A Practical Guide to

Neural Nets

Marilyn McCord Nelson W.T. Illingworth

Texas Instruments

Contents

List of Illustrations xii
Acknowledgments xvi
Preface xviii

1. What Can You Do with a Neural Network? 1

Introduction 1
Existing Applications 2
Adaptive Noise Canceling 3
Mortgage Risk Evaluator 3
Bomb Sniffer 4
GTE Process Monitor 5
Word Recognizer 6
Blower Motor Checker 7
Prototype and Research Activity 7
Airline Marketing Tactician (AMT) 8
Sonar Classifier 8
Bellcore Chip 9
List of Possible Applications 9
Summary 11

2. Next Questions: What and Why? 14

What Is a Neural Network? 14

Experiment 1 15

Experiment 2 16

Pattern-Recognition Examples 17

Other Names for Artificial Neural Networks 19

Why Neural Networks Now? 20

Summary 24

3. A Brief History of Neural Networks 26

Conception (1890–1949) 26 Gestation (1950s) 27

Contents

Birth (1956) 28
Early Infancy (late 1950s, 1960s) 28
Excessive Hype 29
Stunted Growth (1969–1981) 30
Late Infancy (1982–Present) 30
Who Are the Key Players? 32
Summary 34

4. How Do Neural Networks Work? 36

Anthropomorphism: The Biological Metaphor 36 A Simple Neuron 37 Nerve Structures and Synapses 38 Synapse Activity 39 Computers and the Brain Machines, Not Brains 41 Neural Network Activities 42 The Basic Components 43 A Single Processing Element 43 Inputs and Outputs 44 Weighting Factors 45 Neuron Functions 46 Activation Functions 46 Transfer Functions Learning Functions 48 Combining Elements Combining Layers 50 Connectivity Options 50 Filters 52 An Illustration: NETtalk 53 A Simple Hardware Illustration 54 Programmer Tasks 55 Summary 56

5. What Are Neural Networks Like? 59

Mathematical Basis 59
Inherent Parallelism 60
Storing Knowledge 61
Example: Pac-Man 62
Fault Tolerance 64
Adaptability 64

Learning 65
Example: Forklift Robot 65
Self-Organizing 66
Example: Nakano's Robots 66
Generalization 66
Training 67
Pattern Recognition 67
Example: NestorWriter 68
Incomplete Patterns 68
Appropriate Tasks 69
Types of Problems Addressed 71
Limitations and Concerns 74
Other Concerns 76
Summary 77

6. How Do Neural Networks Relate to Other Technologies? 79

Statistical Methods 79
Artificial Intelligence 83
Similarities and Differences 84
Competitors or Complements? 88
Neural Networks as Expert Systems 88
Example: Handling Field Service Requests 91
Whole Brain Approach 92
Hybrid Technologies 96
Summary: A Maturation 100

7. How Many Ways Can You Organize a Neural Network? 103

Neurodynamics 103
Inputs 104
Outputs 107
Transfer Functions 107
Weighting Schemes 109
Architecture 109
Number of Processing Elements 110
Number of Layers 110
Example: The XOR Problem 111
Number and Type of Interconnections 112
Other Implementation Variables 113
The Right Paradigm 114
What Are Some of the Neural Network Paradigms? 115

Contents

Perceptron 115
ADALINE/MADALINE 116
Brain-State-in-a-Box 119
Hopfield Network 120
Back Propagation 121
Self-Organizing Maps 123
Summary 124

8. How Do Neural Networks Learn? 128

The Basic Learning Mechanism 129 Learning Modes 132 Supervised Learning 132 Unsupervised Learning 132 Learning Rates 133 Training Techniques 135 Learning Laws 136 Hebb's Rule The Delta Rule 137 Gradient Descent Rule 137 Kohonen's Learning Law 137 Back Propagation Learning 138 Grossberg Learning 139 Drive-Reinforcement Theory 140 Other Learning Techniques 141 Architecture and Learning Paradigms 142 Typical Equations Used in Neural Networks 146 Research Areas Summary 150

9. How Do You Move from Theory to Applications? 152

Getting Started: One Approach 152
Preparing the Network Data 154
Five Network Applications on a PC 155
Loan Approval 156
Image Processing 159
Neural Network Output Interpretation 163
Comments on Interpreting the Imaging Network Output File 163
Semiconductor Etch Process 166
Description of the Process 166

viii

Some Definitions 167
Inputs 167
Training 169
Second Input Training S

Second Input Training Set for the Same Etch Problem 169

Using a Neural Network for Statistical Analysis 170

Description of the Problem 170

Constructing the Training Set 171

Developing a Network 171

Interpreting the Results 172

Neural Network Inversion 172

Comparisons: Neural Networks versus Statistical Methods 172

Semiconductor Curing Furnace Neural Network 173

Description of the Problem 175

Constructing the Training Set 175

Results 178

Comparing Network Applications 179

Size 180

Speed 181

Training 182

Testing 182

Subsequent Analysis 186

Recognition-Curve Network Test 187

Back Propagation Mathematics: How to Computer a Neural

Network Manually 189

Implementing Your Network 192

Computer Simulation 192

Executable Code 193

Embedded Neural Networks 194

Summary and Recommendations 194

10. How Are Neural Networks Being Implemented? 197

Introduction 197 Terminology 198 Size 199 Speed 200

Software Simulations 200

Emulation within Parallel Architecture 201

Neurocomputers 203

General-purpose Neurocomputers 204

Special-purpose Hardware 205

Contents

Mark III, Mark IV, and Mark V 205
Early Neurocomputers 206
Networks on a Chip 206
The Encephalon Project 209
Silicon Retinas 211
Optical Neural Networks 212
Optoelectronics 213
Holographic Implementations 214
Biological Computers 217
Synergistic Efforts 217
Summary 218

11. What Is the Current Research? 221

Introduction 221
Issues and Problems 222
Learning/Training 222
Autonomous Learning 223
Research on Learning 224
Improving Computational Models 228
Neurobiological Research 228
Neuroscience Network Projects 229
Matching Architecture and Paradigms to Applications 231
Martingale Research 233
Justification and Audit Trail 234
Analyzing Hidden Layers 235
Speech Recognition 236
Size and Scaling Issues 237
Emerging Directions 237
Speed and Storage Improvements 238

Integration with Current Technology 239
Robotics Applications 239
Chemistry and Medicine 240
Other Fields 241
Development of Tools 241

Development of Tools 241
Education 241
Consulting Services 244
Summary 244

12. Where Do We Go from Here? 247

Introduction 247
Are Neural Networks Intelligent? 248

What Is Intelligence? 248
How Do We Measure Intelligence? 249
Mathematics and Pattern Matching 250
Neural Network Implications 251
Why Use Neural Nets? 251

Review of Advantages 252

New Horizons 253

Human/Machine Interfaces 254 New Companies, New Products 254 New Technologies 258

Concerns 260

Beware the Hype 263

Distortions 263

Predictions 264

Summary and Opinions 266
Probabilities 266
Possibilities 268
One Last Comparison 270

Afterword 273

Appendix

A: Your Interactive Neural Network Disk 279

B: Bibliography and Reading List 294

C: Selected Mathematics 311

D: Simulation of a Processing Element on Lotus 1-2-3 318 Index 332

Contents xi