengths spectrum. By presenting these results, we aim to 

address the research questions and contribute to the existing body of knowledge in the field of 

drone based remote sensing 

In this chapter, we will provide a detailed account of the data collected, the analysis 

techniques employed, and the resulting outcomes. The findings will be presented in a clear and 

structured manner to facilitate understanding and interpretation. Furthermore, we will discuss the 

implications and significance of these results, considering their alignment with the research 

objectives and their potential impact on agriculture. 

4. 2 UAV surveys 

Due to limitations on flying the drone outside of our institute, we made the decision to 

select an area within our university campus that contains vegetation for our drone survey. This 

allowed us to comply with the regulations and restrictions while still conducting valuable 

research in an accessible and controlled environment. 

By choosing a specific area within the university that encompasses vegetation, we were 

able to gather data and insights related to the agricultural aspects present on campus. Although 

the scale may be smaller compared to larger agricultural areas, this localized study provided us 

with an opportunity to examine and understand the dynamics of vegetation within the university 

setting. 

The selection of this area within our university for the drone survey offered several 

advantages. It facilitated convenient access and allowed us to closely monitor and study the 

vegetation in a well-defined space. Additionally, it provided a controlled environment where 
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factors such as environmental conditions and maintenance practices could be closely observed 

and documented. 

Despite the limited scope, the findings and analysis from this selected area within the 

university campus can still contribute to our understanding of drone-based remote sensing 

applications in agriculture. It highlights the potential of utilizing drones for vegetation 

monitoring, even within restricted areas, and provides insights that can be further applied to 

larger agricultural contexts. 

The area selected (Figure 4.1) within the university is located near the Institute of 

Aeronautics and Space Studies, it consists of natural vegetation, such as flowers and weeds, 

which give it its distinctive features.  

 

Figure 4.1 Selected AOI location and size for the drone survey. 

As mentioned in CHAPTER 1 the characteristics of vegetation can make it challenging to 

match images, so during UAV surveys, it is necessary to have a high level of overlap, we planned 

the quadcopter flight and made an overlapping of 70%. This required calculating the appropriate 

flight height to achieve the desired overlap.  
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Figure 4.2 Photographic overlap. 
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With a fixed drone speed of 5 m/s and the known angle of view of our CIR sensor  

𝛼 = 33.4°, we determined the required flight height as follows: 

ℎ =
5 × 1

0.6 × tan
33.4

2

= 27.77 𝑚 

Then using the desktop application, we created a flight plan and uploaded the mission to 

the flight controller (Figure 4.3). 
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Figure 4.3 Connecting to Raspberry Pi and planning the mission with our desktop application. 
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Initially, we established a connection to our quadcopter using the telemetry module and 

subsequently connected it to the Raspberry Pi. To plan our mission, we utilized a polygon to 

outline the desired flight path. Following that, we uploaded the mission to the Pixhawk flight 

controller and finally started the flight.  

 

 

 

Figure 4.4 Our quadcoter surveying the AOI 30 m high and performing an RTL. 
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4. 3 Data processing and analysis 

After we acquired the images from the drone survey, we connected to the Raspberry Pi 

and downloaded the data for processing and analysis. 

 

Figure 4.5 Downloading the data from the Raspberry Pi. 

The images were captured on 04/06/2023 using both the CIR and RGB sensors. Prior to 

calculating the NDVI from the images, it was necessary to generate a map. This was achieved by 

using an open-source software called OpenDroneMap [101], which allowed us to stitch the 

images together and create a comprehensive maps as shown in Figure 4.6.  

However, the stitching of the RGB images was not as successful as that of the CIR sensor 

due to its lower resolution and bad placement on the quadcopter. Although, we can distinguish 

different land cover types such as soil, vegetation and concrete, therefore we used the RGB map 

as a ground truth to offer initial insights into the accuracy of the NDVI map. 

After generating the maps, using a python code we calculated the NDVI (Figure 4.7) 

using the formula from Table 1.4: 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
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(a)  

(b)  

Figure 4.6 AOI Mapped with (a) CIR sensor and (b) RGB sensor. 

Figure 4.6 shows a noticeable contrast in the vegetation, but it is difficult to determine 

whether the vegetation is healthy or unhealthy based on the image alone. On the other hand, the 

RGB map, allows us to easily differentiate between vegetation and soil, but it does not provide 

information about the density or health of the vegetation. 
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Figure 4.7 NDVI map of the AOI.  

Figure 4.7 presents an insightful color palette that enables a comprehensive analysis of the 

map. Within the range from -1 to 0, the absence of near infrared reflectance suggests the presence 

of areas characterized by bare soil and concrete. As we progress along the range from 0 to 1, 

there is a gradual increase in the intensity of near infrared reflectance. Higher values within this 

range indicate a higher level of reflectance, which in turn signifies the health and density of 

plants. This unique aspect of the map sets it apart from both the CIR and RGB maps, as it offers 

us the opportunity to discern the density of vegetation and make assessments regarding its overall 

health. For some crops, too dense or too sparse of an area could mean issues with the yield. By 

examining the variations in near infrared reflectance, we can gain valuable insights into the state 

and vitality of the vegetation. 

Regarding the identification of potato leaf diseases, we conducted some photography and 

analysis using our algorithm, and the outcomes were highly promising. This application serves as 

our foundation for disease identification, and our future plans involve expanding its scope to 

encompass a broader spectrum of diseases. Our ultimate goal is to establish comprehensive 

databases for each disease, enabling us to offer farmers accurate diagnoses and effective 
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remedies. Through this program, we aspire to empower farmers by equipping them with the 

necessary resources to tackle various agricultural challenges effectively. 

4. 4 Discussion 

In discussing the results of this thesis, it is important to acknowledge certain limitations 

that may have affected the accuracy and precision of our findings. One significant limitation was 

the relatively low resolution of the RGB and CIR sensors used in our study. The lower resolution 

of these sensors can lead to reduced spatial detail and potentially impact the accuracy of our 

vegetation health assessments. 

Another limitation was the inaccessibility to more advanced multispectral sensors and 

calibration targets, which are known to provide higher accuracy and reliability in vegetation 

monitoring. The absence of these resources may have introduced some level of uncertainty and 

reduced the overall precision of our measurements. 

Despite these limitations, the findings of our study remain significant. We were able to 

demonstrate the potential of AI-assisted plant disease detection highlighting the value of 

incorporating AI algorithms in identifying and classifying plant diseases, which can be a crucial 

step in effective disease management strategies. 

It is worth noting that the limitations identified in this study serve as opportunities for 

future research and improvement. Future studies could focus on utilizing higher-resolution 

sensors and exploring the integration of multispectral data to enhance the accuracy and reliability 

of vegetation monitoring. Additionally, efforts to improve the accessibility of calibration targets 

and advanced sensor technologies would contribute to more precise and robust data collection in 

the field. 
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CONLUSION 

The main objective of this study was to extensively explore the use of drones for 

monitoring vegetation health and develop a solution for detecting plant diseases. It addressed the 

challenges faced by farmers in disease detection and management while emphasizing the benefits 

of employing drones in smart farming. The thesis investigated the current state of drone-based 

remote sensing and examines relevant technologies utilized in smart farming practices. 

Additionally, it focused on building a quadcopter UAV, selecting suitable sensors for precision 

agriculture, developing a desktop application for mission planning, and integrating satellite 

technology for agricultural monitoring. 

The main findings of this master's thesis demonstrate the effectiveness of artificial 

intelligence in identifying and classifying potato diseases, which can be extended to identifying 

plant diseases in general. These findings will contribute to the development of a drone-based 

remote sensing dataset specifically for plant disease detection, utilizing high-resolution RGB 

sensors. Furthermore, the use of drone-based remote sensing with CIR sensors enables effective 

monitoring of vegetation, providing valuable insights for taking appropriate actions to address 

and resolve issues in a timely manner. 

The significance of this study is rooted in its potential to revolutionize agricultural 

practices in Algeria through the integration of AI, drones, and satellite-based remote sensing. By 

embracing these cutting-edge technologies, farmers in Algeria can harness timely disease 

detection, targeted interventions, and optimized crop management strategies. This thesis not only 

adds to the existing body of knowledge in the field but also provides practical insights that can 

pave the way for the development of innovative solutions in plant disease detection and 

vegetation monitoring. As a result, this research holds the promise of transforming agricultural 

practices in Algeria, empowering farmers with advanced tools and techniques to enhance 

productivity, sustainability, and overall agricultural outcomes. 

Moving forward, further research and collaboration between academia, industry, and 

farmers are essential to refine and expand upon the findings presented in this thesis. Continued 

advancements in AI, remote sensing technologies, and data analysis techniques hold the promise 

of driving sustainable agricultural practices, improving crop yields, and ensuring food security. 
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With our project, we aim to be a pioneering startup based in Algeria that specializes in 

providing precision agriculture services through the utilization of advanced drone technology, 

satellite imagery, and AI analytics and IoT technologies. Beginning with this application and with 

the goal of developing numerous additional apps in this sector, our ambition is to empower 

farmers and revolutionize the agricultural industry. We want to do this by providing new tools 

and important insights to aid in informed decision-making. 

The target market for our project includes farmers, government-owned farms, 

agribusinesses, and agricultural insurance companies. We are driven by our vision of making 

precision agriculture accessible to all stakeholders. We believe that by harnessing the power of 

drones, satellites, AI and IoT, we can help farmers overcome the challenges they face, enhance 

their productivity, and contribute to a more sustainable agricultural ecosystem. 

In our country, the availability of comprehensive precision agriculture services is 

currently limited. Recognizing this gap, we are passionate about introducing cutting-edge 

technology to transform the way farming is practiced. By leveraging our expertise in drone 

development, web development, and drone application design, we are well-positioned to pioneer 

advancements in the precision agriculture sector. 

We understand the unique challenges faced by farmers, such as limited land availability, 

water scarcity, and the need to address crop diseases and nutrient deficiencies. By providing them 

with accurate and timely insights derived from drone and satellite data, we aim to empower them 

with the knowledge necessary to optimize their agricultural practices, make informed decisions, 

and achieve higher crop yields while reducing their environmental footprint. 

While precision agriculture has gained traction in other parts of the world, its adoption in 

Algeria is still in its early stages. This represents a significant growth opportunity for our project, 

as we aim to be at the forefront of transforming the agricultural landscape and establishing 

ourselves as the leading provider of precision agriculture services. 

As we continue to develop our platform and expand our service offerings, we are 

dedicated to fostering strategic partnerships with industry stakeholders, agricultural 

organizations, and governmental bodies to drive awareness and adoption of precision agriculture 

practices. 
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Marketing and Commercialization Strategy: 

In order to successfully enter the market, we have developed a comprehensive marketing 

and commercialization strategy. Our primary objective is to raise awareness about the significant 

advantages of precision agriculture and position our startup as the leading provider of advanced 

and customized solutions in the industry. To achieve this, we will employ various strategic 

approaches and tactics that will enable us to effectively reach and engage our target audience. 

• Digital Marketing: 

 We will use digital marketing to create a strong online presence and attract our target 

customers. This includes implementing search engine optimization (SEO) techniques to improve 

our website's visibility, running targeted online advertising campaigns, and utilizing social media 

platforms to engage with farmers, agricultural businesses, and industry influencers. Through 

engaging content, informative blog posts, and visually appealing visuals, we will communicate 

the benefits and value of our precision agriculture services. 

• Content Creation:  

We recognize the importance of providing valuable and educational content to our 

audience. We will develop high-quality content such as blog articles, case studies, and video 

tutorials that highlight the benefits and applications of precision agriculture. By sharing our 

expertise and insights, we aim to position ourselves as thought leaders in the industry and build 

trust with potential customers. 

• Industry Events:  

We will actively participate in relevant industry events, conferences, and exhibitions to 

showcase our services and establish connections with key stakeholders. These events provide 

valuable opportunities to network with farmers, agricultural professionals, government officials, 

and potential partners. By presenting our innovative solutions and demonstrating their 

effectiveness, we will solidify our position as a reputable and trusted provider in the precision 

agriculture sector. 
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• Partnerships:  

Collaborating with agricultural organizations, research institutions, and industry 

influencers will be a key aspect of our marketing strategy. By forming strategic partnerships, we 

can tap into existing networks, gain credibility, and access a wider audience. We will explore 

opportunities for joint marketing initiatives, co-branded content, and knowledge sharing to 

mutually benefit both parties and enhance our market reach. 

Through these marketing and commercialization strategies, we aim to create a strong 

brand presence, generate leads, and ultimately drive customer acquisition. By effectively 

communicating the unique value proposition of our precision agriculture services, we will 

position ourselves as the go-to provider for farmers seeking advanced and tailored solutions to 

optimize their crop yields, reduce resource usage, and mitigate risks. 

• Service Offering: 

• Drone Surveys and Imaging: 

We will offer drone surveys equipped with high-resolution cameras and sensors. These 

surveys capture detailed aerial imagery of crop fields, providing farmers with valuable 

information about crop health, nutrient deficiencies, pest infestations, and irrigation needs. 

The leveraged experienced in this project ensure precise flight paths and data collection, 

delivering accurate and reliable results. 

• Satellite Imagery and Data Analysis: 

Our platform provides access to satellite imagery. By subscribing to our satellite services, 

users can select their area of interest and access detailed satellite images at regular intervals. 

Currently we process the satellite data to generate valuable indices such as Normalized 

Difference Vegetation Index and Normalized Difference Water Index. The indices help farmers 

monitor vegetation health, water stress, and optimize irrigation practices. 
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• Disease Detection and Crop Monitoring: 

In our platform, we currently offer potato leaf disease detection as a key service. 

However, we are continuously expanding our range of AI-based plant disease detection. Our 

dashboard provides crop monitoring via Sentinel 2 and Landsat. 

• Data Analytics and Insights: 

In the near future, we aim to employ sophisticated AI algorithms and data analytics 

techniques to process the collected drone and satellite data. Our platform will generate 

comprehensive reports and actionable insights that empower farmers to optimize their 

agricultural practices. 

• Consulting and Support: 

We understand that adopting precision agriculture solutions can be a learning curve for 

many farmers. We will create a team of experts who will provides personalized consulting and 

support services to guide farmers through the implementation and utilization of our services. 

• Revenue streams 

We have identified several revenue streams that we plan to implement, including: 

• Subscription revenue: 

Clients have the option to subscribe to our platform and gain access to a wide range of 

services, including satellite-based crop monitoring, disease detection tools, and actionable 

insights. We will offer flexible subscription plans, allowing clients to choose between monthly or 

yearly payment options based on their needs and preferences. 

• Service revenue: 

Clients can easily reach out to us through our user-friendly website or other online 

channels to request our drone survey services. We provide flexible options to accommodate their 

specific requirements. They can choose between prolonged contracts for ongoing projects or opt 

for a one-time fee arrangement for individual surveys. Our goal is to cater to their needs and 

provide them with the most convenient and efficient service experience possible. 
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• Advertising Revenue:  

Income generated from displaying advertisements on our platform or through partnerships 

with advertisers.  
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