BEN NOBLE

Contents

1 Matrix Algebra

- 1.1 Introduction 1
- 1.2 Equality, addition, and multiplication by a scalar 2
- 1.3 The multiplication of matrices 4
- 1.4 The inverse matrix 11
- 1.5 The partitioning of matrices 18
 Miscellaneous exercises 22

2 Some Simple Applications of Matrices 26

- 2.1 Introduction 26
- 2.2 A plane pin-jointed framework 27
- 2.3 The application of digital computers to framework calculations 35
- 2.4 The method of least squares 39
- 2.5 A Markov chain example 46 Miscellaneous exercises 54

3 Simultaneous Linear Equations and Elementary Operations 62

- 3.1 Introduction 62
- 3.2 The method of successive elimination 63
- 3.3 The existence of solutions for a set of equations 70
- 3.4 Reduction of a system of equations to a simplified form 74
- 3.5 The existence of solutions for a set of equations 76
- 3.6 Equivalence of sets of equations 78
- 3.7 Elementary row operations and the row-echelon normal form 80
- 3.8 Uniqueness of the row-echelon form 86
- 3.9 Theorems on the existence of solutions for a set of equations 90

Miscellaneous exercises 92

4 Linear Dependence and Vector Spaces 95

- 4.1 Geometrical vectors in three-dimensional space 95
- 4.2 Linear dependence and independence of vectors 98
- 4.3 Vector spaces 104
- 4.4 Basis and dimension 106
- 4.5 Examples on basis and dimension 111
- 4.6 A standard form for a basis 114
- 4.7 Basis and dimension (continued) 116
- 4.8 Linear equations with an "infinity of solutions" 119
 Miscellaneous exercises 124

5 Rank and Inverses 127

- 5.1 Introduction 127
- 5.2 Properties of rank 127
- 5.3 Inverses of $m \times n$ matrices 132
- 5.4 Rank and the largest nonsingular submatrix 137
- 5.5 The rank of the product of matrices 138
- 5.6 The generalized inverse of a matrix 142
- 5.7 Inversion of matrices of a special form, and "tearing" 147

 Miscellaneous exercises 151

6 Linear Programming 155

- 6.1 Introduction 155
- 6.2 The simplex method 158
- 6.3 The theory of the simplex method 162
- 6.4 The simplex method (continued) 168
- 6.5 Graphical representations 171
- 6.6 Convex sets 181
- 6.7 Duality 188
 Miscellaneous exercises 194

7 Determinants and Square Matrices 198

- 7.1 Introduction 198
- 7.2 The definition of a determinant 199
- 7.3 Basic properties of determinants 203
- 7.4 Determinants and elementary row operations 206
- 7.5 The solution of linear equations by determinants 208
- 7.6 Gaussian elimination 211
- 7.7 Triangular decomposition 216 Miscellaneous exercises 223

8 The Numerical Solution of Simultaneous Linear Equations 229

- 8.1 Introduction 229
- 8.2 Ill-conditioning 231
- 8.3 Scaling and the recognition of ill-conditioning 239
- 8.4 Nearly-singular matrices and numerical rank 241
- 8.5 Rounding and the choice of pivots 246
- 8.6 Choice of pivots (continued) 250
- 8.7 Residuals 255
- 8.8 The avoidance of ill-conditioning; a least-squares example 260
- 8.9 A summary of the practical procedure 265
 Miscellaneous exercises 269

9 Eigenvalues and Eigenvectors 274

- 9.1 Introduction: a physical example 274
- 9.2 Definitions and basic properties 278
- 9.3 Inner products and hermitian matrices 283
- 9.4 Orthogonality 289
- 9.5 Orthogonal expansions, with an application to forced vibration 294
- 9.6 Iterative methods for calculating eigenvalues 299
- 9.7 The iterative solution of simultaneous linear equations 301 Miscellaneous exercises 307

10 Unitary Transformations 312

- 10.1 Unitary matrices 312
- 10.2 Gram-Schmidt orthogonalization 314
- 10.3 Reduction of a general square matrix to triangular form 318
- 10.4 Reduction of Hermitian matrices to diagonal form 321
- 10.5 The methods of Jacobi and Givens 323
- 10.6 A special orthogonal transformation, and Householder's method 328
- 10.7 Biorthogonality 333
- 10.8 Singular values and singular vectors 335 Miscellaneous exercises 340

11 Similarity Transformations 344

- 11.1 Introduction 344
- 11.2 Reduction to diagonal form 346
- 11.3 Defective matrices 349
- 11.4 Reduction to triangular form 352
- 11.5 Nilpotent matrices 355
- 11.6 The Jordan canonical form 361
- 11.7 Systems of differential equations with constant coefficients 366
- 11.8 Minimum polynomials and the Cayley-Hamilton theorem 370Miscellaneous exercises 373

12 Quadratic Forms and Variational Principles 378

- 12.1 A geometrical example involving a quadratic form 378
- 12.2 Quadratic forms 385
- 12.3 Definite quadratic forms 392
- 12.4 Simultaneous diagonalization of two quadratic forms 396
- 12.5 Descent methods for solving simultaneous linear equations 399
- 12.6 A geometrical introduction to Rayleigh's principle 404
- 12.7 Rayleigh's principle 407
- 12.8 The Temple-Kato brackets for eigenvalues 411
- 12.9 The minimax characterization of eigenvalues 412 Miscellaneous exercises 416

13 Norms and Error Estimates 425

- 13.1 Vector norms 425
- 13.2 Matrix norms 427
- 13.3 Computable error bounds for linear systems 431
- 13.4 Norms and the condition of linear equations 433
- 13.5 Scaling to minimize ||PAQ|| ||Q^{-1}A^{-1}P^{-1}|| 438
- 13.6 Computable error bounds for eigenvalues 444
- 13.7 Error bounds for eigenvalues and eigenvectors (continued) 447
- 13.8 The condition of eigenvalues and eigenvectors 450 Miscellaneous exercises 454

14 Abstract Vector Spaces and Linear Transformations 459

- 14.1 Abstract vector spaces 459
- 14.2 Abstract spaces and isomorphism 463
- 14.3 Linear transformations 466
- 14.4 The algebra of linear transformations 472
- 14.5 Coordinates, change of basis, and linear transformations 473
- 14.6 Linear equations 477
- 14.7 Inner product spaces 483
- 14.8 Orthogonality 486
 Miscellaneous exercises 490

The state of the s

Hints and Answers to Selected Exercises	494
Notes and References	506
Bibliography	511
Notation	515
Index	517