

Taxing Automobile Emissions for Pollution Control

MAUREEN SEVIGNY

NEW HORIZONS IN ENVIRONMENTAL ECONOMICS

General Editor WALLACE E. OATES 2627 228 - 1

Total S

Taxing Automobile Emissions for Pollution Control

Maureen Sevigny
Oregon Institute of Technology
Oregon, United States

NEW HORIZONS IN ENVIRONMENTAL ECONOMICS

Edward Elgar

Cheltenham, UK • Northampton, MA, USA

Contents

List of Figures	viii			
List of Tables Acknowledgements Preface Wallace E. Oates				
			1. Introduction	1
			2. Designing a Tax on Mobile Source Emissions	7
3. Effects on Travel Demand and Maintenance	17			
4. The TIERS Model				
5. Modelling the Scrappage Effect of the Tax				
6. Summary and Conclusions	89			
Appendix A Federal Requirements for Non-attainment Areas	95			
Appendix B Section 108(f)(1) Transportation Control Measures				
Appendix C Data Used in this Study	99			
Appendix D Description and Flow Chart of the TIERS Model	104			
Bibliography	108			
Index	112			

List of Figures

1.1	MACs and emissions abatement	4
2.1	Weak correlation of HC emissions and MPG	13
2.2	HC distribution within model years	14
2.3	VMT distribution for older vehicles	15
4.1	Vehicle holdings in the South Coast Air Basin	44
4.2	The Suits index for the mobile source emissions tax	51
C.1	Distribution of HC emissions from vehicles scrapped in	
	California and Illinois pilot programmes	100
C.2	Distribution of CO emissions from vehicles scrapped in	
	California and Illinois pilot programmes	101
C.3	Distribution of NO _x emissions from vehicles scrapped in	
	California and Illinois pilot programmes	101
D.1	TIERS model data integration and flow	106

List of Tables

2.1	Four estimates of pollution control costs (\$/ton)	12
3.1	Percentage of all person-trips by mode	20
3.2	HC emissions reduction from low-cost repairs	22
3.3	Repaired vehicles reducing HC emissions by 50 per cent	
	or more	23
3.4	Vehicle chosen for the majority of use in two-vehicle	
	households	28
3.5	Vehicle with the highest VMT in three-vehicle households in	
	which all vehicles are of different ages, VMT and MPG	28
3.6	Percentage of new vehicles sold in the US by vehicle type	29
3.7	Types of vehicle owned by one-vehicle households	32
3.8	One-vehicle household OLS model	33
3.9	Price elasticity estimates for one-vehicle households	34
3.10	Types of vehicle owned by two-vehicle households	35
3.11	Two-vehicle household OLS model	36
3.12	Three-or-more-vehicle household OLS model	38
3.13	Comparison of elasticities from two studies	39
4.1	TIERS model: travel and emissions summary	46
4.2	TIERS model: travel and emissions summary using the Walls	
	et al. elasticities	47
4.3	Effects of the emissions tax by income quintile	50
4.4	Vehicle holdings by income quintile	50
4.5	Data used to calculate the Suits index for the emissions tax	51
4.6	TIERS model: travel and emissions effects of a gasoline tax	
	reduction of \$0.15 per gallon	53
4.7	TIERS model: effects of a gasoline tax reduction of \$0.15	
	per gallon combined with the emissions tax	54
4.8	Comparison of the effects of emissions and gasoline taxes	55
4.A.1	One-vehicle households' VMT (millions)	57
4.A.2	One-vehicle households' emissions: baseline and adjusted	
	(metric tonnes)	58
4.A.3	Two-vehicle households' VMT (millions)	59
4.A.4	Two-vehicle households' emissions: baseline and adjusted	
	(metric tonnes)	60

4.A.5	Three-or-more-vehicle households' VMT (millions)	61
4.A.6	Three-or-more-vehicle households' emissions: baseline and	
	adjusted (metric tonnes)	62
4.A.7	VMT change induced by the emissions tax (millions of miles)	63
4.A.8	HC emissions change induced by the emissions tax (metric	
	tonnes)	64
4.A.9	CO emissions change induced by the emissions tax (metric	
	tonnes)	65
4.A.10	NO _x emissions change induced by the emissions tax (metric	
	tonnes)	66
5.1	Tax rate trigger points: emissions-based tax (cents/mile)	
	above which the annual tax exceeds the vehicle value	70
5.2	Percentage of model year vehicles in a given valuation range:	
	South Coast Air Basin, 1992	70
5.3	Expected induced scrappage of 1976 model year vehicles	73
5.4	Expected induced scrappage of 1977 model year vehicles	74
5.5	Expected induced scrappage of 1978 model year vehicles	75
5.6	Expected induced scrappage of 1979 model year vehicles	76
5.7	Expected induced scrappage of 1980 model year vehicles	77
5.8	Expected induced scrappage of 1981 model year vehicles	78
5.9	Net emissions reduction credit per vehicle scrapped	79
5.10	Maximum expected scrappage and resulting emissions reduction	79
5.11	Adjusted expected scrappage of 1976 model year vehicles	81
5.12	Adjusted expected scrappage of 1977 model year vehicles	82
5.13	Adjusted expected scrappage of 1978 model year vehicles	83
5.14	Adjusted expected scrappage of 1979 model year vehicles	84
5.15	Adjusted expected scrappage of 1980 model year vehicles	85
5.16	Adjusted expected scrappage of 1981 model year vehicles	86
5.17	Adjusted expected scrappage and resulting emissions reduction	87
A.1	NAAQS and ozone non-attainment designation	95
A.2	NAAQS and CO non-attainment designation	95
A.3	Requirements for ozone non-attainment areas	96
A.4	Specific requirements for ozone reduction	97
C.1	Data sources and description	102

Autos, Smog and Pollution Control

The Politics of Air Quality Management in California

Wyn P. Grant, University of Warwick, UK

'This book is both readable and well-researched. As such it is to be recommended to anyone, that is lay (wo)men and experts alike, interested in air pollution policy in the developed world."

Adam Seymour, The Journal of Energy Literature

The Economics of Regulating Road Transport

Erik Verhoef, Free University of Amsterdam, The Netherlands

The Economics of Regulating Road Transport explores welfare economic evaluations — in terms of efficiency as well as equity and social feasibility – of regulatory policies and policy mixes directly aimed at, or indirectly connected to, the containment of market failures in road transport.

The Economics of Pollution Control in the Asia Pacific

Edited by Robert Mendelsohn, Yale University, US and Daigee Shaw, Academia Sinica, Taiwan, ROC

The Economics of Pollution Control in the Asia Pacific adapts environmental economics to the special conditions of the Asia Pacific region, emphasising the importance of local conditions and culture.

EDWARD ELGAR PUBLISHING LIMITED

8 Lansdown Place, Cheltenham, Glos, GL50 2HU, UK. Tel: +44 1242 226934 Fax: +44 1242 262111 http://www.e-elgar.co.uk

Email: Info@e-elgar.co.uk

