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Abstract : 

In this master thesis, target detection in a non-homogeneous environment is 

studied, when the receiver uses multi-sensor data fusion with detection threshold 

optimization based on the PSO metaheuristic algorithm. The aim of this thesis is to 

improve the performance of the detection process in an inhomogeneous 

environment. The scheme used is based on the optimisation of the detection 

threshold in a parallel multi-sensor data fusion. The distributed systems used here 

are based on the OS-CFAR (ordered statistics constant false alarm rate) and CMLD 

(censored mean level detector) adaptive detectors. For detection threshold 

optimisation, the PSO (Particulate Swarm Optimization) algorithm with a linearly 

decreasing strategy is applied where the multi-sensor detection threshold is 

determined by maximising the global detection probability while keeping the global 

false alarm probability constant, employing two logical fusion rules for detection 

improvement in an non-homogeneous environment. 

Keywords: Radar- parallel data fusion - order statistics detectors- PSO optimization 

 

Résumé 

Dans le cadre de cette thèse de master, la detection de cible dans un 

environnement non homogene est etudiée, quand le récepteur utilise une fusion de 

données multi-capteurs avec une optimization du seuil de detection basé sur 

l »algorithme methaheuristique PSO. . Le but recherché dans cette thèse, est 

d’améliorer les performances du processus de detection dans un environnement non 

homogene, le schéma utilisé est basé sur l’optimisation du seuil de détection dans 

une fusion de données multi-capteurs parallels. Les systèmes distribués utilisés ici 

sont à base des détecteurs adaptatifs OS-CFAR (ordered statistics constant false 

alarm rate) et CMLD (Censored mean level detector). Pour l’optimisation du seuil de 

detection, l’algorithme PSO (Particule Swarm Optimization) avec une stratégie 

linéairement décroissante est appliquée où le seuil de detection des multi capteurs 

est determiné en maximisant la probabilité de detection globale tout en maintenant la 

probabilité de fausse alarme globale constante, en employant deux règles de fusion 

logiques pour l’amélioration de la detection dans un environnement non homogene. 
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 ملخص

في رسالة الماستر هذه، تتم دراسة الكشف عن الهدف في بيئة غير متجانسة، عندما يستخدم جهاز الاستقبال دمج بيانات متعددة  

الهدف من هذه الأطروحة هو تحسين أداء   .PSOأجهزة الاستشعار مع تحسين عتبة الكشف على أساس خوارزمية ميتاهوريست 

عملية الكشف في بيئة غير متجانسة. يعتمد المخطط المستخدم على تحسين عتبة الكشف في دمج بيانات متعددة أجهزة الاستشعار  

)معدل الإنذار الكاذب الثابت للإحصائيات   OS-CFARالمتوازية. تستند الأنظمة الموزعة المستخدمة هنا إلى كاشفات التكيف  

 PSO)كاشف المستوى المتوسط الخاضع للرقابة(. من أجل تحسين عتبة الكشف، يتم تطبيق خوارزمية  CMLDالمرتبة( و 

)تحسين سرب الجسيمات( مع استراتيجية تناقصية خطية حيث يتم تحديد عتبة الكشف متعدد أجهزة الاستشعار من خلال تعظيم  

ال الإنذار الكاذب العالمي ثابتاً، باستخدام قاعدتي دمج منطقيتين لتحسين الكشف في بيئة  احتمال الكشف العالمي مع الحفاظ على احتم

 غير متجانسة. 
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GENERAL INTRODUCTON 

Radar systems are crucial for detecting and tracking targets in various 

environments, whether homogeneous or non-homogeneous. Achieving high detection 

performance while maintaining a constant false alarm rate (CFAR) is a primary goal in 

radar signal processing. Traditional CFAR detectors often face challenges in non-

homogeneous environments due to variations in noise and clutter levels. This 

necessitates the development of optimized CFAR techniques that can adapt to 

changing conditions while ensuring reliable target detection. 

In the first chapter, we introduce the fundamental parameters and components 

of a radar system, including the transmitter, receiver, antenna, and detector. We 

explain the radar equation used for calculating range, and the Doppler effect for 

estimating target speed and distinguishing between moving and stationary targets. 

Additionally, we highlight the importance of limiting radar range to avoid distance 

ambiguity and introduce Swerling models for modelling fluctuating targets and 

estimating detector performance. 

In the second chapter, we explore the basic concepts of decision criteria in radar 

detection and the techniques used in radar systems. We identify the limitations of fixed 

threshold detection in non-homogeneous environments, highlighting the need for 

adaptive threshold detection to maintain a constant false alarm rate. 

Chapter three examines the evolution of CFAR (Constant False Alarm Rate) 

detection methods, focusing on their adaptation to varying environmental conditions. It 

explores distributed CFAR rules using AND and OR logic to optimize detection 

accuracy through sensor data integration. Additionally, the chapter investigates the use 

of Particle Swarm Optimization (PSO) to refine parameters like threshold T and K in 

OS-CFAR and CMLDk-CFAR detectors, aiming to enhance overall detection 

capabilities.  We conclude this thesis with a comprehensive simulation study evaluating 

the effectiveness of these enhanced CFAR detection methods. The simulations are 

conducted in both homogeneous and non-homogeneous environments to assess the 

impact of using AND/OR fusion rules and PSO-optimized parameters T and K on 

detection performance. This empirical analysis aims to validate the practical utility and 

effectiveness of the proposed approaches in diverse operational settings [1].
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1 Chapitre 1 

1.1 Introduction 

RADAR (radio detection and ranging) is one of the wonders of the twentieth 

century. It is an electromagnetic system used to detect the presence of moving objects 

and determine their trajectory, speed, closest point of contact, and other data, while 

transmitting radio waves, whose wavelength varies from a few centimetres to about 1 

m. It then extracts the necessary information about the target from the echo signal. 

 

 

Figure 1-1 Radar Antenna [2]. 

The primary property of radar, namely high accuracy of distance measurements, 

has also made it possible to accurately measure the distance from the earth to various 

stars either with radio waves or with lasers. In the civilian field, radar has many 

important applications, ranging from air traffic control, which is so dense today, with 

long-range equipment, to landing control in conditions of very poor visibility. In 

meteorology, it can be used to track sounding balloons, measure cloud ceilings over 

aerodromes and warn crews of disturbances on their route, allowing them to avoid 

them. On the roads, it allows the monitoring of the speed of motorists, and therefore 
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contributes to improving road traffic safety. Finally, it is widely used in space 

exploration as it makes it possible to study the ground of planets surrounded by clouds, 

for example, Venus. The word radar is therefore applied to a wide range of equipment 

and installations, from very small on-board equipment to very large assemblies served 

by hundreds of people. However, despite this extreme diversity of aspects and uses, 

the same basic principles are found in all types of equipment. Therefore, these 

principles are the main focus of the radar literature and their current extensions, i.e. 

modern radar. 

1.2 HISTORY OF RADAR 

 

 

Figure 1-2 Development History of Radar Imaging [3]. 

 

Radar is certainly one of the most useful inventions in modern aeronautics. One 

can no longer imagine an aircraft flying without this instrument, nor a control tower 

operating without its help. However, no one can claim sole credit for this discovery. 

 Radar (Radio Detection and Ranging) is the result of the research of many 

physicists and the work of many engineers throughout the world. Each of them took 

advantage of previous discoveries to advance their own research. 

The source of the invention can be traced back to 1864. That year, the British 

physicist James Clerck Maxwell formulated the equations governing electromagnetic 

waves. Therefore, it was a British success story. Nevertheless, not for long. 
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In 1889, the German Heinrich Rudolph Hertz proved by experiment that 

electromagnetic waves were reflected on conductive surfaces. This was the first 

application. 

In 1904, Christian Hülsmeyer, another German engineer, hypothesised that it would 

be possible to use this property to avoid ship collisions and worked on the development 

of an instrument. 

After the 1914 war, many laboratories in Europe and the United States took a closer 

look at the discovery. 

In 1922, the Italian Guglielmo Marconi invented a device more or less identical to 

that of the German Hülsmeyer. The real development of radar as we know it was to 

begin. 

In 1924, in England, E.V. Appleton, winner of the Nobel Prize for Physics in 1914, 

and A. F. Barnett carried out several experiments on radar. F. Barnett carried out 

several experiments. 

To detect objects using radio waves. These same experiments were carried out in 

the United States, notably by Taylor and Young on buildings with a metal structure. 

 In 1927, in France, Camille Gutton and Pierret experimented with wave echoes in 

the courtyard of the Faculty of Science in Nancy. The matter remained in the family 

since Camille Gutton's son, Henri, was one of those who really developed radar. At the 

same time, we must also remember the name of Maurice Ponte who worked with 

Maurice de Broglie on the association of waves with the electron. The elements were 

falling into place. We are close to the discovery that will really take place a few months 

later. 

 In 1931 in France, two technical advisers of the military radiography, Mesny and 

David, noticed that the passage of aeroplanes created disturbances in the 

communications. 

 In 1935, they developed a device to locate these aircraft. However, 1934 can be 

considered as the date of the actual birth of radar. During tests to adjust a magnetron 

transmitter in the courtyard of the SFR factory in Levallois, the engineers noticed a 

parasitic reception. They looked for the origin of the interference in the equipment; the 

cause was much more surprising: the gusts of wind that made the wheels of bicycles 
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suspended under a shelter turn. After a long observation, they conclude that the echo 

turns at the same time and at the same rhythm as the bicycles. 

 This was all it took to decide on the direction of the research. A steering committee 

decided to build special echo detection equipment. However, they had to choose the 

right waves. They decided on centimetre waves. 

 This was fortunate because the entire future of the new detector, which was not 

yet called a radar but an obstacle detector, would depend on it. Teams from the 

Compagnie General de T.S.F. and the Société Française de Radio-électrique 

(C.S.F.R.) therefore developed the first device. It will be installed on the cargo ship 

Oregon in November 1934 and will equip from August 1935 the liner Normandie... 

Honour to the French! 

 Radar was born. It was to take its place everywhere on land, at sea and in the sky. 

In 1935 in England, the Committee for the Study of Air Defence received from Sir 

Robert Watson-Watt, then head of the radio section of the National Physical 

Laboratory, a project for the remote signalling of aircraft by electromagnetic detection. 

 On 5 December 1935, the British Air Ministry decided to build a system on the east 

coast of England to protect the Thames estuary. It was reinforced in the spring of 1937 

by 15 stations installed on the east and south-east coasts. The American naval 

authorities also looked into the matter. Admiral Bowens obtained a credit of 100,000 

dollars from Congress. 

 In April 1937, the Americans carried out the first radar tests on board the destroyer 

Leary at the mouth of the Cheasepeake. At the same time, the War Department and 

the Parliamentary Committee on the Army witnessed aircraft detection experiments at 

Fort Monmouth. 

 The war was to lead to considerable development of radar. And even today, 

laboratories all over the world are still working on its daily improvement [2]. 

1.3 CLASSIFICATION OF RADAR SYSTEM  

Depending on the information they must provide, radar equipment uses different 

qualities and technologies. This results in a first classification of radar systems: 
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Figure 1-3 CLASSIFICATION OF RADAR [4]. 

1.3.1 Secondary RADAR  

Secondary radar is a radar system that operates by sending out an interrogation 

signal to a target, which responds with a coded reply containing identification and other 

information. It is commonly used in air traffic control (ATC) systems and military 

applications for enhanced target identification and tracking. The use of secondary 

radar improves the accuracy and reliability of target identification in crowded airspace 

[4]. 

1.3.2 Primary RADAR  

Primary radar is a radar system that operates by transmitting radio frequency 

signals and detecting the echoes reflected back from targets in its coverage area. It 

provides information on the range, bearing, and relative motion of the detected objects. 

Primary radar is commonly used in applications such as air traffic control (ATC), 

weather monitoring, and military surveillance. It is particularly useful in situations where 

the targets do not have transponders or are not actively cooperating with radar systems 

[5]. 

1.3.3 Pulse RADAR  

Pulse radar is a radar system that uses short-duration pulses of radio frequency 

energy to detect and locate targets. By transmitting these pulses and measuring the 

time it takes for the echo to return, pulse radar can determine the range to the target. 
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It is widely employed in various applications such as air traffic control, weather 

monitoring, and military surveillance [6]. 

1.3.4 Continuos wave (CW) RADAR  

Continuous wave (CW) radar is a type of radar system that transmits a 

continuous, uninterrupted signal and measures the phase shift of the reflected signal 

to determine the range and velocity of the target. According to Skolnik (2008), CW 

radar is commonly used for applications that require high accuracy velocity 

measurements, such as speed guns and Doppler radar systems. One of the 

advantages of CW radar is its simplicity and reliability, but it is also susceptible to 

interference from other sources of radio frequency energy. This can limit the 

effectiveness of CW radar in certain environments, such as urban areas with high 

levels of electromagnetic interference. Despite its limitations, CW radar remains an 

important technology in many fields, including military and civilian applications. [5] 

1.3.5 Types of radar  

Radar technology has evolved over the years, and there are now many types of 

radar systems used for a variety of applications. According to Stimson (2015), some of 

the most common types of radar include pulse radar, continuous wave (CW) radar, 

frequency modulated (FM) radar, and Doppler radar. Pulse radar is used for 

applications that require high range resolution, such as weather radar and air traffic 

control radar systems. CW radar is used for applications that require high accuracy 

velocity measurements, such as speed guns and Doppler radar systems. FM radar is 

used for applications that require high target discrimination, such as radar altimeters 

and ground-penetrating radar systems. Doppler radar is used for applications that 

require the detection of moving targets, such as weather radar and air traffic control 

radar systems. The choice of which type of radar to use depends on the specific 

application and the desired performance characteristics. [7] 

1.4 RADAR COMPONENTS  

Radar systems consist of several key components, including a transmitter, a 

receiver, an antenna, and a signal processor, In addition to these basic components, 

modern radar systems may also include complex digital signal processing algorithms, 

data storage systems, and other advanced features. Another way to categorize radar 
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systems is by the number of radar channels they use, Single-channel radar systems 

use a single transmitter and receiver, while multi-channel radar systems use multiple 

transmitters and receivers to improve performance. Multi-channel radar systems can 

provide improved sensitivity, range, and resolution, but they are also more complex 

and expensive to build and operate. The choice of which type of radar system to use 

depends on the specific application and the desired performance characteristics [5]. 

 

 

Figure 1-4 THE RADAR COMPONENT [5]. 

 

1.5 THE PRINCIPLE OF RADAR OPERATION  

Radar operates by transmitting a radio frequency (RF) signal from an antenna and 

then listening for the echoes that bounce back from objects in the environment. The 

time delay between the transmission and reception of the echoes is used to calculate 

the distance to the object, while the Doppler shift of the echoes is used to calculate its 

velocity, the basic principle of radar operation is based on the reflection and scattering 

of electromagnetic waves by objects in their path. By measuring the time delay and 

frequency shift of the reflected waves, radar systems can provide information about 

the location, distance, speed, and other characteristics of objects in the environment. 

This principle has been applied in a wide range of applications, from air traffic control 

and weather monitoring to military surveillance and scientific research [7]. 
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Figure 1-5 THE PRINCIPLE OF RADAR OPERATION [7]. 

1.6 The Doppler shift 

The Doppler shift, also known as the Doppler Effect, is a phenomenon observed 

in waves, including radio waves used in radar. It occurs when there is relative motion 

between the wave source and the observer, causing a change in the frequency or 

wavelength of the wave observed by the observer. In radar applications, the Doppler 

shift is used to measure the relative velocity between the radar system and a target, 

another way to describe the Doppler shift in radar is as a frequency change that results 

from the motion of a target relative to the radar antenna. If the target is moving towards 

the radar, the frequency of the reflected signal will be higher than the frequency of the 

transmitted signal, while if the target is moving away from the radar, the frequency of 

the reflected signal will be lower. By measuring the Doppler shift, radar systems can 

determine the velocity and direction of moving targets, which is useful for applications 

such as air traffic control, weather monitoring, and military surveillance [7]. 

 The general form of the Doppler shift equation is as follows: 

 

 𝑓𝑑 =
𝑣𝑟
𝜆

 
(1.1) 
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Figure 1-6 Doppler Shift [7]. 

 

 

1.7 RADAR EQUATIONS 

1.7.1  Radar range equation 

This equation is used to calculate the maximum range of a radar system, based 

on the transmitted power, the antenna gain, the radar cross section of the target, and 

the noise figure of the receiver. The radar maximum range equation is: 

 

𝑅𝑚𝑎𝑥 = √
𝑃𝐶   𝐺2𝜆2  𝜎

(4𝜋)3 𝑆𝑚𝑖𝑛

4

 

 

(1.2) 

 

 

Where: 

 

• 𝑅𝑚𝑎𝑥 = maximum range. 

• 𝜆 = wavelength of the transmitted signal. 

• 𝜎 = radar cross section of the target. 

• 𝐺 =antenna gain. 

• 𝑆𝑚𝑖𝑛 = minimum power. 

1.7.2 Doppler Radar equation 

This equation is used to calculate the Doppler shift of a radar signal, based on the 

velocity of the target and the frequency of the transmitted signal. The basic form of the 

Doppler radar equation is: 
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𝛥𝑓 = (

2𝑣

𝑐
) ⋅ 𝐹0 

(1.3) 

 

 

 Where: 

 

𝛥𝑓 = Doppler shift 

𝑣 = velocity of the target 

𝑐 = speed of light 

𝐹0 = frequency of the transmitted signal [8] 

 

1.8 THE ELECTROMAGNETIC WAVES 

 Electromagnetic waves are a fundamental aspect of electromagnetism, which is 

a branch of physics that deals with the interactions between electric and magnetic 

fields. 

 These waves are composed of oscillating electric and magnetic fields that 

propagate through space, carrying energy and momentum. They arise from the 

acceleration or change in velocity of electric charges, which disturbs the surrounding 

electric and magnetic fields, leading to wave formation. 

 Electromagnetic waves can travel through a vacuum as well as through various 

materials. They are not dependent on a medium for propagation, unlike mechanical 

waves like sound waves. 

 

Figure 1-7 The electromagnetic waves. 
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�⃗� : Electric field. 

�⃗�  : Magnetic field. 

 

1.9 CLUTTER AND NOISE 

Clutter and noise are two major sources of interference in radar signals that can 

affect the accuracy and reliability of radar measurements. Clutter refers to the 

unwanted signals that are reflected from stationary or slow-moving objects in the 

environment, such as buildings, mountains, and clutter on the ground. Noise, on the 

other hand, refers to any unwanted signals that are not related to the target being 

detected, such as thermal noise generated by the receiver electronics and atmospheric 

noise. To mitigate the effects of clutter and noise, radar engineers use a variety of 

techniques, including advanced signal processing algorithms, multiple-input multiple-

output (MIMO) radar systems, and digital signal processing techniques such as 

averaging and filtering. These techniques are constantly evolving as radar technology 

continues to advance, and they are essential tools for researchers, engineers, and 

technicians working in the field of radar technology [5]. 

1.9.1 Clutter definition 

 Clutter in radar technology refers to the unwanted echoes or reflections of radar 

signals that originate from stationary or slow-moving objects in the environment, and 

are received by the radar system along with the echoes from the desired targets. These 

echoes can cause interference and produce a large amount of noise in the radar signal, 

which can make it difficult to detect and measure the signals from moving targets such 

as aircraft or ships. The presence of clutter in the radar signal can reduce the accuracy 

and reliability of the radar measurements, and is a significant challenge in radar 

technology [5].  

1.9.1.1    Non-homogeneous 

 Clutter When the reference cells scans the environment in a given direction, 

different non homogeneous situations can affect the configuration of the cells of 

reference. These situations are caused by the presence of interfering targets (targets 

secondary) and/or clutter edge at the reference channel. A clutter edge is characterized 
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by the presence, at the level of the cell of reference, of an abrupt transition in the power 

of the background noise. In detection radar, this transition describes the limit between 

two environments of different nature: transition land-sea, clear-cloud zone…  

We will be representing different situations of non-homogeneous environments 

in the next illustrations:  

  

 

Figure 1-8 cell under test embedded in the clutter region. 

 

            

 

Figure 1-9 cell under test drowned in thermal noise. 
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Figure 1-10 Presence of clutter edge and interfering targets. 

 

 The use of the CA-CFAR detector in situations similar to those of the 3 figures 

leads to a large loss of detection or an increase in the rate of false alarm. In the case 

where the cell under test is immersed in clutter (fig 1.7), the cells drowned in thermal 

noise contribute to underestimating the detection threshold, which results in an 

excessive false alarm probability (Pfa). In (1.8) the cell under test being in the thermal 

noise, the cells belonging to the clutter tend to increase the detection threshold and, 

consequently, to degrade the probability of detection. This particular situation is known 

as the "effect of mask” (masking effect). The capture effect, on the other hand, is 

obtained in the presence interference in a homogeneous (uniform) clutter, when these 

contribute to increasing the detection threshold [5]. 

1.9.1.2  Clutter Statistical Properties 

 Maintaining a constant Pfa at a CFAR detector requires the prior knowledge of 

the statistical distribution of the clutter echoes, at the exit of the quadratic detector or 

the envelope detector. This probability density (Pdf) depends on the nature of the 

clutter (land, sea, precipitation, clouds) as well as the resolution and angular aperture 

of the radar used. In low-resolution radars, the fluctuations of clutter echoes are 

described by independent random reflections, having the same order of magnitude. 

This classical modeling leads to consider that the signal received at the input of the 

detector quadratic is a Gaussian process with zero mean and constant variance µ 

constant (for a uniform region). In linear detection, the envelope signal x, measured at 

level of cell i, follows a Rayleigh distribution. 



CHAPTER 1  RADAR Basics 

16 
 

 
𝑓𝑥𝑖(𝑥) = (2 ⋅

𝑥

𝜇
) ⋅ exp (−

𝑥2

𝜇
) , 𝑥 ≥ 0 

 

(1.4) 

 

In quadratic detection, the signal x at the level of cell i obeys an exponential law as: 

 
𝑓𝑥𝑖(𝑥) = (

1

𝜇
) ⋅ exp (−

𝑥

𝜇
) , 𝑥 ≥ 0 

 

(1.5) 

 

If, at the output of the quadratic detector, the video signal undergoes a 

nonintegrating coherent of M pulses, the amplitudes of the reference cells will be 

described by a Gamma distribution. Indeed, the Pdf of the sum of M processes 

independent and exponential, follows a Gamma law with parameters (µ, M): 

 

𝑓𝑥𝑖(𝑥) =
𝑥𝑀−1exp (−

𝑥
𝜇)

Γ(𝑀)𝜇𝑀
, 𝑥 ≥ 0 

 

(1.6) 

 

Where Γ(M) represents the usual Gamma function: Γ(M)=(M-1)! . It is easy to 

see that for a single-pulse treatment (M=1) the distribution (1.5) coincides with the 

exponential law. 

1.9.1.3 Target Models 

 The echo received is linked to the reflective power of the target. In low 

resolution, both classic moving target models are defined by 

 a. The target is considered as a set of elementary reflectors of same sizes. The 

envelope x of the reflected signal follows a Rayleig. 

 
𝑓(𝑥) =

𝑥

𝑥0
2 exp (−

𝑥2

2𝑥0
2) 

 

(1.7) 

 

𝑥0 being the mean value of the signal related to the radar cross section (RCS). 

 b. The target is seen as a large reflector surrounded by several small reflectors. 

The envelope of the received signal fluctuates according to the law: 
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𝑓(𝑥) =

9𝑥3

2𝑥0
4 exp (−

3𝑥2

2𝑥0
) 

 

(1.8) 

 

To study the target signal in the case of several pulses (noncoherent), it is necessary 

to take into account the movements of the target during the exposure time 𝑇𝑜𝑡 

Two types of fluctuation are considered: 

 a. Slowly fluctuating target: the target echo does not change during the 

emission of M pulses (𝑇𝑜𝑡). Therefore, the samples received are the same for all 

impulses; it is a single realization of the same random variable (complete correlation 

from one pulse to another). 

 b. Rapidly fluctuating target: The echo changes in value from one pulse to the 

next. The received samples are different realizations of the same random variable 

(defull pulse-to-pulse correlation) [9]. 

1.9.2  Noise definition 

 Noise in radar technology is defined as any unwanted signal that is not related 

to the target being detected, and can include electronic noise, atmospheric noise, and 

interference from other sources. In radar systems, noise can reduce the signal-to-noise 

ratio (SNR), which is a measure of the strength of the desired signal relative to the 

level of the unwanted noise. A low SNR can make it difficult to detect weak signals 

from distant or low reflectivity targets, and can therefore reduce the accuracy and 

reliability of the radar measurements. To minimize the effects of noise, radar engineers 

use a variety of techniques, including the use of low-noise amplifiers and high-

performance analog-todigital converters, as well as digital signal processing 

techniques such as averaging and filtering. [6] 

1.10  DEFINITION OF DISTANCE AMBIGUITY 

 Range ambiguity in radar technology refers to the inability of a radar system to 

distinguish between two or more targets that are located at different ranges but are at 

the same angle relative to the radar. This can occur when the pulse repetition 

frequency (PRF) of the radar is too low, causing the transmitted pulses to overlap in 

time and the returned echoes to be ambiguous in range. The ambiguity can result in 

errors in the measurement of target range, as the radar system may report the range 
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of the incorrect target. To overcome range ambiguity, radar engineers use a variety of 

techniques, such as increasing the PRF, using pulse compression, or using multiple 

frequencies. [5] 

 

Figure 1-11 Illustration of distance ambiguity [10]. 

 

1.11 THE MODEL OF FLUCTUATING TARGETS 

 In a radar system, the model of fluctuating targets typically refers to the 

representation of radar returns from moving targets that exhibit variations over time 

due to factors such as motion, clutter, and environmental conditions. The modeling of 

fluctuating targets in radar systems is crucial for signal processing, target tracking, and 

detection algorithms. One commonly used model for fluctuating targets in radar 

systems is the Swerling models. These models were developed by Peter Swerling in 

the 1950s and are widely used to characterize the statistical behavior of radar returns 

from fluctuating targets. Swerling models assume different fluctuation patterns based 

on the target type and radar cross-section (RCS) characteristics. 

 From the distributions (1.6) and (1.7) as well as the degrees of fluctuation, the 

four SWERLING models are defined as follows: 

1.11.1 SWERLING I (SWI)  

Slowly fluctuating target whose signal envelope varies according to the law (1.6) 

 

Figure 1-12 Fluctuation Pattern Pulses Swerling I. 
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1.11.2  SWERLING II (SWII)  

Rapidly fluctuating target whose signal envelope varies according to the law (1.6) 

 

Figure 1-13 Fluctuation Pattern Pulses Swerling II. 

1.11.3  SWERLING III (SWIII)  

Slowly fluctuating target whose signal envelope varies according to the law (1.7). 

                

Figure 1-14 Fluctuation Pattern Pulses Swerling III. 

 

 

 

1.11.4 SWERLING IV (SWIV) 

Rapidly fluctuating target whose signal envelope varies according to the law (1.7). 

 

 

 

The Swerling model is used to predict the probability distribution of the signal-

tonoise ratio (SNR) of radar signals reflected from targets of different types. This is 

important for designing radar systems that can effectively detect and track targets of 

different sizes and types, and for optimizing the performance of radar systems in 

different environments [11]. 

Figure 1-15 Fluctuation Pattern Pulses Swerling IV. 
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1.12 THE TYPICAL PHASES OF RADAR SIGNAL PROCESSING  

Radar signal processing is a crucial aspect of radar systems that involves 

various techniques and algorithms to extract valuable information from received radar 

signals. Here are the key phases of radar signal processing along with references for 

further exploration: 

1.12.1 Signal Transmission:  

The radar system emits electromagnetic signals, such as pulses or continuous 

waveforms, to illuminate the target area. 

1.12.2 Signal Reception: 

 The radar receiver captures the echoes reflected by targets in the environment. 

1.12.3 Signal Preprocessing:  

This phase involves techniques such as filtering, sampling, and amplification to 

enhance the quality of the received signal. 

1.12.4 Pulse Compression:  

Pulse compression techniques, such as matched filtering or pulse compression codes, 

are employed to improve the radar's range resolution and detection capabilities. 

1.12.5 Doppler Processing:  

Doppler processing is used to measure the velocity of moving targets. 

1.12.6 Target Detection: 

 Various algorithms, including constant false alarm rate (CFAR) detection and adaptive 

thresholding, are employed to identify targets against background clutter and noise 

[12]. 

 

1.13 CONCLUSION 

In conclusion, radar technology has revolutionized various fields, from military 

applications to civilian uses such as air traffic control, meteorology, and road traffic 

safety. Its development is a result of the collaborative efforts of scientists and engineers 

worldwide, building upon each other's discoveries over decades. From its early 

beginnings with Maxwell's equations and Hertz's experiments to the practical 



CHAPTER 1  RADAR Basics 

21 
 

implementations by pioneers like Marconi and subsequent advancements by 

researchers in France, England, and the United States, radar has evolved into a vital 

tool for modern society. 

Understanding the principles of radar operation, including the Doppler shift 

phenomenon and radar equations, is fundamental to its effective use. Moreover, the 

study of electromagnetic waves, clutter, noise, and target models provides insights into 

the challenges faced in radar signal processing and target detection. 

Overall, radar continues to play a crucial role in enhancing safety, security, and 

efficiency across various sectors, with ongoing research and development aimed at 

further improving its capabilities and expanding its applications. As technology 

advances, radar systems are likely to become even more sophisticated, contributing 

to advancements in fields such as autonomous vehicles, space exploration, and 

defense systems.
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2 CHAPTER 2 

2.1 Introduction 

The primary functions of a radar signal processor are detection, tracking, and 

imaging, with detection being a crucial focus. In radar, detection involves deciding 

whether a radar measurement results from a target echo or merely interference. Once 

a target presence is confirmed, further processing like tracking through precise range, 

angle, or Doppler measurements typically follows. 

 Detection can occur at various stages of radar signal processing, from raw 

echoes to highly processed data such as Doppler spectra or synthetic aperture radar 

images. At its simplest, each range bin (fast-time sample) for each pulse can be tested 

individually to determine if a target is present at the corresponding range and spatial 

angles. Given the high number of range bins and pulse repetition frequencies, radars 

can make millions of detection decisions per second.  

Both interference and echoes from complex targets are best described by 

statistical signal models. Thus, deciding whether a measurement indicates a target or 

interference is a statistical hypothesis testing problem. This decision strategy leads to 

the concept of threshold testing, which is the most common detection logic in radar, 

with performance curves derived for basic signal and interference models. 

 Clutter, such as ground echoes, can serve as interference or a target 

depending on the context. For instance, when detecting a moving vehicle, ground 

clutter is interference, whereas, in imaging a region of the earth, the same terrain 

becomes the target. [6] 

2.2 RADAR DETECTION THEORY 

In our daily life, we are constantly making decisions. Given some hypotheses, a 

criterion is selected, upon which a decision has to be made. For example, in 

engineering, when there is a radar signal detection problem, the returned signal is 

observed and a decision is made as to whether a target is present or absent. In a digital 

communication system, a string of zeros and ones may be transmitted over some 

medium. At the receiver, the received signals representing the zeros and ones are 

corrupted in the medium by some additive noise and by the receiver noise. The 
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receiver does not know which signal represents a zero and which signal represents a 

one, but must make a decision as to whether the received signals represent zeros or 

ones. The process that the receiver undertakes in selecting a decision rule falls under 

the theory of signal detection. 

The situation above may be described by a source emitting two possible outputs 

at various instants of time. The outputs are referred to as hypotheses. The null 

hypothesis H0 represents a zero (target not present) while the alternate hypothesis H1 

represents a one (target present). [9] 

Each hypothesis corresponds to one or more observations that are represented 

by random variables. Based on the observation values of these random variables, the 

receiver decides which hypothesis (H0 or H1) is true. Assume that the receiver is to 

make a decision based on a single observation of the received signal. The range of 

values that the random variable Y takes constitutes the observation space Z. The 

observation space is partitioned into two regions Z0 and Z1, such that if Y lies in Z0, the 

receiver decides in favor of H0; while if Y lies in Z1, the receiver decides in favor of H1. 

The observation space Z is the union of Z0 and Z1; that is, 

 

 𝑍 =  𝑍0 𝑈 𝑍1  (2.1) 

 

2.2.1 THE BAYES CRITERION 

In using Bayes’ criterion, two assumptions are made. First, the probability of 

occurrence of the two source outputs is known [9]. They are the a priori probabilities 

P(H0 ) and P(H1 ) . P(H0 ) is the probability of occurrence of hypothesis H0, while P(H1) 

is the probability of occurrence of hypothesis H1. Denoting the a priori probabilities 

P(H0 ) and P(H1 ) by P0 and P1 respectively, and since either hypothesis H0 or H1 will 

always occur, we have 

 

 𝑃0 +  𝑃1 =  1 (2.2) 

 

The second assumption is that a cost is assigned to each possible decision. The 

cost is due to the fact that some action will be taken based on a decision made. The 

consequences of one decision are different from the consequences of another. For 

example, in a radar detection problem, the consequences of miss are not the same as 
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the consequences of false alarm. If we let Di, i = 0, 1, where D0 denotes “decide H0” 

and D1 denotes “decide H1,” we can define 𝐶𝑖𝑗 , i, j = 0, 1, as the cost associated with 

the decision Di, given that the true hypothesis is Hj. That is, 

 

 𝑃 (incurring cost 𝐶𝑖𝑗) = 𝑃 (decide 𝐷𝑖, 𝐻𝑗 true) ), 𝑖, 𝑗 = 0,1 (2.3) 

 

In particular, the costs for this binary hypothesis testing problem are C00 for 

case (1), C01 for case (2), C10 for case (3), and C11 for case (4). The goal in Bayes’ 

criterion is to determine the decision rule so that the average cost E[C ] , also known 

as risk ℜ, is minimized. The operation E[C ] denotes expected value. It is also assumed 

that the cost of making a wrong decision is greater than the cost of making a correct 

decision. That is, 

 𝐶01 >  𝐶11   𝑎𝑛𝑑 𝐶10 >  𝐶00 (2.4) 

 

Given P (Di, Hj) , the joint probability that we decide Di, and that the hypothesis 

Hj is true, the average cost is 

 ℜ = 𝐸[𝐶] = 𝐶00𝑃(𝐷0, 𝐻0) + 𝐶01𝑃(𝐷0, 𝐻1) + 𝐶10𝑃(𝐷1, 𝐻0) + 𝐶11𝑃(𝐷1, 𝐻1) (2.5) 

 

From Bayes’ rule, we have 

 𝑃 (𝐷𝑖, 𝐻 𝑗)  =  𝑃 (𝐷𝑖 | 𝐻 𝑗) 𝑃 (𝐻 𝑗) (2.6) 

 

The conditional density functions P (Di | Hj), i, j = 0, 1, as a function of the regions Z0 

and Z1 are: 

 
𝑃(𝐷0, 𝐻0) ≡ 𝑃( Decide 𝐻0 ∣ 𝐻0 true ) = ∫  

𝑧0

𝑓𝑦∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 
(2.7a) 

 

 
𝑃(𝐷0, 𝐻1) ≡ 𝑃( Decide 𝐻0 ∣ 𝐻1 true ) = ∫  

𝑧0

𝑓𝑦∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦 
(2.7b) 
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𝑃(𝐷1, 𝐻0) ≡ 𝑃( Decide 𝐻1 ∣ 𝐻0 true ) = ∫  

𝑧1

𝑓𝑦∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 
(2.7c) 

 

And 

 
𝑃(𝐷1, 𝐻1) ≡ 𝑃( Decide 𝐻1 ∣ 𝐻1 true ) = ∫  

𝑧1

𝑓𝑦∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦 
(2.7d) 

 

The probabilities P (D0 | H1), P (D1 | H0), and P (D1, H1) represent the probability of 

miss, PM, the probability of false alarm, PF, and the probability of detection, PD, 

respectively. We also observe that 

 

 𝑃𝑀 =  1 −  𝑃𝐷 (2.8) 

 

And 

 𝑃 (𝐷0 | 𝐻0)  =  1 −  𝑃𝐹 (2.9) 

 

Consequently, the probability of a correct decision is given by 

 𝑃( correct decision ) = 𝑃(𝑐) = 𝑃(𝐷0, 𝐻0) + 𝑃(𝐷1, 𝐻1)

= 𝑃(𝐷0 ∣ 𝐻0)𝑃(𝐻0) + 𝑃(𝐷1 ∣ 𝐻1)𝑃(𝐻1)

= (1 − 𝑃𝐹)𝑃0 + 𝑃𝐷𝑃1

 

 

(2.10) 

 

and the probability of error is given by 

 𝑃( error ) = 𝑃(𝜀) = 𝑃(𝐷0, 𝐻1) + 𝑃(𝐷1, 𝐻0)

= 𝑃(𝐷0 ∣ 𝐻1)𝑃(𝐻1) + 𝑃(𝐷1 ∣ 𝐻0)𝑃(𝐻0)
= 𝑃𝑀𝑃1 + 𝑃𝐹𝑃0

 

 

(2.11) 

 

The average cost now becomes 

 ℜ = 𝐸[𝐶] = 𝐶00(1 − 𝑃𝐹)𝑃0 + 𝐶01(1 − 𝑃𝐷)𝑃1 + 𝐶10𝑃𝐹𝑃0 + 𝐶11𝑃𝐷𝑃1 (2.12) 

 

In terms of the decision regions defined in (2.8a) to (2.9b), the average cost is 
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ℜ = 𝑃0𝐶00∫  

𝑍0

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 + 𝑃1𝐶01∫  
𝑍0

𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦

+𝑃0𝐶10∫  
𝑍1

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 + 𝑃1𝐶11∫  
𝑍1

𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦
 

 

 

(2.13) 

 

Using (5.1) and the fact that 

 
∫ 
𝑍

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 = ∫ 
𝑍

𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦 = 1 
(2.14) 

it follows that 

 
∫  
𝑍1

𝑓𝑌∣𝐻𝑗(𝑦 ∣ 𝐻𝑗)𝑑𝑦 = 1 − ∫  
𝑍0

𝑓𝑌∣𝐻𝑗(𝑦 ∣ 𝐻𝑗)𝑑𝑦, 𝑗 = 0,1 
(2.15) 

 

Where 𝑓𝑌∣𝐻𝑗(𝑦 ∣ 𝐻𝑗), j 0, 1, = is the probability density function of Y corresponding to 

each hypothesis. Substituting for (2.15) in (2.13), we obtain 

 

 ℜ = 𝑃0𝐶10 + 𝑃1𝐶11

+∫  
𝑍0

{[𝑃1(𝐶01 − 𝐶11)𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)] − [𝑃0(𝐶10 − 𝐶00)𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)]}𝑑𝑦
 

 

 

(2.16) 

 

 

Figure 2-1 Density function of cost. 

We observe that the quantity P0C10 + P1C11 is constant, independent of how we assign 

points in the observation space, and that the only variable quantity is the region of 

integration Z0. From (2.7a, b), the terms inside the brackets of (2.16) [𝑃1(𝐶01 −

𝐶11)𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1) and 𝑃0(𝐶10 − 𝐶00)𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)], are both positive. Consequently, the 
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risk is minimized by selecting the decision region Z0 to include only those points of Y 

for which the second term is larger, and hence the integrand is negative. Specifically, 

we assign to the region Z0 those points for which 

 

 𝑃1(𝐶01 − 𝐶11)𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1) < 𝑃0
⬚(𝐶10 − 𝐶00)𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0) (2.17) 

 

 

All values for which the second term is greater will be excluded from Z0 and assigned 

to Z1. The values for which the two terms are equal do not affect the risk, and can be 

assigned to either Z0 or Z1. Consequently, we say if 

 

 𝑃1(𝐶01 − 𝐶11)𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1) > 𝑃0
⬚(𝐶10 − 𝐶00)𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0) (2.18) 

 

 

then we decide H1. Otherwise, we decide H0. Hence, the decision rule resulting from 

the Bayes’ criterion is 

 

 𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)
>
𝐻1
<
>
𝑃0(𝐶10 − 𝐶00)

𝑃1(𝐶01 − 𝐶11)

𝐻0

 

 

 

(2.19) 

 

The ratio of 𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1) over 𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0) is called the likelihood ratio and is denoted 

Λ(y). That is, 

 

 
Λ(𝑦) =

𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)
 

 

(2.20) 

 

It should be noted that if we have K observations, for example, K samples of a received 

waveform, Y1, Y2, …, Yk, based on which we make the decision, the likelihood ratio 

can be expressed as 
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Λ(𝑦) =

𝑓𝑌∣𝐻1(𝒚 ∣ 𝐻1)

𝑓𝒀∣𝐻0(𝒚 ∣ 𝐻0)
 

 

(2.21) 

 

where Y, the received vector, is 

 𝑌T = [𝑌1    𝑌2    …     𝑌𝐾] (2.22) 

 

The likelihood statistic Λ (Y) is a random variable since it is a function of the random 

variable Y. The threshold is 

 
𝜂 =

𝑃0(𝐶10 − 𝐶00)

𝑃1(𝐶01 − 𝐶11)
 

 

(2.23) 

 

Therefore, Bayes’ criterion, which minimizes the average cost, results in the 

likelihood ratio test 

 

 

𝚲(𝐲)

𝐻1
>
<
𝐻0

𝜂 

 

 

(2.24) 

 

An important observation is that the likelihood ratio test is performed by simply 

processing the receiving vector to yield the likelihood ratio and comparing it with the 

threshold. Thus, in practical situations where the a priori probabilities and the cost may 

change, only the threshold changes, but the computation of likelihood ratio is not 

affected. Because the natural logarithm is a monotonically increasing function as 

shown in Figure 5.4, and since the likelihood ratio Λ(y) and the threshold η are 

nonnegative, an equivalent decision rule to (2.24) is 

 

 

𝑙𝑛𝜦(𝐲)

𝐻1
>
<
𝐻0

ln 𝜂 

 

 

(2.25) 

 

We note that if we select the cost of an error to be one and the cost of a correct 

decision to be zero; that is, 
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 𝐶01 = 𝐶10 𝑎𝑛𝑑 𝐶00 = 𝐶11 (2.26) 

 

T hen the risk function of (2.12) reduces to 

 

 ℜ = 𝑃𝑀𝑃1 + 𝑃𝐹𝑃0 = 𝑃(𝜀) (2.27) 

 

Thus, in this case, minimizing the average cost is equivalent to minimizing the 

probability of error. Receivers for such cost assignment are called minimum probability 

of error receivers. The threshold reduces to 

 

 
𝜂 =

𝑃0
𝑃1

 
 

(2.28) 

 

If the a priori probabilities are equal, η is equal to one, and the log likelihood ratio test 

uses a zero threshold. 

 

2.2.2 NEYMAN-PEARSON CRITERION 

 

In the previous sections, we have seen that for the Bayes’ criterion we require 

knowledge of the a priori probabilities and cost assignments for each possible decision. 

Then we have studied the minimax criterion, which is useful in situations where 

knowledge of the a priori probabilities is not possible. In many other physical situations, 

such as radar detection, it is very difficult to assign realistic costs and a priori 

probabilities. To overcome this difficulty, we use the conditional probabilities of false 

alarm, PF, and detection PD. The Neyman-Pearson test requires that PF be fixed to 

some value α while PD is maximized. Since PM = 1− PD, maximizing PD is equivalent 

to minimizing PM. [9] 

In order to minimize PM (maximize PD) subject to the constraint that PF = α, we 

use the calculus of extrema, and form the objective function J to be 

 

 𝐽 = 𝑃𝑀 + 𝜆(𝑃𝐹 − 𝛼) (2.29) 
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where λ (λ ≥ 0) is the Lagrange multiplier. We note that given the observation 

space Z, there are many decision regions Z1 for which PF = α. The question is to 

determine those decision regions for which PM is minimum. Consequently, we rewrite 

the objective function J in terms of the decision region to obtain 

 

 
𝐽 = ∫  

𝑍0

𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦 + 𝜆 [∫  
𝑍1

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 − 𝛼] 
 

(2.30) 

 

Using (2.10), (2.30) can be rewritten as 

 

 
𝐽 = ∫  

𝑍0

𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)𝑑𝑦 + 𝜆 [∫  
𝑍0

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 − 𝛼]

= 𝜆(1 − 𝛼) +∫  
𝑍0

[𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1) − 𝜆𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)]𝑑𝑦

 

 

 

 

(2.31) 

 

Hence, J is minimized when values for which 𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1) > 𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0) are 

assigned to the decision region Z1. The decision rule is, therefore, 

 

 

Λ(𝑦) =
𝑓𝑌∣𝐻1(𝑦 ∣ 𝐻1)

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)

𝐻1
>
<
𝐻0

𝜆 

 

 

(2.32) 

 

The threshold η derived from the Bayes’ criterion is equivalent to λ, the Lagrange 

multiplier in the Neyman-Pearson (N-P) test for which the probability of false alarm is 

fixed to the value α. If we define the conditional density of Λ given that H0 is true as 

𝑓Λ∣𝐻0(𝜆 ∣ 𝐻0), then PF = α may be rewritten as 

 
𝑃𝐹 = ∫  

𝑍1

𝑓𝑌∣𝐻0(𝑦 ∣ 𝐻0)𝑑𝑦 = ∫  
∞

𝜆

𝑓Λ(𝑦)∣𝐻0[𝜆(𝑦) ∣ 𝐻0]𝑑𝜆 
 

(2.33) 

 

The test is called most powerful of level α if its probability of rejecting H0 is α. 

 

2.3 Detection Techniques 
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Radar detection techniques are typically divided into classical and adaptive 

categories. In classical detection, the detection threshold remains constant, whereas 

in adaptive detection, the threshold adjusts continuously based on the noise level. This 

discussion focuses on adaptive detection, but let's first explore the traditional detection 

method, also known as detection with a fixed threshold. We'll revisit its operational 

principle and highlight its main drawback before delving into adaptive detection, which 

forms the basis of our discussion. 

 

 

Figure 2-2 Detection Principle 

 

2.3.1 Optimal Detection 

The optimal detector operates as follows; Initially, the received signal undergoes 

processing through a single-pulse matched filter to enhance the signal-to-noise ratio. 

This filter sequentially processes each pulse individually. Subsequently, the filtered 

signal passes through a quadratic detector, which serves a dual purpose: it extracts 

the signal's envelope (demodulates it) and computes the square of this envelope's 

amplitude. The resulting envelope is then sampled at the pulse recurrence period, Tr. 

As the radar completes scanning the current cell, it accumulates a total of N 

samples, all originating from the same target, with each pulse generating a single 

sample. These N samples are aggregated, producing an estimation of the target's echo 

strength. This aggregate sum is then compared against a predetermined threshold. If 

the sum exceeds this threshold, the presence of a target within the cell (H1) is declared; 

otherwise, the cell is deemed devoid of targets (H0).Source spécifiée non valide. 
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Figure 2-3 Conventional Detector 

The detection problem in radar can be mathematically expressed with the following 

hypotheses: 

 𝐻0 ∶                    𝑋 = 𝑏     ⟶       𝑋𝑖 = 𝑏𝑖                                  𝑤𝑖𝑡ℎ 𝑖 = 1,… . , 𝑁 (2.34a) 

 𝐻1 ∶                    𝑋 = 𝑏 + 𝑠       ⟶        𝑋𝑖 = 𝑏𝑖 + 𝑠𝑖           𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑁 (2.34b) 

 

Where Xi is the secondary data, which represent the observation vectors 

assumed to be independent, in the probabilistic sense of the terms of X and which are 

assumed to contain only the additive clutter noise, allowing the estimation of the 

unknown clutter parameters. From the assumption H0, the received signal X is 

considered to contain only the undesirable and bad echoes for a good detection. These 

echoes come from the different reflectors in the environment. Their probability density 

function is denoted by, 

 

 𝑃𝑋 (𝑋|𝐻0)  =  𝑃𝑐 (𝑋|𝐻0 (2.35) 

 

From hypothesis H1, the received signal X is considered to contain the signal s 

with the target echoes but embedded in the same false echoes from hypothesis H0. Its 

probability density is denoted by, 

 

𝑷𝑿 (𝑿|𝑯𝟎) 
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The task of optimal detection is to have the more likely of the two assumptions, 

minimising the following two errors, 

• Deciding H0 when H1 is true: this is non-detection, which has the following 

probability 

 

 𝑃𝑛𝑑 = 𝑃(𝐻0|𝐻1)  = 1 −  𝑃(𝐻1|𝐻1)  = 1 − 𝑃𝐷 (2.36) 

 

• Decide H1 then that H0 is true: this is the false alarm, which has the following 

probability, 

 

  𝑃𝑓𝑎 = 𝑃(𝐻1|𝐻0) (2.37) 

 

For these predictions, it is very difficult to fully approximate these errors, unless the 

statistics of the Radar environment and the nature of the target to be detected are well 

known. 

 

2.3.2 FIXED THRESHOLD DETECTION 

 

In radar signal processing, making a decision about the presence or absence of 

a target is a critical task. The radar's output is treated as a random process, 

characterized by a probability density function (PDF). This introduces a statistical 

decision problem due to the presence of spurious noise, which poses a risk of error in 

recognizing the useful signal. To address this, radar detection relies on statistical 

methods to distinguish between the presence and absence of a target. [2] 

H0: The target is absent (noise alone). 

H1: The target is present with noise. 

The detection problem is summarised in the following table 
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Table 2-1 Detection hypothesis 

 

Decision 

 

Hypothesis H0 (absence) 

 

Hypothesis H1 (presence) 

 

H1 

 

False Alarm (Pfa) 

 

Correct decision (Pd) 

 

H0 

 

Correct decision prob(1-Pfa) 

 

Incorrect decision prob(1-Pd) 

 

The detection threshold is calculated by setting the probability of false alarm. In 

other words, once the false alarm probability is set, the detection threshold remains 

constant. Thus, if the noise power increases for any reason, the threshold does not 

change and the detector is likely to give a series of false alarms. The false alarm rate 

(number of false alarms per unit of time) can then reach intolerable levels. Adaptive 

detection was developed to address this problem. 

 

Figure 2-4 Principle of fixed threshold detection 

 

2.4 PRINCIPLE OF ADAPTIVE DETECTION 

Automatic detection consists of deciding whether or not a target is present by 

comparing the echo received with a detection threshold. In statistical decision theory, 

this involves choosing between two statistical hypotheses: H0 for the null hypothesis 

(absence of the useful signal) or H1 for the alternative hypothesis (presence of a 
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target). In the most general case, each echo received results from the superposition of 

thermal noise, clutter reflections and a possible target echo. Thus, the choice of a fixed 

(pre-calculated) detection threshold leads to an intolerable increase in the number of 

false alarms when the noise level in the vicinity of the cell under test (C.T.) undergoes 

a significant change in the clutter. 

To get around this problem, we use adaptive thresholding methods in which the 

detection threshold is directly linked to the noise level in the range cells surrounding 

the cell under test. As illustrated in figure 2-5, these adjacent cells, whose number is 

fairly small for reasons of computing time, form what is known as the ‘Reference 

Window’. They provide a local estimate of the noise level and clutter. Figure 2-6 shows 

the block diagram of a CFAR (Constant False Alarm Rate) detector, which compares 

the cell under test with an adaptive threshold T.Z. for each range cell. The multiplication 

factor T is calculated so as to maintain a constant false alarm probability equal to a set 

value (Design pfa). 

The mathematical form of the estimator Z= X2, ... XN) represents the main 

difference between the various CFAR detectors proposed in the radar literature. The 

class of ‘Mean level’ detectors is by far the most widely discussed and the most suitable 

for homogeneous environments. The CA-CFAR (Cell Averaging) detector, whose 

adaptive threshold is obtained by averaging reference cells, represents the precursor 

of this category of detectors. [12] 

 

Figure 2-5 Reference cell scanning an inhomogeneous environment. 
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Figure 2-6 Block diagram of a constant false alarm rate detector. 

2.5 Conclusion 

In this chapter, we have discussed fundamental decision criteria and detection 

techniques, emphasizing the limitations of fixed threshold detection in non-

homogeneous environments. To address these limitations, adaptive threshold 

detection, ensuring a Constant False Alarm Rate (CFAR), is employed. This lays the 

foundation for understanding more sophisticated detection methods. 

Radar detection techniques have evolved significantly, catering to various 

applications. Traditional methods like pulse radar and continuous wave radar have 

been complemented by advanced techniques such as Synthetic Aperture Radar 

(SAR), phased array radar, and cognitive radar. Each of these techniques offers 

distinct advantages and capabilities. The integration of radar systems with other sensor 
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modalities and the application of artificial intelligence has further enhanced radar 

performance and versatility, making them more accurate, efficient, and intelligent.
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3 CHAPTER  3      

3.1 Introduction 

Particle Swarm Optimization (PSO) and radar detection systems share a 

fundamental similarity—they both harness the power of collective intelligence to solve 

complex optimization and decision-making problems, respectively. PSO, inspired by 

the coordinated movement of bird flocks or fish schools, uses a population of particles 

to explore and converge towards optimal solutions in a search space. Similarly, radar 

detection systems employ distributed sensors and adaptive algorithms to 

collaboratively detect targets amidst noise and uncertainty. 

PSO operates with each particle adjusting its position based on its own best-

known solution and the global best solution found by the entire swarm. This iterative 

process allows PSO to efficiently navigate complex landscapes and find optimal 

solutions. Likewise, in radar detection, multiple sensors make local decisions based 

on adaptive Constant False Alarm Rate (CFAR) techniques like Censored Limited-

Memory Median Detector (CLMD k) or Ordered Statistic (OS) algorithms. These local 

decisions are then integrated using data fusion techniques to derive a global decision, 

optimizing detection accuracy while controlling false alarms. 

Recent advancements in radar technology, influenced by principles akin to PSO, 

emphasize decentralized detection systems that leverage distributed sensor networks. 

Researchers like Barkat and Varshney have pioneered decentralized CFAR detection 

theories, optimizing local detector thresholds and fusion rules to maximize global 

detection probabilities while maintaining low false alarm rates. Elias-Fusté et al. further 

extended this research by integrating multiple CFAR algorithms at the local level, 

enhancing the robustness of detection systems across diverse operational 

environments. 

Both PSO and radar detection systems exemplify the synergy between 

distributed intelligence and adaptive optimization techniques. By harnessing collective 

decision-making processes, they enhance reliability, coverage, and efficiency in their 

respective domains. As research continues to evolve, the integration of PSO-inspired 

principles into radar technology promises to further advance the capabilities of 

detection systems, ensuring their effectiveness in increasingly complex scenarios. 
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3.2 CFAR DETECTOR STUDY 

3.2.1 CFAR definition 

CFAR s the abbreviation of “constant false alarm rate “. CFAR is one of the 

substantial parts of radar signal processing, derivated from the proposition of Finn and 

Johnson [13] In 1968, which aim to control the detection threshold according to the 

noise power, based on cells surrounding the cell under investigation. the aim of this 

control is to get a constant false alarm detector which adapt contininiously the threshold 

with the noise potential which is estimated from the cells that surround the cell under 

test. 

3.2.2 Principles of operation 

The operating principle of CFAR is the detection based on setting an adaptive 

threshold by the process of a ranged group of samples within the reference window 

surrounding the cell under test .The threshold is determined with the estimated value 

of the total noise potential and clutter which are unknown , plus they are varied in time 

which means variables.The operation of estimating noise plus clutter value is 

processed in reference window extracted from cells surrounding the CUT , in order to 

realise this operation the probability of false alarm Pfa has to be maintained [14]. 

The framed part in (Figure 3.1) is the CFAR processor which receive samples 

from the integrator to exploit them in estimating the value of Z. 

 

Figure 3-1 adaptive detector diagram 

For estimating the clutter’s level the CFAR detector utilise the samples within 

the reference cells( Figure 3.2) where N is the number of reference cells.The two cells 
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surrounding the cell under test are called the guard cells which are considerated as 

non reference cells in order to eliminate the overflow of energy from the CUT to the 

near cells . 

 

Figure 3-2 reference window 

 

Figure 3-3 CFAR processor 

 

Figure 3-4 Non-Coherent Detector 
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After the estimation of Z with a specific algorithm, Z has to be multiplied with a scale 

factor T in order to get an adaptive threshold which is going to be compared with Y (the 

amplitude within the cell under test). After the comparison, decisions are taken based on these 

hypothesis: 

• If         Y>TZ      H1    presence of a targe 

 • If        Y<TZ      H0     Absence of a target 

All CFAR detectors differ in the method used for Z estimation and are designed 

to work under the conditions of a given clutter model. Clutter methods differ in the 

distribution of amplitudes in the reference cells. The clutter is said to be homogeneous 

if the amplitudes of the samples in the distance cells are statistically independent and 

identically distributed [3]. Otherwise, other distributions, including the Ryleigh 

distribution, are used as clutter models. one of the most difficult problems in radar 

systems is the detection of targets under varying environments. 

3.2.3 Environment (background) 

the environment is the medium which surrounds a system, in our case the environment 

is the medium crossed by the electromagnetic waves intervening of a radar and are reflected, 

about the reflected signals the environments of the radar differ, the behavior of the signal 

emitted in a space differs according to the crossed medium for example: if a radar emits signals 

in a space the signals reflected from the sea or of a region that it rains or a forest it is not the 

same . 

3.2.3.1  Homogenous background 

this is the ideal environment for radar detection, it is the case of absence of clutter and 

interfering targets, the homogeneity is that the reflected signal samples are described by 

identically distributed independent exponential random variables 

3.2.3.2  Non homogenous background 

When the reference window scans the environment in a given direction, different 

nonhomogeneous situations can affect the configuration of the reference cells. These 

situations are caused by the presence of interfering targets (secondary targets) and/or 

clutter edges at the reference channel (figure 3.2). 
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The objective of the CFAR is to be able to stipulate the detection threshold, in 

the face of the variations undergone in the environment around , indeed several 

situations can decrease the CFAR performances , for that several CFAR algorithms 

are proposed to preserve and improve the performances of the CFAR detector , the 

CFAR detectors differ according to the difference of the algorithms, knowing that the 

difference of these algorithms provides the mathematical method of the form of the 

estimator Z=f(X1,X2,….,XN) conceived to estimate the value of the noise power and 

the clutter [7]. 

3.3 TYPES OF CFAR PROCESSORS 

 

3.3.1 CA- CFAR processor 

 

3.3.1.1 Definition 

CA-CFAR is the most optimal processor in the homogeneous environment: 

while it keeps the false alarm rate constant it maximises the probability of Pd detection, 

so it is the most desirable processor if there are no clutter edges and no interfering 

targets in the reference window, however this is not a practical assumption: the 

performance of this processor degrades significantly in an non-homogeneous 

environment [15]. 

The CA-CFAR detector assumes that the signal at the output of the Law-square 

detector is described by independent exponential identically distributed random 

variables (homogenous environment). 

 This detector arithmetically averages the reference cells to estimate the clutter 

level. if N is the number of reference cells, this detector calculates the Sum U of N=2 

samples preceding and the Sum V of the N=2 samples following the cell under test, 

taking into account the guard cells : 

 

𝑼 =∑  

N
2

i=1

𝐗i 

 

 

(3.1) 
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𝑉 = ∑  

𝑁

𝑖=𝑁/2+1

𝑋𝑖 
 

 

(3.2) 

 

The two windows U and V are then summed in order to obtain an estimate Z of the 

interfering target. 

 𝑍 = 𝑈 + 𝑉 (3.3) 

 

The threshold is calculated by multiplying Z by the scale factor T and the detector 

makes a decision by comparing TZ to the sample amplitude Y in the reference cell, 

 

Y

𝐻1
>
<
𝐻0

 TZ 

 

 

(3.4) 

 

The notation (3.4) means that if Y excides the threshold TZ, then the decision in favour 

of H1, otherwise it is in favour of H0. 

 

Figure 3-5 CA-CFAR processor 

3.3.1.2  Probabilistic study 

The conditional probability density of the output of the cell under test is written, 
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𝑓𝑦/𝐻𝑖(𝑦
′/𝐻𝑖) =

{
 

 
1

2𝜎2(1 + 𝑠)
exp [−

𝑦

2𝜎2(1 + 𝑠)
] , for 𝑖 = 1

1

2𝜎2
exp [−

𝑦

2𝜎2
] , for 𝑖 = 0

 

 

 

 

(3.5) 

 

Where σ2 represents the power of the noise and S the signal to noise ratio. the 

hypothesis H0 corresponds to the case where the noise is alone while the hypothesis 

H1 corresponds to the case where the noise is accompanied by a target signal.  

The probability of detection Pd is given by: 

                                                              

   𝑃𝑑 =  [𝑃(𝑌 >  𝑇𝑍 ⁄ 𝐻1 )] 

 

 

(3.6) 

 

 

Where Z is the estimated noise level.from equations (3.5) and (3.6), we have , 

 
𝑃𝑑 = [∫  

∞

TZ

1

2𝜎2(1 + 𝑠)
exp [−

𝑦

2𝜎2(1 + 𝑠)
] 𝑑𝑦] 

 

(3.7) 

 
𝑃𝑑 = [exp (−

𝑇𝑍

2𝜎2(1 + 𝑠)
)] 

(3.8) 

 

Where Mz is the moment generating function (MGF) of the random variable Z which is 

written for the CA-CFAR detector: 

 
𝒛 =∑𝒙𝒊

𝑁

𝑖=1

 

 

 

(3.9) 

 

Where Xi is the random variable that describes the amplitude of the sample in the nth 

reference cell. 
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On the other hand, the probability density given by (3.5) is a special case of the 

probability density of the Gamma distribution G(α,β ) 

 
𝑓𝑥(𝑥) =

1

(𝛼)𝛽𝛼
𝑥𝛼−1exp (−

𝑥

𝛽
) 

 

(3.10) 

 

Which has for FGM [9], 

 
𝑀𝑥(𝑡) =

1

(1 − 𝛽𝑡)𝛼
 

 

(3.11) 

 

For α = 1, we get an exponential probability density, 

 
𝑓𝑥(𝑥) =

1

𝛽
exp (−

𝑥

𝛽
) 

 

(3.12) 

 

Of the same form as given by (3.5) with β = 2σ 2 (1+S) for hypothesis H1 and β = 2σ2 

for the hypothesis H0.thus , substituting in equation (3.11) α and β we obtain , The FMG 

of random variable Xi , 

 
𝑀𝑥(𝑡) =

1

(1 − 2𝜎2𝑡)
 

 

(3.13) 

 

Which,combined with relation (3.9) and assuming that Xi are idependent and identically 

distributed , gives the FMG of Z , 

 𝑀𝑧 (𝑡)  =  𝑀𝑥 𝑁(𝑡)  

(3.14) 

 
=

1

(1 − 2𝜎2𝑡)𝑛𝑁
 

 

(3.15) 

 

Finally, from equations (3.8) and (3.15) ,we find that the probability of detection is : 

 
𝑃𝑑 = (

1 + 𝑠

1 + 𝑠 + 𝑇
)
𝑁

 
 

(3.16) 
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The false alarm probability Pfa is obtained simply by setting S=0 in (3.16) because Pfa 

corresponds to the H0 hypothesis where the signal-to-noise ratio S is zero (no signal). 

 𝑃𝑓𝑎 =  (1 +  𝑇)  − 𝑁 (3.17) 

 

The formula (3.17) is used to calculate the scaling factor for a fixed false alarm 

probability. 

 

 

 

Table 3-1 the scaling factor for different false alarm probabilities Pfa and different 

values of N 

                        Pfa 

  

N                     

10-4 10-5 10-6 

8 2.16   3.21   4.62 

16 0.77   1.05  1.37  

24 0.46   0.61   0.77 

32 0.33  0.43  0.53 

 

     The use of the CA-CFAR detector in situations similar to those shown in (figure 

1.10) leads to a significant loss of detection or an increase in the false alarm rate. In 

the case where the cell under test is immersed in the clutter, (figure1.8), the cells 

drowned in thermal noise contribute to an underestimation of the detection threshold, 

resulting in a higher probability of false alarm. 

       In (figure1.9), the cell under test being in thermal noise, the cells belonging to the 

clutter tend to increase the detection threshold and consequently to degrade the 

detection probability. This particular situation is known as "masking effect". 
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3.3.2 OS-CFAR Processor 

3.3.2.1  Definition 

               To overcome the problems encountered by the SO and GO-CFAR detectors 

(derived from CA-CFAR) in the case of a non-homogenous environment ,Rohling [16] 

introduced a new detector based on order statistics ,i.e on the statistical properties of 

an ordered set of samples .the samples are ordered according to their increasing 

amplitude to obtain the following sequence of ordered samples , 

 𝑋(1)  ≤  𝑋(2)  ≤  ⋯  ≤  𝑋(𝑘)  ≤  ⋯  ≤  𝑋(𝑁 (3.18) 

 

The samples X(k), of order k , is then selected to represent the Z-statistical test , 

 𝑍 =  𝑋(𝑘) (3.19) 

 

 

Figure 3-6 OS-CFAR processor 

          This detector offers some immunity to interfering targets .indeed , the echoes 

from the latter occupy the highest positions in the ordered sequence (3.20) and will 

therefore be eliminated .it is obvious that if m is the number of interfering targets ,which 

appear in the reference window, the parameter k should be chosen such that k ≤ N-m 

if this condition is not verified , the chosen sample will correspond to an echo of an 

interfering target and thus the detection of the primary target is compromised .in [9,10], 
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the analysis of the effect of the parameter k on the detection performance in a 

Gaussian clutter or interference has been studied and the recommended value for k 

is: 

 
𝑘 =

3𝑁

4
 

 

(3.20) 

 

       This value offers a compromise between immunity to interfering targets and low 

detection losses in the case of a homogeneous clutter. 

3.3.2.2 Probabilistic study 

The probability density function 𝒇𝒙(𝒌)(𝒙) of the kth sample of the ordered 

sequence (3.18) is given by: 

 
𝑓𝑥(𝑘)(𝑥) = 𝑘(

𝑁

𝑘
)[𝐹𝑋(𝑥)]

𝑘−1[1 − 𝐹𝑋(𝑥)]
𝑁−𝑘𝑓𝑋(𝑥) 

 

(3.21) 

 

Where N is the number ordered samples and 𝒇𝒙(𝒌)(𝒙) and 𝑭𝑿(𝒙)respectively 

the probability density and distribution function of an unordered sample. 

 In the case of a Rayleigh distribution, equation (3.21) becomes: 

 
𝑓𝑋(𝑘)(𝑥) =

𝑘

𝜇
(
𝑁

𝑘
)[𝑒−𝑥/𝜇]

𝑁−𝐾+1
[1 − 𝑒−𝑥/𝜇]

𝑘−1
 

(3.22) 

 

The expressions for the false alarm and detection probabilities are given by: 

 
𝑃𝑓𝑎 = 𝑘(

𝑁

𝑘
)
Γ(𝑁 − 𝑘 + 𝑇 + 1)Γ(𝑘)

Γ(𝑁 + 𝑇 + 1)
 

 

 

(3.23) 

 

 

𝑃𝑑 = 𝑘(
𝑁

𝑘
)
Γ (𝑁 − 𝑘 +

𝑇
(1 + 𝑠)

+ 1) Γ(𝑘)

Γ (𝑁 +
𝑇

(1 + 𝑠)
+ 1)

 

 

 

(3.24) 
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Where T denotes the scale factor of the OS-CFAR, S the signal-to-noise radio,Ƭ the 

gamma function defined by , 

 
Γ(𝑥) = ∫  

∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡, 𝑥 > 0 
(3.25) 

 

And that comes down to: 

 𝛤(𝑥 +  1)  =  𝑥 ! (3.26) 

 

In the case where x is positive integer and: 

 
(
𝑁

𝑘
) =

𝑁!

𝑘! (𝑁 − 𝑘)!
 

 

(3.27) 

 

Table 3-2 the scaling factor for different false alarms probabilities and the number of 

the reference cells. 

Pfa 

 

N                                                       

10-4 10-5 10-6 

8  18.78  30.08  46.70  

16 11.08    15.54    20.95  

24 9.34   12.59  16.30  

32 8.585   11.34  14.40 

 

3.3.3 CMLDk CFAR Processor  

3.3.3.1 Definition  

The CMLDk is an optimal processor in the non-homogeneous background, it 

works like a CA-CFAR processor in the homogeneous background, the output of the 
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detected quadratic receiver is sampled in the range by the range resolution cells, as 

shown in (Figure 2.18) In the window of the reference test cell, we can have noise 

and/or echoes from a fixed number of targets and interfering targets. The first target 

return echo is observed in the cell under test. The outputs of the reference cells 

j=1,2,...,N, are then fed into a calibration device which in turn transmits the samples in 

ascending order of importance to give the N ordered samples. The number of 

interfering cells is assumed to be known a priori, and not to exceed the k-point. Thus, 

to form the background estimator, the k cells with the highest power must be censored 

and the remaining cells summed. [17] 

 

Figure 3-7 CMLDk- CFAR processor 

the CMLDk CFAR sorts all reference cells currently in descending order and 

then removes k reference cell samples from the maximum value of the sample, and 

takes the linear combination of the remaining reference cells as the Z power detection 

cell clutter estimate.  

3.3.3.2 Probabilistic study  

the moment generating function is given as: 
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{
  
 

  
 Φ𝑧(𝜔) = ∫  

∞

0

𝑓𝑧(𝑧)exp (−𝑧𝜔)𝑑𝑧 

Φ𝑋0/𝐻1(𝜔) = ∫  
∞

0

𝑃𝑋0/𝐻1(𝑥)exp (−𝑥𝜔)𝑑𝑥

Φ𝑋0/𝐻0(𝜔) = ∫  
∞

0

𝑃𝑋0/𝐻0(𝑥)exp (−𝑥𝜔)𝑑𝑥

 

(a) 

 

(b) 

 

(c) 

 

 

 

 

(3.28) 

 

Using equation (3.28a) and (3.28b), we obtain,  

 𝑃𝑑 = −∑  

𝑖

Res [𝜔−1Φ𝑋0/𝐻1(𝜔)Φ𝑧(−𝑇𝜔), 𝜔𝑖] 
 

(3.29) 

 

With: 

𝑃𝑑 probability of detection  

𝜔𝑖 are the real negative poles of Φ𝑋0/𝐻1  

T scaling factor  

In monopulse processing Φ𝑋0/𝐻1, is given by: 

 
Φ𝑋0/𝐻1(𝜔) =

(1 + 𝜔)𝜂−1

(1 + 𝑏𝜔)𝜂
 

(3.30) 

 

With : b=1+SNR/դ and դ > 0 (degrees of freedom) դ=1 corresponds to the models 

SW1 and SW2 ,դ=2 corresponds to the targets SW3 and SW4 .In order to determine 

Pd(k) in a homogeneous medium as a function of Tk , one has to find the expression 

of Φ𝑧 under the assumption that the reference cells X1,X2.....,XN are IID variables, 

exponentially from a reference sample of size N , are non-independent and non-

identically distributed processes (even though the N reference cells are IID) .  

If the Xi follow an exponential distribution (μ=1), then the probability density (pdf) of the 

statistic X(k) of order k is given by: 

 
𝑓𝑘(𝑥) = 𝑘  [1 − 𝑒𝑥𝑝(−𝑥)]𝑘𝑒𝑥𝑝 − (𝑁 − 𝑘 + 1)𝑥 

 

(3.31) 
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The relation (4.1) shows that Z is expressed as a function of non-independent 

processes, which does not allow to have directly its MGF, to circumvent this problem, 

one uses the normalized deviation variables [9] defined by: 

 

 𝑌𝑗 = (𝑁 − 𝑗 + 1)(𝑋(𝑗) − 𝑋(𝑗 − 1)) (3.32) 

 

with j=1,...,N-k and X(0)=0  

 

In [9], it is shown that the variables Yj are positive, independent and follow the 

samedistributionas the reference sample (exponential pdf). Inverting the 

transformation (4.7) we obtain: 

 

𝑋(𝑗) =∑  

𝑖=1

𝑖=1

𝑌𝑗

𝑁 + 1 − 𝑖
 

 

(3.33) 

 

to express Z in terms of Yj , we substitute (4.8) into (4.1) , 

 
𝑍 = ∑  

𝑁−𝐾

𝑗=1

𝑎𝑗𝑌𝑗 
 

(3.34) 

 

 
𝑎𝑗 =

𝑁 − 𝐾 + 1 − 𝑗

𝑁 + 1 − 𝑗
 

 

(3.35) 

 

According to [9] and using (4.9) , the FGM of Z can be expressed as : 

 Φ𝑧(𝜔) = Φ𝛾1,𝛾2…,𝑁−𝐾
(𝑎1𝜔, 𝑎2𝜔,… , 𝑎𝑁−𝐾𝜔) (3.36) 

 

As long as the Yj are statistically independent, the joint FGM of the variables Y1,...,YN-

k is simply the product of the individual FGMs of each Yj , so , 

 
Φ𝑧(𝜔) =∏  

𝑁−𝑘

𝑗=1

∫  
∞

0

𝑒−𝑌𝑗(𝑎𝑗𝜔+1)𝑑𝑌𝑗 
 

(3.37) 
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By integrating this expression, we obtain : 

 
Φ𝑧(𝜔) =∏  

𝑁−𝑘

𝑗=1

{1 +
𝑁 − 𝑘 + 1 − 𝑗

𝑁 + 1 − 𝑗
𝜔}

−1

 

 

 

(3.38) 

 

for k fixed and knowing that Φ𝑋0𝐻1 ⁄possesses a single pole at point 

𝜔0=−(1+SNR)-1 for targets SW1 and SW2 in monopulse), pd(k) is obtained by 

substituting (4.13) and (4.5) (with ղ=1) in (4.4), thus: 

 
𝑃𝑑 = (

𝑁

𝑁 − 𝑘
)∏  

𝑁−𝑘

𝑗=1

(
𝑇𝑘

1 + 𝑆𝑁𝑅
+

𝑁 − 𝑗 + 1

𝑁 − 𝑘 − 𝑗 + 1
)
−1

 

 

(3.39) 

 

the probability of false alarm is obtained from the previous equation by cancelling the 

SNR. 

3.3.4 DISTRIBUTED CFAR DETECTION WITH DATA FUSION  

 We consider n distributed CA-CFAR detectors with a data fusion center as 

shown in Figure 3-8. [18] 

 

Figure 3-8 Distributed CFAR Detection With Data Fusion. 
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 It is assumed that the number of range cells at the I th detector is Nj, i = 1,2,..., 

n. The target to be detected is a slowly fluctuating target model of Swerling type I. The 

target is embedded in a white Gaussian noise of unknown level. Let the probability of 

false alarm and the probability of detection at the individual detectors be denoted by 

PFi, and PDi, i = 1,2,..., n, respectively. If the average noise power is 𝜎2, then the 

conditional probability density function of the test statistic qi
0 from the test cell of 

detector i, i = 1, 2...., n, is given by: 

𝑃𝑄0𝐿/𝐻𝑗(𝑞0
𝑖 /𝐻𝑗) =

{
 

 
1

2𝜎2(1 + 𝑆𝑗)
𝑒−𝑞0

1/2𝜎2(1,𝑆1), pour l'hyypothése 𝐻1

1

2𝜎2
𝑒−𝑞0

𝑖 /2𝜎2 , pour l'hypothése 𝐻0

 

(a) 

 

(b) 

 

 

(3.40) 

 

where Si, i = 1, 2...., n, is the target signal-to-noise radio (SNR) at each CA-

CFAR detector. The hypothesis Ho represents the case of noise alone, while 

hypothesis H1 represents the noise plus target signal case. To simplify the 

mathematical derivations, we assume S1 = S, = . . . = Sn = S, where S is the target 

SNR. Results for the case of unequal target SNRs can be obtained in a straightforward 

manner.  The probability of detection PDi for detector i, 

i = 1, 2,..., n, is given by: 

 
𝑃𝐷
𝑖 = ∫  

∞

0

Pr(𝑄0
𝑖 > 𝑇𝑖𝑞

𝑖 ∣ 𝑄𝑖, H1)𝑃𝑄
𝑖 (𝑞𝑖)𝑑𝑞𝑖 

 

(3.41) 

 

where is the scaling factor at the CA-CFAR detector i, i = 1, 2,. .. ,n, and 𝑃𝑄
𝑖 (𝑞𝑖) 

denotes the probability density function of the adaptive threshold at the ith CA-CFAR 

detector. Also, 

 
𝑃𝐷
𝑖 = ∫  

∞

0

Pr (𝑄𝑖 >
𝑇𝑖𝑞

𝑖

𝑄𝑖
, 𝐻1)𝑃𝑄

𝑖 (𝑞𝑖) ⋅ 𝑑𝑞𝑖 = exp [−
𝑇𝑖𝑞

𝑖

(1 + 𝑆)
] 

 

(3.42) 

 

Since the noise samples, for each CA-CFAR detector, are identically distributed, 

the probability of detection of the individual detectors can be written as: 
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𝑃𝐷𝑖 =

(1 + 𝑆)𝑁𝑖

(1 + 𝑆 + 𝑇𝑖)𝑁
, 𝑖 = 1,2, … , 𝑛. 

 

(3.43) 

 

Each CA-CFAR detector transmits its decision to the data fusion center. These 

local decisions of individual detectors are denoted by Di, i = 1,2, . . ., n, where 

𝐷𝑖 = {
0,      if detector 𝑖 decides H0
1,      if detector 𝑖 decides H1

 

In order to be able to express the overall probability of detection PD the overall 

probability of false alarm PF and the overall probability of a miss PM at the data fusion center, 

in terms of the probabilities of false alarm and miss at the local detectors, i.e., PFis and PM;s, 

we define the following quantities: 

 𝐷 =  (𝐷1, 𝐷2, . . . , 𝐷𝑁) (3.44) 

 

 𝑀D =∏ 

𝑆0

𝑃𝑀𝑗
∏ 

𝑆1

(1 − 𝑃𝑀𝑘
) = 𝑃(𝐃 ∣ H1) 

 

(3.45) 

 

 𝐹D =∏ 

𝑆0

(1 − 𝑃𝐹𝑗)∏ 

𝑆1

𝑃𝐹𝑘 = 𝑃(D ∣ H0) 
 

(3.46) 

 

𝑃𝑘𝐷 =  𝑃𝑟(𝐷𝑜 =  𝑘 𝐼 𝐷) 𝑘 =  0,1 (3.47) 

 

D0 = global decision at data fusion center. 

S0 = Set of all j, (j # 0), such that Dj is an (Gc) element of D and Dj = 0 

S' = Set of all k, (k # 0), such that Dk is an element of D and Dk = 1. 

Then, we may express P0, PM, and PF as follows. 

 𝑃𝑀 =∑  

D

𝑃0D𝑀D 
 

(3.48) 
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 𝑃𝐹 =∑  

D

𝑃1D𝐹D 
(3.49) 

 

 𝑃𝐷 = 1 − 𝑃𝑀 (3.50) 

 

where 𝜮D = summation over all possible values of D.  The transition probabilities 

POD and PID are determined by the given fusion rule. Since D can take 2n possible 

values, there are 2n possibilities for P0D and P1D. The goal is to maximize the overall 

probability of detection while keeping the overall probability of false alarm constant. To 

do this, we use the calculus of extrema and form the objective function. 

 

 Fitness (𝑁𝑖, 𝐾𝑖 , 𝑇𝑖) = abs(1 − Pd) + v. abs (Pf − Pfa) (3.51) 

 

where Ni is the number of reference cells at the ith sensor, Ki is the rank order at 

the ith sensor, Ti is the threshold at the ith sensor and α0 is the overall desired probability 

of false alarm. Pd is the overall probability of detection and Pfa is the overall probability 

of false alarm. We assume that all the receivers are identical for a fixed number of cells 

in each detector Ni = 32. The number of receivers considered in each system is D = 2, 

3, and 5 for the OS-CFAR and CMLD local detector are considered. Also, the two 

fusion rules, “AND” and “OR” are tested to evaluate the performance of the methods 

used. [19] 

Once the threshold multipliers Tj, i = 1,2, . . ., n, are obtained, all the PF, S are 

fixed and the optimum PD results. Now, we give specific results for the AND and the 

OR fusion rules. We also find the optimum threshold multipliers to maximize PO while 

PF is maintained at the desired value.  

3.3.4.1 Data Fusion Center with AND Fusion Rule  

In Table I, we present the AND fusion rule. [18] From this table, we see that the 

global decision at the data fusion centre is one only if all of the detectors decide a one. 

The transition probabilities are: 
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𝑃0D = {

0,      if D = [1,1… ,1]T

1,      otherwise 
 

(3.52) 

 

And 

 
𝑃1D = {

1,      if D = [1,1… ,1]T

0,      otherwise. 
 

(3.53) 

 

Substituting (3.52), (3.53), and (3.50) into (3.48) and (3.49) and rearranging 

terms, PD and PF can be written as: 

 
𝑃𝐷 =∏ 

𝑛

𝑖=1

𝑃𝐷𝑖 
(3.54) 

 

 
𝑃𝑓 =∏ 

𝑛

𝑖=1

𝑃𝑓𝑖 
 

(3.55) 

 

That is: 

 
𝑃𝐷 =∏ 

𝑛

𝑖=1

(1 + 𝑆)𝑁𝑖

(1 + 𝑆 + 𝑇𝑖)
𝑁𝑖

 
(3.56) 

 

 
𝑃𝐹 =∏ 

𝑛

𝑖=1

1

(1 + 𝑇𝑖)𝑁𝑖
 

(3.57) 
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Table 3-3 AND Fusion Rule. 

D1 D2 D3 … Dn-1 Dn D0 

0 

0 

0 

0  

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

 0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

 

3.3.4.2  Data Fusion Center with OR Fusion Rule: 

 When the fusion rule is OR at the data fusion center, the global decision at the 

output of the system is zero, i.e., hypothesis H0 is true, only if the local decisions are 

all zero [18]. So, the transition probabilities are: 

 
𝑃1u = {

0,      if 𝐮 = [0,0, … ,0]𝑇

1,      otherwise 
 

 

(3.58) 

 

 
𝑃Ou = {

1,      if 𝐮 = [0,0, … ,0]𝑇

0,      otherwise 
 

 

(3.59) 

 

Following similar steps as in the previous section we get: 

 
𝑃𝐷 = 1 − 𝑃𝑀 = 1 −∏ 

𝑛

𝑖=1

𝑃𝑀𝑖
 

 

(3.60) 

 

And; 

 
𝑃𝐹 = 1 −∏ 

𝑛

𝑖=1

(1 − 𝑃𝐹𝑖). 
 

(3.61) 
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Table 3-4 OR Fusion Rule. 

D1 D2 D3 … Dn-1 Dn D0 

0 

0 

0 

0  

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

 0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

1 

1 

 

For the OS-CFAR processor the Pd𝑖 and Pfa𝑖 are given by: 

 
Pd𝑖 =∏ 

𝐾−1

𝑗=0

(𝑁 − 𝑗)

(𝑁 − 𝑗 +
𝑇

(1 + 𝑆)
)
 

 

(3.62a) 

 

 

 

 

Pfa𝑖 =∏ 

𝐾−1

𝑗=0

(𝑁 − 𝑗)

(𝑁 − 𝑗 + 𝑇)
 

 

 

 

(3.62b) 

For the CMLDk-CFAR processor the Pd𝑖 and Pfa𝑖 are given by: 

 
Pd𝑖 = (

𝑁

𝐾
)∏  

𝐾

𝑗=1

[
𝑇

1 + 𝑆
+
𝑁 − 𝑗 + 1

𝐾 − 𝑗 + 1
]
−1

 

 

Pfa𝑖 = (
𝑁

𝐾
)∏ 

𝐾

𝑗=1

[𝑇 +
𝑁 − 𝑗 + 1

𝐾 − 𝑗 + 1
]
−1

 

 

(3.63a) 

 

 

(3.63b) 
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3.4 PARTICLE SWARM OPTIMIZATION  

The Particle Swarm Optimization (PSO) algorithm is a computational technique 

inspired by the collective behaviour of natural organisms, such as birds or fish, that 

move together to achieve a common goal. In PSO, a group of particles (representing 

potential solutions) navigates through a problem’s solution space to find the best 

possible solution. Each particle adjusts its position based on its own best-known 

solution (personal best) and the best solution discovered by the entire group (global 

best). This collaborative movement enables particles to converge toward optimal 

solutions over iterations. PSO is widely used for optimization problems in various fields, 

leveraging the power of collective intelligence to explore complex solution spaces and 

find optimal outcomes efficiently. [20] 

PSO is a famous metaheuristic technique to solved optimization issue. 

However, PSO belongs to the stochastic optimization method, which is mainly 

driven by two random streams utilized in the search mechanism. In such simulation 

iterations, the random streams are used as the uncertainty of the acceleration 

coefficients for the cognition and social factors. 

3.4.1 Optimization with PSO Algorithm 

The PSO algorithm is an optimisation tool for engineers that can solve more 

complex problems than traditional methods [21]. Inspired by animal behaviour, the 

PSO algorithm starts with a random population matrix where the rows are called 

particles and contain the values of the variable. Evolution is interested in finding the 

best solution with fast convergence. The individuals are referred to as particles, and 

are grouped together in a swarm. Each particle in the swarm represents a candidate 

solution to the optimisation problem. Each individual in a particle swarm is composed 

of three-dimensional vectors. The current position 𝑠𝑚,𝑛
old , the previous best position 

𝑠𝑚,𝑛
localbest  and the velocity 𝑣𝑚,𝑛

old  of the mth particle, define the dimensionality D of the 

search space for n=[1, D]. The particles update their velocities and positions based on 

the best local and global solutions as follows [21] [22]: 

 𝑣𝑚,𝑛
new = 𝑤. 𝑣𝑚,𝑛

old + Γ1𝑟1(𝑠𝑚,𝑛
localbest − 𝑠𝑚,𝑛

old ) + Γ2𝑟2(𝑠𝑚,𝑛
globalbest − 𝑠𝑚,𝑛

old ), (3.62) 
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 𝑠𝑚,𝑛
new = 𝑠𝑚,𝑛

old + 𝑣𝑚,𝑛
new . (3.63) 

 

where 𝑠𝑚,𝑛
globalbest 

is the best global solution and 𝑟1, 𝑟2 are independent random 

numbers uniformly distributed over [0,1]. The cognitive parameter Γ1 and the social 

parameter Γ2 act through diversification by seeking new solutions. The second term of 

(3.62) is the influence component or (personal influence) which allows the particles to 

return to the best position obtained. The third term in (3.63) is the social influence 

component, which causes the particle to follow the direction of its best neighbour. The 

last two terms act as intensification, exploring previous solutions and finding a better 

solution for a given region [22] [23] 

If 𝑤 =1, the particle’s motion is entirely influenced by the previous motion, so 

the particle may keep going in the same direction. On the other hand, if 0≤  𝑤 <1, 

such influence is reduced, which means that a particle instead goes to other 

regions in the search domain. 

𝑠𝑚,𝑛
localbest  And its current position 𝑠𝑚,𝑛

old . It has been noticed that the idea behind 

this term is that as the particle gets more distant from the 𝑠𝑚,𝑛
localbest  (Personal Best) 

position, the difference (𝑠𝑚,𝑛
localbest − 𝑠𝑚,𝑛

old ) Must increase; hence, this term increases, 

attracting the particle to its best own position. The parameter 𝑟1 existing as a 

product is a positive constant, and it is an individual-cognition parameter. It weighs 

the importance of the particle’s own previous experiences. 

The difference (𝑠𝑚,𝑛
globalbest − 𝑠𝑚,𝑛

old ) Works as an attraction for the particles towards 

the best point until it’s found at t iteration. Likewise, 𝑟2 is also a social learning 

parameter, and it weighs the importance of the global learning of the swarm. And 

Γ2 plays precisely the same role as Γ1. 

• 𝑟1 =𝑟2 =0, all particles continue flying at their current speed until they hit the 

search space’s boundary. 

• 𝑟1 >0 and 𝑟2 =0, all particles are independent. 

• 𝑟1 >0 and 𝑟2 =0, all particles are attracted to a single point in the entire 

swarm. 
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• 𝑟1 =𝑟2 ≠0, all particles are attracted towards the average of localbest and 

globalbest. 

 

 

Figure 3-9 Block diagram of the Distributed processor OSCFAR/CMLDk based PSO 
algorithm [1] 
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Figure 3-10 Flowchart of the particle swarm optimization algorithm 

 

Thus, the movement of a particle is influenced by three components: the inertia 

component, the cognitive component and the social component.  
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The process begins with the initialisation of each particle, the corresponding 

fitness is then evaluated, a comparison is made between the best fitness value using 

the value of the old and the new 𝑠𝑚,𝑛
localbest , the particle with the best fitness value is 

chosen as the 𝑠𝑚,𝑛
globalbest 

, the velocity of the particle is then calculated according to (4. 

54), followed by an update of the particle's position according to (4.55). At this stage, 

as long as the maximum number of iterations or the minimum error criterion is not 

reached, the test is repeated. 

The velocity makes the particle moving in the same direction as the previous 

flight. A weighting inertia coefficient 𝑤 is used to control the search field and reduce 

the influence of 𝑤𝑚𝑎𝑥. Thus, 𝑣𝑚,𝑛
old  is multiplied by the inertia factor 𝑤. The best 

performance can be achieved by initialising 𝑤 at 0.9, then gradually reducing it to 0.4. 

The particles start with a low velocity and perform extensive exploration. For this, the 

operation of the system improves during its convergence to the solution [21] [24] 

3.5 CONCLUSION 

Classical CFAR detection appears to be limited in its adaptability to complex 

environments. However, the utilization of distributed fusion rules and optimization tools 

such as Particle Swarm Optimization (PSO) significantly enhances its effectiveness. 

By employing AND and OR logic in distributed fusion rules for OS-CFAR and CMLDk-

CFAR detectors, integration of data from multiple sensors is optimized, thereby 

improving overall detection performance. PSO further refines parameters like threshold 

T and K, enhancing data fusion algorithms and ensuring robust and reliable detection 

outcomes across diverse operational environments. This approach underscores the 

adaptive capability of CFAR detectors, making them more suitable for real-world 

applications where environmental conditions vary. 
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4 CHAPTER 4     

4.1 INTRODUCTION 

In this thesis, multiple scenarios are analyzed using the concept of applying 

particle swarm optimization (PSO) to adaptive threshold-based detectors, namely 

CMLDk-CFAR and OS-CFAR detectors. We consider a distributed system in which the 

local sensors do not produce a binary decision but rather optimized values of the 

parameters K and T. We analyze the PSO-optimized CMLDk-CFAR and OS-CFAR. 

We examine sensor networks with 2, 3, and 5 sensors using the optimized AND and 

OR fusion rules for different operators, and we derive the thresholds corresponding to 

the desired probability of false alarm for each case. In our simulation, we present the 

variation of the probability of detection for the CMLDk-CFAR and OS-CFAR detectors 

as a function of the SNR. These representations are made for the two CFAR types 

studied in the previous chapter, CMLDk and OS–CFAR. The simulation results are 

presented for non-homogeneous background. 

4.2 CFAR ALGORITHMS DESCRIPTION 

We have simulated different CFAR Algorithms using MATLAB platform in order 

to extract the most reliable from the studied detectors through comparison between 

their figures. These Algorithms are supposed in Additive White Gaussian Noise. 

4.2.1 OS-CFAR ALGORITHM 

This Algorithm is based on order statistics, we declare the reference window the 

SNR and k=3*N/4. all the samples are going to be sorted in order to select the kth 

position in the range cells then the estimator Z = X(k). in PSO program we fix the Pfa 

to get the scaling factor TOS. the product TZ, then corresponds to the threshold which 

is going to be compared to the signal within the cell under investigation, if the signal 

exceeds TZ then H1 is true, otherwise, H0 is true. 

4.2.2 CMLDk-CFAR Algorithm 

This Algorithm is based on censoring with a fixed point. we declare the 

interferences, the reference window, SNR. the samples are then sorted according to 

their magnitude, the greatest ones representing the interferences are censored and 

the rest are summed to perform the estimated noise level Z. in PSO program we fix the 

Pfa to get the scaling factor TCMLD. The product TZ, then corresponds to the threshold 
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which is going to be compared to the sample within the cell under investigation, if the signal 

exceeds TZ then H1 is true, otherwise, H0 is true. 

4.2.3 PARTICLE SWARM OPTIMIZATION ALGORITHM 

The Particle Swarm Optimization (PSO) algorithm, inspired by the social 

behaviour of birds flocking or fish schooling, is used here to optimize the parameters 

K and T for the CFAR detectors. The PSO algorithm initializes a swarm of particles, 

each representing a potential solution with random positions and velocities in the 

search space. Each particle's position corresponds to candidate values for K and T. 

The fitness of each particle is evaluated using the fitness function (4.1) where v is a 

weight parameter, Pd is the probability of detection, Pf is the false alarm probability, 

and Pfa is the desired false alarm probability. Each particle updates its personal best 

position if the current position has a better fitness value, and the global best position is 

updated if any particle's personal best is better than the current global best. The 

velocity of each particle is updated based on its inertia, cognitive, and social 

components, and positions are subsequently updated. The process repeats until a 

stopping criterion is met, such as a maximum number of iterations or a sufficiently small 

change in the global best fitness value. The optimized parameters K and T are then 

used to calculate the scaling factors and thresholds for the CFAR detection process, 

ensuring the detectors are optimally tuned for improved detection performance under 

various conditions and backgrounds, thereby enhancing adaptability and robustness 

in practical scenarios. 

4.3 RESULTS AND DISCUSSIONS 

We evaluate and validate the performance in terms of detection and mean 

acquisition time, of the proposed distributed adaptive acquisition schemes, using 

Monte Carlo simulations from 105 trials for a false alarm rate 𝑣=10-4 and 𝜎𝑛
2 = 1. To 

ensure that the system can converge to the global optimal using PSO, we set 0 < Γ1 +

Γ2 < 4 et (Γ1 + Γ2)/2 − 1 < w < 1, where 𝑤 is a linear function decreasing in time 

from 0.9 to 0.4, and Γ1 = Γ2 are set to 1.49618 [78, 80, 81]. The population is composed 

of 40 particles, each expressed as a vector[𝐾1, 𝐾2, … , 𝐾𝐿; 𝑇1, 𝑇2, … , 𝑇𝐿], the maximum 

number of generations is taken to be 200.  

We set an SNR of 20 dB by applying the OR and AND fusion rules for the PSO 

to calculate the off-line values of T and K leading to the best performance. Table 4.1 
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below shows the corresponding optimum values of T and K in different situations. The 

boundary values of T and K are set to [0-500] and [1-𝑁𝑙], respectively, where 𝑁𝑙 is the 

reference window size of the 𝑙𝑡ℎ sensor, 𝑁=32, 𝑙=2,3,5  

Simulation stop criteria is when fitness achieves 10-6 and Pd approaches 1. 

Table 4-1 Best results of Data Fusion AND/OR for OS-CFAR and CMLDk-CFAR 

detectors using PSO algorithm with Different Pfa Values 

  

AND rule 

 

OR rule 

   Detector 

 

Pfa 

D=2 D=3 D=5 D=2 D=3 D=5 

OS-CFAR 

 

10-4 

K=20 

T=12.2177 

Pd=0.8948 

K=20 

T=7.6083 

Pd=0.9012 

K=20 

T=4.3265 

Pd=0.9061 

K=20 

T=33.5678 

Pd=0.9801 

K=20 

T=35.6253 

Pd=0.9967 

K=20 

T=38.3188 

Pd=0.99999 

 

10-5 

K=20 

T=16.0866 

Pd=0.8638 

K=20 

T=9.8386 

Pd=0.8742 

K=20 

T=5.5176 

Pd=0.8819 

K=20 

T=46.2355 

Pd=0.9644 

K=20 

T=48.7296 

Pd=0.9923 

K=20 

T=51.9944 

Pd=0.9996 

 

10-6 

K=20 

T=20.3477 

Pd=0.8312 

K=20  

T=12.2177 

Pd=0.8464 

K=20 

T=6.7557 

Pd=0.8574 

K=20  

T=61.5894 

Pd=0.9412 

K=20  

T=64.6121 

Pd=0.9839 

K=20  

T=68.5688 

Pd=0.9987 

CMLDk-CFAR 

 

10-4 

K=20 

T=2.0845 

Pd=0.8917 

K=20 

T=1.2857 

Pd=0.8993 

K=20  

T=0.7252 

Pd=0.9049 

K=20 

T=5.8926 

Pd=0.9778 

K=20 

T=6.2657 

Pd=0.9961 

K=20  

T=6.7551 

Pd=0.9999 

 

10-5 

K=20 

T=2.7633 

Pd=0.8591 

K=20 

T=1.6707 

Pd=0.8712 

K=20 

T=0.9277 

Pd=0.8801 

K=20 

T=8.2001 

Pd=0.9599 

K=20 

T=8.6570 

Pd=0.9907 

K=24 

T=9.2561 

Pd=0.9995 

 

10-6 

K=20 

T=3.5179 

Pd=0.8244 

K=20  

T=2.0845 

Pd=0.8420 

K=20 

T=1.1393 

Pd=0.8548 

K=20 

T=11.0230 

Pd=0.9330 

K=20  

T=11.5812 

Pd=0.9804 

K=24 

T=12.3128 

Pd=0.9982 
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In this chapter, we present different scenarios to analyze the detection 

performance of the mentioned processors in both homogeneous and non-

homogeneous environments. The performance is evaluated using the probability of 

detection (Pd) and the false alarm rate control (Pfa). We have considered a fixed 

number of reference windows with N=32. The desired Pfa values vary between Pfa=10-

4 ,10-5 and 10-6. We employ Particle Swarm Optimization (PSO) to optimize the values 

of K and T. We examine the performance with networks of 2, 3, and 5 detectors. The 

results are presented for non-homogeneous background, highlighting the robustness 

and adaptability of the optimized CFAR detectors under varying environmental 

conditions. 

4.3.1 Fitness Function 

In Figure 4-1, the plot illustrates the evolution of the best fitness values over 

generations using PSO for both CMLDk and OS CFAR detectors. The fitness function 

varies accordingly for each detector type, reflecting their specific optimization goals. 

Despite these variations, both plots demonstrate a consistent trend where the best 

fitness values decrease over generations. This convergence towards lower fitness 

values indicates PSO's effectiveness in optimizing parameters tailored to each CFAR 

detector type, ultimately enhancing their performance in detecting signals while 

minimizing false alarms. 

 

Figure 4-1 Evolution of Best Fitness Values for CMLDk and OS CFAR Detectors 

Using PSO 
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Table 4-2 PSO-Optimized Threshold Values for OS-CFAR and CMLDk-CFAR 

Detectors Using AND/OR Fusion Rules in The Presence of 8 Interferences and a fixed 

value of Pfa=10-4 

THRESHOLD D=2 D=3 D=5 

TOS-CFAR OR RULE 9.3823 9.8631 10.4812 

TOS-CFAR AND RULE 3.8383 2.4659 1.4364 

TCMLDk OR RULE 0.9416 0.9898 1.0517 

TCMLDk AND RULE 0.3861 0.2483 0.1448 

 

4.3.2 PERFORMANCE ANALYSIS 

In a non-homogeneous background, the results of the probability of detection (Pd) as 

a function of SNR for the mentioned CFAR detectors are plotted in (Figure 4.2) and (Figure 

4.3). (Figure 4.2) shows the performance of the OS-CFAR detectors, while (Figure 4.3) 

illustrates the performance of the CMLDk-CFAR detectors. With N=32 reference windows and 

Optimized T values using Particle Swarm Optimization (PSO) in the presence of K=8 

interferences, and a fixed value of probability of false alarm Pfa=10-4. When using both the OR 

and AND fusion rules, the detection performance increases as the number of detectors 

increases from 2 to 3 to 5. This indicates that increasing the number of detectors enhances 

detection performance. Moreover, it is observed that the OR fusion rule consistently 

outperforms the AND fusion rule across all configurations. 

 

Figure 4-2 Pd Using AND/OR Fusion Rules for D=2,3,5 OS-CFAR Detectors and 

Pfa=10-4 in The Presence of 8 Interferences 
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Figure 4-3 Pd Using AND/OR Fusion Rules for D=2,3,5 CMLDk-CFAR Detectors 

and Pfa=10-4 in The Presence of 8 Interferences 

We also observe in Figure 4-4 that that the performance of both the CMLDk-

CFAR and OS-CFAR systems is almost identical in the presence of the same number 

of interferences k=8. This is partially due to the low number of interferences while using 

multiple parallel distributed CFAR detectors with data fusion. 

 

Figure 4-4 Pd Using OR Fusion Rule for D=5 CMLDk-CFAR and OS-CFAR 
Detectors and Pfa=10-4 in The Presence of 8 Interferences 
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Table 4-3 PSO-Optimized Threshold Values for Different OS-CFAR and CMLDk-

CFAR Detectors Using OR Fusion Rules and Pfa=10-4 in The Presence of 10 

Interferences 

THRESHOLD D=2 D=3 D=5 

TOS-CFAR -OR RULE 11.2910 11.8776 12.6328 

TCMLDk -OR RULE 1.1981 1.2607 1.3414 

 

Table 4-4 PSO-Optimized Threshold Values for 5 OS-CFAR Detectors and 5 CMLDk-

CFAR Detectors Using OR Fusion Rules in The Presence of 16 Interferences 

THRESHOLD Pfa =10-4 Pfa = 10-5 Pfa = 10-6 

TOS-CFAR -OR RULE 23.0299 30.3217 38.7509 

TCMLDk -OR RULE 3.1497 4.1762 5.3721 

 

In a non-homogeneous background with 10 and 16 interferences, the detection 

performance is analyzed for Pfa=10-4 using the OR fusion rule. (Figure 4-5) presents 

the performance of 5 OS-CFAR detectors and 5 CMLDk-CFAR detectors in the 

presence of 10 interferences, while (Figure 4-6) shows the performance of the same 

detectors in the presence of 16 interferences. Although the presence of said 

interferences challenges the robustness of the detectors, the PSO-optimized CFAR. 

detectors continue to demonstrate strong performance.  

As shown in (Figure 4-5) while in the presence of 10 interferences, the 

probability of detection (Pd) remains high despite the increased interference levels; for 

Pfa=10-4 both the OS-CFAR and CMLDk detectors reach their peak (Pd=1) value at 

SNR=17.5 dB. Although it is important to note that the CMLDk-CFAR system still 

slightly outperformed the OS-CFAR system. 

In the presence of 16 interferences (Figure 4-6), we observe a significant 

performance degradation for the OS-CFAR detectors compared to the CMLDk-CFAR 

detectors. For Pfa=10-4, this is confirmed by comparing the SNR values at which the 

peak (Pd=1) is attained: for CMLDk detectors this peak is achieved for the same 

previous value of SNR=17.5dB, compared to the value of SNR=22.5dB for the OS-

CFAR detectors. This improvement is attributed to the CMLDk-CFAR’ algorithm's 
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ability to effectively eliminate interferences while decreasing the threshold T through 

PSO optimization. 

 

Figure 4-5 Detection Performance of 5 OS-CFAR and 5 CMLDk-CFAR Detectors in 

The Presence of 10 Interferences Using PSO Optimization at Pfa=10-4 

 

 

Figure 4-6 Detection Performance of 5 OS-CFAR and 5 CMLDk-CFAR Detectors in 

The Presence of 16 Interferences Using PSO Optimization  Pfa=10-4 

 

Alas we wanted to study the effect of minimizing the probability of false alarm to 

the performance of both systems in the presence of high number of interferences k=16, 
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Figure 4-7 shows the results of using varying Pfa values at Pfa=10-4 ,Pfa=10-5 and 

Pfa=10-6 while maintaining OR fusion rule for 5 parallel distributed OS-CFAR and 

CMLDk-CFAR detectors.  For both OS-CFAR and CMLD-k CFAR detectors, as Pfa 

decreases (from 10-4 to 10-6), the probability of detection at a given SNR also 

decreases. This is expected because a lower Pfa means the detector is more 

conservative, resulting in fewer false alarms but also potentially missing more true 

detections. We still note that the CMLD-k CFAR detector maintains a better 

performance compared to the OS-CFAR detector due to its nature of operation.  

Even though The OR fusion rule used in combining the 5 parallel distributed 

detectors helps in enhancing the detection performance. The overall trend indicates 

that even with fusion, individual detector performance (influenced by Pfa) plays a 

significant role. We also need to mention the importance of Particle Swarm 

Optimization (PSO) in finding optimized threshold (T) values for both OS and CMLD-k 

CFAR detectors. By effectively balancing detection probability and false alarm rate, 

PSO ensures high performance even with numerous interferences. This optimization 

significantly enhances the detection capabilities of both detectors, as shown in the 

graphs. 

 

Figure 4-7 Detection Performance of 5 OS-CFAR and 5 CMLDk-CFAR Detectors in 
The Presence of 16 Interferences Using PSO Optimization at Varying Pfa Values 
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4.4 CONCLUSION 

In this chapter, we examined the detection performance of PSO-optimized CFAR 

detectors, specifically OS-CFAR and CMLDk-CFAR, in non-homogeneous 

backgrounds. By varying the number of detectors used in parallel distributed data 

fusion with the OR/AND fusion rule and different Pfa values, we demonstrated how the 

probability of detection (Pd) changes with the signal-to-noise ratio (SNR) in different 

interference scenarios. Our simulations show that the PSO-optimized CMLDk-CFAR 

detectors consistently outperform the OS-CFAR detectors, especially in the presence 

of high levels of interference. The results indicate that using a larger number of 

detectors enhances detection performance, with the OR fusion rule proving to be more 

effective than the AND fusion rule, and the Pfa value of 10-4 proved to be the most 

productive as it has the lowest chance of missing true detections.  These findings 

highlight the robustness and effectiveness of the PSO-optimized CMLDk-CFAR and 

OS-CFAR algorithms in challenging environments. 
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5 GENERAL CONCLUSION 

In this thesis, we have explored the performance of various CFAR (Constant False 

Alarm Rate) detectors, specifically focusing on PSO-optimized OS-CFAR and CMLDk-

CFAR in non-homogeneous environments. The primary motivation for this study was 

to optimize the threshold T using Particle Swarm Optimization (PSO) for use in 

distributed CFAR fusion with AND/OR fusion rules. Our study included an in-depth 

analysis of these distributed data fusion rules to enhance detection capabilities. 

Initially, we studied the fundamental principles behind different types of CFAR 

detectors, providing a comprehensive understanding of radar system parameters and 

components.  

We first presented the basic parameters of a radar system, including its main 

components: transmitter, receiver, antenna, and detector. We discussed the radar 

equation, which is used to calculate the range of a radar based on its technical 

characteristics. The Doppler effect was introduced as a method to estimate the radial 

speed of a target and to distinguish between moving and stationary targets. We also 

covered the importance of properly limiting the range of a radar to avoid ambiguity in 

distance estimation and introduced Swerling models, which are used to model 

fluctuating targets and estimate radar detector performance. The decision-making 

process in radar detection was also examined, focusing on how a target's presence is 

determined by comparing a test sample to a threshold.  

Then we delved into the basic notions of decision criteria in detection and the 

techniques used in radar systems. We identified the limitations of fixed threshold 

detection in non-homogeneous environments, which led to the need for adaptive 

threshold detection to ensure a constant false alarm rate.  

Finaly, we explored the operational principles of various CFAR (Constant False 

Alarm Rate) detectors. The CA-CFAR detector estimates noise levels by maintaining 

a fixed Probability of False Alarm (Pfa), but its performance degrades in non-

homogeneous environments. This limitation prompted the development of ordered 

statistics processors, such as the OS-CFAR detector, which selectively estimates 

noise levels to mitigate CA-CFAR issues. The OS-CFAR uses the 3*N/4 threshold 

value to balance immunity to interfering targets with minimal detection losses in 
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cluttered environments. Another approach, the CMLDk-CFAR detector, relies on fixed 

censoring points assuming known interference levels. Moving forward, we focused on 

distributed fusion rules tailored for OS-CFAR and CMLDk-CFAR detectors. These 

rules leverage AND and OR logic to optimize detection performance by integrating data 

from multiple sensors effectively. Subsequently, we applied Particle Swarm 

Optimization (PSO) to optimize parameters like threshold T and K. By refining these 

parameters using PSO, we enhanced our data fusion algorithms, aiming to improve 

overall detection capabilities. Among the different Pfa values tested, Pfa=10-4 

consistently provided the best detection performance. Additionally, we observed that 

increasing the number of detectors from 2 to 3 to 5 improves detection performance, 

with the OR fusion rule consistently outperforming the AND fusion rule. This adaptive 

approach ensures that our CFAR detectors can dynamically adjust to diverse 

environmental conditions, enhancing their robustness and reliability in real-world 

detection scenarios.  

These findings highlight the robustness and effectiveness of the PSO-optimized 

CMLDk-CFAR algorithm, making it a superior choice for challenging environments with 

high levels of interference. This research contributes to the advancement of CFAR 

detection technology, providing a solid foundation for future studies and practical 

implementations in radar and communication systems.
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