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Abstract :

This study focuses on the numerical simulation and analysis of supersonic combustion

chambers, with varying Mach numbers and cavity configurations, using Ansys Fluent. The
mathematical model used is based on resolving the Navier-Stokes (NS) equations, with
turbulence modeled using the Reynolds-averaged Navier-Stokes (RANS) approach and the
standard K-¢ turbulence model. Additionally, a finite-rate/eddy dissipation species reaction
model is used.

The study investigates air-breathing SCRAMJET engines, which are well known for their
high thrust-to-weight ratio. Emphasis is placed on the design of the strut fuel injector, as it
is crucial for efficient supersonic combustion. Model validation is achieved by comparing
simulation results with experimental data. VVarious scramjet combustor configurations are
examined, including a typical double cavity combustor, double-strut designs with backward-
facing steps, and a DLR scramjet combustion chamber. The analysis provides valuable
insights into how different strut designs and cavity configurations can enhance efficiency at
different Mach numbers, offering guidance for optimizing SCRAMJET engine performance
in high-speed flight propulsion.

Key Words: Supersonic combustion, SCRAMJET, Mach number, DLR scramjet, Reynolds-
averaged Navier-Stokes (RANS), Navier-Stokes (NS), K-¢ turbulence model, Finite-
rate/eddy dissipation species reaction model, Propulsion, Combustion efficiency, Double-
strut with backward facing steps, Air-breathing flight vehicle.



Resume :

Cette étude se concentre sur la simulation numérique et l'analyse des chambres de
combustion supersoniques, avec des nombres de Mach et des configurations de cavités
variés, en utilisant Ansys Fluent. Le modéle mathématique utilisé est base sur la résolution
des équations de Navier-Stokes (NS), avec la turbulence modélisée a I'aide de I'approche
Reynolds-averaged Navier-Stokes (RANS) et du modele de turbulence standard K-¢. De
plus, un modéle de réaction des especes a taux fini/dissipation des tourbillons est utilisé.

L'étude examine les moteurs SCRAMJET a respiration d'air, bien connus pour leur rapport
poussée/poids éleve. L'accent est mis sur la conception de I'injecteur de carburant a longeron,
car il est crucial pour une combustion supersonique efficace. La validation du modeéle est
réalisée en comparant les résultats de simulation avec les données expérimentales. Diverses
configurations de combusteurs SCRAMJET sont examinées, y compris un combusteur a
double cavité typique, des conceptions a double longeron avec des marches arriére et une
chambre de combustion SCRAMJET du DLR. L'analyse fournit des informations précieuses
sur la maniere dont différentes conceptions de longerons et configurations de cavités peuvent
améliorer I'efficacité a différents nombres de Mach, offrant des orientations pour optimiser

les performances des moteurs SCRAMJET dans la propulsion de vol a haute vitesse.

Mots Cles: Supersonique combustion, SCRAMJET, RANS, Propulsion.



1. Introduction :

Supersonic combustion presents unique challenges and is critically important in the
aerospace sector. As the aerospace industry continues to advance, there is a growing
emphasis on controlling and enhancing supersonic and hypersonic combustion processes.
Various technological tools are being utilized worldwide to optimize these systems for

improved efficiency and reduced emissions.

Combustion, a primary method of energy conversion, generates thermal energy and is widely
used in various sectors, including aviation, space exploration, and power generation. The
aviation industry, in particular, is interested in achieving efficient and environmentally
friendly combustion processes. Combustion involves exothermic and irreversible reactions
between fuel and oxidizer, often resulting in pollutant emissions. To mitigate these
emissions, numerical simulations, such as those using ANSYS Fluent, are crucial. Although
computationally demanding, these simulations allow researchers to study combustion
phenomena under different conditions, optimizing fuel consumption and reducing

emissions.

Supersonic combustion, which occurs at speeds greater than the speed of sound, is vital for
advanced propulsion systems, such as scramjets. This study utilizes ANSYS Fluent to
simulate supersonic combustion, focusing on comparing different combustor geometries,
including double cavity combustors and double-strut configurations with backward-facing
steps. The aim is to evaluate the impact of these designs on combustion efficiency and
understand the behavior of various thermodynamic factors. The simulations employ the
RANS k-epsilon realizable turbulence model and investigate parameters such as density,

mass fraction, pressure, Mach number, and temperature.



The thesis is structured as follows:

Chapter 1: Introduces supersonic combustion, explores relevant concepts, reviews prior
research, and identifies the geometries under study.

Chapter 2: Presents the mathematical modeling of viscous, turbulent, reactive flow,
detailing governing equations and turbulence models.

Chapter 3: Describes the numerical methods employed, including solver configurations,
boundary conditions, and meshing techniques within ANSYS Fluent.

Chapter 4: Analyzes simulation results, comparing performance across different combustor
configurations, and evaluating the influence of varied parameters.

Conclusion: Summarizes key findings, discusses study limitations, and proposes directions for
future research.



1. Chapter 1 :

Overview




1.1. Introduction :

1.1.1. State of Art:

Supersonic combustion technology, especially scramjet (Supersonic Combustion Ramjet)
engines, is crucial for achieving efficient high-speed propulsion. These engines excel in
hypersonic flight due to their high thrust-to-weight ratios, making them a focal point of
research. The effective design of combustors, which mix fuel with air and sustain

combustion at supersonic speeds, is essential.

= Supersonic_Combustion_and Fuel Injectors: Supersonic combustion involves

burning fuel in an airstream moving faster than sound. Hydrogen is commonly used
for its high energy content and quick ignition properties. Strut-based fuel injectors
are vital for enhancing mixing performance, with designs such as single-strut and
double-strut configurations, including backward-facing steps, proving effective.

» Computational Fluid Dynamics (CED): CFD is crucial for analyzing and designing

scramjet combustors. It allows researchers to model complex flow fields and predict
combustion behavior using software like ANSY'S Fluent. This involves solving the
Reynolds-Averaged Navier-Stokes (RANS) equations along with turbulence and
combustion models.

= Cavity Flame Holders: Cavity flame holders create recirculation zones that improve

fuel-air mixing and stabilize the flame. Various cavity configurations have been
studied to enhance combustion efficiency and stability.

= Experimental Validation _and Future Directions: Experimental data from

institutions like the National University of Defense Technology in China validate
CFD models. Research continues to optimize combustor designs, improve fuel
injection strategies, and explore new materials. Advances in diagnostics and high-
performance computing are pushing the boundaries of supersonic combustion

research.

This thesis contributes by comparing different combustor geometries, focusing on their
impact on combustion efficiency, offering insights for next-generation scramjet engine

designs.



1.1.2. Scramijet, Ramijet :

The name scramjet is an acronym for Supersonic Combustion Ramjet. A scramjet engine,
hereafter referred to as a scramjet, is a type of jet engine designed to operate in the high-
velocity regime usually associated with rockets. The scramjet belongs to a family of
propulsion devices known as hypersonic air breathing

vehicles. These devices use the surrounding atmosphere
to propel various vehicles at velocities far exceeding the

Iocal Speed Of sound [1]- Supersonic Combustion Supersonic

Compression Exhaust

A ramjet engine which stands for Ram Air

Compression Jet Engine operates by compressing
incoming air using the vehicle's forward motion before Scramijet Engine

mixing it with fuel and igniting the mixture. This type Figure 1-1-scramjet engine [24]

of engine is efficient at supersonic speeds but becomes inefficient at hypersonic speeds due

to increased drag and thermal loads. The scramjet overcomes these limitations by allowing

supersonic combustion, where the airflow remains supersonic %, PR . b
throughout the engine, enhancing efficiency and performance \
at hypersonic velocities. G

Compression Combustion Exhaust

Current aerospace technology development includes several < chamber 1)
applications for such hypersonic vehicles. One prominent Ramiet Engine
example is reusable launch vehicles for space applications. A reusable launch vehicle that
uses the surrounding atmosphere for propulsion could Figure 1-2-Ramjet engine [24]
potentially reduce the cost of launching payloads into orbit by an order of magnitude. This
cost reduction is crucial for the commercial utilization of space and future space exploration

beyond the moon.

Hypersonic airbreathing vehicles also hold the potential to revolutionize commercial
aviation. For instance, they could reduce the travel time for long-haul flights, such as from
Stockholm to Sydney, to just a few hours. This paradigm shift in aviation could significantly

impact global connectivity and transportation efficiency.



1.1.3. History:

« Origins and Early Development of Ramjet :

The concept of the ramjet, short for Ram Air Compression Jet

Engine, dates back to the early 20th century. The idea was first

proposed by French engineer René Lorin in 1913. Lorin's design
envisioned an engine that would utilize the forward motion of an
aircraft to compress incoming air, mix it with fuel, and ignite the

mixture, thus generating thrust [2].

« World War Il and Post-War Advances :

Figure 1-3-René Lorin [2]

Significant advancements were made during and after World War II. In the 1940s, German

engineer Hans von Ohain [3] developed the first working ramjet engine, which was tested

on a V-1 flying bomb [4]. Post-war, the United States and the Soviet Union conducted

extensive research and development on ramjets. The 1950s saw the deployment of ramjet-

powered missiles like the Bomarc missile [5] in the U.S. and the Soviet SA-4 Ganef [6].
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Figure 1-7-Hans von Ohain [3]
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++ Cold War and High-Speed Applications :

The Cold War era brought further innovation,
particularly in the development of high-speed
aircraft and missiles. The Lockheed D-21
reconnaissance drone, which first flew in 1964,
used a ramjet engine to achieve speeds over Mach
3. Despite the challenges of thermal management
and materials capable of withstanding high
temperatures, ramjet engines became a key

technology for supersonic flight.
Figure 1-8-The Lockheed D-21 [21]

«+ Concept and Early Research of Scramjet :

The scramjet, short for Supersonic Combustion Ramjet, emerged from the limitations of
the ramjet at hypersonic speeds. A scramjet allows for supersonic airflow throughout the
entire engine, including the combustion chamber, thus improving efficiency at extremely
high velocities. The concept was first seriously considered in the 1950s and 1960s as

researchers sought ways to achieve sustained hypersonic flight.

«+ Development and Testing :

The first significant tests of scramjet technology occurred in the late 20th century. NASA's
Hyper-X program (X-43) [7] was a major
milestone. On November 16, 2004, the X-
43A scramjet-powered aircraft set a record
by flying at nearly Mach 10. This
demonstrated the viability of scramjet
propulsion for hypersonic flight [8].
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“Figure 1-9-X-43 [8]
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++ Modern Advances and Applications :

In the 21st century, scramjet technology has continued to advance, driven by both military

and civilian interests. DARPA's Falcon Project and the

Engine Subsystems

(Packaged Wat in JP-7)

* Engine Fuel Pump

* Ethylene (Engine Start)

_ * Nitrogen (Fuel Pressurization)

Subsystems Bay

* GCUIMUIGPS

*FADEC

* Flight Test Instrumentation (FT1)

FTS, FTland
Control Systems
JP-7 Fuel
* Integral Tanks
s

Batteries
+ Engine Systems.
* Actuators

* Avionics and FTI

* Flight Termination System (Separate)
Cloared for Public Release: #88ABW-2009-3878

Figure 1-11-X-51A Waverider [23]

Fuel System

* Fuel Pump (Li-ion Pack)

Figure 1-11-DARPA [22]

U.S. Air Force's X-51A Waverider, which achieved a flight speed of Mach 5.1 in 2013, are
notable examples. These projects have shown the potential of scramjets for applications such

as rapid global strike capabilities and more efficient access to space.

« Significance and Future Prospects :

Ramjet and scramjet engines represent significant technological advancements in aerospace
propulsion. Ramjets enabled sustained supersonic flight and advanced missile technology,
while scramjets hold the promise of practical hypersonic travel. Future developments in
scramjet technology could revolutionize space launch systems, making space more

accessible, and transform long-distance air travel by drastically reducing flight times.

« Technical Technical challenges for scramjet engines :

Scramjet and ramjet technologies offer both advantages and drawbacks. One of the key
advantages of scramjets is their simple design, with few or no moving parts and a streamlined
body. This simplicity leads to lower manufacturing costs compared to traditional rocket
engines. Unlike rockets, scramjets do not require an onboard oxidizer for fuel combustion,
reducing the need for carrying heavy oxidizing agents. For instance, NASA's Space Shuttle
required large quantities of liquid oxygen, comprising about 75% of its total launch weight,

solely for fuel combustion.

11



In contrast, ramjets operate at lower speeds than scramjets and do not require initial
acceleration to high velocities for efficient operation. They can operate as a ramjet at lower
speeds, offering flexibility in their use. However, ramjets face challenges in achieving

efficient fuel combustion and optimal performance.

Both scramjets and ramjets require careful design to overcome technical challenges. They
require structures for the suspension of engines, control systems, and additional equipment
for acceleration, adding weight to the vehicle. To simplify design, many experts suggest
using external, preferably reusable, rockets as a first stage for both types of engines.
Additionally, the low thrust-to-weight ratio of scramjets and ramjets means they require
more time to accelerate, following a flatter trajectory compared to vertically launched
rockets. This prolonged exposure to hypersonic speeds increases the risk of atmospheric

friction and heat buildup, requiring advanced heat insulation measures.

Another major challenge for both technologies is optimizing fuel combustion in the
combustors. Current engines often combust only a fraction of the supplied fuel, generating
minimal heat. This highlights the need for further research to improve fuel combustion
efficiency. This work aims to enhance understanding of the complex flow dynamics in

combustors.

« About Ansys Fluent software :

ANSYS Fluent is a powerful computational fluid dynamics (CFD) software package used
for simulating fluid flow and heat transfer in a wide range

of applications. It is widely used in industries such as

aerospace, automotive, chemical processing, and \n s s
turbomachinery to predict and optimize the performance of y
designs. Fluent offers a comprehensive set of features for
modeling complex flow phenomena, including turbulence,
combustion, multiphase flow, and heat transfer. Its user-  Figure 1-12-Ansys Fluent Logo [25]
friendly interface and robust solver make it a popular choice

for engineers and researchers seeking to gain insights into fluid flow behavior and optimize
their designs.

FLUENT

In our simulation, we used it to model and analyze the fluid flow and combustion processes
in the supersonic combustion chamber.
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2. Chapter u:

Theoretical aspect



2.1. Theory:

2.1.1. Introduction:

This chapter provides a brief overview of the principles underlying Computational Fluid
Dynamics and combustion modeling. It explains the governing equations and the numerical

techniques used to solve them.

2.1.2. Mathematical modeling of reacting flows :

Combustion of gaseous fuels happens when fuel and an oxidant, such as air, mix at a
molecular level and are heated to their ignition temperature, releasing chemically bound
energy and forming combustion products. This energy release raises the temperature and
causes the gases to expand, influencing the flow. Combustion can be categorized into pre-
mixed combustion, where fuel and oxidizer are mixed before ignition, and diffusion

combustion, where they mix during combustion.

Modeling combustion, especially in aerospace applications, involves complex processes
including fluid mechanics, gas-phase chemical reactions, and chemical kinetics. Fluid
mechanics principles have been established for over a century, with the Navier-Stokes
equations, derived from Newton's laws of motion, serving as the foundation. These non-
linear equations can rarely be solved analytically, necessitating numerical methods that
discretize space and time into numerous computational cells and time steps for iterative

solutions.

Most practical flows are turbulent, characterized by unpredictable velocity fluctuations
governed by the Reynolds number. High Reynolds numbers create a vast scale range from
energy input to dissipation at the Kolmogorov scale. To accurately resolve these flows,
computational cells must be small enough to capture the smallest eddies, requiring
significant computing power. Due to current computing limitations, direct simulation is
feasible only for low Reynolds numbers in simple geometries. For high Reynolds numbers
and complex geometries, simplifications like Reynolds-averaged Navier-Stokes (RANS)

models are used, relying on statistical treatment of flow fluctuations.

Turbulence models simplify complex equations, while Large Eddy Simulation (LES) offers

a more accurate alternative by simulating large eddies and modeling small-scale turbulence.

14



Despite its high computational cost, LES is becoming more practical with advanced

computer clusters.

To simulate combustion, the Navier-Stokes equations are supplemented with a chemical
reaction mechanism and a thermodynamic model. The reaction mechanism outlines how fuel
and oxidant react and form products, while the thermodynamic model describes energy
dissipation. This combined approach enables the simulation of complex combustion

processes in engineering and scientific applications.

2.1.3. Computational fluid dynamics :

Computational Fluid Dynamics (CFD) is a specialized field within fluid mechanics that
leverages computational techniques and algorithms to address and analyze fluid flow issues.
Utilizing computers, CFD allows scientists and engineers to model the behavior of fluids
(whether liquids or gases) across a wide range of conditions. This computational tool is
essential for examining fluid mechanical processes, including mass, heat, and momentum
transfer. The finite volume method, a prevalent numerical approach in CFD, is employed by

the software tools used in this research.

2.1.4. Governing equations and numerical approach :

Understanding the internal flow characteristics of a scramjet combustor is crucial for
analyzing its combustion behavior, especially in the context of reacting flow problems. The
combustion process within the combustor is significantly influenced by flow variables. Due
to the complexity and turbulence of the flow inside a scramjet combustor, the chosen

governing equations must account for turbulent and compressible flow dynamics.

In this study, a two-dimensional computational model of the combustor was developed using
Ansys Fluent 19.2 to conduct all simulations. The governing equations are formulated as
Reynolds Averaged Navier-Stokes (RANS) equations to accurately capture the combustion
behavior across a range of operating conditions and geometries. The RANS framework

facilitates precise determination of shock wave positions and characteristics.

The flow governing equations and species transport equations are detailed in the references
[9]. The computational model employs a density-based solver with a standard k-g turbulence
model. Hydrogen-air mixing reactions are modeled using a finite-rate/eddy dissipation

approach, treating density as that of an ideal gas. This method avoids the need for Arrhenius
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calculations, thereby reducing computational time and cost. Spatial discretization is

performed using an implicit second-order upwind scheme.

For compressible and steady-state flows, the governing equations include continuity,
momentum, and energy equations. These foundational equations are critical for capturing

the intricate dynamics within the scramjet combustor.

+»+ Continuity Equation: [9]

9p  9pw)  9(pv)

= 2.1
Jt dx dy 0 21)

«+ Momentum Equations: [10]

X-momentum:

d(pu) +a(pu2) +3(Puv) __o9p +6Txx +aTxy
Jt dx dy dx  Ox ady

+5, 2.2)

Y-momentum:

d(pv) N d(puv) a(pvz) _ 0P N 0Tyy N 0Ty,
ot dx dy  dy odx = Oy

+s, @3

< Energy Equation: [11]

d(pE) +6(puH) d(pvH)
at 0x ady

d aT d

= (k5)+ —( —>+ (uru)+ S i)

+ Sg

(2.4)

«» Species Transport Equation: [12]

d(pY;)  d(puYy) a(vai)_a( 6Yi> 6( 6Yi>
ot T ax T oy ax\PPigy) Ty \Phig ) R

« Turbulence Model Equations (Standard k-¢ Model):

(2.5)

Turbulent Kinetic Enerqy (k): [13]

d(pk) N d(puk) N d(pvk)
ot 0x dy

2+ 2%l 22 oo
_axuckax 6yu0k6y k~ PE
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Dissipation Rate (g): [14]
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2.1.5. Why we use Hvdrogen (H:) in Supersonic Combustion?

Hydrogen (H:) is often used in supersonic combustion, such as in scramjet engines, for

several reasons:

X/
L X4

High Energy Density: Hydrogen has a high energy density per unit mass, which is

crucial for achieving the high speeds required in supersonic combustion.

Fast Combustion Rate: Hydrogen burns quickly and efficiently, which is important

in the limited residence time available in the combustor of a scramjet engine.

Wide Flammability Range: Hydrogen has a broad flammability range, allowing for

more flexible operation conditions and better performance in varying flight regimes.
Lightweight: Hydrogen is the lightest fuel, which helps in maintaining a favorable
thrust-to-weight ratio, a critical factor in high-speed flight.

High Diffusivity: Hydrogen has a high diffusion coefficient, which promotes rapid

mixing with air, essential for efficient combustion in the very short timescales of
supersonic flow.

Chemical Reaction for Hydrogen Combustion

The primary chemical reaction for the combustion of hydrogen with oxygen in air is: [15]

2H, + 0, > 2H,0

In the context of a scramjet combustor, the presence of nitrogen (N2) in air must also be

considered, though it does not participate directly in the combustion reaction. The overall

reaction in the presence of air (which is approximately 21% O- and 79% N2 by volume) can

be simplified as:

2H, + 0, + 3.76N, — 2H,0 + 3.76N,
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This reaction assumes complete combustion and ideal mixing conditions [16].
2.1.6. CED errors:

When modeling flow with Computational Fluid Dynamics (CFD), it's crucial to be aware of
the limitations. There are several potential sources of errors and uncertainties, which can be

categorized as follows:

> Discretization Errors:

Spatial Discretization Errors: Occur when the continuous partial differential equations are

approximated using discrete grid points. This error depends on the grid resolution; finer grids

typically reduce discretization error.

Temporal Discretization Errors: Arise when time-dependent equations are discretized

over discrete time steps. Smaller time steps reduce these errors but increase computational

cost.

> Modeling Errors:

Turbulence Modeling Errors: Inaccuracies arising from the use of turbulence models (e.g.,

RANS, LES, DNS) to approximate the effects of turbulence. Each model has its own

limitations and assumptions.

Boundary Condition Errors: Errors that occur due to incorrect or approximate boundary

conditions applied in the simulation. Inaccurate boundary conditions can significantly affect

the solution.

Initial Condition Errors: Errors stemming from inaccurate initial conditions in transient

simulations. The solution can be highly sensitive to initial conditions, particularly in

unsteady flows.

> Numerical Errors:

Round-Off Errors: Occur due to the finite precision of computer arithmetic. These errors

are generally small but can accumulate over many iterations.

Convergence Errors: Errors that occur if the iterative solution process is stopped before

reaching an acceptable level of convergence. Non-converged solutions can be significantly

inaccurate.
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Grid-Related Errors:

Grid Independence: Errors due to insufficient grid resolution or poor grid quality. Ensuring

grid independence by performing grid refinement studies can help mitigate this error.

Non-Orthogonal Grid Errors: Occur when using non-orthogonal grids, which can

introduce additional errors in the numerical solution.

> Algorithmic Errors:

Solution _Algorithm _Errors: Errors related to the choice and implementation of the

numerical algorithms used for solving the equations. Different algorithms can have varying

levels of accuracy and stability.

> Physical Model Errors:

Simplified Physical Models: Errors due to the use of simplified physical models that do not

fully capture the complexity of the real physical phenomena (e.g., assuming

incompressibility when compressibility effects are significant).
» User Errors:

User_Input Errors: Mistakes in specifying input parameters, boundary conditions, or other

simulation settings. These errors are often a result of human oversight or misunderstanding

of the physical problem.

> Mitigation Strateqgies

To reduce these errors, CFD practitioners should:
e Perform grid and time step refinement studies.
« Validate models against experimental or analytical data.
o Use appropriate turbulence models for the flow regime.
o Ensure proper boundary and initial conditions.
o Verify the numerical solution by checking residuals and convergence criteria.
« Use high-quality grid generation techniques and tools.

By carefully addressing these potential sources of error, the accuracy and reliability of CFD

simulations can be significantly improved.
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3.1. Physical model and numerical approach:

The mixing efficiency of fuel and air in a scramjet combustor is significantly impacted by
the formation of shear layers. A well-established technique to produce these shear mixing
layers is the use of cavity flame holders within the combustor. This study employs a
computational model featuring parallel cavities designed to enhance the combustor's
mixing performance by creating shear layers. The computational geometry was developed
using Ansys Fluent 19.2 in DesignModeler, based on an experiment conducted by Yang et
al. at the National University of Defense Technology in China. The combustor design
includes parallel cavities spaced 40 mm apart, with an 8 mm cavity depth and a 45° aft
wall angle. Hydrogen fuel is injected at sonic speed through 2 mm diameter injectors [15].
Detailed dimensions of the geometry are provided in both 2D and isometric views, as

shown in Figures.

H, inlet

T outflow
" 36
)
.145“
10 i e
e e e e e e ——
H, inlet 262

Figure 3-1-Schematic of 2D computational domain of double-cavity Scramjet combustor (all dimension in mm).
[27]
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In another geometry, developed using Ansys Fluent 19.2 but adapted for SpaceClaim, a
schematic diagram of the DLR scramjet model is provided. Air enters the combustion
chamber at a Mach number of 2.0. The combustor has an entrance height of 50 mm and a
length of 300 mm. Hydrogen fuel (H2) is injected sonically through the bottom of a
wedge-shaped strut. From x = 58 mm onwards, the upper wall of the combustor diverges at
an angle of 3°. The wedge-shaped strut is positioned 25 mm from the entrance in the center
of the combustor and is 32 mm long with a half-angle of 6° [17]. Other details of the DLR

scramjet model are shown in the accompanying figure.

il =
T =
gﬂt 32
Air y v+ H,
||
0 *67
* 300 |

Figure 3-2-The schematic diagram of the DLR scramjet combustor [19].

To further improve combustion and mixing performance, a double-strut configuration with
backward-facing steps is also used in this geometry [17]. Each strut has a backward-facing
step with a height of 2 mm and a length of 9 mm. These double-struts are symmetrically
positioned about the central axis, with fuel injected laterally at the center of the backward-

facing steps. A gap of 4 mm exists between the two struts, representing the perpendicular

SRR | LI
odm—
29 A !
}—c» ,‘I"'#;’ °
—> =y
Air N": .:9..”3
o 69 o
. 300 -

Figure 3-3-The schematic diagram scramjet combustor for the double-strut with back. [17]
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distance. This lateral injection method is different from the horizontal injection used in other

double-strut configurations [17].

The geometry is a sketch created in DesignModeler with the appropriate angle of cavity and fuel-

injector. Named selections are defined for all the boundaries. This is the final geometry:

8 Sketchd
-y ZXPlane
-y VZPlane
Byl Surfacesia
@ Sketchd
£, 1Part, 1 Body
B Surface Body

Sketching Modeling

=/ Details of Sketch4
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Show Constraints? | No
[]a18 1350
[]a21 45°
| H10 262 mm
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[IH13 40mm
[ H14 10 mm
CH1s 2mm
CH7 s6mm
| H20 262 mm
H4 10 mm
[1Hs 40mm
H9 s6mm
w 40mm 000 5000 100,00 (mrm)
e o [ aaa—
C1vie 8am 2500 7500

o Sketehl
o Sketeh
3 ZiPlane
3 VZPlane
[y ¢ SurfaceSkl
-y 3 Planed
-y 8 SurfaceSk2
L inflow
i outflow
- symmetry
-8 Hainlet
8 wall
B FaceSplitl
-, 2 Parts, 2 Bodies

Sketching Modeling

Details View

= Details of Sketcht
Sketch [sketent
Sketch Visibilty | Show Sketch
Show Constraints? [No
BEH 45°
[ IH19 2mm
CHs 20mn
B3 56 mm,
CH7 262 mm
s 10 mm
vz 20 mm
[Ivs smm

= Edges: 10
Line 7
Line Lnf7
Line Lnig
line Lnts
£ n20
£ 21
[t n22

Figure 3-4-2D schematic of double-cavity Scramjet combustor in DesignModeler.
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The geometry is a sketch created in Space Claim with the appropriate angles of cavity and
fuel-injector, this geometry is converted into a surface using the pull tool. Named selections

are defined for all the boundaries. This is the final geometry for a case:

‘BE " | Click an otyect. Doufe-chick ta sslec ] loop. Triple-cifck to sefect a salid

1 B Suroce ANSYS
JE o R19.2
| Sruchse| Layers Seecton Groups Views - 58mn) ————#= Pymi

e 57mm

Optons - Selection il [ —
12°
| [=— 32mm ==
50mm %

300mm

R 5 A =Ro R X = k 1 ) . Yy B
apu LT ki P 0N e d ] - =
= Select
P P Qz 202 b - | & :
Cliggoard en__ Skeich Moze &6t Iteraect Create Body
Py object, Double-click to sl Toop. Triph
o B Suece.
< D) sevotaton Fare ANEI}S}
| [E——
Eumm—'4 1 -
R - '
Options - Selection
el 23mi-]
A mm
55mm  $——w—
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Figure 3-6-2D schematic of scramjet combustor for the double-strut with backward facing steps in SpaceClaim.
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Added a cavity to the double-strut with backward facing steps combustor chamber :

—
[<@— 35mm T

Lock bese pont
Mesh Ft |
i 67mm -~ 50mm

Clck 1 select. Double-click I seect 8 tangent chsin. Oouble-chick agusn b select & chosed loop. Drag 1o et your shetch

Figure 3-7-2D schematic of scramjet combustor for the double-strut with backward facing steps and a cavity in
SpaceClaim.

3.2. Grid independency analysis :

The computational simulation is greatly affected by meshing; the grid independence study
helps to identify the appropriate grid size for the current simulation to get optimum results.
In this paper, three different grids are considered, namely coarse (1211 elements), moderate
(18582 elements), and fine grid (1790977 elements).

By conducting this study, we can compare our findings with previous research to observe
the differences and understand the impact of mesh quality on the results. This comparison
will help us identify the influence of various mesh sizes and configurations on the accuracy
and efficiency of the simulations. Additionally, we will assess how different boundary
conditions and geometric modifications affect the overall performance of the scramjet

combustor.
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Table 3-1-Grid independence table.

Face Sizing Mesh Outlet Outlet Outlet Outlet Caleulati
Element Elements Pressure  Temperatur  Velocity Mach 4 f.u ilon
Size [mm] [Pa] e [K] (m/s™1)  Number i
DP 3 4 1,211 161,878.3  1,353.468  1,063.545 1.47971 10 min
DP 2 1 18,154 119,313.3  663.27605 1,137.6408 2.3040994 25 min
DP O 0.1 1,790,977 106,011.42 731.7022  1,115.0799 2.2037163 120 min

The discretization of the computational domain is a crucial and indispensable step for any
numerical simulation. It is carried out through an unstructured Cartesian mesh. An optimal
grid size is selected through a sensitivity analysis of the mesh cells, as presented in Table 3-
1. It is noted that the finer the mesh, the more stable the results. This process ensures that
the simulation captures the intricate details of the flow dynamics, which is particularly
important in high-speed and turbulent flow regimes such as those found in supersonic
combustion. Achieving an optimal balance between mesh resolution and computational
efficiency is essential for accurate and reliable simulation outcomes, so we took the 0.1

element size that give us 1,790,977 elements .
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In the meshing process and for all the geometries we used an element size of 0.1mm was
employed, resulting in a finely resolved computational domain with more accuracy.

3.3. Mesh generation:

o Double cavity C-C:

This mesh consisted of 1,060,312 elements and 3,187,133 nodes,
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Figure 3-9-Mesh of double-cavity Scramjet combustor.
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Figure 3-10-inserting the proper names to set boundary condition, (a) combustion zone, (b) inlet, h2 inlet,
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o Single strut C-C:

This mesh consisted of 276,309 elements and 279,704 nodes,
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Figure 3-11- Mesh of the single strut scramjet combustion chamber, (a) full combustion zone, (b)
zoomed view.
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o Double facing backward strut C-C:
This mesh consisted of 1,611,245 elements and 1,615,222 nodes
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Figure 3-12-Mesh of scramjet combustor for the double-strut with back-ward facing steps(a) full
combustion zone, (b) zoomed view.
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o Double facing backward strut C-C with a cavity

This mesh consisted of 1,060,312 elements and 3,187,133 nodes,
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A e
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Figure 3-13-Mesh of scramjet combustor for the double-strut with back-ward facing steps with
a cavity, (a) full combustion zone, (b) zoomed view

With this fine mesh it provides a detailed representation of the geometry and flow field. The
element quality, a measure of how well-shaped the elements are, was found to be an average
of 0.98, indicating that the mesh is of high quality with minimal distortion. Additionally, the
skewness of the elements, which describes the deviation of the element shape from an ideal
shape, was determined to be an average of 0.03, resulting in a well-balanced mesh with
minimal distortion. This high-quality mesh ensures accurate and reliable results for the

subsequent simulations.
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3.4. Simulation sequences in Fluent and post proccesing:

For all the geometries we use the same setup followed in previous differents researchs.

Assumptions are given as follows:

Steady-state compressible flow is considered
in this paper,

The 2-dimensional analysis is considered to
save computational time,

The turbulence in the flow field is address by
using the standard 2-equation K-¢ model,

Ideal gas laws are assumed.

Chaning the options to "Double Precision”
solver, each floating point number is
represented using 64 bits in contrast to the
single-precision solver, which uses 32 bits.
The extra bits increase not only the precision,
but also the range of magnitudes that can be
represented. The downside of using double
precision is that it requires more memory, in
this case it used all 8gb of memory (the

station has 16gb).

A density-based solver in this simulation

ensures that the complex phenomena
associated with supersonic combustion, such
as shock waves, high-speed flow dynamics,
and strong variable coupling, are accurately

modeled and resolved.

We also added the gravitational acceleration

in the Y axis.
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By including the energy equation in
the simulation, we ensure that all
and

relevant  thermal

energetic
interactions are considered, leading to
a more accurate and comprehensive
the

understanding  of supersonic

combustion process.

Using k-epsilon and realizable model
for a more realistic representation of
turbulence phenomena, enhancing the
simulation's accuracy without
significantly increasing computational

costs.

Models
Models

MAulti
)

Viscous -

Radiation -

hase - Off

Realizable k-e, Standard Wall Fn
Off

Heat Exchanger - Off

Species -
MNOx - Off
SOx - Off

Reactor Metwork - Off
Discrete Phase - Off
Acoustics - Off
Electric Potential - Off

Species Transport, Reactions

Energy
Energy

' Energy Equation

B [cover] [ ]

E Viscous Model

Model

Inviscid
Laminar
Spalart-Allmaras (1 eqn)

8 k-epsilon (2 eqn)
k-omega (2 eqgn)
Transition k-kl-omega (3 eqn)
Transition SST (4 eqn)
Reynolds Stress (5 eqn)
Scale-Adaptive Simulation (SAS)
Detached Eddy Simulation (DES)

k-epsilon Model
Standard
RNG
® Realizable

Near-Wall Treatment
® Standard Wall Functions
Scalable Wall Functions
MNon-Equilibrium Wall Functions
Enhanced Wall Treatment
Menter-Lechner
User-Defined Wall Functions

Options
| Viscous Heating
Curvature Correction
Compressibility Effects

Production Limiter

Model Constants
C2-Epsilon

1.9

TKE Prandtl Number

1

TDR Prandtl Number
1.2

Energy Prandtl Number
0.85

Wall Prandt! Number
0.85

Turbulent Schmidt Number
0.7

User-Defined Functions

Turbulent Viscosity

|n0ne

Prandtl and Schmidt Mumbers
TKE Prandtl Mumber

|n0ne

|
TODR Prandtl Number
|n0ne j

Energy Prandtl Number

|n0ne

|
Wall Prandtl Number
|n0ne j

Turbulent Schmidt Number

|n0ne

L

B (e s
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The eddy-dissipation model, effectively capture the essential characteristics of hydrogen-air

combustion in a supersonic combustor, balancing accuracy with computational feasibility

We used ideal gas in density for both air and hydrogen-air with a viscosity of Sutherland for

good accuracy, simplicity and computational efficiency
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Figure 3-16-species chosen (hydrogen-air).
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After some review of the boundary conditions we followed this table we followed the

following research [17]

Order Materials by

@) Name
S
() Chemical Formula

Create/Edit Materials

Name Material Type
|hydrogen—air Hmixture

Chemical Formula Fluent Miture Materials

thdrogen-air

j Fluent Database...

Froperties

Mixture

‘none

J User-Defined Databasz...

Density [kg{m3}| ideal-gas

Cp (Specific Heat) (j!kg-k}| mixing-lave

Thermal Conductivity (w,’m-k}| constant

10,0454

Viscosity [kg{m-s)| sutherland

| & Sutherland Law

Methods

(#) Two Coefficient Method (I Units Only)
() Three Coefficient Method

il

Q0

Change/Create

o) llame

o
I Chemical Formula

j Fluent Databace...

Neme Material Type
‘air ||ﬂuid
Chemicel Formul Fluent Fluid Materials
\ ||air
Midure
|nune

Properties

J User-Defined Datahase...

Densfy [kgjm3)| ideal-gas

[
|

Cp (Specifc Heat) U,’kg—k}| constant

10643

e
|

Thermal Conductivity [w{m-k)| constant

0142

Viscosity [kg{m-s}| sutherland

Sutherland Law
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(. Two Coefficent Method (51 Urits Only)
# Three Coefficert Hethod

Reference Viscosity, mud [kg{m-s)|1.716&05 ‘
Reference Temperture, T0 (k)|273.11 ‘

Effective Temperature, § [k)|11t1.56 ‘

Change Create

r

Figure 3-17-properties chosen
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Table 3-2- Boundary condition got from previous research [17]

Variable Air inlet Hydrogen fuel inlet
Mach number Ma 2.5 1
Total Temperature T (K) 500 300
Total pressure P (Pa) 110000 110000
Concentration of species
Oxygen mass fraction YO2 0.232 0
Nitrogen mass fraction YN2 0.736 0
Water mass fraction YH20 0.032 0
Hydrogen mass YH2 0 1
fraction
We set the parameters:
Pressure Far-Field X Field ¥
Zone Name
air_inlet
Momentum | Thermal Species | Fotentia Tz ETEE
Temperature (k) 500 constant j pssure (pascal) 110000 ‘constant j
Mach Number |2.5 ‘constant j
P " Flow Direction |1 | constznt |
Zone Name Flow Direction |0 ‘constant j
air_inlet
Momentum | Thermal Species Specitication Meth0d|lntenswty and Hydraulic Diameter

Specify Species in Mole Fractions
Species Mass Fractions
hz |0

02 0.232

h2o|0.032

constant -

Turbulent Intensity (%) 5
Hydraulic Diameter (m) |1

Pressure Far-Field

Pressure Far-Field
Zone Name

fuel_inlet

Momentum  Thermal

Specify Species in Mole Fractions
Species Mass Fractions
h2|1

020

h2o |0

Species

|c0nstant j
|c0nstant j
|c0nstant j

B (o] [

Figure 3-18-setting the boundary conditions

Zone Name

fuel_inlet

Momentum | Thermal Species

Gauge Pressure (pascal) | 110000
Mach Number 1
¥-Component of Flow Direction |1
¥-Companent of Flow Direction |0

Turbulence

constant
constant
constant

constant

Specification Meth0d|1ntensity and Hydraulic Diameter

Turbulent Intensity (%) 5
Hydraulic Diameter (m) 1

m Cancel ’m

= =L IIII ' w = =L
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Task Page ®
Solution Initialization
Initialization Methods
Hybrid Initialization
® Standard Initialization

Compute from
air_inlet j

Reference Frame

® Relative to Cell Zone
Absolute
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X Welocity (m/s)
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warped-Face Gradient Correction
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Convergence Acceleration For Stretched Meshes

Figure 3-19- the choice of resolution method



Using the implicit solution method with the second-order upwind scheme ensures stability,
accuracy, and efficiency. The implicit method allows for larger time steps and better handles
the stiffness of reacting flows, crucial for capturing the rapid changes and complex
interactions in supersonic combustion. The second-order upwind scheme reduces numerical
diffusion, improving the resolution of sharp gradients and flow features like shock waves
and mixing layers. This combination enhances the overall quality of the simulation, making
it more robust and reliable for modeling the detailed physics of fuel injection, mixing, and

combustion in high-speed flows.

Standard initialization method used where precise initial conditions are critical for capturing

the intricate flow dynamics, shock interactions, and combustion processes accurately.

And also we used Full Multi-Grid Initialization and supersonic flow and 500 iteration

number for a stable result.
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4. Chapter 1v.

Results and discussions



4.1. Presentation of the different contours:

Despite extensive efforts, the simulation did not achieve full convergence. Therefore, we
opted for a qualitative convergence criterion, running the simulation for 500 iterations over
a duration of 2 hours. This approach allowed us to gather valuable insights and preliminary
results, enabling us to analyze the flow characteristics and combustion behavior within the
scramjet combustor. The simulations were performed on a workstation equipped with an
AMD Ryzen 7 5800X processor and an AMD 6700XT GPU. While the solution did not fully
converge, the qualitative data provided a basis for understanding the performance trends and
identifying areas for further investigation and optimization.

4.1.1. Single strut scramjet combustion chamber:

For the single strut configuration, the oblique shocks generated at the strut's tip interact with
the boundary layers on the upper and lower walls. This interaction causes the formation of
separation zones due to the oblique shocks and boundary layers on the lower wall. the upper
shock is reflected off the upper wall, while a shock wave forms from the boundary layers
and separation zones on the lower wall. There is no separation zone on the upper wall in the
single strut case. The upper oblique shock generated by the strut tip interacts with the
expansion wave created by the divergent angle on the upper wall, which diminishes the
oblique shock's intensity. So the interaction between the weakened oblique shock and the

boundary layer does not produce a separation region, as depicted in Fig. 9.
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Figure 4-1-Mach number contour, M Ay intet = 2.5, Pair intet = 110 Kpa, Tgir inter = 500K.
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Figure 4-2-H2 mass fraction contour, May iniet = 1, Ty inter = 300K, YHz = 1.

The H2 mass fraction contour shows in this single strut combustion chamber shows that
along the center line in this case the H2 is present more than the outer part of the combustion

chamber and it keeps going untill the outlet part that’s cause of the supersonic airflow.
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0 0.050 0.100 (m)

0.025 0.075

L Figure 4-3-H20 mass fraction contour, Map; inier = 1, Pn, iniee = 110 Kpa, Thz inier = 300K, Yy, =
1, Yhzo = 0.032, Magir intet = 2.5, Pair inter = 110 Kpa, Tgir inter = S00K.

This figure of the H20 mass fraction contour it is the fuel/air mixture it show the combustion
happened when the hydrogen makes contact with the oxygen.
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Figure 4-4-Pressure contour, Pair inlet = 1100000 pPa, th inlet = 110 Kpa
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Figure 4-5-Temperature contour, Tyir intet = 500K, Thz inter = 300K.
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Figure 4-6-Density contour.
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4.1.2. Double strut facing backward steps :
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Figure 4-7--Mach number contour, Ma;y intet = 2.5, Pair intet = 110 Kpa, Tgair inter = 500K.
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Figure 4-8-H2 mass fraction contour, M@y injer = 1, Thz inter = 300K, Yy, =1

In this case we see the H2 faded along the combustion chamber that the evedience of a
good mixure.

49



..

0 0.050 0.100 (m)
0.025 0.075

Figure 4-9 H20 mass fraction contour, Map; intet = 1, Ph, iner = 110 Kpa, Thy inter = 300K, Yy, =1, Yy, =
0.032, Magir intet = 2.5, Pair inter = 110 Kpa, Tgir intec = 500K

we can notice the H20 goo mixture because the geometry proposed.
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Figure 4-10-Pressure contour, Pair inlet = 1100000 pa, th inlet = 110 Kpa
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Figure 4-11-Temperature contour, Tyir iniet = 500K, Ths inter = 300K.
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Comment on the single and double strut configuration contour:

The double-strut design with backward-facing steps significantly outperformed the single-
strut configuration. The double-strut setup created additional shear layers and recirculation
zones, which further enhanced the mixing of fuel and air. This design not only improved
combustion efficiency but also resulted in a more uniform temperature distribution within
the combustor. The increased interaction between the fuel jets and the high-speed airflow in
the double-strut configuration led to better combustion characteristics and higher overall

efficiency.
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4.1.3. Double-strut with cavity :

0 0.050 0.100 (m)
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Figure 4-12 Mach number contour Mag;y intet = 2.5, Pgair intet = 110 Kpa, Tgir inter = 500K.
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Figure 4-13-H2 mass fraction contour (a) default rainbow contour, (b) zebra contour.,
Map; iniet = 1, Thz inter = 300K, YHZ =1
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Figure 4-14-H20 mass fraction contour, Map; injet = 1, Ph, itee = 110 Kpa, Tpy inter = 300K, Yy, =1, Yy, 0 =
0.032, Magir intet = 2.5, Pair inter = 110 Kpa, Tgir inter = S00K
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Figure 4-15-Pressure contour, Py jniee = 1100000 pa, Pp, injee = 110 Kpa.
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Figure 4-16-Temperature contour, Tgir intet = 500K, Thz inter = 300K.
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Figure 4-17-Density contour
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4.1.4. Double cavity scramjet

B -
View4 v
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Figure 4-18-Mach number contour Mag;y inier = 2.5, Pgir intet = 110 Kpa, Tgiy inier = 500K
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Figure 4-19-H2 mass fraction contour, My, intet = 1, Tha inter = 300K, Yy, = 1.
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Figure 4-20-H20 mass fraction contour, May; inier = 1, Ph, miee = 110 Kpa, Thz inter = 300K,Yy, =1, Yy, 0 =
0.032, Magir intet = 2.5, Pair intet = 110 Kpa, Tgir inter = S00K
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Figure 4-21-Pressure contour, Pyjr inier = 1100000 pa, Py, inier = 110 Kpa.

The pressure contours follow the density contours very closely. The contours indicate the
generation of shock waves and the mixing of fuel and air. The e static pressure contours of
the combustor are shown in Figure 4-21. The contours show asudden rise in pressure after
injection of fuel irrespective of Mach number. The generation of bow shock leads to
anincrease in the pressure which is due to the transverse fuel injection technique. This results
in air compression, which leads to high-pressure creation. The shock waves interaction
generates regions of high pressure at the center of the combustor. The high-pressure region
results in the creation of immense gradients of pressure that knocks the fuel to-wards the
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wall of the combustor. Towards the downstream ofthe combustor, reattachment shock waves

and their inter-action with the bow and initial shock waves are visible in the contours.
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Figure 4-22-Temperature contour, Tyir inier = 500K, Ths inter = 300K.
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Figure 4-23-Density contour, (a) default rainbow contour, (b) zebra contour.

65



4.15. Comparison between the experimantal results and expirement
of all the combustion chamber :

25 Bow shock wave Shear layer

2

Oblique shock wave Reattachment shock wave

Recirculation region

Figure 4-24-Mach number contour showing the nomenclature of the
shock waves and their interactions experimental [15].
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Figure 4-25-Mach number contour for our simulation to show the nomenclature of the shock waves and
their interactions
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For numerical simulation problems, validation and grid independence study are very
important aspects of the study. The selection of the appropriate computational model for
better accuracy and reliability of the computational results for a certain application is very
necessary. Therefore, a comparison of the experimental and simulation results and close
visualization of the obtained results justify the reliability of the selected computational code.
In this paper, the Ansys Fluent 19.2 is selected as the computational software to carry out
the simulations. The present research work is validated from two different experimental

scramjet configurations.

First, the results of the present simulations are compared with the combined experimental
and numerical work operated by Yang et al [18].The experiments were conducted at the

National University of Defence Technology. The setup consists of a combustor inlet.

Secondly, the validation of supersonic combustion flow has not been carried out yet.
Therefore, we chose the DLR case as the verification example. The accuracy and reliability
of the numerical algorithm were validated by comparing its results with the DLR
experimental results. Comparison between the DLR experimental shadowgraph available in
open literature and the DLR computational density gradient contour is demonstrated in Fig.
4.26. The global structure of the reacting flow shows a relatively wider combustion zone

compared with the experimental image.

The qualitative validationof the simulation results is done by comparing the shadow images
and the density and pressure contours obtained from Oevermann [19] simulation, as shown
in Figures 4-26 and 4-27. The flow characteristics and generation of shock waves of
thescramjet combustor for both configurations are in good agreement with the experimental

results.
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Two shock waves form at the strut's point and reflect off the upper and lower combustor
walls. These reflected shocks interact with shear layers between the fuel jet and supersonic
flow. Additionally, weak shock waves, originating at the strut corners, intersect with the
reflected shocks. The upper weak shock wave also intersects an expansion wave from the
combustor's divergent angle. Both experimental and computational results show the
combustion zone widening immediately after the strut.

Weak shock waves
. -

g e —
Shock «—— 7 £ 2 e —————

Reflected shock wave

Figure 4-26-Top: Schlieren image of the chemical reaction flow. Bottom: computational
contours of density gradient of reacting flow [17].

Reflected shock wave I
[ ]
X

0 0.050 0.100 (m)
1
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Figure 4-27-Density contour for our simulation
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4.2. Effect of the mach on combustion efficiency:

We varied the mach number between 2.5 and 3 for both the double-strut backward steps with
the cavity designs and the typical double cavity combustor :
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Figure 4-28-Adding Mach variation and lines to calculate the combustion efficiency.
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4.3. Observing the Combustion Efficiency:

Combustion efficiency "n." is one of the parameters selected for the estimation of the
combustion process and it is particularly challenging yet crucial for effective propulsion.
Supersonic combustion, as utilized in scramjet engines, involves fuel combustion at
velocities greater than the speed of sound. The rapid airflows and the extremely short
residence time of the air-fuel mixture in the combustion chamber make it difficult to achieve

complete combustion [18]

nc(x)=mH2(in)_fPUA(X)YszA _,_Jpury,da
My2(in) My2(in) (4.8)
M2
=1 ——- (04.9)
Mpy2(in)
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4.3.1. Double-strut with cavity mach 2 :

Table 4-1-results proprieties for case 1

Mass . .
. . Mass . Combustion  Static
Density  Velocity . Area  fraction -
X(mm) fraction efficiency  Pressur T(K)
(Kg/m”3)  (m/s) (m?) of Yh2
of Yh2 . (%) (Pa)
(inlet)

“ 1230588 1020704  0.003721253 0.06365273 0.9963815 9.96E-01 106556.7  673.2968
100 1165934 1101282  0.0052609  0.06470066 0.9963815 9.95E-01 91459.22  583.379
130 1227255  1057.495  0.006193272 0.06470066 0.9963815 9.94E-01 1520919  778.125
150 1550926  1002.866  0.00599873  0.05847817 0.9963815 9.94E-01 249833.6  739.5696
190 1480864  1007.072  0.004378011 0.05691637 0.9963815 9.96E-01 183481.1  620.7858
210 1473923 1003912  0.005450503 0.0579643  0.9963815 9.95E-01 1776922  598.8202
300 1312815 1006942  0.01034323  0.06268  0.9963815 9.90E-01 1472156  575.9773
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Figure 4-29-The combusting effciency for case 1 a long side the line
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Figure 4-31-The temperature for case 1 a long side the line
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4.3.2. Double-strut with cavity mach 3 :

Table 4-2-results proprieties for case 2

\ERS . _
_ . Mass . Combustion  Static
Density  Velocity . Area  fraction -
X(mm) fraction efficiency  Pressur | T(K)

(Kgmns) (i) ypp (™) ofvh? (%) (Pa)
(inlet)

“ 1192717 1206806  0.008826224 0.06365273 0.9972607  0.991149532 1011302  663.1136

100 181436 1283.941  0.008812612  0.06470066  0.9972607 0.991163181 99642.38  588.3102
130 1.242575 1264.187  0.004134052  0.06278922  0.9972607 0.995854592 131192.7  689.3954
150 1.517446 1135.206  0.001961229  0.05847817  0.9972607 0.998033384 237612.8  903.7725
190 1.449286 1191.4 0.001858548  0.05691637  0.9972607 0.998136347 258882 1006.577
210 1.481719 1281.838  0.001708284  0.0579643  0.9972607 0.998287024 275813.3  1087.232

300 1.291856 1233.548 0.00357991 0.06268 0.9972607 0.996410257 149289.1  624.7767
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Figure 4-32-The combusting effciency for case 2 a long side the line

73



300000

250000

200000

150000

100000

Static pressur (Pa)

50000

0

static Temperature(K)

1200

1000

800

600

400

200

Figure 4-33-The pressure for case 2 a long side the line
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Figure 4-34-The temperature for case 2 a long side the line
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4.3.3. Typical double cavity mach 2 :

Table 4-3-results proprieties for case 1.2

\VERS
Area fraction
of Yh2
(inlet)

1.142191 829.7916  0.01659615 0.056 0.851194  0.980502506 168118.7 1128.141

Mass
fraction .
ofyhz (™M)

Combustion  Static
efficiency  Pressure  T(K)
(%) (Pa)

Density  Velocity
Kg/m”™3)  (m/s)

X(mm) (

1.536322 811.8105  0.02802303 0.056 0.851194  0.967077975 222136.2 1281.468

1.680006 1011.823 0.01007955 0.04  0.851194 0.98815834 228123.6  1029.631

1.547401 970.6835 0.01200462  0.04 0.851194  0.985896729 278938.4  1039.35
1.751593 1117.131 0.005690741 0.04  0.851194  0.993314402 3527414  1211.442

KB
1.680006 1018.458 0.01292788 0.04 0.851194 0.984812064 236758.3  794.2541

1.639486  1090.805 0.005226041 0.04 0.851194  0.993860341 333479.9  1236.261
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Figure 4-35-The combusting efficiency for case 1.2 a long side the line
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Figure 4-36-The pressure for case 1.2 a long side the line Figure 4-37-The temperature for case 1.2 a long side the line

76



4.3.4. Typical double cavity mach 3 :

Table 4-4-results proprieties for case 2.2

Mass Mass Combustion  Static

fraction of S TGS efficiency  Pressure  T(K)

yhe (M) czlfnm)z (%) (Pa)

1.145866 1007.054  0.01827309 0.056 0.8435053  0.978336722 180852.7  1150.71
1.14748 1049.061  0.02131073  0.056 0.8435053  0.974735511 197412 1334.171
1.554763 1253.716  0.004239207 0.04 0.8435053  0.994974297 215937.8  1010.521

1494721 1223984 0.01321445 0.04 08435053 0.984333886  241580.2  1042.181

Density  Velocity
Kg/m”™3)  (m/s)

X(mm) (

1.475801 1315.197 0.009306016  0.04  0.8435053  0.988967448 292375 1186.06
1.538759 1275399  0.00475222  0.04 0.8435053  0.994366105 304713.8  1231.489
1.547013 1286.929 0.004547309 0.04 0.8435053  0.994609033 251087.4  1027.461

0.995

0.99

0.985

0.98

combustion efficiency
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Figure 4-38-The combusting effeciency for case 2.2 a long side the line
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Figure 4-39-The pressure for case 2.2 a long side the line
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Figure 4-40-The temperature for case 2.2 a long side the line
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4.3.5. Observation for the effect variation of Mach number on
different parameters:

At Mach 2, the combustion process exhibited stable flame characteristics with moderate
pressure and temperature distributions. The introduction of cavities significantly enhanced
the shear-mixing layer, which improved the mixing of fuel and air. This resulted in a more
efficient combustion process. However, despite the stability and improved mixing, the

overall combustion efficiency was lower compared to the higher Mach number case.

In contrast, at Mach 3, the higher inlet velocity intensified shock interactions and increased
turbulence within the combustor. This enhanced turbulence promoted better fuel-air mixing,
leading to a more complete and efficient combustion process. The higher Mach number also
resulted in higher temperature regions and increased thrust. Nevertheless, the elevated
thermal and mechanical stresses on the combustor walls required advanced cooling

techniques and materials capable of withstanding such harsh conditions.

The addition of cavities at both Mach numbers played a crucial role in enhancing the mixing
and combustion efficiency. The cavities created recirculation zones that prolonged the
residence time of the fuel-air mixture, promoting more complete combustion. At Mach 3,
the benefits of the cavity configuration were even more pronounced, as the increased

turbulence further amplified the mixing efficiency facilitated by the cavities.
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Conclusion:

This study specifically focuses on the numerical simulation and analysis of supersonic
combustion chambers using Ansys Fluent. It examines the performance of hydrogen-fueled
cavity SCRAMJET combustors under different Mach numbers and cavity configurations.
The objective is to determine how various design elements impact combustion efficiency,
pressure, and temperature profiles. The study utilizes the standard k-epsilon turbulence
model and Reynolds-averaged Navier-Stokes (RANS) equations with a finite-rate/eddy
dissipation species reaction model. It compares the effects of single-strut and double-strut
designs with backward-facing steps, as well as the impact of cavity configurations on the
mixing and combustion process. The results provide valuable insights into optimizing
SCRAMJET combustor designs for improved performance, highlighting the critical role of
turbulence and recirculation zones in achieving efficient supersonic combustion.

The study include:

o Stable Combustion at Mach 2.5: The flame exhibited stability with moderate
pressure and temperature distributions.

o Cavity Impact: Introducing cavities had a significant positive effect on the shear
mixing layer, enhancing fuel and air mixing.

o Improved Mixing Efficiency: Despite lower overall combustion efficiency at Mach
2.5, the cavities resulted in a more efficient combustion process.

o Intensified Shock Interactions at Mach 3: The higher inlet velocity at Mach 3
increased turbulence within the combustor, promoting better fuel-air mixing.

o Higher Temperature Regions: The higher Mach number led to increased thrust, but
advanced cooling techniques were necessary to manage the higher temperature.

o Recirculation Zones: The cavities created recirculation zones, extending the
residence time of the fuel-air mixture and promoting more complete combustion.

o Enhanced Turbulence at Mach 3: The benefits of the cavity configuration were
more pronounced due to increased turbulence at Mach 3.

o Double-Strut Design Superiority: The double-strut design with backward-facing
steps significantly outperformed the single-strut configuration.

o Additional Shear Layers: The double-strut setup created additional shear layers and
recirculation zones, further enhancing fuel and air mixing.

o Uniform Temperature Distribution: The overall result was a more uniform
temperature distribution within the combustor, leading to better combustion
characteristics and higher efficiency.
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Finally, implementing cavity configurations and the double-strut design with backward-
facing steps enhances combustion performance at both Mach numbers. Optimizing the
combustor design to balance these factors is crucial for achieving optimal performance
in practical applications. This study underscores the importance of advanced cooling
techniques and materials to manage the increased thermal and mechanical stresses at
higher Mach numbers, paving the way for more efficient and robust SCRAMJET
designs.

Outlooks

The outlooks highlight strategic areas for advancing SCRAMJET technology, emphasizing
the need for precise engineering solutions to optimize performance and reliability in high-
speed aerospace applications.

1. Advanced Cooling Strategies: Future research should focus on developing robust
cooling techniques to manage the high temperatures encountered during high-speed
SCRAMJET operations. This effort aims to enhance engine durability and efficiency
under extreme thermal conditions.

2. Optimization of Cavity Geometries: Further exploration into optimizing cavity
designs holds the promise of improved fuel-air mixing and combustion efficiency.
Investigating various geometries could lead to tailored configurations that maximize
performance across different Mach numbers.

3. Integration of Advanced Turbulence Models: Exploring advanced turbulence
models like Large Eddy Simulation (LES) offers the potential for accurately
predicting turbulent flow behaviors within SCRAMJET combustors. This could
provide deeper insights into combustion dynamics and support enhanced design
strategies.

4. The development of 3-dimensional models for a more detailed study of geometry
can be taken into consideration..
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