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Abstract

This thesis presents a comprehensive investigation into the prediction
and optimization of surface roughness in mechanical machining processes.
Surface quality plays a critical role in ensuring the functionality and aesthet-
ics of mechanical parts, making accurate prediction and control of surface
roughness imperative in manufacturing operations.

The study begins with an overview of surface quality, emphasizing the
importance of achieving precise dimensions and surface finishes in mechanical
part manufacturing. Subsequently, a review of state-of-the-art techniques
for predicting surface roughness is conducted, covering machining theory-
based approaches, designed experiments-based methodologies, and artificial
intelligence-based models.

The focus then shifts to the implementation of an Artificial Neural Network-
Particle Swarm Optimization (ANN-PSO) model for surface roughness pre-
diction. The training process, model architecture, optimization of model pa-
rameters, and presentation of results are detailed in the subsequent chapters.
Through meticulous experimentation and parameter optimization, the ANN-
PSO model demonstrates improved predictive accuracy in surface roughness
estimation across various machining conditions.

Results obtained from experiments validate the efficacy of the ANN-PSO
model in predicting surface roughness, with significant improvements ob-
served in predictive accuracy compared to initial predictions. The conclu-
sion summarizes the findings of the study, discusses their implications, and
outlines potential avenues for future research in the field of surface quality
prediction and optimization in mechanical machining processes.

Overall, this thesis contributes to advancing the understanding and con-
trol of surface roughness in mechanical machining processes, paving the way
for enhanced manufacturing efficiency and product quality in various indus-
tries.
Key words: Prediction, Optimization, Surface roughness, Machining, Ar-
tificial intelligence.



Résumé

Cette thèse présente une enquête approfondie sur la prédiction et l’opti-
misation de la rugosité de surface dans les processus d’usinage mécanique.
La qualité de surface joue un rôle crucial dans la garantie de la fonctionnalité
et de l’esthétique des pièces mécaniques, rendant la prédiction précise et le
contrôle de la rugosité de surface impératifs dans les opérations de fabrica-
tion.

L’étude commence par un aperçu de la qualité de surface, en mettant
l’accent sur l’importance de l’obtention de dimensions précises et de finitions
de surface dans la fabrication de pièces mécaniques. Ensuite, une revue des
techniques de pointe pour la prédiction de la rugosité de surface est effectuée,
couvrant les approches basées sur la théorie de l’usinage, les méthodologies
basées sur les expériences conçues et les modèles basés sur l’intelligence arti-
ficielle.

L’accent est ensuite mis sur la mise en œuvre d’un modèle Réseau de Neu-
rones Artificiels-Optimisation par Essaim Particulaire (ANN-PSO) pour la
prédiction de la rugosité de surface. Le processus de formation, l’architecture
du modèle, l’optimisation des paramètres du modèle et la présentation des
résultats sont détaillés dans les chapitres suivants. Grâce à une expérimentation
méticuleuse et à l’optimisation des paramètres, le modèle ANN-PSO démontre
une amélioration de la précision prédictive dans l’estimation de la rugosité
de surface dans diverses conditions d’usinage.

Les résultats obtenus à partir des expériences valident l’efficacité du modèle
ANN-PSO dans la prédiction de la rugosité de surface, avec des améliorations
significatives observées dans la précision prédictive par rapport aux prédictions
initiales. La conclusion résume les résultats de l’étude, discute de leurs im-
plications et esquisse des avenues potentielles pour la recherche future dans
le domaine de la prédiction et de l’optimisation de la qualité de surface dans
les processus d’usinage mécanique.

Dans l’ensemble, cette thèse contribue à faire progresser la compréhension
et le contrôle de la rugosité de surface dans les processus d’usinage mécanique,
ouvrant la voie à une efficacité de fabrication accrue et à une qualité de pro-
duit améliorée dans diverses industries.
Mots clés : Prédiction, Optimisation, Rugosité, Usinage, Intelligence arti-
ficielle.
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General introduction

1. Context
In practical manufacturing, mechanical parts often cannot be produced to the exact di-

mensions required by the designer due to inherent inaccuracies in the manufacturing pro-
cesses. These imperfections are acknowledged as manufacturing defects. To minimize these
defects and manufacture high-quality parts within reduced timeframes, machining is per-
formed using high-speed multi-axis machines. The objective is to select appropriate machin-
ing conditions to achieve the desired finished surface using optimization tools and artificial
intelligence.

In this study, we employed the ANN-PSO model to predict surface roughness.

2. Problem Statement
In the manufacturing industry, achieving ideal dimensions for mechanical parts poses a

significant challenge due to the inherent limitations of fabrication processes. These limita-
tions result in imperfections known as manufacturing defects. To mitigate these defects and
produce high-quality parts efficiently, machining is conducted using high-speed multi-axis
machines. The aim is to identify suitable machining conditions to attain the desired surface
finish through the utilization of optimization tools and artificial intelligence techniques. In
this context, the prediction of surface roughness plays a crucial role in ensuring the quality
of machined components.

3. Objectives
The primary objective of this study is to enhance the quality of machined surfaces through

the prediction of surface roughness using the ANN-PSO model. By employing advanced
computational techniques, we aim to optimize machining parameters and leverage artificial
intelligence to achieve the desired surface finish. Through this approach, we seek to minimize
manufacturing defects and improve the overall quality of mechanical parts within a reduced
time frame.

1



General introduction

4. Organization of the Document
This thesis is organized into several chapters:

• The first chapter provides an overview of surface quality, highlighting the importance
of achieving precise dimensions and surface finishes in mechanical parts manufacturing.

• The second chapter delves into the state-of-the-art techniques for predicting surface
roughness, including machining theory-based approaches, designed experiments-based
approaches, and artificial intelligence-based approaches.

• The third chapter details the implementation of the ANN-PSO model for surface rough-
ness prediction, including the training process, model architecture, optimization of
model parameters, and presentation of results.

The concluding chapter summarizes the findings of the study, discusses their implications,
and outlines potential avenues for future research in the field of surface quality prediction
and optimization in mechanical machining processes.

Univ-Blida/Mechanical Engineering: 2024 2



Chapter 1

Overview of surface quality

1.1 Introduction

In modern industry, the goal is to produce high-quality products at low cost and in a
short time. Automated and flexible manufacturing systems are used for this purpose, as
well as machine tools capable of achieving high accuracy and very low processing time
[Choudhury and El-Baradie, 1997].

In recent years, the industrial sector, particularly the machine tool manufacturing sector,
has made significant progress. The machines have diversified both in terms of their structure
and the types of machining offered, both conventional and unconventional. In addition,
the emergence of new high-performance tools and innovative machining strategies meets the
growing needs in terms of quality and complexity of mechanical parts. At the same time,
in today’s consumer environment, the pressure to reduce production costs while ensuring
increased part quality has become unavoidable.

1.2 Surface Quality

Producing good quality, appropriate surface finish, and geometry are important for the ma-
chined workpiece. The surface finish or surface texture based on [Abernethy et al., 1985]
is defined as geometrical irregularities of solid materials surface while surface roughness is
defined as the finer irregularities of the surface texture, usually resulting from the inherent
action of the production process, such as feed marks produced during machining. The surface
roughness is commonly indicated by parameters such as average roughness (Ra) or root mean

3



Overview of surface quality

square roughness (Rq) and calculated by Eqts. 1.1 and 1.2, respectively.[Subbiah, 2014]

Ra = 1
L

∫ L

0
[Y (x)] dx (1.1)

Rq =
√

1
L

∫ L

0
[Y (x)]2 dx (1.2)

where:
L is the sampling length
Y(x) is the ordinate of the profile curve

1.2.1 Importance of surface quality

At one time measurement of the surface was considered largely irrelevant but it soon became
apparent that the finish on the surface was extremely sensitive to any changes in the process.
Hence it became logical to assume that measurement of the surface could be used to control
the process of manufacture [Whitehouse, 1997].

The geometric and material properties of surfaces have a significant impact on friction,
wear, fatigue [Ben Mhenni, 2007], corrosion, as well as electrical and thermal conductivity
[Serope, 1928]. An evaluation of the surface texture is essential for product quality control.

1.2.2 Problems related to surface quality

The machining surface concept was developed with the aim of improving the quality of the
machined surfaces by combining a surface representation with the machining paths. The
qualitative advantages result from the integration of design functional constraints into the
construction of the machining surface, thus enabling the machined surface to meet the re-
quirements of the designer. From the point of view of trajectory generation, the improvements
arise from the continuous surface representation of the tool path, as opposed to conventional
approaches where the path is a discrete representation.

Every tool geometry and for every type of machining, whether 3 or 5 axes, end or sidewall,
corresponds to a more precise definition of the machining surface. In three-axis milling with a
hemispherical tool, the definition of the machining surface corresponds to the parallel surface
if the fixed point under consideration is the center of the sphere modeling the active part of
the tool.

The generation of trajectories using the parallel surface has already been the subject of
work [Kim, 1995]. Among the problems encountered, the most restrictive are the problems

Univ-Blida/Mechanical Engineering: 2024 4
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of loops [Maekawa et al., 1997] and precision [Farouki, 1986]. The problem of loops or self-
intersection of parallel surfaces arises from using a tool whose radius is greater than the
concave radius of curvature of the surface. Thus, to avoid loop problems, tools with a radius
smaller than the smallest concave radius of the surface to be machined are used. This seems
consistent in the context of finish machining to generate iso-peak paths. Accuracy problems
arise from the model of representation of parallel surfaces. Indeed, in the majority of cases,
it is not possible to model these surfaces by a parameterized surface of type NURBS without
approximation.

1.2.3 Surface finish and roughness

Surface finish refers to the surface quality of a part or material after a machining or manu-
facturing process. It is evaluated in terms of roughness, flatness, surface defects, and other
characteristics that define the texture and appearance of the surface. In the field of machin-
ing, surface finish is often measured in terms of parameters such as roughness, the dimen-
sional and geometric quality of the part produced, and the quality of the surfaces obtained
[Pateloup S, 2011].

The surfaces, regardless of their methods of production, have defects compared to the
prescribed theoretical surface. The latter are of different orders ranging from a shape defect
to a crystalline defect of interatomic dimension [Bhushan, 2012]. The surface finish is ob-
servable through micro and macro geometric defects identifiable at different scales (orders)
and decomposable into several cumulative orders (Figure 1.1) . Macrogeometric defects cor-
respond to orders 0 to 2, while roughness (microgeometric defects) is at the level of orders 3
to 6. Surface finish defects, in mechanical engineering, essentially refer to machining by ma-
terial removal [Davim, 2010]. A first orientation defect, macro geometric (order 0), appears
in relation to the theoretical profile. It corresponds to a geometrical defect of the NCM. A
macro-geometric (order 1) defect in form is compounded by the previous defect in orientation.
It is related to the machine (quality of the kinematic structure, elastic deformations) and
to poor fixings of the tool or workpiece. The last macro-geometric defect is the undulation
(order 2). It is mainly caused by eccentric tool rotation, vibration, severe tool wear and/or
inhomogeneous machined material.
A periodic roughness defect, microgeometric (order 3), is superimposed on the undulation

defect (macrogeometric defect). The latter is formed by short-wavelength fluctuations of the
surface characterized by dips and protrusions. The periodic roughness comes mainly from
the machine kinematics and the morphology of the chips. This is followed by an aperiodic
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Figure 1.1: The different scale orders of surface finish defects. [Lebon, 2017]

roughness (order 4) due to wear of the tool tip and the way the chips are formed. At smaller
scales, there are aperiodic defects in structure and crystal formation (orders 5 and 6), result-
ing from the decrystallization mode, irregularities related to chemical reactions, deformations
of the crystal networks, physical and chemical alterations occurring in the fine structure of
the material. In addition to the previously defined micro and macro geometric orders, the
[ISO4287 98] standard associates three prefixes to the basic parameters. Prefix parameters
P: These are parameters calculated on the primary profile, a general profile corresponding
to orders 2 to 4.Prefix parameters W: These are parameters calculated on the wave profile
corresponding to order 2.Prefix parameters R: These are parameters calculated on the surface
roughness profile corresponding to orders 3 and 4. The R profile is calculated by applying a
filter that removes the wavelength elements from the W profile. The R profile is therefore an
intentional modification of the P profile. This is the profile used for the roughness study.
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1.2.3.1 Definition of profilometry (2D and 3D)

According to [Métrologie, 1999], profilometry consists of characterizing the geometry of a
surface by focusing only on the variations of the side Z(X, Y) locally normal to the mean
surface as a function of the X and Y parameters of position on the surface, at different scales.

Two scales can be studied:

• The scale of the entire part (macroscopic scale): Examine the deviations of the average
surface area from a perfect surface of simple shape (for example, plane, sphere, cylinder,
or cone). In this type of study, the roughness is determined by specifying a local average
surface area.

• The microscopic scale (a few micrometers or a few tens of micrometers in X and Y):
this is a question of what is called roughness, which will generally not be studied over
the entire surface, but on a few intelligently distributed samples.

Two types of profilometry can be defined:

• 2D profilometry: Consists of analyzing a single profile of the sample Z(X) surface.
In mathematics, it is a one-dimensional (1D) analysis that allows the height to be
represented at any point with respect to a reference line.

• 3D profilometry: Consists of analyzing many parallel profiles Z(X, Y). In mathematics
or signal processing, it corresponds to a 2D analysis (2D image). This analysis makes
it possible to identify the three-dimensional topography of a surface.[Lebon, 2017]

The [ISO4287 98] [Iso-4287, 1998] standard defines 14 2D parameters divided into 4 classes
(amplitude parameters, spacing parameters, hybrid parameters, curves and associated param-
eters). Similarly, the [ISO25178-2 12] [Iso-25178-2, 2012] standard defines 32 3D parameters
divided into 5 classes (height parameters, spacing parameters, hybrid parameters, curves and
associated parameters, miscellaneous parameters) (Table 1.1). There is a similarity between
the definitions of the two classes 2D and 3D, as well as an equivalence between the 2D and
3D parameters. I.e., when possible, there is a 3D parameter homologous to the 2D parameter.

The arithmetic mean deviation of the evaluated profile (Ra) corresponds to the arith-
metic mean of the absolute values of the y-intercepts within a base length defined by the
standard [ISO4287 98]. It is almost the only roughness parameter involved in the eval-
uation of surface integrity for several authors [Yin L, 2003] [Yin L, 2006b] [Yin L, 2006a]
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Table 1.1: Summary of standard roughness parameters

14 2D Profile Roughness Parameters
Amplitude parameters Rp, Rv, Rz, Rc, Rt, Ra, Rq, Rsk, Rku
Spacing parameter RSm
Hybrid Parameter Rq
Curves and Associated Pa-
rameters

Rmr(c), Rc, Rmr

32 3D Surface Roughness Parameters
Amplitude parameters Sq, Ssk, Sku, Sp, Sv, Sz, Sa
Spacing parameter Sal, Str
Hybrid Parameter Sdq, Sdr
Curves and Associated Pa-
rameters

Smr(c), Smc(mr), Sk, Spk,Svk, Smr1, Smr2, S, Spq, Smq,
Sxp, Svs(c), Srel(c), Svfc, Safc, Vv, Vvv, Vvc, Vm(p), Vmc

Miscellaneous parameter Std

[Klopfstein M. J, 2011] [Institute, 1986]. The characterization of roughness by this parame-
ter is also widely established in dentistry. The major criticism of the Ra parameter is that it
doesn’t distinguish between dips and protrusions. There are roughness parameters that are
very sensitive to surface dips and protrusions and especially to extreme values. Of these, the
first, Rt, corresponds to the total height of the profile. It is the sum of the greater of the
profile protrusion heights and the greater of the profile trough depths within the evaluation
length defined by the standard [ISO4287 98]. The second, Rz, is the maximum height of the
profile. It is the sum of the greater of the profile projection heights and the greater of the
profile trough depths within a base length (different from the evaluation length) defined by
the [ISO4287 98] standard. For 3D parameters, the parameter Sa (arithmetic mean height
of the limited-scale surface) is the counterpart of Ra. This is the arithmetic average of the
absolute value of the ordinates within a definition area defined by the standard [ISO25178-2,
12]. The Sz parameter (maximum surface height at limited scale) characterizes peaks and
valleys in 3D. This is the homologous parameter of Rz and corresponds to the sum of the
greatest peak heights and the greatest pit depths within a definition zone.

The Sq parameter (RMS Height of the Limited Scale Surface) is the root mean square
(RMS) of the y-values within a definition box. The calculation of Sq is equivalent to a
standard deviation calculation of roughness. So, for a given Sa, a surface with a few large
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peaks/pits spread over a smoother nominal surface will have a higher Sq.

1.2.3.2 Correlations between Functionalities and roughness parameters

Since roughness has been identified as an essential component of IS in the representativeness
of features, it is necessary to deepen it. The choice of roughness parameters to best represent
the expected functionalities is essential. Each selected parameter must be in agreement with
the functionality to be represented (Petropoulos et al) [Petropoulos G. P, 2010] identified the
following correlations between the functionalities and the 2D roughness parameters (Tab.2).

Table 1.2: Significant features of 2D roughness parameters [Petropoulos G. P, 2010]. (**pro-
nounced influence *normal influence)

Functionalities Ra, Rq Rp, Rpm Rt, Rz Rsk Rku RSm Wa
Friction * ** * * * * *

Fatigue (cracks) * * ** *
Thermal conductivity * ** ** *
Electrical conductivity * * * *

Light Reflection **
Usury * ** ** ** * * *

Lubrification * * ** ** * ** **
Airtightness * ** ** ** **
Corrosion * * * *

Assemblage * ** ** **

It appears that the Ra/Rq parameters have an impact on 90% of the identified function-
alities. Secondly, the Rt/Rz parameters have a pronounced influence on 80% of the selected
features. In most cases, a set of parameters is required to define the roughness of a surface
representing a feature. In the same way as associating components with a feature, it is pos-
sible to associate multiple parameters with a component. Each parameter has a different
level of representativeness (relative weight) of functionality. The same parameter can be
assigned different weights when it occurs in multiples components. A set of components or a
set of parameters is often required to define a feature. However, many authors still evaluate
surface integrity 38 through the independent measurement of parameters from each other,
without weighting the parameters in line with the importance given to the functionality(s)
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they represent. "For example, from a dental point of view, it can be interesting to give more
weight to the quality of the edge of a crown (chipping) rather than to the roughness of the
surface when machining fragile materials. This weighting will make it possible to choose the
most appropriate process parameters." [Lebon, 2017]

1.2.4 Surface Finish Analysis

1.2.4.1 Context

Surface roughness refers to the evolution of the surface area compared to the average surface.
The DIN4760 standard defines deviation orders [Fuer, 1982]. [Benardos and Vosniakos, 2003]
describe these deviation orders. They indicate that:

The first and second orders of deviation relate respectively to shape, i.e. flatness, round-
ness, etc., and to undulation. They are caused by machine tool errors, part deformation,
misconfigurations, clamping, vibration and material inhomogeneity of the workpiece.

The third and fourth order of deviation refer to periodic grooves and cracks and squan-
dering that are related to the shape and condition of the cutting edges, chip formation and
process kinematics.

The fifth and sixth order of deviation referring to the material structure of the part which
is related to physico-chemical mechanisms that act on the grains and the lattice scale (slip-
page, diffusion, oxidation, residual stress, etc.)
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Figure 1.2: Diagram showing the parameters influencing surface roughness.

Numerous parameters related to the machining processes and/or the properties of the
parts influence the surface roughness. Figure 1.2 shows a non-exhaustive diagram of these
parameters.

1.2.4.2 Three-dimensional analysis

1.3 Multi-axis machining

the pressure to reduce production costs while ensuring increased part quality have led to the
widespread adoption of multi-axis machining and the development of High Speed Machining
(HSC) with the emergence of new roughing and finishing machining strategies, whether in
2D1/2 or 3D.

Technological advances in the field of machine tools have been remarkable, especially with
regard to numerical controls and drive axes. The travel and rotation axes have become much
more dynamic, especially thanks to the use of high-torque motors. These advances have also
been accompanied by significant improvements in cutting tools, which has enabled a major
evolution of HSC, resulting in a radical reduction in production times.
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Today, the industry has a wide range of machine tools, whether flexible or specialized,
small or large, with or without HSC, with 3-axis, 5-axis or more. However, despite this di-
versity, the literature presents different structures of multi-axis machine tools, with generally
two types of machines mainly used: those with 3 axes and those with 5 axes. [Karlo, 2009]

1.3.1 Fundamentals of multi-axis machining

Multi-axis machining refers to a machining process that involves moving the cutting tool
along multiple axes simultaneously to create complex shapes and surfaces [Lee R, 1997]. It is
particularly useful for achieving geometric variety, high precision, and machining of sculpted
surfaces. Geometric errors in multi-axis machining have a direct impact on the position
of the tool tip, leading to a reduction in machining accuracy, making it crucial to identify
and correct these errors [Cheng Q, 2014]. Optimizing tool posture in multi-axis machining
is essential to ensure collision-free operations and maximize the capabilities of multi-axis
milling machines [Lauwers B, 2003].

Multi-axis machining offers advantages over traditional machining methods by offering
an increased number of degrees of freedom, allowing for a trade-off between performance
and economy [Gasick J, 2021]. It is widely applied in various industrial machines such as
precision CNC machine tools and laser cutting machines [Wang S, 2021]. The use of multi-
axis machine tools in the machining of complex parts such as aircraft turbine discs results in
accurate dimensions, high quality, and the required surface roughness [Lee J, 2022].

Efficient toolpath generation is essential for multi-axis machining, especially roughing
operations, to ensure optimal material removal and surface finish [Umehara T, 2007]. The
integration of post-processors for five-axis machine tools plays a crucial role in increasing the
productivity and automation of multi-axis machining operations [She C, 2012]. The linear
axis, a fundamental component of multi-axis machine tools, requires accurate measurement
and compensation of geometric errors to ensure machining accuracy [Zhang Z, 2011].

1.3.2 Advantages and Challenges of Multi-Axis Machining

Multi-axis machining offers many advantages and applications in modern manufacturing
processes. It provides increased flexibility and precision in machining complex geometries,
such as sculpted surfaces and turbines [Chen et al., 2022] [Lee R, 1997]. Multi-axis ma-
chining allows for higher metal removal rates, shorter cutting times, and improved surface
finishes compared to traditional three-axis machining [Hong et al., 2011]. In addition, it
allows for the production of precise parts with better surface finishes after a segment of
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the part has been molded, demonstrating its versatility in hybrid manufacturing processes
[Kelkar and Koc, 2008].

In addition, multi-axis machining is crucial for high-precision machining of multi-axis,
high-speed, variable-curvature parts, highlighting its importance in achieving complex de-
signs with outstanding engineering applications [Jiang et al., 2021]. The use of multi-axis
machining centers, especially five-axis centers, has been demonstrated to improve the quality
and efficiency of machining operations compared to lower-axis machines. This advancement
is particularly beneficial for the processing of blades and other components requiring complex
geometries and high precision [Dai and Ren, 2016].

However, despite its advantages, multi-axis machining faces challenges such as low rigid-
ity and low vibration resistance compared to three-axis machining [Zhao et al., 2010]. To
solve these problems, research focuses on improving the positioning accuracy of multi-axis
machine tools [Lee and Yang, 2010]. In addition, the accuracy of multi-axis machining is
highly dependent on the tracking error of the control system, which highlights the need for
advanced control strategies to improve machining accuracy [Hu and Gai, 2009].

1.4 Machining operation

Many manufactured products require machining at some stage of their production sequence.
Machining is the removal of unwanted materials (machining allowance) from the workpiece
so as to obtain a finished product of the desired size, shape, and surface quality. Generally,
machining ranges from relatively rough cleaning of castings to high-precision micromachining
of mechanical components that require narrow tolerances. The removal of the machining
allowance through cutting techniques was first adopted using simple handheld tools made
from bone, stick, or stone that were replaced by bronze or iron. The water, the steam, and,
later, the electricity were used to drive such tools in the power-driven metal-cutting machines
(machine tools). The development of new tool materials opened a new era to the machining
industry where machine tool development took place. Nontraditional machining techniques
offered alternative methods for machining parts of complex shapes in harder, stronger, and
tougher materials that were difficult to cut by the traditional methods.[El-Hofy, 2018]

1.4.1 Classification of Machining Processes

Traditional machining requires a tool that is harder than the workpiece that is to be ma-
chined. This tool penetrates into the workpiece for a certain depth of cut. A relative motion
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Figure 1.3: classification of machining processes

between the tool and workpiece is responsible for form and generation cutting to produce
the required shapes, dimensions, and surface quality. Such a machining arrangement in-
cludes all machining by cutting (C) and mechanical abrasion (MA) processes. The absence
of tool hardness or contact with the workpiece makes the process nontraditional, such as
the erosion processes (E) by electrochemical and thermal machining methods (see Figure
1.3).[El-Hofy, 2018]

1.4.2 Machining by Cutting

Figure 1.3 shows the main components of a typical metal-cutting process. The machining
system includes the tool, the workpiece, and the machine tool that controls the workpiece
and tool motions required for the machining process. Table 1.1 shows the different tool and
workpiece motions for some important metal-cutting operations. During machining by cut-
ting, the tool is penetrated into the workpiece as far as the depth of cut. Cutting tools have
a definite number of cutting edges of a known geometry. Moreover, the machining allowance
is removed in the form of visible chips. The shape of the produced workpiece depends on the
relative motions of the tool and workpiece. In this regard, three different cutting arrange-
ments are possible, as depicted in Figure 1.3.[El-Hofy, 2018]
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1.4.3 Machining operations

1.4.3.1 Turning

Turning utilizes a single cutting tool to create a surface of revolution. The cylindrical work-
piece is rotated around its axis while a cutting tool is fed parallel to the axis of rotation. As
the cutting tool is engaged into the workpiece, a new surface of revolution is generated by
removing a layer of material whose thickness is equal to the depth of the tool engagement.
A typical machine tool that generates the necessary motions for carrying out this operation
is an engine lathe. A typical engine lathe is shown in (Figure 1.4). CNC lathe operates on
similar kinematics principles. The machine tool provides a primary motion to the workpiece
in revolutions per minute and a secondary motion to the cutting tool in millimeters per rev-
olution. The combined motion that generates the surface is the vector addition of these two
motions. For most practical applications, the feed motion is much smaller than the primary
motion and the cutting speed is determined by the primary motion alone.[El-Hofy, 2018]

Figure 1.4: Principal components and movements of a typical lathe
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Figure 1.5: Cutting geometry in turning

The following relationships apply to single point tools with small corner radius or when
the depth of cut is very large as compared to the corner radius (Figure 1.5) shows the cutting
geometry with a single point cutting tool.
The cutting speed is determined by the rotational speed of the spindle, N, given in rev/min,
and the workpiece initial and final diameters, Di and Do, respectively [Sheikh-Ahmad, 2009]

v = ΠN
Di − D0

2
∼= ΠNDi (1.3)

The average feed motion advances the tool per revolution along a specified direction. The
feed, F , is given in rev/min and the feed speed, vf, is related to the feed by

vf = f N (1.4)

The radial depth of cut describes the thickness of material removed from the workpiece
and is given by

ap = Di − D0

2 (1.5)

1.4.3.2 Milling and Trimming

In milling, material is removed from the workpiece by a rotating cutterhead that may have
more that one active cutting edge. The types of milling operations that are most common in
machining are peripheral milling or profiling and end milling. (Figure 1.6a) illustrates these
milling operations. Peripheral milling uses the cutting edges on the periphery of the tool.
The machined surface is parallel to the axis of rotation of the cutter and the engagement
into the workpiece is in the radial direction of the cutter (Figure 1.6b). Peripheral milling is
more appropriately called edge trimming because the tool diameter is usually small and the
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axial engagement encompasses the entire thickness of the workpiece. End milling is similar
to peripheral milling, except that the axial engagement may be less than the thickness of the
part and a slot is obtained.

(a) End Milling (b) Edge Trimming

Figure 1.6: Types of milling operations [Sheikh-Ahmad, 2009]

The machine tool most commonly used is a vertical milling machine. The machine tool
provides the primary motion to the spindle (to which the cutter is held) and feed motions to
the machine table (to which the workpiece is held). CNC routers capable of providing higher
spindle speeds and feed rates, more flexibility, and larger workspace than a typical milling
machine are commonly used in high production facilities. (Figure 1.7) shows the principal
components and movements of typical industrial three-axis CNC router. Hand-held routers
are commonly used for edge trimming of thin workpiece. The router provides the primary
rotational motion to the cutter while the operator feeds the tool into the workpiece manually.
End milling and trimming operations are further classified into up (or conventional) milling
and down (or climb) milling, depending on how the cutting edge approaches the workpiece.
These operations are illustrated in (Figure 1.8). In up milling, the direction of cutting speed
of the edge in contact with the workpiece is opposite to the direction of feed. In down milling,
the direction of the cutting speed is the same as that of the feed. The resulting chip area
in both cases has a “comma” shape and the length of the chip is described by a torchoid
that results from the superposition of peripheral motion and feed motion. In up milling the
cutting edge begins engaging the chip at the thin section of the comma shape. This results
in low engagement forces and in lifting up of the workpiece. In down milling, the cutting
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edge engages the chip at the thick section of the comma shape. The engagement forces are
high

Figure 1.7: Principal components and movements of a three-axis gantry bridge router

Figure 1.8: Illustration of up and down milling operations [Sheikh-Ahmad, 2009]

and result in pushing the workpiece against the workholding surface. Cutting forces in
milling are also not continuous. In up milling, the forces gradually increase from zero at
beginning of tool engagement to a maximum when the cutting edge is about to leave the
workpiece. Forces drop to zero again when the cutting edge leaves the workpiece. (Figure
1.9) shows a schematic of the cutting geometry for one cutting edge in up milling. The
tool path is torchoidal and is generated from the combination of rotational (spindle) and
translational (feed)motions. The exact geometry and kinematics of up and down milling
have been thoroughly investigated by Martellotti and Foenigsberger and Sabberwal among
others. The basic expressions describing this motion are given here:
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The cutting speed is given as a function of the spindle speed, N, and tool diameter, D,
by the relationship

v = ΠDN (1.6)

The feed speed, vf, and the feed per revolution, f , are related by

f = vf

N
(1.7)

From these equations it is observed that the tool path is longer in up milling than in
down milling. The uncut chip areas are the same for up milling and down milling, but the
average chip thickness in down milling is greater. For a given depth of cut, ae, the maximum
uncut chip thickness for up milling is smaller than that for down milling. This explains
the higher requirement of cutting power and the higher cutting forces associated with down
milling. For small feed speeds as compared to the spindle speed, the torchoidal path can
be approximated by a circular arc and the uncut chip geometry for up and down milling
becomes approximately the same. [Sheikh-Ahmad, 2009]

Figure 1.9: Cutting geometry in end milling, peripheral milling and edge trimming
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1.5 Conclusion

This chapter delivers a comprehensive overview of surface quality, underscoring the paramount
importance of attaining exact dimensions and impeccable surface finishes within the realm
of mechanical parts manufacturing. By shedding light on the significance of these aspects,
we layed the foundation for understanding the intricate interplay between machining pro-
cesses and the resulting product quality. Through exploring various dimensions of surface
quality, from its fundamental importance to the challenges it poses, this study sets the stage
for deeper exploration into methodologies aimed at optimizing machining operations and
enhancing the quality of manufactured components.

we conclude that the prediction of surface roughness is essential for producing high quality
products at low cost and in short time.
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Chapter 2

Surface roughness prediction: State of
art

2.1 Introduction

Engineers often face two main problems when making things in factories. First, they need
to understand the best settings of the manufacturing process to achieve the desired quality
product. Next, they want to make sure that the plant is running as efficiently as possible
with the resources they have. Engineers decide how to do this based on what they know
and what is typically done in similar situations. But in the manufacture of metal parts, for
example, there are a lot of complicated things going on that make it difficult to get a job
done right. So, researchers are creating models to try to better understand these processes.
They use these models to understand how different factors affect the final product. With
the improvement of technology, as with computer-controlled machines, new ...There is no
defined classification of approaches mainly for two reasons: First, there are many papers
that do not strictly follow a certain methodology in its entirety, they rather select some of
its basic principles and combine them into a ‘new’ approach. Secondly, there are many cases
where researchers blend different strategies into a single approach and therefore no single
classification would be entirely accurate.[Benardos and Vasniakos, ]

Taking in consideration the above we created three major categories to classify the ap-
proaches.

1. Machining theory based approaches.

2. Designed experiments based approaches.
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3. Artificial intelligence based approaches.

2.2 Machining theory based approaches

This approach studies from various literature conclude that it simulates the cutting process in
termof kinematics, cutting tool properties and Computer-aided design (CAD). Vibration pa-
rameter included in an attempt to more accurately depict the phenomenon and the obtained
results can be good, but this approach not considered the other factor (wear and thermal
phenomena) that contribute to the roughness formation mechanism. The integration of this
factor increases the accuracy in case of finishing procedures.[Bansal and Ghangas, 2013]

The theoretical background used by the research efforts in this category is considered
a prerequisite for anyone who is involved in machining studies and therefore no analytical
description is presented.

2.2.1 Studies

• In one of the early studies [Ehmann and Hong, 1994] introduced a new method to rep-
resent the surface generation process, which they called ‘surface-shaping system’. Their
system basically consisted of two parts, one that modeled the machine tool kinematics
and another that modeled the cutting tool geometry. For the latter, specific inter-
est was given in the area of the cutting edge that was described as the intersection
of the tool’s face and flank surfaces along with the respective angles. In general, the
surface-shaping system could account for spindle runout and machine vibrations while
additional research for the estimation of cutting forces was still underway. In the work
the system was applied for the simulation of the 3D topography of a peripherally milled
surface.

• The work of [Lee et al., 2001] emphasizes on surface roughness and profile in high-speed
end milling. A method for simulating the machined surface was presented using the
acceleration signal instead of the cutting forces. The argument provided was that the
vibration, which is caused by the high speed of the spindle deteriorates the geomet-
ric accuracy of the machined surface. A geometric end milling model was used for
modeling the end mill offset and tilt angle. The computer algorithm was developed
in terms of cutting conditions, cutter and workpiece geometry, and runout parameters
to determine the angular position of the end mill. The coordinates of the flute end
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positions were calculated using the geometric model of the end milling process and
the peak frequency components of the acceleration signal. From the generated surface
data, surface roughness could be calculated, and the profile plotted.

• [Bouhadja, 2023] recent advancements have introduced a methodology for predicting
the 3D topography of surfaces machined on a 5-axis machine using material removal
simulation. This involves spatially dividing the workpiece into clusters of geometric
discretization elements. Validated qualitatively, the method showed that the K-Means
clustering method outperformed the traditional Cell Method. Additionally, the FGK
method demonstrated superior performance in computation time, cluster uniformity,
and reducing overlapping cluster envelopes compared to the BK and IK methods.

2.2.2 Remarks

The conclusion that can be drawn is that these, theoretical for the most part, studies simulate
the cutting process in terms of kinematics and cutting tool properties. Additional parameters
such as vibrations are included in an attempt to more accurately depict the phenomenon and
the obtained results can be characterized as fairly good. The drawback of the approach
is that a lot of other factors that contribute to the roughness formation mechanism are not
considered, for example wear and deflection of the cutting tool or certain thermal phenomena.
The integration of these factors to the already existing models is estimated to increase their
accuracy, especially in cases of finishing procedures where their influence is greater.

2.3 Designed experiments based approaches

Although the common goal of the techniques investigated is to organize the experimental
procedure and the necessary data processing, each follows a different path. This approach
is come in the different category because they constitute a systematic method concern-
ing the planning of experiments, collection and analysis of data with near optimum use
of resources.[Bansal and Ghangas, 2013] Here we present two methods

2.3.1 Response surface methodology overview

In response surface methodology, the factors that are considered as most important are used
to build a polynomial model in which the independent variable is the experiment’s response.
In order to find the global minimum of the response, experiments that ‘prune’ the response

Univ-Blida/Mechanical Engineering: 2024 23



Surface roughness prediction: State of art

surface are designed and conducted, and the gradient of the response surface is used along
with a steepest ascent algorithm as follows [Garcia-Diaz and Phillips, 1995].

Stage 1:

• Select the factors to be investigated.

• Design and run a two-level factorial experiment in a localized region of the response
surface.

• Compute the estimates of the effects and thereby calculate the coefficients of the linear
model:

Y = b0 + b1X1 + b2X2 + · · · + bnXn (2.1)

• Select a reference factor to be used as a guide in determining the appropriate steps
along the direction of each factor in order to continue moving along the path of steepest
ascent.

• Select a few experimental conditions along the path of steepest ascent and run trials
to determine if the response continues to increase. If the response ceases to increase, a
new path should be generated.

• If a new path is needed, design and run a new two level factorial experiment. All pre-
vious steps are repeated until no substantial improvement in the response is obtained.
At this point stage 2 is conducted.

Stage 2

• Design and run a three-level factorial experiment in the region where the path of the
steepest ascent yields no substantial improvement in the response.

• Compute the coefficients of the model:

Y = b0 + b1X1 + b2X2 + · · · + b11X
2
1 + b22X

2
2 + · · · + b12X1X2 + · · · + bn−1Xn−1Xn (2.2)

• Using the above model, determine the nature of the stationery point of the response
surface. The stationery point is one where the gradient vanishes.

The sequential nature of RSM allows the experimenter to learn about the process or
system under study as the investigation proceeds. This ensures that over the course of
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the RSM application the experimenter will learn: 1/how much replication is necessary; 2/
the location of the region of the optimum; 3/the type of approximating function required;
4/the proper choice of experimental designs; and 5/ whether or not transformations on the
responses or any of the process variables are required.

2.3.2 Taguchi techniques for DoE overview

DoE dictates a series of steps to follow for the experiment to yield an improved understanding
of product or process performance [Ross, 1996].

• Planning phase:

1. State the problem.

2. State the objectives of the experiment.

3. Select the quality characteristics and the measurement systems.

4. Select the factors that may influence the quality characteristics.

5. Select levels for the factors.

6. Select the appropriate Taguchi fractional matrices or orthogonal arrays (OAs).

7. Select the interactions that may influence the quality characteristic.

8. Assign factors to OAs and locating interactions.

• execution phase:

9. Conduct the experiment repetitions as described by the OAs.

• Analysis phase:

10. Analyze the experimental results, e.g. using analysis of variance (ANOVA).

11. Conduct a confirmation experiment.

There are three types of OAs, dealing with two-level factors, three-level factors and mixed-
level factors. The selection of the appropriate OA is based on the following criteria: the
number of factors and interactions of interest, the number of levels for the factors of interest
and the desired experimental resolution or cost limitations. The first two determine the

Univ-Blida/Mechanical Engineering: 2024 25



Surface roughness prediction: State of art

smallest OA that it is possible to use, while the third gives the possibility to conduct a larger
experiment with higher resolution. Resolution can vary from 1 (lowest) to 4 (highest) and
it indicates the clarity with which each individual effect of factors and interactions may be
evaluated in an experiment. In order to assign the various factors to an OA’s columns, the
following mathematical property should be taken into account. If one factor is assigned to
any particular column and a second factor to any other particular column, a specific third
column will automatically have the interaction of those factors assigned to it. The pattern
of which columns will be interaction columns is known for all the OAs and it is visualized
through the interaction tables and linear graphs.

2.3.3 Studies

• The objective of [Davim, 2001] was to establish a correlation between cutting velocity,
feed and depth of cut with the surface roughness in turning. For that purpose, a plan
of experiments, based on Taguchi techniques, was designed and executed. The results
showed that the cutting velocity had the greater influence, followed by the feed and
that the error achieved was smaller than that of a geometric theoretical model.

• An effort to predict surface roughness in turning of high-strength steel based on RSM
was made in [Choudhury and El-Baradie, 1997]. The adequacy of the developed model
results was not very good, but the conclusion was that the effect of feed is much more
pronounced than the effects of cutting speed and depth of cut on the surface roughness.

• [Benardos and Vosniakos, 2003] considered various methodologies for surface roughness
prediction and showed manufacturing process become more productive and competitive.

• [Kumar et al., 2021] increased surface finishing of material by using VMC milling ma-
chine and M series solid carbide tool SS 304 optimization done by Taguchi method.

2.3.4 Remarks

Although the common goal of the techniques investigated is to organize the experimental
procedure and the necessary data processing, each follows a different path. The RSM is
mainly a model formulation procedure to investigate how important factors affect the re-
sponse of an experiment and leads to the development of first- and second-order polynomial
models that include the parameters under consideration and their statistical significance.
These models are used to create contour plots that can be more practically utilized to draw
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conclusions compared to using a polynomial function. On the other hand, the Taguchi DoE
is more of a factor-screening procedure to determine the significance of each factor, that is,
it identifies the most influential parameters and the values that produce the desired output
without formulating any kind of model. Nevertheless, it must be pointed out that because of
their generality and strong statistical background, certain tasks of these methodologies can
be isolated and applied to a wide range of engineering problems where the size of the search
space must be reduced. [Benardos and Vasniakos, ]

2.4 Artificial intelligence based approaches

The monitoring and control of surface roughness is difficult due to non-linearity. Conventional
surface roughness measurement techniques depending on stylus probe instruments, which
are post processing and time consuming one. Surface roughness measurement techniques
using vision technologies are difficult and costlier. Therefore, researchers have attempted the
modeling of machining operations by different artificial intelligence techniques.

Artificial intelligent methods are tools that exhibit the characteristics associated with
intelligence in human behavior [jm, 2005]. Since turning and milling plays a vital role in
manufacturing prediction of surface roughness using Artificial intelligence in those process is
considered.

Figure 2.1: Artificial intelligence
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2.4.1 Machine learning

In general, machine learning involves adaptive mechanisms that allow computers to learn
from experience, to learn by example, and to learn by analogy. Learning capabilities can
improve a system’s performance over time. Machine learning mechanisms form the basis
of adaptive systems. The most popular approaches to machine learning in machining are
artificial neural networks and optimization algorithms.

Choosing the “best” ML method for surface quality prediction depends on many factors,
including the available data, the application context, and the specific requirements of the
problem. However, some methods have shown effectiveness in this field:

• Artificial Neural Network (ANN): ANN is a subset of machine learning and is at the
heart of deep learning algorithms. They are inspired by the structure and function of
the brain and are used to model complex patterns and prediction problems.

• Adaptive Neuro-Fuzzy Inference System (ANFIS): ANFIS is a kind of artificial neural
network that is based on Takagi–Sugeno fuzzy inference system. It has been used for
the prediction of surface roughness.

• Support Vector Machine (SVM): SVM is a powerful and flexible class of supervised
algorithms for both classification and regression. It has been used for surface quality
prediction.

In terms of predicting surface roughness, SVM has been applied in various studies. For
instance, one study applied SVM to develop prediction models for machining processes.
Kernel function and loss function were Gaussian radial basis function and E-insensitive
loss function, respectively. To improve the prediction accuracy and reduce parameter
adjustment time of the SVM model, artificial bee colony algorithm (ABC) was employed
to optimize internal parameters of the SVM model.

These studies show that SVM can be effectively used for predicting surface roughness
in different machining operations.[Boga and Koroglu, 2021]

• Gaussian Process Regression (GPR): GPR is a non-parametric method used in machine
learning for regression problems. It has been used to predict surface roughness.

In terms of predicting surface roughness, GPR has been applied in various studies.
For instance, one study proposed a surface roughness prediction method based on
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GPR, where cutting parameters and cutting forces were used as input variables. For
30CrMnSiNiA steel, high-speed dry milling (HSDM) experiments were carried out by
considering spindle speed, feed per tooth, depth of cut, and width of cut as factors. A
comparison with support vector machine (SVM) and artificial neural network (ANN)
was conducted to verify the effectiveness and superiority of the proposed prediction
method.

While some studies used ANN for surface roughness prediction, GPR could be in-
corporated into the model to provide a probabilistic measure of uncertainty over the
predictions. This could potentially improve the robustness and reliability of the model
[Adizue et al., 2023]

2.4.2 Artificial Neural Network

Solving data prediction problems has become a crucial task in everything from finance and
healthcare to speech recognition and imaging. In this context, artificial neural networks
(ANNs) have emerged as an approach capable of modeling the complex relationships be-
tween inputs and making accurate predictions of the outputs, the different layers of a neural
network, composed of interconnected neurons inspired by human neurons, allow to capture
different information and propagate it through the network.[Boga and Koroglu, 2021]

2.4.2.1 Origin of ANN

Throughout history, humanity has been intrigued by the idea of constructing machines ca-
pable of human-like thinking and reasoning. Although John McCarthy officially coined the
term “artificial intelligence” in 1955, the evolution of AI and related fields began earlier. The
Dartmouth Summer Research Project on Artificial Intelligence, organized by McCarthy and
colleagues in 1956, witnessed the emergence of machine learning, deep learning, predictive
analytics, and prescriptive analytics. Concurrently, data science emerged as a new disci-
pline[45]. In 1960, automation engineer B. Widrow introduced the Adaptive Linear Element,
which laid the foundation for the gradient backpropagation algorithm commonly used in
multilayer perceptrons . First appearing in 1985, it has become fundamental in modern AI
and deep learning.[Touzet, 1992]
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2.4.2.2 Architecture of ANN

Artificial neural networks (ANNs) draw inspiration from the functioning of biological neurons.
The human brain, with its approximately 10 billion neurons and 60 trillion synapses (con-
nections), outperforms computers by leveraging parallel processing across multiple neurons.
ANNs mirror the structure of biological neurons.

Figure 2.2: Neuron structure [Boga and Koroglu, 2021].

Synapses in a biological neuron use neurotransmitters to transmit electrical signals (Figure
2.2). Similarly, in an ANN neuron, the activation function transforms the signal produced
by the processing function into a nonlinear output. Functions Commonly used activation
methods include the sigmoid function, the ReLU function, and the hyperbolic tangent func-
tion. Synaptic connections in a biological neuron are strengthened or weakened based on
experience, and weights in a neuron are adjusted during training to improve the Model
performance. Learning in a biological neuron occurs through the adjustment of synaptic
connections. In an ANN neuron, learning is done by backpropagating the error and adjust-
ing the weights in order to optimize the model’s prediction. Interesting Feature of Neural
Networks Artificial is their ability to learn in a non-linear way. Unlike many other prediction
techniques, neural networks can model complex relationships and non-linear between input
variables, allowing for flexibility and parallel computation Data helps keep the connections
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that lead to a good result remove those that lead to a bad result. In addition, artificial neural
networks benefit from supervised learning, which is based on a set of data that guides the
learning process. This allows the neural network to adjust its weights and minimize the error
between predictions and actual values. By combining these biological concepts with mathe-
matical and computational techniques, artificial neural networks have emerged as powerful
tools in the field of data science to model and predict complex relationships between variables
[Touzet, 1992].

Figure 2.3: Single-layer artificial neuron or model .

A neuron receives several signals (xi) from its input links (Figure 2.3). These signals are
then multiplied by their corresponding weights, which represent the importance or strength
of the connections between neurons. Additionally, a bias term is added—a constant value
that introduces an offset or translation—before activating the neuron. This bias allows
the neuron to better adapt to data and capture more complex nonlinear relationships.The
neuron then calculates its output (y) using a specific function and sends this output to
another artificial neuron. This process is the propagation of information within the neural
network. During training, the network adjusts the weights and biases to make accurate
predictions or solve a specific task. The retro-gradient propagation algorithm, commonly
used for learning, updates the weights based on the error between network predictions and
expected values.Activation functions play a crucial role—they are mathematical functions
applied to the outputs of neurons. These functions introduce non-linearity into the model,
allowing neural networks to approximate complex and nonlinear relationships between input
variables and their corresponding outputs.
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2.4.2.3 Multi-layers neural network

These deep learning models consist of multiple layers of interconnected neurons. Each layer
has a specific role in processing network information.

Figure 2.4: Multi-layer ANN structure.

2.4.2.3.1 Input layer:

• The first layer of the network.

• Accepts input signals (e.g., digital data from an experimental design).

• Redistributes this data to neurons in the hidden layers.

• Typically lacks computational neurons and doesn’t process input patterns directly.

2.4.2.3.2 Hidden layer:

• Responsible for detecting features in input patterns.

• Each neuron in this layer is associated with weights representing hidden features.

• These features are learned from training data and used for representation and trans-
formation.

• Output signals from the hidden layer feed into the next layer.
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2.4.2.3.3 Output layer

• Receives signals from the hidden layer.

• Generates the final output information from the network.

• Used for various tasks:

1. Classification: Predicting classes (e.g., image categories).

2. Regression: Estimating continuous values (e.g., house prices).

3. Other specific tasks based on the problem being addressed.

2.4.2.3.4 Complex Functions:

• Multi-layer neural networks can represent complex functions.

• A single hidden layer allows representation of any continuous function of input signals.

• Additional hidden layers enable representation of even discontinuous functions.

• This flexibility allows modeling complex nonlinear relationships between input vari-
ables.

2.4.2.4 Activation functions

Activation functions shape the outputs of artificial neurons and, therefore, are integral parts
of neural networks in general and deep learning in particular. Some activation functions,
such as logistic and relu, have been used for many decades.[Lederer, 2021]

See the left panel of Figure 2.5 for an illustration. The weights ωk1,...,ωkm can be inter-
preted as the neuron’s sensitivities to the different inputs and the bias bk as the neuron’s
overall sensitivity; the function φ can be interpreted as the neuron’s activation pattern and,
therefore, is called the activation function.

Hence, artificial neurons resemble biological neurons in the way they translate multiple
input signals into a single output signal [Martin et al., 2021].
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Figure 2.5: Activation functions.

Since a neural network is made of neurons, its characteristics are governed by the neurons’
parameters and activation functions. The parameters are usually fitted to training data; in
contrast, the activation functions are usually chosen before looking at any data and remain
fixed.[Lederer, 2021]

2.4.2.4.1 Sigmoid function is a bounded and differentiable function that is nondecreas-
ing and has exactly one inflection point. Roughly speaking, a sigmoid function is a smooth,
“S-shaped” curve. Because sigmoid functions “squash” the real values into a bounded inter-
val, they are sometimes called squashing functions. Sigmoid activation has a long-standing
tradition in the theory and practice of neural networks.

flog : R 7→ (0, 1)

z 7→ 1
1 + e−z

2.4.2.4.2 tanh is called hyperbolic tangent function. tanh is infinitely many times differ-
entiable with first derivative. And it’s very useful for tasks where negative values are relevant
and the Taylor series of tanh and arctan agree up to the fourth order. Thus, we can think of
tanh as a shifted and scaled version of logistic or as an approximation of arctan (Figure2.3).
In particular, tanh combines two popular features of logistic and arctan: the derivative of
tanh is a simple expression of the original function (Sigmoid), and it is centered around zero.

ftanh : R 7→ (−1, 1)

z 7→ tanh [z] := ez − e−z

ez + e−z
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2.4.2.4.3 ReLU is called the positive-part function or ramp function. The positive-
part function is the identity function (linear with slope 1) for positive arguments and the
constant function with value zero otherwise. In electrical engineering, a rectifier is a device
that converts alternating current to direct current. Similarly, the positive-part function lets
positive inputs pass unaltered but cuts negative inputs, that is, it transforms negative and
nonnegative inputs into nonnegative outputs. Therefore, a neuron equipped with a positive-
part function as the activation function is often called a rectifier linear unit (relu), and the
positive-part function itself is often called relu in the context of neural networks. A clear
benefit of relu is that both the function itself and its derivatives are easy to implement and
computationally inexpensive.

This result motivates using gradient-descent-type approaches in practice with the deriva-
tives at zero (which do not exist) replaced by a fixed value between 0 and 1. relu activation
can be subject to the dying-relu phenomenon, which is a version of the vanishing-gradient
problem. The dying-relu phenomenon indicates a situation where many relu nodes are inac-
tive during much of the training process.

frelu : R 7→ (0, ∞)

z 7→ max {0, z}

2.4.2.4.4 Leaky ReLU The idea behind leakyrelu is to mimic relu but to avoid the
dying-relu phenomenon. leakyrelu equals relu in the case a = 0; for positive parameters a,
however, the functions differ for negative inputs, most notably in their derivatives.

A practical challenge inflicted by leakyrelu is choosing the parameter a. As we have just
seen, a is the slope of leakyrelu for negative inputs. It is usually chosen between 0 (where
leakyrelu equals relu) and 1 (where leakyrelu equals linear).

frelu,a : R 7→ (0, ∞)

z 7→ max {0, z} + min {0, az}

2.4.2.4.5 ELU is called—in analogy with relu-exponential linear unit (elu). In fact, relu
is a special case of elu. The mathematically most convenient parameter is a = 1, because
this is the only choice that makes elu one time differentiable on the entire real line (but not
twice differentiable). But except for this observation, there is little insight into how to choose
a in practice. Observe also that the first derivatives of elu can be computed easily from the
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original functions, but the original functions involve an exponential function and, therefore,
are more costly to compute than relu. Hence, in view of the unclear practical benefits and
the computational disadvantages of elu, relu is currently preferred.

felu,a : R 7→ (−a, ∞)

z 7→


z ...... if z ≥ 0

a(e-1) if z < 0

2.4.2.5 Artificial neural network learning

Training a neural network : An overview

Training a neural network involves adjusting its weights (or parameters)
so that it can learn from data and make accurate predictions or solve spe-
cific tasks. The process of learning relies on two key techniques: forward
propagation and backpropagation.(Figure 2.6)

• Forward Propagation: Input data is transmitted through the neural net-
work layer by layer. Than, neurons perform a weighted sum of the re-
ceived inputs using previously initialized weights. An activation function
is then applied to generate output, which computes network predictions.

• Backpropagation: Gradient backpropagation is an algorithm used to ad-
just neural network weights. The goal is to minimize the error between
network predictions and expected values. Gradients of the error with re-
spect to the weights are calculated using the chain rule. These gradients
are propagated in reverse through the network to update the weights and
they are performed iteratively to gradually minimize network error.

• Training Process: Training typically involves multiple iterations (epochs)
of forward and backward propagation. During each epoch, weights are
adjusted to improve network performance on input data. The ultimate
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aim is to obtain weights that allow the network to generalize well to new
data and make accurate predictions.

Figure 2.6: Learning algorithm for ANN

Learning Rate in Neural Networks.

During the training process of neural networks, a crucial parameter comes
into play: the learning rate. This rate determines how quickly the weights
of the network are updated during gradient backpropagation. Essentially, it
controls the magnitude of weight adjustments in each training epoch. Math-
ematically, the weight update can be expressed as:

newweights = oldweights ⊖ learningrate × gradiant

Gradient: Calculated using gradient backpropagation, it Indicates both
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the direction and magnitude of the steepest increase in error. Essentially
guides weight adjustments.

Learning Rate determines the step size for weight updates during training.
High learning rates result in larger weight adjustments, potentially leading to
faster convergence but also instability. Conversely, low learning rates yield
slower but more stable convergence.

Choosing the optimal learning rate depends on the specific problem and
often involves empirical tuning and experimentation.

Types of Learning.

There are two fundamental types of learning in machine learning (Figure
2.1):

Supervised learning:

• Involves training a model using labeled training data.

• Each training example has an associated expected output value.

• Common tasks include classification (predicting classes) and regression
(estimating continuous values).

Unsupervised learnig:

• Works with unlabeled or untargeted data.

• The model aims to discover patterns or structures within the data with-
out prior information.

• Clustering and dimensionality reduction are typical unsupervised learn-
ing tasks.

Both supervised and unsupervised learning play essential roles in building
effective machine learning models.
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2.4.3 Optimization algorithms

In the realm of optimization, where finding the best solution to a problem
is paramount, traditional methods often fall short when faced with com-
plex, non-linear, or high-dimensional search spaces. Metaheuristic algorithms
emerge as a powerful arsenal in tackling such optimization challenges, offer-
ing versatile and efficient approaches to finding near-optimal solutions within
reasonable time frames.

Metaheuristic algorithms are a class of optimization techniques designed
to efficiently explore large solution spaces to find high-quality solutions.

Figure 2.7: Classification of optimization Algorithms
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Unlike traditional algorithms, which rely on explicit problem-specific knowl-
edge or assumptions, metaheuristics are general-purpose, heuristic-driven meth-
ods capable of adapting to a wide range of optimization problems without
requiring problem-specific modifications.

2.4.3.1 Artificial bee colony optimization (ABC)

ABC is a metaheuristic algorithm proposed by Karaboga in 2005. It is one
of the most cited new generation metaheuristics in literature. ABC, be-
ing a population-based algorithm, has been applied to various optimization
problems. The natural aspiration of ABC comes from the fact that can-
didate solutions are represented as bees exploring/exploiting food resources
[Dokeroglu et al., 2019]. A solution indicates a food resource and the nectar
amount of each resource represents the quality/fitness of each solution. There
are three types of bees in the hive: “employed”, “onlooker”, and “scout” bees.
In nature, employed bees look for a food source, come back to hive and share
their information by dancing. When an employed bee finishes the collection
of the nectar, it turns into a scout and looks for new food resources. Onlooker
bees watch how the employed bees dance and choose food sources, while scout
bees explore for food sources. First, a random initial population is generated.
The fitness of a state of a bee colony is indicated by the acquired resources.
Fig. 3 presents the basic behavior of artificial bees. A forager bee starts as
an unemployed bee having no information about the food sources around the
hive. An ordinary bee can be a scout bee and explore the solution space
(see S in Fig. 3) or it can watch the dance of other bees and search for new
food sources, R. The bee gathers the food, comes back to the hive, drops off
the nectar. The bee can become a recruit nestmates (EF1), an uncommitted
follower (UF), or go searching the food without recruiting after bees (EF2).
The pseudocode of an ABC algorithm is given in Algorithm 1.
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Figure 2.8: The classical behavior of honeybees looking for nectar.[Dokeroglu et al., 2019]

In order to generate an initial set of food sources, the algorithm starts
randomly generating solutions in the search space. The Equation given below
defines the randomized rule to produce a new solution within the range of the
boundaries of the parameters. i = 1. . . SN j D , 1 = . . . . SN is the size
of the food sources and D is the number of dimensions in the problem space.
Xij is the j-th dimension of food source i.

Xij = Xmin
j × rand(0, 1)(Xmax

j − Xmin
j ) (2.3)

Each employed bee produces a new food source (solution) depending on its
local information and finds a neighboring food source. Finding a neighboring
food source is defined in the Equation given below

Vij = Xij + ϕij(Xij − Xkj) (2.4)

A new food source Vi is produced by changing one parameter of Xi. In
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the Equation above, j is a random integer between [1, D] where k is a ran-
dom index different from i and Φij is a real number between [−1, 1]. As the
difference between Xij and Xkj diminishes, the perturbation on solution Xij

becomes smaller. If a new generated parameter exceeds its boundaries, the
parameter is set to acceptable values. Fitness value of the new generated
solution is calculated as ( 1/(1 ) + fi ) when f i is positive. The fitness value
is ( 1/(1 + abs fi ) if f i is positive negative.
Algorithm 1

Int..i = 1
while i + + < iterations do

Scout bees search for food ()
Scout bees return to the hive and dance()
Onlooker bees evaluate the food sources()
Check previously visited food resources ()
Decied the best food resources()
Employed bees travel to the food sources()
Return to hive()
Collect the solution in the hive ()

end while

2.4.3.2 Bat algorithm (BA)

BA metaheuristic is first proposed by (Yang 2010c). Bats use echolocation
(i.e., a type of sonar) to avoid obstacles, detect prey, and locate their nests
in the dark. A bat emits a sound and follows the echo that reflects from
the objects in the environment. Bats can also detect the difference between
food/prey and barriers by using echolocation. The motivation of BA is that
this echolocation talent of bats can be formalized as a means to find an optimal
solution in an objective function. BA runs in an iterative fashion. Bats fly
with velocity vi with position xi having a frequency fmin, varying wavelength
and loudness A0 while searching for their prey randomly. They can set the
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frequency of the pulse and adjust its rate r [0, 1] (with respect to the proximity
of the prey). The loudness is changed from a maximum A0 value to a minimum
value Amin. The frequency f in the range of [fmin , fmax] correlates with a
range of wavelengths [ λmin,λmax ]. While any wavelength can be used for a
run of BA, selection of a suitable wavelength has significant impact on the
convergence of the algorithm. In most cases, wavelength is variable during a
run, and a range of wavelengths are set up and adjusted accordingly during
a run. The detectable range should be decided that it is comparable to the
size of the domain of interest. The frequency can be changed while fixing the
wavelength and is related to . Parameter f is assumed to be between [0,fmax].
Higher frequencies have short wavelengths and can travel a shorter distance
while lower frequencies have large wavelengths and can travel further. That is,
wavelength and frequency relates to both computational cost and exploration
capacity of the setting. The rate of pulse is in the range of [0, 1] where 0
means no pulse and 1 means the maximum rate of pulse emission. Algorithm
2 summarizes the execution of a sample BA run.

The positions of virtual bats xi (i = 1, 2,. . . , n) and velocities vi in a d-
dimensional space are updated in iterations. New solutions xt

i and velocities
vt

i at time t are generated with the equations given below.

fi = fmin + (fmax − fmin)β (2.5)

vt
i = vt−1

i + (xt
i − x∗)fi (2.6)

xt
i = xt−1

i + vt
i (2.7)

where β ∈ [0, 1] is a uniform distribution random vector. x is the global best
location among n bats. If λifi is the velocity increment, we can use either fi

(or λi) to set the new velocity while fixing the factor fi (or λi). fmin = 0 and
fmax = 100 can be used with respect to the domain of the problem. Each bat
is assigned a random frequency. It is drawn uniformly from [fmin,fmax ].
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Algorithm 2
Objective functions x = (x1, · · ·, xd)T

Initialize the population of bats xi(i = 1, · · ·, n) and vi

Define pulse frequency fi at xi

initialize pulse rate ri and the loudness Ai

while t < iterations do
Generate new solution be setting frequency
Update velocity and location/solution
if rand > ri then

Select a solution
Generate a local solution

end if
Generate a new solution by flying randomly
if rand < Ai then

Accept the solution
Increase ri and reduce Ai

end if
Find the best x∗

end while
Report the global best result

In the local search, after selecting a solution among the best solutions, a
random solution for each bat is generated locally using a random walk process
using the formula:

xnew = xold + At (2.8)

where [1, 1] is a random value, At =< At
i > is the average loudness of all the

bats at this period of time. The update of positions and velocities of bats
are performed in a similar fashion after each iteration as in a PSO algorithm.
Parameter ft controls the pace and the range of the movement. At each
iteration, the loudness Ai and the rate rt of pulse emission need to be updated.
The loudness decreases as bat finds its prey. The rate of pulse emission
increases, the loudness can be of any value. The values for A0 and Amin can
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be assigned as 100 and 1 respectively. For simplicity, Ai = 0 and Amin = 0
can be applied. Amin = 0 means that a bat has found the prey and finished
emitting a sound.[Dokeroglu et al., 2019]

At+1
i = αAt

i, ...rt+1 = r0
i [1 − exp(γt)] (2.9)

where α and γ are constants.

2.4.3.3 Cuckoo search algorithm (CSA)

Yang and Deb (2009) propose CSA. The CSA simulates the brood parasitic
behavior of cuckoo species with the Lévy flight action of birds and fruit flies.
Cuckoo birds have an aggressive breeding attitude. They lay eggs in the nest
of other birds and remove the other eggs to increase the hatching chance of
their own eggs. In CSA metaheuristic, three simple rules are used. (1) One
egg can be laid at a time, and cuckoo leaves its egg in a random nest; (2)
Nests having high-quality eggs can survive; (3) The number of host nests is
constant, and the egg can be detected by the host bird with a probability
pa ∈ [0, 1] a . The egg can be thrown away from nests or the bird can leave
the nest, and construct a new nest. The pseudocode of the CSA is presented
in Algorithm 3.

When producing new solutions x(t=1) (i = 1, 2, . . . , n) for cuckoo bird i,
a Lévy flight is realized as in (Eq 2.10)

xt+1
i = xt

i + α ⊕ Levy(λ) (2.10)

where (α < 0) is the size of a step related to the problem. In most cases,
is selected as 1. The equation above is stochastic to provide a random walk
that is a process of Markov Chain with a next location that relies on the
current location and the transition probability. The product ⊕ means entry
wise multiplications. This entry wise product via Lévy flight ving structural
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Algorithm 3
Optimization f(x) functions x = (x1, · · ·, xd)T

Construct an initial population with n nests xi(i = 1, · · ·, n)
while t++ < stopping criterion do

Get a random cuckoo by Lévy flights
Calculate it’s fitness value Fi

Select a nest among n (say, j) randomly
if Fi > Fj then

replace j with the new solution
end if
A fraction (pa) of worse nests are left
New nests are built
Keep the best solution/nests
Find the current best

end while
Process result

design optimization problems. This is one of the first applications of the CSA
for the shape design optimization problems.[Dokeroglu et al., 2019]

2.4.3.4 Firefly algorithm(FA)

The FA is proposed by Yang (2010a). FA is inspired by the behavior of the
short and rhythmic flashing characteristics of fireflies. Two main functions
of such flashes attract mating partners or warning against predators. The
rhythmic flash, the rate of flashing brings sexes together. The flashing can be
formulated as a function to be optimized for combinatorial algorithms. These
flashing characteristics are idealized by the following rules. (1) All fireflies
can attract other fireflies without any concern about their gender. (2) At-
tractiveness is the brightness of the firefly. Therefore, the less brighter firefly
moves towards brighter ones. They decrease the attractiveness as the distance
between fireflies increases. It moves randomly when there is no brighter one.
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(3) The search space of the objective function affects the brightness of a fire-
fly. Algorithm 4 depicts a typical run of FA. Two crucial issues of FA are the
light intensity and formulation of the attractiveness. The brightness of the
firefly decides its attractiveness where it is the encoded objective function.
The brightness of a firefly (I) at a location x can be chosen as Ixαfx and the
attractiveness β is relative, it will be decided by other fireflies in the popula-
tion. The brightness varies with the respect to the distance ri between two
fireflies. The randomization term can be implemented with other distribution
methods such as Lévy flighs.[Dokeroglu et al., 2019]

Algorithm 4 Firefly Algorithm
f(x) Objective functions x = (x1, · · ·, xd)T

// n is the number of fireflies
Generate a population of fireflies xi (i = 1, 2, . . . , n)
Define coefficient γ of light absorption
while t < Max generation do

for i < n fireflies do
for j < n fireflies do

Light intensity Ii at xi is determined by f(x)
if Ij > Ii then

Move firefly i towards j in all d dimensions
end if
Attractiveness varies with distance γ via exp(−γr)
Calculate new solutions and update intensity of light

end for
end for
Report the current best solution

end while

Univ-Blida/Mechanical Engineering: 2024 47



Surface roughness prediction: State of art

2.4.3.5 Harmony search (HS)

HS is a metaheuristic algorithm based on musical compositions and the pro-
cess of writing a composition (Geem et al., 2001). HS is proposed by Yang
(2009) in 2001 and has been applied to numerous optimization problems since
then. HS makes use of methods applied by musicians to create harmonic musi-
cal compositions in order to model optimization problems. In HS, a musician
has three possible choices when improvising a song: (1) playing any well-
known piece of music (pitches in harmony) naturally from his or her memory;
(2) playing music similar to an existing piece (by adjusting the pitch); or (3)
composing random harmonic notes. Geem et al. (2001) use these possible
choices during the optimization raccept ∈ [0, 1] that is called harmony memory
accepting rate. When the rate is too small, a few best harmonies are selected
and this causes slower convergence of the HS algorithm. When the rate is too
high (a value close to 1), it may not be possible to explore all the harmonies
well. This can lead to wrong solutions. The parameter raccept is selected be-
tween [0.7, 0.95] to prevent his problem. The pitch adjustment is the second
parameter determined by the bandwidth ( brange) and the adjusting rate of a
pitch rpa. Pitch adjustment changes the frequencies and generates diversity
in the HS. Linear or nonlinear adjustment is used to set the pitch value.

xnew = xold + brange ∗ ϵ (2.11)

xold is the current pitch, and xnew is the new solution after the adjustment of
pitch. This process generates a neighboring solution to the existing solution
by changing the pitch slightly. Pitch adjustment mimics like the mutation
operator in evolutionary algorithms. A parameter (pitch-adjusting rate rpa)
can be used to co level. A small adjustment rate can slow the convergence
time of HS, whereas a high adjustment rate can act as a random search
process. A value between [0.1, 0.5] is observed to be a good balance for rpa.
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The third parameter (randomization) is used to provide diversified solutions.
The randomization enables the system to explore different solutions. The
randomization can direct the search to explore various different solutions to
obtain the global optimal solutions. the probability of randomization is given
below:

Prandom = 1 − raccept (2.12)

where the probability of adjusting pitches are:

Ppitch = raccept ∗ rpa (2.13)

Algorithm 5 summarizes a typical HS.[Dokeroglu et al., 2019]

Algorithm 5
Generate initial harmonics
Introduce pitch adjusting rate (rpa), pitch limits and bandwidth
Introduce harmony memory accepting rate (raccept)
while t < iterations do

Generate harmonics by accepting the best harmonics
Tune the pitch to get new harmonics/solutions
if rand > raccept then

choose a random harmonic from population
else

if rand > rpa then
tune the pitch within limits randomly

end if
generate new harmonics randomly

end if
end while
Find the current best harmonics
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2.4.4 Particle swarm optimization algorithm (PSO)

Particle swarm optimization (PSO) algorithm is a stochastic optimization
technique based on swarm, which was proposed by Eberhart and Kennedy
(1995). PSO algorithm simulates animal’s social behavior, including insects,
herds, birds and fishes. These swarms conform a cooperative way to find food,
and each member in the swarms keeps changing the search pattern accord-
ing to the learning experiences of its own and other members. Main design
idea of the PSO algorithm is closely related to two researches: One is evolu-
tionary algorithm, just like evolutionary algorithm; PSO also uses a swarm
mode which makes it to simultaneously search large region in the solution
space of the optimized objective function. The other is artificial life, namely
it studies the artificial systems with life characteristics. In studying the be-
havior of social animals with the artificial life theory, for how to construct the
swarm artificial life systems with cooperative behavior by computer, Millonas
proposed five basic principles (van den Bergh 2001):

1. Proximity: the swarm should be able to carry out simple space and time
computations.

2. Quality: the swarm should be able to sense the quality change in the
environment and response it.

3. Diverse response: the swarm should not limit its way to get the resources
in a narrow scope.

4. Stability: the swarm should not change its behavior mode with every
environmental change.

5. Adaptability: the swarm should change its behavior mode when this
change is worthy.
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Note that the fourth principle and the fifth one are the opposite sides of
the same coin. These five principles include the main characteristics of the
artificial life systems, and they have become guiding principles to establish
the swarm artificial life system. In PSO, particles can update their posi-
tions and velocities according to the environment change, namely it meets
the requirements of proximity and quality. In addition, the swarm in PSO
does not limit its movement but continuously search the optimal solution in
the possible solution space. Particles in PSO can keep their stable move-
ment in the search space, while change their movement mode to adapt the
change in the environment. So particle swarm systems meet the above five
principles.[Wang et al., 2018]

2.4.4.1 Concept of PSO

The simplest model can be depicted as follows. Each individual of the birds is
represented by a point in the Cartesian coordinate system, randomly assigned
with initial velocity and position. Then run the program in accordance with
“the nearest proximity velocity match rule,” so that one individual has the
same speed as its nearest neighbor. With the iteration going on in the same
way, all the points will have the same velocity quickly. As this model is too
simple and far away from the real cases, a random variable is added to the
speed item. That is to say, at each iteration, aside from meeting “the nearest
proximity velocity match,” each speed will be added with a random variable,
which makes the total simulation to approach the real case.

First, we assume that position coordinate of the cornfield is (x0, y0), and
position coordinate and velocity coordinate of individual bird are (x,y) and
(vx, vy), respectively. Distance between the current position and cornfield is
used to measure the performance of the current position and speed. The closer
the distance to the “cornfield”, the better the performance, on the contrary,
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the performance is worse. Assume that each bird has the memory ability and
can memorize the best position it ever reached, denoted as local best (pbest). a
is velocity adjusting constant, rand denotes a random number in [0,1], change
in the velocity item can be set according to the following rules:

ifx > pbestx, vx = vx − rand × a, otherwise, vx = vx + rand × a

ify > pbesty, vy = vy − rand × a, otherwise, vy = vy + rand × a

Then assume that the swarm can communicate in some way, and each indi-
vidual is able to know and memorize the best location global best (marked
as gbest) of the total swarm so far. And b is the velocity adjusting constant;
then, after the velocity item was adjusted according to above rules, it must
also update according to the following rules:

ifx > gbestx, vx = vx − rand × b, otherwise, vx = vx + rand × b

ify > gbesty, vy = vy − rand × a, otherwise, vy = vy + rand × b

Computer simulation results show that when a/b is relatively large, all in-
dividuals will gather to the “cornfield” quickly; on the contrary, if a/b is
small, the particles will gather around the “cornfield” unsteadily and slowly.
Through this simple simulation, it can be found that the swarm can find the
optimal point quickly. Inspired by this model, Kennedy and Eberhart devised
an evolutionary optimization algorithm, after a sea of trials and errors, they
finally fixed the basic algorithm as follows:

vx = vx + 2 ∗ rand ∗ (pbestx − x) + 2 ∗ rand ∗ (gbestx − x) (2.14)

They abstracted each individual to be a particle without mass and volume,
with only velocity and position, so they called this algorithm “particle swarm
optimization algorithm.”
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On this basis, PSO algorithm can be summarized as follows: PSO algo-
rithm is a kind of searching process based on swarm, in which each individual
is called a particle defined as a potential solution of the optimized problem in
D-dimensional search space, and it can memorize the optimal position of the
swarm and that of its own, as well as the velocity. In each generation, the
particles information is combined together to adjust the velocity of each di-
mension, which is used to compute the new position of the particle. Particles
change their states constantly in the multi-dimensional search space, until
they reach balance or optimal state, or beyond the calculating limits. Unique
connection among different dimensions of the problem space is introduced
via the objective functions. Many empirical evidences have showed that this
algorithm is an effective optimization tool. Flowchart of the PSO algorithm
is shown in (Fig 2.9).

The following gives a relatively complete presentation of the PSO algo-
rithm. In the continuous space coordinate system, mathematically, the PSO
can be described as follows. Assume that swarm size is N, each particle’s
position vector in D-dimensional space is Xi = (xi1, xi2, · · ·, xid, xiD) , velocity
vector is Vi = (vi1, vi2, · · ·, vid, viD), individual’s optimal position (i.e., the op-
timal position that the particle has experienced) is Pi = (pi1, pi2, · · ·, pid, piD),
swarm’s optimal position (i.e., the optimal position that any individual in
this swarm has experienced) is represented as Pg = (pg1, pg2, · · ·, pgd, pgD)).
Without loss of generality, taking the minimizing problem as the example, in
the initial version of the PSO algorithm, update formula of the individual’s
optimal position is :

P d
i,t+1 =


Xd

i,t+1 if ..Xi,t+1 < f(Pi,t)

P d
i,t Otherwise

The swarm’s optimal position is that of all the individual’s optimal positions.
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Figure 2.9: Flowchart of the particle swarm optimization algorithm

Update formula of velocity and position is denoted as follows, respectively:

vd
i,t+1 = vd

i,t + c1 ∗ rand ∗ (pd
i,t − xd

i,t) + c2 ∗ rand ∗ (pd
g,t − xd

i,t) (2.15)

xd
i,t+1 = xd

i,t + vd
i,t+1 (2.16)

Since the initial version of PSO was not very effective in optimization prob-
lem, a modified PSO algorithm appeared soon after the initial algorithm was
proposed. Inertia weight was introduced to the velocity update formula, and
the new velocity update formula became:

vd
i,t+1 = ω ∗ vd

i,t + c1 ∗ rand ∗ (pd
i,t − xd

i,t) + c2 ∗ rand ∗ (pd
g,t − xd

i,t) (2.17)

Although this modified algorithm has almost the same complexity as the
initial version, it has greatly improved the algorithm performance; therefore,
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it has achieved extensive applications. Generally, the modified algorithm is
called canonical PSO algorithm, and the initial version is called original PSO
algorithm.

PSO algorithm has two versions, called global version and local version, re-
spectively. In the global version, two extremes that the particles track are the
optimal position pbest of its own and the optimal position gbest of the swarm.
Accordingly, in local version, aside from tracking its own optimal position
pbest, the particle does not track the swarm optimal position gbest, instead it
tracks all particles’ optimal position nbest in its topology neighborhood. For
the local version, the velocity update equation (5) became:

vd
i,t+1 = ω ∗ vd

i,t + c1 ∗ rand ∗ (pd
i,t − xd

i,t) + c2 ∗ rand ∗ (pd
l,t − xd

i,t) (2.18)

where pl was the optimal position in the local neighborhood.and rand is [0 1]
In each generation, iteration procedure of any particle is illustrated in (Fig
2.10). Analyzing the velocity update formula from a sociological perspective,
we can see that in this update formula, the first part is the influence of the
particle’s previous velocity. It means that the particle has confidence on its

Figure 2.10: Iteration scheme of the particles

current moving state and conducts inertial moving according to its own
velocity, so parameter ω is called inertia weight. The second part depends
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on the distance between the particle’s current position and its own optimal
position, called the “cognitive” item. It means particle’s own thinking, i.e.,
particle’s move resulting from its own experience. Therefore, parameter c1
is called cognitive learning factor (also called cognitive acceleration factor).
The third part relies on the distance between the particle’s current position
and the global (or local) optimal position in the swarm, called “social” factor.
It means the information share and cooperation among the particles, namely
particle’s moving coming from other particles’ experience in the swarm. It
simulates the move of good particle through the cognition, so the parame-
ter c2 is called social learning factor (also called social acceleration factor)
[Wang et al., 2018].

2.4.4.2 Advantages and challenges of PSO

PSO is a stochastic and parallel optimization algorithm. Its advantages can
be summarized as follows: It does not require the optimized functions differen-
tial, derivative and continuous; its convergence rate is fast; and the algorithm
is simple and easy to execute through programming. Unfortunately, it also
has some disadvantages (Wang 2012): (1) For the functions with multiple
local extremes, it probably falls into the local extreme and cannot get correct
result. Two reasons result in this phenomenon: One is the characteristics of
the optimized functions and the other is the particles’ diversity disappearing
quickly, causing premature convergence. These two factors are usually inex-
tricably intertwined. (2) Due to lack of cooperation of good search methods,
PSO algorithm cannot get satisfactory results. The reason is that the PSO
algorithm does not sufficiently use the information obtained in the calculation
procedure. During each iteration, instead it only uses the information of the
swarm optima and individual optima. (3) Though PSO algorithm provides
the possibility of global search, it cannot guarantee convergence to the global
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optima. (4) PSO algorithm is a meta-heuristic bionic optimization algorithm,
and there is no rigorous theory foundation so far. It is designed only through
simplifying and simulating the search phenomenon of some swarms, but it
neither explains why this algorithm is effective from the principle, nor spec-
ifies its applicable range. Therefore, PSO algorithm is generally suitable for
a class of optimization problems which are high dimensional and need not to
get very accurate solutions.[Wang et al., 2018]

2.4.5 Studies

• [Benardos and Vosniakos, 2003]conducted a survey of surface roughness
prediction models developed and factors influencing surface roughness.
They found that the most promising seem to be the theoretical and the
AI approaches.

• [Lee et al., 2004] developed an Accurate modeling and prediction of sur-
face roughness by computer vision in turning operations using an adap-
tive neuro-fuzzy inference system.

• [Oktem et al., 2006] worked on optimization of cutting parameters in the
machining of mold surfaces of an ortez part used in biomedical instru-
ments. They optimized the parameters with the help of genetic algorithm
coupled with neural network. A feed forward neural network was devel-
oped and trained as well as tested in MATLAB. They also validate their
predicted results with experimental result by additional measurement
and found the very good agreement between them. They introduced
machining tolerance as new cutting parameters in the experiment. They
found that ANN along with GA gave more satisfactory results than ANN.
Percent of error obtained was less than 1.33%.

• [Khorasani et al., 2012] carried out various investigation for offline and
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online parameters estimation. Discussed technique was AI, ANN and
knowledge based expert system. Parameters were divided into six num-
bers as properties of tool, work piece, tool of machine, thermal and dy-
namic parameter and cutting.

• [D. R. M. Rajesh, 2014] worked on prediction of surface roughness of free
form surfaces by use of artificial neural network. Freeform surfaces were
formed using CNC machine. Such type of surfaces had large application
in aerospace field. So, to maintain surface quality was very important
task for aerospace industry. They used CNC ball end milling machine for
development of freeform surfaces using speed, depth of cut, feed rate and
step over as input parameters for machining. They used back propaga-
tion neural network to minimize error in prediction of surface roughness.
96.37% accuracy was achieved using this ANN based predictive model.

• [Moghri et al., 2014] asserted an integrated ANN-genetic algorithm (GA)
approach for modeling and optimizing surface roughness of polyamide-
6/nanoclay (PA-6/NC) nanocomposites. A surface roughness predictive
model was developed by considering milling parameters (spindle speed
and feed rate) and nano clay (NC) content. It was inferred that the
minimum surface roughness could be achieved at the lowest level of feed
rate and intermediate level of spindle speed.

• [Eser et al., 2021] Conducted a study improves surface roughness predic-
tion models for milling AA6061 alloy with carbide cutting tools coated
with CVD-TiCN in dry conditions. It refines an experimental model us-
ing ANN and RSM, with cutting parameters as inputs. Backpropagation
is chosen for ANN training, with 3-8-1 network structure found optimal.
RSM analysis highlights depth of cut as most influential. Comparison
of ANN and RSM models shows RSM’s higher stability and robustness,
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indicated by its superior R2 value.

• [Benallou and Benchikh, 2022] explored the impact of various machining
parameters on surface roughness. The study introduces artificial neural
network (ANN) and hybrid ANN with genetic algorithm (GA) for com-
paring surface roughness estimation. Experimental data from 84 tests on
Aluminum milling were used to construct the ANN database. Machining
parameter influences were analyzed using Pearson’s correlation, showing
feed rate (Vy) and radial depth of cut (feed Vx) as most significant. The
ANN model demonstrated good prediction accuracy with mean square
error (MSE) of 0.1985, indicating close agreement with measured values.
The hybrid ANN-GA model showed slightly higher MSE at 0.3930.

• In his end-of-study project, [Oulmane, 2023], to examine milling opti-
mization to improve surface quality using the Taguchi-RSM method and
artificial neural networks (ANNs) to predict surface roughness based on
cutting parameters. ANOVA assessed the prediction error and the influ-
ence of the factors. He concluded that the combination of Taguchi-RSM
and ANN can improve the quality of machined surfaces.

2.5 Conclusion

From the above literature surveys, it seems the artificial intelligent are the
most appropriate solution for the quick and precise predictive model. Most
of the researchers have worked on fuzzy logic system, ANN and ANFIS for
prediction and genetic algorithm for optimization of machining parameter in
multi-axis machining. Some of them also suggested to couple two AI tech-
nique like fuzzy and ANN or ANN and GA to get most précised and optimized
predicted result. Models obtained from coupling gave better result than in-
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dividual model like ANFIS. Result obtained ANN based predictive model
always varies. They depend upon number of layers and number of nodes on
intermediate layer, so optimum number of layer and intermediate node is very
essential for good prediction, and this is obtained by trial and error method.

we conclude that the most common parameter that are in use are speed,
feed rate and depth of cut, but the most significant parameter is feed rate
followed by cutting speed and depth of cut. Other process parameters are
less in use as compared to these.
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Chapter 3

Implementation and result

3.1 Introduction

In this study, we developed an ANN-PSO module to optimize neural net-
work weights and biases. The module integrates PSO as an optimization
algorithm during the training phase of the ANN. Specifically, PSO iteratively
adjusts particle positions to find optimal weight configurations, resulting in
an improved ANN model. Our approach demonstrates the effectiveness of
combining ANN and PSO for enhanced performance.

3.2 Training neural networks with PSO

Artificial Neural Networks (ANNs) have emerged as powerful tools for solving
complex problems across various domains, including classification, regression,
pattern recognition, and optimization. However, training ANNs often involves
finding optimal sets of weights and biases, which can be a challenging task due
to the high-dimensional and non-convex nature of the optimization problem.

One popular metaheuristic optimization algorithm used to train ANNs is
Particle Swarm Optimization (PSO). PSO is inspired by the social behavior
of bird flocking or fish schooling, where individuals (particles) in the swarm
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collectively search for the optimal solution by iteratively updating their posi-
tions based on their own experience and the experiences of their neighbors.

In this application, we will walk through the process of building an ANN-
PSO module using Python and libraries such as NumPy for numerical com-
putations, Matplotlib for visualization, and PySwarms for implementing the
PSO algorithm.

The goal of this project is to develop a module that utilizes the synergy
between ANN and PSO to train a model for predicting roughness based on
machining parameters such as speed, feed rate, and depth of cut. We will
follow the steps outlined below to implement our ANN-PSO module:

1. Load Data: We will start by loading the dataset containing machining
parameters and corresponding roughness values from a CSV file.

2. Feature Extraction: Next, we will extract the relevant features (speed,
feed rate, radial depth, axial depth) and the target variable (roughness)
from the dataset.

3. Forward Propagation Function: We will define a function for performing
forward propagation in the neural network. This function will take the
particle’s position as input, unroll the parameters (weights and biases),
perform forward propagation to compute the predicted roughness, and
calculate the mean squared error loss between the predicted and actual
roughness.

4. PSO Optimization: We will define a higher-level function for PSO op-
timization. This function will iterate over each particle’s position, com-
pute the forward propagation loss, and return an array of losses for all
particles. We will initialize the PSO parameters such as cognitive and so-
cial parameters, inertia weight, dimensions based on the neural network
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architecture, and the number of particles for optimization. Then, we
will perform PSO optimization to obtain the optimized cost and particle
positions.

5. Prediction Function: We will define a function for making predictions
using the trained model. This function will unroll the optimized particle
positions to obtain the weights and biases, perform forward propagation
on the input features to predict roughness, and return the predicted
roughness values.

6. Model Evaluation: We will create a DataFrame to compare the actual
and predicted roughness values. This will allow us to evaluate the per-
formance of our trained model.

7. Visualization: Finally, we will plot the actual and predicted roughness
values to visually compare their distributions. This will provide insights
into how well our model is performing.

By following these steps, we aim to build an efficient and accurate ANN-
PSO module for predicting roughness in machining processes.

3.3 Building the ANN-PSO model

In this project, we utilized Python 3.12 as the programming language and
Visual Studio Code (VS Code) as the integrated development environment
(IDE) to build our ANN-PSO model for predicting roughness in machin-
ing processes. Python is a versatile and widely-used programming language
known for its simplicity and readability, making it an excellent choice for de-
veloping machine learning and data analysis applications. With the release of
Python 3.12, we leveraged the latest features and enhancements to ensure op-
timal performance and compatibility with modern libraries and frameworks.
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Visual Studio Code (VS Code) is a lightweight yet powerful code editor
developed by Microsoft. It provides a rich set of features such as syntax
highlighting, code completion, debugging, and version control integration,
making it ideal for software development across various platforms. With its
intuitive user interface and extensive ecosystem of extensions, VS Code offers
a seamless and productive environment for writing, testing, and debugging
Python code.

A laptop was used for the developing of this model with the following specs:

• Processor : 13th Gen Intel(R) Core(TM) i5-1335U 1.30 GHz

• RAM : 8.00 Go

• Type of system : System 64 bits, processor x64

• Windows: windows 11

3.3.1 Loading Data

First, we acquired the data from (Ugochukwu et all 2015) research paper,
uesed an online tool to convert from a pdf file to csv file and than we used
Google Sheets (online version) to modify it to be compatible with our model
(Fig 3.1).

Figure 3.1: the chart of acquiring the data

secondly, we’ll load the dataset using (pandas) package. It has 29 samples
making it a very balanced dataset. Each sample is characterized by five
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features (or dimensions): Spindle speed, Feed rate, Axial depth of cut, Radial
depth of cut, Surface roughness.

import pandas as pd
# Load data from CSV
data = pd.read_csv(’File_path.csv’)

3.3.2 Extracting features

Here we will extract the five features and store them as x and y.

# Extract features and target
X = data[[’speed’, ’feed’, ’radial-depth’, ’axial-depth’]].values
y = data[’surface-roughness’].values

3.3.3 Neural network architecture

For now, we’ll build a simple neural network with the following characteristics:
* Input layer size: 4 * Hidden layer size: 25 (activation: tanh(x) ) * Output
layer size: 1 (activation: softmax(x) ) . The intial number of hidden neuron
was choosed from the previous studies in chapter 2 than it was optimized
through trial and error methode (discussed later).

Things we’ll do: 1. Create a forward_prop method that will do forward
propagation for one particle. 2. Create an overhead objective function f()
that will compute forward_prop() for the whole swarm.

What we’ll be doing then is to create a swarm with a number of dimensions
equal to the weights and biases. We will unroll these parameters into an n-
dimensional array, and have each particle take on different values. Thus, each
particle represents a candidate neural network with its own weights and bias.
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When feeding back to the network, we will reconstruct the learned weights
and biases.

When rolling-back the parameters into weights and biases, it is useful to
recall the shape and bias matrices: Shape of input-to-hidden weight matrix:
(4, 25). Shape of input-to-hidden bias array: (25). Shape of hidden-to-output
weight matrix: (25, 1). Shape of hidden-to-output bias array: (1)

By unrolling them together, we have (4 ∗ 25) + (25 ∗ 1) + 25 + 1 = 151
parameters, or 151 dimensions for each particle in the swarm.

The negative log-likelihood will be used to compute for the error between
the ground-truth values and the predictions. Also, because PSO doesn’t rely
on the gradients, we’ll not be performing backpropagation

# Forward propagation function
def forward_prop(params):
"""Forward propagation function"""
# Neural network architecture
n_inputs = 4 # Number of input features
n_hidden = 25 # Modified to 25 n_classes = 1 # Regression task, so
only one output

# Unroll parameters
W1 = params[0:100].reshape((n_inputs, n_hidden)) # Adjusted
dimensions
b1 = params[100:125].reshape((n_hidden,)) # Adjusted dimensions
W2 = params[125:150].reshape((n_hidden, n_classes)) # Adjusted
dimensions
b2 = params[150:].reshape((n_classes,)) # Adjusted dimensions
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# Perform forward propagation
z1 = X.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
y_pred = z2.flatten() # Flatten to get a 1D array

# Compute mean squared error loss
loss = np.mean((y_pred - y) ** 2)
return loss

Now that we have a method to do forward propagation for one particle
(or for one set of dimensions), we can then create a higher-level method to
compute forward_prop() to the whole swarm:

# Higher-level method for PSO optimization def f(x):
"""Higher-level method to do forward_prop in the whole swarm"""
n_particles = x.shape[0]
j = [forward_prop(x[i]) for i in range(n_particles)]
return np.array(j)

3.3.4 PSO optimization

Now that everything has been set-up,using the (pyswarm) package we just
call our global-best PSO and run the optimizer. Initially, we just set the
PSO parameters arbitrarily, than we optimized them through trials (discussed
later)
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import pyswarms as ps
# Initialize PSO
options = ’c1’: 1.5, ’c2’: 1.5, ’w’: 0.49 # Adjusted parameters
dimensions = (4 * 25) + (25 * 1) + 25 + 1 # Number of dimensions
adjusted accordingly
optimizer = ps.single.GlobalBestPSO(n_particles=45, dimen-
sions=dimensions, options=options) # Adjusted number of particles

# Perform optimization
cost, pos = optimizer.optimize(f, iters=45, verbose=3) # Adjusted num-
ber of iterations

We can then check the accuracy by performing forward propagation once
again to create a set of predictions. Then it’s only a simple matter of matching
which one’s correct or not. For the logits, we take the argmax. Recall that the
softmax function returns probabilities where the whole vector sums to 1. We
just take the one with the highest probability then treat it as the network’s
prediction.

Moreover, we let the best position vector found by the swarm be the weight
and bias parameters of the network.

3.3.5 Predictoin function

Upon completing the optimization process with PSO, we obtain the opti-
mized particle positions that encapsulate the learned parameters (weights and
biases) of the artificial neural network (ANN). Leveraging these optimized
positions, our prediction function can effectively estimate the roughness of
machining processes based on input features.

• The first step in the prediction function involves unrolling the optimized
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particle positions obtained from the PSO optimization process. These
positions encode the optimized values of weights and biases across the
neural network layers.

• With the unrolled particle positions representing the learned parameters,
we proceed to perform forward propagation on the input features. This
entails feeding the input features through the neural network architec-
ture, computing the activations at each layer, and ultimately generating
predictions for roughness.

• After executing forward propagation, the prediction function produces
the predicted roughness values as its output. These predicted values rep-
resent the model’s estimations of roughness for the given input features.

By encapsulating the process of unrolling optimized particle positions, con-
ducting forward propagation, and returning predicted roughness values, our
prediction function streamlines the process of utilizing the trained ANN-PSO
model for making predictions. This function serves as a vital tool for apply-
ing our predictive model to real-world machining scenarios, enabling informed
decision-making and optimization of machining processes.

# Predict function
def predict(X, pos):
"""Use the trained weights to perform predictions"""
n_inputs = 4
n_hidden = 25
n_classes = 1

W1 = pos[0:100].reshape((n_inputs, n_hidden))
b1 = pos[100:125].reshape((n_hidden,))
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W2 = pos[125:150].reshape((n_hidden, n_classes))
b2 = pos[150:].reshape((n_classes,))

z1 = X.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
y_pred = z2.flatten()

return y_pred

# Make predictions
predicted_roughness = predict(X, pos)

3.3.6 Evaluating the model

By calling the (pandas) package we will create a DataFrame to compare the
actual and predicted roughness values. This will allow us to evaluate the
performance of our trained model.

# Create a DataFrame to compare actual and predicted roughness
comparison_df = pd.DataFrame(’Actual Roughness’: y, ’Predicted
Roughness’: predicted_roughness)

3.3.7 Displaying the result

Ultimately, we’ll generate visualizations that compares the actual and pre-
dicted roughness values, allowing for a direct comparison of their distribu-
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tions. Through this visual analysis, we aim to gain a comprehensive un-
derstanding of our model’s performance and its ability to accurately predict
roughness in machining processes. A table and a graph were generated.

# Display the DataFrame as a table
print("Comparison of Actual and Predicted Roughness for all Samples:")
print(comparison_df)

# Plot actual and predicted roughness
plt.figure(figsize=(10, 6))
plt.plot(y, color=’red’, label=’Actual Roughness’)
plt.plot(predicted_roughness, color=’blue’, label=’Predicted Rough-
ness’)
plt.xlabel(’Sample Number’)
plt.ylabel(’Roughness’)
plt.title(’Actual vs. Predicted Roughness’)
plt.legend()
plt.grid(True)
plt.show()

3.4 Optimization of ANN-PSO parameters

The second series of experiments involved optimizing the parameters of the
ANN-PSO model to enhance prediction accuracy. Our aim was to identify
optimal values for these parameters that would yield the highest level of
accuracy in predicting roughness. The parameters considered for optimization
included:
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• Number of hidden neurons

• Number of particles

• Number of iterations

• c1/c2 values

• Inertia weight (ω) value

3.4.1 Number of hidden neurons

The PSO-ANN model was examined across varying numbers of hidden neu-
rons in the architecture’s hidden layer, including 20, 25, 30, 35, 40 and 50.
While the number of hidden neurons is not a PSO parameter per se, it signif-
icantly influences the performance of the ANN-PSO model. Using (sklearn)
package we could train the model with different sets of hidden neurons.

# Calculate accuracy metrics
mae = mean_absolute_error(y, predicted_roughness)
mse = mean_squared_error(y, predicted_roughness)
rmse = np.sqrt(mse)

The findings of this investigation are summarized in figure 3.2. With only
20 hidden neurons, the network lacked the necessary flexibility to effectively
learn and adapt to the data, resulting in diminished prediction accuracy.
Conversely, employing (30, 35, 50) hidden neurons led to prolonged training
times and the potential for overfitting the data. Consequently, the optimal
number of hidden neurons was determined to be between 25 and 50. These
outcomes are illustrated in Figure 3.2.

Univ-Blida/Mechanical Engineering: 2024 72



Implementation and result

Figure 3.2: Accuracy metrics for different neurons

3.4.2 Number of particles

The number of particles utilized in ANN-PSO reflects the extent of the prob-
lem space coverage during each iteration of the loop. Our investigation in-
volved testing ANN-PSO with particle counts ranging from 25 to 100.

# Define different numbers of particles to compare
particles_to_compare = [25, 35, 45, 55, 60, 70, 80, 90, 100]

# Train ANN-PSO models with different numbers of particles and
calculate accuracy metrics
results =
for particles in particles_to_compare:
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predicted_roughness, mae, mse, rmse = train_ann_pso(X, y, particles)
results[f"Particles particles"] = ’Predicted Roughness’: pre-
dicted_roughness,
’MAE’: mae, ’MSE’: mse, ’RMSE’: rmse

It was observed that the model struggled with low particle counts of 25 and
35 due to insufficient coverage of the problem space. As the particle count
increased to 45 and 60, there was a noticeable enhancement in prediction
accuracy. However, beyond 50 particles, further increases did not yield addi-
tional improvements. In fact, employing 100 particles resulted in a decline in
prediction accuracy, likely due to overfitting of the data. Moreover, optimiza-
tion time increased as the particle count rose, as more particles necessitated
broader coverage of the solution space, thereby prolonging the optimization
process. Figure 3.3 illustrates the prediction accuracy corresponding to vary-
ing particle numbers.

Figure 3.3: Accuracy metrics for different numbers of particles
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3.4.3 Number of iterations

ANN-PSO was examined across different total iteration counts, specifically 5,
25, 50, 100, and 200.

import matplotlib.pyplot as plt
# Define different numbers of iterations to compare itera-
tions_to_compare = [20, 25, 30, 35, 40, 45, 50]

# Train ANN-PSO models with different numbers of iterations and
calculate accuracy metrics
results =
for iters in iterations_to_compare:
predicted_roughness, mae, mse, rmse = train_ann_pso(X, y, iters)
results[f"Iterations iters"] = ’Predicted Roughness’: pre-
dicted_roughness,
’MAE’: mae, ’MSE’: mse, ’RMSE’: rmse
# Plot accuracy metrics
plt.figure(figsize=(10, 6))
metrics_df.plot(kind=’bar’, y=[’MAE’, ’MSE’, ’RMSE’], rot=45)
plt.title(’Accuracy Metrics for Different Numbers of Iterations’)
plt.xlabel(’Number of Iterations’)
plt.ylabel(’Value’)
plt.grid(True)
plt.legend(loc=’upper right’)
plt.tight_layout()
plt.show()
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As the number of iterations increased, a larger portion of the problem space
was explored, resulting in enhanced accuracy. However, at 20 and 35 itera-
tions, ANN-PSO exhibited signs of being undertrained, failing to adequately
approximate the underlying metrics-to-fault function. These observations are
illustrated in Figure 3.4.

Figure 3.4: Accuracy metrics for different numbers of iterations

3.4.4 c1/c2 values

The constants c1 and c2 serve as acceleration constants that guide the parti-
cle towards either its global or personal best. Specifically, c1 represents the
impact of the global best on the particle, while c2 signifies the influence of
the personal best.

# Define different values for c1 and c2 to compare
c_values = [1, 1.2, 1.5, 1.7, 2]
# Train ANN-PSO models with different c1 and c2 values and calculate
accuracy metrics
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results =
for c_value in c_values:
predicted_roughness, mae, mse, rmse = train_ann_pso(X, y, c_value)
results[f"c1=c2=c_value"] = ’Predicted Roughness’: pre-
dicted_roughness,
’MAE’: mae, ’MSE’: mse, ’RMSE’: rmse

Optimal outcomes were achieved when c1 and c2 fell within the range of 1.2
to 1.7.When set below 1.0, the acceleration proved insufficient to adequately
explore the problem space, resulting in diminished prediction accuracy. Con-
versely, there was a marginal decline in prediction accuracy as the acceleration
constants approached 2. Figure 3.5 illustrates this relationship of the predic-
tion values corresponding to different c1 and c2 value graphically.

Figure 3.5: Accuracy metrics for different c values

3.4.5 Inertia weight (ω) value

The PSO-ANN was investigated with 0.3, 0.5, 0.7 and 0.9 inertia weights.
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# Define different values for inertia weight (w) to compare
w_values = [0.3, 0.5, 0.7, 0.9]

# Train ANN-PSO models with different w values and calculate accuracy
metrics
results =
for w_value in w_values:
predicted_roughness, mae, mse, rmse = train_ann_pso(X, y, w_value)
results[f"w=w_value"] = ’Predicted Roughness’: predicted_roughness,
’MAE’: mae, ’MSE’: mse, ’RMSE’: rmse

At a low value of 0.3, the network does not give sufficient flexibility to learn
and adapt to the data. This results in low prediction accuracy. Similarly for
values over 0.5, the ANN taken a long time to get trained and may also be
over fitting the data. So the optimum inertia weight was found to be 0.5. The
results are captured in Figure 3.6.
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Figure 3.6: Accuracy metrics for different values of inertia weight

3.4.6 Optimal configuration for ANN-PSO

The optimal configuration for the ANN-PSO model was determined through
a series of experiments aimed at fine-tuning its parameters. After extensive
exploration, the following configuration emerged as the most effective:

1. Number of Hidden Neurons: Between 25 and 30 hidden neurons yielded
the best results. Fewer than 25 neurons led to inadequate model flexibil-
ity, resulting in reduced prediction accuracy. Conversely, exceeding 30
neurons risked overfitting the data and increased training time.

2. Number of Particles: A particle count of 20 to 50 particles provided opti-
mal coverage of the problem space without compromising computational
efficiency. Fewer than 20 particles limited exploration, while exceeding
50 particles led to diminishing returns and longer optimization times.

3. Number of Total Iterations: Iterating between 50 and 100 times allowed
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sufficient exploration of the problem space while balancing computational
resources. Fewer iterations resulted in undertrained models, whereas
additional iterations beyond 100 did not significantly improve prediction
accuracy but prolonged optimization time.

4. Acceleration Constants (c1 and c2): Acceleration constants ranging from
1.2 to 1.7 struck a balance between global and personal best influences,
facilitating effective exploration of the search space. Lower values lim-
ited exploration, while higher values led to sub-optimal convergence and
decreased prediction accuracy.

By configuring the ANN-PSO model according to these guidelines, we achieved
optimal performance in terms of prediction accuracy, computational efficiency,
and convergence speed. the parameters are shown in Table 3.1

Table 3.1: Optimal parameters of ANN-PSO

Parameters Values
Hidden neurons 25

Number of particles 45
Number of iterations 45

c1/c2 1.5
Inertia weight (ω) 0.5

3.5 Results and discussion

After optimizing the parameters of the PSO algorithm, the performance of
the ANN-PSO model significantly improved. Leading to enhanced prediction
accuracy, reduced training time, increased robustness, and stable convergence.
These results underscore the importance of parameter tuning in achieving
optimal performance in machine learning models.
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3.5.1 Results of initial parameters

After building the model we tested it using either arbitrary parameters or
from the previous studies in chapter two (Table 3.2). The results were not
very accurate but the model showed potential for improving (section 3.1.3).

Table 3.2: Initial parameters of ANN-PSO

Parameters Values
Hidden neurons 5

Number of particles 50
Number of iterations 50

c1/c2 0.3
Inertia weight (ω) 0.9

Figure 3.7: Comparison of actual and predicted surface roughness with intial parameters
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Figure 3.8: comparison of actual and predicted surface roughness with initial parameters

a firt look at the graphe in Figure 3.7 shows the discrepancy between the
acual and predicted results. this imply that the initial parameters used to
predict the surface roughness won’t be able to capture or understand the
complexity of the relationship between cutting parameters and surface finish.

although it managed to accurately predict the SR samples(3, 16, 19, 25,
26) it failed on the rest by error margin that ranges between 0.1 1nd 0.6. this
results are can be shown in table 3.8 and are illustrated in Figure 3.7

3.5.2 Results of optimal parameters

At first glance we notice that the model was only able to accurately predict
in five sample. but the margin of error is significantly lower that ranges from
0.01 to 0.21 , or an accuracy of %80 to %99 . This is due to the optimization
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of the ANN-PSO parameters. this result are shown and illustrated in more
detail in Figure 3.9 and 3.10

Figure 3.9: actual vs predicted surface roughness after the optimization

Figure 3.10: comparison of actual and predicted surface roughness after optimization
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Table 3.3: Comparison between actual, initial prediction and optimal prediction of surface
roughness

Spindle
speed

Feed rate
Radial
depth of
cut

Axial
depth of
cut

Actual SR
Initial pre-
dicted SR

Optimal
predicted
SR

1500 150 2 25 1.12 1.078719 1.161487
2500 150 2 25 0.95 0.722366 0.742907
2500 300 1 25 1.17 1.209034 1.161514
1500 300 2 15 1.27 1.209034 1.253644
1500 150 2 15 1.1 1.209023 1.161512
2000 200 2.5 20 1.21 1.209033 1.161514
1500 150 1 15 45505 1.209024 1.161512
2000 200 1.5 20 1.2 1.209033 1.161514
1500 150 1 25 45383 1.090346 1.161472
3000 200 1.5 20 0.61 0.722366 0.742907
2000 500 1.5 20 1.31 1.209034 1.253644
2500 300 2 25 1.26 1.209034 1.161514
2000 100 1.5 20 0.58 0.573236 0.742907
2500 300 1 15 1.13 1.209034 1.161514
2000 200 1.5 30 1.16 1.209083 1.161513
2000 200 1.5 20 1.17 1.209033 1.161514
2500 150 1 15 0.84 0.722366 0.742907
2000 200 1.5 20 1.18 1.209033 1.161514
1000 200 1.5 20 1.28 1.209034 1.253644
2500 300 2 15 1.22 1.209034 1.161514
1500 300 2 25 1.29 1.209034 1.253644
2000 200 1.5 10 1.12 1.209034 1.161514
2000 200 1.5 20 1.19 1.209034 1.161514
1500 300 1 15 1.26 1.209034 1.253644
1500 300 1 25 1.24 1.209034 1.253644
2500 150 1 25 0.75 0.722366 0.742907
2000 200 1.5 20 1.13 1.209033 1.161514
2000 200 1.5 20 1.15 1.209033 1.161514

Univ-Blida/Mechanical Engineering: 2024 84



Implementation and result

3.5.3 Comparison

After optimization, several key observations can be made from the provided
dataset:

1. Impact of Machining Parameters: The optimized predictions show a
closer alignment with the actual surface roughness compared to the initial
predictions. This indicates that the optimization process has effectively
improved the accuracy of the surface roughness predictions across various
machining parameters.

2. Discrepancies between Actual and Predicted Surface Roughness: A com-
parison between the actual surface roughness and the initially predicted
surface roughness exposes disparities in certain cases. This suggests that
the initial prediction models couldn’t accurately capture the complexities
of the machining process.

3. Variation in Surface Roughness: Despite optimization, there are in-
stances where the predicted surface roughness still deviates from the
actual values. This could be attributed to the complex interplay between
different machining parameters and their effects on surface quality, which
may not have been fully captured or accounted for in the optimization
process.

4. Influence of Optimization Techniques: The disparity between initial and
optimal predicted surface roughness values highlights the importance of
employing advanced optimization techniques, such as ANN-PSO, to re-
fine predictive models. By iteratively adjusting model parameters, opti-
mization algorithms can enhance the model’s ability to accurately predict
surface roughness under varying machining conditions.
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5. Further Refinements: Despite the improvements achieved through opti-
mization, there may still be room for further refinements in the prediction
model. Fine-tuning the optimization parameters or exploring alternative
modeling approaches could potentially lead to even better predictive per-
formance and alignment with actual surface roughness values.

6. Practical Implications: The optimized predictions offer valuable insights
for manufacturing processes, enabling operators to anticipate surface
roughness outcomes based on specific machining parameters. This knowl-
edge can inform decision-making and parameter adjustments to achieve
desired surface quality standards more consistently and efficiently.

In summary, the optimization process has demonstrated its efficacy in im-
proving the accuracy of surface roughness predictions, laying the groundwork
for enhanced quality control and optimization in machining operations.

3.6 Validation of the Results

While comparing our model with other models using the same data is an
essential part of model evaluation, it complements the validation process by
providing a relative performance context. This combined approach helps en-
sure that our model is accurate, generalizable and competitive compared to
other models in the field.

For this research we used two papers for comparison:
Paper 1: [Ugochukwu et al., 2015]
Paper 2: [Oulmane, 2023]

the actual values gotten from the experiment and the predicted values from
the two papers are depicted in figures 3.13, 3.11 and 3.12. It can be seen that
they have good agreement.
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Quantitatively, In order to judge the accuracy of the models, percentage de-
viation ϕi and average percentage deviation Φi were used. The percentage
deviation ϕi is stated thus:

ϕi =
∣∣∣Ra(e) − Ra(p)

∣∣∣
Ra(e)

∗ 100 (3.1)

Where:
Ra(e): measured.
Ra(p): predicted.

Similarly, the average percentage deviation Φi is stated thus:

Φ =
∑

ϕi

n
(3.2)

Where:∑
ϕi: average percentage deviation of all sample data.

n: the size of sample data.
The result of average percentage deviation (Φ) showed that the training

data set (n=28) was 5.73% for our model, 9.54% for the model used in paper1
and 0.37% for the model in paper2 . This means that the models could predict
the surface roughness (Ra) with about 95%, 91% and 99% (respectively)
accuracy of the training data set. For a full test on the model created on
the training data, table 3.4 and 3.5 shows the predicted value for surface
roughness and percentage deviation from the measured or actual Ra values.
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Table 3.4: Comparison between Predicted Data and Predicted Data from paper1

Surface
Roughness
(Ra) (µm)

Predicted val-
ues (Ra) (µm)

Percentage of devia-
tion ϕi

Predicted
values (Pa-
per1)(Ra)
(µm)

Percentage of
deviation (Pa-
per1) ϕi

1,12 1.161487 3.704196428571413 1,09 2,82
0,95 0.742907 21.799263157894735 0,91 4,61
1,17 1.161514 0.7252991452991447 1,07 8,47
1,27 1.253644 1.2878740157480344 1,45 -13,91
1,1" 1.161512 5.5920000000000005 1,11 -0,93
1,21 1.161514 4.007107438016531 1,14 5,74
1,08 1.161512 7.54740740740741 1,01 6,77
1,2 1.161512 3.2073333333333216 1,06 11,56
1,04 1.161514 11.684038461538451 0,99 5,09
0,61 0.742907 21.788032786885246 0,92 -50,44
1,31 1.253644 4.301984732824433 1,51 -14,96
1,26 1.161514 7.816349206349211 1,18 6,28
0,58 0.742907 28.087413793103455 0,81 -40,43
1,13 1.161514 2.788849557522128 1,09 3,32
1,16 1.161514 0.13051724137931167 1,04 9,94
1,17 1.161514 0.7252991452991447 1,06 9,29
0,84 0.742907 11.558690476190476 0,84 0,19
1,18 1.161514 1.5666101694915255 1,06 10,06
1,28 1.253644 2.0590625000000036 1,36 -6,31
1,22 1.161514 4.793934426229511 1,2 1,27
1,29 1.253644 2.788849557522128 1,42 -9,94
1,12 1.161514 3.7066071428571274 1,09 2,65
1,19 1.161514 2.393781512605043 1,06 10,81
1,26 1.253644 0.5044444444444467 1,31 -4,13
1,24 1.253644 1.1003225806451606 1,29 -3,73
0,75 0.742907 0.9457333333333354 0,82 -9,58
1,13 1.161514 2.788849557522128 1,06 6,08
1,15 1.161514 1.0012173913043498 1,06 7,71

Φ = 5.73 Φ1 = 9.54
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Table 3.5: Comparison between Predicted Data and Predicted Data from paper2

Predicted
values
(Ra) (µm)

Percentage of
deviationϕi

Predicted values (Pa-
per2)(Ra) (µm)

Percentage deviation (Pa-
per2) ϕi

1.161487 3.704196428571413 1.1200001239776611 -1.1069434020199204e-05
0.742907 21.799263157894735 0.950000047683758 -5.019338512075939e-06
1.161514 0.7252991452991447 1.1699997186660767 2.4045634467417905e-05
1.253644 1.2878740157480344 1.27000093460083 -7.359061654018593e-05
1.161512 5.5920000000000005 1.100000023841858 -2.1674416201216733e-06
1.161514 4.007107438016531 1.2099995613098145 3.62553872323428e-05
1.161512 7.54740740740741 1.0799999237060547 7.064254202180951e-06
1.161512 3.2073333333333216 1.1700000762939453 2.4999936421712206
1.161514 11.684038461538451 1.0399999618530273 3.6679781434401093e-06
0.742907 21.788032786885246 0.60999995470047 7.426152461635115e-06
1.253644 4.301984732824433 1.309999942779541 4.367973972340893e-06
1.161514 7.816349206349211 1.2600009441375732 -7.493155343121473e-05
0.742907 28.087413793103455 0.580000102519989 -1.7675860181662054e-05
1.161514 2.788849557522128 1.130000114440918 -1.0127514873923134e-05
1.161514 0.13051724137931167 1.1599998474121094 1.3154128495264133e-05
1.161514 0.7252991452991447 1.1700000762939453 -6.520850032782417e-06
0.742907 11.558690476190476 0.8399999737739563 3.122148055962575e-06
1.161514 1.5666101694915255 1.1700000762939453 0.8474511615300531
1.253644 2.0590625000000036 1.2800002098083496 -1.6391277311150754e-05
1.161514 4.793934426229511 1.21999990940094 7.426152461635115e-06
1.253644 2.788849557522128 1.2899987697601318 9.536743164337904e-05
1.161514 3.7066071428571274 1.1200001239776611 -1.1069434020199204e-05
1.161514 2.393781512605043 1.1700000762939453 1.68066585765165
1.253644 0.5044444444444467 1.2599984407424927 0.00012375059582008733
1.253644 1.1003225806451606 1.2400007247924805 -5.845100649013159e-05
0.742907 0.9457333333333354 0.75 0.0
1.161514 2.788849557522128 1.1700000762939453 -3.5398297605261435
1.161514 1.0012173913043498 1.1700000762939453 -1.7391370690387307

Φ = 5.73 Φ2 = 0.37
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Figure 3.11: Comparison of Surface Roughness
and Predicted Values (Paper1)

Figure 3.12: Comparison of Surface Roughness
and Predicted Values (Paper2)

Figure 3.13: Comparison of Surface Roughness and Predicted Values

We compared the predictive performance of three models: our model, the
model from Paper1, and the model from Paper2. Our model demonstrates
a high accuracy of 95%, closely following the actual surface roughness values
with minimal deviations. This validates the effectiveness of using Particle
Swarm Optimization (PSO) to fine-tune the neural network parameters.

In comparison, Paper1’s model, with a 91% accuracy, shows larger devia-
tions, indicating less optimal performance. Paper2’s model, with an impres-
sive 99% accuracy, aligns almost perfectly with the actual values, suggesting a
more sophisticated approach. While our model is robust and highly accurate,
the near-perfect performance of Paper2’s model highlights potential areas for
improvement.
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By exploring the advanced methodologies used in Paper2, such as addi-
tional feature engineering and more sophisticated model tuning, we can aim to
enhance our model’s accuracy further. This validation highlights the strengths
of our model while providing a clear direction for future enhancements.

3.7 Conclusion

In conclusion, the implementation of the ANN-PSO model for surface rough-
ness prediction has yielded valuable insights into the optimization of machin-
ing processes. Through the detailed training process and exploration of model
architecture, we have gained a deeper understanding of how machine learning
techniques can be leveraged to improve predictive accuracy.

The optimization of model parameters using PSO has shown promising re-
sults, with optimized predictions demonstrating closer alignment with actual
surface roughness values across various machining conditions. This under-
scores the importance of employing advanced optimization techniques to re-
fine predictive models and enhance their practical applicability in real-world
manufacturing settings.

These findings have significant implications for quality control and opti-
mization in mechanical machining processes. By enabling operators to an-
ticipate surface roughness outcomes based on specific machining parameters,
the ANN-PSO model empowers informed decision-making and parameter ad-
justments to achieve desired surface quality standards more consistently and
efficiently.
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In conclusion, this project has been a comprehensive exploration into the pre-
diction and optimization of surface quality in mechanical machining processes.
Through a systematic investigation, we have delved into various techniques
and methodologies aimed at enhancing our understanding and control of sur-
face roughness.

The journey began with an examination of the critical importance of sur-
face quality in mechanical part manufacturing, emphasizing the need for pre-
cise dimensions and surface finishes to ensure functional integrity and aes-
thetic appeal.

Building upon this foundation, we explored state-of-the-art techniques
for predicting surface roughness, ranging from traditional machining theory-
based approaches to advanced artificial intelligence-based methodologies. This
comprehensive review provided valuable insights into the strengths and limi-
tations of existing techniques, laying the groundwork for the development of
our predictive model.

The implementation of the ANN-PSO model represented a significant step
forward in our quest for improved surface quality prediction. Through metic-
ulous training, model architecture design, and parameter optimization using
PSO, we were able to refine our predictive capabilities and achieve more ac-
curate surface roughness predictions across a range of machining conditions.
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General conclusion

The results obtained from our experiments provided compelling evidence of
the effectiveness of the ANN-PSO model in predicting surface roughness. By
comparing actual surface roughness values with both initial and optimized
predicted values, we were able to demonstrate significant improvements in
predictive accuracy, highlighting the practical relevance of our approach.

In closing, this project has not only deepened our understanding of sur-
face quality prediction and optimization but has also opened up new avenues
for future research and innovation in the field. By continuing to refine our
predictive models, explore alternative optimization algorithms, and integrate
additional input parameters, we can further enhance our ability to predict and
control surface quality in mechanical machining processes, ultimately driving
improvements in manufacturing efficiency and product quality.

Looking ahead, there are several potential avenues for future research in
the field of surface quality prediction and optimization. Further refinement
of predictive models, exploration of alternative optimization algorithms, and
integration of additional input parameters could enhance the predictive ac-
curacy and robustness of surface roughness prediction models. Additionally,
the application of machine learning techniques to other aspects of mechanical
machining processes, such as tool wear prediction and optimization of cutting
parameters, presents exciting opportunities for future research and innovation
in the field.
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