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ABSTRACT

To meet regulatory and economic requirements, the aerospace, naval, and civil
engineering industries are constantly looking for structures that are both strong and lightweight.
The rapid advances in nanoscience and nanotechnology have gone a long way towards meeting
this demand. Theoretical and experimental studies are converging on the development of new
high-tech composites, such as FGMs (Functionally Graded Materials) and advanced
composites, reinforced with graphene nano-platelets. These nano-platelets are proving
promising, offering optimized mechanical, thermal, and electrical properties, and electrical
properties with significant weight savings.

This study aims to contribute to this development by examining the influence of graphene
nano-platelet reinforcement on the bending and buckling response of an advanced composite
plate. An adapted high-order shear deformation theory will be used to carry out this parametric

study.

Keywords: bending, buckling, analytical method, advanced composites, graphene nano-

platelets.
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Résumé

Les industries aérospatiale, navale, automobile et du génie civil recherchent constamment
des structures a la fois résistantes et légeres pour répondre aux exigences réglementaires et
¢conomiques. En grande partie, cette demande a été satisfaite grace aux progres rapides dans
les domaines des nanosciences et de la nanotechnologie. Les recherches expérimentales et
théoriques se concentrent sur la création de nouveaux composites de haute technologie tels que
les matériaux a gradient fonctionnel (FGM) et les composites avancés renforcés par des nano-
plaquettes de graphene. Ce sont des nano-plaquettes prometteuses car elles offrent des
propriétés mécaniques, thermiques et électriques optimisées tout en offrant un gain de poids
considérable.

En examinant l'impact du renforcement en nano-plaquettes de graphéne sur la réponse
de flexion et de flambage d'une plaque composite avancée, cette étude vise a contribuer a ce
développement. Pour mener cette étude paramétrique, une théorie de déformation d’ordre

supérieur en cisaillement appropriée sera utilisée.

Mots Clés : flexion, flambage, méthode analytique, composites avancés, nano-plaquettes de

graphéne.
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GENERAL INTRODUCTION:

Composite materials, made up of multiple materials, offer superior properties such as
stiffness, fatigue resistance, corrosion resistance, wear resistance, and weight reduction.
However, conventional composite materials often face discontinuity in properties and stresses
at interfaces, leading to high stress concentrations, matrix cracking, and delamination problems.
Functionally Graded Materials (FGMs) can overcome these issues by continuously changing
material properties, resulting in a smooth transition from one material to another. FGMs can
also be tailored for specific applications, such as using graphene nano-platelets to enhance

mechanical, thermal, and electrical properties while reducing structure weight.

In this project, the primary objective is to delve deeply into the intricate characteristics
and behavior of a functionally graded material (FGM) plate that has been ingeniously fortified
with graphene nano-platelets. The focus of the investigation centers around examining and
understanding the plate's static response as well as its stability under various loading conditions,
with a special emphasis on analyzing its resistance to bending and buckling. The study aims to
unravel the unique mechanical properties exhibited by this innovative composite structure,
shedding light on how the incorporation of graphene nano-platelets influences the overall
performance and durability of the FGM plate. The plate's response to external forces and
evaluating its structural integrity when subjected to different stress levels, this research seeks
to contribute valuable insights to the field of materials science and engineering. With a
comprehensive analysis of the plate's mechanical behavior, the project aims to provide a
foundation for further advancements in FGM technology, paving the way for the development
of new and improved materials that offer enhanced strength, stiffness, and resilience for various
engineering applications. Through this detailed exploration, the study endeavors to advance our
understanding of material design and optimization strategies, ultimately aiming to foster

innovations in the realm of composite materials and structural engineering.

Previous studies:

Several studies have been carried out on FGM plates and their characteristics of bending
and buckling behavior. Shen et al modeled and analyzed the thermal bending and post-buckling
of GRNC laminated plates resting on an elastic foundation and subjected to in-plane

temperature variation. Song et al, presented bending and buckling analyses of multilayer FG-
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GRNC polymer composite plates using the first-order shear deformation theory. Daikh and
Megueni, investigated the influence of plate aspect ratio, gradient index and the thermal loading
conditions on the buckling of FGM sandwich plates modeled by the higher-order shear
deformation plate theory. Thai et al studied mechanical behavior of multilayer FG-GRNC plates
based on the four-variable refined plate theory and modified couple stress theory. Song et al
also studied the free and forced vibration, buckling and postbuckling of multilayer graphene
nanocomposite plates in which graphene platelets (GPLs) were nonuniformly distributed in a
layer-wise manner. Wu et al, examined the thermal buckling and postbuckling of functionally
graded multilayer GPL reinforced composite (GPLRC) plates and suggested that whether the
thermal buckling and postbuckling resistance increases or decreases is highly dependent on the
GPL distribution pattern. Iurlaro et al, carried out bending and free vibration FG sandwich plates
using a refined zigzag theory and finite element method. Thai et al, examined bending, buckling
and vibration of FG sandwich plates with various boundary conditions using a new FSDT. Mahi
et al, proposed a new hyperbolic shear deformation theory for the bending of FG sandwich
plates. Wang and Shen, analyzed a nonlinear bending of FG sandwich plate resting on elastic

foundations using a two-step perturbation method.

These studies have contributed to a better understanding of the static response and the
stability characteristics of a FG plates under different conditions and have explored various

theoretical approaches and to analyze their behavior.

Thesis contribution:

Our thesis involves a parametric study that aims to understand how the reinforcement in
graphene nano-platelets affects deflection and stresses for bending and the critical buckling load
for buckling, of an FGM plate. For this, we will use an adapted shear deformation theory, which
will allow us to precisely analyze the effects of this reinforcement on the bending and buckling

characteristics of the plate.

This parametric study will allow us to explore different configurations of graphene nano-
platelets in the FGM plate. We will also examine factors such as the size and distribution of
graphene nano-platelets to determine the optimal combinations that optimize the static response
and stability performance. These results will provide valuable information on how to improve
the performance of graphene-reinforced composites. By applying this knowledge, industries
will be able to design lighter, stronger and more durable structures, which will promote

innovation and efficiency in these key areas.
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The modelling of the properties of the GPL-reinforced FGM plate will be based on the
Halpin-Tsai model and and Mahi's hyperbolic HSDT. The programming language adopted in
this research work is Python, from which we essentially used the functions of eigenvalues and

matrix system computation to obtain the buckling loads and displacement field.

Thesis organization:

This master thesis is divided into four chapters:

Chapter 1 provides a literature review of functionally graded materials, their
characteristics, development history, fabrication techniques and application areas. Also, it
provides a literature review on nanomaterials, their characteristics, and their role in improving...

Chapter 2 presents an in-depth literature review on the distribution laws and shear
deformation theories applied to reinforced FGM structures. We will examine the mathematical
models and the theoretical approaches used to describe the mechanical behavior of these
structures, with an emphasis on the shear deformation phenomena.

Chapter 3 is devoted to the modeling and energy formulation of functionally graduated
plates reinforced by graphene nano-platelets (FG-GPLRC). We will develop mathematical
equations based on variational principles to describe the behavior of FG-GPLRC plates.

Chapter 4 is dedicated to the interpretation of the results by linking them to the theories
shear deformation, the properties and distribution of the reinforcements used as well as the
boundary conditions. We will also discuss the implications of these results for the design and
optimization of reinforced FGM composite structures.

Finally, the work ends with a general conclusion summarizing our objectives and obtained

results, followed by some perspectives.
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CHAPTER 1

LITERATURE REVIEW
ON REINFORCED FGM
COMPOSITES
STRUCTURES
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1. Introduction:

During the lifetime of the human the different kind of materials was considered as a huge
part of keeping him in existence, he used wood for making fire, making weapons...etc. He also
used stone, bronze, iron, and other different materials to meet his daily needs. The different eras
in the timeline of the human being were named according to what the human could use as an

invention of a material that had been used in that time.

The Stone Age marks a period of prehistory in which humans used primitive stone tools.
Lasting roughly 2.5 million years, the Stone Age ended around 5,000 years ago when humans
in the Near East began working with metal and making tools and weapons from bronze [1].
Bronze Age, third phase in the development of material culture among the ancient peoples of
Europe, Asia, and the Middle East, following the Paleolithic and Neolithic periods (Old Stone
Age and New Stone Age, respectively). The term also denotes the first period in which metal
was used. The date at which the age began varied with regions; in Greece and China, for
instance, the Bronze Age began before 5000 years ago, whereas in Britain it did not start until
about 3900 years ago.[2] The Iron Age was a period in human history that started between 1200
B.C. and 600 B.C., depending on the region, and followed the Stone Age and Bronze Age.
During the Iron Age, people across much of Europe, Asia and parts of Africa began making
tools and weapons from iron and steel. For some societies, including Ancient Greece, the start

of the Iron Age was accompanied by a period of cultural decline [1].

Materials are continuously developed from iron, pure metals to composite materials which
are in use today [3] and always been upgraded because of the engineering. The composite
materials are one of the most genius and sophisticated materials was engineered to be very light

(reducing weight) and at the same time very strong that can resist to the critical stresses.

The composite material is made of two or more constituents assembled to each other, and
the choice of this constituents depends on what it will be used for. The conventional composite
materials have a several advantages for example high strength to stiffness ratio, grater resistance
to fatigue, wear and corrosion, high reliability...etc [3]. But in the other side we face a crucial
disadvantage which called delamination. It serves for the separation of the different constituent
of the composite material caused by the singularity in term of stresses in the interface of the

constituents. For that reason, researchers invented an advanced composite material which called

FGMs.
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Figure 1: Continuous material development from bronze to FGMs

2. Functionally graded materials:

FGMs stands for functionally graded materials, it is the new generation of the composite
materials made with two or more constituents (the most famous are ceramic and metal) where
we find in a side is 100 percent made of ceramic, and through the thickness a gradual variation
between ceramic and metal, till the other side which is made with 100 percent of metal. These
materials are specially made to solve the famous problem of the conventional composite

materials which is the delamination.

FGMs replace the sharp transition of properties with smooth and continuous varying
properties of the material such as physical, chemical, and mechanical like Young’s Modulus,
Poisson’s ratio, Shear Modulus, density, and coefficient of thermal expansion in a desired
spatial direction (Figure 1). The gradual changes in volume fraction of constituent and non-
identical structure at preferred direction give continuous graded properties like thermal
conductivity, corrosion resistivity, specific heat, hardness, and stiffness ratio. All these
advantages made FGMs far better than homogenous composite material to use in multiple

applications. [4]

Conventional composites FGMs
O @0 @ O e O 00 @00 e e
e O C®O e 20 0 00 0 e
Ol O NON IO OB BN BN BN NNONN
| JEONN NGO NON | OO0 C0O e e e
ON JON IO IO QENORE BN BN BN BN
| JEORN NNON INONN | O ® 0000 e
Oe O e O e o OO0 C o0 00
ﬂ’ Composition of property D'

e

Figure 2: Variation of properties in conventional composites and FGM
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The table below illustrate the properties variation depending to constituents of a ceramic

metal FGM [9]

Table 1: Properties variation of a ceramic-metal FGM

Layers Materials Mechanical propreties
e (Good thermal resistance

e (Good oxidation resistance
e Low thermal conductivity

High temperature face Ceramic

e Interface problem eliminated

Intermediate layers e Thermal stresses relaxation

Ceramic-metal

e (Good mechanical resistance

Low temperature face Metal High thermal conductivity

2.1 Evolution of FGMs:

A new breed of composite materials named functionally graded materials (FGMs) was
first invented in 1984 by Japanese researchers for the core purpose of their aerospace project
that required thermal barrier with the outside temperature of 2000 k and inside 1000 k within
10 mm thickness. A decade before, Shen and Bever also worked on graded structure composite
materials, but it was delayed due to unsophisticated fabrication equipment [4]. Soon, the
importance of FGMs was realized, and to promote research in this area, a five-year research
based national project with a cost of $11 Million was started as “Research on the basic
Technology for the development of FGM for relaxation of thermal stress” (FGM PART 1). At
the end of this project, researchers were able to develop 300 mm square shell and 50 mm
hemispherical bowl for SiC-C FGM nose cones. Another 5-year-project that was a consequence
of FGM PART 1 was started in 1992 with a cost of $9 Million called “Research on Energy
Conversion Materials with Functionally Graded Structures” (FGM part 2). This project was
focused to enhance energy conversion efficiency using functionally graded structure
technology. Furthermore, in April 1996, the New Energy and Industrial Technology Department
Organization (NEDO) funded a project with a budget of $2.5 million known as “Precompetitive
Processing and characterization of Functionally Graded Materials.” The project was continued

until March 2000. The purpose of the project was to develop metal-ceramic FGM on an
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industrial level using spark plasma sintering (SPS) technique. Polyamide/Cu was one of the
FGMs successfully manufactured by SPS technique. Most of the research was conducted on
the grading of mechanical and thermal properties. However, it was needed to work on basic
properties like physical and chemical. In order to fill this gap, the Ministries of Education,
Science, Sports and Culture granted a research program in April 1996 entitled, “Physics and
Chemistry of FGMs” that was continued for the next three years until 1999. Physics, Chemistry,
Biology, and Agriculture, etc., were the fields investigated in this project. Figure 3 represents

the hierarchy of modern material [4].

l COMPOSITE }

I

I ENGINEERING |

[

ADVANCED PARTICULATES, FOAMS, FIBRES AND

//\

I ELASTOMER |] POLYMER GLASSES | I METAL [ CERAMIC |
ORGANIC INORGANIC |

[ |
i

BASE MATERIALS
(Periodic table

Figure 3: Representation of modern material hierarchy

2.2 FGMs classification:
To classify the functionally graded materials researchers identified a numerous criterion:
2.2.1 Based on the FGM graduation process:

2.2.1.1 Composition gradient:

The composition type of FGM gradient depends on the composition of the material,
which varies from one substance to another, leading to different phases with different
chemical structures. These different phases of production depend on the synthetic quantity

and the conditions under which the reinforced materials are produced [5].
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2.2.1.2 Microstructure gradient:

CHAPTER 1

During the solidification process,the microstructure type of the FGM gradient can be

achieved so that the surface of the material is extinguished. In this type, the core of the same

material can cool slowly, helping generate different microstructures from the surface to the

inside of the material [5].

2.2.1.3 Porosity gradient:

With the changes in the spatial location in the bulk material, the porosity type of FGM

gradient in the material changes. Powder particle sizes can be measured by varying the pore

particle sizes used during gradation at different positions in the bulk material [5].

Type of FGM Gradient
| |
Composition Microstructure Porosity
Gradient Gradient Gradient ‘

Figure 4: Typical example of three different types of FGM gradient
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2.2.2 Based on the FGM structure:

FGMs can be generally classified into two main groups: continuous and discontinuous
graded material as shown in Fig5. In the first group, no clear zones or separation cut lines can
be observed inside the material to distinguish the properties of each zone. In the second group,
the material ingredients change in a discontinuous stepwise gradation which is known as
layered or discrete FGM. Continuous and discrete can further be classified into three types:

composition gradient (Fig. 5c, ), orientation gradient (Fig. 5d, g), fraction gradient (Fig. 5e, h).
[5]

a Material Gradation

___EEN

Property

Position

b . Material Gradation
'

Position

(a) Discrete/Discontinuous FGMs with interface (b) Continuous FGMs with no interface
(c, f) Composition Gradient (d, g) Orientation Gradient (e, h) Fraction Gradient

Figure 5: Structural classification of FGMs

2.2.3 Based on FGM thickness:

According to the size of the FGM, it could be classified to: thin FGMs and bulk FGMs.
Thin FGMs ranges between 5 nm and 500 nm and may be extended to the micro-meter range

(e.g. 1-120 um thick deposited layers). In bulk FGMs, gradients can cover 5-350 mm. [5]
2.3 FGMs manufacturing:

As much being sophisticated the FGMs are, as much developed the elaboration methods
are, to create an FGM, in the following we cite several methods used to create a gradual

structure:

e Vapour Deposition Technique:

The following diagram gives different types of vapour deposition techniques:
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Chemical Vapour Deposition (CVD)
Vapour Deposition Technique

Physical Vapour Deposition (PVD).

Figure 6: Different types of VD

These vapour deposition methods are used to deposit functionally graded surface coatings
and they give excellent microstructure, but they can only be used for depositing thin surface

coating. They are energy intensive and produce poisonous gases as their byproducts [6].
e Powder metallurgy :

Powder metallurgy-based technique can be used to produce bulk type FGMs with
discontinuous (stepwise) structure [3]. PM is used to produce functionally graded material
through three basic steps namely: weighing and mixing of powder according to the pre-designed
spatial distribution as dictated by the functional requirement, stacking and ramming of the
premixed-powders, and finally sintering [6].

e Centrifugal Method :

In the centrifugal casting method, the functionally graded material is produced by spinning

the mold using gravitational force [4] to form bulk functionally graded material [6]. There are

two disadvantages of this method are this method can produce only cylindrical shaped FGMs
and there is limit to which type of gradient can be produced [3].

e Solid free form fabrication/additive manufacturing (AM) techniques:
Solid freeform fabrication (SFF)/Additive manufacturing (AM), also known as 3D

printing, is a process of joining materials to make objects from 3D model data [3]. Here some

types of SFF/AM techniques:
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laser cladding based method

Selective Laser Sintering (SLS)
laser based processes

3-D Printing (3-DP)

Selective Laser Melting (SLM)
SFF/AM techniques

Electron beam direct manufacturing

Arc deposition technologies

Figure 7: Different types of SFF/AM techniques

After familiarizing ourselves with different techniques to produce an FGM, we can find
another classification to the functionally graded materials which is the complexity of the
produced shape, each technique is specialized to produce the FGM shape depending on the

order of complexity, and the following diagram gives the order of complexity and the techniques

it belongs:
Complexity of FGM Product Shape
I } 1

High Complexity Moderate Complexity Low Complexity

S”'}‘if}f;:'qif““ - Infiltration | Centrifugal Casting

Thermal and Plasma S ) . )

— Erpmy Flrlmnin; —  Sheet Lamination —  Centifugal Slurry
—  Vapour Deposition —  Laser Deposition — Powder Metallurgy

Figure 8: Classification of FGMs according to product complexity

2.4 Aeras of application of FGMs:

Functionally graded materials are designed to optimize the performance for different

applications. Some of the domains where FGMs are used or have potential to be used are:
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e Aecrospace: FGMs can be used for thermal protection systems, rocket nozzles,
turbine  blades, and other components that are exposed to high temperatures
and thermal stresses.

e Automobile: FGMs can be used for brake discs, pistons, cylinders, and other
parts that require high wear resistance, friction reduction, and thermal stability.

e Optoelectronics: FGMs can be used for optical fibers, waveguides, lasers, and
other devices that require tailored optical properties, such as refractive index,
absorption, and emission.

e Energy: FGMs can be used for solar cells, fuel cells, batteries, and other devices
that require efficient conversion and storage of energy, as well as corrosion
resistance and durability.

e Biomedical: FGMs can be used for implants, prostheses, scaffolds, and other
devices that require biocompatibility, bioactivity, and mechanical matching with

the host tissue.

Areas of FGM
Application
1

Aerospace Automotive | | Biomaterial Defense Nuclear Smart SP orts
Reactors Structures Equipment
I_ Space L l_ Prosthetic L Armored ’_ Steam I_Piezoelectric ’_ Tennis
3 Flywheels - .
Shuttle devices vehicles generator shaft rackets

Figure 9: Functionally graded materials: field of application and examples [5]

These are some of the common domains of application of FGMs, but there are also other

fields, such as civil engineering, defense, and sports, that can benefit from the use of FGMs.

3. Nanoworld:

“There's Plenty of Room at the Bottom”

-Richard Feynman-
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After this announcement from Sir Richard Feynman, rooms at the bottom had known a
huge development, or in another way a new field of science had been discovered which is
nanoscience. Nanoscience focuses on investigating material phenomena at the nanoscale (10

’m). So, certainly we need certain techniques to handle this specific type of materials.

Nanotechnologies are all tools, instruments and techniques for manipulating and

manufacturing materials at the nanoscale (10°m).

3.1 Nanomaterials:

The basic and the key elements of nanotechnology are the ‘“nanomaterials”. The
nanomaterials are the materials with less than 100 nm size ones at least in one dimension. That
means they have very less size than that of microscale. The nanomaterials are usually 10—9 nm
in size that means it is one billionth of a meter. The nanomaterials show different
physicochemical properties than the bulk material which inherently depends on their size and
shape. Surprisingly the nanomaterials produce a unique character with new characteristics and
capabilities by modifying the shape and size at the nanoscale level. Nanomaterials may be of
different shapes like nanorods, nanoparticles, nanosheets which can be characterized based on
their dimensionality. Nanomaterials with zero-dimensional are nanoparticles, one dimensional
1s nanorods or nanotubes and two dimensional are generally films and layers type one. These

are categorized mainly for the single isolated nanomaterials [8].

Figure 10: Classification of Nanomaterials (a) 0D spheres and clusters; (b) 1D
nanofibers, nanowires, and nanorods; (c) 2D nanofilms, nanoplates, and networks;
(d) 3D nanomaterials.
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Nanomaterials have two significant families: the nano-objects, like nanoparticles,
nanofiber, nanorods, nanoplatelets and nanosheets. The other one is the nanostructured

materials such as nanocomposites, nanoporous... etc.

In this study, we are about specially to focus on some types of nano-objects.
3.1.1 nanoplatelets:

Nanosheets, nanoplatelets are a nano-objects that have one of the three spatial external
dimensions belongs to the nanoscale (1-100 nm), and the other two dimension are significantly
greater.

3.1.1.1 Graphene nanoplatelets:

Graphene is a single freestanding monolayer of graphite. It is the first 2D-material ever
manufactured by mankind, having a thickness of one atom (0.34 nm), and lateral size orders of
magnitudes larger [10]. Its synthesis is complex and cannot be mass-produced yet. For this
reason, graphene nanoplatelets (GPLs) have become an alternative, with a low cost and exciting
properties, and the potential for large-scale production. GPLs have few graphite layers, varying

in thickness from 0.7 to 100 nm [11].

Their main properties are light weight, high aspect ratio with planar shape, good
mechanical properties [11] It has a tensile strength of 125 GPa and an elastic modulus of 1.1
TPa, compared to an elastic modulus of 200 GPa for the most common steel. Its breaking
strength is 42 N/m, thus graphene has 100 times better mechanical strength than steel [13], and
excellent thermal and electrical conductivities, together with low cost and easy manufacture.
GNPs have numerous applications as isolated materials, neat coatings and fillers of composites.

This Special Issue is focused on the use of graphene nanoplatelets as nanofillers [11].

3.1.1.2 Graphene structure:

Graphene is a two-dimensional carbon allotrope. It is composed of carbon atoms
positioned in a hexagonal design, Graphene can be a parent form for many carbon structures,
like the above-mentioned graphite, carbon nanotubes (which can be viewed as rolled-up sheets
of graphene formed into tubes) and buckyballs (spherical structures with a cage-like structure

made from graphene only with some hexagonal rings replaced by pentagonal rings) [12].
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Figure 11: Different structures of carbon

3.1.1.3 Areas of application:

Graphene nanoplatelets have many applications in various fields, such as:

Coating: Graphene nanoplatelets can improve the corrosion resistance, wear
resistance, and anti-fouling properties of coatings [14] [15].

Polymer composites: Graphene nanoplatelets can enhance the mechanical,
thermal, electrical, and barrier properties of polymers, such as thermoplastics,
thermosets, rubber, and elastomers [14] [15].

Energy conversion and storage: Graphene nanoplatelets can be used as
electrodes, catalysts, and additives for batteries, supercapacitors, fuel cells, and
solar cells [14] [16].

Sensing: Graphene nanoplatelets can be used as sensors for detecting gases,
biomolecules, strain, pressure, and temperature [14] [16].

Biomedicine: Graphene nanoplatelets can be used as drug delivery agents,
bioimaging agents, antibacterial agents, and tissue engineering scaffolds [14]

[10].
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3.1.2 Nanotubes:

Materials such as carbon nanotubes, polyester nanofibers, bore nanotubes, and so on that
are related to nano-objects having two exterior dimensions on the nanometer scale and a third
dimension that is substantially greater. These concepts describe long-line nano-objects that have
lengths of 500—10,000 nm and sections of 1and a few hundred nm.

¢ Rigid nanofibers: These are nanofibers that have a solid cross-section and a high aspect

ratio. They can be used as building blocks for nanodevices, nanosensors, and
nanocomposites [17]. Examples of rigid nanofibers are nanorods and nanowires.
e Hollow nanofibers: These are nanofibers that have a hollow core and a thin wall. They
can be used as drug delivery vehicles, catalyst supports, and gas separation membranes
[17]. Examples of hollow nanofibers are nanotubes and nanohorns.

e Electrically conductive nanofibers: These are nanofibers that have a high electrical
conductivity and can be used as electrodes, interconnects, and transistors [17].
Examples of electrically conductive nanofibers are carbon nanotubes, metal

nanowires, and graphene nanoribbons.

3.1.2.1 Carbon nanotubes:

CNTs, also called buckytubes, are cylindrical carbon molecules with unique properties
that make them potentially useful in a wide variety of applications. CNTs exhibit extraordinary
strength as well as unique electrical, mechanical and thermal properties. CNTs are the members
of the fullerene family, which was discovered by Kroto et al. in 1985. Buckyballs are spherical
fullerenes, whereas CNTs are cylindrical, with at least one end typically capped with a
hemisphere with the buckyball structure. The name CNT derives from the size, as the diameter
of a nanotube is on the order of a few nanometers. Iijima first synthesized multi-walled carbon
nanotubes (MWNTs) in 1991 using a simple arc-evaporation method. However, CNTs were
discovered long before researchers even imagined that carbon may exist in such a diverse
allotropic form [18]. CNTs, also known as tubular fullerenes, are cylindrical graphene sheets of
sp® -bonded carbon atoms. In CNTs the graphene sheet is rolled upon itself to form different

allotropes of carbon, including graphite, fullerenes and CNTs [18].

CNTs reportedly have extremely high surface areas, large aspect ratios, and remarkably
high mechanical strength. The tensile strength of CNTs is 100 times greater than that of steel,

and the electrical and thermal conductivities approach those of copper. These unique properties
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make CNTs good candidates as fillers in different polymers and ceramics to realize desirable
consumer products. It has also been predicted that CNT-based field-effect transistors (FETs)
will soon supplant their silicon-based analog counterparts. CNTs are also good incorporating

agents due to their unique electrical, mechanical and thermal properties [18].

Figure 12: (a) Formation of graphene derivatives. (b) Graphene sheet. (c)
Graphene sheets rolled into carbon nanotubes.

AN
AR

Figure 13: single wall carbon

Figure 14: multi wall carbon nanotube
nanotube
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3.1.3 Nanoparticles:

Nanoparticles are a zero-dimensional nanomaterial where all three external spatial
dimensions belongs to the nanoscale. It means the length, breadth and height is fixed at a single

point for example nano dots.

Nanoparticles could be classified to organic nanoparticles and non-organic nanoparticles.

3.2 Methods of manufacturing of Nanomaterials:

The nanoparticles are synthesized by various methods that are categorized into bottom-up

or top-down method.
3.2.1 Bottom-up method :

Bottom-up or constructive method is the build-up of material from atom to clusters to
nanoparticles. Sol-gel, spinning, chemical vapour deposition (CVD), pyrolysis and biosynthesis

are the most commonly used bottom-up methods for nanoparticle production [20].
3.2.2 Top-down method :

Top-down or destructive method is the reduction of a bulk material to nanometric scale
particles. Mechanical milling, nanolithography, laser ablation, sputtering and thermal

decomposition are some of the most widely used nanoparticle synthesis methods[20].

method method
4 $
v e o

Figure 15: Synthesis proccess

Table 2: Categories of the nanomaterial synthesized from the various methods [20]

Category Method Nanoparticles

Bottom-up  Sol-gel Carbon, metal and metal oxide based
Spinning Organic polymers
Chemical Vapour Deposition (CVD) Carbon and metal based
Pyrolysis Carbon and metal oxide based

Page | 19



Biosynthesis Organic polymers and metal based

Top-down  Mechanical milling Metal, oxide and polymer based
Nanolithography Metal based
Laser ablation Carbon based and metal oxide based
Sputtering Metal based
Thermal decomposition Carbon and metal oxide based

3.3 Areas of application of nanomaterials:

Nanomaterials are of great interest because they have a lot of potential to create new and
innovative products across many areas. By more directly steering the reactions and interactions
between atoms at the nanoscale, nanomaterials can be produced and their properties can be

steered in unusual ways [19].

Table 3: Different type of nanomaterials and their application areas [7]

o Structural composite materials

¢ Anti-UV components

Nanoceramic ) o S ]
e Mechano-chemical polishing of substrate (wafers) in microelectronics

e Photocatalytic applications

¢ Antimicrobial and/or catalysis sectors

Nanometallic eConductive layers of screens, sensors or energy materials

e Aerogels for thermal insulation in the fields of electronics, optics and

catalysis

Nanopor . . o . S
oporous eBiomedical field for vectorization or implant applications

e Electrical conductive nanocomposites

Structural materials
Nanotubes *

¢ Single wall nanotubes for applications in the field of electronics,

screens
eHard coatings

e Structural components for aviation, automotive, pipelines for oil and

Massive . .
gas industries

Nanomaterial
anomaterials «Sports

e Anti-corrosion sector
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eMedical field (medication administration, rapid detection)

Dendrimers ‘
e Cosmetic field
¢ Optoelectronic applications (screens)
Quanta dots ePhotovoltaic cells
eInks and paints for anti-counterfeiting marking applications
Fullerenes * Sports sectors (nanocomposites)
e Cosmetics
Nanowires ¢ Conductive layers of the screens or solar cells the electronic devices
4. Conclusion:

This chapter has introduced us to functionally graded materials, their effective properties,
and its creativeness. It has also familiarized us with the nanoworld, the particular kind of
material that falls under it, its characteristics, and its many elaboration techniques.

We also gained an understanding of the kinds of materials that bulk materials referred
to in our work as "functionally graded materials" may be reinforced with. We are going to
strengthen a functionally graded material by using graphene nanoplatelets as nanofillers.

The study of reinforced functionally graded materials is novel, any logical concept

might be deemed innovative. That's what we decided to aim for in the long run.
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CHAPTER 2

LITERATURE REVIEW
ON DISTRIBUTION LAWS
AND PLATE THEORIES
APPLICABLE ON FGM
PLATE
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1. Introduction:

The study of functionally graded materials has become increasingly important in the
world of materials science. These materials are unique in that their mechanical properties can
be distributed in a way that optimizes their performance for a specific application. This means
that engineers can tailor materials to meet the exact needs of a particular project, resulting in

improved efficiency and effectiveness.

To fully understand how functionally graded materials perform, it is important to look
at their mechanical properties. These properties include factors such as strength, stiffness,
toughness, and ductility. By carefully controlling the distribution of these properties, engineers
can create materials that are optimized for a specific application.

As we embark on this journey of understanding the complexities of plate behavior, it is
imperative that we delve into the various theories that have been put forth by experts in the
field. These theories aim to explain the behavior of plates when subjected to deformations, and

provide us with a comprehensive understanding of the underlying mechanics at play.

2. Laws governing property distribution:

It is beneficial to use homogenization schemes for the graded materials that contain
parallel homogeneous layers with definite elastic moduli. The properties of each layer are
assessed with appropriate averaging methods. The thickness of layer and the volume fractions
of phase constituents contained in the layer are chosen to approximate the substantial variation

in a phase volume fraction of graded materials. Some of the homogenization models are

discussed below [21].

2.1 Gradation Laws :
2.1.1 Power law Model (P-FGM):

Power law is found to be most cited and accepted model in the scientific literature. The
material properties are varied in specific direction (unidirectional) which is given by [21]

equation (2-1)
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P(z) = (Pc- Pm)Vf + Pm (2-1)

Here P represent the general material properties such as Elastic modulus, Pc and Pm
symbolize the properties of ceramic and metal faces of functionally graded structure and Vr
denote volume fraction.

Properties of P-FGMs depends on the volume fraction (V) that follow a law given by
equation (2-2)
=Z2=

h h
2 2

n
vi=(+%) , - (2-2)
Here n is termed as power-law index that indicates the level of material inhomogeneity
in FGMs. If n=0 then FGM plate is fully ceramic, whereas n= o indicate a fully metallic
plate.

The boundary conditions define the properties at bottom surface of the plate which are

given by the, P(z) = Pm for % = -1/2; hence. Vr =0 At the top surface, properties are P(z) = Pc,

for%= 12 [21]
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Figure 16: volume fraction variation [22]

2.1.2 Exponential law Model (E-FGM):

This model is widely used to study the fracture mechanics. Researchers have
implemented this law in analyzing the static and dynamic performance of FGM structures. The

properties of one/uni-directional (UD) FGMs are given by [21] equation (2-3)
P(2) = Pt_e(l/h)-h-(Pt/pb)-(Z"'h/z) (2-3)
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The terms P, Py, and Py, are the properties along the Z-direction, bottom and top surface

respectively.
In the case of a thermal effect, we face another model:
z7 .1 P«(T)
P(z,T) = Py(T). e /nt 1221 Joy —22z27 (2-4)
3.04
2.8
% ]
2.6
2.4~
-04  -02 0 02 0.4
zh

Figure 17: Young modulus variation ([Pa] x 10-11) of an E-FGM
(SUS304-A1203) (presence of a thermal effect) [22]

2.1.3 Sigmoid law Model (S-FGM):
This model is designed by using a FGM of single power law model to the multi-layered
composites. As reported by Chi and Chung the volume fraction is determined using two power

law functions. This law provides a smoother distribution of stresses at every interface. For uni

directional FGMs this law is given by [21] (2-5) and (2-6)
(2-5)

1 2z " h
V(Z):E ZT —ESZSO
2
(2-6)

2

V(Z)=1—%< 7

h n
>tz h
) , OSZSE

n is the index of the volume fraction of the S-FGM [22].

The property of the S-FGM is written according to the volume fraction as follows [22]:
—2<2<0 (2-7)

P(z) = (Pt—Pb)V(z) +Pb ,
(2-8)

N |5

P(z) = (Pt—Pb)V(z) + Pb , 0<z<
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Figure 18: Variation de la fraction volumique du S-FGM [22]

2.1.4 Voigt Model :

Voigt model (known also as rule of mixture ROM) is used to compute FGM property
(P) as a function of volume fractions and material properties of constituents as represented in
(2-9). This model is applied to uni directional FGM structures but cannot be applied to porous

structures [21].
K
p= z PV (2-9)
j=1

Voigt model also provide the material properties of FGMs such as Young’s modulus,
mass density, and Poisson’s ratio [21], for example let’s take an FGM structure with two phases

constituents (metal-ceramic), the overall property of this structure could be written as follows:

P = PmVm + PcVc (2-10)

P: Property along the z axis.
Pm, Pc : The mechanical property of metal and ceramic respectively.

Vm, Vc: volume fraction of metal and ceramic respectively.

2.1.5 Trigonometric Model :

This model provides the volume fraction in the form of trigonometric function for UD

FGMs as given in [21] (2-11)
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2.1.6 Viola Tornabene law Model

This model is mainly applied in the analysis of functionally graded beams. With the
formulation one can select materials mixture either at bottom or top surface of a beam. This law

is further categorized as three parameter and four parameter models which are given in (2-12)
& (2-13) respectively [21].

o= (5-Zen(3+2)) 212

=" ntbzts (2-12)

v =(3-a(5-D) (342 213

r=z"z7x 2" h (2-13)

The terms a, b, c, p represent the propagation of material along the thickness direction
of beam. This model provides most diverse material variation when compared to power law

model.

2.2 Microstructural properties caracterization models :

2.2.1 Mori-Tanaka Scheme :

The execution of different homogenization models in a graded material system begins
with the estimation of effective elastic moduli. In FGMs, overall local moduli are approximated
to those of matrix-based composites reinforced with spherical particulate. Concerning the
applications, the following relations for randomly distributed isotropic reinforcement

particulate in an isotropic matrix of graded materials are given below [21].

The effective Young’s modulus & Poisson’s ratio is given by (2-14) and (2-15)

E = oG 2-14
T3K+G (z-14)
_ 3K-2G 215
VT2BK+6) (2-15)

This model is further expressed as (2-16) and (2-18)
K—-K1 Vf 216
KZ—K1_1+3Vf(K2—K1) (2-16)

(3K1 + 4G1)
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G —G1 Vf

G2—G1_ VF(G2=G1) (2-17)
T+ (GL+f1)
G1 (9K1 —8G1)

f1= (2-18)

6(K1 + 2G1)

Where E is Young’s modulus, is Poisson’s ratio, K and G are local bulk and shear

modulus v respectively and suffixes 1, 2 represent matrix and reinforcement phases.
2.2.2 Self-consistent estimation Model :

In particular, this model is suited for estimating the effective moduli in the areas that
possess similar microstructure [21]. The Hill self-consistent method assumes that each
reinforcement inclusion is contained in a continuous material for which the properties are those
of a composite. This method does not differentiate between the matrix phase and the
reinforcement phase; implying that the same global moduli is estimated in another composite
where the roles of the two phases are permutated. This allows the estimation of the effective

moduli in regions where the skeleton of the microstructure has a continuous shape [22].

! 36 2-19

V1 N V2 4 (2-19)
3 3
Kl+7G K2+3G

K =

It utilizes quadratic equation which must be solved at every surface of FGM plate to

attain the shear modulus.

V1K31 n V2K32 +5 [VIGZ + VZGI] +2=0 (2-20)
K146 K2+3G G-G2  G-G1

2.2.3 Hashin-Shtrikman bounds model :

This model is applied to develop the effective properties of a two-phase material
having spherical shaped particles that are distributed randomly. It is a variation approach
which provide the material properties at upper and lower bounds. (2-21) & (2-22) represent

the effective shear and bulk moduli respectively.
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1-vf) - Vf
G+ = GZ + 1 | 6(K2+2G2)Vf ) G = Gl + 1 6(K2+2G61)(1-Vf) (2'21)

G2—G1 ' 5G2(3K2+4G2) G1-G2' 5G1(3K1+4G1)
1-Vf) Vf
Kt =K2 ; K~ =K1 2-22
t L3 t REC=Z) (2-22)
K1—-K?2  3K2+ 4G2 K2 - K1 3K1+4G1

The properties at upper and lower bounds are represented with superscripts + and —
symbols. After obtaining the Shear and Bulk modulus, the Elastic modulus and Poisson’s ratio
are calculated using (2-14) and(2-15). The effective properties computed at lower bound is
identical as reported by Mori-Tanaka scheme [21].

2.2.4 Halpin-Tsai model :

Halpin-Tsai model is a semi-empirical method to predict the elastic properties of fibre
reinforced composites. This model can take into consideration the geometric characteristics and
the orientation of the filler that would considerably affect the reinforcing efficiency. The
longitudinal modulus Eii, the transverse modulus Ex;, and the shear modulus Giz can be

obtained as,[23]

1+ 81nVf 1+ $a2m2,VS 1
=— " F ;o By =——F— - F ; =—( 2-23
H T—nuVf ™" 22 L=V " 21— nVf " ( )
where 111, N22 and n12 take the following expressions,
Ef 1 Ef 1 Gr 1
— ( /Em) . — ( /Em> . =( /Gm) (2_24)

B /N T 7/ e (A

ni1, M22 , Ni2 are the filler length distribution factors in different directions.

11, &2 are the shape size parameters along longitudinal and transverse directions.

The reinforcement geometry factors have different expressions for different

reinforcement shape. For platelets or lamellar-shaped fillers, 11 and 22 are defined as
§11 = Z(Z/t) ; 22 = Z(W/t) (2-25)
where 1, w, and t represent the length, width and thickness of the rectangular filler,
respectively.
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The Young’s modulus of the composite with randomly oriented reinforcement is given
by,
Ec=3/gEny +°/g Bz (2-26)

3. Plate deformation theories:

3.1 Plate Definition :

A plate is an elastic solid that has one dimension depending on the thickness, is small
compared to the other two, and usually has a plane of symmetry in the middle of the width that
we will call the mid-surface. By convention, this surface will be the plane (x-y), and the axis

(0-z) corresponds to the transverse axis according to the thickness. [24].

Figure 19: Geometry of a rectangular shape plate

The problems encountered mainly concern issues of dimensioning or control of
vibrations and stresses. To better know the response of the dynamic and static behavior of the
structure, it 1s imperative to approach in the most correct way possible the phenomena put into
play by the plates that are more or less complex. For example, a bridge board, a building, a car
box, an airplane wing, a boat... Among all these areas of application, several types of plates can
be distinguished: membrane plates, thin, moderate, and thick plates with different material
properties. In this study, we will be interested in heterogeneous plates in advanced composite
materials, called properties gradient materials that are usually made up of two different

constituents [24].
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In order to solve the problems of structures having as structural elements FGM beams
and plates in the elastic field, it is necessary to choose the correct theory correctly describing
the static and dynamic behavior of the structure as well as the method of resolution to be
applied. It was in 1888 that Love used Gustav Kirchhoff's hypotheses, themselves inspired by
Euler-Bernoulli's, to establish a theory of thin plates "also known as the classical theory or
Kirchhof-Love theory". The theory of semi-thick plates "theory of deformations of the first
order" was consolidated by Mindlin from the work of Timoshenko [25] and Reissner [26]. Then,
higher-order theories have come to improve the assumptions of classical and first-class theories
when the thickness of the plate becomes significant. There is also the theory based on the three-
dimensional elasticity "3-D theory" that makes no restrictive assumptions on the displacement

of the plate [24]. In our study, we are interested in 2D plate elements.

3.2 Classical plate theory “Kirchhoff-love theory”:

A thin plate is referred to when the deflection, generated by the shear deformations
remains negligible in front of the deflection generated from the curvature of the plate. In the
case of a homogeneous isotropic plate, the shear part in the deflection is directly connected to
the slenderness (L/h), (slenderness ration h/a < 0.05) [22]. The “classical plate theory” is
generalized here to account for anisotropic and nonhomogeneous material behaviors [27]. The
Kirchhoff assumptions taken by Love are as follows [22][24]:

e The material points, located on a normal to the mid-surface not deformed, remain on a
straight in the deformation configuration.

e Transverse deformation, &,, equals to 0 (no strain variation throughout the plate.). The
straight sections, initially normal to the mid-plane, remain flat and normal to it after
deformation.

e The normal stress in the transverse direction is small, therefore negligible compared to
the stress belonging to the plate plane (plane stress state).

e The nonlinear terms of the displacement are neglected. Rotation inertia is alsoneglected.

The CPT theory is the simplest of approaches that could describe the mechanical

behavior of plates.

Page | 31



The displacement field written as:

u(x,y,z) = ug(x,y) — z6,
v(x,y,z) =vy(x,y) — z6, (2-27)
W(x;y)z) = WO(X;J’)

With:

uo(x,y) and vo(x,y): Membrane displacement in x and y directions, respectively,

wo(X,y): the plate deflection

0x and 0y : Rotations due to bending (without shear effect).

The rotation angles of the deflection of the mid-surface are expressed as the transverse

displacement wo(x,y) by,

Hy = W ; Hx = (2-28)

Figure 20: kinematic illustration of Kirchhoff-love plate.

The effect of transverse shear deformation increases significantly when the slenderness
ratio h/a or h/b (a and b refers to length and width of the plate respectively) is greater than or

equal to 0.05. Given theory neglects transverse shear flexibility, this leads to an overestimation
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of the bending stiffness and, consequently, an overestimation of vibration frequencies and an

underestimation of displacements [22].

3.3 Shear deformation theories:

3.3.1 First order shear deformation theory:

When the plate thickness no longer allows verification of Kirchhoff's bending motion
hypotheses [22], a new theory based on the study of a moderated plate thickness was taken in
consideration. The first-order shear deformation theory extended the classical plate theory by
taking into account the effect of transverse shear, in which case stresses and strains are constant

across the thickness of the plate [24].

In contrast to thin plate theory, Mindlin-Reissner's theory [26] assumes that cross-
sections, initially normal to the mid-plane, remain flat and not necessarily normal to it after

deformation [22].
The displacement field is given by,
u(x,y,z) = up(x,y) — 2¢
v(x,y,2) = vo(x,y) — z¢h, (2-29)
w(x,y, z) = wo(x,y)
With:
Ox and ¢y are rotations of the mean plane normal around the x and y axes.
The displacement field defined in the above expression allows us to take up the classical
described in the last section by the replacement,

_ 0wy _ 0wy

=— =— 2-
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Figure 21: kinematic illustration of Reissner-Mindlin
plate

Since first-order plate theory (FSDPT) does not satisfy the boundary conditions at the
top and bottom surfaces of the plate (non-zero tensile stresses), a through-thickness shear
correction factor is required. The value of this correction factor depends on the plate geometry,
the variation in Poisson's ratio the variation of Poisson's ratio across the thickness, the loading
applied and the imposed boundary conditions [22].

Moreover, to avoid the use of shear correction factor, many higher order shear
deformation theories (HSDTs) were developed based on the assumption of nonlinear variations

of in-plane displacements within the plate thickness [28].

3.3.2 Higher order shear deformation theories:

This class of finer theories is based on the development of displacement in thickness to
order two or higher. These theories are particularly well suited to modeling the behavior of thick
plates or short beams, where transverse deformation plays a predominant role, these models do
not require correction factors. The high-order theory is based on a nonlinear distribution of
fields in the thickness of the plate [24]. This theory uses a Taylor series expansion through the
thickness of the displacement field, which can be represented by the following form [7][22]:

Ux,y,2,t) = Uy(x,v,t) + z¢(x,y,t) + 22¢,°(x,7,0) + - + z"¢, " (x,y,t) (2-31)
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Second order:

u(x,y,z,t) =ug(x,y,t) + 2o, (x,v,t) + 2%, (x,v,t)
v(x,y,z,t) = vo(x,y,t) + zp,(x,y,t) + Zzlliy(x, y,t) (2-32)
w(x,y,z,t) = wo(x,y,t) + z¢,(x,y,t) + z2°P,(x,y,t)

Where uo, vo, wo, x, @y, @z, Yx, Yy, Yz, , Xy, Xz are the unknown functions.

Third order:

u(x,v,z) = ug(x,y,t) + z(x,y,t) + 22, (x,y,t) + 23%,.(x,y,1)
v(x,y,2) = vo(x,y,0) + zd, (x, y,0) + 22, (x,y,0) + 23X, (x,y, 1) (2-33)
w(x,y,z) = wo(x,y,t) + z¢,(x,y,t) + z2°P,(x,y,t) + 2°x,(xy,1)

Where wo, vo, wo, ¢x, ¢y, Pz, Yx, Yy, Yz, Xx, Xy, Xz are the unknown functions must be found
to describe the plate motion.

The assumptions underlying the development of these theories are [22]:

e Displacements are small compared to the plate thickness.

e Cross-sections, initially flat and normal to the mid-plane, do not necessarily remain
flat and normal to it after deformation.

e Axial deformation in the transverse direction is not negligible, which means that the
plate undergoes thickness deformation.

e Normal stress in the transverse direction is generally not negligible.

e Flexural and shear deformations are both important and interdependent.

e The material points, located on a normal to the mid-surface not deformed, not
necessary remain on a straight in the deformation configuration, which means that

the plate undergoes thickness deformation.
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Figure 22: Transverse shear deformation of a plane according to various plate theories.

Practically, it can be seen that the higher-order theory of thick plates can be complex to

apply, and often requires the use of numerical methods to solve the equations [7].

3.3.2.1 Refined theory:

First-order (FSDT) and higher-order (HSDT) theories are impractical due to the number
of higher-order terms introduced into the formulation. In order to reduce the number of variables
used in existing formulations, Shimpi developed a refined model for isotropic plates (RPT:
Refined Plate Theory). The most interesting features of this method are that it does not require
a shear correction coefficient and has many similarities with classical plate theory in terms of
equations of motion, boundary conditions and moment expressions. The RPT theory was then
successfully adapted to orthotropic plates by Shimpi and Patel and by Kim, Thai et al. and to
FGM plate bending by Atmane, Tounsi [22]. Refined Plate Theories are more complex and
accurate models than traditional higher-order theory, introducing shape functions describing

shear deformations and stresses through the plate thickness.

Refined higher-order theories are therefore useful for a more accurate and realistic
analysis of these structures and can have a significant impact on their behavior in terms of

strength, stability, vibrations, deformations...etc [7]. Their displacement field is given by [22]:
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u(x,7,2) = uo(6,) = 255+ 0(2) (b (x,3) + 52)
v(x6y,2) = vo(6,y) - 250+ 9(2) (¢ (x, ) + 52) (2-33)
kw(x,y,z) - WO(X,y)

Where: (2) is the shape function driving the distribution of shear strains and stresses across
the plate thickness, it is unique to each theory (table 4), and wo, vo, wo, ¢x, ¢y are the five
variables to find (five variables theory)

Classical plate theory (CPT) displacements are obtained by taking (z) = 0, while first-
order theory (FSDPT) can be obtained by (z) = z.

Reddy's model assumes that the membrane displacement field is cubic. This approach
is a good approximation for transverse shear stresses compared to the three-dimensional
elasticity solution. This makes Reddy's theory frequently the most widely used for the study of
plate bending, buckling and vibration.

[y 2) = uolr,y) — 222+ 2% (1 - W) (00 3) +222)
| v(x,v,2) = vy(x,y) — ZZ—V; + z3 (1 )(qby(x y) + 6W0) (2-34)
kW(x’ylz) = WO(X»J’)

Mahi et al [30] proposed that the distribution of transverse-shear strains and stresses
have a hyperbolic shape function, it is variationaly consistent, based on the same assumptions
as those of the third-order shear deformation plate theory of Reddy and have five degrees of
freedom. It shows a good agreement between analytic results for bending and free vibration

compared to the “quasi-3D theory”,

Mabhi et al displacement field could be written as:

B ow, h 2z z3 ow,
) =) =5 5+ G ~ Sy ) (61 +32)

_ dwy, h b 2z owy\ (2-35)
lv(x,y,z) = v0(6,y) ~ 2750+ ptan &)~ s o (02 )+ %50)

W(x, bz Z) = Wo(.x, Y)

Table 4: Different model of shape functions

Theory Shape function
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Mahi [22] z [1 _a (%)2 + B (%)4 ]

tan(mz) +y*z ; y* = —msec?(a),
Mantari and Okten &soares [31] S0 __h
. m , a=m>
Touratier [32] — sin(%
ig

T h mZ

cosh (= —sinh—+—

Ait Atmane [33] (2) A

El Meiche [34]

i3
cosh(E)—l :
h 2z 4 z
Mabhi [30 —tanh(—) - ——(—
ahi [30] Ztan (h) 3 cosh?(1) (hz)
Sah d singh [35 th™! rh il ; v =0.46
ahoo and singh [35] co (Z) rarzzp 0
Ambartsumian [36 Z(h_=
mbartsumian [36] 2\ 3
. 1,2y 5/2:°
Shimpi [37] hh (E) _5(5) |

Shimpi’s shape function is used for the displacement field given (four variables

refined theory) by,
d dws
ux,y,2) = up(xy) — 252 + 9(2) (52)
d aws ]
v(x,y,2) = vo(x,y) — z% + ¢(2) (%) (3-36)

W(x:y’z) = Wb(x:J’) + Wb(xJ’)

Where:
uo and vo the membrane displacement in the x and y directions,

wp and ws are the deflections of the plate due to shear and bending forces.

3.3.2.2 Laminated theories:

In order to better describe the shear deformation of composite materials, some authors
have high order theory with the so-called zig-zag theory to better describe interface effects.
Thus, various models derived from the layer approach have been proposed. The multilayer is
subdivided into substructures (corresponding to each layer or set of layers). First-order theory
or a high-order model is applied to each substructure. The kinematics of zig-zag models satisty

a priori the contact conditions and are independent of the number of layers. The main advantage
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of the displacement field of zig-zag models lies in the fact that the distortion of the normal to
the deformed surface. This is achieved without increasing the number and order of the
fundamental equations of first-order theory. The use of transverse shear correction coefficients
is avoided. Based on the concept of Di Sciuva, several authors have made significant
improvements to the zig-zag model. The main improvement is the introduction of a non-linear
displacement distribution. The zig-zag field (piecewise linear) is superimposed on a high-order
displacement field (often cubic) [24].

Compatibility conditions are satisfied on both the top and bottom surfaces of the to

reduce the number of parameters,

Non Linéaire Zig-Zag Non Linéaire + Zig-Zag

NS

Figure 23: Displacement field of the high-order zig-zag
model

3.3.3 Zeroth Order Shear Deformation Theory:

In addition to the high-order theory, a new shear deformation theory has been used to
describe the behavior of laminated composite plates, the zeroth-order shear deformation theory
(ZSDT) was first proposed by Shimpi and Ray, the zero-order theory accounts for the shear
effect without the introduction of shear correction factors, while maintaining a minimum level
of complexity to get the solution [24].

The displacement field is given by,
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(u(x y,z) = uy(x y)—za—w+
| » 0 ) ax
ow

v(x,y,z) =vy(x,y) —z—+

1
Ay
1 3 ]

55 H 26 e =

w(x,y,z) = wo(x,y)

Where:
Qx and Qy are the resultants of transverse shear stresses.

A and Ay are constants that can be determined by considering the definition of the

resultants Qx and Qy .
h

h/2 2
R R A M R (2-38)

~h/2 -

4. Conclusion:

The literature research conducted in this chapter has offered crucial models for the

analysis of functionally graded materials (FGMs) structures, including plates and beams.

In the field of materials science, functionally graded materials (FGMs) are of great
interest due to their unique properties and potential applications. FGMs are composite materials
that exhibit a gradual change in composition and/or microstructure across their thickness,
resulting in a gradient of properties. This gradient can be designed to achieve specific

performance characteristics, such as improved strength, toughness, or thermal conductivity.

To fully understand the properties and behavior of FGMs, it is important to have a
comprehensive understanding of the distribution models that can define these materials. (P-
FGM), (E-FGM), (S-FGM) are the models allow for a description of how the macrostructural
properties of the material change across its thickness, providing insight into how the material

will behave under different loading conditions.

On the other hand, microstructural properties, such as the orientation and distribution of
reinforcing fibers or particles, can also be characterized using specific distribution models. The
Halpin Tsai model and Mori-Tanaka model are commonly used to describe the behavior of filler
or reinforcement materials in FGMs. These models take into account the shape, size, and
orientation of the reinforcing particles, providing a detailed depiction of the microstructure of

the material.
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This chapter delves into an in-depth study of the various shear deformation theories of
plates, with the primary objective of understanding how to accurately describe the behavior of
deformed configurations of functionally graded material (FGM) plates and extract their
displacement fields. To begin with, we explore the classical plate theory (CPT) that provides
insights into the bending behavior of plates while neglecting the shear effect. However, it is
important to note that this theory often leads to imprecise results of the deformed plate because
it fails to take into account the shear effect.

In light of this, researchers have developed new deformation theories, such as first-order
shear deformation and higher-order shear deformation, to describe the real behavior of
deformed plates. These theories are crucial in providing a more accurate representation of the
deformation and displacement fields within FGM plates. By incorporating the shear effect,
these theories are able to capture the nuances of the deformation process, which would
otherwise be overlooked by CPT.

It is worth noting that the use of higher-order shear deformation theories is particularly
important in the analysis of FGM plates. This is because the material properties within these
plates tend to vary spatially, resulting in non-uniform deformation. As such, higher-order shear
deformation theories are better suited to account for the complex deformation patterns that are

observed in FGM plates.
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CHAPTER 3

ANALYTICAL
MODELLING OF AN FGM
COMPOSITE PLATE
REINFORCED WITH
GRAPHENE NANO-
PLATELETS
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1. Introduction:

In this chapter, we will be going to model an FG-GPLRC (Functionally Graded
Graphene-Platelets Reinforced Composite) plate. This will involve various steps that will allow
us to accurately describe the behavior of the plate in terms of displacements, deformations, and
stresses. To achieve this, we will make use of the theory of Mabhi et al, which consists of five
variables. By utilizing this model, we will be able to more precisely predict the plate's
performance under different conditions.

In addition, we will consider the plate reinforcement with graphene nano-platelets. By

employing the Halpin-Tsai model, which is commonly used in the field of composite materials.

Once we have incorporated both the Mabhi et al and Halpin-Tsai models, we will derive
the governing equations using Hamilton's principal, a fundamental concept in classical
mechanics that relates to the principle of least action.

Finally, having derived the motion equations, we will use an analytical method to solve
the coupled differential equations system. This will enable us to find the displacement equations
of our bending and buckling problem, giving us a complete picture of the plate's behavior. By
utilizing these sophisticated models and methods, we’ll gain a deeper understanding of the
mechanics and properties of FG-GPLRC plates, and ultimately develop better, more resilient

materials for a wide range of applications.

2. FG-GPLRC plate modelling:

Consider a rectangular FGM plate of length a, width b and height h. The associated
coordinates system is such that the z axis starts from the middle plane and points upwards, and
the x and y axes start from one corner with 0 < x <a and 0 <y <b. The modeling procedure
starts by [38] a uniform distribution of graphene nano-platelets through one phase matrix

(epoxy), then gradually adding GPls inclusions,

Adding GPls will enhance stiffness. The new elastic modulus ESF! is calculated using

the Halpin-Tsai homogenization model, which is expressed as:

E = 3/8 Eiq + 5/8 Ez, (3-1)

Page | 43



1+ & Vf 1+ SwnwVf
O R e R o e 7 %)
Where 1, nw and take the following expressions,
Ecpi _ Egpi _
ey )1 (P, ) .
= B F W = (3-3)
( /Em)+fL ( /Em)'*‘fw
With:
l w
L= 2( GPl/tGPl) ; Sw =2 ( GPl/tGPl) (3-4)

Em , Ecp are Young’s modulus of polymer matrix and graphene nano-platelets

respectively
lgpi, wapi, and tgp represent the length, width and thickness of GPls, respectively.
&L, Ew are the shape parameters of the GPIs along longitudinal and transverse directions.

The effective volumetric density pSP'and Poisson’s ratio véFlare calculated using the

rule of mixture between the matrix and GPls:

pSPU(2) = pepiVepi(2) + pm(1 — Vpi(2)) (3-5)
Vﬁzpl(z) = vepiVep1(2) + Vm(l - VGPl(Z)) (3-6)

The shear modulus expression is given by,
Ei (2)

G (2) = 2 (1 + v,‘,i”(z))

(3-7)

In which pgpi and vgpiare the corresponding properties of GPls, and Vgpi is GPls’ volume
fraction which varies along the coordinate z in specified patterns. In the present study we use

the following variation forms:
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GPL—-UD
(s 2z h
2VGP1<1—7), 0<z<7
] (h—2) n GPl— X : surface —rich
2V5m<1—2 . > s<z<h
\
VGPI(Z) =1 ( (h ) (3-8)
5 h
2VG*P1<1—2 Zh , 0<z<z
3 h GPl— 0 : middle — rich
G-2)\
Win| 142222, Z<z<h
\

Where V;p; denotes the total (or average) volume fraction of GPlIs. The volume-fraction

Vip; 1s not directly measurable, but it can be derived from the weight-fraction Agp by the
relation:

AGPl

Pgpi

Vepr = (3-9)
( o ) (1 —Agp) + Agpy

In our study, we treat our FG-GPLRC plate as a multilayers plate to make an efficient
study comparing our results to the reference [40].
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Figure 24: GPls distribution patterns through the plate thickness

3. Derivation of the governing equations of motion:

3.1 Determination of the strain and stress fields:

3.1.1 Displacement, strain and stress fields:

The displacement field of the plate is expressed as:

d G,
(4Ge,y,2) = g, y) - Z% +¢(2) (qu(x, y) + %)

0 0 )
|7(3,2) = vo(x.y) ~ 2750+ 0() (8 () + ) (3-10)

\ w(x,y,z) = wo(x,y)

Where uy(x,y), vy(x,y) are the longitudinal displacements at the mid-plane level in
the x and y directions, respectively, and wy(x, y) is the deflection of the plate. ¢, (x,y) and
¢y (x,y) denote respectively the total bending rotations around the y and x axes at the mid-
plane. ¢(z) is a generic shape function that determines the distribution of transverse-shear
strains and stresses. In the present study we will use the hyperbolic HSDT proposed by Mahi et
al:

4 z3

h 2z
¢(z) = Etanh(f) ~ 3 cosh?(D) (ﬁ) (3-11)
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As pointed out by Mabhi et al [30], the derivative of the shape function (¢’ (z)) features
a parabolic variation of transverse stresses and vanishes at z = -h/2 and z = h/2, satisfying the

traction-free boundary conditions.

By substituting the displacements of equation (3-10) into the linear strain tensor, defined

as:

gij N 2 6xl- axj ( ) )
(0w 0w a¢>x
B Ty T 9 axz
ovy  0%wy 6¢y 02w,
Eyy _E_ Ov2 (2) dy dy?
&,y =0
1 du, v, 92w, ¢x dp, _9%w, (3-13)
Yoy =50 T oy T P axay T OV )< o +26x6y>
dp aw,
v =5, (%t 5
dp (cl) awo)
\ Yyvz =3, dy

The various stresses acting on a material point are shown in the following figure:

I A0
—
Oy / ]
gx:
—
o,
0.

o
a, ! Y

X

Figure 25: Stress vector components

Stress-strain relations can then be written in the following matrix form:
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Oxx [Qll le 0 0 0 'l Exx
Oyy Q21 Q2 0 0 0 | Eyy
T 0 0 Qu 0 0 (3-14)

0o 0 0 ¢ 0 J
o) Lo 0 0 0 gul Uyl

Where the stiffness coefficients Qjj are given by the following constitutive equations:

( E(z)
Q11 =022 = m
v(2)E(2)
] Q12 =021 = TZ(Z) (3-15)
Qus = Qss = Qs = 2
k 44 — {55 — Y66 — 2(1 +V(Z))
3.1.2 Constitutive relations :
e Membrane and shear resultants :
h
%x 2 Qllgxx + legyy
leexx + szgyy dz (3-16)

Oxx
Qxy —h/2 Oy Qe6Yxy

|
NI:‘\ NS

Where:
Nx, Ny and Qxy are the resultants, per unit length, of the normal stresses (along x and y)

and shear stresses in the (x-y) plane, respectively.
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Figure 26: Components of normal and shear forces in
the plane.

The higher order shear stresses are written as:

(&)= [ (o) 552 G17)

Oyz) 0z

|
Nlr\ N

Where:
The components Qy, and Qy, are the resultants, per unit length, of the higher order

shear stresses of (x-z) and (y-z) planes.

Figure 27: Components of transverse shear stresses

¢ Bending and torsion moments :
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O-xx
(ayy> zdz (3-18)

My and My are respectively the bending moments around the y and x axes, and Myy is

the torsion moment.

The higher order moments are written as:

h
Mz 2 /Oxx
Mg | = f (O'yy>(p(z)dz (3-19)
Miy)  “n \%

2

Figure 28: Bending and torsion moment components

Mg, My and Mg, are the corresponding higher-order bending moments in the x and y

directions and the higher-order torsion moment, respectively.

3.1.3 Constitutive equation:
Substituting the expressions of strains (3-13) and stresses (3-14) in the constitutive

relations and writing it in the matrix form gives the following constitutive equation:

Page | 50



Ox
av,

(N [A11 A1, By By By BLL] 031
Ny Az Azz By By 3511 Bgz _0 Wo
M, Bi1 Biz Dy1 Dyy Df1 D{lz Ox?

) \ — - 3-20
My Byy By, Dy Dy D3y D3, _aZWO ( )
M2 BY, Bf, Diy Di, D" D} dy?

\MyJ) |B3$; B3, D3y D3, D3f Dl|ap, 82w,

ox 0x2
d¢y 0%wy
\dy  dy? )
( Q%%
Qxy Ags Bss Boo I i az\ix |
Myy  =|Bgs Des Dés 4 _Zfa; $ (3-21)
Ma(cly Bg6 Dge Dgg L%_{_%_{_ azwoJ
dy ox dx0y
+6W0
Qacclz _ gs 0 d)x 0x
a (= a (3-22)
Qyz 0 44 ¢ +6W0
\ Py E)y}
Where the elements of stiffness matrices are defined as:
h/2
(Aij;Bijy 3] = f Ql'j(].,Z,(p)dZ i'j:1,2,6 (3_23)
—h/2
h/2
(Dyj, D, Dif*) = j Qij (z%,20,9*) dz i,j=126 (3-24)
—h/2
n/2
. 09\’ .
Aij = f Ql] (a_z) dz L) :4,5 (3'25)
—h/2

A;j coefficients represent the extension stiffness [Pa.m], B;; and Bjj coefficients

represent the (bending-extension) coupling stiffness [Pa.m?]. D; Dj; & D" coefficients

j»
represent the bending stiffness [Pa.m?]. A‘ilj coefficients represent the transverse-shear stiffness

[Pa.m] [38].
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As pointed out by Mahi et al [30], the transverse-shear stiffness is related to the
derivative of the shape function (¢'(z)) that features a parabolic variation of transverse stresses
and vanishes at z = -h/2 and z = h/2, satisfying the traction-free boundary conditions [38].

The coupling and higher-order bending stiffnesses are related to the shape function

that has been introduced into the displacement field.

( ou, vy 92w, 0%wy d¢,  0%wy Ody 9*wo
Ny = Ayq 3 + Ay dy B11 9x2 Biz 572 Bfy ox  0x?2 +Bi, 9y | 9y?
ouy vy 92wy 0%wy 0,  0%wy Ody 9*wo
N, =4 A B B : B2\ 5,
y =421 + Ay, 5 215,32 22753 21\ 5y + 9x2 + 52 dy  ay?
dug dv, 92wy 0" wo 0y | 0°wy Ity , 9°Wo
Mx = Bll a + Blz a D11 axz D12 a 2 + 1a1 ax + axz + fz W ayz
du, dv, 9%wq 0wy 0¢: 0w Ity , "o
My _321 dx +BZZ 0 _D21 axZ DZZ d 2 éll dx + axz + 512 W ayz
i, v, 92w, 92w, 0p, 0%w, g, 0%wy
My = Bfy dx + B dy biy dx2 Diz dy2 +Diy ox  0x2 D1z 9y | 9y?
o 0 92w 0 0¢x 0w by 0w
{M¢=pe -0 ,pa’0 paZ "0 _pa” "0, paaZPx °) +Dgg (== - ) (3-26)
i 2175, + By, 5 21 5,2 22752 + D1 ax + 9x2 + D22 P) dy?
oug 0y 92w, 0px 09, 9wyo
Z%)_7B B2 2
Qxy 66(ay + ax) 66 axay+ 6\ ay = ox + dxdy
ouy 0vy 02 0 0y a¢y aZWO
M.. = B.. [—2 2D D§
xy 66<ay ax) “oxdy e\ dy " ox ' “oxdy
duy Jvy 02 0 0y ad)y aZWO
M a ( —) 2D32 DZa 2
v = Pos\ Gy T ox “oxay "\ ay " ox ' “oxdy
ow
Q;ez = %5 (¢x + ax())
a a aWO
\ Qyz = Ay (¢y + W)

3.1.4 External loads modelling:

In an elasticity problem, a plate subjected to transverse loads at the upper surface (along
x and y) where these loads can be sinusoidal or have any other form of intensity distribution
(x, ¥), must be able to withstand these loads. In other words, the plate reacts in such a way that
it can maintain equilibrium in each of its elements. Figure 29 illustrates the general case of an
element of a plate in equilibrium.

The buckling model is presented in Figure 30, which has the ability to detect the critical
buckling load of an FGM plate under distributed pre-buckling forces (Px, Py), knowing that:
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Figure 29: Internal loads
Py
g X
Px
Px
Py

Figure 30: Pre-buckling compression load distribution

3.2 Energetic formulation of composite plate reinforced with

graphene nano-platelets:

3.2.1 Kinetic energy:
The kinetic energy of the FGM plate is given by:

Page | 53



h/2
/ 2

[ T Rt

3.2.2 Strain energy:

The mathematical expression of the strain energy, also known as potential or elastic

energy due to the elastic deformation of a solid, is as follows:

ﬂ.f ojjgjdv  L,j=xY,2 (3-28)

j j f OxxExx T OyyEyy + OysVys + OxzVaz + OxyVay dz dA = Z El U

i=1

E} ;f.g(rxxexxdv f“ Mo _ aM;O+Mx <0a¢>x+ o 2>ldA (3-29)

E? f f j GyyEyy dV = f f l g af;;o M, ;;;" + Mg (% + a;;")l dA (3-30)
5 =5 [[[ cuerdy =3 [[ 0% (0 + 52)]| 4 (3-31)
Ej = %fff OyzVyzdV = %ff [QJC,‘Z ((,by + (’;—M;)] dA (3-32)

1
ES = Ejff OxyVxy dv

1 ou, 0dv, 92w, . (00 00, 92w,
== 020 oy, 2 2 dA  (3-33
Z_H [Qxy ( oy * ax) My dxdy + My y T T (3-33)

3.2.2.1 Strain energy variation:

The variation in strain energy is derived from equation (3-28) and is given as:

SEU = Jjj Uij&sij dv (3'34)

SEy = SE} + SEZ+SE3+SEL+SE] (3-35)
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SEy = .ff [Nx6 (%) - M,6 <a;)\:\;0> + Mfcl(S( a¢X> + M2§ (0;V\; > + N6 (%Zo)
92wy, as 9Py as[9°Wo a a 5 (Mo
58 ) i
+ Qy,6¢y + Q3,6 (aa ) Qxy6 (a ) Qxyd (av ) 2Myy 6 (g?;)

qu) qby %w,
a a a -
+ My, 6 ( 3y + My, 6 5 + 2Mg,6 320y dA (3-36)

By integrating by part, we find:

ONy o 0°M, Mg 9ZM2 aN, %M,
SEU—.’:[ Uy — ax > 5W0—W6‘¢x+a—zawo—g6vo—a—yzé‘w0
aMﬁ 0°My sz 90y,

- 3y ——06¢, + ——— 3y Y 5w wo + QL,6¢, ———dbw 0+Q 20, — 3y ——dw,
any any a°M xy aMaccly a1V1xy
3y oug e dvy — 2 xdy ow, — 6, — I —— 8¢,
9*Myg,
t2ga Swe | dA (3-37)

The contributions of the source terms of the strain energy related to the variations Su,

dvy, dwy, 8¢y, ¢, are:

duy: — aal\;x B ag;y

v _a% ~ ag% (3-38)
- a;gx s a;zcwzg ~ a;yzxiy . aazi/lj _ agfz _ agfz _, a;i\;a;y 2 aa:\giy

S — agf‘l + Q% - az;y,?y

. a;\ig 0 _ al;fy
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3.2.3 Work of external loads:

3.2.3.1 Virtual work:

The work done by the distributed transverse load (¢) and edge loads (Px and P,) as a

virtual form is expressed as follows:

(')WO awo awo adw,
SW = — ff qSw,] dxdy + ﬂ [Px >+Py 5 ( )] dxdy — (3-39)

By integrating by part, we find:

92w, 02w
W = —ﬂ[qc?wo] dxdy+ff —PxWS o— B 377 (Swo dxdy (3-40)

Where:
{Px = MP
Py = AP,

Aiand A, are the buckling parameters and P, is the critical buckling load.

The contribution of the source term of the virtual work related to §w, variation is:

S P 62W0_P 9%w, 3-41
WO_q X axz y ayz ( - )

3.2.4 Hamilton’s principle:

The variational principle is used to obtain the equilibrium equations of the FG-GPLRC
plates which state that:

S(Ey + W)= 0 (3-42)

Where Ey and W are the strain energy and potential energy (work) of the applied

(external) loads, respectively.

This variational principle that applies to static problem (E}, = 0) can be derived from

Hamilton’s Principle applicable to dynamic problems:

t
0= J (SEy + SW — 8E)) dt (3-43)
0
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3.2.5 Equilibrium equations:
From the contributions of strain energy and the virtual work to the variations du,, 6v,,
dwy, 8¢y, 8¢, and by applying Hamilton's principle, we can derive the equations governing

the motion of the FGM plate reinforced with graphene nano-platelets.

Nx any
8u0 Ox + ay =0

ON, 0Qy,
8170.@ + W =0 (3-44)

02M, 0?ME 0%M, 0°MZ 0Q%, 0Q%, _0°M,, _9°MS, 02w,
Sw: - - 2 - p——2
Woi 52 a2 T oy?  0y? T T dy + dxdy dxdy T4t g

902w,
+Pya—yz:O
oMg Mg,

8ui 5, — Ot 2 =0

M Mg,

8y 5 dy &t ox 0

In order to solve these equations, it is advisable express them to the generalized
displacements dug, 6vy, 6wy, 8¢, and 8¢, by replacing the forces and moments with their

expressions obtained from the constitutive equation.

0%u, 0%v, 63W0 3w, . (070 03wy
T\ ox2 ~ ox3

(E)Zuo 0 v0> 23wy

2
¢y Wy
+ B2 <axay t oxayz) t e

%¢p, 0%¢ 33w,
B2 Y42 =
 Bés < dy? * 0x0y + 0x6y2>

Svg: A A B
Vol gy T A2 g2 T Pagiagy, T P22 505 T P Guay T axay
9%¢p, 03w, 0%u, 0%v, 3wy,
+Bgz<a 2+ 3) 66<aa 6x2> %0 9x20y
92¢,  92¢ 33w,
Ba Y 2 = -4
* 66<axa T T 6x26y> 0 (3-45)
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Su 04
8wo: (Byy — Bfy) —— + (B1z — By) # — (D1 = Dfy) o= = (D12 — 12) 3y
a3 d*w,
by : > + (B21

3
b
+ (D3 = Diy ( dx3 + ax (D12 dx20y * 9x20y2

3

3 3 4

Uy
21)662+(22 322)63

3 3 4
by 9*w, qby d*wy
DZ )(axay axzayz + (DZZ DZ ) ay (DZZ

Wo 0, 0%wy ¢y
Dzz) + ASs <W+a—x2 + A4 3y + ay + 2(Bge
B2 63u0 + 9o 4(Dgg — D2 0wy + 2(D3,
) axayz axZay ( 66 66) Zayz (
_ paa 0%, n a3¢y 2 0*wy
0xdy? = 0x?dy d0x?0dy?

(D21 )a Za 2+(D21

3p, 03¢ d*w, 0%w, 92wy
_ opaa Y 419 P, P,
66 <axay2 + axzay + axzay +q+E 02 + y ayZ
0%u, 0%v, 3w, 3w, 0%¢, 03w,
8¢x:Bii 5oz + Blagg, ~P 50 szaxaszerf(axz * 6x3>

%¢p, 33w, ow, 0%u, 0%v,
D ( * ) -t (0 + 52) + B < ayz 6y6x>

=0

0xdy 0xdy?
3wy, %p, 0%, 33w,
— 2D2 paa 2 =0
66 axay? | <6y2 T axay 6x6y2>
N 0%u, . pa 0%v, _pa 3w, _pa 63W0+Daa 62q§x+ 3w,
by 821550y dy 2 9y? T*lox2ay % gys3 21 \oxdy = 0x20y

0%¢p, 03w, ow, 0%u, 0%v,
Daa Yy — Al ( _) a
Pz (ayz * 6y3> w P +50) 66<6x6y+ 6x2>

33w, %¢p, 0%¢p 33w,
— 2D36=—-— + D22 Y 42 =
66 3x2ay T 6 <6x6y+ oz T 6x26y>

The equations (3-45) describe five fourth-order linear partial differential equations in

terms of the five generalized displacements.
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3.3 Fundamental bending relations:

Taking into account the transverse load and eliminating edge loads, the fundamental

bending relations are described as follows:

q#+0
{px =P, =0 (3-46)

The fundamental bending relations are given by equations (3-47). The relation

corresponding to dwo being modified as follows:

93u, 6317 Da 9*w,
owy: (B, — Bl ——= EE + (B12 — B12) — (D11 — 11)W — D1z = D) 5573
3¢ 3¢ 0*w,
+(D1al_D1ala <ax3x+ ax40>+(D{12_ y <ax263:]y+axza; >+(321 BZl)a ayz

317 4 3¢
+(Ba2 - Bzz)as (D21 — D§y) 202+(Dm )(axay" axza;z)ﬂl)%z

3 4- 2 2

Py Wo d, 0w, ag, 0wy
_D2 )< ay (DZZ DZZ) a 4 A55 ax + axz AZ‘I- y + 2

4

262
3

3u,  93v, 0*w,
+ 2(Bge — Bés) %02 + ax29y) 4(De6 — Dee) 9%20y? + 2(Dgs
93 93 0*w, 03 03 0*w
— Dé¢ ¢x2 zd)y +t2-— 02 — 2Dg¢ ¢x2 quy 2-— 02 ta
dxdy? 0x?%dy dx4ady dxdy* 0x%0y dx40dy
=0 (3-47)

3.4 Fundamental buckling relations:

Taking into account the edge loads and eliminating transverse load, the fundamental

buckling relations are described by the following expressions:

q=0
Py = 4Py (3-48)
Py = AP

Where:

Aqand A, are the buckling parameters:
e Uni-axial buckling (along the x-axis): 21# 0 and A2 = 0.
e Uni-axial buckling (along the y-axis): 21= 0 and A2# 0.
e Bi- axial buckling (along x and y axis): A1 # 0 and A1,# 0.

The fundamental buckling relations are given by (3-48) relations. The relation

corresponding to wo being modified as follows:
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0 U .~ v . 0%wg
éwy: (By1 — B11)F + (B12 — B1z)m — (D11 — D“)W — (D1 12) 26 >+ (Dfy
3 3 3
¢x d)y a
)( 6 4>+(D12 )<6x26y 6x26y +(Bz1 Bz1)a 3y 2+( 22

64 3
ey (p, —pay 2o (pa _ paay (O °®x + (D%,
227 gy3 1 9x29y? 21 0x0y? 6x26y
3 4 4 2
qby d*wy 09" wWo aqu dp, 0°wy
- - - — Ag, =2 2(B
D33 )( 6y (D22 — D33) ay* + Ass o + 6 + Aga 3y + 32 + 2(Bes
4

u 63u0 d3v, 2*wy
— Bges) %0y +6x26y — 4(Dge — Dés) 26y2+2(D66

¢ | O°dy . 0wy °¢, . ¢, Wo 9%w,
— D¢, 2 — 2DE¢ 2 P.(A

66 )<axay ax26y+ 0x20dy? 66 9x0y? +axzay+ axzay + Per (M 9xZ
62

a 2

+l—2) =0 (3-49)

4. Analytical solution of motion equations:

4.1 Boundary conditions and Navier solution:

The analysis of a rectangular plate requires the solution of the governing equation, along
with appropriate boundary conditions at the four edges, to yield the deflection function w(x, y).
Once this is carried out, the strains and stresses at any point of the plate structure can be
obtained. The basic idea behind Navier’s method is to seek the solution for w in the form of an
infinite series such that the edge conditions are satisfied a priori, and the governing differential
equations are reduced to simple algebraic equations for a simply supported plate (SSSS) [39].
Any transverse mechanical load g(x, y) applied to the plate can also be expanded into

Fourier series in order to obtain:

atx,y) = Z Z Qun (@) sin(8) (3-50)

m=1n=

The boundary conditions along the edges of a simply supported plate can be written as
follows:

U(x,0) =0 ; uylx,b)=0 ; v,(0,y)=0 ; vo(ay) =0
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wo(x,0) =0 ; wolx,b)=0 ; we(0,y)=0 ; wy(a,y)=0
$(x,0) =0 ; (x,0)=0 ; ¢, (0,¥)=0 ; ¢ylay)=0
My(x,0) =0 ; My(x,b)=0; My0,y)=0 ; My(ay) =0 (3-51)
Ny(x,0) =0 ; Ny(x,b)=0 ; N,(0,y)=0 ; Ny(a,y)=0
Mi(x,00=0 ; MZ(x,b)=0; My0,y)=0 ; Mj(ay)=0

The displacement functions that satisfy these boundary conditions are represented in

the form of double Fourier series:

Nk

Ux,y) = i Jmn cos(ax) sin(By)
m=1n=1
V(x,y) = i i Kmn sin(ax) cos(By)
W(x,y) = i i L sin(ax) sin(8y) (3-52)
b (x,y) = i i My cos(ax) sin(By)

by y) = ) Z Ny sin(ax) cos(6y)

m=1n=
Where:
Jmns> Kmns Lmn> Mmn and Ny, are the unknown amplitudes parameters,

mm nm
a=— and f = > (3-53)

For a sinusoidal load distribution, @, simplifies to:
Qmn = 90 (3-54)
Where:

qo 1s the magnitude of the load applied to the plate.

And for a uniform load distribution, we have:

) @55

m=1n=
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4.1.1 Solving the bending motion equations:

By substituting the displacement equations (3-52) into the bending equations of motion,

we obtain the system of equations for each given value of m and n. The algebraic system is

expressed in the form:

Where:

[K|{d} = {F}

(3-56)

K is the stiffness matrix and it is symmetric, d is the displacement vector represented

by the parameters of amplitudes and F is the external load vector.

[k11 ki kiz kqa
| k21 koo kaz Kkaa
|ks1 ksp ks ksa
[k41 Ky Kaz Kag
ksi ksy ksz ksy

Where:

kiy = Aj1a® + Age B2 5 kiz = ko = (A12 + Age)aP
kiz = k3 = a®*(BYy — By1) + aB?(Bf, + 2Bgs — 2Bgg — By3)

kiy = kg = Bﬁaz + ﬁnge s ks = ks; = (B§s+B1z)af
ko, = Azzﬁz + Aseaz ko3 = k3p = azﬁ(sz + 2Bgs — 2Bgg — Byz) +

kis] (Jmny (0
k25| | Kmn | 0 |
Kas |4 Lo } -1 Q,O,m} (3-57)
k an
el Lo )
B*(BS, — Byy) (3-58)

koy = kyy = (B, + Big)ap ; kys = ks, = Biga® + BS, B>

ks = a*(Dy; — 2Dy + DY) + B*(Dy; — 2D, + DS + a®B*(2Dy, — 4D, +
2D + 4Dgg + 4D32 — 8D3)) + A%.a? + A%, B2

kzy = k43 = a*(Dfft — D) + af?(D{ + 2D33 — Df, — 2D%c)+A%sa

kss = ks3 = a®B(Dif + 2D5g — Diy — 2D56) + B°(D35 — D) + ALup

kyy = DI a®+AE+D32B% ;s kys = ksy = (Dfs' + D32)af

kss = D35B* + A%, + Diza’®
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4.1.2 Solving the buckling motion equations:

By substituting the displacement equations into the buckling equations of motion, we

obtain the system of equations for each given value of m and n in a stability problem (buckling

analysis). The resulting system of algebraic equations can be expressed in the form:

[K']{d} = {0}

(3-59)

K' is the stiffness matrix for buckling problem and it is symmetric, d is the displacement

vector represented by the parameters of amplitudes.

[k11 k1, k13 k14
[k21 ka2 ks Lo
k31 ksz kaz+k ksy

Lk ksy ks ks

Where:

s rlmn Y (9

kas| | K 0

k35| 0 (3-60)
k45 mn I 10|

kss kNan \o)

kiy = A% + Age B2 5 kaz = kg = (A12 + Age)af

ki3 = k31 = a®*(BYy — By1) + aBf?(Bf, + 2Bgs — 2Bgg — By3)

kiy = kg = Bﬁaz + ﬁnge s ks = ks; = (B§s+B1z)af
ko, = Azzﬁz + Aseaz ko3 = k3p = azﬁ(sz + 2Bgs — 2Bgg — Byz) +

ﬁg(BgZ - BZZ)

kyy = kyp = (Bilz + Bge)aﬁi ks = ks, = Bg6a2 + Bgz ﬁz (3-61)

kss +k = a*(Dy; — 2Dfy + DY) + 34(D22 — 2D$, + D§F) + a®B*(2D;, —

4D% + 2D% + 4Dy + 4

— 8D%) + ASsa? + A, Bk

kzy = k43 = a*(Dfft — D) + apf?(D{ + 2D3% — Dfy, — 2D%¢)+A%sa

kss = ks3 = a?B(Df + 2D% — DY, — 2D%g) + B3 (D55 — D3y) + ALLB

K4a = DI a® +A%+DGE? s kys = ksq = (Dff' + D§3)ap

kss = D35B* + A%, + Diza®
And:

k=AP,; A=Aa?+ 2,82 (3-62)
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To find the critical buckling load Pcr (the smallest load that causes buckling), the system

must be written in the following canonical form:

[k11 kiz kiz  kig k15] [0 0 0 O 0] (Jmn (0
| k21 ]fzz lfz3 lf24 kas | 0 0 0 O 0| | K | [ 0]
|k31 ks, k33 ksy k35| crl 0 -1 0 0| M Linn 5 = 4 0 $ (3-63)
kar kaz kus kas Kas [ 0 0 00 / LM’"" J Lg J
k51 k52 k53 k54 k55 0 0 0 0 Nmn
Where:
R, =X - i =1,2,3,4,5 3-64
3j - A ] ] — 4,4,9,7, ( - )

To find the nontrivial solution, the problem boils down to solving the equation of the

determinant set equal to zero.

|[k11 ki kiz kia kls] 0 0 0 0 0]|
[k21 ka2 kaz kaa kos| [0 0 0 0 O]
|k31 E32 E33 E34 k35| Pcr|0 0 -1 0 0| =0 (3-65)
lk41 kuy kuz kuy ks 00 0 00
ksy ksy ksz kss kss 00 0 00

4.1.3 Displacements and stresses fields:

After we obtained the solution for the five differential equations by Navier’s method,

the general displacement equations could be written by substituting (3-52) equations in (3-10).

For m=n=1, we get the following equations of displacement field:

( s s h 2z 4 z3
u(x,y,z) = cos (Ex) sm []11 -z Ly + ( tanh(r) — m (ﬁ)> M +— L11 ]
\v(x,y,2) = sin (Ex) cos (Ey) [Kn - zlel + <E tanh(z—z) - #(i)> N11 +— L11 ] (3'66)
" a b b 2 h’ 3cosh?(1) “h?
. n 3 7T
L w(x,y,z) = Li; Sin (E x) sin (E y)

Spontaneously, we obtain the deformation field by substituting (3-49) equations in

(3-13) and we get:
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oo oo T T\ 2 h 2z 4 z3 \(m 1T\ 2
- a x a a 2 3cosh?(1 a
Exx = Sin (— )sm (Ey) [— —Ji1+z (—) Ly — (— tanh(f) - T() (ﬁ)> (— M, + (—) Lu)]
&yy =sin (gx) sin (%y) [—%Kn +z (%)2 Ly — <g tanh(z—hz) = T eoshZ(D) 0054:12(1) (}Zl—z)) (g Ny, + (g)z L11>]
zz = 0
s T o\ T nzg h 2z 4 22\ m Fis
Yay = €OS (Ex) cos (EY) [/ + K =22 Loy + <§tanh(7) - m(ﬁ)) (G M+ — Ny
3 (3-67)
+2 Z_ZL“)] _
T I 1 1 22\2 T
VYxz = COS (Ex) sin (Ey) _coshz (Z—hZ) — &Coshz(l) (7) | (Mn + EL“)
[ 1 1 22\?]
=30 ) ()|~ S () | ()
To determine the stress field, we’ve to substitute (3-66) equations in (3-14) and then,
we obtain the following stress field expressions:
2
Oxx = Q11 Sin (Zx) sin (%y) l— g]n +z (g) Lip
h 2 3 2
_ <E tanh(f) - Se D (%)) (g My, + (g) Lu)l
2
+ Q13 sin (g x) sin (%y) [—%Ku +z (%) Lip
h 2z z3 T T 2
— <E tanh(W) — m (ﬁ)) (z Ny + (Z) L11>l (3-68)
2
Oyy = Q12 sin (g x) sin (%y) [— 2111 +z (g) Liq
h 2z z3 T TN 2
B <E tanh(? 3 cosh*(1) (ﬁ)> (Z Mu + <E) Lll)l
2
+ Q5 sin (g x) sin (%y) [—%Kll +z (g) Lyq
h 2z z3 T 7T 2
— <E tanh(F) — m (?)> (Z Ny + (E) L11>l (3-69)
s T 1 1 2z 2] T
o= aseo ()on3)| o - () (o) o
T s 1 1 2z 2] T
Oyz = Quq sin (;x) cos (Zy) -COShZ (Z_hZ) - cosh?(1) (7> | (N11 + ZLH) (3-71)
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2

(s (s s T T
Oxy = Qg6 COS (;x) cos (Ey) 5]11 + EKH — ZZ—bL11

Y L M + N +z”2L 3-72
2 an (h) 3 cosh?(1) hz) 1 u ab (3-72)

Where:
( E(z)
Q11 =0Q22 = 1T-vi)
v(2)E(z)
)\ Q12 = Q21 = #2(2) (3-73)
Qus = Qss = Qg =
\ 44 = Us5 = Uee = 2(1 +v(z))
Generally speaking, we can write displacements and stresses fields as follows:
e Displacement field
S n 1 h 2z 4 z3 mm
u(x,y,z) = mzlnzleOS SlTl ) [ 11— P —L; + <Etanh(7) - W(P)) (Mll + 71411)]
O mr nm h 2z 4 z3 nm
L v(xy,2) = mZInZlSln COS b y) [Kll — Z7L11 + <E tanh(r) — m(ﬁ)) (Nll + TLll)] (3'74)
w(x,y,z) = Z Z Ly sin (% x) sin (r;—ny)
m=1n=1
e Stress field
2~ mm nm mm My 2
Oy = Z Z sin (735) sin (7}]) [Qll (— 7]11 +z (7) L1y
m=1n=1
ht h 22) 4 (23) (mnM N (mn)z L )
2 3 cosh*(1) "h* a M a n
N 2
+ Q12 bK11+Z(b)L11
ht h 22) 4 (23) (TLTL'N N (nn)2 L ) (3-75)
2 3 cosh*(1) "h* p M b u
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Oyy = Z Z sin (? x) sin (%y) [le (— %]11 +z (%)2 Ly
— (g tanh(%) BN w;;z(l) (}Zl_z)) (? My + (%)2 L11>>

nm Ny 2
+ Q22| —— K11 +Z(_) Lqq

b b
() -3 ) (e () 1) (3-76)
—|=tanh(—) - ——— =) || — - i
2 h”  3cosh*(1) h* p 1 b 1
- - mm nri 1 1 27 2
vz = Oss Z Z cos (—x) sin (—y) T > (_) (Mll
m=1n=1 ¢ b cosh? (T) cosh®(1) \ h |
mn
L) (3-77)
a
NAY mn nm 1 1 2z2\*
Oyz = Qg z z sin (— x) cos (—y) T > <_) (N11
m=1n=1 a b COShZ (T) cosh (1) h
nm
+ 7L11) (3-78)
AN mn nmw \ |nmw mn mnm?
m=1n=1
ht h ZZ) 4 (23) ne N me . o mn? . (3-79)
+(=-tanh(—) - ——(— —_ _ )
2 h”  3cosh*(1) h? p Mg M ab M

5. Conclusion:

In this chapter, our focus was on deriving the governing equations of motion for a plate
made of functionally graded graphene platelets reinforced composite (FG-GPLRC).

To start with, we determined the displacement field using the hyperbolic higher-order
shear deformation theory (HSDT) proposed by Mabhi et al. Based on the displacement field, we
then derived the deformation field and the stress field of the FG-GPLRC plate. This was done
by considering the material properties of the composite, which vary continuously in the
thickness direction.

To obtain the motion equations, we use the energetic formulation of Hamilton on our
FG-GPLRC plate, we were able to derive the governing equations of motion.
Finally, we used the classical Navier method to solve analytically our bending and

buckling problems for simply supported plates.
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CHAPTER 4

RESULTS AND
DISCUSSIONS
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1. Introduction:

In this chapter, we will present the results and discussions of the bending and buckling
problems. These results were used with the calculation code developed in Python. Python is an
interpreted language, unlike other classical languages which are compiled languages. Python
can therefore be seen as an interactive tool that is always ready to react to your commands. We
will compare the results with the published papers. The results representing the stresses and
displacements as well as the critical buckling load will be represented in the form of appropriate
graphs to show the influence of the parameters considered (geometric dimensions, relative
thickness and volume fraction of the graphene nano-platelets distributions through the FG

composite plate) in this study.

2. Numerical resolution of the static problem:

For our study, we are making a comparison of the results of reference [40] to validate

both buckling and bending problems.

In this section, several numerical examples are presented to study the bending and

buckling of FG-GPLRC plates. The properties of the epoxy matrix are given by:

vm = 0.34
pm = 1200 Kg/m?
Em =3 GPa
The mechanical properties of graphene nanoplatelets (GPL) are given by:

verL =0.186
perr = 1060 Kg/m?
Ecp.=1.01 TPa
lepL=2.5 pm
wepL = 1.5 pm

tepL = 1.5 nm
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CHAPTER 4

2.1 Graphical representation of the FG-GPLRC plate properties:

After a series of calculations, we obtain the graphs of V;p;(2), ESF!(2), pSFl(2), vEP(2)

and GSF'(z) for the three patterns of distributions (b/h=10, Agpl=0.01).

Vagpl

0.5

z/h

0.015 : 0.025

Vgpl Max

Vgpl Average -

Vgpl
- GPL-X =—GPL-UD ——GPL-O

Figure 31: Volume fraction variation through the plate thickness for different distributions.

. E(Gpa)

0.4
0.3
0.2

0.1

z/h
o

-0.1

-0.2

-0.3

-0.4

E Average E Max
E

-0.5

——GPL-X ——GPL-UD ——GPL-O

Figure 32: Young’s modulus variation through the plate thickness for different distributions.
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p (Kg/m?)

z/h

119 1197.5 1198 198.5 1199 119 1200 1200.5

p Average p Max

p
——GPL-X ——GPL-UD ——GPL-O

Figure 33: Volumetric density variation through the plate thickness for different distributions.

0.5
0.4
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0.336 0.3365 0.3375 0.338 0.3385 0.339 0.3 0.34 0.3405
1

-0.
-0.2
-0.3
-0.4
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Figure 34: Poisson coefficient variation through the plate thickness for different distributions.
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Figure 35: Shear modulus variation through the plate thickness for different distributions.

Basing on the analysis of the different graphs of mechanical properties, we note that:
e Constant values for the different mechanical properties in the UD pattern
through the plate thickness (Figures 30-34).
e A symmetric variation for the different mechanical properties in X pattern
(surface rich) and O pattern (middle rich) through the plate thickness (Figures
30-34).

2.2 Stiffnesses calculation of the static system:

Table 5: Extension stiffnesses of the plate for different distribution patterns and for
different volume fractions

Volume Extension GPL-UD GPL-X GPL-O
fraction Stiffnesses
Agpl (Pa.mx10%)

0.01 An 6.598839003020 6.598963440422 6.598963440422
A 2.232116044442 2.229214091310 2.229214091310
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Ass

2.183361479286

2.184874674 555

2.184874674555

0.02

An

11.65859946743

11.659203956971

11.659203956971

A

3.923379799696

3.9118360231390

3.9118360231390

Ass

3.867609833869

3.8736839669160

3.8736839669160

0.03

A

16.70594796372

16.707545607894

16.707545607894

A

5.592991885265

5.567159521285

5.567159521285

Ass

5.556478039218

5.570193043304

5.570193043304

Table 6: Transverse-shear stiffnesses of the plate for different distribution patterns and for

different volume fractions

Volume Higher
Fraction order
Agpl Shear GPL-UD GPL-X GPL-O
Stiffnesses
(Pa.mx10%)
0.01 %4 1.0530574319674 0.7129652103731 1.394642083389
e 1.0530574319674 0.7129652103731 1.394642083389
0.02 AS, 1.8653875311702 1.1839259187836 2.552839922108
o 1.8653875311702 1.1839259187836 2.552839922108
0.03 Ad, 2.6799458313585 1.6558385787600 3.717579879938
o 2.6799458313585 1.6558385787600 3.717579879938

Table 7 : Coupling stiffnesses of the plate for different distribution patterns and for
different volume fractions.

Volume Coupling
Fraction Stiffnesses GPL-UD GPL-X GPL-O
Agpl (Pa.m?)
0.01 B1i 0 0 0
B2 0 0 0
Bes 0 0 0
0.02 B 0 0 0
B2 0 0 0
Bes 0 0 0
0.03 Bii 0 0 0
Bz 0 0 0
Bes 0 0 0
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Table 8: Higher order coupling stiffnesses of the plate for different distribution patterns
and for different volume fractions.

Volume Higher order
Fraction Coupling GPL-UD GPL-X GPL-O
Agpl Stiffnesses
(Pa.m?)
0.01 B 0 0 0
BL, 0 0 0
B&, 0 0 0
0.02 B, 0 0 0
BL, 0 0 0
B&, 0 0 0
0.03 B 0 0 0
BY, 0 0 0
B&, 0 0 0

Table 9: Bending stiffnesses of the plate for different distribution patterns and for different
volume fractions.

Agpl (Pa.m3x10%)

0.01 D 1.113554081 1.541591954 0.685566605
D12 0.376669582 0.519891599 0.232272274
De6 0.368442249 0.377512657 0.226647165

0.02 D 1.967388660 2.822556158 1.112465978
D12 0.662070341 0.944053323 0.375412124
Des 0.652659159 0.939251417 0.368526927

0.03 D1 2.819128718 4.10060154 1.538302931
D12 0.943817380 1.360158415 0.517042139
Des 0.937655669 1.370221564 0.510644358

Table 10: Higher order bending stiffnesses of the plate for different distribution patterns

and for different volume fractions.

Volume Higher
Fraction orde.r GPL-UD GPL-X GPL-O
Agpl Bending
Stiffnesses
(Pa.m*x10%)
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0.01 4 0.845863855 1.139339060 0.552423578
D%, 0.286120980 0.384313745 0.187113702
D& 0.2798714378 0.377512657 0.182654938
0.02 D 1.4944428702 2.080770938 0.908284467
D, 0.5029134919 0.696231747 0.306355155
D&, 0.4957646891 0.692269595 0.300964655
0.03 DY, 2.1414308721 3.020047111 1.263263052
D, 0.7169306115 1.002347044 0.424263605
D& 0.7122501302 1.008850033 0.419499723

Table 11 : Higher order bending stiffnesses of the plate for different distribution patterns

and for different volume fractions.

Volume Higher
Fraction order GPL-UD GPL-X GPL-O
Agpl Bending (Pa.m3x105) (Pa.m*x10%) (Pa.m3x10%)
Stiffnesses
0.01 D 0.652826130 0.853827579 0.451849129
D} 0.220824250 0.288070325 0.153008002
D¢ 0.216000939 0.282878627 0.149420563
0.02 D 1.153390523 1.554967838 0.751931978
DY 0.388141739 0.520520904 0.253494462
DE¢ 0.382624391 0.517223466 0.249218758
0.03 DY 1.652726995 2.254494312 1.051273582
DY 0.553317219 0.748744032 0.352814881
D¢ 0.549704888 0.752875139 0.349229350

After analyzing the results of the various stiffnesses represented in the tables bellow, we
noted that:

e All stiffnesses increase by increasing the mass fraction of GPLs.

e The results of extension stiffnesses Ajj are quietly the same with some light
differences at UD pattern (Table 5).

e The uniform distribution pattern always takes the average values comparing it
with the surface rich and the middle rich distributions.

e Asignificant behavior from O pattern where the transverse shear stiffnesses

give the greatest values comparing to X and UD patterns, the values of Ag-

decrease in UD pattern and decrease more in X pattern (Table 6).
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e The coupling stiffnesses (extension-bending stiffnesses) give a null value this
because of the symmetry of the different distribution patterns over the plan
z/h=0 (Table 7-8).

e Asignificant behavior from X pattern where the bending and the higher order
bending stiffnesses give the greatest values comparing to UD and O patterns,
the values of Djj, Dj, and D{i* decrease in UD pattern and decrease more in O

pattern (Table 9-10-11).
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Figure 36: Agpl mass fraction effect on the higher order transverse shear stiffnesses 4;;.
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2.3 Buckling analysis:

The response to buckling of composite plates reinforced by graphene nano-platelets
(GPLRC) is studied. The distribution of GPLs through the thickness of the plate can be uniform
or graduated by a median symmetrical pattern. The properties of the plate FG-GPLRC are
obtained using the modified rule of mixtures, Halpin-Tsai model is employed to calculate
Young’s modulus. The higher-order plate theory (HSDT) is adopted to develop or derive the

basic equations of plate motion.

The Navier method has been utilized to derive elastic stiffness matrices, specifically for
edges in simple supports (SSSS). Convergence and comparison studies have been conducted to
demonstrate the efficiency and accuracy of the method. Parametric studies have also been
carried out to investigate the impact of GPL mass fraction, thickness distribution law, and the
a/h ratio of the plate. The results indicate that a gradual functional distribution and strategic use
of nano-platelets can enhance the plate's buckling ability, leading to lower critical buckling
loads. Furthermore, enriching the matrix with graphene nano-platelets has been shown to

improve the buckling loads of FG-GPLRC plates.

2.3.1 Comparing results:
In this part, several numerical examples are presented and discussed to verify the
accuracy and efficiency of the present theory in the prediction of the critical buckling load of
an FG-GPLRC plate subjected to a uniaxial compression load.

The dimensionless critical buckling loads are calculated using the Python program that

we created, which utilizes the dimensionless form as follows:

_ 100P..(1—vy?)
cr — Emh,

(4-1)
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Table 12: Validation of dimensionless critical buckling load of FG-GPLRC square plate
subjected to a uniaxial compression.

Agpl (% Ref 5558
gpl (%) eference Pattern
GPL-UD GPL-X GPL-0O
Present (HSDT)  3.1048 3.1048 3.1048
Ghandourah et 3.1046 3.1046 3.1046
0.0
al [40]
|Error (%)) 0.006 0.006 0.006
Present (HSDT)  3.1552 3.1781 3.1324
0.1 Ghandourah et 3.1550 3.1732 3.1367
' al [40]
|Error (%)) 0.006 0.15 0.13
Present (HSDT)  3.2565 3.3256 3.1876
0.3 Ghandourah et 3.2562 3.3115 3.2011
: al [40]
|Error (%)) 0.009 0.42 0.42
Present (HSDT)  3.3586 3.4747 3.2429
Ghandourah et 3.3583 3.4510 3.2657
0.5
al [40]
|Error (%)) 0.008 0.68 0.69
3.5
3.45
5 3.4
a
0 3.35
3
g 3.3 D
.§ 3.25 FG-X
Gg) 3.2 ——FG-0
0 3.15
3.1
3.05
0 0.002 0.004 0.006 0.008 0.01
Agpl

Figure 38: Variation of the dimensionless critical buckling load FG-GPLRC plate subjected

to a uniaxial compression.
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The comparison table displays the dimensionless critical buckling load of an FG-
GPLRC square plate under uni-axial compression. To provide a clearer understanding of the
evolution of these loads, a graph illustrating the variation of mass fraction (Agpl) for different
distribution patterns has been developed. The relative error of the results, when compared to
previously published data, remains low, although there is a slight increase for the GPL-O
distribution. This increase is due to the employment of a different plate theory, which impacts
the GPL-O pattern more significantly than the other patterns. Overall, this demonstrates the
effective performance of the developed Python program, establishing its reliability for
conducting a parametric study, as detailed in the next section. Figure 37 shows that as the mass
fraction increases, the dimensionless critical buckling load also increases because the plate
becomes more rigid. In summary, the higher the (Agpl) (making the plate richer), the higher the
supported critical buckling load.

2.3.2 Parametric study:

In this section, we study the influence of the a/h ratio and mass fraction Agpl on the
critical dimensionless buckling load for an FG-GPLRC square plate. The figures below show
the variation of the dimensionless critical buckling load according to the a/h ratio and GPLs
mass fraction, the dimensionless critical load decreases while the ratio increases, this gives an
information that the plate become thinner so the critical load supported becomes smaller, in the
other hand each time the mass fraction increases, the critical load increases, it means that more
we reinforced the plate, bigger critical load required. The shape of the graph is given because
of the formulation of the dimensionless critical buckling load expression. After the figures have
been analyzed, we can deduce that the X pattern gives more rigidity to the plate to support the
minimum load causes buckling, after it comes UD pattern and last O pattern. All the distribution
patterns (UD, FG-X, FG-O) give the same type of variation of the dimensionless critical
buckling load. For a biaxial compression the dimensionless critical buckling load becomes
smaller to the half value of the case where the plate is under a uniaxial compression, this is
available for all types and values of the reinforcements which we can deduce that the plate

bearing to buckling decreasing even it has been reinforced.
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Figure 39: Effect of a/h ratio on the dimensionless critical buckling load for a plate
FG-UD (A1 =-1,A2=0)
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Figure 40: Effect of a/h ratio on the dimensionless critical buckling load for a plate FG-
UD (A1=-1,A2=-1)
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Figure 41: Effect of a/h ratio on the dimensionless critical buckling load for a plate FG-
X(A1=-1,A2=0)
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Figure 42: Effect of a/h ratio on the dimensionless critical buckling load for a plate FG-
X(A1=-1,A2=-1)
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Figure 43: Effect of a/h ratio on the dimensionless critical buckling load for a plate
FG-O0(A\1=-1,A2=0)

BIAXIAL

Dimensionless Pcr
N

o —
10 20 30 40 50 60 70 80 90 100
a/h
®—0 Agpl=0.01 —@—O Agpl=0.015 =—@=—0O Agpl=0.02

Figure 44: Effect of a/h ratio on the dimensionless critical buckling load for a plate
FG-O (A1 =-1,A2=-1)
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Table 13: Effect of the variation of a/h ratio on the dimensionless critical buckling load
(Pcr) for two type of compression Agpl=0.01.

AGPL 0.01
Pattern
a’h UNIAXIAL BIAXIAL
2 144.72 72.36
5 45.90 22.95
10 13.4 6.7001
20 3.49 1.7485
UD
30 1.567 0.7835
40 0.884 0.442
50 0.5665 0.2832
100 0.1418 0.0709
2 130.45 65.22
5 53.93 26.96
10 17.62 8.8127
20 4.77 2.3876
X 30 2.1558 1.0779
40 1.2193 0.6096
50 0.7824 0.3912
100 0.1962 0.0981
2 123.55 61.77
5 31.10 15.55
10 8.47 4.2396
0 20 2.1689 1.0844
30 0.9681 0.484
40 0.5453 0.2726
50 0.3492 0.1746
100 0.0874 0.0437
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Table 14 : Effect of the variation of a/h ratio on the dimensionless critical buckling load
(Pcr) for two type of compression, Agpl=0.015.

Pattern Agpl 0.015
a/h UNIAXIAL BIAXIAL
2 200.37 100.18
5 63.52 31.76
10 18.5397 9.2698
20 4.8381 2.419
UD
30 2.1679 1.0839
40 1.2229 0.6114
50 0.7837 0.3918
100 0.1962 0.0981
2 177 88.5
5 74.92 37.46
10 24.7945 12.3972
X 20 6.7482 3.3741
30 3.0493 1.5246
40 1.7253 0.8626
50 1.1072 0.5536
100 0.2778 0.1389
2 166.10 83.05
5 41.05 20.52
10 11.1382 5.5691
o 20 2.8453 1.4226
30 1.2697 0.6348
40 0.7152 0.3576
50 0.458 0.229
100 0.1146 0.0573
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Table 15: Effect of the variation of a/h ratio on the dimensionless critical buckling load
(Pcr) for two type of compression, Agpl=0.02.

Agpl 0.02
Pattern a/h UNIAXIAL BIAXIAL

2 256.03 128.01

5 81.12 40.56
10 23.6737 11.8368

20 6.1775 3.0887

UD

30 2.768 1.384

40 1.5615 0.7807

50 1.0006 0.5003

100 0.2506 0.1253

2 223.40 111.70

5 95.82 4791
10 31.9467 15.9733

20 8.7183 4.3591

X 30 3.9417 1.9708
40 2.2307 1.1153

50 1.4317 0.7158

100 0.3592 0.1796

2 208.43 104.21

5 50.96 25.48

10 13.7924 6.8962

20 3.5208 1.7604

© 30 1.5709 0.7854
40 0.8848 0.4424

50 0.5666 0.2833

100 0.1417 0.0708
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2.4 Bending analysis:

2.4.1 Comparing results:

In this study, we have assumed that the plate is simply supported. To ensure the accuracy
of our results, we have compiled the data in Table 16 for comparison purposes. In our

calculation code, we have utilized the following dimensionless expressions.

_, . _10E,h (a b h)
W) =2 \2 022
b
2

B 10h? (a b h

7@ = 2w (57)

~ 10h? h

O'xy(Z) = aZ—qOO'xy (O ,0,— E) (4-2)
B 10h? b

G () = 02, (0,2,0)

Where Eo=1GPa

In this section, the response to the bending of an FGM plate is obtained under the action
of a sinusoidal distribution of the transverse load. Table 16 contains the bending results obtained

thanks to the higher-order shear deformation theory for a square FGM plate.

Table 16 shows the dimensionless central deflection w and the dimensionless stresses
of three types of plates squares simply supported and subjected to a sinusoidal transverse load

qo. The data are the same as those of the references used for the comparison.

The results of the present formulation are compared with those of the quasi-3D theory
reported by Ghandourah et al [40] where the transverse strain is null. Three types of
distributions of graphene nanoplatelets through the thickness are considered, referred to in the
literature by UD, FG-O and FG-X. Based on the good results obtained with a low relative error,
it is evident that the method being used has a significant impact on the GPL-O distribution. The
slight increase in the transverse shear stress can be attributed to the implications of the plate
theory being utilized. It can be concluded that the analysis, based on a higher-order shear
deformation theory and an analytical method of solving, is well-suited for deformation
problems in moderately thick FGM plates reinforced by GPLs and simply supported. We
observe that the central deflection of the FG-O GPLRC plate is larger than the deflection of the
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UD-GPLRC and FG-X GPLRC plate because the latter make the plate stiffer, which leads us
to higher values of the dimensionless axial stress dy, and the dimensionless shear stress dy,, for
the UD-GPLRC and FG-X GPLRC plate where the table results make a good agreement with
it. But for the dimensionless transverse shear stress d,,, the FG-O GPLRC plate shows stiffer

pattern than FG-X GPLRC and UD-GPLRC plate.

Table 16: Validation of dimensionless central deflection and stresses of FG-GPLRC square
plate with a/h=10 and Agpl=1%.

Pattern Reference w O yx Oxy Oy
Present (HSDT) 8.8950 2.0558 1.0165 0.2504
Ghandourah et al 8.8943 2.0554 1.0163 0.2463
GPL-UD
[40]
|Error (%)| 0.007 0.019 0.019 1.66
Present (HSDT) 8.5983 2.1303 1.0575 0.2378
GPL- X Ghand;g]ah etal 8.6554 2.0951 1.0387 0.2390
|Error (%)| 0.65 1.68 1.80 0.5
Present (HSDT) 9.2115 1.9772 0.9738 0.2626
GPL- O Ghandagjih et al 9.1463 2.0136 0.9931 0.2535
|Error (%)| 0.71 1.80 1.94 3.58
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Figure 45: Variation of Dimensionless deflection through the plate thickness for
different patterns.
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Figure 46: Variation of Dimensionless axial stress through the plate thickness for
different patterns.
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Figure 47: Variation of Dimensionless transverse shear stress through the plate
thickness for different patterns.
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Figure 48: Variation of Dimensionless shear stress through the plate thickness for
different patterns.
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The figures illustrate the variations of different dimensionless parameters. It is observed
that the X pattern represents higher values near the two surfaces of the plate, while the O pattern
represents higher values near the mid-plane. The UD pattern consistently describes the average
values. Additionally, the figures simulate the parabolic variation of the transverse shear stress

as mentioned in the literature.

2.4.2 Parametric study:

In this section, we investigate the impact of the Agpl mass fraction and the plate
geometry (variations in the a/h ratio) on the bending behavior of a simply supported functionally
graded reinforced graphene nanoplatelets composite plate under a sinusoidal transverse load.
We will present several figures depicting the variation of transverse central displacement and
plate stresses for a square plate with different values of the a/h ratio (10, 20, 30, 40, 50, 60, 80,
100), as well as for three distribution patterns (UD, FG-X, FG-O) and three increasing values
of Agpl mass fraction (0.01, 0.015, 0.02). This analysis aims to assess how these factors

influence the bending characteristics of the composite plate.

The dimensionless central deflection (Figures 49-50-51) increases as the a/h ratio
increases. This is because the plate becomes slenderer and hence more flexible. It is also noted
that the dimensionless deflection increases slowly when the ratio values are between 10 and 40,
but after passing 40, the deflection increases rapidly. The effect of mass fraction on the
deflection is clearly notable in the figures for the different distribution patterns. As the mass
fraction increases, the deflection decreases, indicating that the FG-GPLRC plate becomes
stiffer. Overall, the FG-X pattern shows a stiffer pattern than FG-O and UD patterns, with lower
values of dimensionless deflection for the three values of mass fraction. The FG-O pattern

shows a less stiff pattern, with the highest values of dimensionless deflection.

The dimensionless longitudinal stress (illustrated in Figures 52 to 56) decreases as the
a/h ratio increases. This is because the plate becomes thinner and less rigid. The axial stress
decreases rapidly when the ratio values are between 10 and 20, and then the rate of decrease
becomes lower after surpassing 20. When mass fraction values are added for the UD and FG-
O patterns, the longitudinal stress remains lower. Conversely, in the FG-X patterns, higher mass
fractions result in higher axial stress. Notably, the FG-O pattern consistently shows lower values

of dimensionless longitudinal stress compared to other distributions.

The dimensionless transverse shear stress (Figures 57 to 63) reveals that the UD pattern

maintains a consistent value across all mass fraction quantities, whereas the other distribution
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patterns show consistent variation but with different magnitudes for each mass fraction. The
transverse shear stress increases rapidly from 10 to 20, then stabilizes as the plate becomes
thinner, indicating increased flexibility. However, this variation is not consistent across different
GPL concentrations. In the FG-X distribution, a higher mass fraction results in lower transverse
shear stress, while in the FG-O pattern, a higher (Agpl) concentration leads to higher shear
stress compared to the FG-X and UD patterns. Notably, the FG-O pattern shows the highest
values of dimensionless shear stress among the three patterns, while the FG-X pattern exhibits

the lowest.

The dimensionless shear stress decreases for all distribution types as the (a/h) ratio
increases, due to the effect of the slenderness of the plate. Reinforcement, or the increase in
(Agpl), raises the shear stress values in the UD and FG-X patterns, whereas in the FG-O
distribution, it results in lower shear stress values for the highest mass fraction. The
dimensionless shear stress variation exhibits a similar graphic shape across the different
patterns. Overall, the FG-O pattern has the highest values of dimensionless shear stress,

followed by the UD pattern and then the FG-X pattern.
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Figure 49: Variation of the central dimensionless deflection according to the a/h ratio of
a square plate with different values of Agpl for UD pattern.
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Figure 50: Variation of the central dimensionless deflection according to the a/h ratio of
a square plate with different values of Agpl for X pattern.
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Figure 51: Variation of the central dimensionless deflection according to the a/h ratio of
a square plate with different values of Agpl for O pattern.
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Figure 52: Variation of dimensionless longitudinal stress according to the a/h ratio of a
square plate with different values of Agpl for UD pattern.
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Figure 53: Variation of dimensionless longitudinal stress according to the a/h ratio of a
square plate with different values of Agpl for X pattern.
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Figure 54: Variation of dimensionless longitudinal stress according to the a/h ratio of
a square plate for O pattern Agpl=0.01.
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Figure 55: Variation of dimensionless longitudinal stress according to the a/h ratio of
a square plate for O pattern Agpl=0.015.
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Figure 56: Variation of dimensionless longitudinal stress according to the a/h ratio of
a square plate for O pattern Agpl=0.02.
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Figure 57: Variation of dimensionless transverse shear stress according to the a/h ratio
of a square plate with different values of Agpl for UD pattern.
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Figure 58: Variation of dimensionless transverse shear stress according to the a/h ratio
of a square plate for X pattern Agpl=0.01.
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Figure 59: Variation of dimensionless transverse shear stress according to the a/h ratio
of a square plate for X pattern Agpl=0.015.
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Figure 60: Variation of dimensionless transverse shear stress according to the a/h ratio
of a square plate for X pattern Agpl=0.02.
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Figure 62: Variation of dimensionless transverse shear stress according to the a/h
ratio of a square plate for O pattern Agpl=0.015.
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Figure 64: Variation of dimensionless shear stress according to the a/h ratio of a square

plate with different values of Agpl for UD pattern.
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Figure 65: Variation of dimensionless shear stress according to the a/h ratio of a square
plate with different values of Agpl for X pattern.
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Figure 66: Variation of dimensionless shear stress according to the a/h ratio of a
square plate for O pattern Agpl=0.01.
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Figure 67: Variation of dimensionless shear stress according to the a/h ratio of a
square plate for O pattern Agpl=0.015.
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Figure 68: Variation of dimensionless shear stress according to the a/h ratio of a
square plate for O pattern Agpl=0.02.
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2.5 Flowchart of the principal coding steps:

Python programming language is used to solve the bending and buckling motion
equations of a simply supported FG-GPLRC plate using the Navier method. The main steps

involved in this process are summarized in the flowchart

( Start )

¥

Input:
geometry and materials data

!

— > Loop over calculation parameter

!

Calculate the effective properties of
GPls-reinforced FGM

v

Calculate elastic coefficients

v

Initialize problem matrices

\
A

Compute matrices elements

\
v

Solve the matrix system

A,

Calculate dimensionless quantities

No l

/ Qutput:
Loop end? ¥ / print/graph results

]

Figure 69: Python code flowchart.
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3. Conclusion:

In this chapter, we focused on studying the bending and buckling behavior of different
types of FG-GPLRC plates (Functionally Graded Graphene nano-Platelets reinforced
composite) using the analytical method of Naiver. We estimated the mechanical properties
based on the z position through the thickness using the extended mixing rule. Our approach
involved using the higher-order shear deformation theory to approximate the two-dimensional
displacement field. We validated our Python calculation code by comparing our results with
published data and found good agreement. It's worth noting that our calculation code requires
a smaller calculation volume compared to other methods such as the theory of 3D elasticity, the
DQM method, or the finite element method. However, it's important to mention that our

analytical method is only valid for simple supported plates.

We also highlighted the promising potential of GPLs in the industry as they serve as
excellent candidates for reinforcing polymer composites and controlling buckling critical loads,
displacements, and stresses. Their superior mechanical properties, including high strength and

rigidity, make them advantageous for various applications.
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GENERAL CONCLUSION:

The development of composite materials has brought about significant advantages, but it
has also introduced challenges related to discontinuity of material properties at the interfaces.
These discontinuities can lead to stress concentrations and interface problems, particularly in
high temperature environments. Furthermore, the large plastic deformation of the interface can
initiate and propagate cracks, ultimately leading to failure of the composite. To address these

issues, Functionally Graded Materials (FGMs) have emerged as a promising solution.

FGMs are advanced composites with varying composition, microstructure, and properties,
typically in the thickness direction. They offer a wide range of practical applications and
represent a rapidly evolving field in science and engineering. However, the design and
development of FGMs require specialized analysis tools tailored to their geometric and material

specificities.

In this thesis, the focus is on studying the bending behaviors and buckling of an FGM
plate reinforced by graphene nano-platelets. The analysis is based on the hyperbolic higher
order shear deformation theory, with the assumption that the properties of the materials vary
through the thickness. The plate is modeled as a multilayer plate, and the equations of motion
for a simply supported plate are established using Hamilton's principle, which is based on the

strain energy and the work of external loads.

The solution of the coupled differential equations is obtained using the analytical method
of Navier to determine the stresses, displacements, and the critical load of buckling. A
parametric study has been conducted to obtain numerous numerical results, which are presented
in graphical form for better interpretation. These results have led to several important

conclusions.

Overall, the study underscores the potential benefits of FGMs and highlights the need for
continued research and development in this area. By addressing the challenges associated with
conventional composite materials, FGMs offer the promise of enhanced performance and

expanded application possibilities. Thanks to these results, several conclusions can be drawn:

Page | 103



The reinforcement of composite plates with graphene nanoplatelets significantly
affects deflection, stresses, and critical buckling loads.

The impact of the volume fraction of graphene nanoplatelets on the displacements
and stresses of moderately thick plates is more pronounced.

We also observe general trends regarding the influence of the geometry of the FGM
plate on its static behavior. Specifically, as the plate becomes relatively thinner
(length-to-thickness ratio or width-to-thickness ratio), the deflection (w) increases.
Additionally, as the (a/h) ratio (from moderately thick plate to thin plate) increases,
the values of longitudinal and shear stresses decrease, whereas transverse shear
stresses increase.

The stresses and displacements of the plate are strongly influenced by the volume
fraction of graphene nanoplatelets used as reinforcement. Indeed, as the volume
fraction increases, the plate becomes more rigid and its deformation decreases. This
observation holds true for moderately thick, thin, and even thick plates. However,
the most influential parameter is the concentration of GPLs far from the mid-plane
(surface-rich). Therefore, the distribution law of the volume fraction affects the
stresses and the critical buckling load regardless of the plate's geometry. This effect
diminishes as the plate becomes much thinner, where the concentration of GPLs

near the upper and lower surfaces has a reduced impact.

Perspectives:

e Incorporating the Effect of Temperature: A valuable future direction would be to
extend the study by considering the influence of temperature on the bending and
stability of FGM plates reinforced with graphene nanoparticles. This approach
would account for thermal expansion and variations in mechanical properties

with temperature.

Evaluating other Nanomaterials: Beyond graphene nanoparticles, it would be
beneficial to evaluate other types of nanomaterials as reinforcements for FGM
plates. This perspective would allow for a comparison of the effects of different

nanomaterials, such as carbon nanotubes, nanofibers, and metal nanoparticles, on
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the static and stability responses of the plates, aiming for optimal reinforcement
design for specific applications.

Exploring Different Boundary Conditions: Investigating the effect of various
boundary conditions (clamped, free, simply supported, and their combinations) on
the critical buckling load, stresses, and displacements for different types of

GPLRC plates and beams.

Examining Initial Defects: Studying the impact of initial defects (such as porosities

and deformed surfaces) on the performance of the plates.
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