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ABSTRACT 

To meet regulatory and economic requirements, the aerospace, naval, and civil 

engineering industries are constantly looking for structures that are both strong and lightweight. 

The rapid advances in nanoscience and nanotechnology have gone a long way towards meeting 

this demand. Theoretical and experimental studies are converging on the development of new 

high-tech composites, such as FGMs (Functionally Graded Materials) and advanced 

composites, reinforced with graphene nano-platelets. These nano-platelets are proving 

promising, offering optimized mechanical, thermal, and electrical properties, and electrical 

properties with significant weight savings. 

 This study aims to contribute to this development by examining the influence of graphene 

nano-platelet reinforcement on the bending and buckling response of an advanced composite 

plate. An adapted high-order shear deformation theory will be used to carry out this parametric 

study. 

 

Keywords: bending, buckling, analytical method, advanced composites, graphene nano-

platelets. 
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 ملخص

تبحث صناعات الطيران وبناء السفن وصناعة السيارات والهندسة المدنية باستمرار عن هياكل قوية 

وخفيفة الوزن لتلبية المتطلبات التنظيمية والاقتصادية. وقد تم تلبية الكثير من هذا الطلب من خلال التقدم 

لنظرية على إنشاء مركبات جديدة السريع في علوم النانو وتكنولوجيا النانو. وتركز الأبحاث التجريبية وا

عالية التقنية مثل المواد المتدرجة الوظيفية والمركبات المتقدمة المعززة بصفائح نانوية من الجرافين. 

وتعد هذه الصفيحات النانوية واعدة لأنها توفر خصائص ميكانيكية وحرارية وكهربائية محسّنة مع توفير 

 كبير في الوزن. 

ى المساهمة في هذا التطور من خلال فحص تأثير تقوية صفائح الجرافين تهدف هذه الدراسة إل

، سيتم الوسيطية متقدمة. لإجراء هذه الدراسةالمركبة الالنانوية على استجابة الانحناء والالتواء للوحة 

.لقصعالي الدرجة لاستخدام نظرية تشوه   

 

الجرافين النانوية.صفائح تواء، طريقة تحليلية، مركبات متقدمة، لالانحناء، الا الكلمات المفتاحية:   
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Résumé 

Les industries aérospatiale, navale, automobile et du génie civil recherchent constamment 

des structures à la fois résistantes et légères pour répondre aux exigences réglementaires et 

économiques. En grande partie, cette demande a été satisfaite grâce aux progrès rapides dans 

les domaines des nanosciences et de la nanotechnologie. Les recherches expérimentales et 

théoriques se concentrent sur la création de nouveaux composites de haute technologie tels que 

les matériaux à gradient fonctionnel (FGM) et les composites avancés renforcés par des nano-

plaquettes de graphène. Ce sont des nano-plaquettes prometteuses car elles offrent des 

propriétés mécaniques, thermiques et électriques optimisées tout en offrant un gain de poids 

considérable. 

              En examinant l'impact du renforcement en nano-plaquettes de graphène sur la réponse 

de flexion et de flambage d'une plaque composite avancée, cette étude vise à contribuer à ce 

développement. Pour mener cette étude paramétrique, une théorie de déformation d’ordre 

supérieur en cisaillement appropriée sera utilisée. 

 

Mots Clés : flexion, flambage, méthode analytique, composites avancés, nano-plaquettes de       

graphène.  
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GENERAL INTRODUCTION: 

Composite materials, made up of multiple materials, offer superior properties such as 

stiffness, fatigue resistance, corrosion resistance, wear resistance, and weight reduction. 

However, conventional composite materials often face discontinuity in properties and stresses 

at interfaces, leading to high stress concentrations, matrix cracking, and delamination problems. 

Functionally Graded Materials (FGMs) can overcome these issues by continuously changing 

material properties, resulting in a smooth transition from one material to another. FGMs can 

also be tailored for specific applications, such as using graphene nano-platelets to enhance 

mechanical, thermal, and electrical properties while reducing structure weight. 

In this project, the primary objective is to delve deeply into the intricate characteristics 

and behavior of a functionally graded material (FGM) plate that has been ingeniously fortified 

with graphene nano-platelets. The focus of the investigation centers around examining and 

understanding the plate's static response as well as its stability under various loading conditions, 

with a special emphasis on analyzing its resistance to bending and buckling. The study aims to 

unravel the unique mechanical properties exhibited by this innovative composite structure, 

shedding light on how the incorporation of graphene nano-platelets influences the overall 

performance and durability of the FGM plate. The plate's response to external forces and 

evaluating its structural integrity when subjected to different stress levels, this research seeks 

to contribute valuable insights to the field of materials science and engineering. With a 

comprehensive analysis of the plate's mechanical behavior, the project aims to provide a 

foundation for further advancements in FGM technology, paving the way for the development 

of new and improved materials that offer enhanced strength, stiffness, and resilience for various 

engineering applications. Through this detailed exploration, the study endeavors to advance our 

understanding of material design and optimization strategies, ultimately aiming to foster 

innovations in the realm of composite materials and structural engineering. 

 

Previous studies:  

Several studies have been carried out on FGM plates and their characteristics of bending 

and buckling behavior. Shen et al modeled and analyzed the thermal bending and post-buckling 

of GRNC laminated plates resting on an elastic foundation and subjected to in-plane 

temperature variation. Song et al, presented bending and buckling analyses of multilayer FG-
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GRNC polymer composite plates using the first-order shear deformation theory. Daikh and 

Megueni, investigated the influence of plate aspect ratio, gradient index and the thermal loading 

conditions on the buckling of FGM sandwich plates modeled by the higher-order shear 

deformation plate theory. Thai et al studied mechanical behavior of multilayer FG-GRNC plates 

based on the four-variable refined plate theory and modified couple stress theory. Song et al 

also studied the free and forced vibration, buckling and postbuckling of multilayer graphene 

nanocomposite plates in which graphene platelets (GPLs) were nonuniformly distributed in a 

layer-wise manner. Wu et al, examined the thermal buckling and postbuckling of functionally 

graded multilayer GPL reinforced composite (GPLRC) plates and suggested that whether the 

thermal buckling and postbuckling resistance increases or decreases is highly dependent on the 

GPL distribution pattern. Iurlaro et al, carried out bending and free vibration FG sandwich plates 

using a refined zigzag theory and finite element method. Thai et al, examined bending, buckling 

and vibration of FG sandwich plates with various boundary conditions using a new FSDT. Mahi 

et al, proposed a new hyperbolic shear deformation theory for the bending of FG sandwich 

plates. Wang and Shen, analyzed a nonlinear bending of FG sandwich plate resting on elastic 

foundations using a two-step perturbation method. 

These studies have contributed to a better understanding of the static response and the 

stability characteristics of a FG plates under different conditions and have explored various 

theoretical approaches and to analyze their behavior. 

 

Thesis contribution: 

Our thesis involves a parametric study that aims to understand how the reinforcement in 

graphene nano-platelets affects deflection and stresses for bending and the critical buckling load 

for buckling, of an FGM plate. For this, we will use an adapted shear deformation theory, which 

will allow us to precisely analyze the effects of this reinforcement on the bending and buckling 

characteristics of the plate.  

This parametric study will allow us to explore different configurations of graphene nano-

platelets in the FGM plate. We will also examine factors such as the size and distribution of 

graphene nano-platelets to determine the optimal combinations that optimize the static response 

and stability performance. These results will provide valuable information on how to improve 

the performance of graphene-reinforced composites. By applying this knowledge, industries 

will be able to design lighter, stronger and more durable structures, which will promote 

innovation and efficiency in these key areas.  
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The modelling of the properties of the GPL-reinforced FGM plate will be based on the 

Halpin-Tsai model and and Mahi's hyperbolic HSDT. The programming language adopted in 

this research work is Python, from which we essentially used the functions of eigenvalues and 

matrix system computation to obtain the buckling loads and displacement field. 

 

Thesis organization: 

This master thesis is divided into four chapters: 

Chapter 1 provides a literature review of functionally graded materials, their 

characteristics, development history, fabrication techniques and application areas. Also, it 

provides a literature review on nanomaterials, their characteristics, and their role in improving... 

Chapter 2 presents an in-depth literature review on the distribution laws and shear 

deformation theories applied to reinforced FGM structures. We will examine the mathematical 

models and the theoretical approaches used to describe the mechanical behavior of these 

structures, with an emphasis on the shear deformation phenomena. 

Chapter 3 is devoted to the modeling and energy formulation of functionally graduated 

plates reinforced by graphene nano-platelets (FG-GPLRC). We will develop mathematical 

equations based on variational principles to describe the behavior of FG-GPLRC plates. 

Chapter 4 is dedicated to the interpretation of the results by linking them to the theories 

shear deformation, the properties and distribution of the reinforcements used as well as the 

boundary conditions. We will also discuss the implications of these results for the design and 

optimization of reinforced FGM composite structures.  

Finally, the work ends with a general conclusion summarizing our objectives and obtained 

results, followed by some perspectives. 
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1. Introduction: 

During the lifetime of the human the different kind of materials was considered as a huge 

part of keeping him in existence, he used wood for making fire, making weapons…etc. He also 

used stone, bronze, iron, and other different materials to meet his daily needs. The different eras 

in the timeline of the human being were named according to what the human could use as an 

invention of a material that had been used in that time. 

 The Stone Age marks a period of prehistory in which humans used primitive stone tools. 

Lasting roughly 2.5 million years, the Stone Age ended around 5,000 years ago when humans 

in the Near East began working with metal and making tools and weapons from bronze [1]. 

Bronze Age, third phase in the development of material culture among the ancient peoples of 

Europe, Asia, and the Middle East, following the Paleolithic and Neolithic periods (Old Stone 

Age and New Stone Age, respectively). The term also denotes the first period in which metal 

was used. The date at which the age began varied with regions; in Greece and China, for 

instance, the Bronze Age began before 5000 years ago, whereas in Britain it did not start until 

about 3900 years ago.[2] The Iron Age was a period in human history that started between 1200 

B.C. and 600 B.C., depending on the region, and followed the Stone Age and Bronze Age. 

During the Iron Age, people across much of Europe, Asia and parts of Africa began making 

tools and weapons from iron and steel. For some societies, including Ancient Greece, the start 

of the Iron Age was accompanied by a period of cultural decline [1]. 

Materials are continuously developed from iron, pure metals to composite materials which 

are in use today [3] and always been upgraded because of the engineering. The composite 

materials are one of the most genius and sophisticated materials was engineered to be very light 

(reducing weight) and at the same time very strong that can resist to the critical stresses. 

The composite material is made of two or more constituents assembled to each other, and 

the choice of this constituents depends on what it will be used for. The conventional composite 

materials have a several advantages for example high strength to stiffness ratio, grater resistance 

to fatigue, wear and corrosion, high reliability…etc [3]. But in the other side we face a crucial 

disadvantage which called delamination. It serves for the separation of the different constituent 

of the composite material caused by the singularity in term of stresses in the interface of the 

constituents. For that reason, researchers invented an advanced composite material which called 

FGMs. 
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2. Functionally graded materials: 

FGMs stands for functionally graded materials, it is the new generation of the composite 

materials made with two or more constituents (the most famous are ceramic and metal) where 

we find in a side is 100 percent made of ceramic, and through the thickness a gradual variation 

between ceramic and metal, till the other side which is made with 100 percent of metal. These 

materials are specially made to solve the famous problem of the conventional composite 

materials which is the delamination. 

FGMs replace the sharp transition of properties with smooth and continuous varying 

properties of the material such as physical, chemical, and mechanical like Young’s Modulus, 

Poisson’s ratio, Shear Modulus, density, and coefficient of thermal expansion in a desired 

spatial direction (Figure 1). The gradual changes in volume fraction of constituent and non-

identical structure at preferred direction give continuous graded properties like thermal 

conductivity, corrosion resistivity, specific heat, hardness, and stiffness ratio. All these 

advantages made FGMs far better than homogenous composite material to use in multiple 

applications. [4] 

 

 

 

 

 

 

 

 

Figure 1: Continuous material development from bronze to FGMs 

Figure 2: Variation of properties in conventional composites and FGM 
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The table below illustrate the properties variation depending to constituents of a ceramic 

metal FGM [9] 

 

Table 1: Properties variation of a ceramic-metal FGM 

Layers Materials Mechanical propreties 

High temperature face Ceramic 

 Good thermal resistance 

 Good oxidation resistance 

 Low thermal conductivity 

 

 

Intermediate layers 

 

 

Ceramic-metal 

 Interface problem eliminated 

 Thermal stresses relaxation 

Low temperature face Metal 

 Good mechanical resistance 

 High thermal conductivity  

 

 

2.1  Evolution of FGMs: 

A new breed of composite materials named functionally graded materials (FGMs) was 

first invented in 1984 by Japanese researchers for the core purpose of their aerospace project 

that required thermal barrier with the outside temperature of 2000 k and inside 1000 k within 

10 mm thickness. A decade before, Shen and Bever also worked on graded structure composite 

materials, but it was delayed due to unsophisticated fabrication equipment [4]. Soon, the 

importance of FGMs was realized, and to promote research in this area, a five-year research 

based national project with a cost of $11 Million was started as “Research on the basic 

Technology for the development of FGM for relaxation of thermal stress” (FGM PART 1). At 

the end of this project, researchers were able to develop 300 mm square shell and 50 mm 

hemispherical bowl for SiC-C FGM nose cones. Another 5-year-project that was a consequence 

of FGM PART 1 was started in 1992 with a cost of $9 Million called “Research on Energy 

Conversion Materials with Functionally Graded Structures” (FGM part 2). This project was 

focused to enhance energy conversion efficiency using functionally graded structure 

technology. Furthermore, in April 1996, the New Energy and Industrial Technology Department 

Organization (NEDO) funded a project with a budget of $2.5 million known as “Precompetitive 

Processing and characterization of Functionally Graded Materials.” The project was continued 

until March 2000. The purpose of the project was to develop metal-ceramic FGM on an 
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industrial level using spark plasma sintering (SPS) technique. Polyamide/Cu was one of the 

FGMs successfully manufactured by SPS technique. Most of the research was conducted on 

the grading of mechanical and thermal properties. However, it was needed to work on basic 

properties like physical and chemical. In order to fill this gap, the Ministries of Education, 

Science, Sports and Culture granted a research program in April 1996 entitled, “Physics and 

Chemistry of FGMs” that was continued for the next three years until 1999. Physics, Chemistry, 

Biology, and Agriculture, etc., were the fields investigated in this project. Figure 3 represents 

the hierarchy of modern material [4]. 

 

 

2.2 FGMs classification: 

To classify the functionally graded materials researchers identified a numerous criterion: 

2.2.1 Based on the FGM graduation process: 

2.2.1.1 Composition gradient: 

The composition type of FGM gradient depends on the composition of the material, 

which varies from one substance to another, leading to different phases with different 

chemical structures. These different phases of production depend on the synthetic quantity 

and the conditions under which the reinforced materials are produced [5]. 

Figure 3: Representation of modern material hierarchy 
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2.2.1.2 Microstructure gradient: 

 During the solidification process,the microstructure type of the FGM gradient can be 

achieved so that the surface of the material is extinguished. In this type, the core of the same 

material can cool slowly, helping generate different microstructures from the surface to the 

inside of the material [5]. 

2.2.1.3 Porosity gradient: 

With the changes in the spatial location in the bulk material, the porosity type of FGM 

gradient in the material changes. Powder particle sizes can be measured by varying the pore 

particle sizes used during gradation at different positions in the bulk material [5]. 

 

  

Figure 4: Typical example of three different types of FGM gradient 
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2.2.2 Based on the FGM structure: 

FGMs can be generally classified into two main groups: continuous and discontinuous 

graded material as shown in Fig5. In the first group, no clear zones or separation cut lines can 

be observed inside the material to distinguish the properties of each zone. In the second group, 

the material ingredients change in a discontinuous stepwise gradation which is known as 

layered or discrete FGM. Continuous and discrete can further be classified into three types: 

composition gradient (Fig. 5c, f), orientation gradient (Fig. 5d, g), fraction gradient (Fig. 5e, h). 

[5]  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.3 Based on FGM thickness: 

According to the size of the FGM, it could be classified to: thin FGMs and bulk FGMs. 

Thin FGMs ranges between 5 nm and 500 nm and may be extended to the micro-meter range 

(e.g. 1–120 μm thick deposited layers). In bulk FGMs, gradients can cover 5–350 mm. [5] 

2.3 FGMs manufacturing: 

As much being sophisticated the FGMs are, as much developed the elaboration methods 

are, to create an FGM, in the following we cite several methods used to create a gradual 

structure:   

 Vapour Deposition Technique: 

The following diagram gives different types of vapour deposition techniques: 

Figure 5: Structural classification of FGMs 
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These vapour deposition methods are used to deposit functionally graded surface coatings 

and they give excellent microstructure, but they can only be used for depositing thin surface 

coating. They are energy intensive and produce poisonous gases as their byproducts [6]. 

 Powder metallurgy : 

Powder metallurgy-based technique can be used to produce bulk type FGMs with 

discontinuous (stepwise) structure [3]. PM is used to produce functionally graded material 

through three basic steps namely: weighing and mixing of powder according to the pre-designed 

spatial distribution as dictated by the functional requirement, stacking and ramming of the 

premixed-powders, and finally sintering [6]. 

 Centrifugal Method : 

In the centrifugal casting method, the functionally graded material is produced by spinning 

the mold using gravitational force [4] to form bulk functionally graded material [6]. There are 

two disadvantages of this method are this method can produce only cylindrical shaped FGMs 

and there is limit to which type of gradient can be produced [3]. 

 Solid free form fabrication/additive manufacturing (AM) techniques: 

Solid freeform fabrication (SFF)/Additive manufacturing (AM), also known as 3D 

printing, is a process of joining materials to make objects from 3D model data [3]. Here some 

types of SFF/AM techniques: 

 

 

 

 

 

 

 

Figure 6: Different types of VD 
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After familiarizing ourselves with different techniques to produce an FGM, we can find 

another classification to the functionally graded materials which is the complexity of the 

produced shape, each technique is specialized to produce the FGM shape depending on the 

order of complexity, and the following diagram gives the order of complexity and the techniques 

it belongs: 

 

 

2.4 Aeras of application of FGMs: 

Functionally graded materials are designed to optimize the performance for different 

applications. Some of the domains where FGMs are used or have potential to be used are: 

Figure 7: Different types of SFF/AM techniques 

Figure 8: Classification of FGMs according to product complexity 
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 Aerospace: FGMs can be used for thermal protection systems, rocket nozzles, 

turbine    blades, and other components that are exposed to high temperatures 

and thermal stresses. 

 Automobile: FGMs can be used for brake discs, pistons, cylinders, and other 

parts that require high wear resistance, friction reduction, and thermal stability. 

 Optoelectronics: FGMs can be used for optical fibers, waveguides, lasers, and 

other devices that require tailored optical properties, such as refractive index, 

absorption, and emission. 

 Energy: FGMs can be used for solar cells, fuel cells, batteries, and other devices 

that require efficient conversion and storage of energy, as well as corrosion 

resistance and durability. 

 Biomedical: FGMs can be used for implants, prostheses, scaffolds, and other 

devices that require biocompatibility, bioactivity, and mechanical matching with 

the host tissue. 

 

These are some of the common domains of application of FGMs, but there are also other 

fields, such as civil engineering, defense, and sports, that can benefit from the use of FGMs. 

3. Nanoworld: 

 

“There's Plenty of Room at the Bottom” 

                                                                            -Richard Feynman- 

 

Figure 9: Functionally graded materials: field of application and examples [5] 
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After this announcement from Sir Richard Feynman, rooms at the bottom had known a 

huge development, or in another way a new field of science had been discovered which is 

nanoscience. Nanoscience focuses on investigating material phenomena at the nanoscale (10-

9m). So, certainly we need certain techniques to handle this specific type of materials. 

Nanotechnologies are all tools, instruments and techniques for manipulating and 

manufacturing materials at the nanoscale (10-9m).  

 

3.1 Nanomaterials: 

The basic and the key elements of nanotechnology are the “nanomaterials”. The 

nanomaterials are the materials with less than 100 nm size ones at least in one dimension. That 

means they have very less size than that of microscale. The nanomaterials are usually 10−9 nm 

in size that means it is one billionth of a meter. The nanomaterials show different 

physicochemical properties than the bulk material which inherently depends on their size and 

shape. Surprisingly the nanomaterials produce a unique character with new characteristics and 

capabilities by modifying the shape and size at the nanoscale level. Nanomaterials may be of 

different shapes like nanorods, nanoparticles, nanosheets which can be characterized based on 

their dimensionality. Nanomaterials with zero-dimensional are nanoparticles, one dimensional 

is nanorods or nanotubes and two dimensional are generally films and layers type one. These 

are categorized mainly for the single isolated nanomaterials [8]. 

 

 

 

 

Figure 10: Classification of Nanomaterials (a) 0D spheres and clusters; (b) 1D 
nanofibers, nanowires, and nanorods; (c) 2D nanofilms, nanoplates, and networks; 
(d) 3D nanomaterials. 
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Nanomaterials have two significant families: the nano-objects, like nanoparticles, 

nanofiber, nanorods, nanoplatelets and nanosheets. The other one is the nanostructured 

materials such as nanocomposites, nanoporous… etc.  

In this study, we are about specially to focus on some types of nano-objects. 

3.1.1 nanoplatelets: 

Nanosheets, nanoplatelets are a nano-objects that have one of the three spatial external 

dimensions belongs to the nanoscale (1-100 nm), and the other two dimension are significantly 

greater. 

3.1.1.1 Graphene nanoplatelets: 

Graphene is a single freestanding monolayer of graphite. It is the first 2D-material ever 

manufactured by mankind, having a thickness of one atom (0.34 nm), and lateral size orders of 

magnitudes larger [10]. Its synthesis is complex and cannot be mass-produced yet. For this 

reason, graphene nanoplatelets (GPLs) have become an alternative, with a low cost and exciting 

properties, and the potential for large-scale production. GPLs have few graphite layers, varying 

in thickness from 0.7 to 100 nm [11]. 

Their main properties are light weight, high aspect ratio with planar shape, good 

mechanical properties [11] It has a tensile strength of 125 GPa and an elastic modulus of 1.1 

TPa, compared to an elastic modulus of 200 GPa for the most common steel. Its breaking 

strength is 42 N/m, thus graphene has 100 times better mechanical strength than steel [13], and 

excellent thermal and electrical conductivities, together with low cost and easy manufacture. 

GNPs have numerous applications as isolated materials, neat coatings and fillers of composites. 

This Special Issue is focused on the use of graphene nanoplatelets as nanofillers [11].  

 

3.1.1.2 Graphene structure: 

Graphene is a two-dimensional carbon allotrope. It is composed of carbon atoms 

positioned in a hexagonal design, Graphene can be a parent form for many carbon structures, 

like the above-mentioned graphite, carbon nanotubes (which can be viewed as rolled-up sheets 

of graphene formed into tubes) and buckyballs (spherical structures with a cage-like structure 

made from graphene only with some hexagonal rings replaced by pentagonal rings) [12].  
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3.1.1.3 Areas of application: 

Graphene nanoplatelets have many applications in various fields, such as: 

 Coating: Graphene nanoplatelets can improve the corrosion resistance, wear 

resistance, and anti-fouling properties of coatings [14] [15]. 

 Polymer composites: Graphene nanoplatelets can enhance the mechanical, 

thermal, electrical, and barrier properties of polymers, such as thermoplastics, 

thermosets, rubber, and elastomers [14] [15]. 

 Energy conversion and storage: Graphene nanoplatelets can be used as 

electrodes, catalysts, and additives for batteries, supercapacitors, fuel cells, and 

solar cells [14] [16]. 

 Sensing: Graphene nanoplatelets can be used as sensors for detecting gases, 

biomolecules, strain, pressure, and temperature [14] [16]. 

 Biomedicine: Graphene nanoplatelets can be used as drug delivery agents, 

bioimaging agents, antibacterial agents, and tissue engineering scaffolds [14] 

[10]. 

Figure 11: Different structures of carbon 
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3.1.2 Nanotubes: 

Materials such as carbon nanotubes, polyester nanofibers, bore nanotubes, and so on that 

are related to nano-objects having two exterior dimensions on the nanometer scale and a third 

dimension that is substantially greater. These concepts describe long-line nano-objects that have 

lengths of 500–10,000 nm and sections of 1and a few hundred nm. 

 Rigid nanofibers: These are nanofibers that have a solid cross-section and a high aspect 

ratio. They can be used as building blocks for nanodevices, nanosensors, and 

nanocomposites [17]. Examples of rigid nanofibers are nanorods and nanowires. 

 Hollow nanofibers: These are nanofibers that have a hollow core and a thin wall. They 

can be used as drug delivery vehicles, catalyst supports, and gas separation membranes 

[17]. Examples of hollow nanofibers are nanotubes and nanohorns. 

 Electrically conductive nanofibers: These are nanofibers that have a high electrical 

conductivity and can be used as electrodes, interconnects, and transistors [17].  

Examples of electrically conductive nanofibers are carbon nanotubes, metal 

nanowires, and graphene nanoribbons. 

 

3.1.2.1 Carbon nanotubes: 

CNTs, also called buckytubes, are cylindrical carbon molecules with unique properties 

that make them potentially useful in a wide variety of applications. CNTs exhibit extraordinary 

strength as well as unique electrical, mechanical and thermal properties. CNTs are the members 

of the fullerene family, which was discovered by Kroto et al. in 1985. Buckyballs are spherical 

fullerenes, whereas CNTs are cylindrical, with at least one end typically capped with a 

hemisphere with the buckyball structure. The name CNT derives from the size, as the diameter 

of a nanotube is on the order of a few nanometers. Iijima first synthesized multi-walled carbon 

nanotubes (MWNTs) in 1991 using a simple arc-evaporation method. However, CNTs were 

discovered long before researchers even imagined that carbon may exist in such a diverse 

allotropic form [18]. CNTs, also known as tubular fullerenes, are cylindrical graphene sheets of 

sp2 -bonded carbon atoms. In CNTs the graphene sheet is rolled upon itself to form different 

allotropes of carbon, including graphite, fullerenes and CNTs [18]. 

  

CNTs reportedly have extremely high surface areas, large aspect ratios, and remarkably 

high mechanical strength. The tensile strength of CNTs is 100 times greater than that of steel, 

and the electrical and thermal conductivities approach those of copper. These unique properties 
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make CNTs good candidates as fillers in different polymers and ceramics to realize desirable 

consumer products. It has also been predicted that CNT-based field-effect transistors (FETs) 

will soon supplant their silicon-based analog counterparts. CNTs are also good incorporating 

agents due to their unique electrical, mechanical and thermal properties [18]. 

 

 

 

 

 

 

 

Figure 12: (a) Formation of graphene derivatives. (b) Graphene sheet. (c) 
Graphene sheets rolled into carbon nanotubes. 

Figure 13: single wall carbon 
nanotube 

Figure 14: multi wall carbon nanotube 
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3.1.3 Nanoparticles: 

Nanoparticles are a zero-dimensional nanomaterial where all three external spatial 

dimensions belongs to the nanoscale. It means the length, breadth and height is fixed at a single 

point for example nano dots. 

Nanoparticles could be classified to organic nanoparticles and non-organic nanoparticles. 

 

3.2 Methods of manufacturing of Nanomaterials: 

The nanoparticles are synthesized by various methods that are categorized into bottom-up 

or top-down method. 

3.2.1 Bottom-up method : 

Bottom-up or constructive method is the build-up of material from atom to clusters to 

nanoparticles. Sol-gel, spinning, chemical vapour deposition (CVD), pyrolysis and biosynthesis 

are the most commonly used bottom-up methods for nanoparticle production [20]. 

3.2.2 Top-down method : 

Top-down or destructive method is the reduction of a bulk material to nanometric scale 

particles. Mechanical milling, nanolithography, laser ablation, sputtering and thermal 

decomposition are some of the most widely used nanoparticle synthesis methods[20]. 

 

 

 

Table 2: Categories of the nanomaterial synthesized from the various methods [20] 

Category Method Nanoparticles 

Bottom-up Sol-gel Carbon, metal and metal oxide based 
 Spinning Organic polymers 
 Chemical Vapour Deposition (CVD) Carbon and metal based 
 Pyrolysis Carbon and metal oxide based 

Figure 15: Synthesis proccess 
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 Biosynthesis Organic polymers and metal based 

Top-down Mechanical milling Metal, oxide and polymer based 
 Nanolithography Metal based 
 Laser ablation Carbon based and metal oxide based 
 Sputtering Metal based 
 Thermal decomposition Carbon and metal oxide based 

 

3.3 Areas of application of nanomaterials: 

Nanomaterials are of great interest because they have a lot of potential to create new and 

innovative products across many areas. By more directly steering the reactions and interactions 

between atoms at the nanoscale, nanomaterials can be produced and their properties can be 

steered in unusual ways [19]. 

 

Table 3: Different type of nanomaterials and their application areas [7] 

Nanoceramic 

 Structural composite materials 

 Anti-UV components 

 Mechano-chemical polishing of substrate (wafers) in microelectronics 

 Photocatalytic applications 

Nanometallic 

 Antimicrobial and/or catalysis sectors 

 Conductive layers of screens, sensors or energy materials 

Nanoporous 

 Aerogels for thermal insulation in the fields of electronics, optics and 

catalysis 

 Biomedical field for vectorization or implant applications 

 

Nanotubes 

 Electrical conductive nanocomposites 

 Structural materials 

 Single wall nanotubes for applications in the field of electronics, 

screens 

Massive 

Nanomaterials  

 Hard coatings 

 Structural components for aviation, automotive, pipelines for oil and 

gas industries 

 Sports 

 Anti-corrosion sector 
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Dendrimers 
 Medical field (medication administration, rapid detection) 

 Cosmetic field 

Quanta dots 

 Optoelectronic applications (screens)  

 Photovoltaic cells 

 Inks and paints for anti-counterfeiting marking applications 

Fullerenes 
 Sports sectors (nanocomposites) 

 Cosmetics 

Nanowires 
 Conductive layers of the screens or solar cells the electronic devices 

 

4. Conclusion: 

This chapter has introduced us to functionally graded materials, their effective properties, 

and its creativeness. It has also familiarized us with the nanoworld, the particular kind of 

material that falls under it, its characteristics, and its many elaboration techniques. 

            We also gained an understanding of the kinds of materials that bulk materials referred 

to in our work as "functionally graded materials" may be reinforced with. We are going to 

strengthen a functionally graded material by using graphene nanoplatelets as nanofillers. 

            The study of reinforced functionally graded materials is novel, any logical concept 

might be deemed innovative. That's what we decided to aim for in the long run. 
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1. Introduction: 

The study of functionally graded materials has become increasingly important in the 

world of materials science. These materials are unique in that their mechanical properties can 

be distributed in a way that optimizes their performance for a specific application. This means 

that engineers can tailor materials to meet the exact needs of a particular project, resulting in 

improved efficiency and effectiveness.  

To fully understand how functionally graded materials perform, it is important to look 

at their mechanical properties. These properties include factors such as strength, stiffness, 

toughness, and ductility. By carefully controlling the distribution of these properties, engineers 

can create materials that are optimized for a specific application. 

As we embark on this journey of understanding the complexities of plate behavior, it is 

imperative that we delve into the various theories that have been put forth by experts in the 

field. These theories aim to explain the behavior of plates when subjected to deformations, and 

provide us with a comprehensive understanding of the underlying mechanics at play. 

 

2.  Laws governing property distribution: 

It is beneficial to use homogenization schemes for the graded materials that contain 

parallel homogeneous layers with definite elastic moduli. The properties of each layer are 

assessed with appropriate averaging methods. The thickness of layer and the volume fractions 

of phase constituents contained in the layer are chosen to approximate the substantial variation 

in a phase volume fraction of graded materials. Some of the homogenization models are 

discussed below [21]. 

 

2.1  Gradation Laws : 

2.1.1  Power law Model (P-FGM): 

Power law is found to be most cited and accepted model in the scientific literature. The 

material properties are varied in specific direction (unidirectional) which is given by [21] 

equation (2-1)  
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                                 𝑃(𝑧)  =  (𝑃𝑐 –  𝑃𝑚) 𝑉𝑓 +  𝑃𝑚                                                (2-1) 

 

Here P represent the general material properties such as Elastic modulus, Pc and Pm 

symbolize the properties of ceramic and metal faces of functionally graded structure and Vf 

denote volume fraction. 

Properties of P-FGMs depends on the volume fraction (Vf) that follow a law given by 

equation (2-2) 

 

𝑉𝑓 = (
1

2
+

𝑧

ℎ
)
𝑛

          ,         −
𝒉

𝟐
≥ 𝒛 ≥

𝒉

𝟐
                                (2-2) 

Here n is termed as power-law index that indicates the level of material inhomogeneity 

in FGMs. If 𝑛=0 then FGM plate is fully ceramic, whereas n= ∞ indicate a fully metallic 

plate. 

The boundary conditions define the properties at bottom surface of the plate which are 

given by the, P(z) = Pm for 
𝒁

𝒉
 = -1/2; hence. Vf =0 At the top surface, properties are P(z) = Pc, 

for 
𝒁

𝒉
 = 1/2 [21] 

 

 

 

 

 

 

 

2.1.2 Exponential law Model (E-FGM): 

This model is widely used to study the fracture mechanics. Researchers have 

implemented this law in analyzing the static and dynamic performance of FGM structures. The 

properties of one/uni-directional (UD) FGMs are given by [21] equation (2-3) 

 

𝑃(𝑧) = Pt. 𝑒(
1
ℎ⁄ ).ℎ.(𝑃t 𝑃b⁄ ).(𝑧+ℎ 2⁄ )                                                     (2-3) 

Figure 16: volume fraction variation [22] 
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The terms P, Pt, and Pb are the properties along the Z-direction, bottom and top surface 

respectively. 

 In the case of a thermal effect, we face another model: 

 

𝑃(𝑧, 𝑇) = 𝑃b(𝑇). 𝑒
(𝑧 ℎ⁄ +1 2⁄ ).ln (Pt

(𝑇)
𝑃b(𝑇)
⁄ )

      ,        −
ℎ

2
≥ 𝑧 ≥

ℎ

2
                 (2-4) 

                                   

 

 

 

 

 

 

 

 

 

2.1.3 Sigmoid law Model (S-FGM): 

This model is designed by using a FGM of single power law model to the multi-layered 

composites. As reported by Chi and Chung the volume fraction is determined using two power 

law functions. This law provides a smoother distribution of stresses at every interface. For uni 

directional FGMs this law is given by [21] (2-5) and (2-6) 

 

𝑉(𝑧)=
1

2
(
ℎ

2
+𝑧

ℎ

2

)

𝑛

            ,            −
ℎ

2
≤ 𝑧 ≤ 0                         (2-5) 

 𝑉(z) = 1 −
1

2
(
ℎ

2
+𝑧

ℎ

2

)

𝑛

     ,             0 ≤ 𝑧 ≤
ℎ

2
                            (2-6) 

    n is the index of the volume fraction of the S-FGM [22]. 

The property of the S-FGM is written according to the volume fraction as follows [22]: 

𝑃(𝑧) = (𝑃t − 𝑃b)𝑉(𝑧) + 𝑃b      ,         −
ℎ

2
≤ 𝑧 ≤ 0                           (2-7) 

P(z) = (Pt − Pb)V(z) + Pb      ,           0 ≤ z ≤
h

2
                              (2-8) 

Figure 17: Young modulus variation ([Pa] x 10-11) of an E-FGM 
(SUS304-Al2O3)  (presence of a thermal effect) [22] 
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2.1.4 Voigt Model : 

Voigt model (known also as rule of mixture ROM) is used to compute FGM property 

(P) as a function of volume fractions and material properties of constituents as represented in 

(2-9). This model is applied to uni directional FGM structures but cannot be applied to porous 

structures [21]. 

P =∑𝑃j

𝑘

𝑗=1

𝑉𝑓j                                                                     (2-9) 

Voigt model also provide the material properties of FGMs such as Young’s modulus, 

mass density, and Poisson’s ratio [21], for example let’s take an FGM structure with two phases 

constituents (metal-ceramic), the overall property of this structure could be written as follows: 

 

𝑃 = 𝑃m𝑉𝑚 + 𝑃c𝑉c                                                                 (2-10) 

 

P: Property along the z axis. 

        Pm, Pc : The mechanical property of metal and ceramic respectively. 

Vm, Vc: volume fraction of metal and ceramic respectively. 

 

2.1.5 Trigonometric Model : 

This model provides the volume fraction in the form of trigonometric function for UD 

FGMs as given in [21] (2-11) 

Figure 18: Variation de la fraction volumique du S-FGM [22] 
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𝑉𝑓 = 𝐶 (
1

2
−
𝛼

2
sin (

𝑛𝜋𝑧

ℎ
+ φ))

Ɣ 

                                                   (2-𝟏𝟏) 

 

2.1.6 Viola Tornabene law Model 

This model is mainly applied in the analysis of functionally graded beams. With the 

formulation one can select materials mixture either at bottom or top surface of a beam. This law 

is further categorized as three parameter and four parameter models which are given in (2-12) 

& (2-13) respectively [21]. 

𝑉𝑓 = (
1

2
−
𝑧

ℎ
+ 𝑏 (

1

2
+
𝑧

ℎ
)
𝑐

)

𝑝

                                             (2-𝟏𝟐 ) 

𝑉𝑓 = (
1

2
− 𝑎 (

1

2
−
𝑧

ℎ
) + 𝑏 (

1

2
+
𝑧

ℎ
)
𝑐

)

𝑝

                                     (2-𝟏𝟑) 

 

The terms a, b, c, p represent the propagation of material along the thickness direction 

of beam. This model provides most diverse material variation when compared to power law 

model. 

2.2 Microstructural properties caracterization models : 

2.2.1 Mori-Tanaka Scheme : 

The execution of different homogenization models in a graded material system begins 

with the estimation of effective elastic moduli. In FGMs, overall local moduli are approximated 

to those of matrix-based composites reinforced with spherical particulate. Concerning the 

applications, the following relations for randomly distributed isotropic reinforcement 

particulate in an isotropic matrix of graded materials are given below [21]. 

The effective Young’s modulus & Poisson’s ratio is given by (2-14) and (2-15) 

𝐸 =
9𝐾𝐺

3𝐾 + 𝐺
                                                                   (2-𝟏𝟒) 

 

ν =
3𝐾 − 2𝐺

2(3𝐾 + 𝐺)
                                                                   (2-𝟏𝟓) 

This model is further expressed as (2-16) and (2-18) 

𝐾 − 𝐾1

𝐾2 − 𝐾1
=

𝑉𝑓

1 +
3𝑉𝑓(𝐾2 − 𝐾1)
(3𝐾1 + 4𝐺1)

                                                  (2-𝟏𝟔) 
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𝐺 − 𝐺1

𝐺2 − 𝐺1
=

𝑉𝑓

𝑉𝑓(𝐺2 − 𝐺1)
1 + (𝐺1 + 𝑓1)

                                                      (2-𝟏𝟕) 

 

𝑓1 =
G1 (9K1 ― 8G1 )

6(K1 +  2G1 )
                                                          (2-𝟏𝟖) 

Where E is Young’s modulus, is Poisson’s ratio, K and G are local bulk and shear 

modulus ν respectively and suffixes 1, 2 represent matrix and reinforcement phases. 

2.2.2 Self-consistent estimation Model : 

In particular, this model is suited for estimating the effective moduli in the areas that 

possess similar microstructure [21]. The Hill self-consistent method assumes that each 

reinforcement inclusion is contained in a continuous material for which the properties are those 

of a composite. This method does not differentiate between the matrix phase and the 

reinforcement phase; implying that the same global moduli is estimated in another composite 

where the roles of the two phases are permutated. This allows the estimation of the effective 

moduli in regions where the skeleton of the microstructure has a continuous shape [22]. 

 

𝐾 =
1

V1

K1 +
3
4𝐺

+
𝑉2

𝐾2 +
3
4𝐺

−
3

4
𝐺                                                   (2-𝟏𝟗) 

 

It utilizes quadratic equation which must be solved at every surface of FGM plate to 

attain the shear modulus. 

 

 [
𝑉1𝐾1

𝐾1+
3

4
𝐺
+

𝑉2𝐾2

𝐾2+
3

4
𝐺
] + 5 [

𝑉1𝐺2

𝐺−𝐺2
+

𝑉2𝐺1

𝐺−𝐺1
] + 2 = 0                                   (2-2𝟎) 

 

2.2.3 Hashin-Shtrikman bounds model : 

This model is applied to develop the effective properties of a two-phase material 

having spherical shaped particles that are distributed randomly. It is a variation approach 

which provide the material properties at upper and lower bounds. (2-𝟐𝟏) & (2-𝟐𝟐) represent 

the effective shear and bulk moduli respectively.  
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 𝐺+ = 𝐺2 +
(1−𝑉𝑓)

1

𝐺2−𝐺1
+
6(𝐾2+2𝐺2)𝑉𝑓

5𝐺2(3𝐾2+4𝐺2)

   ;             𝐺− = 𝐺1 +
𝑉𝑓

1

𝐺1−𝐺2
+
6(𝐾2+2𝐺1)(1−𝑉𝑓)

5𝐺1(3𝐾1+4𝐺1)

              (2-𝟐𝟏) 

𝐾+ = 𝐾2 +
(1 − 𝑉𝑓)

1
𝐾1 − 𝐾2 +

3𝑉𝑓
3𝐾2 + 4𝐺2

    ;              𝐾− = 𝐾1 +
𝑉𝑓

1
𝐾2 − 𝐾1

+
3(1 − 𝑉𝑓)
3𝐾1 + 4𝐺1

                   (2-𝟐𝟐) 

 

The properties at upper and lower bounds are represented with superscripts + and – 

symbols. After obtaining the Shear and Bulk modulus, the Elastic modulus and Poisson’s ratio 

are calculated using (2-𝟏𝟒) and(2-𝟏𝟓). The effective properties computed at lower bound is 

identical as reported by Mori-Tanaka scheme [21]. 

 

2.2.4 Halpin-Tsai model : 

Halpin-Tsai model is a semi-empirical method to predict the elastic properties of fibre 

reinforced composites. This model can take into consideration the geometric characteristics and 

the orientation of the filler that would considerably affect the reinforcing efficiency. The 

longitudinal modulus E11, the transverse modulus E22, and the shear modulus G12 can be 

obtained as,[23] 

𝐸11 =
1 + 𝜉11𝜂11𝑉𝑓

1 − 𝜂11𝑉𝑓
𝐸𝑚    ;     𝐸22 =

1 + 𝜉22𝜂22𝑉𝑓

1 − 𝜂22𝑉𝑓
𝐸𝑚   ;  𝐺12 =

1

1 − 𝜂12𝑉𝑓
𝐺𝑚              (2-𝟐𝟑) 

 

where η11, η22 and η12 take the following expressions, 

𝜂11 =
(
𝐸𝑓

𝐸𝑚
⁄  )−1

(
𝐸𝑓

𝐸𝑚
⁄  )+𝜉11

  ;    𝜂22 =
(
𝐸𝑓

𝐸𝑚
⁄  )−1

(
𝐸𝑓

𝐸𝑚
⁄  )+𝜉22

 ;   𝜂12 =
(
𝐺𝑓

𝐺𝑚
⁄  )−1

(
𝐺𝑓

𝐺𝑚
⁄  )

                                                 (2-24)  

 

η11, η22 , η12 are the filler length distribution factors in different directions. 

ξ11, ξ22  are the shape size parameters along longitudinal and transverse directions. 

 

The reinforcement geometry factors have different expressions for different 

reinforcement shape. For platelets or lamellar-shaped fillers, ξ11 and ξ22 are defined as 

                               ξ11 = 2(𝑙 𝑡⁄ )            ;          ξ22 = 2(
𝑤
𝑡⁄ )                                                 (2-𝟐𝟓)  

where l, w, and t represent the length, width and thickness of the rectangular filler, 

respectively. 
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The Young’s modulus of the composite with randomly oriented reinforcement is given 

by, 

                                                   𝐸𝑐 =
3
8⁄ 𝐸11 +

5
8⁄ 𝐸22                                                                      (2-𝟐𝟔)  

 

3. Plate deformation theories: 

3.1 Plate Definition : 

A plate is an elastic solid that has one dimension depending on the thickness, is small 

compared to the other two, and usually has a plane of symmetry in the middle of the width that 

we will call the mid-surface. By convention, this surface will be the plane (x-y), and the axis 

(o-z) corresponds to the transverse axis according to the thickness. [24]. 

  

 

 

The problems encountered mainly concern issues of dimensioning or control of 

vibrations and stresses. To better know the response of the dynamic and static behavior of the 

structure, it is imperative to approach in the most correct way possible the phenomena put into 

play by the plates that are more or less complex. For example, a bridge board, a building, a car 

box, an airplane wing, a boat... Among all these areas of application, several types of plates can 

be distinguished: membrane plates, thin, moderate, and thick plates with different material 

properties. In this study, we will be interested in heterogeneous plates in advanced composite 

materials, called properties gradient materials that are usually made up of two different 

constituents [24]. 

 

Figure 19: Geometry of a rectangular shape plate 
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In order to solve the problems of structures having as structural elements FGM beams 

and plates in the elastic field, it is necessary to choose the correct theory correctly describing 

the static and dynamic behavior of the structure as well as the method of resolution to be 

applied. It was in 1888 that Love used Gustav Kirchhoff's hypotheses, themselves inspired by 

Euler-Bernoulli's, to establish a theory of thin plates "also known as the classical theory or 

Kirchhof-Love theory". The theory of semi-thick plates "theory of deformations of the first 

order" was consolidated by Mindlin from the work of Timoshenko [25] and Reissner [26]. Then, 

higher-order theories have come to improve the assumptions of classical and first-class theories 

when the thickness of the plate becomes significant. There is also the theory based on the three-

dimensional elasticity "3-D theory" that makes no restrictive assumptions on the displacement 

of the plate [24]. In our study, we are interested in 2D plate elements. 

 

3.2 Classical plate theory “Kirchhoff-love theory”: 

 A thin plate is referred to when the deflection, generated by the shear deformations 

remains negligible in front of the deflection generated from the curvature of the plate. In the 

case of a homogeneous isotropic plate, the shear part in the deflection is directly connected to 

the slenderness (L/h), (slenderness ration h/a ≤ 0.05) [22]. The “classical plate theory” is 

generalized here to account for anisotropic and nonhomogeneous material behaviors [27]. The 

Kirchhoff assumptions taken by Love are as follows [22][24]: 

 The material points, located on a normal to the mid-surface not deformed, remain on a 

straight in the deformation configuration. 

 Transverse deformation, Ɛzz equals to 0 (no strain variation throughout the plate.). The 

straight sections, initially normal to the mid-plane, remain flat and normal to it after 

deformation. 

 The normal stress in the transverse direction is small, therefore negligible compared to 

the stress belonging to the plate plane (plane stress state). 

 The nonlinear terms of the displacement are neglected. Rotation inertia is alsoneglected. 

The CPT theory is the simplest of approaches that could describe the mechanical 

behavior of plates. 
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The displacement field written as: 

{

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧𝜃𝑦
𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧𝜃𝑥
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)           

                                                         (𝟐-𝟐𝟕) 

 

With: 

u0(x,y) and v0(x,y): Membrane displacement in x and y directions, respectively, 

w0(x,y): the plate deflection 

 θx and  θy : Rotations due to bending (without shear effect). 

 

The rotation angles of the deflection of the mid-surface are expressed as the transverse 

displacement w0(x,y) by, 

 

𝜃𝑦 =
𝜕𝑤0
𝜕𝑥

     ;   𝜃𝑥 =
𝜕𝑤0
𝜕𝑦

                                                                 (𝟐-𝟐𝟖)  

 

The effect of transverse shear deformation increases significantly when the slenderness 

ratio h/a or h/b (a and b refers to length and width of the plate respectively) is greater than or 

equal to 0.05. Given theory neglects transverse shear flexibility, this leads to an overestimation 

Figure 20: kinematic illustration of Kirchhoff-love plate. 
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of the bending stiffness and, consequently, an overestimation of vibration frequencies and an 

underestimation of displacements [22]. 

 

3.3 Shear deformation theories: 

3.3.1 First order shear deformation theory: 

When the plate thickness no longer allows verification of Kirchhoff's bending motion 

hypotheses [22], a new theory based on the study of a moderated plate thickness was taken in 

consideration. The first-order shear deformation theory extended the classical plate theory by 

taking into account the effect of transverse shear, in which case stresses and strains are constant 

across the thickness of the plate [24].  

In contrast to thin plate theory, Mindlin-Reissner's theory [26] assumes that cross-

sections, initially normal to the mid-plane, remain flat and not necessarily normal to it after 

deformation [22]. 

The displacement field is given by, 

{

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧𝜙𝑥
𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧𝜙𝑦
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)           

                                                        (𝟐-𝟐𝟗) 

With: 

ϕx and ϕy are rotations of the mean plane normal around the x and y axes. 

The displacement field defined in the above expression allows us to take up the classical 

described in the last section by the replacement, 

ϕ𝑥 =
𝜕𝑤0
𝜕𝑥

     ;   ϕ𝑦 =
𝜕𝑤0
𝜕𝑦

                                                            (𝟐-𝟑𝟎) 
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Since first-order plate theory (FSDPT) does not satisfy the boundary conditions at the 

top and bottom surfaces of the plate (non-zero tensile stresses), a through-thickness shear 

correction factor is required. The value of this correction factor depends on the plate geometry, 

the variation in Poisson's ratio the variation of Poisson's ratio across the thickness, the loading 

applied and the imposed boundary conditions [22]. 

Moreover, to avoid the use of shear correction factor, many higher order shear 

deformation theories (HSDTs) were developed based on the assumption of nonlinear variations 

of in-plane displacements within the plate thickness [28]. 

 

3.3.2  Higher order shear deformation theories: 

This class of finer theories is based on the development of displacement in thickness to 

order two or higher. These theories are particularly well suited to modeling the behavior of thick 

plates or short beams, where transverse deformation plays a predominant role, these models do 

not require correction factors. The high-order theory is based on a nonlinear distribution of 

fields in the thickness of the plate [24]. This theory uses a Taylor series expansion through the 

thickness of the displacement field, which can be represented by the following form [7][22]:  

 

𝑈(𝑥, 𝑦, 𝑧, 𝑡) =  𝑈0(𝑥, 𝑦, 𝑡) +  𝑧𝜙𝑥(𝑥, 𝑦, 𝑡) + 𝑧
2𝜙𝑥

2(𝑥, 𝑦, 𝑡) + ⋯ + 𝑧𝑛𝜙𝑥
𝑛(𝑥, 𝑦, 𝑡)      (𝟐-𝟑𝟏) 

 

Figure 21: kinematic illustration of Reissner-Mindlin 
plate 
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Second order: 

{

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝑦, 𝑡) + 𝑧
2𝜓𝑥(𝑥, 𝑦, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) +  𝑧𝜙𝑦(𝑥, 𝑦, 𝑡) + 𝑧
2𝜓𝑦(𝑥, 𝑦, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡)  +  𝑧𝜙𝑧(𝑥, 𝑦, 𝑡) + 𝑧
2𝜓𝑧(𝑥, 𝑦, 𝑡)

                         (𝟐-𝟑𝟐) 

Where 𝑢0, 𝑣0, 𝑤0, 𝜙𝑥, 𝜙𝑦, 𝜙𝑧, 𝜓𝑥, 𝜓𝑦, 𝜓𝑧,  , 𝜒y, 𝜒z are the unknown functions. 

 

Third order: 

{

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝑦, 𝑡) + 𝑧
2𝜓𝑥(𝑥, 𝑦, 𝑡) + z

3χ𝑥(x, y, t)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦, 𝑡) +  𝑧𝜙𝑦(𝑥, 𝑦, 𝑡) + 𝑧
2𝜓𝑦(𝑥, 𝑦, 𝑡) + z

3χ𝑦(x, y, t)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦, 𝑡)  +  𝑧𝜙𝑧(𝑥, 𝑦, 𝑡) + 𝑧
2𝜓𝑧(𝑥, 𝑦, 𝑡) + z

3χ𝑧(x, y, t)

         (𝟐-𝟑𝟑) 

Where 𝑢0, 𝑣0, 𝑤0, 𝜙𝑥, 𝜙𝑦, 𝜙𝑧, 𝜓𝑥, 𝜓𝑦, 𝜓𝑧,  𝜒𝑥, 𝜒y, 𝜒z are the unknown functions must be found 

to describe the plate motion. 

 

The assumptions underlying the development of these theories are [22]: 

 Displacements are small compared to the plate thickness. 

 Cross-sections, initially flat and normal to the mid-plane, do not necessarily remain 

flat and normal to it after deformation.  

 Axial deformation in the transverse direction is not negligible, which means that the 

plate undergoes thickness deformation. 

 Normal stress in the transverse direction is generally not negligible. 

 Flexural and shear deformations are both important and interdependent. 

 The material points, located on a normal to the mid-surface not deformed, not 

necessary remain on a straight in the deformation configuration, which means that 

the plate undergoes thickness deformation. 
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Practically, it can be seen that the higher-order theory of thick plates can be complex to 

apply, and often requires the use of numerical methods to solve the equations [7]. 

 

3.3.2.1 Refined theory: 

First-order (FSDT) and higher-order (HSDT) theories are impractical due to the number 

of higher-order terms introduced into the formulation. In order to reduce the number of variables 

used in existing formulations, Shimpi developed a refined model for isotropic plates (RPT: 

Refined Plate Theory). The most interesting features of this method are that it does not require 

a shear correction coefficient and has many similarities with classical plate theory in terms of 

equations of motion, boundary conditions and moment expressions. The RPT theory was then 

successfully adapted to orthotropic plates by Shimpi and Patel and by Kim, Thai et al. and to 

FGM plate bending by Atmane, Tounsi [22]. Refined Plate Theories are more complex and 

accurate models than traditional higher-order theory, introducing shape functions describing 

shear deformations and stresses through the plate thickness. 

Refined higher-order theories are therefore useful for a more accurate and realistic 

analysis of these structures and can have a significant impact on their behavior in terms of 

strength, stability, vibrations, deformations…etc [7]. Their displacement field is given by [22]: 

Figure 22: Transverse shear deformation of a plane according to various plate theories. 
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{
 
 

 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧

𝜕𝑤

𝜕𝑥
+ 𝜑(𝑧) (𝜙𝑥(𝑥, 𝑦) +

𝜕𝑤0

𝜕𝑥
)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑦
+ 𝜑(𝑧) (𝜙𝑦(𝑥, 𝑦) +

𝜕𝑤0

𝜕𝑦
)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                              

                                 (𝟐-𝟑𝟑) 

 

Where: (𝑧) is the shape function driving the distribution of shear strains and stresses across 

the plate thickness, it is unique to each theory (table 4), and 𝑢0, 𝑣0, 𝑤0, 𝜙𝑥, 𝜙𝑦 are the five 

variables to find (five variables theory)  

 Classical plate theory (CPT) displacements are obtained by taking (𝑧) = 0, while first-

order theory (FSDPT) can be obtained by (𝑧) = 𝑧. 

Reddy's model assumes that the membrane displacement field is cubic. This approach 

is a good approximation for transverse shear stresses compared to the three-dimensional 

elasticity solution. This makes Reddy's theory frequently the most widely used for the study of 

plate bending, buckling and vibration. 

 

{
 
 

 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧

𝜕𝑤

𝜕𝑥
+ 𝑧3 (1 −

4

3ℎ2
) (𝜙𝑥(𝑥, 𝑦) +

𝜕𝑤0

𝜕𝑥
)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑦
+ 𝑧3 (1 −

4

3ℎ2
) (𝜙𝑦(𝑥, 𝑦) +

𝜕𝑤0

𝜕𝑦
) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                                            

                        (𝟐-𝟑𝟒) 

 

Mahi et al [30] proposed that the distribution of transverse-shear strains and stresses 

have a hyperbolic shape function, it is variationaly consistent, based on the same assumptions 

as those of the third-order shear deformation plate theory of Reddy and have five degrees of 

freedom. It shows a good agreement between analytic results for bending and free vibration 

compared to the “quasi-3D theory”,  

Mahi et al displacement field could be written as: 

{
 
 

 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧

𝜕𝑤0
𝜕𝑥

+ (
ℎ

2
tanh (

2𝑧

ℎ
) −

4

3 cosh2(1)
(
𝑧3

ℎ2
)) (𝜙𝑥(𝑥, 𝑦) +

𝜕𝑤0
𝜕𝑥

)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ (
ℎ

2
tanh (

2𝑧

ℎ
) −

4

3 cosh2(1)
(
𝑧3

ℎ2
)) (𝜙𝑦(𝑥, 𝑦) +

𝜕𝑤0
𝜕𝑦

) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                                                                                   

(𝟐-𝟑𝟓) 

  

Table 4: Different model of shape functions 

Theory Shape function 
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Mahi [22] 𝑧 [1 − 𝛼 (
𝑧

ℎ
)
2

+ 𝛽 (
𝑧

ℎ
)
4

 ] 

Mantari and Okten &soares [31] 
tan(mz) + y∗𝑧   ;   y∗ = −m sec2(𝛼) , 

 𝑚 > 0,    𝛼 = 𝑚
ℎ

2
  

Touratier [32] 
ℎ

𝜋
sin(

𝑧

ℎ
) 

Ait Atmane [33] 
cosh (

𝜋
2)

cosh (
𝜋
2) − 1

𝑧 −

ℎ
𝜋 sinh

𝜋𝑧
ℎ

cosh (
𝜋
2) − 1

 

El Meiche [34] .

ℎ
𝜋 𝑠𝑖𝑛ℎ (

𝜋𝑧
ℎ
) − 𝑧

cosh (
𝜋
𝑧) − 1   

 

Mahi [30] 
ℎ

2
tanh (

2𝑧

ℎ
) −

4

3 cosh2(1)
(
𝑧3

ℎ2
) 

Sahoo and singh [35] coth−1(
𝑟ℎ

𝑧
) −

4𝑟

ℎ(4𝑟2 + 1)
    ;  𝑟 = 0.46 

Ambartsumian [36] 
𝑧

2
(
ℎ2

4
−
𝑧2

3
) 

Shimpi [37] ℎ ⌊
1

4
(
𝑧

ℎ
) −

5

3
(
𝑧

ℎ
)
3

⌋ 

 

 Shimpi’s shape function is used for the displacement field given (four variables 

refined theory) by, 

{
 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
+ 𝜑(𝑧) (

𝜕𝑤𝑠

𝜕𝑥
)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
+𝜑(𝑧) (

𝜕𝑤𝑠

𝜕𝑥
)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤b(𝑥, 𝑦) + 𝑤b(𝑥, 𝑦)                   

                                                                           (3-𝟑𝟔)

  

Where:  

u0 and v0 the membrane displacement in the x and y directions, 

wb and ws are the deflections of the plate due to shear and bending forces. 

 

3.3.2.2 Laminated theories: 

In order to better describe the shear deformation of composite materials, some authors 

have high order theory with the so-called zig-zag theory to better describe interface effects. 

Thus, various models derived from the layer approach have been proposed. The multilayer is 

subdivided into substructures (corresponding to each layer or set of layers). First-order theory 

or a high-order model is applied to each substructure. The kinematics of zig-zag models satisfy 

a priori the contact conditions and are independent of the number of layers. The main advantage 



CHAPTER 2 

 

Page | 39  

 

of the displacement field of zig-zag models lies in the fact that the distortion of the normal to 

the deformed surface. This is achieved without increasing the number and order of the 

fundamental equations of first-order theory. The use of transverse shear correction coefficients 

is avoided. Based on the concept of Di Sciuva, several authors have made significant 

improvements to the zig-zag model. The main improvement is the introduction of a non-linear 

displacement distribution. The zig-zag field (piecewise linear) is superimposed on a high-order 

displacement field (often cubic) [24]. 

Compatibility conditions are satisfied on both the top and bottom surfaces of the to 

reduce the number of parameters, 

 

 

 

    

3.3.3 Zeroth Order Shear Deformation Theory: 

In addition to the high-order theory, a new shear deformation theory has been used to 

describe the behavior of laminated composite plates, the zeroth-order shear deformation theory 

(ZSDT) was first proposed by Shimpi and Ray, the zero-order theory accounts for the shear 

effect without the introduction of shear correction factors, while maintaining a minimum level 

of complexity to get the solution [24]. 

The displacement field is given by, 

Figure 23: Displacement field of the high-order zig-zag 
model 
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{
 
 

 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧

𝜕𝑤

𝜕𝑥
+
1

𝜆𝑥
(
3

2
(
𝑧

ℎ
) − 2 (

𝑧

ℎ
)
3

)𝑄𝑋

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑦
+
1

𝜆𝑦
(
3

2
(
𝑧

ℎ
) − 2 (

𝑧

ℎ
)
3

)𝑄𝑦

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                              

                         (𝟐-𝟑𝟕) 

 

Where: 

Qx and Qy are the resultants of transverse shear stresses. 

    λx and λy are constants that can be determined by considering the definition of the 

resultants Qx and Qy . 

𝑄𝑥 = ∫ 𝜏𝑥𝑧 𝑑𝑧
ℎ/2

−ℎ/2

    ;       𝑄𝑦 = ∫ 𝜏𝑦𝑧 𝑑𝑧

ℎ
2

−
ℎ
2

                                                          (𝟐-𝟑𝟖) 

 
 

4. Conclusion: 

The literature research conducted in this chapter has offered crucial models for the 

analysis of functionally graded materials (FGMs) structures, including plates and beams. 

In the field of materials science, functionally graded materials (FGMs) are of great 

interest due to their unique properties and potential applications. FGMs are composite materials 

that exhibit a gradual change in composition and/or microstructure across their thickness, 

resulting in a gradient of properties. This gradient can be designed to achieve specific 

performance characteristics, such as improved strength, toughness, or thermal conductivity. 

To fully understand the properties and behavior of FGMs, it is important to have a 

comprehensive understanding of the distribution models that can define these materials. (P-

FGM), (E-FGM), (S-FGM) are the models allow for a description of how the macrostructural 

properties of the material change across its thickness, providing insight into how the material 

will behave under different loading conditions. 

On the other hand, microstructural properties, such as the orientation and distribution of 

reinforcing fibers or particles, can also be characterized using specific distribution models. The 

Halpin Tsai model and Mori-Tanaka model are commonly used to describe the behavior of filler 

or reinforcement materials in FGMs. These models take into account the shape, size, and 

orientation of the reinforcing particles, providing a detailed depiction of the microstructure of 

the material. 
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This chapter delves into an in-depth study of the various shear deformation theories of 

plates, with the primary objective of understanding how to accurately describe the behavior of 

deformed configurations of functionally graded material (FGM) plates and extract their 

displacement fields. To begin with, we explore the classical plate theory (CPT) that provides 

insights into the bending behavior of plates while neglecting the shear effect. However, it is 

important to note that this theory often leads to imprecise results of the deformed plate because 

it fails to take into account the shear effect. 

In light of this, researchers have developed new deformation theories, such as first-order 

shear deformation and higher-order shear deformation, to describe the real behavior of 

deformed plates. These theories are crucial in providing a more accurate representation of the 

deformation and displacement fields within FGM plates. By incorporating the shear effect, 

these theories are able to capture the nuances of the deformation process, which would 

otherwise be overlooked by CPT. 

It is worth noting that the use of higher-order shear deformation theories is particularly 

important in the analysis of FGM plates. This is because the material properties within these 

plates tend to vary spatially, resulting in non-uniform deformation. As such, higher-order shear 

deformation theories are better suited to account for the complex deformation patterns that are 

observed in FGM plates. 
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1. Introduction: 

In this chapter, we will be going to model an FG-GPLRC (Functionally Graded 

Graphene-Platelets Reinforced Composite) plate. This will involve various steps that will allow 

us to accurately describe the behavior of the plate in terms of displacements, deformations, and 

stresses. To achieve this, we will make use of the theory of Mahi et al, which consists of five 

variables. By utilizing this model, we will be able to more precisely predict the plate's 

performance under different conditions. 

In addition, we will consider the plate reinforcement with graphene nano-platelets. By 

employing the Halpin-Tsai model, which is commonly used in the field of composite materials.  

Once we have incorporated both the Mahi et al and Halpin-Tsai models, we will derive 

the governing equations using Hamilton's principal, a fundamental concept in classical 

mechanics that relates to the principle of least action.  

Finally, having derived the motion equations, we will use an analytical method to solve 

the coupled differential equations system. This will enable us to find the displacement equations 

of our bending and buckling problem, giving us a complete picture of the plate's behavior. By 

utilizing these sophisticated models and methods, we’ll gain a deeper understanding of the 

mechanics and properties of FG-GPLRC plates, and ultimately develop better, more resilient 

materials for a wide range of applications. 

 

2. FG-GPLRC plate modelling: 

Consider a rectangular FGM plate of length a, width b and height h. The associated 

coordinates system is such that the z axis starts from the middle plane and points upwards, and 

the x and y axes start from one corner with 0 ≤ x ≤ a and 0 ≤ y ≤ b. The modeling procedure 

starts by [38] a uniform distribution of graphene nano-platelets through one phase matrix 

(epoxy), then gradually adding GPls inclusions, 

Adding GPls will enhance stiffness. The new elastic modulus 𝐸𝑚
𝐺𝑃𝑙 is calculated using 

the Halpin-Tsai homogenization model, which is expressed as: 

𝐸𝑐 =
3
8⁄ 𝐸11 +

5
8⁄ 𝐸22                                                       (𝟑-1)  
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𝐸𝑚
𝐺𝑃𝑙(𝑧) = 3

8⁄
1 + 𝜉𝐿𝜂𝐿𝑉𝑓

1 − 𝜂𝐿𝑉𝑓
𝐸𝑚 +

5
8⁄
1 + 𝜉𝑊𝜂𝑊𝑉𝑓

1 − 𝜂𝑊𝑉𝑓
𝐸𝑚                             (3-2) 

 

Where ηL, ηW and take the following expressions, 

 

𝜂𝐿 =
(
𝐸𝐺𝑃𝑙

𝐸𝑚
⁄  ) − 1

(
𝐸𝐺𝑃𝑙

𝐸𝑚
⁄  ) + 𝜉𝐿

  ;    𝜂𝑊 =
(
𝐸𝐺𝑃𝑙

𝐸𝑚
⁄  ) − 1

(
𝐸𝐺𝑃𝑙

𝐸𝑚
⁄  ) + 𝜉𝑊

                             (3-3) 

With:  

𝜉𝐿 = 2(
𝑙𝐺𝑃𝑙

𝑡𝐺𝑃𝑙
⁄ )            ;          𝜉𝑊 = 2(

𝑤𝐺𝑃𝑙
𝑡𝐺𝑃𝑙⁄ )                                           (3-4)  

 

Em , EGPl are Young’s modulus of polymer matrix and graphene nano-platelets 

respectively 

lGPl, wGPl, and tGPl represent the length, width and thickness of GPls, respectively. 

ξL, ξW are the shape parameters of the GPls along longitudinal and transverse directions. 

 

The effective volumetric density ρ𝑚
𝐺𝑃𝑙and Poisson’s ratio ν𝑚

𝐺𝑃𝑙are calculated using the 

rule of mixture between the matrix and GPls: 

𝜌𝑚
𝐺𝑃𝑙(𝑧) = 𝜌𝐺𝑃𝑙𝑉𝐺𝑃𝑙(𝑧) + 𝜌𝑚(1 − 𝑉𝐺𝑃𝑙(𝑧))                                      (3-5) 

𝜈𝑚
𝐺𝑃𝑙(𝑧) = 𝜈𝐺𝑃𝑙𝑉𝐺𝑃𝑙(𝑧) + 𝜈𝑚(1 − 𝑉𝐺𝑃𝑙(𝑧))                                      (3-6) 

 

The shear modulus expression is given by, 

𝐺𝑚
𝐺𝑃𝑙(𝑧) =

𝐸𝑚
𝐺𝑃𝑙(𝑧)

2 (1 + 𝜈𝑚
𝐺𝑃𝑙(𝑧))

                                                           (3-7) 

 

In which ρGPl and νGPl are the corresponding properties of GPls, and VGPl is GPls’ volume 

fraction which varies along the coordinate z in specified patterns. In the present study we use 

the following variation forms: 
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𝑉𝐺𝑃𝑙(𝑧) =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑉𝐺𝑃𝑙
∗                                                      𝐺𝑃𝑙 − 𝑈𝐷 

      

{
 
 

 
 2𝑉𝐺𝑃𝑙

∗ (1 −
2𝑧

ℎ
)  ,                     0 ≤ 𝑧 ≤

ℎ

2
 

2𝑉𝐺𝑃𝑙
∗ (1 − 2

(ℎ − 𝑧)

ℎ
) ,

ℎ

2
≤ 𝑧 ≤ ℎ

    𝐺𝑃𝑙 − 𝑋 ∶  𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑟𝑖𝑐ℎ

{
  
 

  
 
2𝑉𝐺𝑃𝑙

∗ (1 − 2
(
ℎ
2 − 𝑧)

ℎ
) , 0 ≤ 𝑧 ≤

ℎ

2

2𝑉𝐺𝑃𝑙
∗ (1 + 2

(
ℎ
2 − 𝑧)

ℎ
) ,

ℎ

2
≤ 𝑧 ≤ ℎ

    𝐺𝑃𝑙 − 𝑂 ∶  𝑚𝑖𝑑𝑑𝑙𝑒 − 𝑟𝑖𝑐ℎ

      (3-8) 

 

Where 𝑉𝐺𝑃𝑙
∗  denotes the total (or average) volume fraction of GPls. The volume-fraction 

𝑉𝐺𝑃𝑙
∗  is not directly measurable, but it can be derived from the weight-fraction AGPl by the 

relation: 

 

𝑉𝐺𝑃𝑙
∗ =

𝐴𝐺𝑃𝑙

(
𝜌𝐺𝑃𝑙
𝜌𝑚

) (1 − 𝐴𝐺𝑃𝑙) + 𝐴𝐺𝑃𝑙
                                                (3-9) 

In our study, we treat our FG-GPLRC plate as a multilayers plate to make an efficient 

study comparing our results to the reference [40]. 
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3. Derivation of the governing equations of motion: 

3.1 Determination of the strain and stress fields: 

3.1.1  Displacement, strain and stress fields: 

The displacement field of the plate is expressed as:  

{
 
 

 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧

𝜕𝑤0
𝜕𝑥

+ 𝜑(𝑧) (𝜙𝑥(𝑥, 𝑦) +
𝜕𝑤0
𝜕𝑥

)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝜑(𝑧) (𝜙𝑦(𝑥, 𝑦) +
𝜕𝑤0
𝜕𝑦

) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                              

                                (3-10) 

 

Where 𝑢0(𝑥, 𝑦), 𝑣0(𝑥, 𝑦) are the longitudinal displacements at the mid-plane level in 

the x and y directions, respectively, and 𝑤0(𝑥, 𝑦) is the deflection of the plate. 𝜙𝑥(𝑥, 𝑦) and 

𝜙𝑦(𝑥, 𝑦) denote respectively the total bending rotations around the y and x axes at the mid-

plane. 𝜑(𝑧) is a generic shape function that determines the distribution of transverse-shear 

strains and stresses. In the present study we will use the hyperbolic HSDT proposed by Mahi et 

al:  

𝜑(𝑧) =
ℎ

2
tanh (

2𝑧

ℎ
) −

4

3 cosh2(1)
(
𝑧3

ℎ2
)                                              (3-11) 

Figure 24: GPls distribution patterns through the plate thickness 
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As pointed out by Mahi et al [30], the derivative of the shape function (𝜑′(𝑧)) features 

a parabolic variation of transverse stresses and vanishes at z = -h/2 and z = h/2, satisfying the 

traction-free boundary conditions. 

By substituting the displacements of equation (3-10) into the linear strain tensor, defined 

as: 

 

휀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑖

+
𝜕𝑢𝑗

𝜕𝑥𝑗
)                                                             (3-12) 

 

{
 
 
 
 
 
 

 
 
 
 
 
 휀𝑥𝑥  =

𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

+ 𝜑(𝑧) (
𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

)                                

휀𝑦𝑦  =
𝜕𝑣0
𝜕𝑦

− 𝑧
𝜕2𝑤0
𝜕𝑦2

+ 𝜑(𝑧) (
𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)                               

휀𝑧𝑧  = 0

𝛾𝑥𝑦 =
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

− 2𝑧
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝜑(𝑧) (
𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0
𝜕𝑥𝜕𝑦

)

𝛾𝑥𝑧 =
𝜕𝜑

𝜕𝑧
(𝜙𝑥 +

𝜕𝑤0
𝜕𝑥

)

𝛾𝑦𝑧 =
𝜕𝜑

𝜕𝑧
(𝜙𝑦 +

𝜕𝑤0
𝜕𝑦

)

                  (3-13) 

 

The various stresses acting on a material point are shown in the following figure: 

 

 

Stress-strain relations can then be written in the following matrix form: 

Figure 25: Stress vector components 
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{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

                                 (3-14) 

 

Where the stiffness coefficients Qij are given by the following constitutive equations: 

{
  
 

  
 𝑄11 = 𝑄22 =

𝐸(𝑧)

1 − 𝜈2(𝑧)

𝑄12 = 𝑄21 =
𝜈(𝑧)𝐸(𝑧)

1 − 𝜈2(𝑧)

𝑄44 = 𝑄55 = 𝑄66 =
𝐸(𝑧)

2(1 + 𝜈(𝑧))

                                          (3-15) 

 

3.1.2  Constitutive relations : 

 Membrane and shear resultants : 

 

(

𝑁𝑥
𝑁𝑦
𝑄𝑥𝑦

) = ∫ (

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

)𝑑𝑧

ℎ/2

−ℎ/2

= ∫(
𝑄11휀𝑥𝑥 + 𝑄12휀𝑦𝑦
𝑄12휀𝑥𝑥 +𝑄22휀𝑦𝑦

𝑄66𝛾𝑥𝑦

)𝑑𝑧

ℎ
2

−
ℎ
2

                              (3-16) 

Where: 

Nx, Ny and Qxy are the resultants, per unit length, of the normal stresses (along x and y) 

and shear stresses in the (x-y) plane, respectively. 
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The higher order shear stresses are written as: 

(
𝑄𝑥𝑧
𝑎

𝑄𝑦𝑧
𝑎 ) = ∫ (

𝜎𝑥𝑧
𝜎𝑦𝑧
)
𝜕𝜑

𝜕𝑧
𝑑𝑧

ℎ
2

−
ℎ
2

                                                            (3-17) 

 

Where: 

The components 𝑄𝑥𝑧
𝑎  and 𝑄𝑦𝑧

𝑎  are the resultants, per unit length, of the higher order 

shear stresses of (𝑥-𝑧) and (𝑦-𝑧) planes. 

 

  

 Bending and torsion moments : 

 

Figure 26: Components of normal and shear forces in 
the plane. 

Figure 27: Components of transverse shear stresses 
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(

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

) = ∫(

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

)𝑧 𝑑𝑧

ℎ
2

−
ℎ
2

                                                                         (3-18) 

 

Mx and My are respectively the bending moments around the y and x axes, and Mxy is 

the torsion moment. 

 

The higher order moments are written as: 

 

(

𝑀𝑥
𝑎

𝑀𝑦
𝑎

𝑀𝑥𝑦
𝑎
) = ∫(

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

)𝜑(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

                                                                      (3-19) 

 

 

𝑀𝑥
𝑎, 𝑀𝑦

𝑎 and 𝑀𝑥𝑦
𝑎  are the corresponding higher-order bending moments in the x and y 

directions and the higher-order torsion moment, respectively. 

 

 

3.1.3  Constitutive equation:  

Substituting the expressions of strains (3-13) and stresses (3-14) in the constitutive 

relations and writing it in the matrix form gives the following constitutive equation: 

Figure 28: Bending and torsion moment components 
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{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥
𝑎

𝑀𝑦
𝑎}
  
 

  
 

=

[
 
 
 
 
 
 
𝐴11 𝐴12 𝐵11 𝐵12 𝐵11

𝑎 𝐵12
𝑎

𝐴21 𝐴22 𝐵21 𝐵22 𝐵21
𝑎 𝐵22

𝑎

𝐵11 𝐵12 𝐷11 𝐷12 𝐷11
𝑎 𝐷12

𝑎

𝐵21 𝐵22 𝐷21 𝐷22 𝐷21
𝑎 𝐷22

𝑎

𝐵11
𝑎 𝐵12

𝑎 𝐷11
𝑎 𝐷12

𝑎 𝐷11
𝑎𝑎 𝐷12

𝑎𝑎

𝐵21
𝑎 𝐵22

𝑎 𝐷21
𝑎 𝐷22

𝑎 𝐷21
𝑎𝑎 𝐷22

𝑎𝑎]
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

−
𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2 }

 
 
 
 
 
 

 
 
 
 
 
 

                                    (3-20) 

 

 {

𝑄𝑥𝑦
𝑀𝑥𝑦

𝑀𝑥𝑦
𝑎
} = [

𝐴66 𝐵66 𝐵66
𝑎

𝐵66 𝐷66 𝐷66
𝑎

𝐵66
𝑎 𝐷66

𝑎 𝐷66
𝑎𝑎
]

{
 
 

 
 

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦

𝜕𝜙𝑥

𝜕𝑦
+
𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

                                                      (3-21) 

 

{
𝑄𝑥𝑧
𝑎

𝑄𝑦𝑧
𝑎 } = [

𝐴55
𝑎 0

0 𝐴44
𝑎 ]

{
 

 𝜙𝑥 +
𝜕𝑤0
𝜕𝑥

𝜙𝑦 +
𝜕𝑤0
𝜕𝑦 }

 

 
                                                                                    (3-22) 

 

Where the elements of stiffness matrices are defined as: 

  (𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐵𝑖𝑗
𝑎) = ∫ 𝑄𝑖𝑗 (1, 𝑧, 𝜑) 𝑑𝑧

ℎ/2

−ℎ/2

                  𝑖, 𝑗 = 1,2,6                                                (3-23) 

 (𝐷𝑖𝑗 , 𝐷𝑖𝑗
𝑎 , 𝐷𝑖𝑗

𝑎𝑎) = ∫ 𝑄𝑖𝑗 (𝑧
2, 𝑧𝜑, 𝜑2) 𝑑𝑧

ℎ/2

−ℎ/2

             𝑖, 𝑗 = 1,2,6                                              (3-24) 

                      𝐴𝑖𝑗
𝑎 = ∫ 𝑄𝑖𝑗 (

𝜕𝜑

𝜕𝑧
)
2

𝑑𝑧 

ℎ/2

−ℎ/2

                        𝑖, 𝑗 = 4,5                                                (3-25) 

𝐴𝑖𝑗  coefficients represent the extension stiffness [Pa.m], 𝐵𝑖𝑗 and 𝐵𝑖𝑗
𝑎  coefficients 

represent the (bending-extension) coupling stiffness [Pa.m2]. 𝐷𝑖𝑗 , 𝐷𝑖𝑗
𝑎   & 𝐷𝑖𝑗

𝑎𝑎 coefficients 

represent the bending stiffness [Pa.m3]. 𝐴𝑖𝑗
𝑎  coefficients represent the transverse-shear stiffness 

[Pa.m] [38]. 
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As pointed out by Mahi et al [30], the transverse-shear stiffness is related to the 

derivative of the shape function (𝜑′(𝑧)) that features a parabolic variation of transverse stresses 

and vanishes at z = -h/2 and z = h/2, satisfying the traction-free boundary conditions [38]. 

The coupling and higher-order bending stiffnesses are related to the shape function 

that has been introduced into the displacement field. 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 𝑁𝑥 = 𝐴11

𝜕𝑢0
𝜕𝑥

+ 𝐴12
𝜕𝑣0
𝜕𝑦

− 𝐵11
𝜕2𝑤0
𝜕𝑥2

− 𝐵12
𝜕2𝑤0
𝜕𝑦2

+ 𝐵11
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐵12
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

𝑁𝑦 = 𝐴21
𝜕𝑢0
𝜕𝑥

+ 𝐴22
𝜕𝑣0
𝜕𝑦

− 𝐵21
𝜕2𝑤0
𝜕𝑥2

− 𝐵22
𝜕2𝑤0
𝜕𝑦2

+ 𝐵21
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐵22
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

𝑀𝑥 = 𝐵11
𝜕𝑢0
𝜕𝑥

+ 𝐵12
𝜕𝑣0
𝜕𝑦

− 𝐷11
𝜕2𝑤0
𝜕𝑥2

− 𝐷12
𝜕2𝑤0
𝜕𝑦2

+ 𝐷11
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐷12
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

𝑀𝑦 = 𝐵21
𝜕𝑢0
𝜕𝑥

+ 𝐵22
𝜕𝑣0
𝜕𝑦

− 𝐷21
𝜕2𝑤0
𝜕𝑥2

− 𝐷22
𝜕2𝑤0
𝜕𝑦2

+ 𝐷21
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐷22
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

𝑀𝑥
𝑎 = 𝐵11

𝑎
𝜕𝑢0
𝜕𝑥

+ 𝐵12
𝑎
𝜕𝑣0
𝜕𝑦

−𝐷11
𝑎
𝜕2𝑤0
𝜕𝑥2

− 𝐷12
𝑎
𝜕2𝑤0
𝜕𝑦2

+ 𝐷11
𝑎𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐷12
𝑎𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

𝑀𝑦
𝑎 = 𝐵21

𝑎
𝜕𝑢0
𝜕𝑥

+ 𝐵22
𝑎
𝜕𝑣0
𝜕𝑦

−𝐷21
𝑎
𝜕2𝑤0
𝜕𝑥2

− 𝐷22
𝑎
𝜕2𝑤0
𝜕𝑦2

+ 𝐷21
𝑎𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐷22
𝑎𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

𝑄𝑥𝑦 = A66 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) − 2B66

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ B66
a (

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0
𝜕𝑥𝜕𝑦

)

𝑀𝑥𝑦 = B66 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) − 2D66

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ D66
a (

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0
𝜕𝑥𝜕𝑦

)

M𝑥y
𝑎 = B66

a (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) − 2D66

a
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ D66
aa (

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0
𝜕𝑥𝜕𝑦

)

𝑄𝑥𝑧
𝑎 = A55

𝑎 (𝜙𝑥 +
𝜕𝑤0
𝜕𝑥

)

𝑄𝑦𝑧
𝑎 = A44

𝑎 (𝜙𝑦 +
𝜕𝑤0
𝜕𝑦

)

(3-𝟐𝟔) 

 

3.1.4 External loads modelling: 

In an elasticity problem, a plate subjected to transverse loads at the upper surface (along 

𝑥 and 𝑦) where these loads can be sinusoidal or have any other form of intensity distribution 

(𝑥, 𝑦), must be able to withstand these loads. In other words, the plate reacts in such a way that 

it can maintain equilibrium in each of its elements. Figure 29 illustrates the general case of an 

element of a plate in equilibrium.  

The buckling model is presented in Figure 30, which has the ability to detect the critical 

buckling load of an FGM plate under distributed pre-buckling forces (𝑃𝑥, 𝑃𝑦), knowing that: 
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3.2 Energetic formulation of composite plate reinforced with 

graphene nano-platelets: 

3.2.1 Kinetic energy: 

The kinetic energy of the FGM plate is given by: 

Figure 29: Internal loads 

Figure 30: Pre-buckling compression load distribution 
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𝐸𝑘 =
1

2
∭𝜌(𝑧)

𝜕𝑢𝑖
𝜕𝑡

𝜕𝑢𝑗

𝜕𝑡
𝑑𝑣 =

1

2
∬ ∫ 𝜌(𝑧) [

𝜕𝑢

𝜕𝑡

2

+
𝜕𝑣

𝜕𝑡

2

+
𝜕𝑤

𝜕𝑡

2

]

ℎ/2

−ℎ/2

𝑑𝑧  𝑑𝐴  (3-27) 

 

3.2.2 Strain energy: 

The mathematical expression of the strain energy, also known as potential or elastic 

energy due to the elastic deformation of a solid, is as follows: 

𝐸𝑈 =
1

2
∭𝜎𝑖𝑗휀𝑖𝑗 𝑑𝑣      𝑖, 𝑗 = 𝑥, 𝑦, 𝑧                                                         (3-28) 

  =
1

2
∬ ∫𝜎𝑥𝑥휀𝑥𝑥 + 𝜎𝑦𝑦휀𝑦𝑦 + 𝜎𝑦𝑧𝛾𝑦𝑧 + 𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑥𝑦𝛾𝑥𝑦

ℎ
2

−
ℎ
2

𝑑𝑧 𝑑𝐴 =∑𝐸𝑈
𝑖

5

𝑖=1

 

𝐸𝑈
1 =

1

2
∭𝜎𝑥𝑥휀𝑥𝑥 𝑑𝑣 =

1

2
∬[𝑁𝑥

𝜕𝑢0
𝜕𝑥

−𝑀𝑥

𝜕2𝑤0
𝜕𝑥2

+𝑀𝑥
𝑎 (
𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

)] 𝑑𝐴                (3-29) 

 

𝐸𝑈
2 =

1

2
∭𝜎𝑦𝑦휀𝑦𝑦 𝑑𝑣 =

1

2
∬[𝑁𝑦

𝜕𝑣0
𝜕𝑦

−𝑀𝑦

𝜕2𝑤0
𝜕𝑦2

+𝑀𝑦
𝑎 (
𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)] 𝑑𝐴                (3-30) 

 

𝐸𝑈
3 =

1

2
∭𝜎𝑥𝑧𝛾𝑥𝑧𝑑𝑣 =

1

2
∬[𝑄𝑥𝑧

𝑎 (𝜙𝑥 +
𝜕𝑤0
𝜕𝑥

)] 𝑑𝐴                                                              (3-31) 

 

𝐸𝑈
4 =

1

2
∭𝜎𝑦𝑧𝛾𝑦𝑧𝑑𝑣 =

1

2
∬[𝑄𝑦𝑧

𝑎 (𝜙𝑦 +
𝜕𝑤0
𝜕𝑦

)] 𝑑𝐴                                                              (3-32) 

 

𝐸𝑈
5 =

1

2
∭𝜎𝑥𝑦𝛾𝑥𝑦 𝑑𝑣   

         =
1

2
∬[𝑄𝑥𝑦 (

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) − 2𝑀𝑥𝑦

𝜕2𝑤0
𝜕𝑥𝜕𝑦

+𝑀𝑥𝑦
𝑎 (

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0
𝜕𝑥𝜕𝑦

)]𝑑𝐴       (3-33) 

 

3.2.2.1 Strain energy variation: 

The variation in strain energy is derived from equation (3-28) and is given as: 

𝛿𝐸𝑈 =∭𝜎𝑖𝑗𝛿휀𝑖𝑗 𝑑𝑣                                                                     (3-34) 

𝛿𝐸𝑈 = 𝛿𝐸𝑈
1 + 𝛿𝐸𝑈

2+𝛿𝐸𝑈
3+𝛿𝐸𝑈

4+𝛿𝐸𝑈
5                                                 (3-35) 
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𝛿𝐸𝑈 =∬[𝑁𝑥𝛿 (
𝜕𝑢0
𝜕𝑥

) −𝑀𝑥𝛿 (
𝜕2𝑤0
𝜕𝑥2

) +𝑀𝑥
𝑎𝛿 (

𝜕𝜙𝑥
𝜕𝑥

) + 𝑀𝑥
𝑎𝛿 (

𝜕2𝑤0
𝜕𝑥2

) + 𝑁𝑦𝛿 (
𝜕𝑣0
𝜕𝑦
)

−𝑀𝑦𝛿 (
𝜕2𝑤0
𝜕𝑦2

) +𝑀𝑦
𝑎𝛿 (

𝜕𝜙𝑦

𝜕𝑦
) +𝑀𝑦

𝑎𝛿 (
𝜕2𝑤0
𝜕𝑦2

) + 𝑄𝑥𝑧
𝑎 𝛿𝜙𝑥 + 𝑄𝑥𝑧

𝑎 𝛿 (
𝜕𝑤0
𝜕𝑥

)

+ 𝑄𝑦𝑧
𝑎 𝛿𝜙𝑦 + 𝑄𝑦𝑧

𝑎 𝛿 (
𝜕𝑤0
𝜕𝑦

) + 𝑄𝑥𝑦𝛿 (
𝜕𝑢0
𝜕𝑦
) + 𝑄𝑥𝑦𝛿 (

𝜕𝑣0
𝜕𝑥
) − 2𝑀𝑥𝑦𝛿 (

𝜕2𝑤0
𝜕𝑥𝜕𝑦

)  

+ 𝑀𝑥𝑦
𝑎 𝛿 (

𝜕𝜙𝑥
𝜕𝑦

) +𝑀𝑥𝑦
𝑎 𝛿 (

𝜕𝜙𝑦

𝜕𝑥
) + 2𝑀𝑥𝑦

𝑎 𝛿 (
𝜕2𝑤0
𝜕𝑥𝜕𝑦

) ]  𝑑𝐴                             (3-36) 

 

By integrating by part, we find: 

𝛿𝐸𝑈 =∬[−
𝜕𝑁𝑥
𝜕𝑥

𝛿𝑢0 −
𝜕2𝑀𝑥

𝜕𝑥2
𝛿𝑤0 −

𝜕𝑀𝑥
𝑎

𝜕𝑥
𝛿𝜙𝑥 +

𝜕2𝑀𝑥
𝑎

𝜕𝑥2
𝛿𝑤0 −

𝜕𝑁𝑦

𝜕𝑦
𝛿𝑣0 −

𝜕2𝑀𝑦

𝜕𝑦2
𝛿𝑤0

−
𝜕𝑀𝑦

𝑎

𝜕𝑦
𝛿𝜙𝑦 +

𝜕2𝑀𝑦
𝑎

𝜕𝑦2
𝛿𝑤0 +𝑄𝑥𝑧

𝑎 𝛿𝜙𝑥 −
𝜕𝑄𝑥𝑧

𝑎

𝜕𝑥
𝛿𝑤0 + 𝑄𝑦𝑧

𝑎 𝛿𝜙𝑦 −
𝜕𝑄𝑦𝑧

𝑎

𝜕𝑦
𝛿𝑤0

−
𝜕𝑄𝑥𝑦

𝜕𝑦
𝛿𝑢0 −

𝜕𝑄𝑥𝑦

𝜕𝑥
𝛿𝑣0 − 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
𝛿𝑤0  −

𝜕𝑀𝑥𝑦
𝑎

𝜕𝑦
𝛿𝜙𝑥 −

𝜕𝑀𝑥𝑦
𝑎

𝜕𝑥
𝛿𝜙𝑦

+ 2
𝜕2𝑀𝑥𝑦

𝑎

𝜕𝑥𝜕𝑦
𝛿𝑤0 ]  𝑑𝐴                                                                                            (3-37) 

 

The contributions of the source terms of the strain energy related to the variations δ𝑢0, 

δ𝑣0, δ𝑤0, δ𝜙𝑥, δ𝜙𝑦 are: 

𝜹𝒖𝟎: −
𝜕𝑁𝑥
𝜕𝑥

 −
𝜕𝑄𝑥𝑦

𝜕𝑦
      

𝛅𝒗𝟎: −
𝜕𝑁𝑦

𝜕𝑦
 −
𝜕𝑄𝑥𝑦

𝜕𝑥
                                                                                                                        (3-38) 

𝛅𝒘𝟎: −
𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑥

𝑎

𝜕𝑥2
−
𝜕2𝑀𝑦

𝜕𝑦2
+
𝜕2𝑀𝑦

𝑎

𝜕𝑦2
−
𝜕𝑄𝑥𝑧

𝑎

𝜕𝑥
−
𝜕𝑄𝑦𝑧

𝑎

𝜕𝑦
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+ 2

𝜕2𝑀𝑥𝑦
𝑎

𝜕𝑥𝜕𝑦
 

𝛅𝝓𝒙 : −
𝜕𝑀𝑥

𝑎

𝜕𝑥
+ 𝑄𝑥𝑧

𝑎 −
𝜕𝑀𝑥𝑦

𝑎

𝜕𝑦
 

𝛅𝝓𝒚: −
𝜕𝑀𝑦

𝑎

𝜕𝑦
+ 𝑄𝑦𝑧

𝑎 −
𝜕𝑀𝑥𝑦

𝑎

𝜕𝑥
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3.2.3 Work of external loads:  

3.2.3.1 Virtual work: 

The work done by the distributed transverse load (q) and edge loads (Px and Py) as a 

virtual form is expressed as follows: 

𝛿𝑊 = −∬[𝑞𝛿𝑤0] 𝑑𝑥𝑑𝑦 +∬[𝑃𝑥
𝜕𝑤0
𝜕𝑥

𝛿 (
𝜕𝑤0
𝜕𝑥

) + 𝑃𝑦
𝜕𝑤0
𝜕𝑦

𝛿 (
𝜕𝑤0
𝜕𝑦

)] 𝑑𝑥𝑑𝑦          (3-39) 

 

By integrating by part, we find: 

𝛿𝑊 = −∬[𝑞𝛿𝑤0] 𝑑𝑥𝑑𝑦 +∬[−𝑃𝑥
𝜕2𝑤0
𝜕𝑥2

𝛿𝑤0 − 𝑃𝑦
𝜕2𝑤0
𝜕𝑦2

𝛿𝑤0] 𝑑𝑥𝑑𝑦              (3-40) 

 

Where: 

{
P𝑥 = λ1P𝑐𝑟
P𝑦 = λ2P𝑐𝑟

                                                                                                                    

λ1and λ2 are the buckling parameters and Pcr is the critical buckling load.  

 

The contribution of the source term of the virtual work related to δ𝑤0 variation is:  

𝜹𝒘𝟎: −𝑞 − 𝑃𝑥
𝜕2𝑤0
𝜕𝑥2

− 𝑃𝑦
𝜕2𝑤0
𝜕𝑦2

                                                                                                   (3-41)  

 

3.2.4 Hamilton’s principle: 

The variational principle is used to obtain the equilibrium equations of the FG-GPLRC 

plates which state that: 

𝛿 (𝐸𝑈  +  𝑊) =  0                                                              (3-42) 

 

Where EU and W are the strain energy and potential energy (work) of the applied 

(external) loads, respectively. 

This variational principle that applies to static problem (𝐸𝑘 = 0) can be derived from 

Hamilton’s Principle applicable to dynamic problems: 

0 = ∫ (𝛿𝐸𝑈

𝑡

0

+ 𝛿𝑊 − 𝛿𝐸𝑘) 𝑑𝑡                                                (3-43) 

 



CHAPTER 3 

 

Page | 57  

 

 

3.2.5 Equilibrium equations: 

From the contributions of strain energy and the virtual work to the variations δ𝑢0, δ𝑣0, 

δ𝑤0, δ𝜙𝑥, δ𝜙𝑦 and by applying Hamilton's principle, we can derive the equations governing 

the motion of the FGM plate reinforced with graphene nano-platelets. 

 

𝛅𝒖𝟎:
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑄𝑥𝑦

𝜕𝑦
= 0 

𝜹𝒗𝟎:
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑄𝑥𝑦

𝜕𝑥
= 0                                                                                                                     (3-44) 

𝛅𝒘𝟎:
𝜕2𝑀𝑥

𝜕𝑥2
−
𝜕2𝑀𝑥

𝑎

𝜕𝑥2
+
𝜕2𝑀𝑦

𝜕𝑦2
−
𝜕2𝑀𝑦

𝑎

𝜕𝑦2
+
𝜕𝑄𝑥𝑧

𝑎

𝜕𝑥
+
𝜕𝑄𝑦𝑧

𝑎

𝜕𝑦
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
− 2

𝜕2𝑀𝑥𝑦
𝑎

𝜕𝑥𝜕𝑦
+ 𝑞 + 𝑃𝑥

𝜕2𝑤0
𝜕𝑥2

+ 𝑃𝑦
𝜕2𝑤0
𝜕𝑦2

= 0 

𝛅𝝓𝒙 : 
𝜕𝑀𝑥

𝑎

𝜕𝑥
− 𝑄𝑥𝑧

𝑎 +
𝜕𝑀𝑥𝑦

𝑎

𝜕𝑦
= 0 

𝛅𝝓𝒚:
𝜕𝑀𝑦

𝑎

𝜕𝑦
− 𝑄𝑦𝑧

𝑎 +
𝜕𝑀𝑥𝑦

𝑎

𝜕𝑥
= 0 

In order to solve these equations, it is advisable express them to the generalized 

displacements δ𝑢0, δ𝑣0, δ𝑤0, δ𝜙𝑥 and δ𝜙𝑦 by replacing the forces and moments with their 

expressions obtained from the constitutive equation. 

𝛅𝒖𝟎: 𝐴11
𝜕2𝑢0
𝜕𝑥2

+ 𝐴12
𝜕2𝑣0
𝜕𝑥𝜕𝑦

− 𝐵11
𝜕3𝑤0
𝜕𝑥3

− 𝐵12
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

+ 𝐵11
𝑎 (

𝜕2𝜙𝑥
𝜕𝑥2

+
𝜕3𝑤0
𝜕𝑥3

)

+ 𝐵12
𝑎 (

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

) + A66 (
𝜕2𝑢0
𝜕𝑦2

+
𝜕2𝑣0
𝜕𝑦𝜕𝑥

) − 2B66
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

+ B66
a (

𝜕2𝜙𝑥
𝜕𝑦2

+
𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 2

𝜕3𝑤0
𝜕𝑥𝜕𝑦2

) = 0 

𝜹𝒗𝟎: 𝐴21
𝜕2𝑢0
𝜕𝑥𝜕𝑦

+ 𝐴22
𝜕2𝑣0
𝜕𝑦2

− 𝐵21
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

− 𝐵22
𝜕3𝑤0
𝜕𝑦3

+ 𝐵21
𝑎 (

𝜕2𝜙𝑥
𝜕𝑥𝜕𝑦

+
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

)

+ 𝐵22
𝑎 (

𝜕2𝜙𝑦

𝜕𝑦2
+
𝜕3𝑤0
𝜕𝑦3

) + 𝐴66 (
𝜕2𝑢0
𝜕𝑥𝜕𝑦

+
𝜕2𝑣0
𝜕𝑥2

) − 2𝐵66
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

+ 𝐵66
𝑎 (

𝜕2𝜙𝑥
𝜕𝑥𝜕𝑦

+
𝜕2𝜙𝑦

𝜕𝑥2
+ 2

𝜕3𝑤0
𝜕𝑥2𝜕𝑦

) = 0                                                           (3-45) 
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𝛅𝒘𝟎: (𝐵11 − 𝐵11
𝑎 )
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 − 𝐵12
𝑎 )

𝜕3𝑣0
𝜕𝑥2𝜕𝑦

− (𝐷11 − 𝐷11
𝑎 )
𝜕4𝑤0
𝜕𝑥4

− (𝐷12 −𝐷12
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ (𝐷11
𝑎 − 𝐷11

𝑎𝑎) (
𝜕3𝜙𝑥
𝜕𝑥3

+
𝜕4𝑤0
𝜕𝑥4

) + (𝐷12
𝑎 − 𝐷12

𝑎𝑎) (
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + (𝐵21

− 𝐵21
𝑎 )

𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+ (𝐵22 − 𝐵22
𝑎 )
𝜕3𝑣0
𝜕𝑦3

− (𝐷21 − 𝐷21
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ (𝐷21
𝑎

− 𝐷21
𝑎𝑎) (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + (𝐷22
𝑎 − 𝐷22

𝑎𝑎) (
𝜕3𝜙𝑦

𝜕𝑦3
+
𝜕4𝑤0
𝜕𝑦4

) − (𝐷22

− 𝐷22
𝑎 )
𝜕4𝑤0
𝜕𝑦4

+ A55
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + A44
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

) + 2(B66

− B66
a ) (

𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

) − 4(D66 − D66
a )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 2(D66
a

− D66
aa) (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 2

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

)

− 2D66
aa (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 2

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + 𝑞 + 𝑃𝑥
𝜕2𝑤0
𝜕𝑥2

+ 𝑃𝑦
𝜕2𝑤0
𝜕𝑦2

= 0 

𝛅𝝓𝒙: 𝐵11
𝑎
𝜕2𝑢0
𝜕𝑥2

+ 𝐵12
𝑎
𝜕2𝑣0
𝜕𝑥𝜕𝑦

−𝐷11
𝑎
𝜕3𝑤0
𝜕𝑥3

− 𝐷12
𝑎
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

+𝐷11
𝑎𝑎 (

𝜕2𝜙𝑥
𝜕𝑥2

+
𝜕3𝑤0
𝜕𝑥3

)

+ 𝐷12
𝑎𝑎 (

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

) − A55
𝑎 (𝜙𝑥 +

𝜕𝑤0
𝜕𝑥

) + B66
a (

𝜕2𝑢0
𝜕𝑦2

+
𝜕2𝑣0
𝜕𝑦𝜕𝑥

)

− 2D66
a
𝜕3𝑤0
𝜕𝑥𝜕𝑦2

+ D66
aa (

𝜕2𝜙𝑥
𝜕𝑦2

+
𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 2

𝜕3𝑤0
𝜕𝑥𝜕𝑦2

) = 0 

𝛅𝝓𝒚: 𝐵21
𝑎
𝜕2𝑢0
𝜕𝑥𝜕𝑦

+ 𝐵22
𝑎
𝜕2𝑣0
𝜕𝑦2

−𝐷21
𝑎
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

− 𝐷22
𝑎
𝜕3𝑤0
𝜕𝑦3

+ 𝐷21
𝑎𝑎 (

𝜕2𝜙𝑥
𝜕𝑥𝜕𝑦

+
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

)

+ 𝐷22
𝑎𝑎 (

𝜕2𝜙𝑦

𝜕𝑦2
+
𝜕3𝑤0
𝜕𝑦3

) − A44
𝑎 (𝜙𝑦 +

𝜕𝑤0
𝜕𝑦

) + B66
a (

𝜕2𝑢0
𝜕𝑥𝜕𝑦

+
𝜕2𝑣0
𝜕𝑥2

)

− 2D66
a
𝜕3𝑤0
𝜕𝑥2𝜕𝑦

+ D66
aa (

𝜕2𝜙𝑥
𝜕𝑥𝜕𝑦

+
𝜕2𝜙𝑦

𝜕𝑥2
+ 2

𝜕3𝑤0
𝜕𝑥2𝜕𝑦

) = 0 

 

The equations (3-45) describe five fourth-order linear partial differential equations in 

terms of the five generalized displacements. 
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3.3  Fundamental bending relations: 

Taking into account the transverse load and eliminating edge loads, the fundamental 

bending relations are described as follows: 

{
𝑞 ≠ 0

𝑃𝑥 = 𝑃𝑦 = 0                                                                              (3-46) 

The fundamental bending relations are given by equations (3-47). The relation 

corresponding to 𝛿𝑤0 being modified as follows:  

 

 𝜹𝒘𝟎: (𝐵11 − 𝐵11
𝑎 )
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 − 𝐵12
𝑎 )

𝜕3𝑣0
𝜕𝑥2𝜕𝑦

− (𝐷11 − 𝐷11
𝑎 )
𝜕4𝑤0
𝜕𝑥4

− (𝐷12 − 𝐷12
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ (𝐷11
𝑎 − 𝐷11

𝑎𝑎) (
𝜕3𝜙𝑥
𝜕𝑥3

+
𝜕4𝑤0
𝜕𝑥4

) + (𝐷12
𝑎 − 𝐷12

𝑎𝑎) (
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + (𝐵21 − 𝐵21
𝑎 )

𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+ (𝐵22 − 𝐵22
𝑎 )

𝜕3𝑣0
𝜕𝑦3

− (𝐷21 − 𝐷21
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ (𝐷21
𝑎 − 𝐷21

𝑎𝑎) (
𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + (𝐷22
𝑎

− 𝐷22
𝑎𝑎) (

𝜕3𝜙𝑦

𝜕𝑦3
+
𝜕4𝑤0
𝜕𝑦4

) − (𝐷22 −𝐷22
𝑎 )
𝜕4𝑤0
𝜕𝑦4

+ 𝐴55
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐴44
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

)

+ 2(𝐵66 − 𝐵66
𝑎 ) (

𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

) − 4(𝐷66 − 𝐷66
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 2(𝐷66
𝑎

− 𝐷66
𝑎𝑎) (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 2

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) − 2𝐷66
𝑎𝑎 (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 2

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + 𝑞

= 0                                                                                                                                                       (3-47) 

 

3.4 Fundamental buckling relations: 

Taking into account the edge loads and eliminating transverse load, the fundamental 

buckling relations are described by the following expressions: 

{

𝑞 = 0
𝑃𝑥 = 𝜆1𝑃𝑐𝑟 
𝑃𝑦 = 𝜆2𝑃𝑐𝑟

                                                                          (3-48) 

 

Where:  

𝜆1and 𝜆2 are the buckling parameters: 

 Uni-axial buckling (along the x-axis): 𝜆1 ≠ 0 and 𝜆2 = 0. 

 Uni-axial buckling (along the y-axis): 𝜆1= 0 and 𝜆2≠ 0. 

 Bi- axial buckling (along x and y axis): 𝜆1 ≠ 0 and 𝜆2≠ 0. 

The fundamental buckling relations are given by (3-48) relations. The relation 

corresponding to 𝛿𝑤0 being modified as follows:  
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𝜹𝒘𝟎: (𝐵11 − 𝐵11
𝑎 )
𝜕3𝑢0
𝜕𝑥3

+ (𝐵12 − 𝐵12
𝑎 )

𝜕3𝑣0
𝜕𝑥2𝜕𝑦

− (𝐷11 − 𝐷11
𝑎 )
𝜕4𝑤0
𝜕𝑥4

− (𝐷12 − 𝐷12
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ (𝐷11
𝑎

− 𝐷11
𝑎𝑎) (

𝜕3𝜙𝑥
𝜕𝑥3

+
𝜕4𝑤0
𝜕𝑥4

) + (𝐷12
𝑎 − 𝐷12

𝑎𝑎) (
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + (𝐵21 − 𝐵21
𝑎 )

𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+ (𝐵22

− 𝐵22
𝑎 )

𝜕3𝑣0
𝜕𝑦3

− (𝐷21 −𝐷21
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ (𝐷21
𝑎 − 𝐷21

𝑎𝑎) (
𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + (𝐷22
𝑎

− 𝐷22
𝑎𝑎) (

𝜕3𝜙𝑦

𝜕𝑦3
+
𝜕4𝑤0
𝜕𝑦4

) − (𝐷22 − 𝐷22
𝑎 )
𝜕4𝑤0
𝜕𝑦4

+ 𝐴55
𝑎 (

𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

) + 𝐴44
𝑎 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤0
𝜕𝑦2

) + 2(𝐵66

− 𝐵66
𝑎 ) (

𝜕3𝑢0
𝜕𝑥𝜕𝑦2

+
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

) − 4(𝐷66 − 𝐷66
𝑎 )

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 2(𝐷66
𝑎

− 𝐷66
𝑎𝑎) (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 2

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) − 2𝐷66
𝑎𝑎 (

𝜕3𝜙𝑥
𝜕𝑥𝜕𝑦2

+
𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 2

𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

) + 𝑃𝑐𝑟(𝜆1
𝜕2𝑤0
𝜕𝑥2

+ 𝜆2
𝜕2𝑤0
𝜕𝑦2

) = 0                                                                                                                                               ( 3-49) 

 

4.  Analytical solution of motion equations: 

4.1  Boundary conditions and Navier solution: 

The analysis of a rectangular plate requires the solution of the governing equation, along 

with appropriate boundary conditions at the four edges, to yield the deflection function w(x, y). 

Once this is carried out, the strains and stresses at any point of the plate structure can be 

obtained. The basic idea behind Navier’s method is to seek the solution for w in the form of an 

infinite series such that the edge conditions are satisfied a priori, and the governing differential 

equations are reduced to simple algebraic equations for a simply supported plate (SSSS) [39]. 

Any transverse mechanical load q(𝑥, 𝑦) applied to the plate can also be expanded into 

Fourier series in order to obtain:  

 

 

𝑞(𝑥, 𝑦) = ∑ ∑𝑄𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦)

∞

𝑛=1

∞

𝑚=1

                                             (3-50) 

 

 

The boundary conditions along the edges of a simply supported plate can be written as 

follows: 

𝑢0(𝑥, 0) = 0     ;      𝑢0(𝑥, 𝑏) = 0     ;      𝑣0(0, 𝑦) = 0     ;      𝑣0(𝑎, 𝑦) = 0 
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𝑤0(𝑥, 0) = 0     ;      𝑤0(𝑥, 𝑏) = 0    ;      𝑤0(0, 𝑦) = 0    ;      𝑤0(𝑎, 𝑦) = 0 

𝜙𝑥(𝑥, 0) = 0     ;      𝜙𝑥(𝑥, 𝑏) = 0    ;      𝜙𝑦(0, 𝑦) = 0    ;      𝜙𝑦(𝑎, 𝑦) = 0 

                𝑀𝑥(𝑥, 0) = 0     ;      𝑀𝑥(𝑥, 𝑏) = 0   ;     𝑀𝑦(0, 𝑦) = 0    ;      𝑀𝑦(𝑎, 𝑦) = 0    (3-51) 

𝑁𝑥(𝑥, 0) = 0     ;      𝑁𝑥(𝑥, 𝑏) = 0    ;     𝑁𝑦(0, 𝑦) = 0     ;      𝑁𝑦(𝑎, 𝑦) = 0 

𝑀𝑥
𝑎(𝑥, 0) = 0    ;      𝑀𝑥

𝑎(𝑥, 𝑏) = 0   ;     𝑀𝑦
𝑎(0, 𝑦) = 0    ;      𝑀𝑦

𝑎(𝑎, 𝑦) = 0 

 

The displacement functions that satisfy these boundary conditions are represented in 

the form of double Fourier series: 

𝑈(𝑥, 𝑦) = ∑ ∑𝐽𝑚𝑛 𝑐𝑜𝑠(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦)

∞

𝑛=1

∞

𝑚=1

 

𝑉(𝑥, 𝑦) = ∑∑𝐾𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦)

∞

𝑛=1

∞

𝑚=1

 

                                             𝑊(𝑥, 𝑦) = ∑ ∑𝐿𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦)

∞

𝑛=1

∞

𝑚=1

                                   (3-52) 

𝜙𝑥(𝑥, 𝑦) = ∑ ∑𝑀𝑚𝑛 𝑐𝑜𝑠(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦)

∞

𝑛=1

∞

𝑚=1

 

𝜙𝑦(𝑥, 𝑦) = ∑∑𝑁𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦)

∞

𝑛=1

∞

𝑚=1

 

Where: 

𝐽𝑚𝑛, 𝐾𝑚𝑛, 𝐿𝑚𝑛, 𝑀𝑚𝑛 and 𝑁𝑚𝑛 are the unknown amplitudes parameters,  

𝛼 =
𝑚𝜋

𝑎
   and  𝛽 =

𝑛𝜋

𝑏
                                                                                                          (3-53) 

 

For a sinusoidal load distribution, Qmn simplifies to:  

𝑄𝑚𝑛 = 𝑞0                                                                          (3-54) 

Where: 

 𝑞0 is the magnitude of the load applied to the plate. 

 

And for a uniform load distribution, we have: 

𝑄𝑚𝑛 = ∑∑
16𝑞0
𝑚𝑛𝜋2

∞

𝑛=1

∞

𝑚=1

                                                                      (3-55) 
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4.1.1  Solving the bending motion equations:  

By substituting the displacement equations (3-52) into the bending equations of motion, 

we obtain the system of equations for each given value of m and n. The algebraic system is 

expressed in the form: 

 

[𝑲]{𝒅} = {𝑭}                                                         (3-56)  

Where:  

𝑲 is the stiffness matrix and it is symmetric, 𝒅 is the displacement vector represented 

by the parameters of amplitudes and 𝑭 is the external load vector. 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55]

 
 
 
 

{
 
 

 
 
𝐽𝑚𝑛
𝐾𝑚𝑛
𝐿𝑚𝑛
𝑀𝑚𝑛

𝑁𝑚𝑛}
 
 

 
 

=

{
 
 

 
 
0
0

𝑄𝑚𝑛
0
0 }
 
 

 
 

                                   (3-57) 

 

Where: 

𝑘11 = 𝐴11𝛼
2 + A66 𝛽

2 ; 𝑘12 = 𝑘21 = (𝐴12 + A66)𝛼𝛽  

𝑘13 = 𝑘31 = 𝛼
3(𝐵11

𝑎 − 𝐵11) + 𝛼𝛽
2(𝐵12

𝑎 + 2B66
a − 2B66 − 𝐵12)  

 𝑘14 = 𝑘41 = 𝐵11
𝑎 𝛼2 + 𝛽2B66

a  ; 𝑘15 = 𝑘51 = (B66
a +𝐵12

𝑎 )𝛼𝛽  

               𝑘22 = 𝐴22𝛽
2 + 𝐴66𝛼

2 ; 𝑘23 = 𝑘32 = 𝛼
2𝛽(𝐵12

𝑎 + 2𝐵66
𝑎 − 2𝐵66 − 𝐵12) +

                                                                                     𝛽3(𝐵22
𝑎 − 𝐵22)                                              (3-58)  

 𝑘24 = 𝑘42 = (𝐵12
𝑎 + B66

a )𝛼𝛽 ;  𝑘25 = 𝑘52 = B66
a 𝛼2 + 𝐵22

𝑎  𝛽2  

 𝑘33 = 𝛼4(𝐷11 − 2𝐷11
𝑎 + 𝐷11

𝑎𝑎) + 𝛽4(𝐷22 − 2𝐷22
𝑎 + 𝐷22

𝑎𝑎) + 𝛼2𝛽2(2𝐷12 − 4𝐷12
𝑎 +

                           2𝐷12
𝑎𝑎 + 4D66 + 4D66

aa − 8D66
a ) + A55

𝑎 𝛼2 + A44
𝑎 𝛽2   

 𝑘34 = 𝑘43 = 𝛼3(𝐷11
𝑎𝑎 − 𝐷11

𝑎 ) +  𝛼𝛽2(𝐷12
𝑎𝑎 + 2D66

aa −𝐷12
𝑎 − 2D66

a )+A55
𝑎 𝛼   

 𝑘35 = 𝑘53 = 𝛼2𝛽(𝐷12
𝑎𝑎 + 2D66

aa − 𝐷12
𝑎 − 2D66

a ) + 𝛽3(𝐷22
𝑎𝑎 − 𝐷22

𝑎 ) + A44
𝑎 𝛽  

 𝑘44 = 𝐷11
𝑎𝑎𝛼2+A55

𝑎 +D66
aa𝛽2 ; 𝑘45 = 𝑘54 = (𝐷12

𝑎𝑎  + D66
aa)𝛼𝛽  

 𝑘55 = 𝐷22
𝑎𝑎𝛽2 + A44

𝑎 + D66
aa𝛼2 
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4.1.2 Solving the buckling motion equations: 

By substituting the displacement equations into the buckling equations of motion, we 

obtain the system of equations for each given value of m and n in a stability problem (buckling 

analysis). The resulting system of algebraic equations can be expressed in the form: 

 

[𝑲′]{𝒅} = {𝟎}                                                                      (3-59) 

𝑲′ is the stiffness matrix for buckling problem and it is symmetric, 𝒅 is the displacement 

vector represented by the parameters of amplitudes. 

 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25
𝑘31 𝑘32 𝑘33 + 𝑘 𝑘34 𝑘35
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55]

 
 
 
 

{
 
 

 
 
𝐽𝑚𝑛
𝐾𝑚𝑛
𝐿𝑚𝑛
𝑀𝑚𝑛

𝑁𝑚𝑛}
 
 

 
 

=

{
 
 

 
 
0
0

0
0
0}
 
 

 
 

                              (3-60) 

 

Where: 

𝑘11 = 𝐴11𝛼
2 + A66 𝛽

2 ; 𝑘12 = 𝑘21 = (𝐴12 + A66)𝛼𝛽  

𝑘13 = 𝑘31 = 𝛼
3(𝐵11

𝑎 − 𝐵11) + 𝛼𝛽
2(𝐵12

𝑎 + 2B66
a − 2B66 − 𝐵12)  

 𝑘14 = 𝑘41 = 𝐵11
𝑎 𝛼2 + 𝛽2B66

a  ; 𝑘15 = 𝑘51 = (B66
a +𝐵12

𝑎 )𝛼𝛽  

               𝑘22 = 𝐴22𝛽
2 + 𝐴66𝛼

2 ; 𝑘23 = 𝑘32 = 𝛼
2𝛽(𝐵12

𝑎 + 2𝐵66
𝑎 − 2𝐵66 − 𝐵12) +

                                                                                     𝛽3(𝐵22
𝑎 − 𝐵22)                                    

             𝑘24 = 𝑘42 = (𝐵12
𝑎 + 𝐵66

𝑎 )𝛼𝛽 ;  𝑘25 = 𝑘52 = 𝐵66
𝑎 𝛼2 + 𝐵22

𝑎  𝛽2                                (3-61)  

 𝑘33 + k = 𝛼4(𝐷11 − 2𝐷11
𝑎 + 𝐷11

𝑎𝑎) + 𝛽4(𝐷22 − 2𝐷22
𝑎 +𝐷22

𝑎𝑎) + 𝛼2𝛽2(2𝐷12 −

                                  4𝐷12
𝑎 +  2𝐷12

𝑎𝑎 + 4D66 + 4D66
aa − 8D66

a ) + A55
𝑎 𝛼2 + A44

𝑎 𝛽2+k 

 𝑘34 = 𝑘43 = 𝛼3(𝐷11
𝑎𝑎 − 𝐷11

𝑎 ) +  𝛼𝛽2(𝐷12
𝑎𝑎 + 2D66

aa −𝐷12
𝑎 − 2D66

a )+A55
𝑎 𝛼   

 𝑘35 = 𝑘53 = 𝛼2𝛽(𝐷12
𝑎𝑎 + 2D66

aa − 𝐷12
𝑎 − 2D66

a ) + 𝛽3(𝐷22
𝑎𝑎 − 𝐷22

𝑎 ) + A44
𝑎 𝛽  

 𝑘44 = 𝐷11
𝑎𝑎𝛼2+A55

𝑎 +D66
aa𝛽2 ; 𝑘45 = 𝑘54 = (𝐷12

𝑎𝑎  + D66
aa)𝛼𝛽  

 𝑘55 = 𝐷22
𝑎𝑎𝛽2 + A44

𝑎 + D66
aa𝛼2 

And: 

𝑘 = 𝜆𝑃𝑐𝑟  ;     𝜆 = 𝜆1𝛼
2 + 𝜆2𝛽

2                                                                     (3-62) 
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To find the critical buckling load 𝑃𝑐𝑟 (the smallest load that causes buckling), the system 

must be written in the following canonical form: 

(

 
 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25
�̅�31 �̅�32 �̅�33 �̅�34 �̅�35
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55]

 
 
 
 

− 𝑃𝑐𝑟

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

)

 
 

{
 
 

 
 
𝐽𝑚𝑛
𝐾𝑚𝑛
𝐿𝑚𝑛
𝑀𝑚𝑛

𝑁𝑚𝑛}
 
 

 
 

=

{
 
 

 
 
0
0

0
0
0}
 
 

 
 

       (3-63) 

Where: 

�̅�3𝑗 =
𝑘3𝑗

𝜆
                  ;                𝑗 = 1,2,3,4,5                                                       (3-64) 

 

To find the nontrivial solution, the problem boils down to solving the equation of the 

determinant set equal to zero. 

 

|

|

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25
�̅�31 �̅�32 �̅�33 �̅�34 �̅�35
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55]

 
 
 
 

− 𝑃𝑐𝑟

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

|

|
= 0               (3-65) 

 

 

4.1.3 Displacements and stresses fields: 

After we obtained the solution for the five differential equations by Navier’s method, 

the general displacement equations could be written by substituting (3-52) equations in (3-10). 

For m=n=1, we get the following equations of displacement field: 

{
  
 

  
 𝑢(𝑥, 𝑦, 𝑧) = 𝑐𝑜𝑠 (

𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [𝐽11 − 𝑧

𝜋

𝑎
𝐿11 + (

ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (𝑀11 +

𝜋

𝑎
𝐿11)]

𝑣(𝑥, 𝑦, 𝑧) = 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) [𝐾11 − 𝑧

𝜋

𝑏
𝐿11 + (

ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (𝑁11 +

𝜋

𝑏
𝐿11)]

𝑤(𝑥, 𝑦, 𝑧) = 𝐿11 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦)

(3-66) 

 

Spontaneously, we obtain the deformation field by substituting (3-49) equations in 

(3-13) and we get: 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 휀𝑥𝑥  = 𝑠𝑖𝑛 (

𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [−

𝜋

𝑎
𝐽11 + 𝑧 (

𝜋

𝑎
)
2

𝐿11 − (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑎
𝑀11 + (

𝜋

𝑎
)
2

𝐿11)]

       

휀𝑦𝑦  = 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [−

𝜋

𝑏
𝐾11 + 𝑧 (

𝜋

𝑏
)
2

𝐿11 − (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑏
𝑁11 + (

𝜋

𝑏
)
2

𝐿11)]

휀𝑧𝑧  = 0

𝛾𝑥𝑦 = 𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) [

𝜋

𝑏
𝐽11 +

𝜋

𝑎
𝐾11 − 2𝑧

𝜋2

𝑎𝑏
𝐿11 + (

ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑏
𝑀11 +

𝜋

𝑎
𝑁11

+2
𝜋2

𝑎𝑏
𝐿11)]  

𝛾𝑥𝑧 = 𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [

1

𝑐𝑜𝑠ℎ2 (
2𝑧
ℎ
)
− &

1

𝑐𝑜𝑠ℎ2(1)
(
2𝑧

ℎ
)
2

] (𝑀11 +
𝜋

𝑎
𝐿11)

𝛾𝑦𝑧 = 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) [

1

𝑐𝑜𝑠ℎ2 (
2𝑧
ℎ
)
− &

1

𝑐𝑜𝑠ℎ2(1)
(
2𝑧

ℎ
)
2

] (𝑁11 +
𝜋

𝑏
𝐿11)

(3-67) 

 

To determine the stress field, we’ve to substitute (3-66) equations in (3-14) and then, 

we obtain the following stress field expressions: 

𝜎𝑥𝑥 = 𝑄11 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [−

𝜋

𝑎
𝐽11 + 𝑧 (

𝜋

𝑎
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑎
𝑀11 + (

𝜋

𝑎
)
2

𝐿11)]

+ 𝑄12 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [−

𝜋

𝑏
𝐾11 + 𝑧 (

𝜋

𝑏
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑏
𝑁11 + (

𝜋

𝑏
)
2

𝐿11)]                                (3-68) 

𝜎𝑦𝑦 = 𝑄12 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [−

𝜋

𝑎
𝐽11 + 𝑧 (

𝜋

𝑎
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑎
𝑀11 + (

𝜋

𝑎
)
2

𝐿11)]

+ 𝑄22 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [−

𝜋

𝑏
𝐾11 + 𝑧 (

𝜋

𝑏
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝜋

𝑏
𝑁11 + (

𝜋

𝑏
)
2

𝐿11)]                                (3-69) 

𝜎𝑥𝑧 = 𝑄55 𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝜋

𝑏
𝑦) [

1

𝑐𝑜𝑠ℎ2 (
2𝑧
ℎ
)
−

1

𝑐𝑜𝑠ℎ2(1)
(
2𝑧

ℎ
)
2

] (𝑀11 +
𝜋

𝑎
𝐿11)                    (3-70) 

𝜎𝑦𝑧 = 𝑄44 𝑠𝑖𝑛 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) [

1

𝑐𝑜𝑠ℎ2 (
2𝑧
ℎ
)
−

1

𝑐𝑜𝑠ℎ2(1)
(
2𝑧

ℎ
)
2

] (𝑁11 +
𝜋

𝑏
𝐿11)                    (3-71) 
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𝜎𝑥𝑦 = 𝑄66 𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) [

𝜋

𝑏
𝐽11 +

𝜋

𝑎
𝐾11 − 2𝑧

𝜋2

𝑎𝑏
𝐿11

+ (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
))(

𝜋

𝑏
𝑀11 +

𝜋

𝑎
𝑁11 + 2

𝜋2

𝑎𝑏
𝐿11)]                 (3-72) 

 

Where:  

{
  
 

  
 𝑄11 = 𝑄22 =

𝐸(𝑧)

1 − 𝜈2(𝑧)

𝑄12 = 𝑄21 =
𝜈(𝑧)𝐸(𝑧)

1 − 𝜈2(𝑧)

𝑄44 = 𝑄55 = 𝑄66 =
𝐸(𝑧)

2(1 + 𝜈(𝑧))

                                         (3-73) 

 

Generally speaking, we can write displacements and stresses fields as follows: 

 

 Displacement field  

{
 
 
 
 

 
 
 
 𝑢(𝑥, 𝑦, 𝑧) = ∑∑𝑐𝑜𝑠 (

𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑦) [𝐽11 − 𝑧

𝑚𝜋

𝑎
𝐿11 + (

ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (𝑀11 +

𝑚𝜋

𝑎
𝐿11)]

∞

𝑛=1

∞

𝑚=1

𝑣(𝑥, 𝑦, 𝑧) = ∑∑𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) [𝐾11 − 𝑧

𝑛𝜋

𝑏
𝐿11 + (

ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (𝑁11 +

𝑛𝜋

𝑏
𝐿11)]

∞

𝑛=1

∞

𝑚=1

𝑤(𝑥, 𝑦, 𝑧) = ∑∑𝐿11 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

∞

𝑚=1

 (3-74) 

 

 

 Stress field 

 

𝜎𝑥𝑥 = ∑∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑦) [𝑄11 (−

𝑚𝜋

𝑎
𝐽11 + 𝑧 (

𝑚𝜋

𝑎
)
2

𝐿11

∞

𝑛=1

∞

𝑚=1

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝑚𝜋

𝑎
𝑀11 + (

𝑚𝜋

𝑎
)
2

𝐿11))

+ 𝑄12 (−
𝑛𝜋

𝑏
𝐾11 + 𝑧 (

𝑛𝜋

𝑏
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝑛𝜋

𝑏
𝑁11 + (

𝑛𝜋

𝑏
)
2

𝐿11))]                     (3-75) 
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𝜎𝑦𝑦 = ∑∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

∞

𝑚=1

[𝑄12 (−
𝑚𝜋

𝑎
𝐽11 + 𝑧 (

𝑚𝜋

𝑎
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝑚𝜋

𝑎
𝑀11 + (

𝑚𝜋

𝑎
)
2

𝐿11))

+ 𝑄22 (−
𝑛𝜋

𝑏
𝐾11 + 𝑧 (

𝑛𝜋

𝑏
)
2

𝐿11

− (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
)) (

𝑛𝜋

𝑏
𝑁11 + (

𝑛𝜋

𝑏
)
2

𝐿11))]                     (3-76) 

𝜎𝑥𝑧 = 𝑄55 ∑∑ 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

[
1

𝑐𝑜𝑠ℎ2 (
2𝑧
ℎ
)
−

1

𝑐𝑜𝑠ℎ2(1)
(
2𝑧

ℎ
)
2

] (𝑀11

∞

𝑚=1

+
𝑚𝜋

𝑎
𝐿11)                                                                                                                (3-77) 

𝜎𝑦𝑧 = 𝑄44 ∑∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) [

1

𝑐𝑜𝑠ℎ2 (
2𝑧
ℎ
)
−

1

𝑐𝑜𝑠ℎ2(1)
(
2𝑧

ℎ
)
2

] (𝑁11

∞

𝑛=1

∞

𝑚=1

+
𝑛𝜋

𝑏
𝐿11)                                                                                                                 (3-78) 

𝜎𝑥𝑦 = 𝑄66 ∑∑ 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) [

𝑛𝜋

𝑏
𝐽11 +

𝑚𝜋

𝑎
𝐾11 − 2𝑧

𝑚𝑛𝜋2

𝑎𝑏
𝐿11

∞

𝑛=1

∞

𝑚=1

+ (
ℎ

2
𝑡𝑎𝑛ℎ (

2𝑧

ℎ
) −

4

3 𝑐𝑜𝑠ℎ2(1)
(
𝑧3

ℎ2
))(

𝑛𝜋

𝑏
𝑀11 +

𝑚𝜋

𝑎
𝑁11 + 2

𝑚𝑛𝜋2

𝑎𝑏
𝐿11)]   (3-79) 

5. Conclusion:  

In this chapter, our focus was on deriving the governing equations of motion for a plate 

made of functionally graded graphene platelets reinforced composite (FG-GPLRC). 

 To start with, we determined the displacement field using the hyperbolic higher-order 

shear deformation theory (HSDT) proposed by Mahi et al. Based on the displacement field, we 

then derived the deformation field and the stress field of the FG-GPLRC plate. This was done 

by considering the material properties of the composite, which vary continuously in the 

thickness direction.  

To obtain the motion equations, we use the energetic formulation of Hamilton on our 

FG-GPLRC plate, we were able to derive the governing equations of motion. 

Finally, we used the classical Navier method to solve analytically our bending and 

buckling problems for simply supported plates.  
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1. Introduction: 

In this chapter, we will present the results and discussions of the bending and buckling 

problems. These results were used with the calculation code developed in Python. Python is an 

interpreted language, unlike other classical languages which are compiled languages. Python 

can therefore be seen as an interactive tool that is always ready to react to your commands. We 

will compare the results with the published papers. The results representing the stresses and 

displacements as well as the critical buckling load will be represented in the form of appropriate 

graphs to show the influence of the parameters considered (geometric dimensions, relative 

thickness and volume fraction of the graphene nano-platelets distributions through the FG 

composite plate) in this study. 

 

2. Numerical resolution of the static problem: 

For our study, we are making a comparison of the results of reference [40] to validate 

both buckling and bending problems.  

In this section, several numerical examples are presented to study the bending and 

buckling of FG-GPLRC plates. The properties of the epoxy matrix are given by: 

 

𝜈𝑚 = 0.34 

𝜌𝑚 = 1200 Kg/m3 

𝐸𝑚 = 3 GPa 

The mechanical properties of graphene nanoplatelets (GPL) are given by: 

𝜈𝐺𝑃𝐿 = 0.186 

𝜌𝐺𝑃𝐿 = 1060 Kg/m3 

𝐸𝐺𝑃𝐿 = 1.01 TPa 

𝑙𝐺𝑃𝐿 = 2.5 µm 

𝑤𝐺𝑃𝐿 = 1.5 µm 

𝑡𝐺𝑃𝐿 = 1.5 nm 
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2.1 Graphical representation of the FG-GPLRC plate properties: 

After a series of calculations, we obtain the graphs of 𝑉𝐺𝑃𝑙(𝑧), 𝐸𝑚
𝐺𝑃𝑙(𝑧), 𝜌𝑚

𝐺𝑃𝑙(𝑧), 𝜈𝑚
𝐺𝑃𝑙(𝑧) 

and 𝐺𝑚
𝐺𝑃𝑙(𝑧) for the three patterns of distributions (b/h=10, Agpl=0.01). 
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Figure 32: Young’s modulus variation through the plate thickness for different distributions. 

Figure 31: Volume fraction variation through the plate thickness for different distributions. 
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Figure 33: Volumetric density variation through the plate thickness for different distributions. 

Figure 34: Poisson coefficient variation through the plate thickness for different distributions. 



CHAPTER 4 

 

Page | 72  

 

 

 

Basing on the analysis of the different graphs of mechanical properties, we note that: 

 Constant values for the different mechanical properties in the UD pattern 

through the plate thickness (Figures 30-34). 

 A symmetric variation for the different mechanical properties in X pattern 

(surface rich) and O pattern (middle rich) through the plate thickness (Figures 

30-34). 

 

2.2 Stiffnesses calculation of the static system: 

Table 5: Extension stiffnesses of the plate for different distribution patterns and for 
different volume fractions 

     

     

    

    

     

    

    

     

    

    

     

Volume 

fraction 

Agpl 

Extension 

Stiffnesses 

(Pa.m×108) 

GPL-UD 

 

GPL-X 

 

GPL-O 

 

0.01 

 

A11 6.598839003020 6.598963440422 6.598963440422 

A12 2.232116044442 2.229214091310 2.229214091310 

G MaxG Average
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Figure 35: Shear modulus variation through the plate thickness for different distributions. 
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Table 6: Transverse-shear stiffnesses of the plate for different distribution patterns and for 
different volume fractions 

 

Table 7 : Coupling stiffnesses of the plate for different distribution patterns and for 
different volume fractions. 

  

 A66 2.183361479286 2.184874674 555 2.184874674555 

0.02 A11 11.65859946743 11.659203956971 11.659203956971 

A12 3.923379799696 3.9118360231390 3.9118360231390 

A66 3.867609833869 3.8736839669160 3.8736839669160 

0.03 A11 16.70594796372 16.707545607894 16.707545607894 

A12 5.592991885265 5.567159521285 5.567159521285 

A66 5.556478039218 5.570193043304 5.570193043304 

Volume 

Fraction 

Agpl 

Higher 

order 

Shear 

Stiffnesses 

(Pa.m×108) 

GPL-UD GPL-X GPL-O 

0.01 

 

 

𝐴44
𝑎

 1.0530574319674 0.7129652103731 1.394642083389 

𝐴55
𝑎

 1.0530574319674 0.7129652103731 1.394642083389 

0.02 𝐴44
𝑎  1.8653875311702 1.1839259187836 2.552839922108 

𝐴55
𝑎  1.8653875311702 1.1839259187836 2.552839922108 

0.03 𝐴44
𝑎  2.6799458313585 1.6558385787600 3.717579879938 

𝐴55
𝑎  2.6799458313585 1.6558385787600 3.717579879938 

Volume 

Fraction 

Agpl 

Coupling  

Stiffnesses 

(Pa.m²) 

 

GPL-UD 

 

 

GPL-X 

 

 

GPL-O 

0.01 

 

 

B11 0 0 0 
B12 0 0 0 
B66 0 0 0 

0.02 B11 0 0 0 
B12 0 0 0 
B66 0 0 0 

0.03 B11 0 0 0 
B12 0 0 0 
B66 0 0 0 
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Table 8: Higher order coupling stiffnesses of the plate for different distribution patterns 
and for different volume fractions. 

Table 9: Bending stiffnesses of the plate for different distribution patterns and for different 
volume fractions. 

Table 10: Higher order bending stiffnesses of the plate for different distribution patterns 
and for different volume fractions. 

  

Volume 

Fraction 

Agpl 

Higher order 

Coupling  

Stiffnesses 

(Pa.m²) 

 

GPL-UD 

 

 

GPL-X 

 

 

GPL-O 

0.01 

 

 

𝐵11
𝑎

 0 0 0 

𝐵12
𝑎

 0 0 0 

𝐵66
𝑎

 0 0 0 

0.02 𝐵11
𝑎  0 0 0 

𝐵12
𝑎  0 0 0 

𝐵66
𝑎  0 0 0 

0.03 𝐵11
𝑎  0 0 0 

𝐵12
𝑎  0 0 0 

𝐵66
𝑎  0 0 0 

Volume 

Fraction 

Agpl 

Bending  

Stiffnesses 

(Pa.m3×105) 

GPL-UD 

 

GPL-X 

 

GPL-O 

 

0.01 

 

 

D11 1.113554081 1.541591954 0.685566605 

D12 0.376669582 0.519891599 0.232272274 

D66 0.368442249 0.377512657 0.226647165 

0.02 D11 1.967388660 2.822556158 1.112465978 

D12 0.662070341 0.944053323 0.375412124 

D66 0.652659159 0.939251417 0.368526927 

0.03 D11 2.819128718 4.10060154 1.538302931 

D12 0.943817380 1.360158415 0.517042139 

D66 0.937655669 1.370221564 0.510644358 

Volume 

Fraction 

Agpl 

Higher 

order 

Bending  

Stiffnesses 

(Pa.m3×105) 

GPL-UD 

 

GPL-X 

 

GPL-O 
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Table 11 : Higher order bending stiffnesses of the plate for different distribution patterns 
and for different volume fractions. 

 

After analyzing the results of the various stiffnesses represented in the tables bellow, we 

noted that: 

 All stiffnesses increase by increasing the mass fraction of GPLs. 

 The results of extension stiffnesses Aij are quietly the same with some light 

differences at UD pattern (Table 5). 

 The uniform distribution pattern always takes the average values comparing it 

with the surface rich and the middle rich distributions. 

 A significant behavior from O pattern where the transverse shear stiffnesses 

give the greatest values comparing to X and UD patterns, the values of 𝑨𝒊𝒋
𝒂  

decrease in UD pattern and decrease more in X pattern (Table 6). 

0.01 

 

 

𝑫𝟏𝟏
𝒂

 0.845863855 1.139339060 0.552423578 

𝐷12
𝑎

 0.286120980 0.384313745 0.187113702 

𝐷66
𝑎

 0.2798714378 0.377512657 0.182654938 

0.02 𝐷11
𝑎  1.4944428702 2.080770938 0.908284467 

𝐷12
𝑎  0.5029134919 0.696231747 0.306355155 

𝐷66
𝑎  0.4957646891 0.692269595 0.300964655 

0.03 𝐷11
𝑎  2.1414308721 3.020047111 1.263263052 

𝐷12
𝑎  0.7169306115 1.002347044 0.424263605 

𝐷66
𝑎  0.7122501302 1.008850033 0.419499723 

Volume 

Fraction 

Agpl 

Higher 

order 

Bending  

Stiffnesses 

GPL-UD 

(Pa.m3×105) 

GPL-X 

(Pa.m3×105) 

GPL-O 

(Pa.m3×105) 

0.01 

 

 

𝐷11
𝑎𝑎

 0.652826130 0.853827579 0.451849129 

𝐷12
𝑎𝑎

 0.220824250 0.288070325 0.153008002 

𝐷66
𝑎𝑎

 0.216000939 0.282878627 0.149420563 

0.02 𝐷11
𝑎𝑎 1.153390523 1.554967838 0.751931978 

𝐷12
𝑎𝑎 0.388141739 0.520520904 0.253494462 

𝐷66
𝑎𝑎 0.382624391 0.517223466 0.249218758 

0.03 𝐷11
𝑎𝑎 1.652726995 2.254494312 1.051273582 

𝐷12
𝑎𝑎 0.553317219 0.748744032 0.352814881 

𝐷66
𝑎𝑎 0.549704888 0.752875139 0.349229350 
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 The coupling stiffnesses (extension-bending stiffnesses) give a null value this 

because of the symmetry of the different distribution patterns over the plan 

z/h=0 (Table 7-8). 

 A significant behavior from X pattern where the bending and the higher order 

bending stiffnesses give the greatest values comparing to UD and O patterns, 

the values of Dij, 𝐷ij
𝑎, and 𝐷ij

𝑎𝑎 decrease in UD pattern and decrease more in O 

pattern (Table 9-10-11). 
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Figure 37: Agpl mass fraction effect on the higher order bending stiffnesses 𝑫𝐢𝐣
𝒂𝒂. 

Figure 36: Agpl mass fraction effect on the higher order transverse shear stiffnesses 𝑨𝒊𝒋
𝒂 . 
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2.3 Buckling analysis: 

The response to buckling of composite plates reinforced by graphene nano-platelets 

(GPLRC) is studied. The distribution of GPLs through the thickness of the plate can be uniform 

or graduated by a median symmetrical pattern. The properties of the plate FG-GPLRC are 

obtained using the modified rule of mixtures, Halpin-Tsai model is employed to calculate 

Young’s modulus. The higher-order plate theory (HSDT) is adopted to develop or derive the 

basic equations of plate motion.  

The Navier method has been utilized to derive elastic stiffness matrices, specifically for 

edges in simple supports (SSSS). Convergence and comparison studies have been conducted to 

demonstrate the efficiency and accuracy of the method. Parametric studies have also been 

carried out to investigate the impact of GPL mass fraction, thickness distribution law, and the 

a/h ratio of the plate. The results indicate that a gradual functional distribution and strategic use 

of nano-platelets can enhance the plate's buckling ability, leading to lower critical buckling 

loads. Furthermore, enriching the matrix with graphene nano-platelets has been shown to 

improve the buckling loads of FG-GPLRC plates. 

 

2.3.1  Comparing results: 

In this part, several numerical examples are presented and discussed to verify the 

accuracy and efficiency of the present theory in the prediction of the critical buckling load of 

an FG-GPLRC plate subjected to a uniaxial compression load.  

The dimensionless critical buckling loads are calculated using the Python program that 

we created, which utilizes the dimensionless form as follows: 

 

�̅�𝑐𝑟 =
100𝑃𝑐𝑟(1 − νm

2)

𝐸𝑚ℎ
                                                             (4-1) 
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Table 12: Validation of dimensionless critical buckling load of FG-GPLRC square plate 
subjected to a uniaxial compression. 

 

 

 

 

 

Agpl (%) 

 

Reference 

 

SSSS 

Pattern 

GPL- UD  GPL- X  GPL- O 

0.0 

Present (HSDT) 3.1048 3.1048 3.1048 

Ghandourah et 

al [40] 

3.1046 3.1046 3.1046 

|Error (%)| 0.006 0.006 0.006 

0.1 

Present (HSDT) 3.1552 3.1781 3.1324 

Ghandourah et 

al [40] 

3.1550 3.1732 3.1367 

|Error (%)| 0.006 0.15 0.13 

0.3 

Present (HSDT) 3.2565 3.3256 3.1876 

Ghandourah et 

al [40] 

3.2562 3.3115 3.2011 

|Error (%)| 0.009 0.42 0.42 

0.5 

Present (HSDT) 3.3586 3.4747 3.2429 

Ghandourah et 

al [40] 

3.3583 3.4510 3.2657 

|Error (%)| 0.008 0.68 0.69 

Figure 38: Variation of the dimensionless critical buckling load FG-GPLRC plate subjected 
to a uniaxial compression. 
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The comparison table displays the dimensionless critical buckling load of an FG-

GPLRC square plate under uni-axial compression. To provide a clearer understanding of the 

evolution of these loads, a graph illustrating the variation of mass fraction (Agpl) for different 

distribution patterns has been developed. The relative error of the results, when compared to 

previously published data, remains low, although there is a slight increase for the GPL-O 

distribution. This increase is due to the employment of a different plate theory, which impacts 

the GPL-O pattern more significantly than the other patterns. Overall, this demonstrates the 

effective performance of the developed Python program, establishing its reliability for 

conducting a parametric study, as detailed in the next section. Figure 37 shows that as the mass 

fraction increases, the dimensionless critical buckling load also increases because the plate 

becomes more rigid. In summary, the higher the (Agpl) (making the plate richer), the higher the 

supported critical buckling load. 

 

 

2.3.2 Parametric study: 

In this section, we study the influence of the a/h ratio and mass fraction Agpl on the 

critical dimensionless buckling load for an FG-GPLRC square plate. The figures below show 

the variation of the dimensionless critical buckling load according to the a/h ratio and GPLs 

mass fraction, the dimensionless critical load decreases while the ratio increases, this gives an 

information that the plate become thinner so the critical load supported becomes smaller, in the 

other hand each time the mass fraction increases, the critical load increases, it means that more 

we reinforced the plate, bigger critical load required. The shape of the graph is given because 

of the formulation of the dimensionless critical buckling load expression. After the figures have 

been analyzed, we can deduce that the X pattern gives more rigidity to the plate to support the 

minimum load causes buckling, after it comes UD pattern and last O pattern. All the distribution 

patterns (UD, FG-X, FG-O) give the same type of variation of the dimensionless critical 

buckling load. For a biaxial compression the dimensionless critical buckling load becomes 

smaller to the half value of the case where the plate is under a uniaxial compression, this is 

available for all types and values of the reinforcements which we can deduce that the plate 

bearing to buckling decreasing even it has been reinforced. 
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Figure 39: Effect of 𝑎/ℎ ratio on the dimensionless critical buckling load for a plate 
FG-UD (λ1 = -1, λ2 = 0) 

Figure 40: Effect of 𝑎/ℎ ratio on the dimensionless critical buckling load for a plate FG-
UD (λ1 = -1, λ2 = -1) 
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Figure 41: Effect of 𝑎/ℎ ratio on the dimensionless critical buckling load for a plate FG-
X (λ1 = -1, λ2 = 0) 

Figure 42: Effect of 𝑎/ℎ ratio on the dimensionless critical buckling load for a plate FG-
X (λ1 = -1, λ2 = -1) 
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Figure 43: Effect of 𝑎/ℎ ratio on the dimensionless critical buckling load for a plate 
FG-O (λ1 = -1, λ2 = 0) 

Figure 44: Effect of 𝑎/ℎ ratio on the dimensionless critical buckling load for a plate 
FG-O (λ1 = -1, λ2 = -1) 
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Table 13: Effect of the variation of a/h ratio on the dimensionless critical buckling load 
(�̅�cr) for two type of compression Agpl=0.01. 

 

 

Pattern 

AGPL 0.01 
 

a/h UNIAXIAL BIAXIAL 

UD 

2 144.72 72.36 

5 45.90 22.95 

10 13.4 6.7001 

20 3.49 1.7485 

30 1.567 0.7835 

40 0.884 0.442 

50 0.5665 0.2832 

100 0.1418 0.0709 

X 

2 130.45 65.22 

5 53.93 26.96 

10 17.62 8.8127 

20 4.77 2.3876 

30 2.1558 1.0779 

40 1.2193 0.6096 

50 0.7824 0.3912 

100 0.1962 0.0981 

O 

 

 

 

2 123.55 61.77 

5 31.10 15.55 

10 8.47 4.2396 

20 2.1689 1.0844 

30 0.9681 0.484 

40 0.5453 0.2726 

50 0.3492 0.1746 

100 0.0874 0.0437 
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Table 14 : Effect of the variation of a/h ratio on the dimensionless critical buckling load 
(�̅�cr) for two type of compression, Agpl=0.015. 

 

 

Pattern 

 

Agpl 0.015 

a/h UNIAXIAL BIAXIAL 

UD 

2 200.37 100.18 

5 63.52 31.76 

10 18.5397 9.2698 

20 4.8381 2.419 

30 2.1679 1.0839 

40 1.2229 0.6114 

50 0.7837 0.3918 

100 0.1962 0.0981 

X 

  

2 177 88.5 

5 74.92 37.46 

10 24.7945 12.3972 

20 6.7482 3.3741 

30 3.0493 1.5246 

40 1.7253 0.8626 

50 1.1072 0.5536 

100 0.2778 0.1389 

O 

 

 

 

2 166.10 83.05 

5 41.05 20.52 

10 11.1382 5.5691 

20 2.8453 1.4226 

30 1.2697 0.6348 

40 0.7152 0.3576 

50 0.458 0.229 

100 0.1146 0.0573 
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Table 15: Effect of the variation of a/h ratio on the dimensionless critical buckling load 
(�̅�cr) for two type of compression, Agpl=0.02. 

 

 

 

Pattern 

 

Agpl 0.02 
 

a/h UNIAXIAL BIAXIAL 

UD 

2 256.03 128.01 

5 81.12 40.56 

10 23.6737 11.8368 

20 6.1775 3.0887 

30 2.768 1.384 

40 1.5615 0.7807 

50 1.0006 0.5003 

100 0.2506 0.1253 

X 

2 223.40 111.70 

5 95.82 47.91 

10 31.9467 15.9733 

20 8.7183 4.3591 

30 3.9417 1.9708 

40 2.2307 1.1153 

50 1.4317 0.7158 

100 0.3592 0.1796 

O 

2 208.43 104.21 

5 50.96 25.48 

10 13.7924 6.8962 

20 3.5208 1.7604 

30 1.5709 0.7854 

40 0.8848 0.4424 

50 0.5666 0.2833 

100 0.1417 0.0708 



CHAPTER 4 

 

Page | 86  

 

2.4 Bending analysis: 

2.4.1 Comparing results: 

In this study, we have assumed that the plate is simply supported. To ensure the accuracy 

of our results, we have compiled the data in Table 16 for comparison purposes. In our 

calculation code, we have utilized the following dimensionless expressions. 

 

�̅�(𝑧) =
10𝐸0ℎ

𝑎2𝑞0
𝑤 (

𝑎

2
 ,
𝑏

2
,
ℎ

2
) 

𝜎𝑥𝑥(𝑧) =
10ℎ2

𝑎2𝑞0
𝑤 (

𝑎

2
 ,
𝑏

2
,
ℎ

2
) 

                           𝜎𝑥𝑦(𝑧) =
10ℎ2

𝑎2𝑞0
𝜎𝑥𝑦 (0 ,0, −

ℎ

2
)                                                                         (𝟒-𝟐) 

𝜎𝑥𝑧(𝑧) =
10ℎ2

𝑎2𝑞0
𝜎𝑥𝑧 (0 ,

𝑏

2
, 0) 

Where E0=1GPa 

 

In this section, the response to the bending of an FGM plate is obtained under the action 

of a sinusoidal distribution of the transverse load. Table 16 contains the bending results obtained 

thanks to the higher-order shear deformation theory for a square FGM plate. 

Table 16 shows the dimensionless central deflection �̅� and the dimensionless stresses 

of three types of plates squares simply supported and subjected to a sinusoidal transverse load 

𝑞0. The data are the same as those of the references used for the comparison. 

The results of the present formulation are compared with those of the quasi-3D theory 

reported by Ghandourah et al [40] where the transverse strain is null. Three types of 

distributions of graphene nanoplatelets through the thickness are considered, referred to in the 

literature by UD, FG-O and FG-X. Based on the good results obtained with a low relative error, 

it is evident that the method being used has a significant impact on the GPL-O distribution. The 

slight increase in the transverse shear stress can be attributed to the implications of the plate 

theory being utilized. It can be concluded that the analysis, based on a higher-order shear 

deformation theory and an analytical method of solving, is well-suited for deformation 

problems in moderately thick FGM plates reinforced by GPLs and simply supported. We 

observe that the central deflection of the FG-O GPLRC plate is larger than the deflection of the 
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UD-GPLRC and FG-X GPLRC plate because the latter make the plate stiffer, which leads us 

to higher values of the dimensionless axial stress 𝜎𝑥𝑥 and the dimensionless shear stress 𝜎𝑥𝑦 for 

the UD-GPLRC and FG-X GPLRC plate where the table results make a good agreement with 

it. But for the dimensionless transverse shear stress 𝜎𝑥𝑧, the FG-O GPLRC plate shows stiffer 

pattern than FG-X GPLRC and UD-GPLRC plate. 

 

 

 

 

Table 16: Validation of dimensionless central deflection and stresses of FG-GPLRC square 
plate with a/h=10 and Agpl=1%. 

Pattern 

 

Reference �̅� �̅�𝐱𝐱 �̅�𝐱𝐲 �̅�𝐱𝐳 

GPL-UD 

Present (HSDT) 8.8950 2.0558 1.0165 0.2504 

Ghandourah et al 

[40] 

8.8943 2.0554 1.0163 0.2463 

|𝐸𝑟𝑟𝑜𝑟 (%)| 0.007 0.019 0.019 1.66 

GPL- X 

Present (HSDT) 8.5983 2.1303 1.0575 0.2378 

Ghandourah et al 

[40] 

8.6554 2.0951 1.0387 0.2390 

|𝐸𝑟𝑟𝑜𝑟 (%)| 0.65 1.68 1.80 0.5 

GPL- O 

Present (HSDT) 9.2115 1.9772 0.9738 0.2626 

Ghandourah et al 

[40] 

9.1463 2.0136 0.9931 0.2535 

|𝐸𝑟𝑟𝑜𝑟 (%)| 0.71 1.80 1.94 3.58 
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Figure 45: Variation of Dimensionless deflection through the plate thickness for 
different patterns. 

Figure 46: Variation of Dimensionless axial stress through the plate thickness for 
different patterns. 
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Figure 47: Variation of Dimensionless transverse shear stress through the plate 
thickness for different patterns. 

Figure 48: Variation of Dimensionless shear stress through the plate thickness for 
different patterns. 
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The figures illustrate the variations of different dimensionless parameters. It is observed 

that the X pattern represents higher values near the two surfaces of the plate, while the O pattern 

represents higher values near the mid-plane. The UD pattern consistently describes the average 

values. Additionally, the figures simulate the parabolic variation of the transverse shear stress 

as mentioned in the literature. 

 

2.4.2 Parametric study:  

In this section, we investigate the impact of the Agpl mass fraction and the plate 

geometry (variations in the a/h ratio) on the bending behavior of a simply supported functionally 

graded reinforced graphene nanoplatelets composite plate under a sinusoidal transverse load. 

We will present several figures depicting the variation of transverse central displacement and 

plate stresses for a square plate with different values of the a/h ratio (10, 20, 30, 40, 50, 60, 80, 

100), as well as for three distribution patterns (UD, FG-X, FG-O) and three increasing values 

of Agpl mass fraction (0.01, 0.015, 0.02). This analysis aims to assess how these factors 

influence the bending characteristics of the composite plate. 

The dimensionless central deflection (Figures 49-50-51) increases as the a/h ratio 

increases. This is because the plate becomes slenderer and hence more flexible. It is also noted 

that the dimensionless deflection increases slowly when the ratio values are between 10 and 40, 

but after passing 40, the deflection increases rapidly. The effect of mass fraction on the 

deflection is clearly notable in the figures for the different distribution patterns. As the mass 

fraction increases, the deflection decreases, indicating that the FG-GPLRC plate becomes 

stiffer. Overall, the FG-X pattern shows a stiffer pattern than FG-O and UD patterns, with lower 

values of dimensionless deflection for the three values of mass fraction. The FG-O pattern 

shows a less stiff pattern, with the highest values of dimensionless deflection. 

The dimensionless longitudinal stress (illustrated in Figures 52 to 56) decreases as the 

a/h ratio increases. This is because the plate becomes thinner and less rigid. The axial stress 

decreases rapidly when the ratio values are between 10 and 20, and then the rate of decrease 

becomes lower after surpassing 20. When mass fraction values are added for the UD and FG-

O patterns, the longitudinal stress remains lower. Conversely, in the FG-X patterns, higher mass 

fractions result in higher axial stress. Notably, the FG-O pattern consistently shows lower values 

of dimensionless longitudinal stress compared to other distributions. 

The dimensionless transverse shear stress (Figures 57 to 63) reveals that the UD pattern 

maintains a consistent value across all mass fraction quantities, whereas the other distribution 
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patterns show consistent variation but with different magnitudes for each mass fraction. The 

transverse shear stress increases rapidly from 10 to 20, then stabilizes as the plate becomes 

thinner, indicating increased flexibility. However, this variation is not consistent across different 

GPL concentrations. In the FG-X distribution, a higher mass fraction results in lower transverse 

shear stress, while in the FG-O pattern, a higher (Agpl) concentration leads to higher shear 

stress compared to the FG-X and UD patterns. Notably, the FG-O pattern shows the highest 

values of dimensionless shear stress among the three patterns, while the FG-X pattern exhibits 

the lowest.  

The dimensionless shear stress decreases for all distribution types as the (a/h) ratio 

increases, due to the effect of the slenderness of the plate. Reinforcement, or the increase in 

(Agpl), raises the shear stress values in the UD and FG-X patterns, whereas in the FG-O 

distribution, it results in lower shear stress values for the highest mass fraction. The 

dimensionless shear stress variation exhibits a similar graphic shape across the different 

patterns. Overall, the FG-O pattern has the highest values of dimensionless shear stress, 

followed by the UD pattern and then the FG-X pattern.  
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Figure 49: Variation of the central dimensionless deflection according to the a/h ratio of 
a square plate with different values of Agpl for UD pattern. 
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Figure 50: Variation of the central dimensionless deflection according to the a/h ratio of 
a square plate with different values of Agpl for X pattern. 

Figure 51: Variation of the central dimensionless deflection according to the a/h ratio of 
a square plate with different values of Agpl for O pattern. 
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Figure 53: Variation of dimensionless longitudinal stress according to the a/h ratio of a 
square plate with different values of Agpl for X pattern. 

Figure 52: Variation of dimensionless longitudinal stress according to the a/h ratio of a 
square plate with different values of Agpl for UD pattern. 
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Figure 54: Variation of dimensionless longitudinal stress according to the a/h ratio of 
a square plate for O pattern Agpl=0.01. 

Figure 55: Variation of dimensionless longitudinal stress according to the a/h ratio of 
a square plate for O pattern Agpl=0.015. 

Figure 56: Variation of dimensionless longitudinal stress according to the a/h ratio of 
a square plate for O pattern Agpl=0.02. 
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Figure 57: Variation of dimensionless transverse shear stress according to the a/h ratio 
of a square plate with different values of Agpl for UD pattern. 

Figure 58: Variation of dimensionless transverse shear stress according to the a/h ratio 
of a square plate for X pattern Agpl=0.01. 
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Figure 60: Variation of dimensionless transverse shear stress according to the a/h ratio 
of a square plate for X pattern Agpl=0.02. 

Figure 59: Variation of dimensionless transverse shear stress according to the a/h ratio 
of a square plate for X pattern Agpl=0.015. 
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Figure 62: Variation of dimensionless transverse shear stress according to the a/h 
ratio of a square plate for O pattern Agpl=0.015. 

Figure 61: Variation of dimensionless transverse shear stress according to the a/h ratio 
of a square plate for O pattern Agpl=0.01. 
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Figure 63: Variation of dimensionless transverse shear stress according to the a/h ratio 
of a square plate for O pattern Agpl=0.02. 

Figure 64: Variation of dimensionless shear stress according to the a/h ratio of a square 
plate with different values of Agpl for UD pattern. 
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Figure 65: Variation of dimensionless shear stress according to the a/h ratio of a square 
plate with different values of Agpl for X pattern. 

Figure 66: Variation of dimensionless shear stress according to the a/h ratio of a 
square plate for O pattern Agpl=0.01. 
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Figure 67: Variation of dimensionless shear stress according to the a/h ratio of a 
square plate for O pattern Agpl=0.015. 

Figure 68: Variation of dimensionless shear stress according to the a/h ratio of a 
square plate for O pattern Agpl=0.02. 
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2.5 Flowchart of the principal coding steps: 

Python programming language is used to solve the bending and buckling motion 

equations of a simply supported FG-GPLRC plate using the Navier method. The main steps 

involved in this process are summarized in the flowchart 

 

Figure 69: Python code flowchart. 



CHAPTER 4 

 

Page | 102  

 

3. Conclusion: 

In this chapter, we focused on studying the bending and buckling behavior of different 

types of FG-GPLRC plates (Functionally Graded Graphene nano-Platelets reinforced 

composite) using the analytical method of Naiver. We estimated the mechanical properties 

based on the z position through the thickness using the extended mixing rule. Our approach 

involved using the higher-order shear deformation theory to approximate the two-dimensional 

displacement field. We validated our Python calculation code by comparing our results with 

published data and found good agreement. It's worth noting that our calculation code requires 

a smaller calculation volume compared to other methods such as the theory of 3D elasticity, the 

DQM method, or the finite element method. However, it's important to mention that our 

analytical method is only valid for simple supported plates. 

 

We also highlighted the promising potential of GPLs in the industry as they serve as 

excellent candidates for reinforcing polymer composites and controlling buckling critical loads, 

displacements, and stresses. Their superior mechanical properties, including high strength and 

rigidity, make them advantageous for various applications. 
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GENERAL CONCLUSION: 

The development of composite materials has brought about significant advantages, but it 

has also introduced challenges related to discontinuity of material properties at the interfaces. 

These discontinuities can lead to stress concentrations and interface problems, particularly in 

high temperature environments. Furthermore, the large plastic deformation of the interface can 

initiate and propagate cracks, ultimately leading to failure of the composite. To address these 

issues, Functionally Graded Materials (FGMs) have emerged as a promising solution. 

 

FGMs are advanced composites with varying composition, microstructure, and properties, 

typically in the thickness direction. They offer a wide range of practical applications and 

represent a rapidly evolving field in science and engineering. However, the design and 

development of FGMs require specialized analysis tools tailored to their geometric and material 

specificities. 

 

In this thesis, the focus is on studying the bending behaviors and buckling of an FGM 

plate reinforced by graphene nano-platelets. The analysis is based on the hyperbolic higher 

order shear deformation theory, with the assumption that the properties of the materials vary 

through the thickness. The plate is modeled as a multilayer plate, and the equations of motion 

for a simply supported plate are established using Hamilton's principle, which is based on the 

strain energy and the work of external loads. 

 

 The solution of the coupled differential equations is obtained using the analytical method 

of Navier to determine the stresses, displacements, and the critical load of buckling. A 

parametric study has been conducted to obtain numerous numerical results, which are presented 

in graphical form for better interpretation. These results have led to several important 

conclusions. 

 

Overall, the study underscores the potential benefits of FGMs and highlights the need for 

continued research and development in this area. By addressing the challenges associated with 

conventional composite materials, FGMs offer the promise of enhanced performance and 

expanded application possibilities. Thanks to these results, several conclusions can be drawn: 
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 The reinforcement of composite plates with graphene nanoplatelets significantly 

affects deflection, stresses, and critical buckling loads. 

 The impact of the volume fraction of graphene nanoplatelets on the displacements 

and stresses of moderately thick plates is more pronounced. 

 We also observe general trends regarding the influence of the geometry of the FGM 

plate on its static behavior. Specifically, as the plate becomes relatively thinner 

(length-to-thickness ratio or width-to-thickness ratio), the deflection (w) increases. 

Additionally, as the (a/h) ratio (from moderately thick plate to thin plate) increases, 

the values of longitudinal and shear stresses decrease, whereas transverse shear 

stresses increase. 

 The stresses and displacements of the plate are strongly influenced by the volume 

fraction of graphene nanoplatelets used as reinforcement. Indeed, as the volume 

fraction increases, the plate becomes more rigid and its deformation decreases. This 

observation holds true for moderately thick, thin, and even thick plates. However, 

the most influential parameter is the concentration of GPLs far from the mid-plane 

(surface-rich). Therefore, the distribution law of the volume fraction affects the 

stresses and the critical buckling load regardless of the plate's geometry. This effect 

diminishes as the plate becomes much thinner, where the concentration of GPLs 

near the upper and lower surfaces has a reduced impact. 

 

Perspectives: 

 Incorporating the Effect of Temperature: A valuable future direction would be to 

extend the study by considering the influence of temperature on the bending and 

stability of FGM plates reinforced with graphene nanoparticles. This approach 

would account for thermal expansion and variations in mechanical properties 

with temperature. 

 

 Evaluating other Nanomaterials: Beyond graphene nanoparticles, it would be 

beneficial to evaluate other types of nanomaterials as reinforcements for FGM 

plates. This perspective would allow for a comparison of the effects of different 

nanomaterials, such as carbon nanotubes, nanofibers, and metal nanoparticles, on 
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the static and stability responses of the plates, aiming for optimal reinforcement 

design for specific applications. 

 Exploring Different Boundary Conditions: Investigating the effect of various 

boundary conditions (clamped, free, simply supported, and their combinations) on 

the critical buckling load, stresses, and displacements for different types of 

GPLRC plates and beams. 

 

 Examining Initial Defects: Studying the impact of initial defects (such as porosities 

and deformed surfaces) on the performance of the plates. 
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