
UNIVERSITE DE BLIDA1
Faculté des Sciences

Département d’Informatique

THESE DE DOCTORAT

MISSION ORIENTED PROCESS FOR
SYSTEMS OF SYSTEMS ENGINEERING

Par
Imane CHERFA

Composition du jury:
H. Abed Professeur U. de Blida1 Présidente
N. Boustia Professeur U. de Blida1 Examinatrice
Z. Alimazighi Professeur U.S.T.H.B., Alger Examinatrice
N. Chikhi Maître de conférences U. de Blida1 Examinateur
S. Sadou Professeur U. de Bretagne Sud, France Dir. de thèse
D. Bennouar Professeur U. de Bouira Dir. de thèse
N. Belloir Maître de conférences U. de Bretagne Sud, France Encadrant

Blida, 30/05/2022

Abstract

Systems of Systems (SoSs) encompass a group of distributed and inde-
pendent systems, which work together to achieve a common goal. Their
design and development is becoming increasingly important in wide vari-
ety of application domains, such as trade, transportation, health-care and
military. Interesting approaches were proposed in Model-Based System
Engineering (MBSE) to tackle with the design, development and com-
plexity management of SoSs. We cite as example the systems engineer-
ing (SE) model-based methodologies and the architecting frameworks.
However, several aspects of SoSs as the operational independence of con-
stituent systems (CSs) and the uncertainty of the SoSs environment may
create additional challenges. This thesis addresses the research gap by
proposing a Mission Oriented Process for System of Systems Engineer-
ing (MOP-SoSE), based on the System Modeling Language (SysML), that
comprises: (1) a mission conceptual model that includes the concepts char-
acterizing SoS mission and their relationships, (2) an utilization process to
provide guidance on the use of our approach, and (3) an multi-agents sim-
ulation (MAS) steps to assess gaps in mission performance and to improve
the architecture. To illustrate our approach we conducted a case study on
crowd management SoS.

Keywords: Systems of Systems (SoSs), mission-oriented process (MOP),
system modeling language (SysML), mission, model-based system engi-
neering (MBSE).

Acknowledgements

I am deeply grateful to those who have supported and encouraged me on
my path to completing this dissertation and would like to acknowledge
their contributions here.

First of all, I would like to sincerely thank my supervisor, Professor Salah
Sadou, that gave me the opportunity to work with him and to discover
a nice research domain. Thanks to his help, I could start my path as a
Ph.D. student and develop my work. He has encouraged me to work even
harder and take on new challenges with his strong enthusiasm and passion
for scientific research. Salah, thank you for your guidance, support, and
comprehension.

I would like also to address my thanks to my supervisor, Professor Djamal
Bennouar, for his belief in my abilities since I was a student. Thank you
Professor Bennouar for your invaluable contribution to my academic and
personal development, by being my mentor from graduating, Magistère,
and now a Ph.D. I will always be grateful for the confidence you have
shown in me throughout my journey.

I’m deeply indebted to my advisor, Doctor Nicolas Belloir. If I had the
courage to continue and finish this thesis, it’s because I had Nicolas by
my side. I will never thank him for the guidance, help, patience, and
motivation he gave me during the whole process, especially in difficult
times. Nicolas has a nice balance of different traits: critical but supportive,
candid but human, ambitious but understanding, strict but fair, respectful
but caring and attentive. Nicolas, thanks for giving me the opportunity
to work with you, and for your constant support, everything I could say
would not be enough to thank you!!! I feel honored for your interest in my
work.

I would like to extend my sincere gratitude to Régis Fleurquin, for spend-

ing time to review my work and to contribute to its improvement. His valu-

able comments, suggestions, and constructive and helpful remarks helped

me significantly to improve my thesis.

My deepest appreciation goes to all the jury members, Professor Hafida

Abed, Professor Narimène Boustia, Professor Zaya Alimazighi, and Doc-

tor Nacim Chikhi, who agreed to be part of the committee. I am very

pleased to have presented my Ph.D. work in front of such high qualified

jury.

I gratefully thank my friends for their encouragement and support. Par-

ticularly, thanks to Imane Chikhi whose encouragement had a significant

influence on this thesis. Rymel Benabidallah and Raounak Benabidallah, I

cherish the memories of the times we spent together, I really enjoyed your

company.

I want to thank my colleagues for their support and help, especially Nachida

Rezoug, Imane Chikhi, Yasmine Mancer, Ratiba Zahra, Djawida Boumahdi,

Messaouda Farah et Meriem Arkam. Their kind words, gestures, and un-

wavering support have kept me motivated. Many thanks to all my col-

leagues in the Computer Science department of the University of Blida1,

I am honored to have worked alongside such kind, talented, and inspiring

colleagues.

I would like to express my appreciation to all the outstanding staff mem-

bers at IRISA Laboratory (UBS Vannes), who have always gone above and

beyond to ensure that my internships were successful, especially Sylviane

Boisadan.

I also think of the teachers I had, from primary school to university. Among

them, I met many passionate and exciting people who encouraged me and

taught me the desire to learn.

Last but not least, the last words are for my family members. I wish to

dedicate this thesis to my family which has always been there for me with

truthful support. I want to thank my parents who have always been my

example, for their unconditional love. Thank you for sacrificing your life
for us, for giving me the opportunity to do my studies in very good con-
ditions, and for supporting, and encouraging me during all these years!!
A big thank you to my unique sister Sihem for her love and her constant
benevolence, for her husband for being like a brother to me, and for her
adorable children who are like mine. I also want to thank my brothers Za-
karia and Elyes who daily bring color to my life with their presence and
affection. Thank you Elyes for receiving me at your home several times
during my internships in France, and Raounak for making these intern-
ships fun and enjoyable. I would like to deeply thank my beloved aunts
Ibtissem, Hayet, Karima et Wahiba who have always cherished me, and I
would like to dedicate this thesis to my dear aunt Amal.

I want to thank my husband’s family especially Naziha and Rafik for their
support and all the members of my big family.

Finally, big thanks to my husband Amine, who sacrificed so much to help
me finish my thesis, I am forever grateful. Thank you for leaving your
job for a year to accompany me to France, for helping me manage my
emotions, and for being an amazing technician who provided me with
exceptional hardware and software troubleshooting. The hardest thanks to
write are those of my children: Lyne, Djawad and Wassim, because the
long hours of work meant that I had to sacrifice time with them. Thank
you for being my pillars of strength, and my source of inspiration. I love
you more than words can express.

vi

Contents

List of Figures ix

List of Tables xiii

Introduction 1

1 SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 9
1.1 Definitions and basic concepts of a system 9

1.2 Basic concepts of SoS . 13

1.3 Discussion . 30

2 SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 31
2.1 Systems of systems development phases 31

2.2 Model Based System Engineering (MBSE) via the System Modeling

Language (SysML) . 39

2.3 State of the art on SoSs modeling . 41

3 MISSION ENGINEERING 57
3.1 Overview of mission engineering . 57

3.2 Mission engineering approaches . 63

3.3 Discussion . 71

4 MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS ENGI-
NEERING 73
4.1 Global overview of the MOP-SoSE 74

4.2 MOP-SoSE engineering activities 82

CONTENTS viii

4.3 Discussion . 98

5 CASE STUDY MODELING AND SIMULATION 101
5.1 Case study presentation . 101
5.2 Crowd management simulation . 110

Conclusion 123

Glossary 129

References 133

List of Figures

1.1 System composed of interacting elements (1) 10

1.2 Hierarchy within a system (1) . 12

1.3 Growing levels of systems complexity (2) 13

1.4 SoS described as general networks (3) 14

1.5 SoS Historical time-line (4) updated from (5) 15

1.6 SoS Categories (6) . 22

1.7 The SoSE perspectives (7) adapted from (8) 26

2.1 The SoSE Double V Model (9) . 32

2.2 The SoSE Trapeze Model (10) . 33

2.3 SoSE Wave Model (11) . 34

2.4 The SoSE DANSE Model (12) . 35

2.5 System Model Example (13) . 40

2.6 The OOSEM Specify and Design Process (14) 42

2.7 The Harmony Process (15) . 43

2.8 The MagicGrid Framework (16) . 45

2.9 DoDAF Views and Concepts (17) 46

2.10 MoDAF views (17) . 47

2.11 The COMPASS Approach (18) . 49

2.12 The COMPASS SoS Architectural Modeling and Analysis Process (19) 50

2.13 The AMADEOS process-based view of the AF (20) 51

2.14 Main Concepts of the Double Layer Modeling Framework (21) . . . 52

3.1 Positioning of Mission Engineering (22) 60

3.2 Positioning of Mission Engineering (23) 61

LIST OF FIGURES x

3.3 The Mission Engineering Involved Roles (22) 62

3.4 The Missions & Means Framework (24) 64

3.5 Conceptual Diagram for the MMF Ontology (25) 65

3.6 Mission-Level SoS Engineering Process (26) 66

3.7 Mission Engineering within the SE “V” Model (27) 67

3.8 The Organizational Mission Engineering Process within the Enterprise (28) 68

3.9 Conceptual model for missions in System of Systems (29) 70

3.10 M2Arch Process (30) . 71

4.1 MOP-SoSE Life-cycle adapted from (11) 75

4.2 Actors and Responsibilities of MOP-SoSE 78

4.3 Mission Conceptual Model . 80

4.4 Mission Decomposition Activity . 83

4.5 Mission Stereotype . 84

4.6 Mission Decomposition and Allocation Example 86

4.7 MoEs identification Activity . 87

4.8 Example of the hierarchy between the mission objective, MoEs and
indicators . 88

4.9 First Emergency Response MoEs SysML Parametric Diagram 88

4.10 Mission Definition Activity . 90

4.11 Mission Definition Example . 91

4.12 Role Definition and Assignment Activity 92

4.13 Role Definition and Assignement Example 92

4.14 Abstract Architecture Example . 94

4.15 ATL Transformation Rules . 95

4.16 Relationship of MoEs with MoPsm (31) 96

4.17 Capture MoPs Activity . 96

4.18 First Responder Moving Means MoPs 97

4.19 Define Concrete Architecture Activity 98

5.1 Crowd Management Case Study . 102

5.2 Mission Decomposition Diagram . 103

5.3 Mission Decomposition and Allocation Example 104

5.4 Mission Definition Diagram . 105

xi

5.5 BDD Roles Diagram . 106
5.6 Mission Effectiveness Measures . 107
5.7 Crowd Observer in Stadium Abstract BDD 108
5.8 Crowd Observer in Stadium Abstract IBD 108
5.9 Effectiveness Evaluation Results between the two Observers Variants . 109
5.10 Physical Block Definition Diagram of Crowd Observer in Stadium Node110
5.11 Simulation Activity . 112
5.12 AnyLogic IDE . 113
5.13 General View of the Arena . 114
5.14 Observe Crowd Requirement Diagram 114
5.15 Venues’s Final Average Queue Time 115
5.16 Gates Final Average Queue Time . 116
5.17 Fan Behavior . 116
5.18 Mobile Security Steward Working, at the Seating Area 117
5.19 Initial Average Time In Trouble . 118
5.20 Final Average Time In Trouble . 118
5.21 Critical Area Example (32) . 119
5.22 Colors Signification of the Filter Used to Display Results 119
5.23 Default Arena Evacuation Simulation Results 120
5.24 Arena Evacuation Simulation Results After Modification of the Archi-

tecture . 121

LIST OF FIGURES xii

List of Tables

1.1 Comparing SE and SoSE (Adapted from (5, 10, 33)) 28

2.1 Comparing SoS and system artifacts (Adapted from (11, 34)) 36

4.1 First Emergency Response MoEs Development 89
4.2 Mission structural and behavioral model- Abstract Architecture corre-

spondence . 93

LIST OF TABLES xiv

INTRODUCTION

Context

Systems of Systems (SoSs) encompass a group of independent and distributed sys-
tems which, through synergism between them, work together towards a common mis-
sion (35, 36). The SoSs literature addresses a wide variety of application domains such
as trade, transportation, healthcare and military (4). Several researchers listed various
characteristics, to distinguish systems of systems from traditional systems (37, 38, 39).
According to several authors (11, 40), the independence of the constituent systems
(CSs) is the main feature of SoS (System of Systems). Each constituent system (CS)
assumes its own goals and operates independently (41). The need to maintain auton-
omy while simultaneously operating within the SoS context considerably increases the
complexity of an SoS and is at the heart of System Engineering (SE) (42).

To address the emerging generation of complex systems which includes SoSs, prac-
titioners admitted the need to evolve the practice of SE. System of systems engineering
(SoSE) represents the necessary extension and evolution of the traditional SE disci-
pline, that allows to engineer SoSs and to manage complexity and change. Unlike
systems, SoS could not be described in terms of hierarchies, but may be understood as
an environment along with the constituent systems operate and interact within it (39).

To guide the selection of SoSE principles, researchers tried to devise SoSs into
different types, based on their level of centralization into four categories: virtual, col-
laborative, acknowledged and directed (6, 10, 40, 43). These categories offer a frame-
work for understanding them, to cope with the challenges arising from this class of
systems. Furthermore, they influence how system engineering (SE) can be applied to
SoSs in several aspects like management and oversight, operational focus, engineering
and design considerations (10, 33). SoSE is primarily concerned with acknowledged

INTRODUCTION 2

SoS, where the SoS is under the responsibility of an organization, a SoSE team that
sustains the engineering of the SoS. Nevertheless, the Constituent Systems (CSs) of
an SoS preserve their independent development and goals. So, the SoSE team does
not have complete authority over them and changes in the CSs rely on collaboration
between the CS team and the SoS team (6, 10).

Problem statement

In the literature, various interesting approaches were proposed that tackle with the de-
sign and development of SoSs. Model-Based System Engineering (MBSE) represents
a promising path for the development and analysis of SoSs (36). Modeling allows SoS
engineers to control the overall complexity of SoS, to reveal and document its struc-
ture and behavior, and to communicate these to stakeholders (44). A large number
of model-based methodologies are currently used by the SE community, such as the
Object-Oriented Systems Engineering Method (OOSEM) (14), Harmony (15, 45) and
MagicGrid (16), which are dedicated to analyze, developing and documenting com-
plex systems. But when using such methodologies, SE engineers should be able to
trace system boundaries and define requirements clearly. Furthermore, they should
master the development environment to assure that the technical trade studies are the
basis of the allocations of requirements to components. In the SoS environment, SE
engineers must take into account considerations beyond the use of existing systems as
CSs. They must allocate the realization details and functionalities, which may not be
optimal from the point of view of the SoS. Furthermore, CSs must retain their inde-
pendence. For these reasons, SE is highly challenging in the SoS context.

On the other hand, other research has focused on expressing the SoS within ar-
chitecture frameworks (AF) to manage design complexity. This is done by the use of
several layers named architecture views to represent the system from different view-
points (for example operational, functional, or system). The United States Department
of Defense Architecture Framework (DoDAF) (46), the British Ministry of Defense
Architecture Framework (MODAF) (47) and the North Atlantic Treaty Organization
(NATO) 1 Architecture Framework (NAF) (48) are the most often used architecture

1An intergovernmental military alliance between several countries to support collective security.
Web site: https://www.nato.int Accessed 15/11/2021

3

frameworks for modeling SoSs. However, these frameworks do not provide step-by-

step methodological guidance to be followed when using them to analyze or design

SoSs. Moreover, they do not offer a precise connection between the different views of

the SoS.

Several solutions intended to provide and evaluate model-based methods and tools

for development and analysis of SoSs have been proposed in the context of research

projects. Comprehensive Modeling for Advanced System of Systems (COMPASS) (49),

Designing for Adaptability and EvolutioN in System of systems Engineering (DANSE)

(9) and Architecture for Multi-criticality Agile Dependable Evolutionary Open System

of Systems (AMADEOS) (20) are examples of them. Each solution brings interesting

aspects for SoSE. The main advantage of the COMPASS approach is that it provides

a well-defined denotational semantic of the architecture diagrams, which allow to sup-

port a variety of analysis techniques. DANSE proposed methodological guidance and

a reduction in the AF according to the target objectives while AMADEOS offers an

integrated support to all the architecture viewpoints. It offers means to link the high-

level perspective to activities and artifacts involved in SoS design phases. However,

more recent research argues that in SoSE domain, the design and the end-to-end pro-

cess and management are required to be balanced (22, 50). The end-to-end process is

a key element to assist SoS engineers to determine the systems that must be involved

and the functions they must perform. It is important to consider the end-to-end-process

to bridge the dissociation between the SoS objectives and the individual functionalities

undertaken by the CSs.

The state of the art of SoSs modeling reveals that SoSE still lack of life-cycles,

processes, engineering activities, and tools to analyze, design, architect, simulate and

evolve SoSs.

Challenges

From the aforementioned problems, we identify five challenges for developing SoSs:

• Evolving life-cycle: evolutionary development characterizes SoS. Thus, every

process dedicated to an SoS should consider the evolutionary aspect of SoS.

INTRODUCTION 4

• Constituent systems independence: the engineering of constituent systems is

done independently with the engineering of the SoS. Every process must differ-

entiate between the two levels of engineering.

• Stakeholders involvement: every process must distinguish the two levels of stake-

holders (constituent system and SoS level). Each of these stakeholder groups has

its own goals and organizational circumstances, which affect their expectations

for the SoS. The constraints and development plans for constituent systems may

be unknown to the SoS’s stakeholders.

• Uncertainty of the SoSs environment: SoSs environment is uncertain because

the constituent systems available at run-time are not really known in the early

stages of SoS development. The SoS manager does not have complete control

over all of the constituent systems that affect the SoS capabilities.

• Function allocation to CSs: allocation of functions or activities to CSs depends

closely on the end-to-end-process. Thereby, it is important to consider it to

bridge the dissociation between the SoS objectives and the individual function-

alities undertaken by the CSs to support the objectives.

Contributions

We argue that the end-to-end process is embodied in the concept of mission. In fact,

Mission Engineering (ME) is the area that intends to link the engineering activities

that are conducted to achieve a mission, with the mission itself (51). Recently, the

ISO/IEC/IEEE 21839 (52) has stressed the importance of considering the mission, and

its context, in the development life-cycle of systems. ME goal is to address the end-

to-end mission as System of Interest (SOI). A mission has a goal, which is achieved

through a sequence of operational activities. ME determines those operational activ-

ities and allocates them to operational nodes for execution. Therefore, we propose

in this thesis to put the mission in the heart of the SoSE analysis and the architecture

process. In our case, the operational activities are allocated to different CSs of the SoS.

5

Thus, we propose in our thesis a process to build SoSs, which combine and take

advantage from ME and MBSE, called MOP-SoSE (Mission Oriented Process for Sys-

tem of Systems Engineering). The key ideas on which the process relies are as follows:

(i) The process is applicable to acknowledged SoS, in which the organization manages

the SoS, and supports the SoSE. Independent organizations and SE teams are respon-

sible for the constituent systems. (ii) An SoS is considered as an environment within

which CSs operate, to accomplish a given mission. (iii) Mission context determines

mission thread, and then mission context help to determine the functionalities needed,

and then the CSs to be involved. (iv) The end-to-end mission is considered in our pro-

cess as SOI, from which architecture is generated as automatically as possible, to avoid

information loss between the application domain expert and the system architect. (v)

The concrete architecture is elaborated from the abstract one. The latter serves as an

invariant that guides the choices of concrete entities.

To our knowledge there is no existing approaches that support all the challenges

raised by the problem pointed above. To tackle these challenges, the present thesis

provides the following contributions:

1. The proposition of mission conceptual model that includes the concepts
characterizing SoS mission and their relationships, based on the literature re-

view on SoSE and ME. The conceptual model served as the basis for our process

and helped to draw a link between the mission model constructs and architectural

constructs.

2. Development process based on mission modeling to build SoSs architecture:
this development process includes the engineering activities that allows SoS en-

gineers to refine the mission into architecture. The role of participants in such a

process is described clearly.

3. The proposition of simulation steps to evaluate and improve the SoS effec-
tiveness: the multi-agents simulation is based on the architectural models. It is

performed in order to collect the different effectiveness measures to evaluate the

architecture, detect deficiencies and implement updates.

INTRODUCTION 6

Structure of the document

This document is structured in six chapters: The first three ones constitute the state
of the art which provides a foundation to understand the contribution.The next two
chapters detail the contributions of this thesis, while the last chapter gives a conclusion
to this work.

Here is a short description of each chapter:

Chapter 1 (system of systems engineering background) starts with an overview of
SE basic concepts. It presents then the foundation, concepts and characteristics
of SoSs. It compares SE and SoSE domains and finally highlights SoSE key
challenges.

Chapter 2 (system of systems modeling) discusses the state of the art in SoSE and
modeling. It lists the SoSE life-cycle models, and SoSE architecting artifacts. It
gives then a detailed presentation of the SoSE processes, engineering activities
and AF which are used in SoSE. The remainder of the chapter illustrates the
research gaps in the state of the art of SoSE.

Chapter 3 (mission engineering) presents an overview of the ME domain and pro-
vides the definition of involved concepts and roles. Furthermore, different ME
approaches are listed. The chapter ends with a discussion that determines the
limitations of existing approaches in order to position the contributions of the
thesis.

Chapter 4 (mission-oriented process for system of systems engineering) presents a
development process to build SoSs. It is based on the combination of ME con-
cepts and MBSE fundamentals. The process’s life-cycle, roles, concepts, and
engineering activities are detailed in this chapter. The resulting models are
expressed using the System Modeling Language (SysML) and Emergency Re-
sponse System of systems (ERSoS) is used as an illustrative example to illustrate
the different steps.

Chapter 5 (case study modeling and simulation) shows how our process can be ap-
plied using crowd management SoSs case study. Secondly, we present the sim-
ulation step as well as its real implementation.

7

Conclusion and perspectives highlights the contributions of the thesis and gives some
perspectives and future work.

INTRODUCTION 8

Chapter 1

SYSTEMS OF SYSTEMS
ENGINEERING BACKGROUND

System Engineering (SE) has been around for hundreds of years, but it was only in
the 1950s that it became a recognized field (53). The expanding space, missile, and
nuclear weapon races at the period needed a higher quality of system development,
integration, and testing than previously. SE procedures made their way into the world
of industry not long after. As systems became more complex and network-centric, the
paradigm of a System of Systems (SoS) emerged, including that complex set of dis-
tributed, independent, and interacting systems (37). The need to manage this class of
systems leads System of Systems Engineering (SoSE) to be born. Thus, this chapter
offers an introduction of the discipline of SoSE and highlights the main differences
between SE and SoSE. It begins with a few primary definitions related to the system
concept, a short survey of the SoSE discipline’s history, list definitions, characteris-
tics, and challenges in the SoSE domain as well as the different topologies of SoS.
The chapter ends by addressing the main differences between SE and SoSE based on
different perspectives.

1.1 Definitions and basic concepts of a system

In this section, we give the definition of the fundamental concepts of monolithic sys-
tems and thus of the SE domain. We discuss the apparition of SoSE domain to deal
with system complexity.

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 10

1.1.1 System concepts

The ISO/IEC/IEEE 15288 (54) and the systems engineering handbook (1) consider

that systems in the real world are “man-made, created and utilized to provide products

or services in defined environments for the benefit of users and other stakeholders”.

Thereby, the system concept definition should distinguish between systems in the real

world and system “mental representations”. From this view of a system, the INCOSE

and ISO/IEC/IEEE define the system concept as follows:

“... an integrated set of elements, subsystems, or assemblies that accomplish a

defined objective. These elements include products (hardware, software, firmware),

processes, people, information, techniques, facilities, services, and other support ele-

ments” (1).

“... combination of interacting elements organized to achieve one or more stated

purposes” (54).

The systems engineering handbook highlights that these definitions share one main

idea, that a system is a “purposeful whole that consists of interacting parts”, as shown

in Figure 1.1. We are going to rely on this idea throughout this manuscript. In what

follows, we present definitions of key concepts closely related to the concept of system.

Figure 1.1: System composed of interacting elements (1)

The system context or operating environment is the external view of a system

that includes set of elements which do not belong directly to the system but interfere

with it. Users (or operators) of the system are examples of system context (1).

The system boundary concept takes place to differentiate a system’s internal view

from its external view. According to (1), the system boundary is a “line of demarcation

between the system itself and its greater context (to include the operating environment).

It defines what belongs to the system and what does not”.

11

1.1.2 Definition of system engineering

The definition of system concept leads to defining system engineering, the discipline

that is intended to support the development of systems from early requirements defini-

tion to implementation and the late stages of the product life-cycle, combining views

and needs of different disciplines (55). In the literature, several definitions of the dis-

cipline of SE were proposed, we have relied on the one proposed by the INCOSE (1),

which we consider the more complete.

Systems engineering is an “interdisciplinary approach and means to enable the re-

alization of successful systems. It focuses on defining customer needs and required

functionality early in the development cycle, documenting requirements, and then pro-

ceeding with design synthesis and system validation while considering the complete

problem: operations, cost and schedule, performance, training and support, test, manu-

facturing, and disposal. Systems engineering integrates all the disciplines and specialty

groups into a team effort forming a structured development process that proceeds from

concept to production to operation. Systems engineering considers both the business

and the technical needs of all customers with the goal of providing a quality product

that meets the user. needs” (1).

Systems engineering continues to evolve for the purpose of managing the increas-

ing system complexity. Because system consists of interacting parts, called also sub-

systems (55), the complexity of subsystems can grow to the point where such subsys-

tems may not be atomic, but be viewed as independent systems on their own merit (37)

(See Figure 1.2, and can be decomposed into further subsystems. The hierarchy within

a system is therefore an organizational description of the structure of the system using

a partitioning relation (1).

1.1.3 From system engineering to system of systems engineering

As addressed by (2), the more and more complex customer requirements and the

worldwide competition for market shares characterize increasingly product develop-

ment processes. Therefore, systems engineering was in need of responding to an ever

growing and diverse requirements. To address stakeholder desires, systems engineers

proposed to build systems by interconnecting existing systems (37). But by coupling

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 12

Figure 1.2: Hierarchy within a system (1)

systems, both of necessary and unnecessary complexity raises from the system de-

signs. Complexity must be distinguished from complicated systems (56). Indeed, the

degree of predominant uncertainty determines the difference between complex and

complicated concerns, complex systems behavior is unpredictable because of the in-

terconnectivity. According to (57), “the systems become complex when its parts are

connected in a nonregular way. The information about the nature of interconnections

is usually insufficient and this makes modeling difficult”. Researchers used the term

“Systems of Systems” (SoSs) to describe such complex systems; we quote as example

the work of Maier (37) in which the global satellite networks is described as an SoS.

As shown in Figure 1.3, the more interconnected the system is, the more complex it

is. Furthermore, SoS is a class of systems where complexity is accrued, their existence

led SE discipline to emerge as an effective way to manage complexity and change. The

system of systems engineering (SoSE) appeared to bring the necessary extension and

evolution for SE. Unlike systems, SoS could not be described in terms of hierarchies,

they are mostly represented as general networks as depicted in Figure 1.4 (3). The next

section deals with SoS.

13

Figure 1.3: Growing levels of systems complexity (2)

1.2 Basic concepts of SoS

As SoS field is yet an emerging area, there does not exist unifying definition of SoS,

making it difficult to precisely bound the field. There are many efforts to define, charac-

terize and categorize SoS in the literature. These different contributions are presented

in the following sub-sections, beginning with an historical overview of SoSs, followed

by the different definitions and key characteristics of SoSs. Next, the different cate-

gories of SoSs are presented, as well as the topology and dimensions. SoSE domain

definitions and challenges are listed at the end of the section, with a focus on literature

that identifies the main differences between the engineering of systems and SoSs in

several aspects.

1.2.1 Brief history of SoS

Authors of (4, 5) have been interested on typical research that raised SoS. They point

out that the initial work of the SoS in public journal can be dated back to 1956, when

Boulding (58) envisioned SoS as “gestalt” in theoretical construction forming a “spec-

trum of theories” greater than the sum of its parts. After that come the works of Ack-

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 14

Figure 1.4: SoS described as general networks (3)

off (59), Jackson and Keys (60), and Jacob (61). Ackoff (59) in 1971 perceived SoS

as a “unified or integrated set of systems concepts” and suggested that “the systems

approach to problems focuses on systems taken as a whole, not on their parts taken

separately”. In 1974, Jacob (61) stated that a SoS is “every object that biology stud-

ies”. Later in 1984, Jackson and Keys (60) proposed the use of “SoS methodologies”

as interrelationship between various systems-based problem-solving methodologies in

the field of operation research. The first use of the term “system of systems” by the

Strategic Defense Initiative (SDI) 1, was used to describe an engineered technology

system (62), and it wasn’t until 1989. Figure 1.5 depicts graphical time-line of the

typical contributors of SoS from 1990 to 2014. It shows that industry and government

applications in SoS was much later than academic research. From 2005 to the present,

many organizations, government agencies, and universities have specialized in SoS re-

search. We cite actually the example of the Office of the Secretary of Defense (OSD)

1anti-ballistic missile program that was designed to shoot down nuclear missiles in space

15

Figure 1.5: SoS Historical time-line (4) updated from (5)

1, the SoS laboratory, part of the Center for Integrated Systems in Aerospace (CISA)

of Purdue University 2, National Centers for System of Systems Engineering (NC-

SOSE) in Old Dominion University 3. There is significant evidence of SoS research in

several forums, we quote as example the IEEE Conference on System of Systems Engi-

neering (IEEE SoSE) 4, the IEEE Systems Engineering Conference (IEEE SYSCON)
5, the International Council on Systems Engineering (INCOSE)6, which manages an

industry-led working group on SoS engineering. In addition, numerous journals are

contributing to the advancement of studies of SoSs, such as the International journal

1the principal U.S. defense policy maker and adviser: https://www.defense.gov/Our-Story/Office-
of-the-Secretary-of-Defense/

2https://engineering.purdue.edu/SoSL
3https://www.odu.edu/ncsose
4For example: http://conf.uni-obuda.hu/sose2020/
5http://www.ieeesyscon.org/
6http://www.incose.org

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 16

of System of Systems Engineering (IJSSE) 1, the IEEE Systems Journal (ISJ) 2 and

the Systems Engineering journal (journal of the International Council) 3. The most

important and influential SoS research to date are presented progressively along the

following subsections, whether in the academic, military or industrial field.

1.2.2 SoSs definition and characteristics

There was no widely accepted SoS definition, several researchers gave various defini-

tions, and others preferred to distinguish SoSs by listing their characteristics. Some

common definitions and characteristics are described below.

1.2.2.1 Overview of SoSs definition

The accepted modern term of SoS was arisen by the works of Eisner,et al. (63) and

Shenhar (64)(See Figure 1.5). Eisner,et al., defined SoS as a “set of several indepen-

dently acquired systems, each under a nominal systems engineering process; these

systems are interdependent and form in their combined operations a multi-functional

solution to an overall coherent mission. The optimization of each system does not

guarantee the optimization of the overall system of systems” (63). This definition ar-

gues that it is important to understand the overall SoS needs, as well as to focus on

balancing the interests of competing constituent systems (CSs), rather than optimizing

the entire system by optimizing its components.

Shenhar’s SoS definition is “A large widespread collection or network of systems

functioning together to achieve a common purpose” (64). Later, Shenhar and Bonen

suggested later a two-dimensional taxonomy for systems; a technological uncertainty

dimension representing the maturity level of the technologies and the system scope

dimension, which is based on the complexity of the system, and categorized systems

from a single unit assembly to an array of geographically dispersed systems interacting

to achieve a common purpose (65). They used the term “array” as equivalent to system

of systems.

1https://www.inderscience.com/jhome.php?jcode=ijsse
2https://ieeesystemsjournal.org/
3https://onlinelibrary.wiley.com/journal/15206858

17

In the same period, numerous contributions attempt to define SoS, we quote as ex-
amples the work of Holland (66), Koza (67) and Kotov (68), which was one of the
first scientists to model and synthesize SoS, we did not list all the definitions because
we do not aim to be exhaustive. In his book, Jamshidi (35) collected different defi-
nitions of SoS and attempt to achieve some convergence, the definition he proposed
is:“systems of systems are large-scale integrated systems which are heterogeneous and
independently operable on their own, but are networked together for a common goal.
The goal, may be cost, performance, robustness, etc.” (35). The author highlights that
“each element of an SoS achieves well-substantiated goals even if they are detached
from the rest of the SoS”.

1.2.2.2 Definition of SoSs via key characteristics

In a response to a growing acceptance of SoSs associated to the lack of a common
consensus on an SoS definition, Maier (37) identified five principal characteristics to
distinguish between systems of systems and complex monolithic systems, often known
by the acronym “OMGEE”:

• Operational independence of the constituent systems, which means that the con-
stituent systems must be able to achieve their own mission if the SoS is disas-
sembled.

• Managerial independence of the constituent systems, which means that the con-
stituent systems must be managed individually, they are acquired individually,
and have their own life cycle and organization.

• Geographical distribution of the constituent systems means that the constituent
systems are distributed over a large geographic extent. This geographical expan-
sion is relative and relies on the available communication means and technolo-
gies. The constituent systems can exchange information and not considerable
quantities of mass or energy.

• Evolutionary development of the SoS, which means that the SoS’s objectives can
change constantly and its development can be gradual. Over time, some features
can be removed, modified or added, likewise, some constituent systems may be
disassembled from the SoS.

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 18

• Emergent Behaviors, which means that the SoS capabilities could not be achieved

by any of its constituent systems. Therefore, these emergent behaviors are un-

predictable which lead to difficulties in validating the SoS.

Even if this definition is the most widespread, Luzeaux (69) stressed that it has

some inconvenience. First, except for the possible emergent behavior, it does not

consider what the SoS offers in relation to its constituent systems. Secondly, it is

limited only to the technical criteria of geographical distribution and emergent behav-

iors but does not address the organization of technical and human resources during

use. Finally, the emergent behavior and the geographical distribution of the constituent

systems are not really discriminating in differentiating a system of systems from a

simple set of systems, since it is complicated to identify, trace and manage emergent

behavior in practice, and the geographical distribution is becoming common for many

systems with the advancement of information and communication technology (ICT).

It should be highlighted that in more recent work, Maier (37) argues that operational

and managerial independence are the most important features in an SoS. This leads

Luzeaux (69) to propose a more general definition, which a priori encompasses all

the variants contained in literature: “An SoS is an assembly of systems which can

potentially be acquired and/or used independently, and whose global value chain the

designer, buyer and/or user is looking to maximize, at a given time and for a set of

conceivable assemblies”. In this definition, Luzeaux (69) used the concept of “value

chain”, that he deemed sufficient, to provide all the necessary variability to understand

the difference between a system and SoS and to consider the abstraction as opposed to

a simple technical vision. The author defined a value chain as “set of interdependent

activities whose pursuit creates identified and, if possible, measurable value.......The

value chain’s efficiency essentially relies on the coordination of the various agents in-

volved, and their ability to form a coherent, collaborative and interdependent network.”

For Boardman and Sauser (38), both of system and SoS consists of parts, relation-

ships and a whole that is greater than the sum of the parts, so, they are the same in that

aspect. However, the two concepts vary from the manner in which parts and relation-

ships are assembled (the composition) and thus in the nature of the emergent whole. In

this direction, Boardman and Sauser (38) proposed distinguishing characteristics, that

19

were used later by the authors to model SoS (70) and then to simulate it (71). These

characteristics are as follows and could be designated by the acronym “ABCDE”:

• Autonomy, which means that each constituent system is able to complete his own

goals and without any entity’s control.

• Belonging, that represents the ability of a constituent system to collaborate with

other constituent systems within the SoS to meet a common higher purpose. The

contribution of a constituent system has to be judged sufficient at the SoS level.

• Connectivity, which implies the capability to form connections by the dynamic

distributed network as needed for the profit of the SoS.

• Diversity, meaning that an SoS have to be extremely diverse in term of capabil-

ities of constituent systems. This property will make it open for evolution and

adaptation.

• Emerging, meaning that an emergent capability results from the interactions be-

tween the constituent systems and can be attributed to the overall SoS. Boardman

and Sauser argue that this property requires compliance with the other factors:

“preservation of constituent systems autonomy, choosing to belong, enriched

connectivity, and commitment to diversity of SoS manifestations and behav-

ior” (38).

Abbott (39) held on the idea that SoSs are “qualitatively and structurally different

from systems”. He claimed that a system of systems can be understood as an envi-

ronment along with the constituent systems operate and interact within it and not as a

hierarchy of components. The characteristics he proposed for such environment are:

• Open at the top, which signifies that there is no top-level system defining the

SoS, an SoS allows for the continuous introduction of new constituent systems.

• Open at the bottom, this ensures that at any time, the lowest SoS level, such as

specific communication stack, can be modified.

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 20

• Continually evolving, but slowly enough to be stable, meaning that given the

changes that occur in the SoS environment, an SoS is constantly evolving and is

never complete. Systems of systems evolve in three different forms at least: (a)

Technology changes, for example wireless replaces wires. (b) Usage changes,

addition or modification of features. (c) The change of interfaces and standards.

Abbott (39) specifies that most changes to a system of systems will be slow, but

in the case where several small changes occur at the same time, the SoS will be

conducted to “a phase change and to punctuated equilibrium effects”.

1.2.2.3 Definition of SoSs in professional handbooks

In the Defense Acquisition Guidebook (72), an SoS is defined as “a set or arrange-

ment of systems that results when independent and useful systems are integrated into a

larger system that delivers unique capabilities. Both individual systems and SoS con-

form to the accepted definition of a system in that each consists of parts, relationships,

and a whole that is greater than the sum of the parts; however, although an SoS is a

system, not all systems are SoS”. Note that this definition was initially stated in the

(73), and then used in the Systems Engineering Guide for Systems of Systems (10), it

highlighted the fact that SoS acquires new capabilities as a result of systems integra-

tion.

The INCOSE Systems Engineering Handbook (1) defined an SoS as “a system of

interest (SOI) whose elements are managerially and/or operationally independent sys-

tems. These interoperating and/or integrated collections of constituent systems usually

produce results unachievable by the individual systems alone. Because an SoS is itself

a system, the systems engineer may choose whether to address it as either a system or

as an SoS, depending on which perspective is better suited to a particular problem”.

The Handbook indicated also that the SoS exhibits commonly complex behaviors that

result from the existence of Maier’s characteristics.

In its recent edition, the ISO/IEC/IEEE 21841 (74) defined SoS as a “set of sys-

tems or system elements that interact to provide a unique capability that none of the

constituent systems can accomplish on its own. System elements can be necessary to

facilitate interaction of the constituent systems in the system of systems”. This defi-

nition was originally proposed in the ISO/IEC/IEEE 21839 (52), and was associated

21

with the definition of the concept of constituent system, which is defined as an “system

that forms part of a system of systems (SoS) or more. Each constituent system is a use-

ful system by itself, having its own development, management, utilization, goals, and

resources, but interacts within the SoS to provide the unique capability of the SoS”.

We note that the concept of the capability of constituent system appeared in all

definitions, the Systems Engineering Guide for Systems of Systems (10) defined it as

“the ability to achieve a desired effect under specified standards and conditions through

combinations of ways and means to perform a set of tasks”, this definition was, at the

basis, proposed in (75).

1.2.3 Typology of SoSs

Since an SoS is composed of a set of interconnected systems that are managerially and

operationally independent, the level of complexity of this type of system is high, as

shown in the Figure 1.3. The field of SoSE tried to devise different types of SoS, this

characterization offers a framework for understanding SoS to cope with the challenges

arising from complexity.

Further SoSs research (40, 43) consolidated by (6, 10) and then standardized by the

ISO/IEC/IEEE 21841 (74) has identified four categories of SoSs. These types, illus-

trated in Figure 1.6, are mainly based upon the degree of authority and responsibility

governing the SoS and its evolution.

1.2.3.1 Virtual

Virtual SoS is characterized by the absence of central management and common goal.

In most of the time, it is ad hoc and the constituent systems are not always known.

Virtual SoS was proposed by (40), the author used the Internet and all of the services

that can be founded or integrated in an ad hoc way as example of virtual SoS.

1.2.3.2 Collaborative

Collaborative SoS was defined by (40). In a collaborative SoS, there is no central au-

thority, the constituent system engineering teams inter-operate more or less voluntarily

to achieve the main common goals. (6) gave the example of the regional area disaster

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 22

Figure 1.6: SoS Categories (6)

management system as collaborative SoS, where each organization that engages in first

responder types of situations is responsible for its own systems.

1.2.3.3 Acknowledged

Proposed by (43), the acknowledged SoS has defined goals, a designated manager and

resources for the SoS. It is under the responsibility of an organization, a system of

systems engineering (SoSE) team that sustains the engineering of the SoS. Neverthe-

less, the constituent systems preserve their independent development and goals, the

SoSE team does not have complete authority over them and changes in the systems

rely on collaboration between the system team and the SoS team. As has been ad-

dressed by (6), the unidirectional arrows between the SoSE team and the constituent

systems illustrated in Figure 1.6 signify that the SoSE team can provide directions

to the constituent systems but the latter are not obliged to comply with SoSE team

demands. The military command and control SoS is now considered as example of

acknowledged SoS (6, 10), that has transitioned from a collaborative SoS because of

the weightiness of the missions supported by the SoS.

23

1.2.3.4 Directed

Directed SoS (40) is developed and supervised to meet special purposes. It is cen-
trally controlled during long-term service to continue performing those goals as well
as any additional ones the system owners may wish to tackle. Constituent systems
can operate independently but are controlled to fulfill the SoS goals. In Figure 1.6, the
bi-directional arrows between the SoSE team and key constituent systems (but not nec-
essarily all) means that the SoSE team has the authority to require these constituent-
systems (often through some sort of contract) to develop and support SoS capabili-
ties (6). We cite as example of directed SoS an integrated air defense network, that
is usually centrally managed to defend a region against enemy systems, although its
constituent systems may operate independently (43).

1.2.4 Dimensions of SoS

In response to the wide variety of SoS definitions and to the need to analyze, and
evaluate techniques and methods which aim to develop and maintain SoS, Nielson and
al. (36) proposed SoS dimensions. SoS dimensions were deduced from the common
concepts which influence modeling and analysis that were found in SoS definitions and
descriptions. The SoS dimensions were used to describe the SoS’s space and could be
used as base to suggest SoS modeling patterns or to analyze modeling approaches. The
eight dimensions proposed by (36) are described as follows:

• Autonomy of constituents: autonomy refers to the fact that the behavior of a CS
is self-controlled rather than being controlled by external rules. The degree of
autonomy required by a CS may change due to the heterogeneity of an SoS, thus,
modeling and analysis techniques must allow the representation of a variety of
behaviors that may be performed by a CS, but that cannot be expected precisely
at the SoS level.

• Independence of constituent: independence of CS implies the ability of this one
to operate when disassembled from the SoS. It means that some CS behaviors
are independent of the SoS, while others are associated with its role in the SoS.
Thus, some CS functionalities could be hidden at SoS level and model-based
techniques should consequently be able to support the hiding of information.

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 24

• Distribution: distribution is the fact that CS have to be somehow connected to

be able to communicate or to share information, in general it means that CS

are scattered. To support distribution, modeling frameworks need to have the

possibility to connect CS using communication medium, they need also to be

able to describe communication, concurrency, and to manage communication

media failures.

• Evolution: evolution is the ability of an SoS to manage different nature of changes,

whether in the SoS main functionality and its quality or in the composition of

CS. Thus, model-based techniques in SoSE must be able to preserve the speci-

fied properties when SoS evolves. The update of CS is considered as evolution

and requires conformance verification.

• Dynamic reconfiguration: dynamic reconfiguration is the aptitude of an SoS to

make structural and compositional modifications, usually without expected inter-

vention. This dimension implies the ability of an SoS to modify its configuration

during service contrary to evolution, which consists to support planned updates

through intervention on a gradual scale.

• Emergence of behavior: dynamic reconfiguration is the aptitude of an SoS to

make structural and compositional modifications, usually without expecting in-

tervention. This dimension implies the ability of an SoS to modify its config-

uration during service contrary to evolution, which consists to support planned

updates through intervention on a gradual scale. SoSE modeling techniques may

have abstractions for the variability of architectures and interfaces to ensure the

dynamic reconfiguration

• Interdependence: interdependence corresponds to the relationship that results

from the interaction of two or more CS when achieving the common SoS level

goal. When CS rely on each other, it can happen that some individual behavior

of a CS is sacrificed to achieve the SoS goal. Model-based approaches should

provide a mean for the clear tracing of dependencies, the later could be used to

determine the effect of changes of a CS. (36) pointed out that SoS engineers have

to find best compromise between the degree of independence in the constituent

25

systems and the interdependence required to reach the common goal as proposed
in (76, 77).

• Interoperability: interoperability corresponds to the SoS capacity to integrate a
variety of heterogeneous CS. This may require interface adaptation, standards,
and protocols. Modeling and analysis techniques are facing multiple require-
ments to deal with interoperability. This includes strategies to verify the com-
patibility of CS interfaces as well as to incorporate CS heterogeneous models.

1.2.5 System of Systems Engineering definition, issues and per-
spectives

To address the emerging generation of complex systems which includes SoS, practi-
tioners admitted the need to evolve the practice of SE. SoSE represents a necessary
extension and evolution of traditional systems engineering discipline to engineer SoS
and to cope with the different new challenges. Keating and al. (78) defined SoSE as
“design, deployment, operation and transformation of meta-systems, that must func-
tion as an integrated complex system to produce desirable results”. Several surveys
sustained that at this point of SoSE development, there is no SoSE precise and unified
definition (7), the Systems Engineering Guide for Systems of Systems (10) suggested
that SoSE deals with “planning, analyzing, organizing, and integrating the capabilities
of a mix of existing and new systems into an SoS capability greater than the sum of
the capabilities of the constituent parts”. The guide used the term SoS SE (System of
Systems System Engineering) to describe SoSE and considers that SoSE addresses SE
considerations for SoS.

The INCOSE Systems Engineering Handbook (1) does not define SoSE, it con-
siders that SE is a domain that deals with all kinds of systems, even if the processes
and methods used for each kind are different. Furthermore, the handbook assumes that
“SoS is itself a system, and the systems engineer may choose whether to address it
as either a system or as an SoS, depending on which perspective is better suited to a
particular problem”. In this manuscript, we assume that SoSE is a sub discipline of SE
that deals with SoS.

According to (36, 76), SoSE’s principal research areas could be classified into the
following issues:

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 26

• Modeling and architecting: the development of models in which there is the
use of existing systems as components of the SoS, and optimize the architecture
while taking into account the SoS dimensions. Furthermore, the use of Domain-
Specific Languages (DSL) to analyze SoS mission and capability objectives, and
to set the concepts of operational development.

• Simulation: the proposition of simulation tools to analyze and understand the
complexity of SoS behavior.

• Testing: the implementation of testing techniques in case of: complex and large
SoS, the use of different standards, multi-stakeholder situation, dynamic evolu-
tion of SoS configurations,.etc.

• Verification: the development of verification tools to support simulation and test-
ing, for analyzing different properties.

In the literature review presented by Keating and Katina (8), the authors claimed
that the SoSE issues tend to evolve among three perspectives: military, academic, and
enterprise. Figure 1.7 shows the three diverging perspectives of SoSE.

Figure 1.7: The SoSE perspectives (7) adapted from (8)

The first perspective is the military perspective, mainly motivated by an emerging
viewpoint within the US DoD. This viewpoint consists of designing technical com-
mand and control systems to operate independently while being highly interoperable.
Such systems require the incorporation of different technology systems to realize the
SoS mission. The second emerging perspective is the academic perspective, It provides
a specific and more extensive look at the nature and development of the SoSE field. It

27

shows the direction for more rigorous development along philosophical and theoretical

aspects. The third emerging perspective is the enterprise perspective. This perspective

encompasses a more holistic view of SoSE, considering the notion of the enterprise as

a system of systems that exists outside the purely technical view, and which is dom-

inated by architecture. As argued by (8), each perspective carries a logic that offers

its own validity, to the community which develops the perspective. However, the in-

tersection of the multiple perspectives have to be examined, to avoid any source of

divergence in the SoSE field, that which may hinder the coherent development of the

field.

1.2.6 Difference between SE and SoSE (SoSE key challenges)

As mentioned by (33), both of the characteristics of an SoS as presented in sec-

tion 1.2.2.2, and the relationships of authority between the constituent systems and the

SoS as described in the categories of SoS as presented in section 1.2.3, influence how

system engineering can be applied to SoS. Table 1.1 lists the main differences between

the engineering of systems or SoS in four aspects (10, 33): management and oversight,

operational focus, implementation and engineering and design considerations. The rest

of this subsection deals with the main environmental distinctions.

• Management and oversight: the first aspect that affects the application of SE to

SoS is the community in which SoS is built. As described in Table 1.1, there

are many key variations. On one hand, single systems have their own owners,

objectives, resources, and funding. The engineering focus is on the physical sys-

tem design and implementation, stakeholders are committed to that system and

play specific roles in the SE of that system. On the other hand, SoS management

must consider CS constraints. SoS stakeholders may have conflicting interests

with CS stakeholders. These latter may give low priority for SoS needs. The

governance of an SoS is difficult since it can involve the collection of agencies,

authority structures, and the coordination required for allocating resources and

organizing activities.

• Operational focus (goals): the objectives within a single system are well-defined.

In the case of SoS, new needs on the CS may appear following CS assembly,

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 28

for functionality or information sharing, which had not been considered in their
individual designs. Furthermore, SoS objectives may not be aligned with those
of the CS. Very often, these systems have to support both their own objectives
and new SoS objectives.

• Implementation: in the case of a single system, the engineering is done using
a well-established process and activities with clear decision points. Testing and
evaluation of the entire system, or at least the subsystems related to specified
requirements are generally possible. As long as SoS implies several legacy CS,
new CS, developmental CS, technology insertion, or life extension programs,
which are not necessarily at the same phase of development, the SoSE must
consider and leverage the asynchronous development life cycles of the individual
systems. Because of all these challenges, it is often very difficult to completely
test and evaluate SoS capabilities.

• Engineering and design considerations: Engineering of single systems implies 1)
the definition of system boundaries, which is often a static problem that consists
of separating what is inside the system from what is outside, as well as 2) the
definition of interfaces requirements, and 3) developing approaches to ensure
the performance and behavior. In contrast, SoS boundary is often ambiguous.
It depends on the capabilities needed so that the SoS can meet his objectives.
The needed capabilities determine the CS expected to be involved in the SoS.
Moreover, the performance of an SoS is affected by the CS performance, and
the end-to-end behavior of the ensemble of systems, that could determine the
key issues which affect that behavior.

Table 1.1: Comparing SE and SoSE (Adapted from (5, 10, 33))

Table 1.1: Comparing SE and SoSE (Adapted from (5, 10, 33))

Aspects of
Environment

SE SoSE

Management and Oversight
System Physical engineering Socio-technical management and engi-

neering

29

Stakeholder
involvement

Clear stakeholder set Two levels of stakeholders: CS level
and SoS level stakeholders. Their pri-
orities are different and interests may
be conflicting. Not all CS stakeholders
are recognized at SoS level

Owners Clear ownership with
the possibility to trans-
fer resources among el-
ements

Multiple owners taking individual de-
cisions concerning resources

Governance Aligned management
and funding

Management and funding at SoS level
and CS level, which make them more
complex because the SoS does not nec-
essarily have authority over all systems

Operational Focus (Goals)
Operational
focus

Designed and devel-
oped to achieve clear
set of operational
objectives

Set of operational objectives that have
to be achieved using CS whose objec-
tives may not necessarily align with
the SoS objectives

Implementation
Acquisition/
Development

Single system life cycle
aligned to establish ac-
quisition and develop-
ment processes

Continuous SoS lifecycle intertwined
with multiple system lifecycles across
asynchronous acquisition and develop-
ment efforts involving legacy systems,
systems under development, new de-
velopments, and technology insertion

Process Well-defined process Continuous process adaptation after
learning

Test and Eval-
uation

Usually, it is possible
to test and evaluate the
system

The difficulty of synchronization of
several CS’ life cycles makes the test
and evaluation more complex

Engineering and Design Considerations
Boundaries
and Interfaces

Based on the identifica-
tion of boundaries and
interfaces for the single
system

Based on the identification of possi-
ble and interoperable CS that will con-
tribute to meet SoS objectives, while
balancing their own objectives

performance
and Behavior

The performance of the
single system to accom-
plish his objectives

The performance of the SoS that al-
lows it to meet his objectives while
considering the CS own objectives

1. SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND 30

Metrics Well-determined (The
INCOSE Handbook for
example)

Difficult to defined, agree, and quan-
tify

1.3 Discussion

Even if there does not exist unifying definition of SoS, several features and artifacts
have been cited throughout the chapter. These features and artifacts were proposed to
characterize SoS from traditional systems. It then becomes clear that a SoS is qualita-
tively and structurally different from a traditional system. Both of the characteristics
of an SoS, and authority relationships between the CSs and the SoS influence on how
to engineer SoSs. Furthermore, they influence how system engineering (SE) can be
applied to SoSs in several aspects like management and oversight, operational focus,
engineering and design considerations (10?). SoSE is primarily concerned with ac-
knowledged SoS, where the SoS is under the responsibility of an organization. As
there is a difference in engineering systems and SoSs, practitioners admitted the need
to develop methods, processes and tools to analyze, design, architect, and evolve SoS.
Next chapter provides a state of the art on the different approaches and principles of
SoSs modeling.

Chapter 2

SYSTEM OF SYSTEMS
MODELING: STATE OF THE ART

In the development of monolithic systems, a system engineering process is used to
facilitate the development and implementation of the system. It begins with the re-
quirements elicitation and finishes with the validation of the solution. However, when
engineering SoSs, specific characteristics have to be considered as addressed in the
previous chapter, such as the independence of the CSs. Modeling plays a prominent
role in the development of SoSs. It supports the analysis of the SoS requirements
and the design of the architecture of the SoS, as well as its verification. This chapter
presents an overview of the state of the art on SoSs modeling. It starts by present-
ing SoSE life cycle models, and SoSE architecting artifacts. It lists, then the different
SoSs modeling contributions that are most closely related to our work. The chapter
ends with a discussion of the state of the art and addresses a research gap analysis.

2.1 Systems of systems development phases

Given the distinctions between classical SE and SoSE due to the additional challenges
that raised with SoS paradigm. SoSE phases used to develop SoS could be considered
as an essential extension and evolution of classic SE. In fact, systems engineers when
applying SE to SosS adapted the SE life cycle, activities and processes to SoS. In the
following, we describe the SoSE life cycles proposed in the literature as well as the
SoS architecting artifacts.

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 32

2.1.1 Systems of systems development life cycles

This section presents the most well known SoSE life cycles that were proposed in
response to several SoSE key challenges. These life cycles were needed to consider
the fact that SoS is composed of new, modified, or existing systems, and that certain
systems may evolve and their future is uncertain.

2.1.1.1 SoSE Double V Model

By considering the constituent systems involvements in SoS, the SoS development
process was represented at the beginning by “two-tiered development in a double V
model” (9) as depicted in Figure 2.1. The engineering of constituent systems is done
in parallel with the engineering of the SoS and SoS evolution relies on constituent
systems changes through their own life cycles.

Figure 2.1: The SoSE Double V Model (9)

Even if the double V model takes into account the existence of constituent systems
as recommended for SoSE phases in the ISO/IEC/IEEE 21839 (52), it doesn’t consider
other characteristics of SoS as the evolutionary development and the dynamicity and
changes in the constituent systems because it implies “a single pass development of
a SoS” (9). Furthermore, some reviews have demonstrated that the classical system
engineering process, including need statement, requirements, implementation, valida-
tion and delivery, and eventual disposal is not suitable for SoS given their evolutionary
character (10). The double V model was presented also by Clark (79) and was desig-
nated by the name SoSE Dual-V Model.

33

2.1.1.2 SoSE trapeze model

The SoSE trapeze model (10, 80, 81) was proposed after a review done by the Office
of the Under Secretary of Defense for Acquisition, Technology, and Logistics (OUSD
AT&L) that concerned defense programs, where SE had to be applied in an SoS con-
text, and which has shown that a SoSE process is needed to offer guidance for the
DoD SE community. The SoSE trapeze model is depicted in Figure 2.2, it is especially
applicable to acknowledged SoS type, it is based on the necessity to understand the
SoS objectives, to analyze the constituent system’s capabilities, and to consider the
evolutionary character of SoS. Seven core elements characterize the trapeze model and

Figure 2.2: The SoSE Trapeze Model (10)

are described as follows (10, 80, 81): 1) “translating the SoS capability objectives into
requirements” and 2) “assessing the performance pertaining to these capability objec-
tives” as well as 3) “monitoring and assessing the external changes on the SoS”. It is
important for SoSE engineers to 4) “understand systems that contribute to the realiza-
tion of SoS objectives and their relationships” and 5) “to develop and evolve an SoS
architecture”. For the SoSE, it is crucial to 6) “address new requirements and solution
options” and 7) “orchestrate upgrades to the SoS and implement the changes”.

2.1.1.3 Wave model

Dahmann (11) “built on the trapeze model and translated the SoSE core elements, their
interrelationships, and SoS decision making artifacts to a more familiar and intuitive

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 34

wave model representation”. This model views SoS development as an evolutionary,
iterative, and incremental process to adapt constituent systems and improve SoS per-
formance. Originally, the wave planning was introduced by Dombkins (82), and it was
subsequently “applied to the SoS trapeze model to illustrate the incremental and itera-
tive process that characterizes acknowledged SoS development” (11). The SoSE wave
model is illustrated in Figure 2.3. Six steps characterize the SoSE wave model (11).

Figure 2.3: SoSE Wave Model (11)

In the SoSE wave model, systems engineers are actors in 1) initiating the SoS by un-
derstanding SoS goals and 2) conducting SoS analysis by taking into account several
artifacts such as SoS performance measures and SoS risks and mitigations. Funda-
mental to SoSE is the 3) development and evaluation of the SoS architecture as well
as the 4) planning of SoS updates and evaluation of the SoS priorities. The SoSE team
is involved in 5) monitoring the implementations at the constituent system level and
finally 6) performing a continual SoS analysis to revisit key information.

2.1.1.4 SoSE DANSE model

Another way to represent the SoSE life cycle is the one proposed by the European
commission project Designing for Adaptability and EvolutioN in System of systems
Engineering (DANSE) 1. Like the wave model, the SoSE DANSE model (9, 12, 83)
relies on evolutionary process as shown on Figure 2.4. The DANSE model is based

1European funded project. Web site: http://www.danse-ip.eu Accessed 19/06/2020

35

on the idea that SoS grows from interacting constituent systems rather than being de-
signed from above. Furthermore, the DANSE model considers that changes in an SoS
are caused by three factors: modifications to the constituent systems, environmental
change, and changes made by an SoS Manager.

Figure 2.4: The SoSE DANSE Model (12)

Three phases characterize the DANSE life cycle, they are described at the top of
the Figure 2.4 and define vertical compartments. In the 1) SoS initiation phase, initial
SoS is created with newly participating CS, who their own goals match with SoS goals.
contributes SoS. In the 2) SoS creation phase, the SoS manager evaluates the emergent
behaviors that result from the initiation phase, design the SoS and guide the evolution
of the SoS during 3) SoS operation phase.

2.1.2 Systems of systems architecting artifacts

The proposition of SoSE specific life cycles specific proves that there is already a
greater awareness of SoS characteristics, which create SE challenges, and a recognition
that some activities are unique to SoSE. Always for the same purpose, and to help
employ fundamental SE processes in an SoS environment, Dahmann and Lane (34)
define SoSE artifacts, compare them with similar ones developed and used for single
systems, and discuss how they are used to guide SoS engineering processes. The
artifacts are presented in Table 2.1.

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 36

Table 2.1: Comparing SoS and system artifacts (Adapted from (11, 34))

Table 2.1: Comparing SoS and system artifacts (Adapted from (11, 34))

Artifact System SoS
SoS capability-related information

Capability
objectives

Focuses on a user’s capability
gap, and could provide func-
tionality for supporting SoS
objectives

The focus is on top-level SoS capabili-
ties. Several constituent systems, often
not known initially, contribute to the SoS
mission accomplishment

CONOPS Single system focus Based on numerous systems
Requirements Defined by analyzing the op-

erational users needs
SoS requirements space is bound by SoS
user’s needs. It must be refined un-
til the identification of specific require-
ments, which will be handled by the con-
stituent systems.

Constituent system-related information
Systems in-
formation

The emphasis is on interfaces
between parts, the exchange
with external systems, and the
enhancement of system per-
formances. Focus is typically
on the technical aspects

Focuses on constituent system-level in-
formation that affects the SoS objectives.
Includes in addition to the technical as-
pects, the operational, organizational, and
planning issues.

SoS technical information
Performance
measures
and meth-
ods

The emphasis is on perfor-
mance of the specific system
and the interactions within
external interfaces

The emphasis is on SoS solution perfor-
mance while remaining as much as pos-
sible independent from constituent sys-
tems, to permit the assessment of other
alternative solutions

Performance
data

Mainly gathered in typical SE
life-cycle. Used to assist
fielding decisions

Predominantly gathered from different
operational environments. Used to detect
capability gaps and to improve continu-
ously the SoS

37

Architecture Provides top-level system
components, their connec-
tions, the communication
protocols, and all key ele-
ments that link components
to the external system inter-
face. Architecture is used to
make decisions on system
development

Includes constituent systems, their con-
nections, the communication protocols,
and all key elements that link constituent
systems. Architecture is used to under-
stand the relationships among constituent
systems, and to develop solution options
to meet SoS objectives

SoS tech-
nical
baselines

Specific system arti-
facts/components which
constitute the system base-
lines

Emphasis is on SoS-level definition and
identification of constituent system base-
lines that comprise the SoS baseline

SoS management & planning information
SE plan-
ning
elements

Takes the form of an SE Plan,
and is part of the acquisition
process

The main important point is the deter-
mination of the rhythm, organizational
structure, technical reviews, and decision
processes across SoS evolution. It is im-
portant to consider the ability and will-
ingness of constituent systems to support
SoS

Master plan Focus is on the defined end-
state of the system. Reflects
the system acquisition strat-
egy

The emphasis is on SoS-level view
through several increments, and interac-
tion points of constituent systems. Con-
tinuous improvement is an important con-
sideration

Agreements Emphasis is on identifying
system dependencies (e.g.
need of special components)

Emphasis is on assisting relationships
within multiple organizations

Technical
plan(s)

Aims to incorporate system
changes

The emphasis is on making modifications
to constituent systems to achieve an incre-
ment of SoS development

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 38

Integrated
master
schedule

Full list of SE development
activities, milestones and re-
lated timetables

Collection of SoSE development activi-
ties and milestones associated to consi-
tituent systems SE activities and mile-
stones. The emphasis is on constituent
systems coordination key elements, and
pointers to their schedules for the current
SoS increment

Risks and
mitigations

Emphasis is on system chal-
lenges and expected prob-
lems. Includes current depen-
dencies which present spe-
cific risks

Emphasis is on desirable and undesirable
emergent behaviors of the SoS. Includes
also constituent systems risks

According to (11, 34), the critical information to realize effective SoSE and the
corresponding artifacts could be organized as follows:

• SoS capability-related information: gives the SoSE capability context, which is
defined early in the SoSE process. The SoS capability objectives correspond
to the main goals of the the SoS, the SoS CONcept Of OPerationS (CONOPS)
defines the use of the SoS constituent system functionality in an operational con-
text, and the SoS requirement space bounds the operational tasks and missions
while considering the environment change that affect the execution of the re-
quired functions.

• Constituent system-related information: is captured early in the process when the
SoS is initiated. The systems information corresponds to information pertaining
to the systems that impacts the SoS capability objectives, and this information is
collected to be used for replacements as the SoS evolves.

• SoS technical information: the SoS performance measures and methods capture
the basis for assessing the overall performance of the SoS and for improving
the SoS, while the effectiveness data of the SoS are collected from different en-
vironments to identify the areas needing more attention. The SoS architecture
determines how the constituent systems operate together and tackles their imple-
mentation only when the related functionality is needed at SoS level. Finally, the

39

SoS technical baselines are developed for each increment of SoS development.
SoS baselines include requirements, functional, allocated, and product baselines,
as well as constituent system baselines that are managed by the systems them-
selves.

• SoS management & planning information: include the six principal elements
(See Table 2.1). The SoSE planning elements determine “the rhythm, techni-
cal reviews, and decision processes across the SoS evolution”. These elements
furnish also “the principal SE rules of engagement for the SoS and are utilized
by all SoS actors”. Master plan is an integrated plan offering a top-level view
of several upgrades to implement the SoS evolution strategy. This plan is estab-
lished by the SoSE team and the SE teams.. Agreements define SoS participant’s
roles and responsibilities, along with their contributions in development incre-
ment. Technical plans are established for each SoS update cycle and regroup
SoS implementation, integration, and test plans. Integrated master schedule are
created for each SoS development increment, they contain the crucial aspects in
the technical plans that need to be tackled in SoS development. Finally, the SoS
risks are captured and tracked.

2.2 Model Based System Engineering (MBSE) via the
System Modeling Language (SysML)

Model Based System Engineering (MBSE) makes system development easier by
employing a collection of computer-interpretable models (84) to describe, formalize,
and organize the system development process. Models are useful at several stages of
the system development process, from requirements to system verification and imple-
mentation. According to the INCOSE Systems Engineering Vision 2020 (85), MBSE
is defined as “the formalized application of modeling to support system requirements,
design, analysis, verification and validation activities beginning in the conceptual de-
sign phase and continuing throughout development and later life cycle phases”. Sev-
eral other acronyms such as Model Driven development (MDD), Model Driven Engi-
neering (MDE) and Model Based Design (MBD) are synonymous with MBSE. These
acronyms are in fact until now more often used in the software engineering community
in which MBSE then stands for model-based software engineering.

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 40

Researches in SoSE domain claim that the use of MBSE to model systems is a
promising path, the adoption of MBSE approach brings five benefits according to the
INCOSE (86): improved communications, increased ability to manage system com-
plexity, improved product quality, enhanced knowledge capture and reuse of informa-
tion, and improved ability to teach and learn SE fundamentals. Indeed, models be-
come then the primary means of communication between engineers, clients, builders
and users. According to IEEE 610.12 (87), a model is “approximation representation,
or idealization of selected aspects of the structure, behavior, operation or other char-
acteristics of a real-world process, concept, or system”. MBSE links and integrates
different system modeling activities (13). It involves capturing the various aspects of
an integrated system or SoS and incorporating them into a single model. A model will
consist of various graphical viewpoints that describe the characteristics of a system
(See Figure 2.5).

Figure 2.5: System Model Example (13)

The system models are built around the aim of the modeling and the required view-
points. According to IEEE 1471 (88), a viewpoint is “a template, pattern or specifica-
tion for constructing a view”. A viewpoint usually informally specifies “the purpose of
a perspective and the concerns that stakeholders wish to address” (84). Based on the
required model viewpoints, the modeling language and the tools are selected. Because
of its capacity to capture the structure of the constituent systems, System Modeling

41

Language (SysML) 1 is widely used and provides a strong foundation for system
modeling. It is based on the Unified Modeling Language (UML) 2 but caters in both
semantics and usage specifically towards systems engineering as opposed to UML’s
focus on software development. Many of the basic elements, interactions, and views
from UML are included or extended within SysML. It is a general-purpose graphical
modeling language for specifying, analyzing, designing, and verifying complex sys-
tems that may include hardware, software, information, personnel, procedures, and
facilities. There are four sets of viewpoints that are captured in SysML (four pillars of
SysML): structural, behavioral, requirements, and parametric. Structural viewpoints
establish the definition of elements: the composition of systems, their properties, and
organizational grouping. Behavioral viewpoints describe how these elements function,
their operational states, and their interactions. The requirements viewpoint allows SE
engineers to create, relate, trace, and analyze the system requirements. Finally, para-
metric viewpoints allow for the application of constraints on systems via logical and
mathematical expressions.

2.3 State of the art on SoSs modeling

This section is the literature review of different approaches that tackle with the design
and development of SoS. We first present methodologies proposed to develop complex
systems. We then present different processes, which were proposed as part of a re-
search project. Some related research proposed in the SoSE field are given. At the end
of the section, a discussion which concentrates on advantages and disadvantages of the
approaches is given.

2.3.1 Complex systems engineering methodologies

A number of SE methodologies are currently used by the systems engineering commu-
nity, offering guidance for analyzing, developing and documenting complex systems.

1http://www.omgsysml.org/ Accessed 19/11/2021
2http://www.omg.org/UML Accessed 19/11/2021

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 42

2.3.1.1 OOSEM

“The Object-Oriented Systems Engineering Method (OOSEM) provides an integrated
framework that combines object-oriented techniques, a model-based design approach
and traditional top-down SE practices” (14). OOSEM is now advocated as an exam-
ple of a model-based systems engineering (MBSE) best practice since it was realigned
with SysML (it was initially based on the unified modeling language (UML). the fol-
lowing activities are encompassed in the OOSEM “specification and design system
process” as shown in Figure 2.6: (1) analysis of the stakeholder needs, and (2) analysis
of the system requirements. (3) Logical architecture definition by highlighting how the
logical components interact to fulfill the requirements. The (4) allocation of hardware,
software, data, and procedures to the logical components. The (5) activity of optimiz-
ing and evaluating alternatives and finally, the (6) activity of managing the traceability
of requirements from the mission level requirements to the component requirements.

Figure 2.6: The OOSEM Specify and Design Process (14)

43

2.3.1.2 Harmony

The Harmony (15, 45) SE process is characterized by three main activities depicted in
Figure 2.7: (1) “requirements analysis”, (2) “system functional analysis”, and (3) “ar-
chitectural design”. The Harmony SE is a model based process and uses SysML as the
modeling language. In the Harmony “requirements analysis phase”, requirements are
grouped into use cases. The “system functional analysis” phase consists of translating
functional requirements into set of system functions. A black box model is related
to each use case. Incrementally, these black box models are aggregated into a black
box system model. The “architectural design” activity is composed of the “system ar-

Figure 2.7: The Harmony Process (15)

chitectural design” and “subsystem architectural design” elements. In the subsequent
system architectural design phase, the valid operational contracts is assigned, based
on performance and safety requirements, to the physical architecture. The subsequent
subsystem architectural design phase aims at deciding the operational contracts within
a physical subsystem that should be implemented in the hardware and software (hard-
ware/software tradeoff analysis).

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 44

2.3.1.3 MagicGrid

MagicGrid (16) is a SysML-based framework for modeling complex systems. As de-
picted in Figure 2.8, the MagicGrid framework consists of viewpoints (black box,
white box and solution) and aspects (the four pillars of SysML: requirements, sys-
tem structure, system behavior, and parameters) organized in a grid view. The cells
of the grid represent different views of model-based systems engineering, which are
described as follows (16): (1) the requirement elicitation of stakeholders by using the
SysML requirement diagram (RE); (2) a use case description of the refinements of
functional stakeholder needs; (3) system context representation using the SysML in-
ternal block diagram (ibd); (4) measures of effectiveness (MoEs), which indicate the
nonfunctional requirements, described in the SysML block definition diagram (BDD).
The MoEs calculation procedures are specified with the SysML parametric diagrams.
The (5) identification and specification of system requirements is performed by us-
ing the RE diagram, (6) and functional analysis elaboration is performed with multiple
SysML activity diagrams, specifying internal system functions. The (7) logical subsys-
tem communication identification is established using the control and resource flows
defined in the functional analysis model. Both of the SysML BDD and SysML IBD
are used to capture this view. The (8) measures of effectiveness (MoEs) as well as
the measures of performance (MoPs) are captured for each logical subsystem, in the
SysML BDDand parametric diagrams. The (9) component requirements are captured
using the SysML requirement diagram. The (10) component behavior definition is
performed using an association of SysML state machine, activity, and sequence dia-
grams; (11) component structure elaboration is performed by illustrating the physical
connections between physical components, and this view is captured using both the
SysML BDD and IBD. The (12) component parameter definition of each component
is performed, in which each parameter captures the component characteristics and the
links between them and describes how the MoEs and MoPs already specified are ac-
complished using these characteristics.

Other interesting SE approaches have also been reported in the literature, such as
the IBM Rational Unified Process for Systems Engineering (RUP SE) (89), JPL State
Analysis (SA) (90), and SYStem MODeling (SYSMOD).

45

Figure 2.8: The MagicGrid Framework (16)

2.3.2 Enterprise architecting frameworks

Architecture frameworks provide a roadmap for describing the architecture of a sys-
tem. These descriptions are necessarily done from multiple view-points, not from
single viewpoint. we present the frameworks that are more suited to SoS architecture
than others.

2.3.3 DoDAF

The Department of Defense Architecture Framework (DoDAF) (46) is an architec-
ture framework for the United States Department of Defense (DoD). In the DoDAF
framework, there is several views, each of which is broken down into products and
data: operational view, systems and services view, etc. The operational view aims to
describe the tasks and activities, operational elements, and resource flow exchanges
required to conduct operations. The capability view aims to describe the mapping be-
tween the required capabilities and the activities that enable those capabilities. Man-
agers in the DoD are required to specify the requirements and control the development
of architectures for any defense systems they procure. Since it is the preferred system
architecture, suppliers to the DoD should adopt DoDAF as the primary baseline for any
defense systems they are contracted to build. The core of DoDAF is a data-centric ap-
proach where the creation of architectures to support decision-making is secondary to
the collection, storage, and maintenance of data needed to make efficient and effective

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 46

decisions. Figure 2.9 shows an overview of the conceptual framework of DoDAF.

Figure 2.9: DoDAF Views and Concepts (17)

2.3.4 MoDAF

The Ministry of Defense Architecture Framework (MoDAF) (47) is an architecture
framework for the UK Ministry of Defense. Similar to DoDAF, MoDAF specifies a set
of rules and templates, known as views, which provide a visualization of a particular
business area within an enterprise, which are aimed at the various stakeholders who
interact with the enterprise. These views represent a window into the enterprise archi-
tecture that is specific to the particular stakeholder conducting the viewing. The views
are divided into seven categories: (1) strategic views, to describe the desired business
outcomes; (2) operational views, to define the processes, information, and entities
needed to fulfill the capability requirements; (3) service oriented views to represent
the services that are required to support the processes, (4) systems views, specify the
physical implementation of the operational and service orientated views; (5) acquisi-
tion views, to define the dependencies and timelines of the projects that will deliver the
solution; (6) technical views, to represent the standards, rules, policies, and guidance
that are to be applied to the architecture; (7) all views, used to provide a description and
glossary of the complete project architecture, including scope, ownership, timeframe,

47

and all other meta data that is necessary to effectively query architectural models. Fig-
ure 2.10 illustrates how the different viewpoints relate to each other.

Figure 2.10: MoDAF views (17)

While DoDAF and MoDAF frameworks have similar views, their respective meta-
models are different. Despite this, the MoD has been working with the Object Manage-
ment Group (OMG) to develop the Unified Profile for DoDAF and MODAF (UPDM),
an abstract UML profile that implements the MODAF metamodel and the DODAF
metamodel. It is based on the Unified Modelling Language (UML) and extends the
Systems Modeling Language (SysML). The UPDM prescribes more than 40 views.
The viewpoints allow modeling in different levels of abstraction, and are rich in term
of concepts, including all the concepts related to SE or SoSE domains.

2.3.5 Research projects

This section collects a few solutions that have been proposed in the context of research
projects. Among all approaches, we choose the solutions proposed in COMPASS,
DANSE, and AMADEOS projects.

2.3.5.1 DANSE methodology

In the 2.1.1.4 section, we presented the SoSE DANSE lifecycle, and described the main
steps that characterize it. In what follows, we detail the associated methodology. The
DANSE methodology is described in terms of six engineering activities (9), shown as

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 48

the colored horizontal bars in the Figure 2.4. The first activity is to (1) model the SoS
behavior, using the combined DoDAF and MoDAF profile (UPDM), which consists
of a collection of similar views representing several facets of the SoS architecture.
As SoS continues to operate, the changes have to be made to the SoS while it is still
working, in the (2) operate the SoS activity. In this later, models are used for tracking,
evaluating, and predicting operations. Evaluation of the real SoS provides guidance
to refine the models. Thus, the model SoS behavior and operate the SoS activities are
closely coupled. In the (3) define potential needs, the SoS Manager identifies, at SoS
level or CS level, new or changed potential requirements using the UPDM capabilities
and operational views that structure the identity and relationship of capabilities and
characteristics. In response to new or changed potential needs, the architecture may
change in response, in the (4) analyze possible architecture changes activity, the SoS
manager refines models and analyzes possible changes in the architecture. After the
generation of new architectures, both of of UPDM models and CS models could be
associated to create a joint time-based simulation of the whole SoS. The simulation
enables the SoS manager to evaluate the SoS arhitecture. Finally, the SoS manager
implements SoS revisions by influencing CS owners to update their systems for the
benefit of the SoS, in the influence and implement changes activity. Note that the
DANSE methodology requires an SoS manager with some authority for the SoS in
addition to the SoS architect, the two stakeholders must have knowledge and visibility
of the SoS goals. Furthermore, the methodology is based on two key challenges, the
dynamicity which represents the constant change and evolution of the SoS, and the
emergent behavior, which is the behavior that results from the interaction of CSs.

2.3.5.2 COMPASS approach

The COMPASS (Comprehensive Modeling for Advanced Systems of Systems) project
1 was intended to provide and evaluate model-based methods and tools for develop-
ment and analysis of SoS models. The COMPASS approach is shown in Figure 2.11,
it provides various description levels, beginning with a SysML graphical view which
is simple to understand for SoS stakeholders (49), to the textual COMPASS Modelling
Language (CML) (91), a formal language that needs trained stakeholders, and that
was proposed to carry out many types of analysis for the SoS. CML is based on well-

1European funded project. Web site: http://www.compass-research.eu Accessed 05/07/2020

49

established formalism and includes particular aspects of SoS, as shown in Figure 2.11,
such as contracts for constituent systems. Many different types of analyses can be per-
formed using CML, and some will be presentable at the SysML level. CML’s semantic
is established using the Unifying Theories of Programming (UTP) (92).

Figure 2.11: The COMPASS Approach (18)

The COMPASS project gave special importance to the development of SoS archi-
tecture activity, and to the use of an Architectural Framework (AF) that includes con-
sistency rules defined between the various views produced. That’s why the project de-
fined an AF, called the COMPASS Architectural Framework Framework (CAFF) (93).
CAFF is based on the SysML language and can be used for defining other architectural
frameworks and architectural patterns for SoS. The COMPASS modeling and analysis
process for SoS architecture was defined in (19) and applied to an accident response
case study in (49). Figure 2.12 depicts the main phases of the COMPASS modeling
and analysis process for SoS architecture, which use the SysML and CML languages.

The first step of the process is (1) to determine the SoS requirements and stakehold-
ers, it is followed by (2) the understanding the CSs, their relationships and stakehold-
ers step. As it is difficult to reason directly about the SoS architecture, the COMPASS
process proposed to (3) to outline idealistic block diagram, which assumes that all
features of all CSs are immediately accessible. Furthermore, it is important to decide
how to accommodate each CS, to support the ideal functionalities. The (4) CSs and
their components with different groups of functionality, interfaces, and protocols have
to be classified, this step helps to (5) improve the idealistic block diagram as well as

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 50

Figure 2.12: The COMPASS SoS Architectural Modeling and Analysis Process (19)

to (6) vary configurations and classify them as SoS. After the previous analysis steps,
(7) a block diagram of the complete SoS is established, The enhanced block diagram
must support all configurations. Finally, it is important to (8) determine integration test
strategy for the SoS. The project emphasizes that this process is applied iteratively.

2.3.5.3 AMADEOS Framework

The AMADEOS (Architecture for Multi-criticality Agile Dependable Evolutionary
Open System of Systems) project 1 goal is to bring knowledge and evolution to the de-
sign of SoS, to develop a sound conceptual model, a generic architectural framework,
tools, and a design methodology. The previous projects (DANSE and COMPASS)
apply SysML approaches to specific viewpoints, deemed essential in providing SoS
architecture. The AMADEOS architecture framework benefits from the previous ap-
proaches in supporting specific viewpoints, and integrates SysML specific solutions to
provide a usable high-level support for designers of SoS. The AMADEOS AF (20) is
defined by means of a high-level perspective of activities and artifacts involved in the

1European funded project. Web site: http://amadeos-project.eu/ Accessed 03/09/2020

51

design phases of SoS and by its specialization based on its point of view. The high-
level view representation includes four different layers, namely mission, conceptual,
logical and implementation.

Figure 2.13: The AMADEOS process-based view of the AF (20)

2.3.6 Other SoSE contributions

In SoSE field, there is a multitude of proposals which aims at giving frameworks, tools
and methods to model and architect SoS. These different proposals are discussed in the
following.

Lock and Sommerville (94) proposed an approach to model SoS throw capability
specification of subsystems. The authors proposed a taxonomy for capability con-
cept. Capabilities can be broken down by type (Technical, Socio-technical Resources,
Manual, Information Resources, Personnel Resources) and maturity (Current, Legacy,
Development). The authors defined a graphical notation to illustrate the dependen-
cies between subsystems throw capability dependencies. The approach is designed to
help end-users recognize and evaluate graphically the hazards and associated risks that
may occur in complex socio-technical SoS, with specific focus on the role of system

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 52

dependencies. This work gave some interesting features about capabilities (type and
maturity), however, these informations are directly related to the systems that will be
used at run-time.

Lu and al. (21) proposed a double layer modeling framework for SoS, based on
the complexity analyzing of SoS relationships. The authors hilighted that SoS capabil-
ity is classified into two types: Capability Requirement (CR) and Capability Property
(CP). The CR is the potential ability to execute a specified course of action, while the
CP is the inherent ability to execute a specified course of action. The double layer
framework addresses a modeling process from micro mechanism modeling to macro
behavior distinguishing. As described in Figure 2.14, the key to SoS capability mod-
eling is to analyze micro mechanism on emerging desired capability, and guide the
result generated by micro mechanism to predicted capability, which is obtained from
complicated relationship, using capability emergence process.

Figure 2.14: Main Concepts of the Double Layer Modeling Framework (21)

(95) proposed a conceptual model for SoS that can support the development of
analysis and synthesis tools. The aim of this conceptual model is to reason about some
properties of SoS and verify whether specifications are met. In this model, an SoS S
= S(R, G, E, CS, B, C, H) is characterized by (1) Roles, R, a set of finite roles the
system can assume, (2) Goals, G, representing for each role what the system should
do, (3)Environment Model, E, representing the external environment assumptions of
the system S under which the system was built to accomplish its objectives in a specific
role, (4) A set, possibly empty, of constituent systems, CS, (5) Capabilities, C, repre-
senting what the system can do in a given role (6) Behavior, B, the relationship binding
the variables (inputs, outputs, states) describing how a system operates, (7) A Strategy,
is the decision of a constituent system about its behavior chosen according to its en-

53

vironment model, and (8) Relations, H, defined on the constituent systems and roles
of the System of Systems S. The authors adress a list of relations on the constituent
systems, each relation can be represented as a directed graph. The possible relations
are: COMMUNICATION (a communicates to c), AUTHORITY (a has authority over
c), USE (a uses c), OWNERSHIP (a owns c), COORDINATION (a coordinates with
c), OBSERVATION (a observes c), KNOWLEDGE (a knows c). The authors use the
conceptual model to reason about degrees of fulfillment of SoS objectives by giving a
classification of reasons for failing the SoS objectives, and possible lines of attack to
deal with these.

2.3.7 Discussion

When analyzing the state of the art, we found a large number of model-based method-
ologies, such as OOSEM, Harmony and MagicGrid, which are dedicated to analyze,
developing and documenting complex systems. They are widely used to solve different
tasks of the systems engineering process, and they have reached a level of maturity, in
the identification and gathering of artifacts and best practices for complex systems en-
gineering (14). However, the litterature shows that a SoS is viewed not as a hierarchy
built of component systems, but as an environment within which other systems oper-
ate, and which can support the addition of new systems that build on systems already in
the environment (3, 39). The SoS boudary will be variable, continually adding, mod-
ifying, or removing different constituent systems within the scope, and the SE model
based methodologies do not follow this reasoning. SE approaches can trace system
boundaries and define requirements clearly (81, 96), something that is not obvious in
the SoSE. Furthermore, trade analyses and measures of performance allow the opti-
mal allocation of components to requirements while in SoSE, SoS engineers need to
take into account considerations beyond the use of existing systems as the constituent
systems of these SoS (81). They must allocate the realization details and functionali-
ties that may not be optimal from the SoS point of view. Moreover, SoS engineers do
not control the overall development environment of the SoS because the constituent
systems must retain their independence.

The AF presented above are just examples among many other frameworks. In-
deed, many countries have their own specific framework, most of them are closely
related and, therefore, have very similar concepts. However, as argued by (20), AF

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 54

are “prescriptive” and not “descriptive”, there is still no consensus on offering step-
by-step methodological guidance to be followed when using AF to analyze or design
SoSs. Therefore, it becomes difficult to make choice about which model or view to
use, and it is difficult to take advantage of the interconnected views because none of
these views provide a simplified perspective that addresses only the subsets of each
view. The architectural frameworks constitute “in depth modeling approach, which
requires significant resources” (94).

The COMPASS, DANSE and AMADEOS projects are the approaches presented
in the context of research projects. The main advantage of the COMPASS approach,
is that it provides a well-defined denotational semantic of SysML blocks by means of
CML, that supports a variety of analysis techniques. DANSE proposed methodological
guidance and a reduction in the AF according to the target objectives. It focuses on
the six models that can be represented as executable forms of SysML, and relies on
evolutionary lifecycle based on the idea that SoS grows from interacting constituent
systems. The COMPASS and DANSE projects shows the utility of adopting SysML
formalisms in order to model different architectural and non-architectural aspects of
an SoS. This promotes various forms of analysis and constitutes the first step towards
executable artifacts that can be extracted automatically from SysML. In addition, the
AMADEOS AF offers an integrated support to all the viewpoints, it offers means to
link the high-level perspective to activities and artifacts involved in SoS design phases.
The research projetcts relies on iterative lifecycles which focus on identifying new
or changed requirements and analyzing possible architecture changes activity. This
point helps to improve the SoSE design to manage the SoS problems. However, more
recent research argues that in SoSE domain, the design and the end-to-end process and
management are required to be balanced (22, 50). In fact, SoS are acquired to satisfy
new capabilities in a mission context. The latter is a key element to assist SoS engineers
to determine the systems that must be involved and the functions they must perform. It
is important to consider the mission thread to bridge the dissociation between the SoS
objectives and the individual functionalities undertaken by the systems that constitute
the SoS to support the SoS mission. “The allocations of functions or activities to
constituent systems can change over the course of a mission thread” (50), and thus,
SoS boundaries may change continually dependent on the mission (97).

The SoSE contributions gave interesting ideas, considered as a foundation for
thinking differently about SoSE, for example modeling SoS based on capability mod-

55

eling. These contributions are often based directly on constituent systems capabilities,
and does not take into account that systems available at run-time are not really known
at early stages of SoS development. However, as argued by Keating (96), “this shift
in thinking is an invitation to engage a different paradigm, respective of the unique
character of complex SoSs and the different emerging constructs that hold the keys to
increasing effectiveness in dealing with SoSs”.

The analysis of the state of the art reveals that a novel approach, with new paradigms,
which incorporates the best practices of existing SE approaches, taking into account
the SoS artifacts and mission understanding, would be welcomed within the SoSE.
From this perspective, we propose in this thesis the maintenance of a mission focus,
throughout the SoSE analysis and the architecture process. We propose a mission-
based process within the wave model, for acknowledged SoS analysis and design,
based on the SysML language. The process take into consideration several features
that distinguish a SoS from system.

2. SYSTEM OF SYSTEMS MODELING: STATE OF THE ART 56

Chapter 3

MISSION ENGINEERING

In the previous chapter, we presented the state of the art on SoSs modeling and high-
lighted the need to balance the design and the end-to-end process. We argue that the
end-to-end process is embodied in the concept of mission. In fact, Mission Engineer-
ing (ME) is the domain that intends to link the engineering activities that are conducted
to achieve a mission, with the mission itself. Thus, in order to efficiently use the mis-
sion paradigm, we have dedicated this chapter to present the different approaches of
ME domain as well as its basic vocabulary. we start by presenting an overview of
mission engineering domain. In the later, we introduce its origin, and take up position
in the most suitable mission engineering form for our work, because several forms of
mission engineering have emerged according to the application domain. We give some
preliminary knowledge and the terminology of mission, mission engineering domain,
and present the different roles involved in this domain. Then, we describe the differ-
ent approaches that exist in the literature, which are required to achieve and oversee
mission engineering efficiently. The approaches were collected from several sources,
mainly the military domain. A discussion is given at the end, to identify key points that
have to be considered, to support mission engineering for SoS development process.

3.1 Overview of mission engineering

The following section presents background and definitions of Mission Engineering
(ME), in the context of military domain, SE, and SoSE. It defines also the key terms
used in this domain, as well as the roles involved in it.

3. MISSION ENGINEERING 58

3.1.1 Origin of mission engineering

Mission Engineering (ME) designation has been used for almost two decades mainly
in two different domains: Aeronautics and Defense. Even if the principles of ME
are the same, its use is definitely different in each domain (22). There are two large
and different uses of ME, the first one by the Department of Defense (DoD), and the
second one by the National Administration of Aeronautics and Space (NASA). Sousa-
Poza (22) highlighted that each type of ME is different because of the essence of the
issue being addressed. While there are similarities between the problem and the pur-
pose, the essence of the problem and the way in which it must be handled are somewhat
different, if not entirely incompatible. The use of ME at NASA’s projects aims to en-
sure the highest degree of confidence that the expected mission will be accomplished.
Thereby, the NASA ME project is highly technical and the solutions must be design-
driven, given the nature of space missions. After the analysis and design phases, space
missions allow for only limited amounts of adaptation.

In the acquisition and enhancement of DoD capabilities, mission planning plays a
key role. Consequently, ME has more recently started to be used in government ac-
quisitions and, especially, in defense projects (98). As supported by (22), platforms
in the DoD environment are typically operational. Often, to existing legacy systems1,
engineered artifacts are added. However, legacy systems may evolve continuously, ac-
cording to the operational environment and the context of use. The consequences are
that the exact configuration of components, assemblies, and networks will be uncertain.
Thus, ME in this context support approaches that take into consideration the existing
operational platform, and give special consideration to the mission to be accomplished
purposefully. The emphasis must turn to the purposeful evolution of the network of
legacy components towards the intended mission. This reasoning follows exactly the
principle of SoSs and remains compatible with our thesis objectives. Moreover, oper-
ationally, the DoD acts as an SoS as military commanders bring together forces and
systems (e.g., weapons, sensors, platforms) to achieve a military objective (10). That’s
why the use of ME in our thesis derives from its existing use by the US Defense De-
partment.

More recently, the use of mission engineering becomes more and more widespread

1Legacy system is an old or out-dated system, technology or software application that continues to
be used by an organization.

59

in several context. We can find recent papers that apply ME for swarm unmanned
systems (99), homeland security as mentioned in (50), and systems engineering (51,
100, 101, 102).

3.1.2 Mission definition

There are numerous definitions for the term “mission”. The DoD (103, 104) defined
mission as “the task, together with the purpose, that clearly indicates the action to
be taken and the reason therefore”. In (28), mission is defined as “a pre-planned ex-
ercise that integrates a series of sequential or concurrent operations or tasks with an
expectation of achieving outcome-based success criteria with quantifiable objectives”.
The authors of (26) defines the mission as follows: “given a set or type of stimuli,
the mission is the collection of tasks, goals and objectives that have to be achieved to
successfully address the stimuli. The mission includes all of the physical assets nec-
essary to meet the goals as well as all of the techniques and procedures necessary to
effectively employ them”.

The field that emerged owing to the need for understanding, and documenting the
end-to-end mission execution, is Mission Engineering (ME) domain. We deal with ME
in the following sections.

3.1.3 Mission engineering definition

Mission engineering has several candidate definitions. For example, the US Depart-
ment of Defense (DoD) defines mission engineering as “deliberate planning, analyz-
ing, organizing, and integrating of current and emerging operational and system ca-
pabilities to achieve desired war fighting mission effects” (105). Another definition
proposed in the DoD Mission Engineering and Integration (MEI) Guidebook (104)
defines it as “planning, analyzing, organizing, and integrating current and emerging
operational concepts to evolve the end-to-end operational architecture and capabil-
ity attributes, including anticipated friendly force and opposing force behaviors, that
are needed to inform the communities of interest involved in fulfilling mission needs
statements”.

One more definition of mission engineering is the one proposed in (50), it includes
a SoSs context, and defines mission engineering as “the structure of systems engineer-
ing and the tactical insights of operational planning to a system of systems to deliver a

3. MISSION ENGINEERING 60

specific capability”. The same source adds that the mission context plays an important
role in ME, it is “a key element to assisting developers and managers to determine
which systems have to be involved, what functions they have to perform, and how op-
erators/users will make use of these systems”.

A more general definition is the one proposed by Sousa-Poza (22), where mission
engineering is considered as “a means to bridge the dissociation between mission and
the [engineering] activities that are undertaken to support a mission”. The same author
claims that ME is an “approach to coordinate the perspective of the mission owner, the
operator, and the engineer”.

3.1.4 Positioning of mission engineering

As argued by Sousa-Poza (22), the key role played by ME, is to integrate the mission
that determines the objectives, and the value premise that guides activities. As illus-
trated in Figure 3.1, there is a dissociation between the purpose and the action, due
to the complexity of the problem in general. The operational component includes the
engineering activities that will be undertaken. It takes into account legacy systems,
artifacts, and assemblies.

Figure 3.1: Positioning of Mission Engineering (22)

Sousa-Poza (22) affirms that the main role of mission engineering, is to (i) iden-
tify relevant perspectives that clarify the mission to be achieved or supported then (ii)
form relevant perspectives of each operation. It is important here to consider technical

61

features, legacy systems, mission context, and domain expert input. Finally, (iii) for-
mulate an engineering perspective of activities that are being conducted. Continuous
risk assessment, and performance measures must be done too.

The proposition of the use of ME in SoS context is quite recent (106). It began
in the military field with the DoD. Legislation for the DoD to establish Mission In-
tegration Management (MIM) activities was included in the 2017 National Defense
Authorization Act (NDAA). Six areas of responsibility for establishing MIM activities
were identified, including research and development, systems engineering, mission-
driven requirements, experimentation, exercises, and Combatant Command coordina-
tion (107). ME is the overarching engineering approach for MIM implementation (23).
Conceptually, ME seeks to integrate material solutions into a SoS architecture that sup-
ports the specific operational mission (See Figure 3.2). It goes beyond data exchange
among systems to address cross-cutting functions, end to end control and trades across
systems (23).

Figure 3.2: Positioning of Mission Engineering (23)

3.1.5 Mission engineering roles

According to Sousa-Poza (22), ME would commonly require the participation of sev-
eral stakeholders as shown in Figure 3.3. ME implies the incorporation of three

3. MISSION ENGINEERING 62

key roles’ perspectives: mission owners, domain experts, and engineers (See Fig-
ure 3.3).

Figure 3.3: The Mission Engineering Involved Roles (22)

Mission owners are responsible for providing the mission decomposition infor-
mation, including capabilities, standards, and conditions (108). These informations
serve to identify the assets being able to meet the needs. The domain experts have
knowledge of the domain, they provide inputs continuously. Operators, users, and
other diverse stakeholders are examples of domain experts (22). The engineers, sys-
tems engineers, and other acquisition specialists are responsible for designing, de-
veloping, and implementing new technologies, artifacts, and assemblies to sustain the
operation, by assuring mission capabilities (22). In (108), this role in called “resource
providers”, and are responsible to provide all assets needed to provide mission capa-
bilities. The collaboration space in which ME arises, should bring together the different
roles. This may help to provide input, guidance and oversight to the ME decisions (22).

3.1.6 Mission engineering key concepts

Several concepts have emerged in ME field, many of them arise from the military
domain. As already mentioned, the military is the first domain who argued for the
application of ME in SoS context (106). In the cited domain, ME is considered as
the SOI, and applies systems engineering processes and knowledge to the design of
missions (109).

63

“Mission environment” is defined by (26) as “all of the entities and interac-
tions, conditions, circumstances, and influences involved in the prosecution of the SoS
against the mission”. The mission environment is populated with mission threads.
These mission threads are “the description of the end-to-end set of activities and com-
ponent systems employed to accomplish specific subsets of the mission goals and ob-
jectives”. Finally, the context of the mission includes the operational environment
(Mission Environment) that contains the natural environment, external stimuli, the
factors that may influence the mission and other interactive entities (26, 110). In SoS
domain, the mission context is unlike that in traditional SE approaches, in which there
is little flexibility because individual functions are mapped to only one element in the
system (50). According to (50), “mission context is a key element to assisting SoS
engineers to determine the systems that must be involved and the functions that they
must perform”.

3.2 Mission engineering approaches

The following section presents related research that proposed mission engineering ap-
proaches, and discuss their applicability in SoS context.

3.2.1 Military mission and means framework

The Missions and Means Framework (MMF) (24) is a framework for explicitly speci-
fying the mission, allocate means, and assess mission accomplishment (See Figure 3.4).
The MMF consists of 11 elements used to define military operations. As shown in
Figure 3.4, seven levels specify the mission: (1) interactions and effects that describe
“how” the course of actions changes the state of components, (2) components and
forces that defines the “by whom” specification, represented with the military actors
(integrated units, personnel, equipment,.etc), (3) functions and capabilities define the
capabilities which enable forces to conduct operations, (4) tasks and operations that
define the “do what” of the mission, and describes the implied tasks for mission ac-
complishment. The purpose of this level is to analyze the task outputs and subsequently
evaluate the mission effectiveness, (5) index and location/time that define the where in
terms of geographic location and the when in terms of time, (6) context and environ-
ment that define under what circumstances a mission is to be accomplished, and (7)

3. MISSION ENGINEERING 64

mission purpose that defines the why of the military evolution and indicates the reason
and purpose of the mission.

Figure 3.4: The Missions & Means Framework (24)

In addition to the seven levels, the following four operations are included in the
framework, each operation works in two directions (Synthesis or Employment): (i)
O1,2: transforms interaction specifications (Level1) into component states (Level2)
and conversely, (ii) O2,3: transforms component states into functional performance
(Level3) and conversely, (iii) O3,4: transforms functional performance into task effec-
tiveness (Level4) and conversely, (iv) O4,1: transforms task sequences into interaction
conditions and conversely.

Authors of (25) considered that MMF is a generic approach for modeling mission
planning and execution, in which specialized domain knowledge becomes necessary
for expressing individual levels and operators. Therefore, the authors proposed an on-
tology to express the MMF framework, intended to express MMF’s complete Level
and Operator set from both mission Synthesis and Employment perspectives (See Fig-
ure 3.5).

3.2.2 Approach to Mission-Level Engineering of SoS

The authors (26) proposed a class of Systems of Systems (SoSs) called Mission-Level
Systems of Systems (MLSoS). They specifically explore and propose a solution to the

65

Figure 3.5: Conceptual Diagram for the MMF Ontology (25)

integration and interoperability (I&I) problems, facing mission-level SoSs engineering
in the military domain. This work, belonging to the military domain, is one of the
few works that considers the mission level in SoS development. In (26), the authors
presented a modeling approach to define an SoS/mission architecture using both a
physical space and multiple event space constructs. This approach is based on the fact
that SoSE, at mission level, must use inputs from the user, at every step of the process.
Thereby, the MLSoSE process must be cyclic. Figure 3.6, shows the cyclical nature of
the MLSoSE, and reveals that the emphasis here is on integration, interoperability and
employment of the SoS.

The main step of the process is to define mission environment and mission thread
(respectively ME and MT in Figure 3.6). To delimit mission environment, the au-
thors proposed to restrict the architecture to only items that can be found within the
operational context, and thus the mission environment is whittled down. From this,
a collection of events is formed, within the physical space, which constitutes a mis-
sion thread or event space. To define the SoS architecture, the authors proposed a

3. MISSION ENGINEERING 66

Figure 3.6: Mission-Level SoS Engineering Process (26)

top-down approach. The SoS is at the top, and the challenge is to describe events and
physical entities at the needed abstraction level. To provide a consistent level of ab-
straction of the conceptual model, the authors suggested the use of three abstraction
paradigms, that define an adequate abstraction for the SoS. These are entity abstrac-
tion, functional abstraction, and I&I abstraction. Physical entities are grouped into five
major functional groups: sensors, actors, controllers, stimuli, and environment. The
authors used the of an Observe, Orient, Decide, Act (OODA) loop first proposed by
Boyd (111, 112), to address functional or event abstraction. Finally, the concepts of
Autonomy, Collaboration and Cooperation (ACC) (113) on OODA are used as an I&I
abstraction.

The main idea addressed by the authors to model the mission, is to explicitly inves-
tigate the interactions among the components, and determine how those interactions
may drive the behaviors of the SoS. To do this, they proposed the use of Directed
Acyclical Graph (DAG), to capture the edge events from the physical space multi-
graph, into a pseudo-linear DAG (114). Thus, the interstitials and the causality of
physical space may be captured explicitly, in a form that is readily operable.

In order to measure the efficiency and behavior of the SoS appropriately, the au-
thors introduced two mission-level metrics that describe the performance, behavior,
integration, and interoperability. The first one is the probability of success, which is
the likelihood of achieving the objectives of the SoS. The second one is the breaking
point, which is the number of stimuli, that act on the SoS, and which cause the SoS to
stop working, or the probability of success to fall below an appropriate threshold. To

67

address explicitly and quantitatively syntactic and semantic I&I (See Figure 3.6), the
authors proposed the use of a set of complementary metrics, built on the previous met-
rics: the probability of realization, level of integration, and degree of interoperability.

3.2.3 Mission engineering within the systems engineering ’V’ Model/
Mission Engineering Integration and Interoperability (I&I)

In the latest five years, the US Navy was focusing especially on integration and inter-
operability (I&I) in ME. I&I is a Navy-wide project to understand how well current
systems fulfill the Navy mission, and to find gaps. In order to enhance mission ef-
ficiency, the Navy seeks to understand integration / interoperability issues between
systems and identify where investments are needed. In this context, Moreland (27)
proposed to incorporate a mission focus into the traditional SE “V” as depicted in
Figure 3.7.

Figure 3.7: Mission Engineering within the SE “V” Model (27)

The emphasis in this approach is on capability development, because the individual
systems that comprise the capabilities are inherently flexible, functionally overlapping,
multi-mission platforms supported by a complex backbone of information communi-
cation networks (110, 115). As shown in Figure 3.7, the mission layer is added to the
classical SE process. In the ME layer, the capability development I&I is considered as
a cross-cutting engineering activity that provides the basis for defining systems, evolv-

3. MISSION ENGINEERING 68

ing systems and performing integration and test. It helps to bridge mission effects and
SE. For the ME layer, the operational concepts drive mission capabilities. These latter,
in turn, drives the mission requirements, these translate to system requirements and
component functions and end items.

3.2.4 Enterprise Strategic Planning for Engineered Systems

In his book, Wasson (116) presents the organizational mission engineering process for
systems in context of SE. The process is to be used in the context of higher-order sys-
tems, such as corporate enterprise management, shareholders, and the general public,
have an expectation that short- and long-term gains (survival, benefits, return on in-
vestment, etc.) are obtained from developing an enterprise that meets the needs of the
consumer. The author highlighted that an organization acquires systems to support
strategic and tactical objectives. The operational need is fundamentally embedded in
recognizing the vision and mission of the organization. Figure 3.8 illustrates the pro-
cess, it consists of two main loops the strategic planning loop and the tactical planning
loop (See respectively (1) and (7) in Figure 3.8).

Figure 3.8: The Organizational Mission Engineering Process within the Enterprise (28)

69

The strategic planning loop: with an organizational vision (See (2) in Figure 3.8),
the foundation for long-term organizational development starts. The ME process starts
with the analysis of the OPERATING ENVIRONMENT composed of targets of oppor-
tunity and threat environment (See (4) in Figure 3.8). The resulting report is associated
with long-term organizational vision of what is to be done, which constitute the basis
for developing the strategic plan. The strategic plan (See (3) in Figure 3.8) outlines
the expectations for the next 5 years. It describes a set of long-term objectives, each of
which should be realistic, measurable, and achievable.

The tactical planning loop: after establishing the strategic plan, the mission anal-
ysis step began. The aim is to develop a tactical plan (See (8) in Figure 3.8) that will de-
scribe HOW to satisfy the mission’s long-term objectives. Incremental and short-range
tactical strategies, that elaborate near term mission objectives, have to be developed
and sustained. Measures Of Performance (MOPs) quantify the performance needed
for each tactical objective. In order to achieve the goals, the MOPs serve as metrics for
comparing expected and real mission accomplishment progress. Each organizational
element proposes a tactical plan, in response to the tactical objectives, which explains
how the organization’s leadership envisages fulfilling the MOPs’s objectives. The tac-
tical plan specifies the ways the Organizational System Elements (OSEs) such as PER-
SONNEL, FACILITIES, EQUIPMENT, PROCEDURAL DATA, and MISSION RE-
SOURCES will be deployed, managed, and assisted (See (9) in Figure 3.8). It may
necessitate the development of a new system, product, or service, or the upgrade and
enhancement of existing ones. An objective, and introspective evaluation of the current
system/product capabilities, is part of successful mission gap analysis. It is important
to carry out objective, unbiased and realistic assessments of system/product capabili-
ties (See (10) in Figure 3.8). An important phase of the process is to perform mission
gap analysis (See (12) in Figure 3.8). Mission gap analysis aims, on one hand, iden-
tifying the gap between the actual product/service capability of the organization, and
the objectives to be achieved. On the other hand, it aims at collecting deeper insights
about strengths, weaknesses, threats, and opportunities of the actual plan. The results
of the mission gap analysis are documented as prioritized operational needs (See (13)
in Figure 3.8). User moments of truth (See (11) in Figure 3.8) allow collecting real-
world field data, that constitutes a degree of risk that has an effect on the organization,
resources, or human life. Wasson (28) precises that it is important to collect moments
of truth data, through interviews and user feedback, or user community surveys. This

3. MISSION ENGINEERING 70

will allow to gather best practices, user experiences, and lessons learned.

3.2.5 M2Arch: Mission-Based Methodology for Designing software-
intensive SoS Architectures

There is contribution in software intensive SoS where Silva (30) proposed M2Arch,
a model-based refinement process for SoS architectural modeling that uses missions
as the starting point. Mission model is defined using mKAOS (29), an SoS mission
description language. In mKAOS, mission is a specialization of goal to SoS domain.
The mission is refined with and/or operators until finding sub-missions that can be
handled by a constituent system. The authors defined SoS mission as encompassing
five concepts: (i) priority, (ii) trigger, (iii) constraints, (iv) parameters, and (v) tasks,
that are functional operations to be executed (See Figure 3.9).

Figure 3.9: Conceptual model for missions in System of Systems (29)

As depicted in Figure 3.10 three steps characterize the M2Arch process. In the
(1) definition step, a mission model is defined using mKAOS, and the structure of the
architecture is generated. Later, when the architect specifies the behavioral aspects
of the SoS, the concrete SoS architecture is generated. It will be (2) validated and
(3) verified in the two steps that follow the mission modeling step. The validation is
done using a simulation based approach while the verification uses statistical model
checking to verify whether specified properties are satisfied.

71

Figure 3.10: M2Arch Process (30)

3.3 Discussion

Mission engineering is a recently proposed concept that needs methods, tools, and
practicable means to implement (51). Furthermore, it requires a detailed understanding
of the operational view of the system. Recently, the ISO/IEC/IEEE 21839 (52) has
stressed the importance of considering the mission, and its context, in the development
life-cycle of systems.

Several approaches for ME have been presented in the chapter. They trace the main
steps needed to achieve mission engineering successfully. In the approaches that aim
at applying ME in SE context, ME layer is added to the SE life-cycle, a mission has
a number of objectives, which are translated into system requirements and component
functions. These approaches facilitate the creation of efficient ME solutions, using
familiar languages, and processes of SE community. However, these practices do not
fully address the unique characteristics of mission engineering, which is to address the
end-to-end mission as SOI. A mission has a goal, which is achieved through a sequence
of operational activities, ME determines those operational activities and allocates them
to operational nodes for execution. The operational activities are allocated to different
systems, and thus to SoS. It is therefore interesting to consider the mission in an SoS
development life-cycle. That’s the objective of our thesis.

On the other hand, the approach of (26) for MLSoS put a lot of emphasis on I&I.
As already mentioned in section 1.2.5, engineering in the military domain focuses

3. MISSION ENGINEERING 72

mainly on I&I. This has the advantage of the construction of mission-oriented systems
of independent and highly interoperable systems. Furthermore, (26) included mission-
level metrics to continuously measure and assess mission performance. However, in
this work, the architecture of the SoS is not guided by operational activities as rec-
ommended in ME. Indeed, this work is based on the investigation of the interactions
among the systems, that form the mission environment, to determine how those inter-
actions may drive the behaviors of the SoS. The process targets the interactions, rather
than the mission or operations. In our thesis, we want the mission to be the guide and
the controller of the choices during the design and evolution stages of SoS.

In order to take full advantage of ME, we propose in this thesis to incorporate ME
process in the SoS life-cycle. The first chapter has shown that model-based approaches
plays prominent role in the domain of SoSE. Thus, we propose in the next a SoSE
approach that integrates recent trends in MBSE, and that is based on the ME principles.

Chapter 4

MISSION-ORIENTED PROCESS
FOR SYSTEM OF SYSTEMS
ENGINEERING

In the chapter 3, we gave an overview on the state of the art related to SoSE meth-
ods, that can be used to create and manage SoSs. We stressed the role played by
the MBSE in the design and implementation of effective SoSs. We highlighted that
new research (22, 50) recommends balancing the design of SoSs and the end-to-end
process, and to bridge the dissociation between the SoS objectives and the individual
functionalities undertaken by the CSs. In order to meet this recommendation, we de-
scribed in the chapter 3 different approaches that we found in the ME literature. ME
intends to link the engineering activities that are conducted to achieve a mission, with
individual functionalities undertaken by different nodes. The ME state of the art has
shown us that the existing approaches do not fully address the unique characteristics of
ME, which is to address the end-to-end mission as SOI. Moreover, the most existing
approaches were proposed in the context of SE, rather than in the context of SoSE.
Knowing that the operational activities are allocated to different systems in ME, and
thus to SoSs, we believe that SoSE is the most appropriate context to ME.

In order to link SoS objectives to the individual functionalities undertaken by the
CSs in SoSs context, we consider that SoSs are acquired to satisfy new capabilities in
a mission context. The latter is a key element to assist SoSs engineers to determine
the systems that must be involved and the functions they must perform. Indeed, in this

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 74

perspective, this chapter aims at defining a process to build and evolve SoSs, that is
based on the integration of ME concepts and MBSE fundamentals, called MOP-SoSE
(Mission Oriented Process for System of Systems Engineering). Such a process must
be described by concrete steps with corresponding guides to specify the SoS mission
and the base models. Furthermore, it is important to identify the role of participants in
such a process. To do that, we firstly present a global overview of the process. Then, we
enumerate the different roles involved in the process. Next, we propose a conceptual
model illustrating the different concepts used in the process. Afterward, we go into
detail about each step and show the associated models in the SysML language, using
an illustrative example. Finally, we conclude the chapter with a discussion.

4.1 Global overview of the MOP-SoSE

This section shows the general approach proposed to incorporate mission engineering,
within the SoSE life-cycle. It was already detailed in Cherfa et al. (117). In the begin-
ning, we introduce the key points of our process to position it. Then, we present the
MOP-SoSE life-cycle, which is adapted from the SoSE wave model (11). Afterward,
we illustrate the general process and its main steps. Finally, we introduce the illustra-
tive example, which allows us to simply explain our contribution along the chapter.

4.1.1 MOP-SoSE key points

The key ideas on which the process relies are as follows: (i) The process is applica-
ble to acknowledged SoS, in which the organization manages the SoS, and supports
the SoSE. Independent organizations and SE teams are responsible for the constituent
systems. (ii) An SoS is considered as an environment within which CSs operate, to
accomplish a given mission, rather than a hierarchy built of component systems. Thus,
the SoS environment is uncertain, because over the course of a mission thread, and
according to mission context, the allocation of functions to CSs can change, and then
different CSs may be added, removed, or modified in/from the SoSs. (iii) Mission
context determines mission thread, and then mission context helps to determine the
functionalities needed, and then the CSs to be involved. (iv) The end-to-end mission
is considered in our process as SOI, from which architecture is generated as automati-
cally as possible, to avoid information loss between the application domain expert and

75

the system architect. (v) The concrete architecture is elaborated from the abstract one.
The latter serves as an invariant that guides the choices of concrete entities.

4.1.2 MOP-SoSE life-cycle

For the development of the MOP-SoSE life-cycle, we relied on the wave model pro-
posed by Dahmann et al. (11), and we adapted it for ME principles and terminology.
We chose this model because its driving features that were cited in (11), embody sev-
eral ME’s attributes. These attributes are as follows: (i) multiple overlapping iter-
ations of evolution: illustrate the fact that to accomplish a mission, an SoS needs to
leverage developments of its CSs. (ii) ongoing analysis: mission in context of SoSs
requires continual analysis, to address the complex nature of the SoS, and mission con-
text uncertainty. (iii) continuous input from external environment: is necessary to
engineer mission, as every SoSs operator has control just on a limited part of mission
environment. (iv) architecture evolution: over the course of a mission thread, and
following a mission environment change, the SoS’s architecture may evolve. Thus, it
is important that the expected mission-oriented architecture be incrementally imple-
mented.

Figure 4.1: MOP-SoSE Life-cycle adapted from (11)

To provide all the assets required for mission capabilities, negotiations with CSs
are required. These negotiations can results by the implementation of new artifacts at
CSs level. To illustrate this aspect, we represented the CSs life-cycles on the wave

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 76

model. Engineering of CSs is performed in conjunction with SoS engineering, and the
evolution of the SoS depends on updates in the CSs within their own life cycles (See
Figure 4.1). The five MOP-SoSE steps are depicted in Figure 4.1: (i) initiate mission,
(ii) conduct mission analysis, (iii) develop mission architecture, (iv) evaluate mission,
(v) implement updates. The engineering activities contained in step are described in
the next section.

4.1.3 MOP-SoSE roles

In the SoSE development environment, “two levels of stakeholders exist with mixed,
possibly competing interests: the SoS stakeholders and constituent system stakehold-
ers” (10). Since the constituent systems are independent and have their own objectives,
stakeholders of individual systems may have little interest in the SoS, may assign SoS
needs low priority, or may resist SoS demands pertaining to their system (10). To man-
age the competing stakeholder interests, it is important for SoSE engineers to focus on
the mission and the operational view of the SoS, and to balance the SoS objectives with
the CSs objectives (10). In the following, we describe the two levels of stakeholders.

4.1.3.1 SoS level stakeholders

We argue for the definition of three stakeholders to be involved in the MOP-SoSE at
SoS level: mission owner, application domain expert (ADE) and system architect. The
state of the art on ME has shown that the participation of the mission owner and the
ADE is required. As our approach considers ME in the context of SoSs, we support
the use of another stakeholder, which is the system architect, so that he integrates
heterogeneous CSs, and realizes the architecture. In what follows, we explain the
participation of each role.

- Mission owner: the mission owner has precise knowledge of his own mission.
Thus, she/he is responsible for providing information on mission decomposition,
including priorities, risks and critical paths. Furthermore, she/he is responsible
for defining the different metrics that allows to evaluate the mission effective-
ness.

- Application domain expert: the application domain expert (ADE) masters the
domain knowledge. Therefore, through her/his experience, this expert can antic-

77

ipate the solution when refining the mission. She/He is responsible for defining
the mission thread, and focuses on mission context. The ADE has the necessary
knowledge to balance the SoS mission with constituent system goals, even if
she/he does not control the CSs that impact the SoS. Moreover, the ADE have to
provide inputs from mission environment continuously.

- System architect: the system architect is responsible for the generation and real-
ization of the architecture. Based on the different models realized by the ADE,
she/he is responsible for deploying the required constituent systems to produce
a concrete architecture. If needed, she/he must define the SoS level new require-
ments and artifacts for CSs, which are necessary for the integration of CSs.

4.1.3.2 CSs stakeholders

The MOP-SoSE’s CSs level is characterized by the participation of different types of
engineers and systems engineers, they represent the various stakeholders involved at
the level of CSs life-cycle, and working to meet CSs local goals. But in the same time,
they are responsible for designing, developing, and implementing new artifacts, to
support the SoS mission. The new artifacts are negotiated with the SoS architect to find
a good compromise between CSs goals and the SoS goal, since they can be conflicting.
The point to emphasize is that since our process is applicable for acknowledged SoS,
there is active cooperation between SoS and CSs. Thus, CSs engineers must be aware
of the SoS requirements, in order to be able to predict and reason about the impact
within the encompassing system (the SoS), when they carry out change at CSs level,
as argued by (118).

4.1.4 MOP-SoSE general process

Figure 4.2 illustrates our process. It consists of different engineering activities, and
involve several stakeholders. The process offers a disciplined procedure for explicitly
specifying the SoS end-to-end mission and generating the appropriate architecture. It
is composed of top-down planning and decision making, and bottom-up adjustments.

The process aims to refine the mission, until the architecture is reached, while
preserving the mission traceability. Therefore, the refinement activities are as follows:

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 78

Figure 4.2: Actors and Responsibilities of MOP-SoSE

1. Mission decomposition: this activity is intended to provide a functional coarse
grain view of the mission. This aspect is achieved through an analysis of the gen-
eral mission objectives to recursively identify more precise sub-mission objec-
tives. The criterion for stopping the mission decomposition is the identification
of a process that can perform a given sub-mission. We have developed a profile
extending the SysML requirement diagram to refine the main mission into sub-
missions, create context-dependent variation points, and capture mission risks.
Therefore, this step results in a mission functional model of the SoS.

2. Mission Measurements of Effectiveness (MoEs) definition: in this activity, the
mission owner defines effectiveness measures, using the SysML parametric dia-
gram. These measures will be used as metrics to assess the overall performance
of the SoS mission.

3. Mission definition: the aim of this activity is the design of the operational view
of the mission. It consists on the definition of mission threads and activities.
It results on a fine-grained behavioral view of sub-missions using activities.The
view is elaborated using the SysML activity diagram. Each sub-mission in the
mission functional model is associated with an activity using the refine relation-
ship. Complex activities can be decomposed into sub-activities, and the criterion
for stopping activity decomposition is when a sub-activity corresponds to a role
capability that we call action.

79

4. Role definition: the role is used to provide an abstract representation of hierarchy
of entities having capabilities that enable the achievement of the mission. The
capabilities could be provided or required by roles, thereby allowing the com-
position of roles. The produced model for role definition is based on a SysML
profile extending the block definition diagram.

5. Role assignment: as mentioned previously, activities are composed of actions
that correspond to role capabilities. The role is composed of several capabilities,
and the same capability can appear in different roles. Therefore, this step is
intended to designate the role that must be associated with each action of an
activity. This association creates a link with the constituent system through the
assigned role.

6. Abstract architecture generation: the architecture is a structural view that de-
scribes the constituent systems of the SoS and their connections. However, all
the above-mentioned definitions refer only to roles instead of constituent sys-
tems. Therefore, the first generated architecture from the given definitions cor-
responds to the abstract architecture of the SoS. It is described using both of the
SysML internal block diagram and SysML block definition diagram.

7. Concrete systems requirements: before replacing roles with concrete CSs. The
architect can identify new requirements at the CSs level, necessary for their inte-
gration into the SoS. These new requirements may require negotiation with CSs
engineers, and are described using the SysML requirement diagram.

8. Concrete systems Measurements of Performance(MoPs): MoPs are described
for each service in the architecture, to determine the capabilities and limitations
of all relevant CSs. This helps to choose the best CS to handle a given action.
The SysML parametric diagram is used to capture MoPs.

9. Concrete architecture design: the abstract architecture is progressively refined
during the architecture analysis to get the concrete architecture. For this activity,
both the SysML internal block diagram and SysML block definition diagram are
employed.

10. Simulate the SoS: the simulation of models is necessary to evaluate the ability of
an architecture configuration, to accomplish the specified SoS mission. It allows

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 80

also to confirm performance, and to discover errors.

11. Implement update: updates can be done at the level of the SoS models, or at
the level of the CSs. Individual updates within a CS, follow system engineering
life-cycle. The ADE has only to influence those changes with the CS engineers.

4.1.5 MOP-SoSE concepts

To avoid any ambiguity, we introduce in the following section a mission conceptual
model serving as the basis for our approach. The conceptual model was proposed based
on the modeling experience using the SysML language of SE approaches presented in
the state of the art section 2.3, on SoS artifacts defined in (10, 34), and on the overall
experience in the rigorous definition of a mission, that we found in the works presented
in the section 3.2. in the following, we define the involved concepts, and highlight them
in Figure 4.3.

Figure 4.3: Mission Conceptual Model

In our process, we define a SoS as “a set of interacting systems that interact with
each other and their environment to provide a common mission” (69). The mission is
the main concept on the conceptual model. We define a mission as a finality that the
SoS must achieve by collaborating constituent systems. We suggest decomposing the
high level mission (generally abstract) into more concrete missions. In the model, this
aspect is expressed by the existence of the two classes atomic and composite and the

81

relationship refinedInto between composite and mission. The refinement is stopped
when we can identify the activity that is associated with the mission. The attributes
of the mission class allow the specification of the characteristics of the mission as a
location if it is important, risk, etc.

For each mission, effectiveness measures must be determined. The relationship
IsAssociatedTo associate for each mission, the corresponding measures. The MoE is
a traditional term widely used in systems engineering to describe how well a system
carries out a task within a specific context. Likewise, we used the MoE in our process to
measure the fitness of a SoS, to fulfill the mission. The MoEs represent non-functional
mission objectives for the SoS, expressed in numerical format. It serves as the high
level key performance indicators that would be checked when the solution layer is
specified.

The nature of the collaboration between composite missions is basically described
by the two variants of the mission composite: standard mission and mission with
variation point. A standard mission is composed of sub-missions related with the
AND, while a mission with a variation point is composed of mission variants (OR
decomposition), which gives the possibility to several alternatives. The choice of a
mission variant depends on the mission context. The mission context defines the cir-
cumstances under which a mission is to be accomplished (24). It encompasses the
operational environment (MEnvironment in the model), which is defined as “con-
ditions, circumstances, and influences involved in the prosecution of the SoS against
the mission” (26). We proposed to represent the operational environment as a set
of contextual parameters that will determine the course of actions to be performed.
The operational environment may evolve over time, thus, the parameters are always
updated.

As illustrated by the relationship includes in Figure 4.3, the mission environment
is populated with mission threads (26). These latter are the description of the end-to-
end set of activities that serve to accomplish specific subsets of the mission goals and
objectives. An activity orders a set of actions; it can regroup triggers and constraints;
and it can require input parameters and provide output parameters. The Role han-
dles action and gathers the required competences (capability concept) to play the role
needed to accomplish the action. The capability of a role is defined as “the ability to
provide some expertise to the wider needs of an SoS” (94). It is formed through the
integration of several functions. We define a role as “an abstraction of the characteri-

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 82

zation of the ideal behavior that will fulfill an action” (119). It inter-operates with other
roles (communicate, exchange data, etc). Interoperability mechanisms can be present
in an SoS; therefore, interoperability is possible by sub-typing the communication me-
dia or by indirection via another CS.

Several types of constituent systems could be used to concretize a role in the
concrete architecture: humans, processes, hardware and software systems, and insti-
tutions. A constituent system is chosen when its capabilities match those required
by a role, and by considering the performance measures. MoP “measure the per-
formance, or more generally the properties, of a system, component or service and
can be compared with its own specification and with other systems that perform the
same function(s)” (31). The constituent systems is integrated to meet a role capability.
Measures must be defined for each CS to guide the choices.

Due to the independence of the CSs, it is possible that when integrating a CS at the
SoS level, new requirements are needed. These latter can represent a need for means
of interoperability, for a resource, or other general requirements (as a need of new
functionalities).

4.1.6 SoS example used for illustration

To illustrate the different steps, and activities of the MOP-SoSE, we took a classic
example of the SoS, widely used in the literature, which is Emergency Response Sys-
tem of systems (ERSoS). The latter is a widely used example of SoS (18, 36, 49).
An ERSoS is responsible for providing emergency aid on demand to members of the
public. This SoS encompasses existing agencies (such as fire, police, hospital) with in-
dependently owned and managed systems nevertheless collaborate to deliver a service
on which reliance is placed (36). ERSoS principal mission is to give the emergency
response in case of major incident.

4.2 MOP-SoSE engineering activities

In this section, the whole MOP-SoSE process’s activities, described in Figure 4.2, are
detailed. For each activity, we describe the related steps, and the way the models
could be specified in SysML. We adopt intentionally simplified examples on ERSoS,
to simply illustrate the process. As stated earlier, the activities are associated with the

83

wave life-cycle presented in Figure 4.1.

4.2.1 Mission Decomposition

The first activity of the process, we suggest, should be devoted to the functional mod-
eling the mission. This activity is intended to understand SoS top level missions and to
plan a mission strategy. The essential elements considered in this activity are descrip-
tion of the main missions, variation points, mission location, mission risk and priority,
as shown in Figure 4.4. It results on the mission functional model.

Figure 4.4: Mission Decomposition Activity

We propose the gradual functional decomposition of the SoS mission and the split-
ting of complex missions into simple ones, as in goal-oriented methods (120, 121).
This task is made possible by using the SysML requirement diagram (RE). The RE
diagram “allows the specification of a function that a system must perform or a perfor-
mance condition that a system must achieve” (122). The SysML RE diagram provides
modeling constructs to represent text-based requirements and relate these requirements
to other modeling elements. Different relationships are furnished to allow relating
requirements to other requirements or to other model elements. These relationships
include relationships for “defining a requirements hierarchy, deriving requirements,
satisfying requirements, verifying requirements, and refining requirements” (122). A
standard requirement includes the unique identifier and text requirement. Users can
add properties if needed (122).

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 84

The basic SysML RE is not sufficient to describe all the concepts cited above. For
instance, it cannot represent the mission priority and mission risk. Furthermore, it does
not allow the creation of variation points since the semantic of decomposition is the
conjunction. Therefore, we propose an extension of the RE diagram to allow the ADE
to add the desired properties and variation points. This extension is possible since
SysML is a highly extensible modeling language (122). A stereotype is one of the
types of extensibility mechanisms in SysML; it is a profile class that allows designers
to extend the vocabulary of SysML to create new model elements, which are derived
from existing ones but have domain specific properties (122).

Figure 4.5 illustrates the extension of the SysML RE. The default properties id and
text specify the unique identifier and text requirement, respectively. The Requirement
is a stereotype that inherits from the meta-class Class of UML. The extension is per-
formed by creating a stereotype called Mission, which contains the added properties.
The stereotype Mission inherits the properties of its super-stereotype Requirement, and
the following properties are added: location, risk, priority, version, and date.

Figure 4.5: Mission Stereotype

The default property text of the stereotype Requirement can be used to describe
the mission objective. The mission location may represent an IP address, GPS coor-
dinates, polar coordinates, region, etc. For this reason, the location is considered as
a string parameter. The successive refinements of the main mission generate several
sub-missions. The status of these sub-missions is not the same under the main mission,

85

and the priority is the parameter that indicates the importance of each sub-mission. We
assume that the priority can take an integer value that indicates the relevance degree
of the mission. Given the context uncertainty, risks can affect missions. A risk must
first be identified and later mitigated if possible. Alternative activities are defined to
prevent the consequences from occurring. Based on the definitions of risk found in
the literature (123, 124), we propose the consideration of risk by attaching the triple
R=C,P,Co to each mission (see Figure 4.5) in which C is a string value representing
the future risk cause, and P is a numeric value representing the probability of risk oc-
currence. The suggested values for Co that represent the consequence are severe, high,
moderate, low or very low.

The wave model is based on SoS upgrade cycles. Therefore the properties de-
scribed above can change in each upgrade cycle. For example, the priorities are re-
assessed in each cycle. Therefore, we use the mission version as a parameter to
determine the stability of the mission definition. We referred to (125) to define this
parameter, in which the authors propose to use the version and date of creation/change
of/in properties to indicate if and when the mission was changed.

To make our process applicable to a wide range of practical contexts, we propose
supporting mission variants in the decomposition of the mission. To this end, we define
two new stereotypes called the Standard Mission and Mission with a Variation Point,
which inherit from the stereotype Mission. The Standard Mission is composed of a
conjunction of sub-missions while the Mission with a Variation Point is composed of
a disjunction of sub-missions.

To match the activities/actions to each mission, we propose using the refine re-
lationship in the RE diagram. The refine relationship is used to relate a mission to
another model element. We use the call behavior action element that references an
activity to refine a mission. A mission is refined by an activity, and the referenced
activity is described later using an activity diagram. Figure 5.3 illustrates part of the
Emergency Response functional model. It shows the decomposition of the Manage
Alert Stage Mission with a Variation Point into the two atomic missions Receive Emer-
gency Request Description, and Assess the Current Situation, and the two composite
missions Provide an Effective and Fast First Emergency Response, and Consolidate
Response, both of them includes variation points in their definition. Each mission en-
capsulates the mission statement, the id, and the needed properties. Not all missions
need all the properties. For example, the Start Emergency Response mission encapsu-

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 86

Figure 4.6: Mission Decomposition and Allocation Example

lates the mission statement The system must be able to start emergency response, the
mission id M.2.2, the mission location accident location, and the mission risks dif-
ficult weather conditions, and traffic jam. Each mission, is allocated to an activity
diagram as shown in Figure 5.3, the details about that is given in what follows.

4.2.2 Mission MoEs

MoEs is a traditional term widely used in systems engineering and describing how
well a system carries out a task within a specific context. Sproles (126) defined MoE
as “standards against which the capability of a solution to meet the needs of a problem
may be judged”.Thereby, in SoSE, it represents non-functional mission objectives for
the SoS expressed in numerical format. It serves as the high level key performance
indicators that would be automatically checked when the solution layer is specified.
So, this activity focuses on the performance of the SoS’s mission solution. The aim is
to enhance the SoS’s mission performance as much as possible.

Developing good measures can prove to be a confusing task. Thereby, guidance on
this subject should be as clear, useful, and simple as possible. By carrying out a litera-

87

ture search on this subject, we found that the military domain attaches great importance
to the development of high-quality measures to evaluate missions. Methodologies and
guidelines are proposed in this field (127, 128, 129), while there is a lack of propo-
sitions in SE and SoSE domains. An interesting contribution in both SE and SoSE
domains were found in (31, 130, 131), where authors proposed a framework for eval-
uation of architectures using MoEs. The framework identifies the elements needed to
perform an evaluation and rules for acquiring or developing each of those elements so
that a particular evaluation can be performed.

In our process, we relied on the works cited previously, we used the steps presented
by (127), the guidelines proposed by (129), and we adapted them to SoSE domain
using the ontology proposed by (31). Figure 4.7 shows the steps to follow to define
MoEs and their indicators for each mission objective.

Figure 4.7: MoEs identification Activity

We can summarize these steps as follows: to adequately assess the SoS’s mission
effectiveness, it is needed to (1) determine essential elements of analysis, which are
the main aspects that can be considered to support each mission objective. From the
essential elements of analysis, (2) derive the associated issues and (3) make a list of
hypotheses that solve each issue. From each hypothesis, (4) identify the MoEs needed
to prove or disprove the hypotheses and (5) select the appropriate indicators to inform
the evaluation of MoEs. Quantitative and qualitative indicators can be used to evalu-
ate MoEs. It may be necessary to (6) determine direct cause-and-effect relationships
between MoEs, as well as between MoEs and indicators. An example of the hierarchy
of the mission objective, the elements of analysis, the issues, the hypothesis, the MoEs
and the associated indicators is illustrated in Figure 4.8.

In the following table (See Table 4.1), we give an example of MoEs for the provide

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 88

Figure 4.8: Example of the hierarchy between the mission objective, MoEs and indicators

effective and fast first emergency response mission. Two element of analysis are
considered, the human life aspect and the environmental aspect of the first emergency
response. In the first one, the first response time and the evacuation effectiveness are
the most important MoEs, and different indicators allow to determine these MoEs like
arrival time on scene, evacuation time, first survival rate, and first rate of injured.

As in the OOSEM method, we propose to capture MoEs and indicators in the
SysML block definition diagram, and the methods and models for calculating the MoEs
are described using the SysML parametric diagrams with the objective function as
shown in Figure 4.9.

Figure 4.9: First Emergency Response MoEs SysML Parametric Diagram

89

Table 4.1: First Emergency Response MoEs Development

Mission
objective

Elements of
analysis

Issues Hypotheses MoEs Indicators

Provide
effective
and fast
first
emergency
response

Human life
impacts

Late response

The average
emergency
response time
is seven
minutes.

First response
time

Arrival time
on scene

Late evacuation
Effective
evacuation
of injured to
reach a safety
place within
reasonable
time.

Evacuation
effectiveness

Evacuation
time
First survival
rate

First rate of
injured

Environmental
impacts

Large extent of
impact

Reduce as
much as
possible the
environmental
impact of the
emergency.

Extent of the
impact

Number of
cities
Number of
towns
Square miles
Affected
population

4.2.3 Mission Definition

This phase is intended to define the activities, and course of actions of missions, con-
sidering the variability in the user environment that impacts the ways the capabilities
are executed. Once the activities have been identified, they are described in this phase
using the SysML activity diagram. Figure 4.10 illustrates the process to follow to de-
fine missions. The refinement principle is to (1) associate each composite mission to
a mission thread represented as composed activity, and each atomic mission to an ac-
tivity. Indeed, each call behavior action element identified in the mission functional
model is refined using an activity diagram. Then, (2) it is important to determine for
each mission thread, the contextual data of the environment that influence the course of

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 90

actions, and (3) represent them using entry parameters, and refine mission threads by
specifying activities, actions, parameters and alternatives. Finally, all activities have to
be developed by specifying input and output parameters, actions, control flows, par-
titions, and constraints. The activity refinement process is stopped when the expert
reaches a process composed only of actions that correspond to a capability.

Figure 4.10: Mission Definition Activity

In the SysML activity diagram, partitions are used to group actions that have some
common characteristics (14, 122). Partitions are commonly used to regroup actions
that are performed by the same system. We propose using partitions to group all the
actions that are performed by the same role, as shown in Figure 5.3, which gives an
example of mission definition model that concerns the First Emergency Response
mission. The mission strategy may change according to the context. We described the
SoS context using activity entry parameters. In this manner, the context of a mission
can be inferred from the parameter values, and all the alternatives can be defined at
an early stage. These parameters are always updated; for example, a location data
point is always updated by a geolocation system. Signals are used to express the
mission triggers (See Receive Order signal in Figure 5.3), while action scheduling
can be expressed using activities, actions, data and control flows. Constraints can be
set on actions to specify the business semantics. The mission definition phase results
in the fine grained behavioral view of the sub-missions, called the mission definition
model, which is defined using the SysML activity diagram (See Figure 5.3).

4.2.4 Role Definition and Assignment

The role definition phase focuses on constituent system level information that impacts
the SoS mission. The roles, capabilities and the possible constituent systems are ex-

91

Figure 4.11: Mission Definition Example

plored. Given the uncertainty of SoS boundaries, the challenge is to include the roles
that can support the SoS mission, and to exclude the useless role ones. In our approach,
the ADE considers roles that she/he judges to be relevant entities to the SoS mission. A
constituent system enters the SoS boundary when it begins to affect the SoS behavior
and leaves when its contribution is negated (41).

Role modeling can be performed using a block definition diagram, in which the
structural and behavioral features of a role are described (See Figure 4.12). Hierarchi-
cal relationships between the roles can be defined. The capabilities are modeled using
operations. Coherent set of capabilities are grouped into interfaces. A realization de-
pendency is added from the role to each provided interface, which means that the role
will provide each capability in that interface. A role can assert that it requires a set of
capabilities by adding a uses dependency to an interface. We created a stereotype Role
that inherits the properties of its superstereotype block to use SoS vocabulary domain.
The communication between roles is done by sub-typing their communication media.
For example information exchange could be done by the use of Radio communication.

The purpose of the role assignment phase is to allow the expert to determine the
constituent systems that will fulfill actions. Therefore, she/he provides a model that
combines the functional and structural views of the mission. As shown in Figure 4.13,
role assignment is based on the functional allocation of activity partition into a role.
The role must have capabilities that allow it to achieve all actions contained in the

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 92

Figure 4.12: Role Definition and Assignment Activity

partition. Actions are allocated to capabilities using a call operation action, as shown
in Figure 4.13.

Figure 4.13: Role Definition and Assignement Example

4.2.5 Abstract Architectures

The next step in our approach is to generate the SoS abstract architecture. The focus of
this phase is describing which abstract roles interact within a configuration and how.
We propose automatizing as much as possible the process of generating the abstract ar-
chitecture, from the activity diagram and the roles’s BDD, using ATL (ATLAS Trans-
formation Language) 1. This abstract architecture is defined using the SysML Block
Definition Diagram (BDD) and Internal Block Diagram (IBD). The BDD defines log-
ical decomposition of the main block into roles, and the IBD defines the interactions

1Model transformation language and toolkit. Web site: https://www.eclipse.org/atl/ Accessed
19/07/2021

93

among the roles such that they satisfy the mission (see Figure 4.14). We used the
mission structural and behavioral model as source model, and the target model is the
BDD and the IBD diagrams. The mapping between the source model and the target
model is shown is illustrated in the Table 4.2. In the BDD, a block is created for each
decomposition of the partition hierarchy. The block features are captured from the role
BDD.

The IBD captures the internal structure of a block in terms of the parts, properties
and connectors, and this structure is used to display different connections between
the parts (roles) that compose the block. The main idea of the transformation here
is to consider the activity diagram as a starting point. Considering that an activity
refines a mission, our main goal is to build the block that can satisfy this mission (see
Figure 4.14). To this end, we associate each activity model element to a block element
that has the name of the model; this block is considered as the main block.

Table 4.2: Mission structural and behavioral model- Abstract Architecture correspon-
dence

Mission structural and behavioral
model element

Abstract architecture element

Activity (Call behavior action) Composite block

Activity input parameter (resp. output) Port on the block that corresponds to
the activity that needs (resp. provide)
the parameter

Role (partition) Block

Action (call operation action) Operation in the block that corresponds
to the role that handles the action

Signal Signal in the block that corresponds to
the role that send or receive the signal

Pin Port on the block that corresponds to
the role that contains the pin

Flot Connector

Data store Attribute

Constraint Constraint

Since our activity diagram is composed mainly of partitions allocated to roles, the
partitions are represented as parts in the main block. The parts have the same names

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 94

and types as the partitions. An activity is characterized by input (or output) parame-
ters. The parameters are provided (or required) by other blocks, which means that each
parameter corresponds to an interaction point that is represented in the IBD by a block
port. Each flow between the actions from different partitions indicates that data ex-
change occurs between two different roles. This aspect means that a flow between the
two corresponding parts must be created using the corresponding ports. The elements
of the resulting IBD are allocated since they are generated from the activity diagram.
The resulting IBD is consistent with the activity diagram, as shown in Figure 4.14.

Figure 4.14: Abstract Architecture Example

To implement the transformation, we used simplified meta-models of the activity,
BDD and IBD diagrams of SysML. We defined them using Eclipse Core (ECore) 1.
Figure 4.15 depicts part of the ATL transformation rules. To access the elements of
a model, ATL uses query to navigate between the elements of a model and to call
operations on them.

1Common standard for expressing models . Web site: https://www.eclipse.org/ecoretools/ Accessed
03/08/2021

95

Figure 4.15: ATL Transformation Rules

4.2.6 Capture measures MoPs

This phase focuses on the performance of the SoS solution. The aim is to enhance the
SoS’s mission performance as much as possible. Measures of Performance (MoPs)
“provide an assessment from an engineering perspective of a particular solution to a
given specification, for instance a MoP can be applied to a specific service to verify
it against its specification to validate that it performs correctly” (31, 132). MoEs are
based on MoPs, which are carried out for each service in the architecture. Because
the primary goal of MoPs is to determine whether a service meets its specifications, as
shown in Figure 4.16, MoPs only use the service specification and not a scenario.

Figure 4.16 depicts the relationship between MoEs and MoPs in more details,
MoEs are seen as needing MoPs as building blocks to complete the MoE assess-
ment. Therefore MoPs can only be used to validate a service against its specification,
whilst MoEs allow assessments to be made about a capability’s ability to satisfy a sce-

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 96

Figure 4.16: Relationship of MoEs with MoPsm (31)

nario (31). In context of SoSs, a service can be offered by several constituent systems,
in fact, we used the MoPs to choose between several candidate constituent systems that
can concertize a role. Several criteria can be considered, namely, the availability, cost,
performance, etc.

Figure 4.17: Capture MoPs Activity

In Figure 4.17, the steps to follow to define MoPs are shown. The system architect
has to (1) determine the hypotheses which ensure that the role meets design require-
ments necessary to satisfy the MOEs of the action. Then, she/he (2) deduces the MoPs
and the related indicators that ensure the role has the capability to perform. Finally,
MoPs for each constituent system are performed to support the choice between alterna-
tive solutions. As for MoEs, MoPs are captured using the SysML parametric diagram.

Figure 4.18 illustrates an example of MoPs for the ambulance (moving mean).
Availability, travel cost and efficiency are the main MoPs for the ambulance. The
efficiency of an ambulance is calculated using the mobilization time (from the moment
an emergency call is placed in queue for an ambulance to the time the first vehicle is
en route to the incident), travel time (the time an ambulance takes to drive to the scene

97

Figure 4.18: First Responder Moving Means MoPs

of an incident), turnaround time (from the moment an ambulance which is transporting
a patient arrives at a hospital to when the ambulance is ready to respond to a new
incident.), and information communication (ability to communicate informations).

4.2.7 Concrete systems requirements and concrete architecture

The abstract architecture is used to obtain one of the possible concrete architectures. To
define the concrete architecture that will satisfy the mission, we used the steps defined
in the Figure 4.19. We define the concrete architecture in terms of its physical con-
stituent systems, their relationships, and their distribution across the SoS nodes. The
physical constituent systems of the SoS are represented by hardware systems, software
systems, humans, organizations, and the data exchanged. As shown in Figure 4.19,
the performance measures are used to select the preferred constituent system. Further-
more, the CSs interoperate with each other (communicate, exchange data, etc), and
each CS uses a set of interoperability mechanisms (Radio communication, ADSL con-
nection, etc). Therefore, interoperability is possible by sub-typing the communication
media or by indirection via another CS. For instance, the control and command center
can obtain data from the ambulance via an Radio communication. We emphasize that
the data and their nature have to be specified in the concrete architecture.

At CSs level, the SoS architect can identify new requirements needed at SoSs. The-
ses requirements can represent a new feature, resource, or means of interoperability,
needed to improve the mission achievement. The CSs new requirements require nego-
tiation with CSs engineers, and are described using the SysML requirement diagram.

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 98

Figure 4.19: Define Concrete Architecture Activity

4.3 Discussion

The main goal of this work is to consider mission thread as SOI (System Of Interest)
to bridge the dissociation between SoS objectives, and the individual functionalities
undertaken by constituent systems, to support the SoS mission. To address this SoSE
challenge, we proposed along this chapter to maintain a mission focus throughout the
SoSE analysis and the architecting process included in the wave model. In the follow-
ing, we discuss our proposition while returning to SoSs characteristics and to the state
of the art.

4.3.0.1 Back to SoSs characteristics

This section returns to a subset of challenge problems that which derive from the char-
acteristics of SoSs, and considers how each one is addressed based on the models that
have been developed in the illustrative example.

• Operational independence: which means that any constituent system is indepen-
dent and can operate serviceably if the SoS is disassembled. In the proposed
process, we considered that a constituent system is an independent entity that
is able to provide to the SoS a subset of its functionalities, which are called ca-
pabilities. The mission actions are allocated to roles and the roles are replaced
by available constituent systems based on performance measures. Thus, when
a constituent system is disassembled from the SoS, it continues to operate inde-
pendently.

• Dynamic environment: constituent systems supporting each role in a mission
will vary over the course of the actions. The mission context is key player to
determine the constituent systems that are involved in mission accomplishment.
We use set of parameters to determine the mission context, when parameters

99

change, the course of actions in the activity diagram changes. The activity di-
agram in Figure 5.3 shows a decision node that depends on the security event
state. The activity that will be executed depends on the value of risk. Indeed,
different architectures are generated for different risk values.

• SoS evolution: SoS evolves over time, but evolves slowly. The evolution could
consist of the addition of a new constituent system or a change in the behavior
of a constituent system. In the case of addition, we add the new constituent
system in the role diagram and add the generalization relationships towards the
appropriate roles, or create a new role if the new constituent system holds a new
behavior. In the case of a change in the behavior of a constituent system, the
role diagram is also updated according to the new capabilities. In the two cases
(addition or modification of constituent system), the measures of performance
are made and compared to the MoP of the constituent systems holding the same
capabilities. The challenge here for the architect is to propagate changes across
the concrete architecture.

4.3.0.2 Back to the state of the art

SE approaches are mature and guide engineers in the analysis, development and doc-
umentation of complex systems. The majority of them are based on SysML to take
advantage of its syntactic richness. We took advantage of their maturity from the
methodological point of view: we captured performance and effectiveness measures
using the parametric diagram as in OOSEM. For the role definition phase, we used the
service-based interactions provided and required as Harmony SE does to describe the
system components. We have refined the RE diagram directly by an activity diagram
as in MagicGrid. However, while these approaches are based on the concept of re-
quirement that must be met, our approach is based on the mission paradigm. Through
this paradigm we want to offer a more operational view that supports all the tactical
information that can change the order of execution of the actions, the involved systems
and different operational environments. Thus, we considered in the decomposition
through the RE diagram the different points of variation of a mission, something that
is not considered in the SE approaches. These points of variation are solved by activity
diagrams taking contextual information as input parameters to show the different al-
ternatives and decisions. So refinement does not just consider leaf missions as in other

4. MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS
ENGINEERING 100

approaches.
SoSE work is most often influenced by DoDAF and MoDAF frameworks. For

example, the Compass and Danse projects have tried to reduce the number of views,
proposed by these frameworks, to make them more manageable. An example of these
influences concerns the fact of considering concrete systems during the specification
stage. So, SoS boundaries are dictated by existing systems. In our approach, the SoS
specification is more open thanks to the use of a more abstract definition of constituents
(Role concept).

Chapter 5

CASE STUDY MODELING AND
SIMULATION

In this chapter, we discuss and explain the steps of the proposed process using a case
study. We focus on SoS dedicated to manage crowd during a football event. First, we
briefly outline the case study. Then, in order to illustrate our approach, we detail how
a crowd management SoS is specified in our approach. Finally, in the last section, we
provide an evaluation and discussion of the case study.

5.1 Case study presentation

The crowd management SoS case study was defined in (4). It aimed at developing
an integrated crowd control system, during temporary events, of mass transit, such
as sports events or political meetings. Thus, crowd management can be done at var-
ious locations, such as conference rooms, streets, airports, train stations, stadiums,
malls and many more. In this chapter, we focus on the management of crowd in
sport events. In this case, the SoS could involve several constituent systems, as shown
in Figure 5.1, such as organizations (Command and control center, fire brigade, po-
lice, catering facilities, transportation and transit committee, etc.), humans (Stewards,
decision-makers, firefighters, policeman, transport operators, etc.), and technical sys-
tems (Sensors, drones, communication means, etc.).

The main objective of the case study is to design an SoS, which responds to the
crowd management mission, and respect the overall mission effectiveness (Response

5. CASE STUDY MODELING AND SIMULATION 102

time to an emergency, crowd satisfaction criteria, crowd control criteria, etc.). The SoS
must observe and monitor the crowd, and act directly on risk and incidents. For this,
the SoS must be designed to ensure relevant information flow between CSs, and the
cooperation among the various autonomous CSs, beyond the boundary of individual
organizations.

The choice of this case study was motivated by the fact, that the crowd management
application domain still remain widely open, due to highly complex behaviors driven
by individuals. Thus, Several issues with crowd modeling are open to date. We cite
as example the modeling of the behavior, and the cooperation of the involved CSs, to
provide more effective response to the crowd management mission (133, 134).

Figure 5.1: Crowd Management Case Study

The case study data were collected primarily using document analysis. We tried to
use several sources of information, as suggested by (135), in order to limit the effects
of one interpretation of one single data source. For data related to crowd management
in football events venues, we mainly relied on the FIFA (Fédération Internationale de
Football Association) 1 regulations (136, 137), and other sources (134, 138, 139, 140,
141). To establish mission threads, we used also several guides for emergency plan
development (142, 143, 144, 145).

1https://www.fifa.com/ Accessed 13/01/2021

103

Figure 5.2: Mission Decomposition Diagram

5.1.1 Mission decomposition

The initial top level mission for the crowd management SoS is to maximize the safety
of the crowd, property and event venues, by minimizing risks and providing emergency
response while managing costs during all sports events. This mission is decomposed
into several sub-missions. The decomposition is a part of the mission structure pack-
age. Figure 5.2 shows part of the realized mission functional model. The initial mis-
sion is represented by the manage crowd mission, which includes the text statement
describing the mission and the "M" id. Two second level sub-missions are designed,
namely, accident prevention and provide an effective and fast emergency response, and
accident prevention has a lower priority than the second one. The crowd management
mission is a mission with variants. The semantic of decomposition is the OR operator
since the provide an effective and fast emergency response mission is not executed if
there is no emergency request. The mission time/location are not determined yet and
depend on the event location. Thus, we use the TBD (to be determined) acronym to in-
dicate that the values will be determined later. The decomposition process is iterative.
For instance, the accident prevention sub-mission is decomposed into crowd control

5. CASE STUDY MODELING AND SIMULATION 104

and crowd monitoring sub-missions, and the crowd monitoring sub-mission is further
decomposed into several sub-missions. The decomposition is stopped when we can
refine a sub-mission by an activity using the refine relationship. Using the SysML re-
fine relationship allows the reuse of the SysML traceability mechanisms. The observe
crowd call behavior action is used to refine the observe crowd sub-mission by adding
a set of activity description. Each activity encompasses a set of activities/actions that
refine the sub-mission and take into account the corresponding risks.

5.1.2 Mission Definition

For each call behavior action refining a sub-mission in the Mission Decomposition
Diagram, an activity is created with the same name. This aspect ensures that each mis-
sion is associated with a set of ordered actions. Figure 5.3 shows the Put Precautions
in Place activity allocated to the mission Put Precautions in Place using the refine rela-
tionship. In the activity diagram, the entry parameter Security_event_state is necessary
to choose the appropriate action to be undertaken by role.

Figure 5.3: Mission Decomposition and Allocation Example

The activity Observe Crowd (See Figure 5.4) refines the Observe Crowd mission.
The activity that realizes the Observe Crowd actions when a high risk of conflict is
identified is based on observation actions inside and outside the stadium. Figure 5.4
shows the activity that realizes the Observe Crowd in Stadium actions. Each action is
stored in a partition block, and the partitions are allocated to the corresponding roles.

105

Observe Entry Points, Observe Troublemakers or Observe Spectators are examples
of observation actions that provide observations as outputs. The analyze observation
activity retrieves the observations and generates a state of safety and security in the
stadium. The analyze observation activity is represented by call behavior action (see
Figure 5.4), which means that it is associated with an activity diagram that describes
it.

The observation actions should take into account several factors such as political
tensions, historical rivalry between fans, and supporter profiles. Each contextual infor-
mation is given as an input by the activity parameter (see Figure 5.4). The expected
result from the observe crowd with historical conflict between fans activity is the se-
cure event state that is provided as an output parameter.

Mission Decomposition Diagram is not supposed to contain partitions allocations.
To avoid presenting two similar diagrams, one with the allocations and the second
with no allocations, we have presented only Mission Decomposition Diagram with
allocations.

Figure 5.4: Mission Definition Diagram

5.1.3 Role Definition and Assignment

Once actions/activities have been defined, they must be attributed to a role. A role can
be abstract to varying degrees and can be specialized using the inheritance relationship.
Figure 5.5 shows part of the crowd management Role BDD, which includes a set of
role hierarchies from the most abstract role to concrete roles. For instance, according

5. CASE STUDY MODELING AND SIMULATION 106

to the situation, cost, service availability, and observation target, the observation action
could be performed using a camera, steward, or smoke detector, etc.

As shown in Figure 5.5, the role observer provides a capability Crowd Observation.
Crowd observation is required by the risk analyzer. The assignment of roles to actions
is performed by typing partitions with roles. For instance, in Figure 5.4, the safety
equipment observer partition is typed by the observer role, because it is not possible
to determine at this stage if a camera will exist in this place or another physical entity
will be used.

The observer role provides a capability Crowd Observation, which includes an
operation called observe, as shown in Figure 5.5. A call operation action for observe is
shown with pins corresponding to the entry and output parameters with all observation
actions; for instance, Observe Troublemakers and Observe spectators call the operation
observe, as shown in Figure 5.4. Allocating roles to partitions allows the maintenance
of traceability between the role base and the activities/actions related to a sub-mission.

Figure 5.5: BDD Roles Diagram

Figure 5.6 shows the mission-level performance and effectiveness measures that
are based on mission outcomes. A part of the measures of effectiveness of the crowd
management in sport event mission are: the supporters satisfaction, the risks detected

107

and avoided, operational availability, and the global cost. The value of each MoE
is also calculated. For example, the risk score is calculated using objective function
from the max density,cross flows emplacement and number, weather conditions, etc.
The mission-level effectiveness are performed to support the evaluation of the design
solution.

Figure 5.6: Mission Effectiveness Measures

5.1.4 Architecture design

Figure 5.7 and Figure 5.8 show respectively, an aggregate of roles, where each role
achieves a specific Crowd Observer in Stadium activity or action, and the interconnec-
tion among parts that participated in the Crowd Observer in Stadium activity. The two
diagrams are generated automatically using the ATL rules from the Crowd Observer
activity diagram and the role diagram.

In the BDD (see Figure 5.7), the In Stadium Crowd Observer role aggregates the
Control Center role and the seven Observer roles (troublemakers observer, entry points
observer, etc). The seven observer roles are responsible of the observe mission at a
particular location.

In the IBD (see Figure 5.8), the parts represent how the roles are used in the ob-
servation context and have the same role names as shown in the activity diagram. The
flow ports are consistent with their definition in the activity diagram. The IBD for
In Stadium Crowd Observer role shows the interconnection among the roles that are
involved in the In Stadium Crowd Observer Activity Diagram. However, there is ad-
ditional activity diagram that corresponds to the Analyze Observations activity. This

5. CASE STUDY MODELING AND SIMULATION 108

Figure 5.7: Crowd Observer in Stadium Abstract BDD

activity diagram includes different sets of interacting roles. Indeed, all the parts (roles)
from all the activity diagrams are represented in the Figure 5.8. Likewise, the hierarchy
of all roles is represented in the Figure 5.7. The Control Center aggregates the Server
and Risk Analyzer roles. The Risk Analyzer role aggregates the Receptor, Recorder,
Data Analyzer and the CCTV Operator.

Figure 5.8: Crowd Observer in Stadium Abstract IBD

The abstract architecture is used to obtain a possible concrete architecture by re-

109

placing the abstract items with concrete ones. Each solution is characterized by a set
of attributes that have a value distribution. The attributes for a given solution are then
evaluated using an objective function, and the results for each alternative are compared
to select the preferred solution. Figure 5.9 shows two variants of the Observer role
serving as solution to perform the observer role in the observe exit points mission. The
operational availability, cost, and security effectiveness are the measure of effective-
ness (MoE) for the observe mission. The overall effectiveness is calculated for each
alternative using a weighted equation of their MoE values.

Figure 5.9: Effectiveness Evaluation Results between the two Observers Variants

According to the effectiveness of each alternative. The architect selects, evaluates
and chooses the preferred concrete constituent systems. Like OOSEM, we used the
concept of “physical node that represents an aggregation of physical components at a
particular location”. Figure 5.10, represents an example of concrete roles allocated to
the abstract roles. The Troublemakers Observer role was assigned to mobile steward
human concrete role, who are engaged to penetrate the crowd and observe troublemak-
ers. The concrete architecture constrains the solution space with preselected concrete
systems that are available and are able to be assembled in the SoS. When a role is allo-
cated to software, the later must also be allocated to a corresponding hardware role to
execute it. Likewise, when a role is allocated to human, the later must also be allocated
to a corresponding hardware role to allow him communicate. As already mentioned
and as shown in the Figure 5.10, the steward can communicate using using the Radio
headsets.

The concrete architecture evaluation is performed using the overall mission effec-
tiveness (see Figure 5.6). Simulation remains the best way to analyze the impact of an

5. CASE STUDY MODELING AND SIMULATION 110

Figure 5.10: Physical Block Definition Diagram of Crowd Observer in Stadium Node

architecture solution on mission mission effectiveness.

5.2 Crowd management simulation

Simulation represents a promising path for the analysis of systems of systems (36).
While modeling allows SoS engineers to control the overall complexity of SoS, to
reveal and document its structure and behavior, and to communicate these to stake-
holders (44), simulation can be used to demonstrate these models from various point
of view. Simulation in SoSE can be used to engineer the integration of a system into
SoS (35), to avoid the undesirable emergent behavior (146, 147), to evaluate the ability
of an architecture configuration to accomplish the specified SoS mission (148), or to
identify the key factors that influence overall SoS performance (149).

In case of crowd management, simulation is interesting (1) to ensure that the SoS
is able to give a fast response and suggest the best way to evacuate crowd safely and
efficiently when emergency (such as fires and earthquakes) occurs, (2) to assist design-

111

ers in evaluating risk and maximizing safe design of architectural space, (3) to detect
key factors that can influence the SoS performance. Furthermore, according to (133),
the complexity of crowd behaviors make several issues with crowd simulation largely
open to date. The authors of (133) cites as examples 1) “the modeling of the intelligent
behavior of rescue workers or the authority”, as well as 2) “modeling and simulation
of panic crowds” and 3) “modeling and simulating confrontational crowd behaviors”.

In our case, we did the simulation to evaluate the SysML models that represent
the concrete architecture and to analyze the overall behavior of the crowd management
SoS in different event venues. The aim is to ensure that using our process, the SoS is
able to respond to the defined requirements.

5.2.1 Simulation approach for SoS

According to (133, 150), SoSE’s simulation techniques can be classified into: Events-
based modeling (EBM) also named discrete modeling (DEVS, Colored Petri Nets,
State chart approach, etc), and agent-based modeling (ABM). While EBM represent a
collection of events that impact the SOI, ABM is known for it’s use to simulate models
that represent a number of entities (agents), that share a common environment usually
called “word”. To represent these individual agents and their interactions, modeling
these entities require a focus on detailing their characteristics, interaction rules, and
behavior. Crowd management includes multiple systems to work on one goal which is
to manage the crowd. Furthermore, they are mostly led by humans in real world and
ABM is the best method for modeling interactions, and behavior simulation (151). In
our case, each agent in our ABS represent a constituent system as a law-enforcement,
security steward, or a fan etc. Our simulation approach is based on the models obtained
in the analysis and design engineering activities as shown in Figure 5.11. The mission
structural and behavioral model with the concrete architecture contain the concrete
constituent systems, and their behavior. Thus, every constituent system becomes an
agent in the environment, and its behavior becomes the agent behavior. In the mission
functional model, the mission requirement are defined. In fact, the mission functional
model is used to define the SoS simulation parameters. From this data, the simulation is
performed and measures that indicate the actual SoS performances are collected. They
are compared to those defined in the MoEs and are used to detect deficiencies in the
architecture, note the lesson learned, implement updates, and take different decisions.

5. CASE STUDY MODELING AND SIMULATION 112

Figure 5.11: Simulation Activity

5.2.2 Simulation tool

We have carried out our simulation, as part of a Master’s project that we supervised,
using the AnyLogic simulation tool 1, anylogic is a multi-method simulation tool that
supports several simulation paradigms (discrete event, agent based, system dynamics)
developed by the Anylogic company. Regarding crowd management, Anylogic is rich
with simulation libraries (e.g. pedestrian library, road traffic library, etc). Anylogic is
a java based platform, supporting the object oriented modeling, and the multi-threaded
environment. Figure 5.12 below show a screen shot of anylogic IDE startup page.

To be able to perform the simulation of a sport event, we needed a sport arena.
The sport arena used is not an official arena, but an AutoCAD 2 student’s architectural
design 3. Figure 5.13 depicts the general view of the arena. We notice that there are
two parking lots that can hold up to 243 cars, with two gates, the first one for car entry

1Simulation tool developed by the AnyLogic company. Web site: https://www.anylogic.com Ac-
cessed 14/02/2021

2Computer-aided design (CAD) software that architects, engineers, and construction professionals
rely on to create precise 2D and 3D drawings. Web site: https://www.autodesk.eu/ Accessed 07/08/2021

3CAD design website. Web site: https://www.bibliocad.com/en/library/project-gym_91553/ Ac-
cessed 07/08/2021

113

Figure 5.12: AnyLogic IDE

and the another one for car exit. The gates are shown in a red arrows. There are two
more gates at the left of the image, the first one is the main gate for the pedestrian
entrance and exit, and the other one is for special agent entrance like the teams players
bus or emergency services.

Inside the arena, there are several venues that can be used by the pedestrian, namely
the fast-food, bathroom, coffee. Furthermore, there is a seating area that contains 5248
seats, with multiple stairs to navigate in the area.

5.2.3 Simulation and results of crowd observation mission

Crowd observation is an important task in crowd management, as discussed in sec-
tion 5.1.1. It allows to avoid several problems and risks that revolve around the crowd.
That’s why we chose to simulate the Crowd Observation mission. Observe crowd
means that the SoSs has to ensure a safe pedestrian entrance to the arena, inside the
arena, and a safe exit from the arena as shown in Figure 5.14. In fact, the simulation is
based on three main scenarios: Observe crowd entrance, observe crowd behavior af-
ter the entrance, and observe crowd behavior when pedestrians exit the arena. Each

5. CASE STUDY MODELING AND SIMULATION 114

Figure 5.13: General View of the Arena

of these scenarios is presented in the following.

Figure 5.14: Observe Crowd Requirement Diagram

115

5.2.3.1 Crowd entrance observation mission

The first scenario in our simulation is the crowd entrance. The crowd have one main
gate for pedestrian entrance, and another gate for pedestrians coming from the parking
lots. Each car contains between one and five fans (random variable). The main variable
to measure here is the queue time, queue time is an important factor in the crowd
satisfaction criteria. The average queue time is obtained by calculating the average
queue time for each fan from each venue of the arena.

In this mission, pedestrians have to safely join their seats, as fast as possible, while
keeping the queue time as low as we can in the different venues. To perform a realistic
simulation, several data were needed: the spawn rate of pedestrians, the movement
speed, the probability for a pedestrian to enter each venue, queue line numbers. We
relied on the documents cited in the section 5.1 to fix them. Some of them can be varied
during simulation like the spawn rate of pedestrians, while others could not change like
the pedestrian movement speed that cannot exceed 1.4m/s. The architectural drawing
that we used propose 4 entry service points for each pedestrian gate, and for the arena
venues we can fit 22 service points for each fast-food venue, 11 service points for
each coffee venue, and 30 service points for each bathroom side. As a first result,
we obtained an average queue time of 20 minutes, which is a long queue time. As a
long queue time is seen today as a deficiency and a security flaw, we make changes in
the SoSs models and architecture (since it is possible when using the wave model) by
making possible to each fan to see on a screen or in mobile application the most suitable
service point to take, the one where there are less people at the moment. Therefore, we
were able to obtain an average queue time around 12 minutes as shown in Figure 5.15
and Figure 5.16 .

Figure 5.15: Venues’s Final Average Queue Time

We can notice in Figure 5.15 that the average wait time inside the venues is around

5. CASE STUDY MODELING AND SIMULATION 116

the 10 minute as marked, 10 minutes for fast-food service, 11 minutes for the bath-
room, and 2 minutes for the coffee.

Figure 5.16: Gates Final Average Queue Time

5.2.3.2 Crowd behavior observation mission after entrance

I this scenario, we relied on the approach proposed by (152) to simulate the crowd
behavior. In this case, we mean by a behavior a fan normal behavior change, so he
starts seeking a mobile steward attention to him. The two states that represent the fan
behavior are shown in Figure 5.17, where the state change occurs during the normal
behavior of the fan following the state-chart diagram.

Figure 5.17: Fan Behavior

The Fan’s behavior state model can be described as follows:

˘ Normal state, the normal state is the default state, that the fan takes initially.
The state is transformed, then into the In–trouble state with a specific rate (10%
of the crowd for example).

117

˘ In–trouble state, in the in–trouble state, the fan that changed his state turns into
a black circle as shown in figure 5.17. He starts then seeking the attention of the
police officers or the mobile stewards. If the required agent is free, he can move
to the troubled fan and intervene by turning the targeted fan’s state to the normal.

In this scenario we are going to focus on the performance of a mobile steward in
clearing up the troubles of the fan. The data we are going to capture, is the average
time the fan is going to stay in in-trouble state. The simulation variable we are starting
with is 30 mobile stewards spread over the seating area. The simulation variable we are
starting with is 30 (1 steward/200 fans) mobile stewards spread over the seating area
to cover as much as possible the space. The fan’s state transformation rate depends on
the nature of the crowd (calm, aggressive, etc.), we started with 20% in the course of
1 hour. Moreover, we considered the transformation time required to turn the fan back
to its normal state as a random variable, which can take as a value of 30 to 40 seconds.
Figure 5.18 shows an example of the simulation run, of the mobile stewards at work.

Figure 5.18: Mobile Security Steward Working, at the Seating Area

The first result obtained, as depicted in Figure 5.19, shows that the in–trouble
state’s average time exceeds 9 minutes/fan, and the number keep increasing as the
simulation progress, with no sign of stabilization.

It is clear that by increasing the number of stewards, we can improve the result, ex-
cept that the goal here is not to add more stewards, but to optimize the architecture as
much as possible. We have added new constituent systems such as mobile application,
that collects data from surveillance cameras, and directs the stewards movements us-
ing Dijkstra’s algorithm, one of the best short path finding algorithm. Since a steward

5. CASE STUDY MODELING AND SIMULATION 118

Figure 5.19: Initial Average Time In Trouble

can be accessed by multiple requests at the same time, we also improved the archi-
tecture by using in the same mobile application, a simple semaphore, that allows to
control requests to the mobile stewards. In fact, when a fan is in–trouble state, the
nearest free mobile steward is solicited. Thus, the new configuration is able to keep
the average time of in–trouble state at 5.4 minutes/fan, the simulation ended with 1722
changed states. This result is acceptable if the effectiveness of the target mission is 5
minutes/fan. Moreover, if we continue the simulation there is no indication that the
average time increases. The red circle in Figure 5.20 shows the start of a stabilization
after the full amount of fans are already spawned.

Figure 5.20: Final Average Time In Trouble

5.2.3.3 Crowd exit

Getting the crowd out of the arena safely, is one of the most important scenarios in
crowd management, that if done incorrectly, disastrous consequences can happen. The
main indicators that allow to judge about the crowd exit mission effectiveness is the

119

approximate time required by the fans to exit the arena as well as their density. In this
scenario, we were interested by the detection of critical areas in the arena, which are the
spaces that obstruct the fans and force them to stop moving. These areas are detected
by checking fans density, expressed as fans per square meter (f/m2). Figure 5.21 shows
an example of a critical area.

Figure 5.21: Critical Area Example (32)

In the exit scenario, each fan is going to head to the nearest exit gate to him. The
time of evacuation is calculated at the moment when all fans exit the four gates. The
critical areas are represented in red color filter within the simulation. Figure 5.22
illustrates the filter used to display the color of each fan density interval.

Figure 5.22: Colors Signification of the Filter Used to Display Results

After 4 minutes of running the simulation, we noticed that almost stairs have a
density problem as shown in the Figure 5.23. In addition, there are two stairs (red
arrows pointing at them), with the biggest density problem. That is because all the
fans in the red rectangle at the left of the image, are using these stairs to exit the
stadium.

When the cameras detect this kind of situations, the corrective step is initiated. It
consists of managing saturated areas in order to anticipate the inherent risks. Spe-

5. CASE STUDY MODELING AND SIMULATION 120

Figure 5.23: Default Arena Evacuation Simulation Results

cialized security agents take care of controlling access and managing flows. After 2
minutes of reaction of the agents, we can see in Figure 5.24 that the density is reduced.
The simulation ended after 20 minutes of execution, which is acceptable timing for
normal exit (not an emergency exit).

5.2.4 Discussion

In the design of crowd management systems in large-scale sports venues, the emphasis
is often on safety evacuation in these venues by considering architectural (architecture
of buildings) and fire-service regulations. The design of the places, depending on
safety standards, the size of the corridors, stands and stairs, helps to make collective
travel more fluid. Once this design has been completed, any sport event requires its
organizers to take into account the potential risks and to put in place an adequate fast
response for the safety of the crowd. Likewise, crowd well-being (153) and comfort,
often overlooked, are essential for a successful event. Thus, during major sport event,
hundred of staff members and contributors, often belonging to different organizations,
are involved. Their coordination is an important factor that allows to anticipate and

121

Figure 5.24: Arena Evacuation Simulation Results After Modification of the Architecture

contain these movements, that’s why we proposed through this case study, the design
of crowd management system, following an SoSs process, that considers the crowd
management from an SoSs-wide perspective, analyzing not only the event itself, but
also the potential influencing systems and elements in the SoSs environment, while
maintaining the focus on mission success.

The use of our approach to design a crowd management system brings several pos-
itive points. First of all, at the level of planning and preparation. A good knowledge of
the mission, its requirements, and MoEs makes possible the detection of the problems
that could potentially arise, and what contingencies need to be implemented to deal
with those problems.

Additionally, the definition of roles in a crowd management system allows to have
a good knowledge of who are going to have a role at some point during the event,
whether it is human, system, organism or another. Listing them makes perfect sense
for an event, because we have constituent systems that are not used to working together
usually. Thus, wide range of roles (police, mobile stewards, security stewards, event
organisers, etc) used to manage the event from multiple perspectives, should aim to

5. CASE STUDY MODELING AND SIMULATION 122

work together in order to enhance solidarity, and to maximize the mission effective-
ness.

Mission definition in our approach allows to define the behavior and function of
each role, to meet the objectives of the mission. Since the observation, vigilance and
evaluation of warning signs are to be taken into consideration in such a system, dif-
ferent scenarios should be defined in order to manage strategies to deal with potential
risks which may arise as well as the coordination of the different roles.

Being part of our approach, the simulation is useful and helpful to assess the de-
tailed operation of any decision before its implementation under realistic conditions.
Adjustments to mission strategy can be carried out depending on the results of the
simulation.

Since we rely on an iterative process, constant improvements are to be made to
the crowd management SoSs. Technological solutions and logistical solutions that
improve the effectiveness of the mission should be adopted. Thus, several CSs are
added to crowd management SoSs constantly like route planners, systems allowing
supporters to have what they have ordered online delivered directly to them, and dif-
ferent guidance systems capable of providing information for fans on the exit gate, etc.
That’s why we highlight on the importance of the adoption of an SoSs wide view for
crowd management systems.

CONCLUSION

In recent decades, there has been a growing interest in the development and analysis
of SoS in military, industry and academic domains. While the military domain focuses
on designing highly interoperable technical command and control systems to operate
independently, industrial and academic interest in the investigation of SoSs architec-
tures. Additionally, the academic perspective provides a specific and more extensive
focus at the methodological aspects of SoSs development.

Both of the characteristics of an SoS (autonomy and independence of constituents,
geographical distribution, and the evolutionary development), and authority relation-
ships between the CSs and the SoS influence on how to engineer SoSs. The the
US DoD outlined key differences between SE and acknowledged SoSE in four as-
pects (10, 33): management and oversight, operational focus, development, and engi-
neering and design considerations. As this thesis deals with development and analysis
of SoSs, these differences were considered during the research and were reformulated
as challenges for any SoSE approach. First, in term of management and oversight,
every process should distinguish two levels of stakeholders: CS level and SoS level
stakeholders. Their priorities are different and interests may be conflicting. Second,
in the operational focus aspect, SoSs are designed and developed to achieve set of op-
erational objectives that have to be achieved using independent CSs, whose objectives
may not necessarily align with the SoS objectives. Then, continuous SoS life cycle
characterizes SoSs development. It is intertwined with multiple system life cycles
across asynchronous acquisition and development efforts involving legacy systems,
systems under development, and new developments. Finally, SoSE implies the diffi-
culty to define SoS boundary, which is often ambiguous. It depends on the capabilities
needed so that the SoS can meet its objectives. Moreover, the needed capabilities de-
termine the CSs expected to be involved in the SoS, and the end-to-end behavior of the
ensemble of systems determines the individual functionalities undertaken by the CSs

CONCLUSION 124

to support the SoSs objectives.
In this thesis, we addressed SoSs modeling and analysis challenges already cited.

We proposed a process called Mission-Oriented Process for System of Systems En-
gineering (MOP-SoSE) to overcome these challenges. We used the mission paradigm
to balance the design and the end-to-end process. A mission has a goal, which is
achieved through a sequence of operational activities. Mission Engineering (ME) de-
termines those operational activities and allocates them to CSs for execution. We fol-
lowed the guidelines of Model Driven Engineering (MDE) to develop the MOP-SoSE
process using SysML (System Modeling Language) to describe the target models. We
used the Emergency Response SoS as illustrative example to exhibit the process. As
well, we detail and explain the different steps, and activities using the crowd manage-
ment SoS case study. Finally, we perform a Multi-Agents Simulation (MAS) of the
architecture to evaluate and improve the SoS mission effectiveness.

The contributions of this thesis may be summarized as follow:

Use of mission paradigm: The use of mission paradigm brings an advantage to the
work. By following a mission-oriented process, the SoS engineers can develop
effective architectures that focus more on the necessary capabilities of the SoS.
Indeed, the SoS then achieves mission performance goals by integrating appro-
priate CSs into the SoS. To use mission paradigm correctly we conducted a liter-
ature review on key concepts of both SoSE and ME, and proposed then a mission
conceptual model that encompasses and relates the concepts of the two domains.
This conceptual model defined the basic vocabulary used in the proposed pro-
cess.

Proposition of the MOP-SoSE process: This is the main contribution of this thesis,
which brings many strong points:

• Use of MBSE and SysML: the adoption of model-based systems engi-
neering approach brings five benefits according to the INCOSE (86): im-
proved communications, increased ability to manage system complexity,
improved product quality, enhanced knowledge capture and reuse of in-
formation, and improved ability to teach and learn SE fundamentals. Our
approach has been developed to support the realization of the intended ben-
efits of MBSE in SoS domain. SysML is a standardized system architecture
modeling language. Its use results on a set of “unambiguous, structured and

125

executable representation of the SoS architecture that can be exploited and
simulated” (154).

• Use of the wave life cycle: the wave life cycle is suited for SoSs develop-
ment because it is an evolutionary, iterative, and incremental life cycle. It
is a way to outline the necessary steps for engineering a SoS. It explicitly
depicts the analysis and resulting feedback throughout the entire process.
We adapted the wave model to show the interaction with multiple system
life cycles (CSs life cycles).

• Strengthen the link between the SoS analysis stage and the architec-
ture stage: by proposing model transformation to generate the abstract
architecture from the mission model. The system architect can deploy con-
crete constituent systems in the abstract architecture. Several concrete ar-
chitecture could be obtained by replacing the roles with concrete CSs. The
transformation goal is to avoid as much as possible information loss be-
tween the two stages.

• Distinguish between SoS level stakeholders and CSs ones: we proposed
that the SoS engineers describe new CS artifacts using the requirement
diagram. They are negotiated with the CS engineers to find a good com-
promise between CSs goals and the SoS goal, since they can be conflicting.
It is to highlight that since our process is applicable for acknowledged SoS,
there is active cooperation between SoS and CSs engineers.

• Deal with the ambiguous boundary of an SoS: by using the concept of
role, abstract entities that encapsulate the ideal behavior that will fulfill
an action. The concept of role is used to deal with the uncertainty of the
availability of SoS constituent systems.

• Definition of an utilization process: to provide guidance on the use of our
approach. An advantage of this process is to guide any user having basic
knowledge on IT, to use the process and the proposed Domain Specific
Language (DSL) to model and analyze the architecture of the SoS. The
process describes step by step, the needed actors and their tasks for each
engineering activity.

The proposition of MAS steps: which allows execution of the SoS architecture due
to the similarities between SoS and MAS concepts such as decentralization and

CONCLUSION 126

self organization. Such simulation enables to assess gaps in mission performance
and to improve it.

Despite all the contributions cited above, taking a step back from the work done
allowed us pointing some limitations on the proposed process for SoS development:
It is applicable only for acknowledged SoSs, it does not support other type of SoSs
development.

Perspectives

Although the work presented in this thesis covers the needs to build and manage SoSs,
there is more than enough scope for future improvement on the topic.
The first future work, that may be part of our process is the proposition of a frame-
work for the evaluation of SoSs architecture, and that may be used also to compare
different SoSs architectures. By framework we mean a conceptual model that identi-
fies the different evaluation metrics for mission in SoSs context as well as the steps
and rules allowing the development of those metrics. In our process, for the evaluation
of the SoSs architecture, we relied on the work of (31), and used two metrics which
are MoPs and MoEs. The MoPs allow to choose between two CSs that perform the
same role while MoEs allow to decide about the effectiveness of the mission. In the
SE literature, other important measures exist as KPPs (Key Performance Parameter)
and TPMs (Technical Performance Measures). According to INCOSE (155, 156), the
use of those metrics allows to have insight into the likelihood of achieving the opera-
tional objectives or capabilities, to assess the progress of the technical solution, and to
evaluate the technical risk as the solution evolves. Thus, it will be interesting to show
how to use them in SoSs context.

A second perspective concerns the simulation. We used basic scenarios of crowd
management and a restricted set of constituent systems in our work. As our process
relies on the wave model, which is iterative model, the SoS is never in its final form.
Thus, the simulation has to be improved continually and should consider end–to–end
mission real life scenarios (157). The connectivity to surrounding parking lots, metro
stations, and bus stops are significant features of the crowd simulation in a major sport-
ing event. Indeed, when crowd gather for an event at the same time, city’s road and
transportation network might quickly become overburdened. Thus, it is important at
SoS level to identify those critical areas, and to find the adequate solutions to overcome

127

them with the adequate SE teams.
Another perspective concerns the use of artificial intelligence in the MoP-SoSE.

Indeed, the artificial intelligence (AI) symbolized by the machine learning (ML) tech-
nology, has gained prominence in the last two decades in the SE process. Advanced
AI algorithms as the deep learning (DL), and reinforcement learning (RL) provide a
promising way in the prediction of critical properties if joined to modeling and simu-
lation. They exhibit high efficiency in building automatically predictive models, in im-
proving model performance, and personalization compared to other approaches (158).
From SE perspective, several authors tried to show how AI is applicable to the de-
velopment and simulation of systems as well as for the verification and validation of
systems (159, 160). Indeed, it will be interesting to apply AI in the different activi-
ties of the SoSE development process, to manage mission threads, to make adequate
strategical decisions, to solve problems, and to find new insight to the SoS emergent
behavior that a human being may overlook.

The last, but not the least, perspective we can suggest consists in extending the
current work so that the cyber security aspect will be taken into account at the heart
of the SoSs design. In our approach, we used the concept of role to represent any
entity that may enter the SoS boundaries at a given moment. In fact, the functional-
ities of each role are specified and understood. Except that at runtime, whenever a
CS enters the SoS boundaries, it represents a potential risk, whether intentional or not.
Therefore, several cyber attack scenarios can be envisaged. We cite as an example in
crowd management SoS for major sport event, the fraud on stadium tickets, fake sports
betting sites, fake sites supposed to display the results of a competition, sabotage of
the stadium’s electrical infrastructure, denial of service attack on arbitration assistance
systems, etc. The consequences of such scenarios could be significant. So, it becomes
necessary to integrate the cyber security aspect as first class entity into the SoSs mis-
sion specification and design stages (161) to identify and manage vulnerabilities at an
early stage, and thus provide a secure by design SoS.

CONCLUSION 128

Glossary

SoSE System of Systems Engineering

SoS System of Systems

SE System Engineering

SDI Strategic Defense Initiative

SoSECE System of Systems Engineering Center of Excellence

U.S. United States

CISA Center for Integrated Systems in Aerospace

NCSOSE National Centers for System of Systems Engineering

IEEE SoSE IEEE Conference on System of Systems Engineering

IEEE SYSCON IEEE Systems Engineering Conference

INCOSE International Council on Systems Engineering

IJSSE International journal of System of Systems Engineering

ISJ IEEE Systems Journal

CS Constituent System

ICT Information and Communication Technology

SOI System Of Interest

CONCLUSION 130

OUSD AT&L Office of the Under Secretary of Defense for Acquisition, Technology
and Logistics

DANSE Designing for Adaptability and EvolutioN in Systems of systems Engineer-
ing

SoS SE System of Systems System Engineering

DSL Domain-Specific Languages

CONOPS CONcept Of OPerationS

SysML System Modeling Language

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

MoDAF Ministry of Defense Architecture Framework

NAF NATO Architecture Framework

UPDM Unified Profile for DoDAF and MoDAF

COMPASS Comprehensive Modelling for Advanced Systems of Systems

CML Compass Modelling Language

UTP Unifying Theories of Programming

AF Architectural Framework

AMADEOS Architecture for Multi-criticality Agile Dependable Evolutionary Open
System of Systems

ME Mission Engineering

MIM Mission Integration Management

NDAA National Defense Authorization Act

MEI Mission Engineering and Integration

131

NASA National Administration of Aeronautics and Space

MMF Missions and Means Framework

MLSoS Mission-Level Systems of Systems

I&I Integration and Interoperability

MoPs Measures Of Performance

OSEs Organizational System Elements

MT Mission Thread

ACC Autonomy, Collaboration and Cooperation

OODA Observe, Orient, Decide, Act

DAG Directed Acyclical Graph

MoP-SoSE Mission Oriented Process for System of Systems Engineering

ADE application domain expert

ERSoSs Emergency Response System of Systems

MoEs Measurements of Effectiveness

RE Requirement

ATL ATLAS Transformation Language

BDD Block Definition Diagram

IBD Internal Block Diagram

ECore Eclipse Core

EBM Events-Based Modeling

ABM Agent-Based Modeling

CAD Computer-Aided Design

CONCLUSION 132

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

RL Reinforcement Learning

References

[1] INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING. INCOSE Systems Engineering Hand-
book: A Guide for System Life Cycle Processes and Activities. Fourth edition edition, 06 2015.
ix, 10, 11, 12, 20, 25

[2] BRUCE BEIHOFF, CHRISTOPHER OSTER, SANFORD FRIEDENTHAL, CHRISTIAAN PAREDIS,
DUNCAN KEMP, HEINZ STOEWER, DAVID NICHOLS, AND JON WADE. A World in Motion
âĂŞ Systems Engineering Vision 2025. 01 2014. ix, 11, 13

[3] ISO/IEC/IEEE International Standard - Systems and software engineering – Guidelines
for the utilization of ISO/IEC/IEEE 15288 in the context of system of systems (S0S).
ISO/IEC/IEEE 21840:2019(E), pages 1–68, 2019. ix, 12, 14, 53

[4] ALEX GOROD, BRIAN E.WHITE, VERNON IRELAND, S. JIMMY GANDHI, AND BRIAN

SAUSER. Case Studies in System of Systems, Enterprise Systems, and Complex Systems En-
gineering. Complex and Enterprise Systems Engineering. CRC Press; 1 edition (July 1, 2014).
ix, 1, 13, 15, 101

[5] A. GOROD, B. SAUSER, AND J. BOARDMAN. System-of-Systems Engineering Management:
A Review of Modern History and a Path Forward. IEEE Systems Journal, 2(4):484–499,
2008. ix, xiii, 13, 15, 28

[6] JO ANN LANE. What is a System of Systems and Why Should I Care?, 2013. ix, 1, 2, 21, 22,
23

[7] ANJEL TZANEV. Modeling and Simulation of Systems of Systems – a Survey. Cybernetics
and Information Technologies, 13(2):3 – 36, 2013. ix, 25, 26

[8] CHARLES B. KEATING AND POLINPAPILINHO F. KATINA. Systems of systems engineering:
prospects and challenges for the emerging field. International Journal of System of Systems
Engineering (IJSSE), 2:234–256, 06 2011. ix, 26, 27

[9] JUDITH DAHMANN. Systems of Systems Engineering Life Cycle. Educational Notes EN-SCI-
276-04, NATO, S&T, January 2015. ix, 3, 32, 34, 47

https://content.sciendo.com/view/journals/cait/13/2/article-p3.xml

REFERENCES 134

[10] DEPARTMENT OF DEFENSE. Systems Engineering Guide for Systems of Systems, August 2008.
ix, xiii, 1, 2, 20, 21, 22, 25, 27, 28, 30, 32, 33, 58, 76, 80, 123

[11] J. DAHMANN, G. REBOVICH, J. LANE, R. LOWRY, AND K. BALDWIN. An implementers’
view of systems engineering for systems of systems. In 2011 IEEE International Systems
Conference, pages 212–217, Montreal, Canada, April 2011. ix, x, xiii, 1, 33, 34, 36, 38, 74, 75

[12] ERIC HONOUR. Designing for Adaptability and evolution in System of systems Engineering.
In Presented at National Defense Industry Association Systems Engineering Conference (NDIA
SE), October 2013. ix, 34, 35

[13] IMAD SANDUKA. A modelling framework for systems-of-systems with real-time and reliability
requirements. PhD thesis, UniversitÃd’t Siegen, 2015. ix, 40

[14] SANFORD FRIEDENTHAL, ALAN MOORE, AND RICK STEINER. A Practical Guide to SysML:
The Systems Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
3rd edition, 2014. ix, 2, 42, 53, 90

[15] HOFFMANN HANS-PETER. White paper: SysML-based systems engineering using a model-
driven development approach. Technical report, October 2008. ix, 2, 43

[16] AURELIJUS MORKEVICIUS, AISTE ALEKSANDRAVICIENE, DONATAS MAZEIKA, LINA

BISIKIRSKIENE, AND ZILVINAS STROLIA. MBSE Grid: A Simplified SysML-Based Ap-
proach for Modeling Complex Systems. INCOSE International Symposium, 27(1):136–150,
2017. ix, 2, 44, 45

[17] JOHN MO AND BECKETT RONALD. Engineering and Operations of System of Systems. CRC
Press, Boca Raton, 2019. ix, 46, 47

[18] COMPASS CONSORSIUM. The Compass Project. http://www.compass-research.
eu/, 2014. ix, 49, 82

[19] STEFAN HALLERSTEDE, FINN OVERGAARD HANSEN, CLAUS BALLEGARD NIELSEN, AND

KLAUS KRISTENSEN. Guidelines for Architectural Modelling of SoS. Research Report De-
livrable D21.5a, September 2014. ix, 49, 50

[20] ARUN BABU, SORIN IACOB, PAOLO LOLLINI, AND MARCO MORI. AMADEOS Framework
and Supporting Tools, pages 128–164. Springer International Publishing, Cham, 2016. ix, 3, 50,
51, 53

[21] Y. J. LU, L. L. CHANG, K. W. YANG, Q. S. ZHAO, AND Y. W. CHEN. Study on System of
Systems Capability Modeling Framework Based on Complex Relationship Analyzing. In
2010 IEEE International Systems Conference, pages 23–28, April 2010. ix, 52

http://www.compass-research.eu/
http://www.compass-research.eu/

135

[22] ANDRES SOUSA-POZA. Mission Engineering. International Journal of System of Systems
Engineering, 6:161, 01 2015. ix, x, 3, 54, 58, 60, 61, 62, 73

[23] ROBERT GOLD. Mission Engineering. In In Proceedings of the 19th Annual National Defense
Industrial Association (NDIA) Systems Engineering Conference, October 2017. ix, 61

[24] JACK H. SHEEHAN, PAUL H. DEITZ, BRITT E. BRAY, BRUCE A. HARRIS, AND ALEXAN-
DER B.H. WONG. The Military Missions and Means Framework. Technical Report TR-756,
U.S. Army Materiel Systems Analysis Activity, october 2004. x, 63, 64, 81

[25] PAUL H. DEITZ, BRITT E. BRAY, AND JAMES R. MICHAELIS. The missions and means
framework as an ontology. In MICHAEL A. KOLODNY AND TIEN PHAM, editors, Ground/Air
Multisensor Interoperability, Integration, and Networking for Persistent ISR VII, 9831, pages 45
– 56. International Society for Optics and Photonics, SPIE, 2016. x, 64, 65

[26] R. DEIOTTE AND R. K. GARRETT. A Novel Approach to Mission-Level Engineering of
Complex Systems of Systems: Addressing Integration and Interoperability Shortfalls by
Interrogating the Interstitials. Technical Report 13-MDA-7269, Missile Defense Agency, De-
cember 2013. x, 59, 63, 64, 65, 66, 71, 72, 81

[27] JR. JAMES D. MORELAND. Mission Engineering Integration and Interoperability (I&I).
Naval Surface Warfare Center, Dahlgren Division, Leading Edge, January 2015. x, 67

[28] CHARLES S. WASSON. System Analysis, Design, and Development: Concepts, Principles, and
Practices (Wiley Series in Systems Engineering and Management). Wiley-Interscience, USA,
2005. x, 59, 68, 69

[29] EDUARDO SILVA, THAÍS BATISTA, AND FLÁVIO OQUENDO. A mission-oriented approach
for designing system-of-systems. In 10th System of Systems Engineering Conference, SoSE
2015, pages 346–351, May 2015. x, 70

[30] E. SILVA, E. CAVALCANTE, AND T. BATISTA. Refining Missions to Architectures in
Software-Intensive Systems-of-Systems. In 2017 IEEE/ACM Joint 5th International Workshop
on Software Engineering for Systems-of-Systems and 11th Workshop on Distributed Software
Development, Software Ecosystems and Systems-of-Systems (JSOS), pages 2–8, Buenos Aires,
Argentina, May 2017. x, 70, 71

[31] D. WEBSTER, N. LOOKER, D. RUSSELL, LU LIU, AND J. XU. An ontology for evaluation of
network enabled capability. 2008. x, 82, 87, 95, 96, 126

[32] YOSHIKAZU MINEGISHI AND NAOHIRO TAKEICHI. Design guidelines for crowd evacua-
tion in a stadium for controlling evacuee accumulation and sequencing. Japan Architectural
Review, 1(4):471–485, 2018. xi, 119

REFERENCES 136

[33] JUDITH DAHMANN. Systems of Systems Characterization and Types. Educational Notes
EN-SCI-276-01, NATO, S&T, January 2015. xiii, 1, 27, 28, 123

[34] J. DAHMANN, G. REBOVICH, J. A. LANE, AND R. LOWRY. System engineering artifacts for
SoS. In 2010 IEEE International Systems Conference, pages 13–17, San Diego, CA, USA, April
5-8 2010. xiii, 35, 36, 38, 80

[35] M.JAMSHIDI. Systems of Systems Engineering: Principles and Applications. CRC Press, 2008.
1, 17, 110

[36] CLAUS BALLEGAARD NIELSEN, GORM PETER LARSEN, JOHN FITZGERALD, JIM WOOD-
COCK, AND JAN PELESKA. Systems of Systems Engineering: Basic Concepts, Model-Based
Techniques, and Research Directions. ACM Computing Survey, 48(2):1–18, sep 2015. 1, 2,
23, 24, 25, 82, 110

[37] MARK W. MAIER. Architecting Principles for Systems-of-Systems. INCOSE International
Symposium, 6(1):565–573, 1996. 1, 9, 11, 12, 17, 18

[38] J. BOARDMAN AND B. SAUSER. System of Systems – the meaning of of. In 2006 IEEE/SMC
International Conference on System of Systems Engineering, pages 6 pp.–, 2006. 1, 18, 19

[39] R. ABBOTT. Open at the top; open at the bottom; and continually (but slowly) evolving.
In 2006 IEEE/SMC International Conference on System of Systems Engineering, pages 6 pp.–,
2006. 1, 19, 20, 53

[40] MAIER MARK W. Architecting principles for systems-of-systems. Systems Engineering,
1(4):267–284, 1998. 1, 21, 23

[41] PAUL N. LOWE AND MICHELLE W. CHEN. System of Systems Complexity: Modeling and
Simulation Issues. In Proceedings of the 2008 Summer Computer Simulation Conference, SCSC
’08, pages 36:1–36:10, Vista, CA, 2008. Society for Modeling & Simulation International.
1, 91

[42] R. COLE. The changing role of requirements and architecture in systems engineering. In
2006 IEEE/SMC International Conference on System of Systems Engineering, pages 6–10. IEEE,
April 2006. 1

[43] J. S. DAHMANN AND K. J. BALDWIN. Understanding the Current State of US Defense
Systems of Systems and the Implications for Systems Engineering. In 2008 2nd Annual IEEE
Systems Conference, pages 1–7. IEEE, 2008. 1, 21, 22, 23

[44] JIM WOODCOCK, PETER GORM LARSEN, JUAN BICARREGUI, AND JOHN FITZGERALD. For-
mal Methods: Practice and Experience. ACM Computing Survey, 41(4):1–36, october 2009.
2, 110

http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dl.acm.org/citation.cfm?id=2367656.2367692
http://dl.acm.org/citation.cfm?id=2367656.2367692

137

[45] BRUCE P. DOUGLASS. White paper: The Harmony Process. Technical report, March 2005.
2, 43

[46] U.S. DEPARTMENT OF DEFENSE. DoDAF Architecture Framework Version 2.02.
https://dodcio.defense.gov/library/dod-architecture-framework/,
August 2010. 2, 45

[47] UK MINISTRY OF DEFENCE. MOD Architecture Framework (MODAF). https://www.
gov.uk/guidance/mod-architecture-framework, 2004. 2, 46

[48] NATO. NATO Architecture Framework, Version 4.0. Technical report, January 2018. 2

[49] MARGHERITA FORCOLIN, PIETRO-FELICE PETRUCCO, ROBERTO PREVIATO,
RICHARD LLOYD STEVENS, RICHARD PAYNE, CLAIRE INGRAM, AND ZOE ANDREW.
Accident Response Use Case Engineering Analysis Report Using Current Methods &
Tools. Technical Report D41.1, March 2014. 3, 48, 49, 82

[50] GREGG VESONDER AND DINESH VERMA. RT-171: Mission Engineering Competencies
Technical Report. Technical Report SERC-2018-TR-106, April 2018. 3, 54, 59, 63, 73

[51] A. S. HERNANDEZ, W. D. HATCH, A. G. POLLMAN, AND S. C. UPTON. Computer Ex-
perimentation and Scenario Methodologies to Support Integration and Operations Phases
of Mission Engineering and Analysis. In 2018 Winter Simulation Conference (WSC), pages
3765–3776. IEEE, 2018. 4, 59, 71

[52] ISO/IEC/IEEE International Standard – Systems and software engineering – System of
systems (SoS) considerations in life cycle stages of a system. ISO/IEC/IEEE 21839:2019(E),
pages 1–40, 2019. 4, 20, 32, 71

[53] DENNIS M. BUEDE. The Engineering Design of Systems: Models and Methods. Wiley Publish-
ing, 2nd edition, 2009. 9

[54] ISO/IEC/IEEE International Standard - Systems and software engineering – System life
cycle processes. ISO/IEC/IEEE 15288 First edition 2015-05-15, pages 1–118, May 2015. 10

[55] ALBERT ALBERS, CONSTANTIN MANDEL, STEVEN YAN, AND MATTHIAS BEHRENDT. Sys-
tem of Systems Approach for the Description and Characterization of Validation Environ-
ments. In 2018 15th International Design Conference, pages 2799–2810, 01 2018. 11

[56] STEFAN N. GRÖSSER. Complexity Management and System Dynamics Thinking, pages 69–92.
Springer International Publishing, Cham, 2017. 12

[57] CIZA THOMAS, RENDHIR R. PRASAD, AND MINU MATHEW. Introduction to Complex Sys-
tems, Sustainability and Innovation. In CIZA THOMAS, editor, Complex Systems, Sustainabil-
ity and Innovation, chapter 1. IntechOpen, Rijeka, 2016. 12

https://dodcio.defense.gov/library/dod-architecture-framework/
https://www.gov.uk/guidance/mod-architecture-framework
https://www.gov.uk/guidance/mod-architecture-framework
https://doi.org/10.1007/978-3-319-45438-2_5

REFERENCES 138

[58] KENNETH E. BOULDING. General Systems Theory – The Skeleton of Science. Management
Science, 2(3):197–208, 1956. 13

[59] RUSSELL L. ACKOFF. Towards a System of Systems Concepts. Management Science,
17(11):661–671, 1971. 14

[60] MICHAEL JACKSON AND P. KEYS. Towards a System of Systems Methodologies. Journal of
the Operational Research Society, 35:473–486, 06 1984. 14

[61] FRANCOIS JACOB. The logic of living systems : a history of heredity / [by] Francois Jacob ;
translated [from the French] by Betty E. Spillmann. Allen Lane London, 1974. 14

[62] UNITED STATES. Restructuring of the Strategic Defense Initiative (SDI) Program. S. hrg. ;100-
1010. U.S. G.P.O., Washington, 1989. iii, 86 p. 14

[63] HOWARD EISNER, JOHN MARCINIAK, AND RAY MCMILLAN. Computer-aided system of
systems (C2) engineering. In IEEE International Conference on Systems, Man, and Cybernetics,
1991. 16

[64] AARON J. SHENHAR. 2.5.1 A New Systems Engineering Taxonomy. INCOSE International
Symposium, 5(1):723–732, 1995. 16

[65] A. J. SHENHAR AND Z. BONEN. The new taxonomy of systems: toward an adaptive sys-
tems engineering framework. IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, 27(2):137–145, 1997. 16

[66] JOHN H. HOLLAND. Hidden Order: How Adaptation Builds Complexity. Addison Wesley
Longman Publishing Co., Inc., USA, 1996. 17

[67] JOHN R. KOZA. Hidden Order: How Adaptation Builds Complexity. Artificial Life,
2(3):333–335, 1995. 17

[68] VADIM KOTOV. Systems of systems as communicating structures. Computer Systems Labo-
ratory, HPL-97-124, 1997. 17

[69] DOMINIQUE LUZEAUX AND JEAN-RENÉ RUAULT. Systems of Systems. ISTE Ltd and John
Wiley & Sons, Inc, 2010. 18, 80

[70] W. C. BALDWIN AND B. SAUSER. Modeling the characteristics of system of systems. In 2009
IEEE International Conference on System of Systems Engineering (SoSE), pages 1–6, 2009. 19

[71] W. C. BALDWIN, B. J. SAUSER, AND J. BOARDMAN. Revisiting “The Meaning of Of” as a
Theory for Collaborative System of Systems. IEEE Systems Journal, 11(4):2215–2226, 2017.
19

https://doi.org/10.1287/mnsc.2.3.197
http://www.jstor.org/stable/2629308
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.1995.tb01933.x
https://www.mitpressjournals.org/doi/abs/10.1162/artl.1995.2.3.333

139

[72] DEPARTMENT OF DEFENSE (DOD). Defense Acquisition Guidebook. Washington, D.C.: U.S.
Dept.of Defense, Pentagon, February 2010. 20

[73] DEPARTMENT OF DEFENSE (DOD). Defense Acquisition Guidebook. Washington, D.C.: U.S.
Dept.of Defense, Pentagon, October 2004. 20

[74] ISO/IEC/IEEE International Standard - Systems and software engineering – Taxonomy of
systems of systems. ISO/IEC/IEEE 21841:2019(E), pages 1–20, 2019. 20, 21

[75] CHAIRMAN OF THE JOINT CHIEFS OF STAFF (CJCS). CJCS Manual 3170.01C, “Operation of
the Joint Capabilities Integration and Development System”, May 2007. 21

[76] ANDREW P. SAGE AND CHRISTOPHER D. CUPPAN. On the Systems Engineering and Man-
agement of Systems of Systems and Federations of Systems. Inf. Knowl. Syst. Manag.,
2(4):325–345, december 2001. 25

[77] BAR-YAM YANEER, ANN ALLISON MARY, BATDORF RON, CHEN HAO, GENERAZIO HOA,
SINGH HARCHARANJIT, AND TUCKER STEVE. The Characteristics and Emerging Behav-
iors of System of Systems, 2004. 25

[78] CHARLES KEATING, RALPH ROGERS, RESIT UNAL, DAVID DRYER, ANDRES SOUSA-POZA,
ROBERT SAFFORD, WILLIAM PETERSON, AND GHAITH RABADI. System of Systems Engi-
neering. Engineering Management Journal, 15(3):36–45, 2003. 25

[79] J. O. CLARK. System of Systems Engineering and Family of Systems Engineering from
a standards, V-Model, and Dual-V Model perspective. In 2009 3rd Annual IEEE Systems
Conference, pages 381–387, 2009. 32

[80] JUDITH DAHMANN, JO LANE, G. REBOVICH, AND KRISTEN BALDWIN. A model of systems
engineering in a system of systems context. In Conference on Systems Engineering Research,
April 2008. 33

[81] JO ANN LANE AND JUDITH S. DAHMANN. Process Evolution to Support System of Systems
Engineering. In Proceedings of the 2Nd International Workshop on Ultra-large-scale Software-
intensive Systems, ULSSIS ’08, pages 11–14, New York, NY, USA, 2008. ACM. 33, 53

[82] DAVID. DOMBKINS. Complex project management : seminal essays / by David H. Dombkins.
BookSurge Publishing North Charleston, S.C, 2007. 34

[83] DANSE PROJECT. DANSE Methodology V03. Technical report, IAI, February 2015. 34

[84] Overview of Architecture Frameworks and Modeling Languages for Model-Based Systems Engi-
neering, Volume 2: 31st Computers and Information in Engineering Conference, Parts A
and B of International Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference, 08 2011. 39, 40

REFERENCES 140

[85] INCOSE. Systems Engineering Vision 2020, version 2.03. INCOSE Technical Operations
INCOSE-TP-2004-004-02, International Council on Systems Engineering, Seattle, WA, 2007.
39

[86] SANFORD FRIEDENTHAL, REGINA GRIEGO, AND MARK SAMPSON. INCOSE Model Based
Systems Engineering (MBSE) Initiative. In INCOSE 2007 Symposium, June 2007. 40, 124

[87] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990,
pages 1–84, 1990. 40

[88] IEEE Recommended Practice for Architectural Description for Software-Intensive Sys-
tems. IEEE Std 1471-2000, pages 1–30, 2000. 40

[89] CANTOR MURRAY. White paper: Rational Unified Process for Systems Engineering, RUP
SE, Version 2.0. Technical report, May 8 2003. 44

[90] MICHEL D. INGHAM, ROBERT D. RASMUSSEN, MATTHEW B. BENNETT, AND ALEX C.
MONCADA. Engineering complex embedded systems with State Analysis and the Mission
Data System. In AIAA Journal of Aerospace Computing, Information and Communication, pages
507–536, 2004. 44

[91] J. WOODCOCK, A. CAVALCANTI, J. FITZGERALD, P. LARSEN, A. MIYAZAWA, AND

S. PERRY. Features of CML: A Formal Modelling Language for Systems of Systems. In
2012 7th International Conference on System of Systems Engineering (SoSE), pages 1–6, July
2012. 48

[92] C.A.R. HOARE AND J. HE. Unifying Theories of Programming, 14. Prentice Hall, 1998. 49

[93] PERRY SIMON AND HOLT JON. Definition of the COMPASS Architectural Framework
Framework. Research Report Delivrable D21.5b, December 2014. 49

[94] RUSSELL LOCK AND IAN SOMMERVILLE. Modeling and Analysis of Socio-Technical System
of Systems. In Proceedings of the 15th IEEE International Conference on Engineering of Com-
plex Computer Systems, ICECCS ’10, pages 224–232. IEEE Computer Society, March 2010. 51,
54, 81

[95] WERNER DAMM AND ALBERTO SANGIOVANNI VINCENTELLI. A Conceptual Model of Sys-
tem of Systems. In Proceedings of the Second International Workshop on the Swarm at the Edge
of the Cloud, SWEC ’15, pages 19–27, New York, NY, USA, 2015. ACM. 52

[96] CHARLES B. KEATING, JOSE J. PADILLA, AND KEVIN ADAMS. System of Systems Engineer-
ing Requirements: Challenges and Guidelines. Engineering Management Journal, 20(4):24–
31, 2008. 53, 55

141

[97] ALEXANDER KOSSIAKOFF, SAMUEL J. SEYMOUR, DAVID A. FLANIGAN, AND STEVEN

M. BIEMER. System of Systems Engineering, chapter 20, pages 583–596. John Wiley & Sons,
Ltd, 2020. 54

[98] EILEEN BJORKMAN. Mission Engineering for Warfighting Integration of Net-Centric Sys-
tems. In 13th Annual Systems Engineering Conference, October 2010. 58

[99] KATHLEEN GILES AND KRISTIN GIAMMARCO. A mission-based architecture for swarm
unmanned systems. Systems Engineering, 22(3):271–281, 2019. 59

[100] ALEJANDRO HERNANDEZ, TAHMINA KARIMOVA, AND DOUGLAS NELSON. Mission Engi-
neering and Analysis: Innovations in the Military Decision Making Process. In In Proceed-
ings of the American Society for Engineering Management 2017 International Annual Confer-
ence, 10 2017. 59

[101] DOUGLAS VAN BOSSUYT, PAUL BEERY, BRYAN O’HALLORAN, ALEJANDRO HERNANDEZ,
AND EUGENE PAULO. The Naval Postgraduate School’s Department of Systems Engineer-
ing Approach to Mission Engineering Education through Capstone Projects. Systems, 7:38,
08 2019. 59

[102] BEERY AND PAULO. Application of Model-Based Systems Engineering Concepts to Support
Mission Engineering. Systems, 7(3):44, Sep 2019. 59

[103] U.D.O. DEFENSE. Dictionary of Military Terms and Acronyms. Praetorian Press LLC, 2011. 59

[104] DEPARTMENT OF DEFENSE (DOD). Mission Engineering and Integration (MEI) Guidebook.
Washington, D.C.: U.S. Dept.of Defense, Pentagon, November 2019. 59

[105] DEPARTMENT OF DEFENSE (DOD). Defense Acquisition Guidebook. Washington, D.C.: U.S.
Dept.of Defense, Pentagon, September 2020. 59

[106] ROBERT GOLD. Mission Engineering. In In Proceedings of the 19th Annual National Defense
Industrial Association (NDIA) Systems Engineering Conference, October 2016. 61, 62

[107] THOMAS IRWIN. Operational Mission Architecture Framework: A Blended Architecture
Methodology for Enabling Operational Capability. Thèse, Naval Pstgraduate School, Monterey,
California, 2018. 61

[108] DEPARTMENT OF DEFENSE (DOD). Defense Critical Infrastructure Program (DCIP): DoD
Mission-Based Critical Asset Identification Process (CAIP). Washington, D.C.: U.S. Dept.of
Defense, Pentagon, May 2017. 62

[109] R. GIACHETTI, S. WANGERT, AND R. ELDRED. Interoperability Analysis Method for
Mission-Oriented System of Systems Engineering. In 2019 IEEE International Systems Con-
ference (SysCon), pages 1–6. IEEE, 2019. 62

REFERENCES 142

[110] WILLIAM D. MILLER HOONG YAN SEE TAO DINESH VERMA GREGG T. VESONDER NICOLE

A.C. HUTCHISON, SERGIO LUNA AND JON PATRICK WADE. Mission Engineering Compe-
tencies. 63, 67

[111] JOHN R. BOYD. Destruction and Creation. 1976. 66

[112] JOHN R. BOYD. A Discourse on Winning and Losing. Technical report, Air University Press,
2018. 66

[113] JAMES SUROWIECKI. The Wisdom of Crowds. Anchor, 2005. 66

[114] JM HELD. Systems of Systems: Principles, Performance, and Modelling. Sydney, Australia,
2008. 66

[115] NICOLE HUTCHISON, HOONG YAN SEE TAO, WILLIAM MILLER, DINESH VERMA, AND

GREGG VESONDER. Framework for Mission Engineering Competencies. 28th Annual IN-
COSE International Symposium, 28(1):518–531, July 2018. 67

[116] CHARLES S. WASSON. System Engineering Analysis, Design, and Development: Concepts,
Principles, and Practices. Wiley Series in Systems Engineering and Management. Wiley, 2
edition, 2015. 68

[117] IMANE CHERFA, NICOLAS BELLOIR, SALAH SADOU, RÉGIS FLEURQUIN, AND DJAMAL

BENNOUAR. Systems of systems: From mission definition to architecture description. Sys-
tems Engineering, 22(6):437–454, 2019. 74

[118] G. MULLER. Are stakeholders in the constituent systems SoS aware? Reflecting on the
current status in multiple domains. In 2016 11th System of Systems Engineering Conference
(SoSE), pages 1–5. IEEE, 2016. 77

[119] I. CHERFA, S. SADOU, N. BELLOIR, R. FLEURQUIN, AND D. BENNOUAR. Involving the
Application Domain Expert in the Construction of Systems of Systems. In 2018 13th Annual
Conference on System of Systems Engineering (SoSE), pages 335–342, Paris, France, June 2018.
82

[120] PAOLO BRESCIANI, ANNA PERINI, PAOLO GIORGINI, FAUSTO GIUNCHIGLIA, AND JOHN

MYLOPOULOS. Tropos: An Agent-Oriented Software Development Methodology. Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, may 2004. 83

[121] AXEL VAN LAMSWEERDE. Requirements Engineering: From Craft to Discipline. In Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 238–249, New York, NY, USA, 2008. ACM. 83

[122] OBJECT MANAGEMENT GROUP. Systems Modeling Language V1.5. Technical Report
formal/2017-05-01, Object Management Group, http://www.omg.org/spec/SysML/1.5/, 2017.
83, 84, 90

http://www.jstor.org/stable/resrep19552.3
http://gen.lib.rus.ec/book/index.php?md5=e57b4454f40468772e7d7c81e49a51c5
http://gen.lib.rus.ec/book/index.php?md5=e57b4454f40468772e7d7c81e49a51c5

143

[123] OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR ACQUISITION TECHNOLOGY AND

LOGISTICS. Risk Management Guide for DOD Acquisition, 6th Edition (Version 1.0). Defense
Technical Information Center, WASHINGTON DC., 2006. 85

[124] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 31000 Risk management -
Guidelines, 2 edition, February 2018. 85

[125] MICHEL DOS SANTOS SOARES, JOS VRANCKEN, AND ALEXANDER VERBRAECK. User
requirements modeling and analysis of software-intensive systems. Journal of Systems and
Software, 84(2):328 – 339, 2011. 85

[126] NOEL SPROLES. Coming to grips with measures of effectiveness. Systems Engineering,
3(1):50–58, 2000. 86

[127] NATIONAL RESEARCH COUNCIL. Making the Soldier Decisive on Future Battlefields. The
National Academies Press, Washington, DC, 2013. 87

[128] U.S. AIR FORCE DOCTRINE. Air Force Doctrine Publication 3-0 - Operations and Planning.
Air University, Montgomery, United States, November 2016. 87

[129] DEPARTMENT OF THE ARMY. The Conduct Of Information Operations. Technical Report
ATP 3-13.1, Washington, DC, October 2018. 87

[130] NIK LOOKER, DAVID WEBSTER, DUNCAN RUSSELL, AND JIE XU. Scenario Based Evalua-
tion. In 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 148–154. IEEE, 2008. 87

[131] ESMOND N. URWIN, COLIN C. VENTERS, DUNCAN J. RUSSELL, LU LIU, ZONGYANG LUO,
DAVID E. WEBSTER, MICHAEL HENSHAW, AND JIE XU. Scenario-based design and evalu-
ation for capability. In 2010 5th International Conference on System of Systems Engineering,
pages 1–6. IEEE, 2010. 87

[132] IAN SOMMERVILLE. Software Engineering. Pearson, 10th edition, 2015. 95

[133] M.-L XU, HAO JIANG, XIAOGANG JIN, AND ZHIGANG DENG. Crowd Simulation and Its
Applications: Recent Advances. Journal of Computer Science and Technology, 29:799–811,
09 2014. 102, 111

[134] A. M. AL-SHAERY, S. S. ALSHEHRI, N. S. FAROOQI, AND M. O. KHOZIUM. In-Depth
Survey to Detect, Monitor and Manage Crowd. IEEE Access, 8:209008–209019, 2020. 102

[135] CLAES WOHLIN, PER RUNESON, MARTIN HST, MAGNUS C. OHLSSON, BJRN REGNELL,
AND ANDERS WESSLN. Experimentation in Software Engineering. Springer Publishing Com-
pany, Incorporated, 2012. 102

https://books.google.fr/books?id=-pdTAQAACAAJ
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/65694.html

REFERENCES 144

[136] FÉDÉRATION INTERNATIONALE DE FOOTBALL ASSOCIATION. Stades de Football Recom-
mandations et Exigences Techniques. Technical report, FIFA, 2011. 102

[137] FÉDÉRATION INTERNATIONALE DE FOOTBALL ASSOCIATION. Stadium Safety and Security
Regulations. Technical report, FIFA, 2018. 102

[138] ROSE SHEPHERD, CHRISTOPHER CLEGG, AND MARK ROBINSON. Understanding Crowd
Behaviours, Volume 1: Practical Guidance and Lessons Identified. 04 2010. 102

[139] GREAT BRITAIN. CABINET OFFICE, LEEDS UNIVERSITY BUSINESS SCHOOL, AND EMER-
GENCY PLANNING COLLEGE. Understanding Crowd Behaviours: Practical guidance and
lessons identified. Understanding Crowd Behaviours. TSO, 2010. 102

[140] GOVERNMENT OF INDIA NATIONAL DISASTER MANAGEMENT AUTHORITY. Managing
Crowd at Events and Venues of Mass Gathering. Technical report, NDMA, 2014. 102

[141] GROUPEMENT DES INDUSTRIES DE DÉFENSE ET DE SÉCURITÉ TERRESTRES ET AÉROTER-
RESTRES. Gestion des foules. Technical report, GICAT, 2018. 102

[142] GROUPE DE TRAVAIL SUR LA CONSERVATION DES COLLECTIONS DU SOUS-COMITÉ DES

BIBLIOTHÈQUES. Guide d’Élaboration d’un Plan d’Urgence. Technical report, BibliothÃĺque
nationale du Québec, Montréal, 2010. 102

[143] LE BUREAU DE LA GESTION DES SITUATIONS D’URGENCE DE LA VILLE DU GRAND SUD-
BURY. Plan d’Intervention en Cas d’Urgence. Technical report, Ville du Grand Sudbury, 2014.
102

[144] SÉCURITÉ PUBLIQUE CANADA (SP). Guide pour la Planification de la Gestion des Ur-
gences. Technical report, Government of Canada, 2018. 102

[145] LONDON EMERGENCY SERVICES LIAISON PANEL (LESLP). Major Incident Procedure Man-
ual. TSO, 2012. 102

[146] X. JIAN, G. BING-FENG, Z. XIAO-KE, Y. KE-WEI, AND C. YING-WU. Evaluation method of
system-of-systems architecture using knowledge-based executable model. In 2010 Interna-
tional Conference on Management Science Engineering 17th Annual Conference Proceedings,
pages 141–147, Nov 2010. 110

[147] RYMEL BENABIDALLAH, SALAH SADOU, ARMEL ESNAULT, AND MOHAMED AHMED

NACER. Simulating systems of systems using situation/reaction paradigm. Concurrency
and Computation: Practice and Experience, n/a(n/a):e4921, 2018. 110

[148] W. ROSS, M. ULIERU, AND A. GOROD. A multi-paradigm modelling simulation approach
for system of systems engineering: A case study. In 2014 9th International Conference on
System of Systems Engineering (SOSE), pages 183–188, June 2014. 110

https://www.gicat.com/approche-capacitaire-2/securite/gestion-des-foules/
https://www.securitepublique.gc.ca/cnt/rsrcs/pblctns/mrgnc-mngmnt-pnnng/index-fr.aspx
https://www.securitepublique.gc.ca/cnt/rsrcs/pblctns/mrgnc-mngmnt-pnnng/index-fr.aspx

145

[149] G. MULLER AND C. DAGLI. Simulation for a coevolved system-of-systems meta-
architecture. In 2016 11th System of Systems Engineering Conference (SoSE), pages 1–6, June
2016. 110

[150] W. CLIFTON BALDWIN, BRIAN SAUSER, AND ROBERT CLOUTIER. Simulation Approaches
for System of Systems: Events-based versus Agent Based Modeling. Procedia Computer
Science, 44:363 – 372, 2015. 2015 Conference on Systems Engineering Research. 111

[151] FRANZISKA KLUGL AND ANA L. C. BAZZAN. Agent-Based Modeling and Simulation. AI
Magazine, 33(3):29, Sep. 2012. 111

[152] JONATHAN OZIK, NICHOLSON COLLIER, TODD COMBS, CHARLES M. MACAL, AND

MICHAEL NORTH. Repast Simphony Statecharts. Journal of Artificial Societies and Social
Simulation, 18(3):11, 2015. 116

[153] JIE LI, H. RIDDER, A. VERMEEREN, C. CONRADO, AND CLAUDIO MARTELLA. Designing
for crowd well-being: Current designs, strategies and future design suggestions. In 5th In-
ternational Congress of International Association of Societies of Design Research, IASDR 2013,
page 2278âĂŞ2289, 08 2013. 120

[154] J. DAHMANN, A. MARKINA-KHUSID, A. DOREN, T. WHEELER, M. COTTER, AND M. KEL-
LEY. SysML executable systems of system architecture definition: A working example. In
2017 Annual IEEE International Systems Conference (SysCon), pages 1–6, Montreal, Quebec,
Canada, April 2017. 125

[155] JIM OAKES, RICK BOTTA, AND A. TERRY BAHILL. 11.1.1 Technical Performance Measures.
INCOSE International Symposium, 16:1466–1474, 07 2006. 126

[156] J.ROEDLER GARRY AND JONES CHERYL. Technical Measurement Guide. Technical Report
INCOSE-TP-2003-020-01, San Diego, CA, USA, December 2005. 126

[157] RYMEL BENABIDALLAH, SALAH SADOU, AND MOHAMED AHMED-NACER. Using System
of Systems’ States for Identifying Emergent Misbehaviors. In 27th IEEE International Con-
ference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2018,
Paris, France, June 27-29, 2018, pages 66–71. IEEE Computer Society, 2018. 126

[158] LUCY HUTCHINSON, BERNHARD STEIERT, ANTOINE SOUBRET, JONATHAN WAGG, ALEX

PHIPPS, RICHARD PECK, JEAN-ERIC CHAROIN, AND BENJAMIN RIBBA. Models and Ma-
chines: How Deep Learning Will Take Clinical Pharmacology to the Next Level. CPT:
Pharmacometrics & Systems Pharmacology, 8(3):131–134, 2019. 127

[159] F.LAWLESS WILLIAM, MITTU RANJEEV, A.SOFGE DONALD, SHORTELL THOMAS, AND

MCDERMOTT TOM. Systems Engineering and Artificial Intelligence. Springer International
Publishing, 2021. 127

REFERENCES 146

[160] B. BADIRU ADEDEJI. Artificial Intelligence and Digital Systems Engineering. CRC Press, 2021.
127

[161] NAN MESSE, VANEA CHIPRIANOV, NICOLAS BELLOIR, JAMAL EL HACHEM, RÉGIS

FLEURQUIN, AND SALAH SADOU. Asset-Oriented Threat Modeling. In 19th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communications, TrustCom
2020, Guangzhou, China, December 29, 2020 - January 1, 2021. IEEE, 2020. 127

	List of Figures
	List of Tables
	Introduction
	1 SYSTEMS OF SYSTEMS ENGINEERING BACKGROUND
	1.1 Definitions and basic concepts of a system
	1.2 Basic concepts of SoS
	1.3 Discussion

	2 SYSTEM OF SYSTEMS MODELING: STATE OF THE ART
	2.1 Systems of systems development phases
	2.2 Model Based System Engineering (MBSE) via the System Modeling Language (SysML)
	2.3 State of the art on SoSs modeling

	3 MISSION ENGINEERING
	3.1 Overview of mission engineering
	3.2 Mission engineering approaches
	3.3 Discussion

	4 MISSION-ORIENTED PROCESS FOR SYSTEM OF SYSTEMS ENGINEERING
	4.1 Global overview of the MOP-SoSE
	4.2 MOP-SoSE engineering activities
	4.3 Discussion

	5 CASE STUDY MODELING AND SIMULATION
	5.1 Case study presentation
	5.2 Crowd management simulation

	Conclusion
	Glossary
	References

