Artificial Intelligence

Ehita edition

Structures and Strategies for Complex Problem Solving

George F Luger & William A Stubblefield

CONTENTS

Preface vii

PART I

ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE

Artificial Intelligence—An Attempted Definition 1

1 AI: HISTORY AND APPLICATIONS 3

- 1.1 From Eden to ENIAC: Attitudes toward Intelligence, Knowledge, and Human Artifice 3
 - 1.1.1 Historical Foundations 4
 - 1.1.2 The Development of Logic 7
 - 1.1.3 The Turing Test 10
 - 1.1.4 Biological and Social Models of Intelligence: Agent-Oriented Problem Solving 13
- 1.2 Overview of AI Application Areas 17
 - 1.2.1 Game Playing 18
 - 1.2.2 Automated Reasoning and Theorem Proving 19
 - 1.2.3 Expert Systems 20
 - 1.2.4 Natural Language Understanding and Semantic Modeling 22
 - 1.2.5 Modeling Human Performance 23

	 1.2.8 Machine Learning 25 1.2.9 Parallel Distributed Processing (PDP) and Emergent Co. 1.2.10 AI and Philosophy 27 	mputation 26
1.3	Artificial Intelligence—A Summary 28	
1.4	Epilogue and References 29	
1.5	Exercises 30	
	TII IFICIAL INTELLIGENCE AS REPR SEARCH	ESENTATIO
Know	edge Representation 34	
Proble	n Solving as Search 41	
2	THE PREDICATE CALCULUS 47	
2.0	Introduction 47	
2.1	The Propositional Calculus 47	
	2.1.1 Symbols and Sentences 472.1.2 The Semantics of the Propositional Calculus 49	
2.2	The Predicate Calculus 52	
	2.2.1 The Syntax of Predicates and Sentences 52	
	2.2.2 A Semantics for the Predicate Calculus 58	
2.3	Using Inference Rules to Produce Predicate Calculus Expr	essions 64
	2.3.1 Inference Rules 64	
	2.3.2 Unification 68	
	2.3.3 A Unification Example 72	
2.4	Application: A Logic-Based Financial Advisor 75	

1.2.6

1.2.7

Planning and Robotics 23

Languages and Environments for AI 25

2.5	Epilogue and References 79	
2.6	Exercises 79	
3	STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH	81
3.0	Introduction 81	
3.1	Graph Theory 84	
	 3.1.1 Structures for State Space Search 84 3.1.2 State Space Representation of Problems 87 	
3.2	Strategies for State Space Search 93	
	 3.2.1 Data-Driven and Goal-Driven Search 93 3.2.2 Implementing Graph Search 96 	
	3.2.3 Depth-First and Breadth-First Search 993.2.4 Depth-First Search with Iterative Deepening 106	
3.3	Using the State Space to Represent Reasoning with the Predicate Calculus	107
	3.3.1 State Space Description of a Logical System 1073.3.2 And/Or Graphs 109	
	3.3.3 Further Examples and Applications 111	
3.4	Epilogue and References 121	
3.5	Exercises 121	
4	HEURISTIC SEARCH 123	
4.0	Introduction 123	
4.1	An Algorithm for Heuristic Search 127	
	4.1.1 Implementing "Best-First" Search 1274.1.2 Implementing Heuristic Evaluation Functions 131	
	4.1.3 Heuristic Search and Expert Systems 136	
4.2	Admissibility, Monotonicity, and Informedness 139	

	4.2.1 Admissionity Measures 137
	4.2.2 Monotonicity 141
	4.2.3 When One Heuristic Is Better: More Informed Heuristics 142
4.3	Using Heuristics in Games 144
	4.3.1 The Minimax Procedure on Exhaustively Searchable Graphs 144
	4.3.2 Minimaxing to Fixed Ply Depth 147
	4.3.3 The Alpha-Beta Procedure 150
4.4	Complexity Issues 152
	to we have the water to the
4.5	Epilogue and References 156
4.6	Exercises 156
5	CONTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
5.0	Introduction 159
5.1	Recursion-Based Search 160
	5.1.1 Recursion 160
	5.1.2 Recursive Search 161
5.2	Pattern-Directed Search 164
	5.2.1 Example: Recursive Search in the Knight's Tour Problem 165
	5.2.2 Refining the Pattern-search Algorithm 168
5.3	Production Systems 171
3 3	5.3.1 Definition and History 171
	5.3.2 Examples of Production Systems 174
	5.3.3 Control of Search in Production Systems 180
	5.3.4 Advantages of Production Systems for AI 184
5.4	Predicate Calculus and Planning 186
5.5	The Blackboard Architecture for Problem Solving 196
5.6	Epilogue and References 198
5.7	Exercises 199

159

PART III

REPRESENTATIONS FOR KNOWLEDGE-BASED PROBLEM SOLVING

O	KNOW	LEDGE-INTENSIVE PROBLEM SOLVING 207
6.0	Introduc	ction 207
		AAC SUMER COUNTRY AS INC.
6.1	Overvie	ew of Expert System Technology 210
	6.1.1	The Design of Rule-Based Expert Systems 210
	6.1.2	Selecting a Problem for Expert System Development 212
	6.1.3	The Knowledge Engineering Process 214
	6.1.4	Conceptual Models and Their Role in Knowledge Acquisition 216
6.2	Rule-ba	sed Expert Systems 219
	6.2.1	The Production System and Goal-driven Problem Solving 220
	6.2.2	Explanation and Transparency in Goal-driven Reasoning 224
	6.2.3	Using the Production System for Data-driven Reasoning 226
	6.2.4	Heuristics and Control in Expert Systems 229
	6.2.5	Conclusions: Rule-Based Reasoning 230
6.3	Model-l	based Reasoning 231
	6.3.1	Introduction 231
6.4	Case-ba	ased Reasoning 235
	6.4.1	Introduction 235
6.5	The Kn	owledge-Representation Problem 240
6.6	Epilogu	ne and References 245
6.7	Exercise	es 246

	INFORMATION 247
7.0	Introduction 247
7.1	The Statistical Approach to Uncertainty 249
	 7.1.1 Bayesian Reasoning 250 7.1.2 Bayesian Belief Networks 254 7.1.3 The Dempster–Shafer Theory of Evidence 259 7.1.4 The Stanford Certainty Factor Algebra 263 7.1.5 Causal Networks 266
7.2	Introduction to Nonmonotonic Systems 269
	 7.2.1 Logics for Nonmonotonic Reasoning 269 7.2.2 Logics Based on Minimum Models 273 7.2.3 Truth Maintenance Systems 275 7.2.4 Set Cover and Logic Based Abduction (Stern 1996) 281
7.3	Reasoning with Fuzzy Sets 284
7.4	Epilogue and References 289
7.5	Exercises 290
8	KNOWLEDGE REPRESENTATION 293
8.0	Knowledge Representation Languages 293
8.1	Issues in Knowledge Representation 295
8.2	A Survey of Network Representation 297
	 8.2.1 Associationist Theories of Meaning 297 8.2.2 Early Work in Semantic Nets 301 8.2.3 Standardization of Network Relationships 303
8.3	Conceptual Graphs: A Network Representation Language 309
	8.3.1 Introduction to Conceptual Graphs 309

REASONING WITH UNCERTAIN OR INCOMPLETE

	8.3.2	Types, Individuals, an	d Names 311
	8.3.3	The Type Hierarchy	313
	8.3.4	Generalization and Sp	pecialization 314
	8.3.5	Propositional Nodes	317
	8.3.6	Conceptual Graphs ar	nd Logic 318
8.4	Structur	ed Representations	320
	8.4.1	Frames 320	
	8.4.2	Scripts 324	
8.5	Issues in	n Knowledge Represe	entation 328
	8.5.1	Hierarchies, Inheritan	ce, and Exceptions 328
	8.5.2	Naturalness, Efficience	cy, and Plasticity 331
8.6	Epilogu	e and References 3	34
8.7	Exercise	es 335	

PART IV

LANGUAGES AND PROGRAMMING TECHNIQUES FOR ARTIFICIAL INTELLIGENCE

Languages, Understanding, and Levels of Abstraction 340

Desired Features of AI Language 342

An Overview of LISP and PROLOG 349

Object-Oriented Programming 352

Hybrid Environments 353

A Hybrid Example 354

Selecting an Implementation Language 356

9	AN IN I	RODUCTION TO PROLOG 357
9.0	Introduc	etion 357
9.1	Syntax	for Predicate Calculus Programming 358
	9.1.1	Representing Facts and Rules 358
	9.1.2	Creating, Changing, and Monitoring the PROLOG Environment 362
	9.1.3	Recursion-Based Search in PROLOG 364
	9.1.4	Recursive Search in PROLOG 366
	9.1.5	The Use of Cut to Control Search in PROLOG 369
9.2	Abstrac	et Data Types (ADTs) in PROLOG 371
	9.2.1	The ADT Stack 371
	9.2.2	The ADT Queue 373
	9.2.3	The ADT Priority Queue 373
	9.2.4	The ADT Set 374
9.3	A Prod	uction System Example in PROLOG 375
9.4	Design	ing Alternative Search Strategies 381
	9.4.1	Depth-First Search Using the Closed List 381
	9.4.2	Breadth-First Search in PROLOG 383
	9.4.3	Best-First Search in PROLOG 384
9.5	A PRO	OLOG Planner 386
9.6	PROL	OG: Meta-Predicates, Types, and Unification 389
	9.6.1	Meta-Logical Predicates 389
	9.6.2	Types in PROLOG 391
	9.6.3	Unification, the Engine for Predicate Matching and Evaluation 394
9.7	Meta-	Interpreters in PROLOG 397
	9.7.1	An Introduction to Meta-Interpreters: PROLOG in PROLOG 397
	9.7.2	Shell for a Rule-Based Expert System 401
	9.7.3	Semantic Nets in PROLOG 410
	9.7.4	Frames and Schemata in PROLOG 412

9.8	PROLOG: Towards Nonprocedural Computing 415
9.9	Epilogue and References 421
9.10	Exercises 422
10	AN INTRODUCTION TO LISP 425
10.0	Introduction 425
10.1	LISP: A Brief Overview 426
	10.1.1 Symbolic Expressions, the Syntactic Basis of LISP 426
	10.1.2 Control of LISP Evaluation: quote and eval 430
	10.1.3 Programming in LISP: Creating New Functions 431
	10.1.4 Program Control in LISP: Conditionals and Predicates 433 10.1.5 Functions, Lists, and Symbolic Computing 436
	10.1.5 Functions, Lists, and Symbolic Computing 436 10.1.6 Lists as Recursive Structures 438
	10.1.7 Nested Lists, Structure, and car/cdr Recursion 441
	10.1.8 Binding Variables Using set 444
	10.1.9 Defining Local Variables Using let 446
	10.1.10 Data Types in Common LISP 448
	10.1.11 Conclusion 449
10.2	Search in LISP: A Functional Approach to the Farmer, Wolf, Goat and Cabbage Problem 449
10.3	Higher-Order Functions and Procedural Abstraction 455
	10.3.1 Maps and Filters 455
	10.3.2 Functional Arguments and Lambda Expressions 457
10.4	Search Strategies in LISP 459
	10.4.1 Breadth-First and Depth-First Search 459 10.4.2 Best-First Search 462
10.5	Pattern Matching in LISP 463
10.6	A Recursive Unification Function 465

	10.6.1 10.6.2	Implementing the Unification Algorithm 465 Implementing Substitution Sets Using Association Lists 467
10.7	Interpre	ters and Embedded Languages 469
10.8	Logic P	rogramming in LISP 472
	10.8.1 10.8.2 10.8.3	A Simple Logic Programming Language 472 Streams and Stream Processing 474 A Stream-Based Logic Programming Interpreter 477
10.9		and Delayed Evaluation 482
10.10	An Exp	ert System Shell in LISP 486
	10.10.1	Implementing Certainty Factors 486
	10.10.2	Architecture of lisp-shell 488
	10.10.3	User Queries and Working Memory 490
	10.10.4	Classification Using lisp-shell 491
10.11	Network	Representations and Inheritance 494
	10.11.1	Representing Semantic Nets in LISP 494
	10.11.2	Implementing Inheritance 497
10.12	Object-0	Oriented Programming Using CLOS 497
	10.12.1	Defining Classes and Instances in CLOS 499
	10.12.2	Defining Generic Functions and Methods 501
	10.12.3	Inheritance in CLOS 503
	10.12.4	Advanced Features of CLOS 505
	10.12.5	Example: A Thermostat Simulation 505
10.13	Epilogu	e and References 511
10.14	Exercise	es 511

PART V ADVANCED TOPICS FOR AI PROBLEM SOLVING

Natural Language, Automated Reasoning, and Learning 517

11	UNDEF	RSTANDING NATURAL LANGUAGE 519
11.0	Role of	Knowledge in Language Understanding 519
11.1	Langua	ge Understanding: A Symbolic Approach 522
	11.1.1 11.1.2	Introduction 522 Stages of Language Analysis 523
11.2	Syntax	524
	11.2.1 11.2.2 11.2.3	Specification and Parsing Using Context-Free Grammars 524 Transition Network Parsers 527 The Chomsky Hierarchy and Context-Sensitive Grammars 53
11.3	Combin	ing Syntax and Semantics in ATN Parsers 534
	11.3.1 11.3.2	Augmented Transition Network Parsers 534 Combining Syntax and Semantics 538
11.4	Stochas	tic Tools for Language Analysis 543
	11.4.1 11.4.2 11.4.3 11.4.4	Introduction 543 A Markov Model Approach 545 A CART Tree Approach 546 Mutual Information Clustering 547
	11.4.5 11.4.6	Parsing 548 Other Language Applications for Stochastic Techniques 550
11.5	Natural	Language Applications 550
	11.5.1 11.5.2	Story Understanding and Question Answering 550 A Database Front End 551
11.6	Epilogu	e and References 555
11.7	Exercis	es 557

12	AUTOMATED REASONING 559
12.0	Introduction to Weak Methods in Theorem Proving 559
12.1	The General Problem Solver and Difference Tables 560
12.2	Resolution Theorem Proving 566
	12.2.1 Introduction 566 12.2.2 Producing the Clause Form for Resolution Refutations 568 12.2.3 The Binary Resolution Proof Procedure 573 12.2.4 Strategies and Simplification Techniques for Resolution 578
10.2	12.2.5 Answer Extraction from Resolution Refutations 583
12.3	PROLOG and Automated Reasoning 587 12.3.1 Introduction 587 12.3.2 Logic Programming and PROLOG 588
12.4	Further Issues in Automated Reasoning 593
	 12.4.1 Uniform Representations for Weak Method Solutions 593 12.4.2 Alternative Inference Rules 597 12.4.3 Search Strategies and Their Use 599
12.5	Epilogue and References 600
12.6	Exercises 601
13	MACHINE LEARNING: SYMBOL-BASED 603
13.0	Introduction 603
13.1	A Framework for Symbol-based Learning 606
13.2	Version Space Search 612
	13.2.1 Generalization Operators and the Concept Space 612 13.2.2 The Candidate Elimination Algorithm 613 13.2.3 LEX: Inducing Search Heuristics 620 13.2.4 Evaluating Candidate Elimination 623

13.3	The ID3 Decision Tree Induction Algorithm 624
	13.3.1 Top-Down Decision Tree Induction 627
	13.3.2 Information Theoretic Test Selection 628
	13.3.3 Evaluating ID3 632
	13.3.4 Decision Tree Data Issues: Bagging, Boosting 632
13.4	Inductive Bias and Learnability 633
	13.4.1 Inductive Bias 634
	13.4.2 The Theory of Learnability 636
13.5	Knowledge and Learning 638
	13.5.1 Meta-DENDRAL 639
	13.5.2 Explanation-Based Learning 640
	13.5.3 EBL and Knowledge-Level Learning 645
	13.5.4 Analogical Reasoning 646
13.6	Unsupervised Learning 649
	13.6.1 Discovery and Unsupervised Learning 649
	13.6.2 Conceptual Clustering 651
	13.6.3 COBWEB and the Structure of Taxonomic Knowledge 653
13.7	Epilogue and References 658
13.8	Exercises 659
14	MACHINE LEARNING: CONNECTIONIST 661
14.0	Introduction 661
14.1	Foundations for Connectionist Networks 663
	14.1.1 Early History 663
14.2	Perceptron Learning 666
	14.2.1 The Perceptron Training Algorithm 666
	14.2.2 An Example: Using a Perceptron Network to Classify 668
	14.2.3 The Delta Rule 672

14.3	Backpropagation Learning 675		
	14.3.1 Deriving the Backpropagation Algorithm 675		
	14.3.2 Backpropagation Example 1: NETtalk 679		
	14.3.3 Backpropagation Example 2: Exclusive-or 681		
14.4	Competitive Learning 682		
¥	14.4.1 Winner-Take-All Learning for Classification 682		
	14.4.2 A Kohonen Network for Learning Prototypes 684		
	14.4.3 Grossberg Learning and Counterpropagation 686		
14.5	Hebbian Coincidence Learning 690		
	14.5.1 Introduction 690		
	14.5.2 An Example of Unsupervised Hebbian Learning 691		
	14.5.3 Supervised Hebbian Learning 694		
	14.5.4 Associative Memory and the Linear Associator 696		
14.6	Attractor Networks or "Memories" 701		
	14.6.1 Introduction 701		
	14.6.2 BAM, the Bi-directional Associative Memory 702		
	14.6.3 Examples of BAM Processing 704		
	14.6.4 Autoassociative Memory and Hopfield Nets 706		
14.7	Epilogue and References 711		
14.8	Exercises 712		
15	MACHINE LEARNING: SOCIAL AND EMERGENT 713		
15.0	Social and Emergent Models of Learning 713		
15.1	The Genetic Algorithm 715		
	15.1.3 Two Examples: CNF Satisfaction and the Traveling Salesperson 717		
	15.1.4 Evaluating the Genetic Algorithm 721		
15.2	Classifier Systems and Genetic Programming 725		
	15.2.1 Classifier Systems 725		
	15.2.2 Programming with Genetic Operators 730		
	- A		

	15.3.1	The "Game of Life" 737	
	15.3.2	Evolutionary Programming 740	
	15.3.3	A Case Study in Emergence (Crutchfield and Mitchell 1994) 743	
15.4	Epilogue and References 747		
15.5	Exercis	es 748	
PAF	RT VI		
EPI	LOGU	E	
Reflec	tions on th	ne Nature of Intelligence 751	
16		IFICIAL INTELLIGENCE AS EMPIRICA UIRY 753	
16.0	Introdu	ction 753	
16.1	Artifici	al Intelligence: A Revised Definition 755	
	16.1.1	Intelligence and the Physical Symbol System 756	
	16.1.2	Minds, Brains, and Neural Computing 759	
	16.1.3	Agents, Emergence, and Intelligence 761	
	16.1.4	Situated Actors and the Existential Mind 764	
16.2	Cogniti	ve Science: An Overview 766	
	16.2.1	The Analysis of Human Performance 766	
	16.2.2	The Production System and Human Cognition 767	
16.3	Current	Issues in Machine Learning 770	
16.4	Understanding Intelligence: Issues and Directions 775		
16.5	Epilogu	e and References 780	
Autho	ography or Index ect Index owledge		

Artificial Life and Society-based Learning 736

15.3