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Abstract

This thesis presents the simulation and analysis of attitude determination and

control for a CubeSat using reaction wheels. CubeSats, small standardized satellites,

are increasingly popular for space missions due to their cost-e�ectiveness and versatility.

Precise attitude control is essential for mission success, enabling accurate orientation

for tasks such as imaging, communication, and scienti�c experiments.

Our study focuses on developing a comprehensive simulation model that integrates

attitude determination algorithms and reaction wheel-based control mechanisms. The

simulation environment, created using MATLAB, includes detailed modeling of the

CubeSat's dynamics, environmental disturbances, and sensor noise. Key elements of

the control system , the proportional-integral-derivative (PID) controller, are imple-

mented to achieve desired orientation stability and accuracy.

Résumé

Cette thèse présente la simulation et l'analyse de la détermination et du contrôle

d'attitude d'un CubeSat utilisant des roues de réaction. Les CubeSats, petits satellites

standardisés, sont de plus en plus populaires pour les missions spatiales en raison de

leur rentabilité et de leur polyvalence. Un contrôle précis de l'attitude est essentiel

au succès de la mission, permettant une orientation précise pour des tâches telles que

l'imagerie, la communication et les expériences scienti�ques.

Notre étude se concentre sur le développement d'un modèle de simulation complet

intégrant des algorithmes de détermination d'attitude et des mécanismes de contrôle

basés sur des roues de réaction. L'environnement de simulation, créé à l'aide de MAT-

LAB, comprend une modélisation détaillée de la dynamique du CubeSat, des pertur-

bations environnementales et du bruit des capteurs. Les éléments clés du système de
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contrôle, le contrôleur proportionnel-intégral-dérivé (PID), sont mis en ÷uvre pour

obtenir la stabilité et la précision d'orientation souhaitées.
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Introduction

This report represents aerospace mechanics and controls for CubeSats. A Cube-

SAT is a small satellite on the order of 10 centimeters along each axis. A 1U satellite

is a small cube with 10 cm sides. These satellites are used for a variety of missions

and created by a variety of di�erent organizations. When deployed from a rocket,

a CubeSAT may obtain a large angular velocity which must be reduced before most

science missions or communications can take place. Maximizing solar energy charging

also involves better pointing accuracy. To control the attitude of these small satellites,

reaction wheels, magnetorquers and even the gravity gradient are used in low earth

orbit (LEO) while reaction control thrusters are typically used in deep space. On a

standard LEO CubeSAT, 3 reaction wheels are used as well as 3 magnetorquers. In

the initial phase of the CubeSAT mission, the magnetorquers are used to reduce the

angular velocity of the satellite down to a manageable level. Once the norm of the

angular velocity is low enough, the reaction wheels can spin up reducing the angular

velocity to zero. At this point a Sun �nding algorithm is employed to �nd the Sun

and fully charge the batteries. In LEO two independent vectors are obtained, the Sun

vector and the magnetic �eld vector, to determine the current attitude of the vehicle

which is typically called attitude determination. Other sensors such as horizon sensors,

star trackers and even lunar sensors can be used to obtain the quaternion of the vehi-

cle. This paper investigates the necessary mathematics to understand the intricacies

of guidance, navigation and control speci�cally discussing the attitude determination

and controls subsystem (ADACS).

xv



Chapter 1

History and Comprehensive Overview

of CubeSats and ADACS

Background

Orbital spacecraft have attracted signi�cant global attention since before the

launch of the �rst purpose-built satellite, Sputnik I, in 1957. The desire to deploy

orbital craft for both manned and unmanned missions has been steadily growing since

then. Initially focused on achieving reliable orbital �ight, the industry has now shifted

towards utilizing space for logistics, navigation, and communications, necessitating

continuous advancements in spacecraft technology. Alongside the miniaturization of

electronic components, the past two decades have witnessed a rise in the number of

smaller spacecraft launches, particularly those following the CubeSat standard. While

the CubeSat standard has gained popularity, the increase in commercial suppliers of

CubeSat components has driven costs down for programs, albeit requiring additional

e�ort to assess the performance and suitability of these new components. Among these

new components, the demand for dependable and precise Attitude Determination and

Control Systems (ADACS) to manage spacecraft orientation has emerged as a key focus

for evaluation.
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History and Comprehensive Overview of CubeSats and ADACS

1.1 History of CubeSats

With the rise of space travel, exploration, and technology accessibility to the

general public, the opportunities for advancements in Space and from Space are ex-

panding. The utilization of Space-based Worldwide internet can provide connectivity

to populations worldwide, especially in areas where terrestrial systems are too costly.

Space-based communications can facilitate seamless scheduling from ships to harbors,

eliminating the need for repeaters and streamlining logistics. Additionally, Space-based

infra-red (IR) cameras can detect wild�re hotspots in challenging terrains, improving

the e�ciency and safety of wildland �re�ghters. As the demand for robust Space

platforms grows, new and innovative missions are on the horizon. To meet the in-

creasing complexity of mission requirements, advancements in subsystem components

and new space platform architectures are essential. The emergence of CubeSat stan-

dards o�ers a promising solution for realizing complex missions through existing Cube-

Sat architectures.The inception of the CubeSat standard can be traced back to 1999

when professors Jordi Puig-Suari from California Polytechnic State University and Bob

Twiggs from Stanford University proposed itto satisfy the requirements for usage in the

Poly-Picosatellite Orbital Deployer (P-POD)[1]. Their aim was to provide university

students with the opportunity to create, construct, test, and operate uncomplicated

spacecraft. In 2003, the �rst CubeSat was launched, followed by the inaugural NASA

CubeSat, GeneSat-1, in 2006. The triumph of GeneSat-1 played a crucial role in the

growing popularity of CubeSats. Initially, until 2013, CubeSats were primarily as-

sociated with academic and university projects. However, after 2013, the majority

of CubeSats launched were intended for amateur or commercial purposes. In 2012,

only 72 CubeSats were in orbit, but by January 2019, over 900 had been successfully

deployed , as of 2024 May 31 2396 cubesats have been launched in space [2]. The

utilization of these satellites continues to expand with each passing year[3].

2



History and Comprehensive Overview of CubeSats and ADACS

1.2 De�ning CubeSats

cubesats are generally considered small satellites, but they are often categorized

di�erently as shown in Table 1.1 by mass[4].

Nanosatellite <10kg

Microsatellite 10-100kg

Minisatellite 100-500kg

Small Satellite 500-1000kg

Large Satellite >1000kg

Table 1.1: First satellite classi�cation

Mass is used as a simpli�ed measurement for classi�cation, providing a reference to the

size of the spacecraft being developed. The main objective of standardization is the

structure of the CubeSat. A single CubeSat unit, or "U," is a 10cm x 10cm x 10cm

cube weighing approximately 1 to 1.5 kg. By combining multiple "U's," standardized

con�gurations can be e�ectively built. The most popular con�gurations currently in

use are the 1U, 3U, and 6U form factors and these are shown in �gure 1.1. These

con�gurations have gained popularity due to the availability of standardized CubeSat

deployment systems. Examples of such systems include the P-POD and Planetary

Systems Corporation's Canisterized Satellite Deployer. By transferring the responsi-

bility of developing the dispensing method and mechanism to another entity with �ight

heritage, the spacecraft development team can focus on satellite development while ad-

hering to the standardized dispenser con�guration.

The standardization of CubeSat structure was initially established in 1999, and

the CubeSat Design Speci�cation is currently on revision 13[5]. As a result, multiple

commercial entities have started developing standardized components speci�cally for

CubeSats. By adhering to these standards, development e�orts and rework ine�cien-

cies can be reduced, leading to cost savings that can be passed on to satellite developers.

Lower costs also lower the barrier for entry into space, allowing a greater number of

organizations to develop space missions using CubeSats as the base platform.

3
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Figure 1.1: Standard 1U, 3U, and 6U CubeSat Con�gurations

1.3 Attitude Determination and Control System

Quantitative measurements are essential for attitude determination and control.

To achieve accurate synchronization, it is crucial to establish a common frame of refer-

ence. When describing spacecraft attitude, six variables are used to represent the six

degrees of freedom. Three variables de�ne the spacecraft's position within the orbit

relative to an external origin or �xed frame. For these measurements, the approximate

center of the Earth is typically chosen as the reference point. The Z axis aligns with

the true North Pole, the X axis intersects the Equator and the Prime Meridian, and

the Y axis is orthogonal to both the Z and X axes. The positive direction of the Y

axis follows the right-hand rule for the cross product of the Z and X components, as

depicted in Figure 1.2.

Figure 1.2: Earth Centered, Earth Fixed coordinate system

This reference frame, known as Earth-Centered, Earth Fixed (ECEF), originates
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from the approximate Earth's core. The three variables in the ECEF frame are mea-

sured in terms of latitude, longitude, and distance from the origin at the Earth's core.

It is important to note that the rotation of the ECEF frame is referenced to the ce-

lestial �eld, not the sun. Therefore, when making future calculations, time should be

measured in sidereal time rather than solar time [6].

The three remaining parameters de�ne the spacecraft's designated body frame. This

frame is established during the chassis production, typically connected to a physical

component of the chassis, and serves as the reference point for the onboard subsystems

to determine their positioning. For instance, the solar panels are known to be attached

to the -Y face, and aligning this face with the Sun pointing vector ensures optimal

charging. By applying a coordinate transformation from the body frame, the orienta-

tion can be converted into the ECEF coordinate system for ground station relevance.

These parameters, known as Roll, Pitch, and Yaw (RPY), collectively describe the

spacecraft's attitude through rotations around the three primary axes. Roll represents

the rotation around the X axis, Pitch around the Y axis, and Yaw around the Z axis

as shown in �gure 1.3.

Figure 1.3: Primary axis Roll, Pitch, and Yaw

Additional transformations can be applied to the initial coordinate frames for spe-

ci�c purposes, such as ground station pointing. In this case, a North, East, Down

(NED) system can be established as shown in �gure 1.4, which is measured from any

point on Earth.

5



History and Comprehensive Overview of CubeSats and ADACS

Figure 1.4: NED coordinate system overlaid on ECEF

This system utilizes Earth's magnetic �eld to align North with polar North, East

with polar East, and Down with a direct pointing towards Earth's center. Once the

reference frames are agreed upon, the latitude, longitude, and altitude with respect

to the Earth-Centered, Earth-Fixed (ECEF) frame, along with the spacecraft's body

frame yaw, pitch, and roll, can be transformed into the Earth-Centered, Earth-Fixed,

Earth-Fixed (ECFEF) frame. This transformation allows for the discussion of Attitude

Determination and Control System (ADACS) performance. ADACS has two primary

functions: determining the spacecraft's attitude with respect to a speci�ed frame and

controlling the spacecraft's attitude or pointing. Both functions are crucial, but the

determination of attitude from ADACS is a necessary input for the control function.

1.3.1 Attitude Determination

The trend towards expanded on-orbit operations , necessitates systems and sub-

systems like ADACS to advance into more intricate con�gurations of hardware and

software to remain relevant. The emphasis on on-orbit maneuverability in CubeSats

demands precise knowledge of spacecraft orientation in space, leading to continuous

advancements in the determination aspect of ADACS. Attitude determination involves

mathematically describing the spacecraft's orientation in relation to a speci�ed ref-

erence frame, often linked with attitude estimation, which predicts the spacecraft's

attitude at a speci�c time step. While determination and estimation o�er similar data
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to users, the derivation methods di�er signi�cantly in terms of error, computational

complexity, and speed.

1.3.2 Attitude Determination Sensors

The precision of a spacecraft's attitude solution is in�uenced by both the e�ective-

ness of the determination algorithm and the precision of the sensors that provide mea-

surement data. As determination algorithms advanced in capability and complexity,

the capacity to incorporate more data through additional sensor inputs also improved.

The option to include more sensors led to advancements in sensor development. The

proliferation and miniaturization of onboard computing enabled the creation of smaller

and more intricate attitude sensors. When combined with the more robust algorithms,

these advancements allow the ADACS to enhance the accuracy of the determination

solution. This section provides a summary of the most frequently used ADACS deter-

mination sensors.

Sun Sensor

commonly have Sun Sensors, which are primarily Coarse Sun Sensors (CSS). CSS

are essentially photoelectric cells that convert photon energy into electrical current.

This current is then measured and converted into a digital signal. The digital signal

corresponds to the location of the sensor on the spacecraft frame and indicates the

intensity of the incoming light on that plane. By using multiple CSS on di�erent

planes along the positive and negative X, Y, and Z axes, it is possible to determine the

3-dimensional sun pointing vector, which can then be utilized by the ADACS system.

Figure 1.5: Solar-Cell type Coarse Sun Sensor, top and bottom view
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Magnetometer

Spacecraft magnetometers are instruments used to detect magnetic �elds. They

consist of wound coils that detect changes in current caused by variations in the mag-

netic �eld. Magnetometers o�er two types of data to an ADACS. The �rst type is a

general measurement of the magnetic �eld in relation to the magnetometer's frame of

reference. This, combined with the known values of Earth's magnetic �eld and any

magnetic �elds associated with the spacecraft, can determine a pointing vector. Addi-

tionally, by measuring changes in the �eld's value and rate of change, the ADACS can

determine the spacecraft's degree and rate of rotation. While multiple axis magnetome-

ters are available, simpler ADACS systems utilize single unidirectional magnetometers

on each primary axis.

Figure 1.6: Magnetometer Board

Gyroscopes

Gyroscopes on spacecraft are widely used and e�cient sensors for calculating the

spacecraft's angular rate of change. These gyroscopes can be based on physical spinning

plates or optical sensing systems, and can have either a single axis or multiple axes.

Regardless of the type, the change in velocity of the spinning mass or the time taken

for a photon to travel a known path is measured over time to determine the spacecraft's

rate of change in rotation. By having a single axis gyroscope on each primary axis, the

overall rotation rate of the spacecraft can be accurately calculated.
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Figure 1.7: sensor Tech CMG-20m Control Moment Gyroscope

Star Trackers

Star trackers, also known as star cameras, are optical sensors that o�er both the

rate of change and a directional pointing vector to the ADACS. Recent technological

advancements have allowed star trackers to utilize pre-loaded a-priori star �elds for

their current operations. These sensors collect imaging data from the celestial �eld

onto an imaging plane and calculate the pointing vector using a comparative algorithm

based on the known star �eld. As rotational sensors, star trackers can determine the

rotation rate of their body frame around the observed star �eld pattern after the initial

capture. They are typically the most accurate input sensors for the ADACS. While

there are other sensors like Earth Horizon Sensors (EHS) and Fine Sun Sensors (FSS)

available to spacecraft developers, star trackers are often preferred for their ease of

use and capabilities. It is crucial to ensure the precise orientation of the sensor for an

accurate determination solution, as any deviation from the prescribed axis can lead to

errors in the attitude solution.

Figure 1.8: ST200 - CubeSat Star Tracker
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1.3.3 Attitude control

The Control Function is the second primary function of the Attitude Determi-

nation and Control System (ADACS). Control refers to the ability to maneuver or

re-orient the spacecraft to a speci�c location within a designated reference frame. In

the case of a CubeSat-level ADACS, maneuvering may not be necessary, but orientation

remains important. To fully orient a spacecraft, certain variables must be known to

satisfy force or torque equations. The ADACS determination function requires knowl-

edge of the spacecraft's current attitude and rates of rotation. The spacecraft's mass,

Center of Gravity (COG), and Moment of Inertia (MOI) are typically stored values in

the �ight software, which can be updated as fuel is depleted. These values are neces-

sary for calculating control forces around the spacecraft's body frame. Additionally, a

frame of reference is required when commanding the target attitude and may need to be

transformed for coordinate purposes. Controlling the spacecraft's attitude can become

complex due to potential errors and coordinate transforms between components. Each

sensor and control component has its own reference frame, and variations in mounting

locations and orientations within the ADACS unit or chassis need to be mapped to

a known frame of reference. Perturbations in space, such as 3rd body gravitational

pull, atmospheric drag in Low Earth Orbits (LEO) as shown in �gure 1.9 from [7] ,

magnetic deviations caused by Earth's precession, solar wind, and others, introduce

additional errors. Even small deviations in pointing accuracy, when compounded over

long distances in space missions, can result in signi�cant deviations in physical dis-

tance. Therefore, the development of precise and accurate components for spacecraft

control is crucial.

Figure 1.9: Satellite Drag
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1.3.4 Attitude Control Components

The control function computes the force or torque value necessary to adjust the

spacecraft's orientation. This value depends on the physical properties allowed by the

control mechanisms, such as weight and maximum rotation rate of reaction wheels.

The mechanism's location within the frame and its relation to the MOI are crucial

for moment arms and torque applications. Additionally, the physical pointing of the

mechanism, as in the case of thrusters, is also taken into account. These dependencies

collectively impact the Force or Torque value needed to change the spacecraft's attitude,

highlighting the importance of e�ciencies. Although not covered in this study, the

optimization of spacecraft control is a growing �eld that contributes to the continuous

improvement of ADACS performance. Current optimization methods being explored

include extensive research on machine learning[8] and the application of stochastic

optimization algorithms to control issues . Reaction wheels and magnetorquers are

common control components found in commercially available ADACS. While thrusters

are typically used in larger spacecraft for attitude adjustments and station keeping,

they are now being adopted in CubeSats, although the limited fuel capacity onboard

makes them less ideal for attitude control.

Reaction Wheels

Reaction wheels operate when electrical motors rotate a weighted wheel within

the spacecraft chassis creating a stored momentum value. When a brake is applied to

the wheel the momentum is transferred into the body of the spacecraft thus imparting

a torque to rotate the spacecraft. Common practice is to align a single reaction wheel

on each of the three primary axes thereby allowing for control in all three planes of

motion. Alternatively, if the spacecraft is rotating and needs to be slowed the wheel

can be commanded to spin in the opposite direction, and when the braking action is

applied the torque from the spacecraft body is negated by the opposing torque from the

reaction wheel slowing the rate of rotation of the spacecraft. The variation of the rate

of rotation of the reaction wheel up to a maximum value can be in�nitely controllable,

and as such the level of applied torques from the wheels to the spacecraft can be �nely

tuned. A weakness of reaction wheels is that they have an upper limit of rotation

rate and can become saturated requiring additional control componentry to support
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momentum shedding or dumping maneuvers.

Figure 1.10: reaction wheel for cubesat

Magnetorquers

Also known as magnetic torque rods, function based on the concept of magnetic

dipole moments. The control process begins by passing an electric current through a

magnetic coil that is attached to the spacecraft, thereby generating a magnetic �eld

within the spacecraft. When this magnetic �eld interacts with the Earth's ambient

magnetic �eld, it creates a force that acts upon the center of gravity of the spacecraft,

providing the necessary torque for rotation. Similar to reaction wheels, magnetorquers

are installed along each primary axis, enabling control of the spacecraft's motion in

three planes. The strength of the generated magnetic �eld can be adjusted by varying

the current applied to the coils, allowing for the tuning of torque to the desired levels.

By reversing the current �ow through the coils, the dipole of the generated �eld can

be reversed, resulting in torques in both positive and negative directions along the

speci�ed axis. Although magnetorquers consume very little power, they may require a

signi�cant amount of time to exert a substantial torque on the spacecraft.
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Figure 1.11: ISIS-iMTQ-3-axis-magnetorquer

1.4 CubeSat Dynamics and its process of control

The control of a CubeSat's dynamic motion involves managing both translational

and rotational aspects. Translational motion, which is akin to orbital motion, treats

the satellite as a point mass and requires determining its orbital position through

ground observation or on-board instruments. Orbital mechanics are used to propagate

the satellite's orbital motion, with perturbation e�ects considered for accurate orbit

prediction. Parameters like altitude and inclination are adjusted through orbital ma-

neuvers using thrusters if necessary. On the other hand, rotational motion, or attitude

motion, deals with the satellite's attitude around its center of mass separately from

orbital motion. Attitude determination is done using on-board sensor instruments,

while control is achieved through generating attitude control torques with on-board

actuator instruments. The satellite's attitude is maintained in relation to a reference

target attitude and/or rotational rate. The process of controlling spacecraft motion

involves three main steps:

• Navigation which is Determining the current position and velocity of the satellite in

its orbit, as well as the attitude and rotational rate of the satellite.

• Guidance which is Calculating the desired position and velocity of the target in orbit,

along with the target's attitude and rotational rate, to achieve speci�c objectives.

• control which is Making adjustments to the satellite's position and velocity in orbit,
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as well as its attitude and rotational rate, using actuators to maintain certain

�xed values.

These steps, known as GNC (Guidance, Navigation, and Control), are carried out

continuously and repeatedly. The accuracy of attitude control is dependent on the

precision of each of these individual steps[9].

Figure 1.12: GNC (Guidance, Navigation, and Control)
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Chapter 2

Advanced Dynamics and Control of

Aerospace Systems

2.1 Dynamics for Systems of Particles

Newton's Second Law states that

N∑
j=0

Fji =
dpj
dt

(2.1)

where pj is the momentum of a particle,

Fji is a force on the particle.

Similar dynamic forumlations can be found in [10] , [11] , [12] , [13].

2.1.1 Rotational and Translational Dynamics for Systems of

Particles

A system of particles rigidly connected can rotate about a center point. The center of

mass of a system of particles can be de�ned using the relationship below:

rC =
1

m

P∑
j=0

mjrj (2.2)

where

15



Advanced Dynamics and Control of Aerospace Systems

m =
P∑
j=0

mj

To create rotational dynamics starting with the linear dynamics we use the equation

below

MC =
P∑
j=0

S(rCj)
dpj
dt

(2.3)

P is the number of particles S(rCj) is the skew symmetric matrix of the vector

from the center of mass to the jth particle which results in a cross product. The skew

symmetric operator is denoted by S().

S(rCj) =


0 −zCj yCj

zCj 0 −xCj
−yCj xCj 0

 (2.4)

2.1.2 Rigid Bodies

many assumptions are made about the system of particles (Rigid Bodies).

1. The mass of each particle or rigid body is constant.

2. An inertial frame is placed at the center of the Earth that does not rotate with

the Earth.

3. The rigid body is not �exible and does not change shape. That is, the time rate

of change of the magnitude of a vector rPQ is zero for any arbitrary points P and Q

attached to the rigid body.

2.1.3 Translational Dynamics

For the Translational Dynamics, the momentum can be simpli�ed to

P∑
j=0

pj = mvCI (2.5)

The derivation of the equation 2.5 starts by deriving the position of the center of

mass as the following equation.

rj = rC + rCj (2.6)
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Taking one derivative results in the following equation

vjI = vCI +
BdrCj
dt

+ S(ωBI)rCj (2.7)

Since the body is a rigid body the term
BdrCj

dt
= 0

resulting in

vjI = vCI + S(ωBI)rCj (2.8)

This equation can then be substituted into the equation for momentum such that.

P∑
j=0

pj =
P∑
j=0

mj (vCI + S(ωBI)rCj) (2.9)

from the above equation we deduce the so called Newton-Euler equations of motion.

FC = m

(
BdvCI
dt

+ S(ωBI)vCI

)
(2.10)

In Rotational Dynamics, a rigid body has

MC =
d

dt

P∑
j=0

S(rCj)mjvjI (2.11)

Then the equation of two points �xed on a rigid body can be introduced to obtain

the following equation

MC =
d

dt

P∑
j=0

S(rCj)mj(vCI + S(ωBI)rCj) (2.12)

simplify this equation further yields

MC =
d

dt

(
P∑
j=0

mjS(rCj)S(rCj)
TωBI

)
(2.13)

The term in brackets is a well known value for rigid bodies and is known as the

moment of inertia for rigid bodies.

IC =
P∑
j=0

mjS(rCj)S(rCj)
T (2.14)

This results in the kinematic equations of motion for rigid bodies to the simple
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equation below.

MC =
d

dt
(ICωBI) (2.15)

With the equation in this form it is possible to carry out the derivation to get

MC =
Bd(ICωBI)

dt
+ S(ωBI)ICωBI v̇ (2.16)

the equation can simply be written as

MC = İωBI + IC
BdωBI
dt

+ S(ωBI)ICωBI (2.17)

2.1.4 Inertia Estimation

There are several equations that can be used to compute the moment of inertia

depending on the geometry of the vehicle. For this example we will look at a cuboid to

demonstrate inertia calculations. Firstly, the total mass mandsize(lengthl, widthw, andheighth)

are required.

Ix =
m
12
(l2 + w2)

Ix =
m
12
(l2 + w2)

Ix =
m
12
(l2 + w2)

(2.18)

2.1.5 Aerospace Convention

using the Newton-Euler equations of motion to describe the vehicle, typically the

position of the vehicle is written as

CI(rC) =


x

y

z

 (2.19)

The derivative of the position vector is the velocity vector is then written as

CI(vCI) =


ẋ

ẏ

ż

 (2.20)
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In order to relate the body frame components of the velocity vector to the inertial

frame coordinates, a transformation matrix is used to give the following equation.


ẋ

ẏ

ż

 = TIB


u

v

w

 (2.21)

Standard aircraft/spacecraft forces and moments are applied to the body. The

forces are typically written as X,Y and Z while the moments are given as L,M and N.

They can be written in component form using the equations below. [1, 2, 3, 4].

CB(FC) =


X

Y

Z

 = XÎB + Y ĴB + ZK̂B (2.22)

CB(MC) =


L

M

N

 = LÎB +MĴB +NK̂B (2.23)

2.1.6 Attitude Parameterization of Rigid Bodies

The matrix TIB is a 3x3 transformation matrix that rotates a vector from the

body to the inertial frame. A transformation matrix has the unique property that the

inverse of the transformation is just the transpose of the matrix. There are multiple

ways to construct this rotation frame:

Euler Angles

Euler angle are used to describe 3 unique rotation from the inertial to body frame.

They are typically denoted as ψ, θ and ϕ. The order of the rotation can vary however

the 3-2-1 sequence is standard for aircraft while the 3-1-3 sequence is standard for

spacecraft.

(3-2-1) Sequence

The transformation from the inertial frame to the body frame involves three unique

rotations. The �rst is a rotation about the z-axis such that
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CA(vCI) = [TIA]
TCI(vCI) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

CI(vCI) (2.24)

this rotation is called the yaw or heading rotation. From here the intermediate

frame (A frame) is rotated about the y-axis such that

CNR(vCI) = [TANR]
TCA(vCI) =


cos θ 0 − sin θ

0 1 0

sin θ 0 − cos θ

CA(vCI) (2.25)

this rotation is called the pitch angle rotation. Finally the (NR) no roll frame is

rotated through the x-axis such that

CB(vCI) = [TNRB]
TCNR(vCI) =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

CNR(vCI) (2.26)

Putting all of these 2-D rotations together creates a transformation matrix from

body to inertial.

CB(vCI) = [TNRB]
T [TANR]

T [TIA]
TCI(vCI) = [TIB]

TCI(vCI) (2.27)

The inverse of this matrix is given below using the properties of matrix transposes.

Standard shorthand notation is used for trigonometric functions: cosα = cα, sinα =

sα, and tanα = tα.

TBI(ϕ, θ, ψ) = [TIA][TANR][TNRB] =


cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθcψ − sϕcψ

−sθ sϕcθ cϕcθ

 (2.28)

Derivatives

If Euler angles are used to parameterize the orientation, the derivative of Euler

angles is somewhat cumbersome to obtain. The angular velocity of a body is typically
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written as

ωBI =


p

q

r

 = pÎB + qĴB + rK̂B (2.29)

The angular velocity can be written in vector form such that

ωBI = ψ̇K̂I + θ̇ĴNR + ϕ̇ÎB (2.30)

relating the unit vectors K̂I and ĴNR to the body frame using the planar rotation

matrices results in the equation below.
ϕ̇

θ̇

ψ̇

 = H


p

q

r

 (2.31)

where H

H =


1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕcθ cϕcθ

 (2.32)

Screw Rotation

It is often useful to extract Euler Angles from a unit vector. A unit vector has

two degrees of freedom and thus has two rotations ψ and θ which can be determined

using the equation below where n̂(1) denotes the �rst component of the vector in the

body frame.

ψ = tan−1

(
n̂(2)

n̂(1)

)
(2.33)

θ = tan−1

(
n̂(3)

n̂(1)2 + n̂(2)2

)
(2.34)

Transformation Matrix to Euler Angles

Besides using unit vectors, sometimes it is bene�cial to extract Euler angles from

a known tranformation matrix. The equations below can be used to accomplish this

where TBI = (TIB)
T
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θ = − sin−1 TBI(1, 3) (2.35)

ϕ = tan−1 TBI(2, 3)

TBI(3, 3)
(2.36)

ψ = tan−1 TBI(1, 2)

TBI(1, 1)
(2.37)

Quaternions

The orientation of the vehicle can be parameterized using four parameters known

as quaternions Many supplemental equations and explanations can be found for quater-

nions in [14],[15],[16],[17],[18],[19],[20],[21].

q =


q0

q1

q2

q3

 (2.38)

In this case 4 parameters are used to denote the quaternion. The rotation from the

body to the inertial frame is the rotation of the inertial frame about the unit vector η

through angle γ. The quaternion can then be written as

q =

 cos(γ/2)

η sin(γ/2)

 (2.39)

In this case it is possible to obtain the individual quaterions as q0 = cos(γ/2) and

ϵ = [q1, q2, q3]T = η sin(γ/2) Furthermore, if given 4 quaternions, the angle γ is simply

cos−1(2q0) and η = ϵ
sin(γ/2)

. Note that because a quaternion is essentially screw rotation

about a known unit vector, there are two identical quaternions for every orientation.
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Quaternion Transformations

In order to rotate the inertial frame to the body frame using quaternions, the

transformation matrix is shown below.

TBI(q) =


q02 + q12 − q22 − q32 2(q1q2 + q0q3) 2(q1q3− q0q2)

2(q1q2− q0q3) q02 − q12 + q22 − q32 2(q0q1 + q2q3)

2(q0q2− q1q3) 2(q2q3− q0q1 q02 − q12 − q22 + q32


(2.40)

Euler to Quaternion Transformations

converting quaternions to Euler angles is a standard operation and shown below

ϕ = tan−1

(
2(q0q1 + q2q3)

1− 2(q12 + q22)

)
(2.41)

θ = sin−1 (2(q0q2− q3q1)) (2.42)

ψ = tan−1

(
2(q0q3 + q1q2)

1− 2(q22 + q32)

)
(2.43)

It is also possible to convert Euler angles to quaternions using the equations below.

q0 = cos(ϕ/2) cos(θ/2) cos(ψ/2) + sin(ϕ/2) sin(θ/2) sin(ψ/2)

q1 = sin(ϕ/2) cos(θ/2) cos(ψ/2)− cos(ϕ/2) sin(θ/2) sin(ψ/2)

q2 = cos(ϕ/2) sin(θ/2) cos(ψ/2) + sin(ϕ/2) cos(θ/2) sin(ψ/2)

q3 = cos(ϕ/2) cos(θ/2) sin(ψ/2)− sin(ϕ/2) sin(θ/2) cos(ψ/2)

(2.44)

Quaternion Operations

The norm of the quaternions is given by |q| =
√
q02 + q12 + q22 + q32 . In stan-

dard spacecraft applications, the norm of the quaternion is just 1. The conjugate of
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the quaternion is given below.

q∗ =


q0

−q1

−q2

−q3

 (2.45)

Quaternion Derivatives

The derivatives of a quaternion are written in shorthand using the equation below.

q̇ =
1

2
Ω(ωBI)q (2.46)

These vector operators can then be used to expand the kinematic derivatives as

shown by equation below
q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0




q0

q1

q2

q3

 (2.47)

where qi are the four quaternions and p, q, r are the components of the angular velocity

vector in the body frame.

2.2 Aerospace Equations of Motion

2.2.1 Translational Equations of Motion

The translational equations of motion of satellites are fairly simple given that

everything is written in the inertial frame. The position vector of the vehicle is r =

[x, y, z]T and the velocity is vBI = [ẋ, ẏ, ż]T . The acceleration of the vehicle is found

by summing the total forces on the body and dividing by the mass of the vehicle. In

the equation below N⊕ is the number of planetary bodies acting on the vehicle while

FP is the force imparted by thrusters.

αBI =
1

ms

(
N⊕∑
i=1

Fi + FP

)
(2.48)
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Note that for a spacecraft the magnitude of the gravitational acceleration vector is

on the order of ±10m/s2. Sources point to solar radiation pressure being on the order

of 4.5µPa [22]. For a 1U CubeSat (10 cm x 10 cm) the force would be equal to 0.45mN .

A 1U CubeSat has a nominal mass of 1 kg which would accelerate the CubeSat on the

order of 0.45mm/s2, which is considerably less than gravitational acceleration. Further-

more, using the standard aerodynamic drag equation (0.5ρV 2SCD), where conservative

estimates are used, the aerodynamic force at 600 km above the Earth's surface would

be about 3.0ηN [23]. This assumes a density equal to 1.03 × 10−14kg/m3, a velocity

equal to 7.56km/s, and a drag coe�cient equal to 1.0 [24]. A force this small would

impart an acceleration of about 3.0ηm/s2 which is also considerably less than gravi-

tational acceleration. These forces cannot be neglected for longer missions but can be

ignored where appropriate. For an aircraft and quadcopter the equations of motion are

typically written in the body frame. As such the derivative transport theorem is used

and the translational equations of motion are written as the following:


u̇

v̇

ẇ

 =
1

m


X

Y

Z

−


0 −r q

r 0 −p

−q p 0



u

v

w

 (2.49)

2.2.2 Reaction Wheel Model

The reaction wheel model must be included before the attitude dynamics because

they directly a�ect the inertia of the vehicle. There are three reaction wheels on this

vehicle and each one has it's own angular velocity ωRi and angular acceleration αRi

. The inertia of each reaction wheel is �rst written about the center of mass of the

reaction wheel and is given by the equation below where the reaction wheel is modeled

as a disk with �nite radius rRW and height hRW . The subscript R is used to denote

that this inertia matrix is about the center of mass of the reaction wheel while the

super script R is used to denote the frame of reference.

IRRi =


mRr

2
RW

2
0 0

0 mR

12
(3r2RW + h2RW ) 0

0 0 mR

12
(3r2RW + h2RW )

 (2.50)

In order to rotate the inertia matrix into the vehicle body frame of reference an
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axis of reaction wheel rotation is used. The vector nRi is used to denote the axis about

which the reaction wheel rotates. Euler Angles θRi and ϕRi can be extracted from this

unit vector as discussed previously. The rotation matrix TRi(0, θRi, ψRi) can then be

generated using equation 2.28. This matrix can then be used to compute the inertia

of the reaction wheel in the vehicle body frame

IBRi = TRiI
R
Ri (2.51)

The parallel axis theorem can then be used to shift the inertias to the center of

mass of the vehicle where the subscript RB denotes the reaction wheel inertia taken

about the center of mass of the vehicle.

IBRBi = IBRi +mRiS(rRi)S(rRi)
T (2.52)

The vector rRiis the distance from the center of mass of the vehicle to the center

of mass of the reaction wheel in the vehicle body reference frame. The total inertia

of the entire vehicle-reaction wheel system is then just a sum of all the reaction wheel

inertias.

IS = IB +
3∑
i=1

IBRi (2.53)

The total angular momentum of the vehicle is then equal to the following equation

where ωBI is the angular velocity of the vehicle.

HS = IBωBI +
3∑
i=1

IBRiωRinRi (2.54)

In a similar fashion, the total torque placed on the vehicle is equal to the following

MR =
3∑
i=1

IBRiαRinRi (2.55)

It is typically assumed that the angular acceleration of each reaction wheel can

be directly controlled. However, as the reaction wheel angular velocity increases, the

maximum angular acceleration allowed begins to decrease. Once the reaction wheel

reaches its angular velocity limits, the angular acceleration possible drops to zero.

This is called reaction wheel saturation and must be dealt with using a method called
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momentum dumping.

2.2.3 Attitude Equations of Motion

The attitude equations of motion are formulated assuming the vehicle can rotate

about three axes. The derivative of angular velocity is found by equating the derivative

of angular momentum to the total moments placed on the vehicle while reaction wheel

torques from the vehicle are added.

ω̇BI = I−1
S (MP +MM +MR − S(ωBI)HS − İSωBI) (2.56)

The applied moments use subscripts P for propulsion, M for magnetorquers, and R

for reaction wheels. The term İS is the change in inertia in the body frame caused by

deployment of solar panels and/or antenna. Also, recall that HS is the total angular

momentum of the entire vehicle including the reaction wheels if present. For aircraft

the rotational dynamic equation can be found as


ṗ

q̇

ṙ

 = I−1
C



L

M

N

−


0 −r q

r 0 −p

−q p 0

 IC

p

q

r


 (2.57)

2.3 External Models

Many external models are used in simulation to accurately depict the environment.

The magnetic �eld model comes from the Geographic Library model which uses the

EMM2015 magnetic �eld model. The gravitational model comes from the EGM2008

model[25].

2.3.1 GPS Coordinates to Cartesian Coordinates

it is useful to convert the GPS coordinates (latitude,longitude, altitude,( λLat, λLong, h)

to a �at earth approximation where the x-axis is pointing North, the y-axis is pointing

east and the z-axis is pointing towards the center of the planet. The equations to

convert LLH (latitude,longitude, altitude) to a cartesian coordinate system are given

below. Note that these equations assume that the vehicle creates an origin point to
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de�ne as the center of the inertial frame which is on the surface of the planet rather

than the center of the planet λLat,0, λLong,0

x = k(λLat − λLat,0)

y = k(λLong − λLong,0) cos(
πλLat

180
)

z = −h

(2.58)

2.3.2 Density Model

The density model is simply given as an exponential model.

ρ = ρse
−σh (2.59)

where ρs is the density at sea-level, h is the altitude above the Earth in kilometers

and σ = 0.1354km−1 is known as the scale height [26] , [27] , [28]

2.3.3 Magnetic Field Model

The Magnetic Field model used in this simulation stems from the Enhanced Mag-

netic Field Model (EMM2015) [29].

Speci�cally, the inputs to the model are the position x, y, z of the satellite assuming

an inertial frame with the z-axis pointing through the north pole and the x axis point-

ing through the equator at the prime meridian . This is known as the Earth-Centered

Inertial (ECI) coordinate system .

In order to connect these inertial coordinates (x, y, z) to be used in the EMM2015

model, the latitude, longitude and height above the surface of the Earth are required.

To do this, the coordinates are converted into spherical coordinates using the equations

below.

ρ =
√
x2 + y2 + z2

ϕE = 0

θE = cos−1( z
ρ
)

ψE = tan−1( y
x
)

(2.60)

Note that ρ, ϕE, θE, ψE are related to latitude and longitude coordinates but not
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quite the same. In order to obtain the latitude and longitude coordinates the following

equations are used. The height is simply the distance from the center of the ECI

frame minus the reference height from the approximation of Earth as an ellipsoid

(R⊕ = 6, 371, 393meters). Note that the angles from Equation 2.64 are converted to

degrees.

λLat = 90− θE
180
π

λLong = ψE
180
π

h = ρ−R⊕

(2.61)

The inputs to the EMM2015 model are the latitude, longitude and height. The

inverse of the above two equations are given below. These would be used in the event

a latitude and longitude coordinate is given and there is a need to obtain the x,y and

z coordinates in the ECI frame. The �rst step is to convert latitude, longitude and

altitude and convert that to standard spherical angles and distance from the center of

the planet.

θE = (90− λLat)
π
180

ψE = (λLong)
π
180

ρ = h+R⊕

(2.62)

Once that is complete the extraction of x,y and z are computed by the equation

below.

x = ρ sin θE cosψE

y = ρ sin θE sinψE

z = ρ cos θE

(2.63)

The output from the EMM2015 model is in the East, North, Vertical (ENV) ref-

erence frame where the x-axis is East pointing in the direction of the rotation on the

Earth, the y-axis is North pointing towards the North pole and �nally the z-axis is

the Vertical component that is always pointing radially away from the center of the

Earth. In order to get the coordinates into the ECI frame the coordinates must �rst

be converted to the North, East, Down reference frame (NED). In this case the x-axis

is pointing North, the y-axis pointing East and the z-axis is always pointing towards

the center of the Earth and called Down. The equation to rotate from the ENV frame
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to NED frame is shown below.
βx

βy

βz


NED

=


0 1 0

1 0 0

0 0 −1



βx

βy

βz


ENV

(2.64)

Once the magnetic �eld is in the NED reference frame it can then be rotated to

the inertial frame using the following equation where βNED is the magnetic �eld in the

NED coordinate system and βI is the magnetic �eld in the inertial frame.

βI = TIB(0, θE + π, ψE)βNED (2.65)

The matrix TIB(ϕ, θ, ψ) represents the transformation matrix from the spherical

reference frame to the inertial reference frame. Note that there is no rotation about

the x-axis through ϕ and the pitch rotation is augmented by π because of the switch

between North, East, Down (NED) and the z-axis of the ECI pointing through the

North pole. The result of these equations, is the ability to obtain the magnetic �eld

across an entire orbit.

Figure 2.1: Gravitational Field of Earth in Inertial Frame for 56 Degree Orbit at 600
km Above Surface
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2.3.4 Gravitational Models

The the gravitational �eld vector is

F⊕ =
m⊕ms

r2
(2.66)

The gravitational �eld model stems from the Earth Gravity Model (EGM2008) [30]

, �gure 2.1 shows Gravitational Field of Earth in Inertial Frame for 56 Degree Orbit

at 600km Above Surface

2.3.5 External Forces and Moments

In addition to gravity acting on a vehicle, other forces also act on the satellite. For

a 1U CubeSat, the gravity gradient over 10 cm is about 0.24µm/s2 using the EGM2008

model. Multiplying this acceleration by a 1 kg mass and applying a 10 cm moment arm

yields a moment of about 2.4 × 10−8Nm. Aerodynamic torques could be as large as

1.5×10−10Nm assuming the aerodynamic center is 5 cm away from the center of mass.

Typical magnetorquers operate in the vicinity of 3.0 × 10−6Nm, assuming a current

of 0.04A, an area of 0.02m2, 84 turns and a magnetic �eld of 40, 000ηT . Using these

calculations, magnetorquers are two orders of magnitude larger than gravity torques

and four orders of magnitude larger than aerodynamic torques. It is important to keep

these values in mind when neglecting certain parameters [31],[32],[33].

2.3.6 Solar Radiation Pressure

Solar radiation pressure is relatively constant at 1 AU and thus is simply given

as ps = 4.5e− 6Pa. The force is then found to be just the pressure multiplied by the

frontal area of the satellite. The torque, is the force crossed with a distance vector

from the center of mass to the center of pressure of solar radiation. The vector ŝ is a

unit vector denoting the direction of the sun.

FSR = PsSŝ (2.67)

MSR = S(FSR)rCG−CPs (2.68)
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2.3.7 Magnetorquer Model

The magnetorquer model assumes that three magnetorquers are aligned in such

a way that the magnetic moment produced by each magnetorquer is aligned with the

principal axes of the body frame of the satellite. Each magnetorquer is controlled inde-

pendently such thatiM = [ix, iy, iz]
T which is the applied current in each magnetorquer.

The magnetic moment is then given by the equation below

µM = ηAiM (2.69)

where η is the number of turns in the coil of each magnetorquer and A is the area of

the magnetorquer. For simplicity it is assumed that all magnetorquers have the same

area and same number of turns. The torque produced by all magnetorquers is then

simply found by crossing the magnetic moment with the magnetic �eld of the Earth in

the Body reference frame.

MM = S(µM)TBI(q)βI (2.70)

In order to obtain the magnetic �eld vector in the body frame, the inertial magnetic

�eld vector must be rotated into the body frame of the satellite. In component form,

equation (2.69) reduces to the following equation using the identity that a×b = −b×a


LM

MM

NM

 = ηA


0 βz −βy

−betaz 0 βx

βy −βx 0



ix

iy

iz

 (2.71)

where βx, βy, βz are the components of the magnetic �eld in the body frame of the

satellite. The moments L, M, N are thus the control torques that rotate the satellite

as seen in equation (2.57).

2.3.8 Spacecraft Aerodynamics

The aerodynamic force is computed using aerodynamic coe�cients and dynamic

pressure whereV is the velocity of the satellite and V is the magnitude of the velocity

vector. Furthermore, S is the surface area of the satellite and CD is the drag coe�cient.

The torque on the satellite is then given by the cross product between the aerodynamic
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force and a distance vector representing the distance between the center of mass and

the center of pressure rCP−CG.

FA =
1

2
ρV V SCD (2.72)

MA = −S(FA)rCP−CG (2.73)

2.4 Guidance Navigation and Controls

Every vehicle must be able to maintain a speci�c position within its �ight or orbit

as well as point in a speci�c direction to achieve its mission. Mission goals have speci�c

trajectories or orbits that must be reached and maintained, and this section is intended

to explain how this is done from a guidance navigation and controls perspective. The

basis for the guidance, navigation, and control (GNC) subsystem are attitude control,

attitude estimation, and position estimation. Attitude describes which direction the

vehicle is pointing in three-dimensional space. Attitude control is the act of controlling

the orientation of the vehicle while attitude estimation is the process of determining the

precise direction of the vehicle in order to perform attitude control. Position estimation

primarily involves integration schemes or GPS in order to determine the position of

the vehicle on the surface of the planet. While performing the mission, the vehicle will

continually use this subsystem to document the position. The basis of these techniques

follows an understanding of space�ight mechanics and systems engineering.

The GNC subsystem is critical for the survival of the vehicle. It is the system

that determines the vehicles orientation and position in space. Guidance is task of

computing the desired trajectory and orientation of a vehicle. Guidance is completed

by using components to determine any changes in position, altitude, or orientation to

assist the vehicle in following its projected trajectory. Similar to guidance, navigation

is the system's way of leading the vehicle in space and keeping it on its intended path.

In order to have a successful �ight and achieve the intended mission goal the vehicle

needs to be stable and controlled in space. There are many di�erent components

di�erent aerospace vehicles use to accomplish this. Satellites use reaction wheels and

gimbaled thrusters to name a few while aircraft use aerodynamic surfaces.
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2.4.1 Vehicle State Estimation

Vehicle State estimation is a fundamental portion of GNC and requires the vehicle

to determine it's orientation with respect to an inertial frame as well as its position

from an inertial reference point. Some sensors are speci�c to the vehicle application

but here this section will discuss a standard INS (Inertial Navigation System) which

consists of a GPS (Global Positioning System) and an IMU (Inertial Measurement

Unit).

Inertial Measurement Unit

An inertial measurement unit (IMU) is a combination of three sensors. An ac-

celerometer, rate gyro and magnetometer. A magnetometer is a device that measures

the local magnetic �eld in the body frame β̂B = [β̂x, β̂y, β̂z]
T [34]. Note that the .̂implies

a measurement rather than the truth signal. Measurements from sensors are prone to

bias, drift, scale factor, misalignment, noise and other sources of error that must be

accounted for.

A rate gyroscope, commonly referred to as a rate gyro measures the angular velocity

also in the body frame

ω̂BI = [ĝx, ĝy, ĝz]
T (2.74)

Accelerometers are sensors used to measure acceleration at a point P on a rigid

body ^aBI âBI = [âx, ây, âz]
T . For simplicity however, it is assumed that point P on

the rigid body is the center of mass point C therefore the accelerometer is measuring

the acceleration of the body itself in the body frame with respect to an inertial frame

BI

As mentioned before, the IMU consists of 3 sensors all returning 3 measurments.

This results in 9 scalar quantities being returned from this sensor which is where

the term 9DOF gets it origin In reality DOF means Degrees of Freedom which is

contrary to the standard 6DOF simulation models explained above. However, the

sensor community chooses to coin the term 9DOF to highlight the 9 di�erent scalar

values returned from IMUs. It is possible to obtain a 10DOF sensor which also returns

pressure or temperature data.
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2.4.2 Euler Angle Estimation via IMU

Using an IMU it is possible to obtain Euler Angles assuming a Flat Earth Approx-

imation. Recall that Euler angles are a 3D transformation from the Inertial frame to

the Body Frame . The angle ϕ and θ can directly be measured via the accelerometer by

creating a relationship between the gravity vector in the inertial and body frames. The

heading angle can be measured by creating a relationship between the magnetic �eld

in the body frame and the inertial frame using a magnetometer. The rate gyro can be

used to integrate the angular velocity to obtain Euler angles as well but is prone to

drift. The accelerometer though is prone to errors when the vehicle experiences large

acceleration loads. Thus, typically the Euler angles from the rate gyro are fused with

the estimates from the magnetometer and the accelerometer.

2.4.3 Low Earth Orbit Attitude Estimation

In LEO the main algorithm begins with obtaining the magnetic �eld in the body

frame using magnetometers βB. Using the IGRF model the locally measured magnetic

�eld can be compared with the known magnetic �eld for any given location within

its orbit. Using the true data and the measured data, the spacecraft can compute its

actual position to the measured position and make the correct adjustments. A Sun

measurement is then taken using a Sun sensor §B.. Once those two independent body

frame measurements are taken the inertial reference vectors must be obtained from a

database. Startrackers have this database built in; however, for the magnetic �eld and

the Sun vector these must be obtained from a separate database. The idea is that if the

position of the Earth is known then the position of the Sun with respect to the Earth

is also known. The magnetic �eld vector can be obtained from the IGRF model. The

magnetic �eld vector in the inertial frame is given as βI .. Note that the IGRF model

requires the latitude and longitude to be known. Thus, in LEO a GPS is required

to feed into the database. The inertial Sun vector §I only requires the Julian time

which can be obtained from GPS as well. The julian time is based on the julian day.

The initial attitude determination algorithm itself requires two independent vectors.

As stated previously, startrackers provided a large enough aperture and enough stars

to produce the full quaternion by obtaining multiple unique vectors to unique stars.

Multiple solar sensors or multiple magnetometers unfortunately do not obtain non-
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unique vectors and the algorithm fails. In LEO this is typically done with solar sensors

and magnetometers but it can be done with star trackers. In deep space it is typically

done with startrackers but it could be possible to obtain a Moon vector that would

require a Moon sensor. The derivation below is done for the LEO case with a Sun and

magnetic �eld measurement. The derivation is identical for the deep space case with

a Moon sensor simply by substituting the magnetic �eld measurment with a Moon

measurement. Every vector is �rst normalized to obtain βB, βI §B, §I . A triad is then

created from body frame vectors using the equations below.

f̂1 = ŜB, f̂2 = f̂1 × β̂B, f̂3 = f̂1 × f̂2, (2.75)

The matrix F is then created using the triad as an orthonormal basis F = [f̂1, f̂2, f̂3].

Similar equations are used for the inertial measurements.

ĝ1 = ŜI , ĝ2 = ĝ1 × β̂I , ĝ3 = ĝ1 × ĝ2, (2.76)

The matrix G is then created just as the F matrix such that G = [ĝ1, ĝ2, ĝ3]. The

transformation from inertial to body frame is then created using the formula below.

TBI = FGT (2.77)

This matrix above is similar to the matrix in equation 2.28 and thus the Euler

angles can be extracted from the matrix itself using the formulation de�ned in Section

'Attitude Parameterization of Rigid Bodies'. Euler can then be converted to quater-

nions if needed. Note that it is relatively easy to extract Euler angles from the TIB

matrix, it is not so simple to extract quaternions. This is due to the fact that for every

orientation there exists two quaternions that represent this space. Thus, it is more

ideal to obtain Euler angles from the transformation matrix and then convert them to

quaternions.

2.5 Spacecraft Attitude Control Schemes

Many control schemes are needed to orient a satellite and all depend on the ap-

plication. In LEO magnetorquers can be used to detumble a satellite while thrusters
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must be used in deep space. In addition reaction wheels can be used to detumble a

satellite anywhere in space provided the angular momentum in the satellite does not

saturate the reaction wheels.

2.5.1 B-dot Controller

In LEO, the standard B-dot controller reported in many sources [35],[36],[37],[38]

can be used to de-tumble a satellite. The standard B-dot controller requires the mag-

netorquers to follow the control law shown below

µB = kS(ωBI)TBI(q)βI (2.78)

where k is the control gain. Using equation (2.71) it is possible to write the current

in component form again using the identity that a× b = −b× a


ix

iy

iz

 =
k

ηA


0 βz −βy

−βz 0 βx

βy −βx 0



p

q

r

 (2.79)

This equation can then be substituted into equation (2.71) to produce the total

torque on the satellite assuming that the magnetorquers can provide the necessary

current commanded by equation (2.80).


L

M

N

 = −K


β2
y + β2

z −βxβy −βxβz
−βxβy β2

x + β2
z −βyβz

−βxβz −βyβz β2
x + β2

y



p

q

r

 (2.80)

The goal of the controller here is to drive ωBI → 0. The literature will show that

this is not completely achieved [46]. There are multiple explanations for this. For

starters, equation (2.70) assumes that the magnetic moment is not co-linear with the

magnetic �eld of the Earth. If it is, the result is zero torque applied to the satellite.

Furthermore, equation (2.80) results in zero current if the angular velocity vector of the

satellite is co-linear with the magnetic �eld. Thus, if the magnetic �eld vector, angular

velocity vector or the magnetic moment vector are co-linear, the torque applied to the

satellite will be zero. If a new operator is de�ned such that
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W (TBI(q)βI) =


β2
y + β2

z −βxβy −βxβz
−βxβy β2

x + β2
z −βyβz

−βxβz −βyβz β2
x + β2

y

 (2.81)

it is easy to see that the torque applied to a satellite is then simply the angular

velocity vector multiplied by this transition matrix. If this transition matrix is put into

row-reduced-echelon form it is easy to see that the determinant of this matrix is equal

to zero .

rref(W (TBI(q)βI)) =


0 1 −βx/βz
0 1 −βy/βz
0 0 0

 (2.82)

A zero determinant means that there exists a vector ωBI that will result in zero

torque for a given value of the magnetic �eld. This is typically avoided since the

magnetic �eld of the Earth is time and spatially varying which results in a transition

matrix that changes over time due to orientation changes in the satellite as well as

changes in the satellite's orbit. However, for low inclination orbits, it's possible for the

magnetic �eld to stay relatively constant with βx = βy = 0. If the satellite is tumbling

about the yaw axis such that p = q = 0, the yaw torque on the satellite (N) will be

zero. Using this simple controller, there is no way to remove the remaining angular

velocity from the satellite unless reaction wheels are used.

2.5.2 Reaction Wheel Control

Assuming each reaction is aligned with a principal axis of inertia the control scheme

is extremely simple. When the wheels are not aligned the derivation will proceed

similar to the reaction control thruster section. The derivation here will just be for

the aligned case. In this analysis it is assumed that a torque can be applied to the

reaction wheel and thus the angular velocity of the reaction wheel αRi can be directly

controlled. Assuming this a simple PD control law can be used to orient the satellite

at any desired orientation using Euler angles for this control law since the satellites are

aligned with the principal axes of rotation .
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αRi = −kp(ϵi − ϵdesired)− kd(ω − ωdesired) (2.83)

In the equation above ϵ denotes either roll ϕ, pitch θ or yaw ψ depending on which

reaction wheel is being used. The Euler angles in this case would be obtained by

converting the quaternions to Euler angles.

Often times however your reaction wheels are not pointed on the principal axis of

inertia. In this case a Least Squares Regression model is needed. In this case the

equation above is used to compute the desired torque to be placed on the satellite such

that

Mdesired = −kp(ϵi − ϵdesired)− kd(ω − ωdesired) (2.84)

This equation is then equated to the equation for torque placed on the satellite

where the angular accelerations are placed into a vector.

Mdesired =MR =
NR∑
i=1

IBRiαRin̂Ri = [IBRin̂Ri . . . I
B
RNRn̂RNR]


α1

....

αNR

 = Jα (2.85)

Since J is a 3 × NRW matrix its impossible to simply invert the matrix and solve

for the vector of angular accelerations α. In this case there are an in�nite number of

solutions. As such a minimization routine is required where the solution found also

happens to be the lowest amount of angular acceleration. In this case, Lagrange's

method was used to �nd the vector of angular accelerations[39] .

α = JT (JJT )−1Mmeasured (2.86)
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Chapter 3

Simulation and Analysis

Attitude Determination and Control (ADC) is a crucial subsystem in the operation

of CubeSats, ensuring that these small satellites can achieve and maintain the desired

orientation in space. Precise control of a CubeSat's attitude is essential for mission

objectives such as Earth observation, communication, and scienti�c experiments. This

section outlines the procedures undertaken to simulate the ADC system for CubeSats

utilizing reaction wheels, which provide the necessary torques for attitude adjustments

without expelling mass.

The simulation aims to validate the performance of control algorithms and the

integration of hardware components under various operating conditions. By accurately

modeling the dynamics of the CubeSat and the behavior of the reaction wheels, we can

predict the system's response to control inputs and external disturbances. This process

involves the development of mathematical models, implementation of control strategies,

and execution of simulation scenarios that replicate real-world conditions.

The procedures detailed herein encompass the entire simulation work�ow, from the

initial system modeling to the analysis of simulation results. This comprehensive ap-

proach ensures that all aspects of the ADC system are thoroughly tested and validated,

providing valuable insights into the feasibility and e�ectiveness of the proposed design

for CubeSat missions.
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3.1 Simulation Environment

Initial Conditions Position and Velocity

The Initial Conditions Position and Velocity velocity of the CubeSat were carefully

chosen to represent realistic scenarios encountered in orbit.

altitude = 600*1000 (meters)

x0 = R + altitude

y0 = 0

z0 = 0

inclination = 56*pi/180

semi major axis= norm([x0;y0;z0])

vcircular = sqrt(mu/semi major)

ẋ0 =0

ẏ0= vcircular*cos(inclination)

ż0 = vcircular*sin(inclination)

period = 2*pi/sqrt(mu)*(semi major axis)
3
2

number of orbits = 1

Time of Simulation = period*number of orbits

Intitial Conditions for Euler Angles and Angular Velocity

The initial conditions for Euler Angles and angular velocity of the CubeSat were

carefully chosen to represent realistic scenarios encountered in orbit.

phi0 = 0 rad

theta0 = 0 rad

psi0 = 0 rad

Angular Velocity:

p0 = 0.8 rad/s
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q0 = -0.2 rad/s

r0 = 0.3 rad/s

Reaction wheels Parameters

The reaction wheels used in the simulation were modeled with parameters that

closely resemble those of commercially available CubeSat reaction wheels. Each reac-

tion wheel was characterized by its moment of inertia, maximum torque, and maximum

angular velocity.

mr = .13

rr = 42/1000

hr = 19/1000

rpm = 8000 rpm

maxSpeed = rpm*2*pi/60

maxTorque = 0.004 N-m

dc voltage = 5.0 (Volts) This is from a random RW

peak power = 3.25 Watts

MagneTorquers

In addition to reaction wheels, magnetorquers were incorporated into the simula-

tion to provide supplemental attitude control through magnetic interaction with the

Earth's Magnetic �eld. The magnetorquers were modeled with parameters that re�ect

typical performance characteristics of those used in CubeSat applications.

n = 84 Number of turns

A = 0.02 Area in meters2

maxCurrent = 150 mAmps

3.2 Orbit and Alttitude

The Figure 3.1 provides a detailed view of the CubeSat's altitude behavior, par-

ticularly highlighting the e�ectiveness of the B-dot controller and reaction wheels in

achieving orbital stability. Immediately after deployment, the CubeSat maintains a

42



Simulation and Analysis

stable altitude around 600 km, indicating a successful insertion into the initial orbit.

During this phase, minor �uctuations are observed as the CubeSat begins to stabilize

its orientation and adjust to space environment dynamics.

Figure 3.1: CubeSat Alttitude

As time progresses, there is a gradual decrease in altitude from 600 km to approx-

imately 599.99965 km. This descent can be attributed to a combination of factors

including residual atmospheric drag, which, even at 600 km, exerts a small but contin-

uous force on the CubeSat, causing a slow orbital decay. The B-dot controller, designed

to mitigate rotational disturbances by utilizing Earth's magnetic �eld, actively works

to dampen any residual angular velocity. This magnetic stabilization method helps

to align the CubeSat's orientation without relying heavily on its onboard propulsion

system, conserving fuel and prolonging the mission duration.

Simultaneously, the reaction wheels, which provide precise control over the Cube-

Sat's attitude, are actively engaged. These wheels spin to create the necessary counter-

torques that adjust and stabilize the CubeSat's orientation. The coordinated e�ort of

the B-dot controller and reaction wheels ensures that the CubeSat's attitude is cor-

rected e�ciently, reducing any wobbling or undesired rotations. This stabilization pro-

cess is crucial for maintaining proper orientation for communication, power generation

from solar panels, and the accurate pointing of scienti�c instruments or cameras.

Around 5000 seconds into the mission, the CubeSat reaches a new stable altitude,
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where the rate of altitude change signi�cantly slows down and eventually plateaus.

This indicates that the initial stabilization and adjustment phase is complete, and

the CubeSat has settled into a steady orbit at a slightly lower altitude. The reaction

wheels have successfully mitigated any remaining rotational disturbances, and the B-

dot controller has e�ectively utilized the Earth's magnetic �eld to further stabilize the

CubeSat's orientation.

The altitude graph of the CubeSat showcases the intricate balance of forces and

control mechanisms at play. The B-dot controller and reaction wheels work synergisti-

cally to manage the CubeSat's orientation and altitude, ensuring it remains in a stable

orbit. The initial descent and subsequent stabilization highlight the e�ciency of these

control systems in counteracting minor perturbations and achieving a stable opera-

tional state. This stability is vital for the CubeSat's mission, enabling it to perform

its scienti�c, observational, or communication tasks e�ectively throughout its time in

orbit.

The provided Figure 3.2 illustrates a three-dimensional plot of a satellite's or-

Figure 3.2: CubeSat Orbit

bit around a central body, likely Earth. The orbit is represented by a blue line that

traces a nearly perfect circular path, indicating a consistent altitude and distance from

the central body throughout the orbit. The central body itself is depicted as a yellow

sphere, which serves as the focal point of the satellite's motion. The plot's axes, labeled
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X, Y, and Z, represent the three spatial dimensions, allowing a comprehensive view of

the orbit's orientation and shape in space. The circular nature of the orbit suggests

that the satellite is in a stable, low-inclination orbit, likely equatorial, as there is no

noticeable tilt away from the central body's equatorial plane. This visualization is

essential for understanding the satellite's motion dynamics and planning any necessary

orbital adjustments or maneuvers.

3.3 Magnetic Field using IGRF Model

The International Geomagnetic Reference Field (IGRF) model in MATLAB is a

mathematical model used to represent the Earth's main magnetic �eld. This model is

widely used in geophysics, space sciences, and engineering applications to predict the

geomagnetic �eld at any point on or near the Earth's surface.

The IGRF is a series of mathematical models that represent the Earth's magnetic

�eld over time. It is regularly updated by a consortium of international geomagnetic

institutes, typically every �ve years, to account for changes in the Earth's magnetic

�eld. The model is based on spherical harmonics and provides coe�cients that describe

the geomagnetic �eld's strength and direction.

Figure 3.3: Norm of Magnetic Field

The �gure 3.3 illustrates the norm of the magnetic �eld experienced by the CubeSat
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over a period of 6000 seconds. The magnetic �eld norm, measured in teslas (T),

exhibits periodic �uctuations, indicative of the CubeSat's interactions with the Earth's

geomagnetic �eld. Initially, the magnetic �eld strength increases, reaching a peak

around 2000 seconds, followed by a decrease to a local minimum at approximately

3000 seconds. This pattern repeats, showing another peak near 4000 seconds before

descending again.

These �uctuations are characteristic of the CubeSat's orbital path, as it traverses

di�erent regions of the Earth's magnetic �eld. The variations can be attributed to the

CubeSat's movement through areas of varying magnetic �eld intensity, in�uenced by

its altitude, latitude, and the orientation of its orbit relative to the Earth's magnetic

�eld lines.

Additionally, the B-dot controller and reaction wheels onboard the CubeSat are

likely responding to these changes. The B-dot controller, which uses changes in the

magnetic �eld to stabilize the CubeSat, and the reaction wheels, which adjust the

satellite's orientation, both depend on accurate measurements of the magnetic �eld.

The periodic changes in the magnetic �eld norm suggest that the CubeSat is e�ectively

utilizing these control mechanisms to maintain its intended orientation and stability,

as it continuously encounters di�erent magnetic �eld strengths throughout its orbit.

Figure 3.4: Magnetic Field

The Figure 3.4 illustrates the magnetic �eld components (Bx, By, Bz) of a Cube-
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Sat in orbit, where its attitude is controlled using reaction wheels and a B-dot con-

troller. The X-axis represents time in seconds, while the Y-axis shows the magnetic

�eld strength in Tesla.

The solid lines in blue, red, and green indicate the predicted magnetic �eld com-

ponents, while the square markers of the same colors represent the measured values.

Additionally, the dashed lines depict the navigated or estimated values of these com-

ponents.

Initially, during the �rst 1000 seconds, the magnetic �eld measurements exhibit

signi�cant �uctuations and noise. This phase likely corresponds to the initial deploy-

ment or activation of the control systems, where the CubeSat is working to stabilize its

orientation. As time progresses into the 1000 to 3000-second range, the magnetic �eld

values begin to stabilize, showing more coherent and less noisy patterns. This indi-

cates that the control mechanisms, including the reaction wheels and B-dot controller,

are e�ectively reducing the satellite's angular velocity and aligning it to the desired

orientation.

In the �nal phase, from 3000 to 6000 seconds, the magnetic �eld components ex-

hibit smoother oscillations, signifying that the CubeSat has achieved a stable and

controlled orientation. The measured magnetic �eld values (represented by square

markers) closely follow the predicted and navigated values (solid and dashed lines),

demonstrating the e�cacy of the control systems.

The reaction wheels provide precise control by altering the CubeSat's angular mo-

mentum, while the B-dot controller dampens rotational rates by interacting with the

Earth's magnetic �eld, generating a magnetic moment opposite to the rate of change of

the magnetic �eld. This combined control approach e�ectively brings the CubeSat to

a stable state, as evidenced by the diminishing noise and �uctuations in the magnetic

�eld measurements over time. The graph overall indicates successful attitude control,

with the CubeSat's orientation being maintained as intended.
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3.4 Euler Angles and Angular Velocity of CubeSat

3.4.1 Euler Angles

This Figure 3.5 illustrates the Euler angles (roll, pitch, and yaw) of a CubeSat over

time, where its attitude is controlled using reaction wheels and a B-dot controller. The

X-axis represents time in seconds, while the Y-axis shows the Euler angles in degrees,

ranging from -200 to 200 degrees. The graph displays three sets of data: the actual

Euler angles (solid cyan lines), the measured Euler angles (square purple markers), and

the navigated or estimated Euler angles (dashed red lines).

Figure 3.5: Euler Angles of CubeSat

During the initial phase, the Euler angles exhibit signi�cant �uctuations and noise,

re�ecting the CubeSat's initial instability and the process of its attitude control systems

coming online. The actual, measured, and navigated angles are all highly variable,

indicating that the CubeSat is undergoing signi�cant rotational motion, likely due to

the initial deployment or the activation of its control mechanisms.

Between 1000 and 2000 seconds, the data shows a transition phase where the Euler

angles begin to converge. The previously chaotic measurements start to align more

closely with the actual and navigated values, suggesting that the control systems are

e�ectively reducing the CubeSat's rotational velocities and stabilizing its orientation.

The �uctuations decrease signi�cantly, and the Euler angles settle towards their target
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values.

In the �nal phase, from 2000 to 6000 seconds, the Euler angles stabilize further

and maintain steady values. The actual Euler angles (cyan lines) are closely followed

by the measured (purple markers) and navigated (red dashed lines) values, indicating

successful attitude control. The CubeSat maintains a stable orientation, with the

control systems (reaction wheels and B-dot controller) e�ectively keeping the Euler

angles within desired limits. The minimal deviation between the actual, measured, and

navigated angles demonstrates the accuracy and e�ciency of the control mechanisms.

3.4.2 Angular Velocity

This Figure 3.6 displays the angular velocity of a CubeSat over time, with its

attitude controlled by reaction wheels and a B-dot controller. The X-axis represents

time in seconds, while the Y-axis shows the angular velocity in radians per second

(rad/s). The graph includes three sets of data: actual angular velocity (solid cyan

line), measured angular velocity (square purple markers), and navigated or estimated

angular velocity (dashed red line).

Figure 3.6: Angluar Velocity of CubeSat

In the initial phase, the CubeSat experiences signi�cant �uctuations in angular ve-

locity. The actual, measured, and navigated angular velocities exhibit high variability,
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indicating that the CubeSat is undergoing substantial rotational motion. This period

likely corresponds to the initial deployment or activation of the control systems, where

the CubeSat is still stabilizing and the control mechanisms are working to bring the

rotational motion under control.

Between 1000 and 2000 seconds, the graph shows a clear convergence of angular

velocities. The �uctuations reduce signi�cantly, and the measured (purple markers)

and navigated (red dashed lines) values begin to align closely with the actual (cyan

line) values. This indicates that the reaction wheels and B-dot controller are e�ectively

reducing the CubeSat's angular velocity, stabilizing its rotation and bringing it closer

to a desired steady state.

From 2000 to 6000 seconds, the CubeSat's angular velocity stabilizes further and

maintains a near-zero value, indicating a steady and controlled state. The measured

and navigated angular velocities closely follow the actual angular velocity, demonstrat-

ing that the control systems are successfully maintaining the CubeSat's orientation

with minimal rotational motion. The close alignment between the actual, measured,

and navigated values suggests that the CubeSat's attitude control mechanisms are

performing e�ciently and accurately.

3.5 B-Dot Stabilizing Controller

The Figure 3.7 depicts the current in milliAmperes (mA) applied to the magnetor-

quers along the X, Y, and Z axes of a CubeSat over a period of 6000 seconds. Initially,

up to around 2000 seconds, the current in all three axes �uctuates signi�cantly.The

CubeSat is undergoing active attitude control to stabilize its orientation. This period

of high activity is likely due to initial disturbances or misalignments that the control

system is correcting.

After approximately 2000 seconds, the currents stabilize and oscillate around zero,

indicating that the CubeSat has reached a more stable state with minor adjustments

being made to maintain its attitude. The gradual decrease in the amplitude of os-

cillations in the currents indicates that the control system is e�ectively damping out

any residual rotational motion. The currents for the X (blue line), Y (red line), and Z

(yellow line) axes show distinct patterns, re�ecting the di�erent torques required along
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Figure 3.7: The current of Magnetorquers

each axis to maintain stability. Overall, this graph illustrates the dynamic response

and eventual stabilization of a CubeSat's attitude using magnetorquers, highlighting

the e�ectiveness of the control system in bringing the satellite to a steady state.

The Figure 3.8 illustrates the total current consumed by the magnetorquers of a

CubeSat over a span of 6000 seconds. Initially, the current is high, approximately

around 120 mA, indicating signi�cant power consumption by the magnetorquers. This

phase lasts up to around 2000 seconds, during which the system is likely engaging in

intensive attitude control maneuvers to counteract initial disturbances or to stabilize

the CubeSat from an unstable state.

Between 2000 and 3000 seconds, there is a marked decrease in the total current,

dropping down to nearly 10 mA. This reduction suggests that the CubeSat has reached

a more stable attitude, requiring less power for minor adjustments. The subsequent

increase and �uctuations in current between 3000 and 5000 seconds indicate that the

CubeSat is experiencing additional disturbances or is making periodic corrections to

maintain its orientation. However, the power consumption during this phase is signi�-

cantly lower compared to the initial phase.

After 5000 seconds, the current gradually decreases, stabilizing around a lower

value. This �nal phase re�ects the CubeSat's transition into a stable state with minimal

power usage, indicating e�ective control and maintenance of its attitude.
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Figure 3.8: Total current of Magnetorquers

3.6 Reaction Wheels

3.6.1 Angular Accelertion and Velocity of Reaction Wheels

The Figure 3.9 shows the angular acceleration of the CubeSat's reaction wheels

along the X, Y, and Z axes, measured in radians per second squared (rad/s²) over a

duration of 6000 seconds. Initially, from 0 to approximately 2000 seconds, the angular

acceleration for all three axes remains relatively close to zero, indicating minimal ad-

justments by the reaction wheels during this period. This stability is consistent with

the earlier graph showing high current usage by the magnetorquers, suggesting that

the magnetorquers are primarily responsible for attitude control during this phase.

Around the 2000-second mark, there is a signi�cant spike in angular acceleration,

especially in the Y (red line) and Z (yellow line) axes. This sharp increase implies a

sudden and intense correction made by the reaction wheels, possibly in response to a

large disturbance or as part of a planned maneuver. The spike reaches values above 6

rad/s² for the Y-axis and below -5 rad/s² for the Z-axis, while the X-axis (blue line)

shows a relatively smaller peak.

Following this intense correction, the angular acceleration rapidly returns to near-

zero levels and remains stable for the remainder of the observation period, from 2000

to 6000 seconds. This long-term stability indicates that the CubeSat has achieved
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Figure 3.9: Angluar Acceleration of Reaction Wheels

a steady-state condition where only minor adjustments are necessary to maintain its

orientation. The brief yet intense activity around the 2000-second mark suggests that

the reaction wheels e�ectively handled a signi�cant attitude control event, after which

they settled into a maintenance mode with minimal acceleration required.

The Figure 3.10 depicts the angular velocity of reaction wheels (RWs) in a CubeSat

over a period of 6000 seconds. The angular velocity is measured in radians per second

(rad/s) and is plotted for three axes: X (blue), Y (red), and Z (yellow).

Initially, all three axes show minimal angular velocity, indicating that the CubeSat

is in a relatively stable state with little to no rotation. Around the 2000-second mark,

there is a signi�cant spike in the Y-axis angular velocity, reaching approximately 27

rad/s. This sudden increase suggests a substantial control input or disturbance requir-

ing a rapid adjustment. The reaction wheel on the Y-axis works to counteract this

disturbance, causing the angular velocity to rise sharply before gradually decreasing.

Following this peak, the Y-axis angular velocity starts to decline and eventually

stabilizes around zero after oscillating and dampening out. The X-axis angular velocity

exhibits a smaller increase, stabilizing at a slightly negative value, around -5 rad/s. This

implies a minor correction in the X-axis rotation. The Z-axis shows a similar trend to

the X-axis, with a smaller magnitude of change and eventual stabilization around -2

rad/s.
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Figure 3.10: Angluar Velocity Of Reaction Wheels

The damping oscillations observed in all three axes indicate the system's e�ort to

achieve stabilization after the initial disturbance. Over time, the angular velocities on

all axes converge towards steady-state values, indicating successful stabilization and

control by the reaction wheels. The di�erences in the magnitudes and stabilization

times across the axes re�ect the speci�c dynamics and control strategies implemented

in the CubeSat's attitude control system.

3.6.2 Current of Reaction Wheels

The Figure 3.11 illustrates the current consumption of the reaction wheels (RWs)

in a CubeSat over a period of 6000 seconds, with the current measured in milliamps

(mA) for three axes: X (blue), Y (red), and Z (yellow).

Initially, the current for all three axes is close to zero, indicating that the reaction

wheels are either idle or maintaining a very low level of activity to keep the CubeSat

stable. Around the 2000-second mark, a signi�cant event occurs that causes a sharp

increase in the current, particularly in the Y-axis, which peaks at approximately 125

mA. This spike suggests that the reaction wheel on the Y-axis is exerting a substantial

torque to counteract a disturbance or to execute a rapid maneuver, demanding a higher

current draw to achieve the necessary rotational speed.
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Figure 3.11: Current of Reaction Wheels

The Z-axis also shows a notable, albeit smaller, negative spike in current, reaching

around -50 mA, indicating that the reaction wheel on this axis is also actively involved

in counteracting the disturbance but in the opposite direction. The X-axis experiences a

smaller positive increase in current, peaking around 20 mA, suggesting a less signi�cant

but still active role in the stabilization process.

After this disturbance, the current on all axes returns to near zero, re�ecting the

reaction wheels settling back to a low power state as the CubeSat stabilizes. The

current levels post-disturbance show minor �uctuations, indicating continuous, minor

adjustments to maintain stability.

The signi�cant spikes and subsequent return to baseline illustrate the dynamic

response of the reaction wheel system to disturbances. The higher current in the Y-

axis compared to the X and Z axes indicates that the Y-axis reaction wheel bore the

brunt of the stabilization e�ort, likely due to the nature of the disturbance or the control

strategy employed. The ability of the reaction wheels to quickly ramp up current and

then return to a low-power state demonstrates the e�ectiveness and e�ciency of the

CubeSat's attitude control system.

The Figure 3.11 displays the total current consumption of the reaction wheels (RWs)

in a CubeSat over a period of 6000 seconds, measured in milliamps (mA). The total

current is the sum of the currents drawn by the individual reaction wheels along the
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X, Y, and Z axes.

Figure 3.12: Total Current of Reaction Wheels

For the initial 2000 seconds, the total current remains close to zero, indicating that

the reaction wheels are operating at minimal levels, likely maintaining the CubeSat's

attitude without signi�cant disturbances. Around the 2000-second mark, there is a

dramatic spike in the total current, reaching a peak of approximately 250 mA. This

surge signi�es a substantial demand for power as the reaction wheels respond to a

major disturbance or execute a rapid maneuver.

The sharp increase in current aligns with the earlier observations of individual axis

currents, where the Y-axis exhibited a signi�cant increase, suggesting that the primary

control e�ort was required along this axis. The total current quickly rises to its peak

and then just as rapidly begins to decline, indicating that the reaction wheels are

quickly working to counteract the disturbance and stabilize the CubeSat.

Following the peak, the total current sharply drops and stabilizes back to a low

level, around 10-20 mA, for the remainder of the time period. This low, steady current

indicates that the CubeSat has returned to a stable state, with the reaction wheels

maintaining attitude control with minimal e�ort.

The single, prominent peak in the graph highlights the CubeSat's ability to han-

dle signi�cant disturbances e�ciently. The rapid return to low current consumption

demonstrates the e�ectiveness of the reaction wheel system in stabilizing the CubeSat
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quickly, thus minimizing power usage after the initial response. This e�cient handling

of disturbances is critical for the CubeSat's overall power management and longevity

in space.

The Figure 3.13 shows the total current consumption of both magnetorquers and

reaction wheels on a CubeSat over a period of 6000 seconds. Initially, the current

�uctuates signi�cantly, with values mostly below 100 mA, indicating active adjustments

in the early phase, likely during the initial stabilization period of the CubeSat. Around

the 1000-second mark, the current stabilizes at approximately 100 mA, suggesting

that the CubeSat has achieved a steady state in its attitude control, with both the

magnetorquers and reaction wheels working in a balanced manner.

Figure 3.13: Total Current of Magnetorquers and Reaction Wheels

A notable spike in current is observed around 1800 seconds, where it peaks to around

350 mA. This sudden increase suggests a signi�cant event or a major adjustment in

the attitude control system, possibly due to an external disturbance or a commanded

change in the CubeSat's orientation. After this peak, the current rapidly decreases,

eventually dropping to nearly zero around the 2500-second mark. This sharp decline

implies that the system might have entered a di�erent operational mode or the attitude

control demand signi�cantly reduced.

Following this event, the current stabilizes again but at a much lower level, around

50 mA. This reduced level persists for the remainder of the observation period, indi-
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cating a low power consumption phase for the attitude control system. The smoother

curve in this phase suggests less frequent adjustments, implying that the CubeSat's

attitude has become more stable or that the reaction wheels and magnetorquers are

operating more e�ciently.

3.7 Hardware Description

The hardware setup for the Attitude Determination and Control (ADC) system

of the CubeSat consists of several key components designed to ensure precise orien-

tation and stability in space. The primary actuators are three reaction wheels, each

mounted orthogonally to provide independent control over the satellite's pitch, yaw,

and roll axes. These reaction wheels are capable of generating precise torques, allowing

for �ne adjustments to the CubeSat's attitude. Complementing the reaction wheels,

magnetorquers are integrated into the system to assist with detumbling and to provide

additional control by interacting with the Earth's magnetic �eld. For attitude determi-

nation, the CubeSat is equipped with gyroscopes to measure angular velocity and star

trackers to provide accurate orientation data by observing the positions of stars. These

sensors feed data into an onboard computer, which runs advanced control algorithms,

including a Proportional-Integral-Derivative (PID) controller

3.7.1 2U CubeSat Structure

The design of a 2U CubeSat is crucial for its functionality, ensuring structural

integrity, compatibility with launch systems, and protection of internal components in

space. This comprehensive explanation explores the intricate construction and charac-

teristics of the CubeSat structure.The skeleton of a 2U CubeSat is its frame, typically

made of aerospace-grade aluminum alloys for strength and lightness. Comprising longi-

tudinal beams, lateral struts, and corner brackets, the frame is meticulously engineered

to endure the stresses of launch and operation. The frame is built in a modular man-

ner, with each 1U section featuring precisely machined components connected with

high-strength fasteners like screws, bolts, and rivets. This modular approach simpli�es

manufacturing and assembly, while also allowing easy access for maintenance and up-

grades. For our project, we have selected the ZAPHOD 2U CubeSat Structure designed
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by AAC Clyde Space.

Zaphod 2U CubeSat Structure

The ZAPHOD 2U CubeSat Structure is fully compatible with all rail-deployers,

ensuring seamless deployment. The inclusion of deployment switches guarantees com-

patibility with manned �ights and the International Space Station (ISS). This structure

has been meticulously designed with a high level of modularity, allowing for the accom-

modation of even the most unique payload con�gurations. Its lightweight and quali�ed

design maximizes internal volume, providing ample space for various components. Ad-

ditionally, the ease of access during integration and customizable internal stack layout

further enhance its versatility.

Technical Speci�cations

• Aluminum 7075 and 6082 used for primary structures

• All other materials comply with typical out-gassing requirements

• Designed and quali�ed to NASA GEVS, 14.1gRMS

• Temperature range -40C to +80C

• Four deployment switches, two on the -Z end plate and two on the rails

Length 100 mm

Width 100 mm

Height 227 mm

Weight 235 g

Table 3.1: Size and Weight of the Zaphod 2U CubeSat Structure

3.7.2 Arduino uno rev3

The Arduino UNO rev3 is an ideal board for gaining familiarity with electronics

and coding. This versatile development board features the well-known ATmega328P

and the ATMega 16U2 Processor. The Arduino Uno is a microcontroller board that

is based on the ATmega328P microchip. It o�ers 14 digital input/output pins (with 6
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Figure 3.14: the Zaphod 2u cubesat structure

of them capable of being used as PWM outputs), 6 analog inputs, a 16 MHz quartz

crystal, a USB connection, a power jack, an ICSP header, and a reset button. It

includes everything necessary to support the microcontroller. To get started, all we

need to do is connect it to a computer using a USB cable or power it with an AC-to-DC

adapter or battery. With the UNO, we can experiment without worrying too much

about making mistakes. In the worst-case scenario, we can easily replace the chip for

a small cost and start over again. The term "Uno" means "one" in Italian and was

chosen to commemorate the release of Arduino Software (IDE) 1.0. The Uno board,

along with version 1.0 of Arduino Software (IDE), served as the reference versions of

Arduino and have since evolved into newer releases. The Uno board is the �rst in

a series of USB Arduino boards and serves as the standard model for the Arduino

platform. For a comprehensive list of current, past, or outdated boards, please refer to

the Arduino index of boards.
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Figure 3.15: Arduino uno rev3 front view

Connector Pinouts

Pin Function Type Description

1 NC NC Not connected

2 IOREF IOREF Reference for digital logic V - connected to 5V

3 Reset Reset Reset

4 +3V3 Power +3V3 Power Rail

5 +5V Power +5V Power Rail

6 GND Power Ground

7 GND Power Ground

8 VIN Power Voltage Input

9 A0 Analog/GPIO Analog input 0 / GPIO

10 A1 Analog/GPIO Analog input 1 / GPIO

11 A2 Analog/GPIO Analog input 2 / GPIO

12 A3 Analog/GPIO Analog input 3 / GPIO

13 A4/SDA Analog input/I2C Analog input 4 / I2C Data line

14 A5/SCL Analog input/I2C Analog input 5 / I2C Clock line

Table 3.2: JANALOG
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Pin Function Type Description

1 D0 Digital/GPIO Digital pin 0/GPIO

2 D1 Digital/GPIO Digital pin 1/GPIO

3 D2 Digital/GPIO Digital pin 2/GPIO

4 D3 Digital/GPIO Digital pin 3/GPIO

5 D4 Digital/GPIO Digital pin 4/GPIO

6 D5 Digital/GPIO Digital pin 5/GPIO

7 D6 Digital/GPIO Digital pin 6/GPIO

8 D7 Digital/GPIO Digital pin 7/GPIO

9 D8 Digital/GPIO Digital pin 8/GPIO

10 D9 Digital/GPIO Digital pin 9/GPIO

11 SS Digital SPI Chip Select

12 MOSI Digital SPI Main Out Secondary In

13 MISO Digital SPI Main In Secondary Out

14 SCK Digital SPI serial clock output

15 GND Power Ground

16 AREF Digital Analog reference voltage

17 A4/SD4 Digital Analog input 4/I2C Data line (duplicated)

18 A5/SD5 Digital Analog input 5/I2C Clock line (duplicated)

Table 3.3: JDIGITAL

Figure 3.16: arduino uno rev3 pinouts
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ARDUINO uno rev3 datasheet

Microcontroller ATmega328P

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

PWM Digital I/O Pins 6

Analog Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328P) of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz

LED BUILTIN 13

Width 53.4 mm

Weight 25 g

Weight 235 g

Table 3.4: ARDUINO Uno Rev3 datasheet

3.7.3 Magnetorquer(CubeTorquer gen1 )

CubeTorquer is a nanosatellite magnetic torquer made by cubespace that uses a

specially treated ferrous core with ultra-low remanence and high linearity. It can be

used for detumbling, coarse attitude changes and to desaturate reaction wheels, we

chose the cubetorquer gen1 for:

• its ULTRA-LOW REMANENCE

When it comes to magnetic control on satellites, it is most important to remove

all unwanted magnetic disturbances. One of the most common disturbances is

remanent magnetic dipoles left in parts of the satellite after a torquer has been

pulsed. We use a highly specialized material for the ferrous core of our rods,

63



Simulation and Analysis

which we treat to give our rods ultra-low remanence.

• its compactness

In small satellites, compactness is a strong requirement. The way the standard

CubeSat boards are stacked makes it di�cult to have three rods to form a 3-

Axis system. We o�er a low-pro�le air-core coil that slots into the stack between

the CubeSat PCBs. In this way, we can create a very compact 3-Axis magnetic

control system.

we selected the cubetorquer gen1 size s for our project.

Figure 3.17: CubeTorquer gen1

3.7.4 Cubetorquer Gen1 Datasheet

Minimum Magnetic Moment [Am2] @ 5V ±0.24

Magnetic Gain [Am2/A] 2.8

Nominal Resistance [ohm] 29-31

Mass [g] 28

Analog Input Pins 6

Dimensions [WxLxH] [mm] 18x14x62

Max Current [mA] 150

Radiation 24kRad

Random Vibration 14g RMS

Price USD 870

Table 3.5: Cubetorquer Gen1 Size S Datasheet
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3.7.5 Ultra-low Disturbance Reaction Wheel (RWp015)

Made by blue kanyon , This ultra low disturbance reaction wheel feature an ad-

vanced lubrication system for long life and vibration isolation. It has supported mis-

sions ranging from very low Earth orbit to cislunar and interplanetary journeys , it was

made with Brushless DC motors, ultra-smooth bearings and an advanced lubrication

system that ensures low jitter performance and long life for any mission .Made in the

U.S. and applicable for DOD applications. This reaction wheel is operating on-orbit,

supporting numerous successful missions. To date, there is more than 500 Blue Canyon

Technologies Reaction Wheels on orbit . and its key advantages are :

• High-accuracy observer-based control design

• Low jitter with �ne balance available

• Wheel Life Test ongoing

• High torque-to-speed ratio

Figure 3.18: RWp015
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RWp015 Datasheet

MAX MOMENTUM 0.015 Nms

MAX TORQUE 0.004 Nm

CONTROL ACCURACY AT MAX TORQUE 2.0 rad

MASS 0.13 kg

Dimensions 42 x 42 x 19 mm

SUPPLY VOLTAGE 10 - 14 VDC

POWER AT MAX MOMENTUM < 1 W

PEAK POWER 5.5 W

POWER AT ZERO MOMENTUM 0 W

PEAK REGENERATED POWER 0.88 W

CONNECTOR TYPE Nano receptacle A29400-031

PROTOCOL RS-422

ELECTRONICS DCE

VIBRATION QUALIFICATION GEVS Quali�cation Pro�le

OPERATING TEMPERATURE -20 °C to +60 °C

SURVIVAL TEMPERATURE -30 °C to +70 °C

SYSTEM RADIATION HARDNESS (Si) > 40 Krad

DESIGN LIFE > 40 Krad

Table 3.6: RWp015 datasheet

3.7.6 Magnetometre ( HMC2003 )

made by Honeywell , HMC2003 is a high sensitivity, three-axis magnetic sensor

hybrid assembly used to measure low magnetic �eld strengths. Honeywell's most sen-

sitive magneto-resistive sensors (HMC1001 and HMC1002) are utilized to provide the

reliability and precision of this magnetometer design. The HMC2003 interface is all

analog with critical nodes brought out to the pin interfaces for maximum user �ex-

ibility. The internal excitation current source and selected gain and o�set resistors,

reduces temperature errors plus gain and o�set drift. Three precision low-noise in-

strumentation ampli�ers with 1kHz low pass �lters provide accurate measurements

while rejecting unwanted noise. Applications include: Precision Compassing, Naviga-
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tion Systems, Attitude Reference, Tra�c Detection, Proximity Detection and Medical

Devices. we selected it for its features :

• 20-pin Wide DIP Footprint (1� by 0.75�)

• Precision 3-axis Capability

• Factory Calibrated Analog Outputs

• 40 micro-gauss to ±2 gauss Dynamic Range

• Analog Output at 1 Volt/gauss (2.5V @ 0 gauss)

• Onboard +2.5 Volt Reference

• +6 to +15 Volt DC Single Supply Operation

• Very Low Magnetic Material Content

• -40c to 85c Operating Temperature Range

Figure 3.19: HMC2003 Honeywell
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Figure 3.20: HMC2003 Honeywell Block Diagram

HMC2003 Magnetometer Datasheet

Characteristics Min Typ Max

Sensitivity(V/gauss) 0.98 1 1.02

Null Field Output(v) 2.3 2.5 2.7

Resolution(ugauss) // 40 //

Field Range(gauss) -2 // 2

Output Voltage(v) 3.92 // 4.08

Bandwidth (kHz) // 1 //

Resistance(ohms) // // 10.5

Sensitivity(mA/gauss) // 47.5 //

Current(mA) // // 200

Resistance(ohms) // 4.6 6

Current(Amps) 2.0 3.2 4.5

Field Sensitivity(ppm/C) // -600 //

Temperature(°C) -40/-55 // 85/125

Vibration(g rms) // 2 //

Supply Voltage (VDC) 6 // 15

Supply Current (mA) // // 20

Table 3.7: HMC2003 datasheet
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3.7.7 Star Tracker ( NST )

Made by Blue Canyon Technologies ,Nano Star Tracker (NST) is quali�ed beyond

GEVS level environments, providing a low SWaP-C solution with sunning capabilities.

The turnkey starlight-in, quaternion-out system integrates easily and tracks down to

7.5 magnitude. With an on-board star catalog of more than 20,000 stars, this tracker is

the ideal �t for standalone missions or constellations. Made in the U.S. and applicable

for DOD applications. There are currently more than 150 star trackers on-orbit with

more than 250 years of cumulative �ight time. The longest mission to date for the NST

was launched in 2016 with the Cygnss satellite for hurricane forecasting. it is designed

with technical capabilities and radiation tolerance suited to missions in both LEO

and GEO. Blue Canyon Technologies Star Trackers include internal control electronics

ba�es. External ba�es on the mid-extension and full-extension units narrow sun and

earth exclusion angles. we selected the standard NST for these features :

• Nearly 500 star trackers manufactured with more than 150 on-orbit

• Low SWaP-C

• Tracks stars down to 7.5 magnitude

• On-board star catalog features more than 20,000 stars

• Lost-in-space star ideni�cation

• Shock test quali�ed

• EMI / EMC tested to MIL-STD-461

• User friendly RS-422 or RS-485 interface
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Figure 3.21: standard NST

Standard NST Datasheet

FIELD OF VIEW 10 x 12 deg

SOLUTION RATE 5 Hz

MAX SLEW RATE > 2 deg/sec

LOST-IN-SPACE STAR IDENTIFICATION < 4 sec (up to 1.5 deg/sec)

SKY COVERAGE > 99%

BAFFLE SUN EXCLUSION ANGLE 45 deg

BAFFLE EARTH EXCLUSION ANGLE 25 deg

DIMENSIONS 10 x 5.5 x 5 cm

MASS 0.35 kg

SUPPLY VOLTAGE 5 V or 28 V

PEAK POWER CONSUMPTION < 1.5 W (5 V) or < 3.5 W (28 V)

SIGNAL INTERFACE RS-485 or RS-422

OPERATING TEMPERATURE -20 °C to +50 °C

SURVIVAL TEMPERATURE -30 °C to +70 °C

VIBRATION QUALIFICATION GEVS Quali�cation Pro�le

DESIGN LIFE > 10 years (LEO)/> 5 years (GEO)

Table 3.8: Standard NST Datasheet
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3.7.8 Gyroscope(MPU6050)

MPU6050 sensor module is complete 6-axis Motion Tracking Device. It com-

bines 3-axis Gyroscope, 3-axis Accelerometer and Digital Motion Processor all in small

package. Also, it has additional feature of on-chip Temperature sensor. It has I2C

bus interface to communicate with the microcontrollers. It has Auxiliary I2C bus to

communicate with other sensor devices like 3-axis Magnetometer, Pressure sensor etc.

If 3-axis Magnetometer is connected to auxiliary I2C bus, then MPU6050 can provide

complete 9-axis Motion Fusion output.

Figure 3.22: MPU6050

MPU6050 Module Pinout

The MPU-6050 module has 8 pins

• INT: Interrupt digital output pin.

• AD0: I2C Slave Address LSB pin. This is 0th bit in 7-bit slave address of device. If

connected to VCC then it is read as logic one and slave address changes.

• XCL: Auxiliary Serial Clock pin. This pin is used to connect other I2C interface

enabled sensors SCL pin to MPU-6050.

• XDA: Auxiliary Serial Data pin. This pin is used to connect other I2C interface

enabled sensors SDA pin to MPU-6050.

• SCL: Serial Clock pin. Connect this pin to microcontrollers SCL pin.
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Figure 3.23: MPU6050 Module Pinout

• SDA: Serial Data pin. Connect this pin to microcontrollers SDA pin.

• GND: Ground pin. Connect this pin to ground connection.

• VCC: Power supply pin. Connect this pin to +5V DC supply.

• Slave Write address(SLA+W): 0xD0

• Slave Read address(SLA+R): 0xD1

MPU-6050 has various registers to control and con�gure its mode of operation

MPU6050 Module features

The triple-axis MEMS gyroscope in the MPU-6050 includes a wide range of features :

• Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a user-

programmable fullscale range of ±250, ±500, ±1000, and ±2000°/sec

• External sync signal connected to the FSYNC pin supports image, video and GPS

synchronization

• Integrated 16-bit ADCs enable simultaneous sampling of gyros

• Enhanced bias and sensitivity temperature stability reduces the need for user cali-

bration
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• Improved low-frequency noise performance

• Digitally-programmable low-pass �lter

• Gyroscope operating current: 3.6mA

• Standby current: 5µA

• Factory calibrated sensitivity scale factor

• User self-test

• Sensitivity of 131, 65.5, 32.8, or 16.4 LSBs per dps

• Output data rate (ODR) range of 8kHz to 1.25Hz

• Operating voltage range of 2.375V to 3.46V for the MPU-6050, and 2.375V to 5.5V

for the MPU-6050A

• I2C serial interface with a maximum clock frequency of 400kHz

• 8-bit and 16-bit register access modes

• Digital Motion Processor (DMP) for complex motion processing
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Conclusion

In this thesis, we successfully Controled the CubeSats using reaction wheels. The

primary objective was to enhance the CubeSat's ability to maintain a precise orienta-

tion in space, which is crucial for various scienti�c and commercial applications. The

simulations demonstrated the e�cacy of our approach. The results showed signi�cant

improvements in attitude determination accuracy and control precision. Our system

e�ectively minimized disturbances and corrected deviations, ensuring that the CubeSat

maintained its desired orientation with high reliability.

Moreover, the integration of advanced sensor fusion techniques enhanced the ac-

curacy of attitude determination, providing precise real-time data critical for control

decisions. The successful implementation of these techniques underscores the potential

of reaction wheels as a viable solution for attitude control in small satellites. This

research contributes to the broader �eld of small satellite technology by providing

a scalable and e�cient method for attitude control. Future work could explore the

integration of other control mechanisms, such as thrusters, to further enhance the

performance and versatility of CubeSat systems.
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