Ultimate limit-state design of **concrete** structures A new approach

M.D. Kotsovos and M.N. Pavlović

dia 16/200 dia 16/200 dia 16/200 dia 16/400

A7 × 25

Published by Thomas Telford Ltd, 1 Heron Quay, London E14 4JD URL: http://www.t-telford.co.uk

Distributors for Thomas Telford books are USA: ASCE, 1801 Alexander Bell Drive, Reston, VA 20191-4400 Japan: Maruzen Co. Ltd, Book Department, 3–10 Nihonbashi 2-chome, Chuo-ku, Tokyo 103 Australia: DA Books and Journals, 648 Whitehorse Road, Mitcham 3132, Victoria

First published 1999

A catalogue record for this book is available from the British Library

ISBN: 0 7277 2665 X

© M. D. Kotsovos and M. N. Pavlović, 1999

All rights, including translation reserved. Except for fair copying, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the Books Publisher, Thomas Telford Ltd, 1 Heron Quay, London E14 4JD.

This book is published on the understanding that the author is/authors are solely responsible for the statements made and opinions expressed in it and that its publication does not necessarily imply that such statements and/or opinions are or reflect the views or opinions of the publishers.

Typeset by MHL Typesetting, Coventry. Printed and bound in Great Britain by Redwood Books, Trowbridge, Wiltshire.

Contents

Preface	vii
1. An appraisal of the validity of predictions of current design methods	1
1.1. Introduction	1
1.2. Structural walls under transverse loading	2
1.3. Simply-supported reinforced concrete T-beams	5
1.4. Structural wall under combined vertical and horizontal loading	9
 1.5. Column with additional reinforcement against seismic action 1.5.1. Design details 12 1.5.2. Experimental behaviour 14 1.5.3. Causes of failure 16 	12
 1.6. Simply-supported beams with one overhang 1.6.1. Design details 18 1.6.2. Experimental behaviour 19 1.6.3. Causes of failure 23 	18
1.7. Failure of structural concrete under seismic load	24
1.8. Conclusions 28	
1.9. References 29	
2. Reappraisal of current methods for structural concrete design	31
2.1. Introduction	31
 2.2. Current design methods 2.2.1. Physical model 31 2.2.2. Beam action 34 2.2.3 Truss action 36 	31

- 2.3. Reappraisal of the current approach for assessing flexural capacity 38
 - 2.3.1. Concrete behaviour 39
 - 2.3.1.1. Stress-strain curves 39
 - 2.3.1.2. Cracking 41
 - 2.3.1.3. Effect of small transverse stresses on strength and deformation 43
 - 2.3.2. Failure mechanism of the compressive zone 45
 - 2.3.2.1. A fundamental explanation of failure initiation based on triaxial material behaviour 45
 - 2.3.2.2. Triaxiality and failure initiation by macrocracking: some experimental and analytical evidence 49
- 2.4. Reappraisal of the current approach for assessing shear capacity 62
 - 2.4.1. Validity of concepts underlying shear design 62
 - 2.4.1.1. Shear capacity of critical cross-section 63
 - 2.4.1.2. Aggregate interlock 66
 - 2.4.1.3. Dowel action 66
 - 2.4.1.4. Truss analogy 66
 - 2.4.2. Contribution of compressive zone to shear capacity 67
 - 2.4.3. Shear-failure mechanism 69

simply-supported beams

2.4.4. Contribution of transverse reinforcement to shear capacity 71

2.5.	Conclusions	74
2.6.	References	75
3. Т	The concept of the compressive-force path	77
3.1.	Introduction	77
3.2.	 Proposed function of simply-supported beams 3.2.1. Physical state of beam 77 3.2.2. Load transfer to supports 79 3.2.3. Effect of cracking on internal actions 82 3.2.4. Contribution of uncracked and cracked concrete to the beam's load-carrying capacity 84 3.2.5. Causes of failure 85 	77
3.3.	Validity of the proposed structural functioning of	

i v

88

3.4. Conclusions	94
3.5. References	95
4. Design methodology	96
4.1. Introduction	96
 4.2. Simply-supported reinforced concrete beam 4.2.1. Physical model 96 4.2.2. Failure criterion 98 4.2.3. Validity of failure criteria 102 4.2.4. Assessment of longitudinal reinforcement 108 4.2.5. Assessment of transverse reinforcement 110 4.2.6. Design procedure 115 4.2.7. Design examples 116 (a) Beam of type II behaviour 117 (b) Beam of type III behaviour 120 (c) Beam of type IV behaviour 123 	96
 4.3. Simply-supported prestressed concrete beam 4.3.1. Physical model 124 4.3.2. Failure criteria 127 4.3.3. Assessment of reinforcement 127 4.3.4. Procedure for checking shear capacity 127 4.3.5. Example of shear-capacity checking 129 	124
 4.4. Skeletal structural forms with beam-like elements 4.4.1. Physical models 134 4.4.2. Design procedure 137 4.4.3. Design examples 137 (a) Simply-supported beam with overhang 138 (b) Cantilever 141 (c) Continuous beam 144 (d) Portal frame with fixed ends 149 	134
 4.5. The failure of an offshore platform 4.5.1. Background 154 4.5.2. A simple structural evaluation 157 4.5.3. Strength evaluation of test specimens 160 4.5.4. Concluding remarks 163 	154
4.6. References	163