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Abstract  
 
This thesis investigates adaptive detection techniques using CA-OS and 
CMLDK-CFAR sensors for threshold optimization. The focus is on improving 
the performance of these sensors in varying environments by employing genetic 
algorithms (GAs). By adjusting thresholds adaptively, the proposed method 
enhances detection accuracy, providing a robust solution to optimize sensor 
performance in complex systems. 
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Résumé 
 
Cette thèse explore les techniques de détection adaptatives en utilisant les 
capteurs CA-OS et CMLDK-CFAR pour l'optimisation des seuils. L'accent est 
mis sur l'amélioration des performances de ces capteurs dans des 
environnements variés en employant des algorithmes génétiques (AG). En 
ajustant les seuils de manière adaptative, la méthode proposée améliore la 
précision de détection, offrant une solution robuste pour optimiser les 
performances des capteurs dans des systèmes complexes. 
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General introduction 

 

Radar systems play a vital role in detecting and tracking targets across different environments, 
whether they are uniform or vary significantly. One of the key objectives in radar signal 
processing is to achieve high detection accuracy while keeping the false alarm rate consistent. 
However, conventional CFAR detectors often struggle in non-uniform environments, where 
noise and clutter levels fluctuate. This challenge highlights the need for more advanced CFAR 
methods that can adapt to dynamic conditions and ensure reliable target detection. 

This thesis focuses on enhancing the performance of Constant False Alarm Rate (CFAR) 
systems through the use of Genetic Algorithms (GAs). CFAR detectors, particularly OS-
CFAR and CMLD-CFAR, play a critical role in radar systems by detecting targets while 
maintaining a constant false alarm rate despite varying environmental conditions. The primary 
challenge is to improve the probability of detection (Pd) without increasing the probability 
of false alarms (Pfa), especially in non-homogeneous environments. This study leverages 
GAs, an evolutionary algorithm, to optimize key CFAR parameters such as rank order (K) 
and threshold (T) values to overcome the limitations of traditional CFAR detectors. 

GAs are particularly well-suited for this optimization task due to their ability to explore a large 
solution space and avoid local optima, which can hinder detection performance. The GA 
process in this study involves initializing a population of solutions, applying crossover and 
mutation operations to create offspring, and using selection strategies like Tournament 
Selection to guide the population toward the best solutions. Through this iterative process, the 
CFAR systems can dynamically adjust to changing conditions and interference, leading to 
better performance across a range of Signal-to-Noise Ratios (SNRs) and background 
conditions. 

Chapter 1:  

provides a theoretical fundament introduction to radar concepts as well as its functionality 
principles. 

Chapter 2:  

explains the concept of Radar detection and its types of thresholding methods 

Chapter 3:  

gives an overview of CFAR detectors and their probabilistic studies 

Chapter 4:  

introduction to evolutionary algorithms including GA’s ( backgound, encoding representation 
and other important parameters) 

Simulation and representation: 

the results of the simulations are presented and analysed. The performance of OS-CFAR and 
CMLD-CFAR detectors optimized by GAs is compared under various SNR levels and 
background conditions 



 

 

 

 

 

 

 

 

 

 

CHAPTER 01 

Introduction to Radar Systems and Signal 
Processing 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

SUMMARY 

This chapter introduces a brief history of the radar system, its components, its 
operating principle, and a citation of different types, including a definition of 
clutter and noise. In addition, we talk about the radar equation, the Swerling 

fluctuating target models, the Doppler Effect, and then we quote generally the 
parts of the radar signal processing knowing that our project aims at a part of 

this processing.
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1 Introduction to Radar Systems and Signal 
Processing 
1.1 History and Applications of Radar 

The term "radar" originated from the acronym RADAR, meaning "radio detection 
and ranging." It has been used in various applications since its inception, including 
measuring speed limits, enforcing speed limits, and detecting aircraft. The 
development of radar accelerated in the mid-1930s, with independent 
developments in the United States, Britain, France, Germany, Russia, Italy, and 
Japan. 
 
In the United States, R. M. Page of NRL began developing pulsed radar in 1934, 
leading to the development of the SCR-268 antiaircraft fire control system and 
the SCR-270 early warning system. British development began in 1935 with work 
by Watson-Watt, demonstrating pulsed radar and establishing the Chain Home 
surveillance radar network. By the end of World War II, the value of radar and 
the advantages of microwave frequencies and pulsed waveforms were widely 
recognized. 
 
The military is still a major user and developer of radar technology, with 
applications spanning from large ballistic missile defence systems to fist-sized 
tactical missile seekers. Radar now enjoys an increasing range of applications, 
including police traffic radar, colour weather radar, air traffic control systems, 
aviation, collision avoidance and buoy detection by ships, automobile and 
trucking industries, and spaceborne and airborne radar. 
 
This text aims to present a thorough, straightforward, and consistent description 
of the signal processing aspects of radar technology, focusing on the more 
fundamental functions common to most radar systems. Pulsed radars are 
emphasized over CW radars, while monostatic radars are emphasized over bistatic 
radars. The subject is approached from a digital signal processing (DSP) 
viewpoint as much as practicable, as most new radar designs rely heavily on 
digital processing and can unify concepts and results often treated separately [1]. 
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1.2 Radar System Classification  
 

 Based on target’s type 
 

  Secondary RADAR 
Radars known as secondary radars depend on a target response for their operation. 
Most of these devices are used for navigation and telecommunications. 

  Primary RADAR 
Primary radars can be of the two-dimensional type giving range and azimuth 
measurements or of the three-dimensional type, for which an additional elevation 
angle measurement is then available. There are primary approach radars which 
are located at airports and are intended to detect all aircraft approaching an airport. 

 Based on the relative position of transmitter or the receiver 
  Monostatic: reception and transmission are done with the same antenna. 
 Multi-static: two antennas or plus for reception and transmission separated 

with a certain distance. 
 Based on the signal’s type 

  Pulse Radar  
Conventional pulse radar emits rectangular pulses of unmodulated duration. 
However, a new technique is used to modulate the frequency to obtain an ideal 
receiver. 
  Continious wave RADAR (CW RADAR) 
In this type of radar, the transmitter generates a continuous oscillation at 
frequency f0 which is radiated by the antenna. A portion of the transmitted 
signal is reflected by the target and is intercepted by the antenna. The 
frequency of the received signal will be shifted from that of the transmitted 
signal f0 by an amount ± fd which is the Doppler frequency. A Doppler 
amplifier is used to eliminate echoes from stationary targets and to amplify the 
signal to make it usable. 

 Based on objectif 
  Surveillance: Radar explores continuously the coverage area. 
 Tacking: Radar tracks a target continuously or discontinuously (track while 

scan)[4]. 

1.3 Clutter And Noise 

 In modern tracking and surveillance radar, the declaration of the presence 
or absence of a target is made based on a comparison of the received echo 
signal against a predefined threshold. This signal is generated from three 
different sources[7], 
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 From the target. 
  Thermal noise. 
  The surrounding clutter. 

1.3.1 Definition of Noise 

In reality the signal processed by the detector to decide is always accompanied by 
background noise of a random nature. 
This background noise is made up of two types of noise: the first, present in all 
physical devices, is the result of interference from signals from different sources 
such as thermal noise in absolute temperature systems. The second type of noise 
is called clutter. 

1.3.2  Definition of Clutter 

Clutter refers to echoes produced by unwanted targets such as the ground, sea, 
rain, etc. It results from an aggregation of echoes from small but numerous 
reflectors, such as raindrops, sea waves, swarming insects. The definition of 
clutter depends on the type of targets the radar is looking for. If a radar considers 
aircraft to be useful targets, then rain is clutter to it; a weather radar, on the other 
hand, considers rain to be a useful target and aircraft to be clutter. 
If a target's echo is drowned in clutter, the radar may miss its detection as it may 
give a series of false alarms by considering the clutter as a set of targets. Detection 
in a clutter environment is a primary problem for modern radar and continues to 
be a subject of research as existing detectors are not suitable for all situations. 

1.4  Basic Radar Functions 
Most uses of radar can be classified as detection, tracking, or imaging. This text 
addresses all three, as well as the techniques of signal acquisition and interference 
reduction necessary to perform these tasks. The most fundamental problem in 
radar is detection of an object or physical phenomenon. This requires determining 
whether the receiver output at a given time represents the echo from a reflecting 
object or only noise. Detection decisions are usually made by comparing the 
amplitude A(t) of the receiver output (where t represents time) to a threshold T(t), 
which may be set a priori in the radar design or may be computed adaptively from 
the radar data; 
The time required for a pulse to propagate a distance R and return, thus traveling 
a total distance 2R, is just 2R/c; thus, if A(t) > T(t) at some time delay t0 after a 
pulse is transmitted, it is assumed that a target is present at range 

                                                       𝑅 =
ୡ୲బ

ଶ
                                                       (1.1) 

where c is the speed of light [1]. 
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Figure 1.1Basic principle of radar 

After detecting an object, radar may need to track its location or velocity. In a 
monostatic radar system, position is naturally measured in a spherical coordinate 
system with the radar antenna's phase center as the origin. This coordinate system, 
illustrated in Fig. 1.1, has the antenna's look direction aligned with the positive x-
axis. The angles θ and ϕ represent azimuth and elevation, respectively. The range 
to the object is directly calculated from the time taken for the radar pulse to travel 
to the object and back. Elevation and azimuth angles are determined based on the 
antenna's orientation, as the target typically needs to be within the antenna's main 
beam for detection. Velocity estimation involves measuring the Doppler shift of 
the target echoes. While Doppler shift provides only the radial velocity 
component, tracking over time allows inference of the target's dynamics in all 
three dimensions [1]. 

                  

Figure 1.2 Spherical coordinate system for radar measurements. 
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1.5 The Doppler Shift 
An accurate way of measuring the speed of a target is the use of Doppler 
frequency shift, which is the difference between the received frequency and the 
transmitted frequency caused by the motion of the target. In this case, a coherent 
system is needed, in the sense that the transmitter and the receiver oscillators are 
phase locked, in order to detect any difference in the echo signal. Thus: 
                                                          𝑓ௗ = 𝑓௥ − 𝑓௧                                            (1.2)  

Where 𝑓ௗ is Doppler frequency, fr is the receiver frequency, and ft is the 

transmitter frequency. Doppler frequency is given in terms of vr, the radial 

component of the target speed toward the radar, by 

                                                         𝑓ௗ =
ଶ௩ೝ

ఒ
            (1.3) 

where vr << c, c is the speed of light, and the wavelength λ is given by 

                                                         𝜆 =
௖

௙೟
                                                       (1.4)  

For fixed objects, fd equals zero. 

1.6 Elements of a Pulsed Radar 
Figure 1.2 depicts a basic block diagram of a simple pulsed monostatic radar 
system. The waveform generator produces the desired pulse waveform, which is 
then modulated to the desired radio frequency (RF) and amplified for 
transmission. The transmitted signal is directed to the antenna through a duplexer, 
which switches between transmit and receive modes. Returning echoes are routed 
back through the duplexer into the radar receiver. Typically, the receiver employs 
a superheterodyne design, with an initial stage consisting of a low-noise RF 
amplifier. Subsequent stages involve modulation of the received signal to 
successively lower intermediate frequencies (IFs) until reaching baseband, where 
no carrier frequency modulation occurs. Each modulation step involves a mixer 
and a local oscillator (LO).The baseband signal then undergoes processing in the 
signal processor, which performs various functions such as pulse compression, 
matched filtering, Doppler filtering, integration, and motion compensation. The 
output of the signal processor varies based on the radar's purpose. For example, a 
tracking radar provides a stream of detections with measured range and angle 
coordinates, while an imaging radar produces a two- or three-dimensional image. 

Finally, the processed data is sent to the system display, data processor, or both, 
depending on the specific requirements of the radar system [1]. 
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Figure 1.3 Block diagram of a pulsed monostatic radar. 

1.6.1  Transmitter and Waveform Generator 
The transmitter and waveform generator are critical components that impact the 
sensitivity and range resolution of radar systems. Radar systems operate across a 
wide range of frequencies, from as low as 2 MHz to as high as 220 GHz, with 
laser radars operating at even higher frequencies in the terahertz range. However, 
the majority of radar systems operate in the microwave frequency range, typically 
between 200 MHz and 95 GHz, corresponding to wavelengths ranging from 0.67 
meters to 3.16 millimeters. 

Table 1.1 provides a summary of the letter nomenclature commonly used for 
different radar bands. Additionally, the millimeter wave band can be further 
subdivided into sub bands such as the Q band (36 to 46 GHz), V band (46 to 56 
GHz), and W band (56 to 100 GHz). These frequency bands and their 
corresponding wavelengths are essential considerations in radar design and 
operation [1]. 



19 
 

             

Table 1-1 Letter Nomenclature for Nominal Radar Frequency Bands 

 

Figure 1.4 illustrates atmospheric attenuation for one-way propagation over the 
most common radar frequency ranges under a set of atmospheric conditions. 
Most Ka-band radars operate near 35 GHz and most W-band systems operate 

near 95 GHz due to the relatively low atmospheric attenuation at these 
wavelengths. 

 

 

Figure 1.4 One-way atmospheric attenuation of electromagnetic waves. 
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Weather conditions can also have a significant effect on radar signal propagation. 
Figure 1.5 illustrates the additional one-way loss as a function of RF frequency 
for rain rates ranging from drizzle to a tropical downpour. 

 

Figure 1.5 Effect of different rates of precipitation on one-way atmospheric attenuation of electromagnetic waves. 

1.6.2 Antennas 
The antenna plays a major role in determining the sensitivity and angular 
resolution of the radar. A wide variety of antenna types are used in radar systems. 
Some of the most common types are parabolic reflector antennas, feed scanning 
antennas, lens antennas, and phased array antennas.  

The radiation pattern follows the line of sight. The gain G and the effective 
aperture Ae are important. The 3 dB beamwidth of the uniformly illuminated 
aperture in radians is 𝜆/𝐷, which is inversely proportional to the antenna aperture 
D and proportional to the wavelength 𝜆 [1]. 

 

                                   

  (a)                                                                                      (b)  

Figure 1.6 Examples of typical array and aperture antennas. (a) Slotted phased array in the nose of an F/A-18 aircraft. 
This antenna is part of the AN/APG-73 radar system. (b) A Cassegrain reflector antenna. 
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1.6.3 Receivers 
It has been shown that radar signals are generally narrowband, passband functions 
with phase or frequency modulation. This means that the received echo waveform 
r(t) from a single scatterer is of the form: 

 r(t) = A(t) (sin 𝜔𝑡  +𝜃(t)) where the amplitude modulation A(t) represents only 
the pulse envelope. The main function of the receiver processing is the 
demodulation of the information-carrying part of the radar signal to baseband, 
with the goal of measuring 𝜃(t). Figure 1.6 illustrates the conventional approach 
to receiver design used in most classical radars. 

                               

Figure 1.7 Conventional quadrature channel receiver model. In this illustration, the lower channel is the in-phase (“I”) 
channel, and the upper is the quadrature phase (“Q”) channel. 

 The reason why both I and Q channels are necessary is that either one alone 
does not provide enough information to unambiguously determine the phase 
modulation 𝜃(t). Figure 1.7 illustrates the problem. Consider the case shown in 
Fig. 1.7a. The signal phase 𝜃(t) is represented by a solid black phasor in the 
complex plane. If only the I channel is implemented in the receiver, only the 
cosine of 𝜃(t) will be measured. In this case, the true phasor will be 
indistinguishable from the gray phasor - 𝜃(t). Similarly, if only the Q channel is 
implemented so that only the sine of 𝜃(t) is measured, then the true phasor will be 
indistinguishable from the gray phasor in Figure 1.7b, which corresponds to π- 
𝜃(t). When both I and Q channels are implemented, the quadrant of the phasor is 
determined unambiguously. In fact, the signal processor will typically assign the 
I signal to the real part of a complex signal and the Q signal to the imaginary part, 
forming a single complex signal [1]. 
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(a)                                                                                 (b) 

Figure 1.8 (a) The I channel of the receiver in Fig. 1.6 measures only the cosine of the phasor θ(t). (b) The Q channel 
measures only the sine of the phasor. 

In the receiver structure shown in Figure 1.6, the information-bearing part of the 
signal is demodulated from the carrier frequency to the baseband in a single 
mixing operation. While this is convenient for analysis, pulsed radar receivers are 
practically never implemented this way in practice. 

Figure 1.8 shows a more representative superheterodyne receiver structure. The 
received signal, which is very weak, is immediately amplified upon reception 
using a low noise amplifier (LNA). The LNA, more than any other component, 
determines the noise figure of the overall receiver. The key feature of the 
superheterodyne receiver is that baseband demodulation occurs in two or more 
stages. First, the signal is modulated to an intermediate frequency (IF), where it 
receives additional amplification. Amplification at IF is easier due to the higher 
percentage bandwidth of the signal and the lower cost of IF components compared 
to microwave components. Finally, the amplified signal is demodulated to the 
baseband. Some receivers may use more than two stages of demodulation (so 
there are at least two IF frequencies), but two stages are the most common choice 
[1]. 

             

Figure 1.9 Structure of a superheterodyne radar receiver. 
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1.6.4 Resolution  
The closely related concepts of resolution and resolution cell will frequently 
appear. Two scatterers of equal strength are considered resolved if they produce 
two separately identifiable signals at the system output, as opposed to combining 
into a single undifferentiated output. The idea of resolution is applied in range, 
cross-range, Doppler shift or velocity, and angle of arrival. Two scatterers can be 
resolved simultaneously in one dimension, say range, and not be resolved in 
another, perhaps velocity. 

The resolution of a radar determines the size of a resolution cell. A resolution cell 
in range, velocity, or angle is the interval in that dimension that contributes to the 
echo received by the radar at any given time. Figure 1.9 illustrates resolution and 
the resolution interval in the radial distance dimension for a simple constant 
frequency pulse. To resolve the contributions of two scatterers at different time 
samples, they must be spaced more than cτ/2 meters apart so that their individual 
echoes do not overlap in time[1]. 

                

Figure 1.10 Geometry for describing conventional pulse range resolution. 

This description of range resolution applies only to unmodulated constant 
frequency pulses. pulse modulation combined with matched filtering can be used 
to achieve finer range resolution than cτ/2. 

Angular resolution in the azimuthal and elevation dimensions is determined by 
the antenna beamwidths in the same planes. Thus, the two point scatterers in 
Figure 1.10 located at the 3 dB edges of the beam define the radar's angular 
resolution. 
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Figure 1.11 The angular resolution is determined by the 3-dB antenna 

1.7 Radar equation  
The radar equation is crucial for understanding radar performance, as it relates the 
received signal power Pr to radar characteristics. 

                                                𝑃௥ =
௉೟ ೟ீ

ସగோ²
×

ఙ

ସగோ²
× 𝐴௘                                      (1.2) 

 This equation can be broken down into three main factors. The first factor is the 
power density at a distance R from a radar transmitting Pt watts with an antenna 
gain Gt. The second factor involves the target's cross section 𝜎, accounting for the 
divergence of the electromagnetic wave on its outward and return paths. Together, 
these two factors represent the power per square meter returned to the radar. The 
third factor, involving the antenna's effective aperture area Ae, indicates the 
portion of this returned power intercepted by the radar. The maximum radar range 
Rmax is determined when the received power Pr equals the receiver's minimum 
detectable signal Smin, leading to the radar equation. 

                                                  𝑅௠௔௫
ସ =

௉೟ ೟ீ஺೐ఙ

(ସగ)²ௌ೘೔೙
                                            (1.3) 

When the same antenna is used for both transmitting and receiving, the 
transmitting gain Gt and the effective receiving aperture Ae are connected by the 

relationship𝐺௧ =
ସగ஺೐

ఒ²
 , where 𝜆 is the radar wavelength. By substituting this 

relationship into the radar equation, we obtain two alternative forms of the 
equation.  

                                                 𝑅௠௔௫
ସ =

௉೟ ೟ீఒ²ఙ

(ସగ)యௌ೘೔೙
                    (1.4) 

                                                  𝑅௠௔௫
ସ =

௉೟஺೐²ఙ

ସగఒమௌ೘೔೙
                                            (1.5) 

The simplified radar equation examples provided are useful for rough range 
calculations but are overly optimistic and not realistic. Two main reasons for this 
inaccuracy are the omission of various radar losses and the statistical nature of the 
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target cross section and minimum detectable signal. these issues will be addressed 
later on by refining the radar equation for more accurate range predictions. 
Although range appears as the fourth power in the equation, it can vary in specific 
situations. The radar equation is also valuable for preliminary system design by 
illustrating trade-offs among radar performance parameters. 

The minimum detectable signal Smin in the radar equation is a statistical measure 
that must account for the probability of detection and false alarms. For reliable 
detection, the signal must exceed noise by 10 to 20 dB at the detection point in 
the receiver. This minimum detectable signal can be expressed as the signal-to-
noise ratio (SNR) required for reliable detection, multiplied by the receiver noise. 
The receiver noise is the thermal noise, kTB, where k is Boltzmann's constant, T 
is the temperature, and B is the receiver bandwidth. This noise is then multiplied 
by the receiver noise figure Fn. The receiver noise figure is measured relative to 
a reference temperature T0 = 290 K, with kT0 approximating 4× 10ିଶଵW/Hz. 
The minimum detectable signal in the radar equation is thus defined. 

                                                      𝑆௠௜௡ = 𝐾𝑇଴𝐹௡
ௌ

ே
                                         (1.6) 

Sometimes, the term 𝑇଴𝐹௡ is replaced with Js, the system noise temperature. While 
the radar equation is often discussed in terms of signal power, total signal energy 
is often more convenient for detecting more complex waveforms. The energy-to-
noise ratio E/N0 is a fundamental parameter in statistical detection theory, more 
so than the signal-to-noise (power) ratio. For a matched filter, the peak signal-to-
noise ratio at the output is 2E/𝑁଴. 

For a rectangular pulse of width T, where signal power is E/T and noise power is 
𝑁଴𝐵 (with E as signal energy, 𝑁଴as noise energy, or noise power per unit 
bandwidth, and B as receiver bandwidth), the minimum detectable signal Smin 
becomes Js(E/𝑁଴)T. Substituting this into the radar equation adjusts the 
calculation accordingly. 

                                                  𝑅௠௔௫
ସ =

ா೟ ೟ீ஺೐ఙ

(ସగ)²௄ బ்ி೙(
ಶ

ಿబ
)
                                    (1.7) 

Equation (1.7) applies to a rectangular pulse but can be used for any waveform if 
Et is the energy in the transmitted waveform and the receiver with noise figure Fn 
is designed as a matched filter. Some radar detection theory results present the 
probability of detection and false alarm in terms of S/N rather than E/𝑁଴. For 
optimal matched-filter processing, the required E/𝑁଴values for the radar equation 
can be derived from these results for S/N or the visibility factor. The radar 
equation can be adapted into different forms for specific applications, with several 
examples provided[7]. 
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1.7.1 Tracking  
In this situation the radar is assumed to track continuously or "searchlight" a target 
for an interval of time 𝑡଴. Equation (1.7) applies, so that the ‘tracking’, or 
‘searchlighting’, radar equation is 

 

                                                             𝑅௠௔௫
ସ =

௉ೌ ೡ௧బ ೟ீ஺೐ఙ

ସగ௄ బ்ி೙(
ಶ

ಿబ
)
                                                     (1.8) 

Where 𝑃௔௩𝑡଴= Et. Thus, in a tracking radar that must "see" to a long range, the 
average power must be high, the time on target must be long, and the antenna 
must be of large electrical size (G,) and large physical size (Ae). The frequency 
does not enter explicitly. Since it is easier mechanically to move a small antenna 
than a large one, tracking radars are usually found at the higher frequencies, where 
small apertures can have high gain and thus an adequate G, Ae product. The radar 
equation is based on detectability. A tracking radar must also be designed for good 
angular accuracy. Good angle accuracy is achieved with narrow beamwidths 
(large G,) and with high E/N0 (large Ae). Thus, a large Gt Ae product is consistent 
with good tracking accuracy as well as good detectability [4]. 

1.7.2 Volume search 
Assume that the radar must search an angular volume of Ω steradians in the time 
ts. If the antenna beam subtends an angle of Ω௕ steradians, the antenna gain G௧, is 
approximately 4π/Ω௕. If the antenna beam dwells a time 𝑡଴ in each direction 
subtended by the beam, the total scan time is ts =𝑡଴Ω/Ω௕  Substituting these 
expressions into Eq. (1.7) and noting that Et=𝑃௔௩𝑡଴  
 

                                             𝑅௠௔௫
ସ =

௉ೌ ೡ஺೐ఙ

ସగ௄ బ்ி೙(
ಶ

ಿబ
)
 

ଵ

௧௦
                                         (1.9) 

Thus, for a volume search radar the two important parameters for maximizing 
range are the average transmitter power and the antenna aperture. Any decrease 
in time to scan the volume or any increase in the volume searched must be 
accompanied by a corresponding increase in the product 𝑃௔௩𝐴௘. Note that the 
frequency does not enter explicitly [4]. 
 

1.7.3 Clutter 
When a radar must detect a small target on the surface of the sea or land, unwanted 
clutter echoes can significantly hinder target detectability. When clutter power 
exceeds receiver noise power, the radar range equation simplifies to an expression 
for the signal-to-clutter ratio. This ratio equals the target cross-section to clutter 
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cross-section ratio. If clutter is uniformly distributed, the clutter echo depends on 
the area illuminated by the radar's resolution cell. Surface clutter (ground or sea) 
is described by the clutter echo's ratio to the illuminated area, represented by the 
normalized clutter coefficient 𝜎଴. For a pulse radar viewing the target and clutter 
at low grazing angles and assuming single-pulse detection, the signal-to-clutter 
ratio is considered. 

                                                       
ௌ

஼
=

ఙ

ఙబோఏ್ቀ
೎ഓ

మ
ቁ௦௘௖థ

                                            (1.10) 

                                         𝑅௠௔௫ =
ఙ

 (
ೄ

಴
)೘೔೙ఙబఏ್ቀ

೎ഓ

మ
ቁ௦௘௖థ

                                    (1.11) 

where R = range to clutter patch 

𝜃௕ = azimuth beamwidth 

c = velocity of propagation 

𝜏 = pulse width 

𝜙 = grazing angle 

The clutter patch is determined by the antenna beam width in azimuth and by the 
pulse width in the range coordinate. The signal-to-clutter ratio (SIC) plays a role 
similar to the signal-to-noise ratio (E/N0) for thermal noise and must be 
sufficiently high for reliable detection. While clutter statistics differ from thermal 
noise, SIC values might initially be approximated using E/N0 values when no 
other information is available. Notably, range dependence for clutter detection is 
linear, unlike the fourth power dependence for noise detection. Therefore, a 
narrow radar beam and short pulse width are crucial for detecting targets in clutter. 
If multiple hits are received per scan and the clutter is correlated from pulse to 
pulse, no improvement in SIC is achieved, unlike in thermal noise scenarios [4]. 

1.8 Range Ambiguity 
Range ambiguity in radar occurs when the radar cannot accurately determine the 
target's actual distance due to the periodic nature of radar pulses. Radars operate 
by transmitting short pulses of electromagnetic waves, then pausing to wait for 
any returning echoes from targets. The time delay of the echo helps calculate the 
distance to the target. 

When the radar continuously sends out pulses, an echo from a previous pulse may 
return after a subsequent pulse is transmitted. The radar could mistake this echo 
for one associated with the latest pulse, leading to an incorrect, shorter-range 
estimate for the target. 
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When the radar estimates the range R2, it assumes the echo came from the most 
recent pulse, even though the echo could have originated from an earlier 
transmission, corresponding to range R1. The true distance to the target could be 
any of the distances: 

                                                            𝑅ଶ + 𝑘(𝑅ଶ − 𝑅ଵ)                                                   (1.12) 

where k is any positive integer. Because the radar cannot distinguish between 
these possible ranges based solely on the time of the received echo, it introduces 
uncertainty in determining the correct target distance. 

To prevent range ambiguity, the pulse repetition interval (PRI) “the time between 
consecutive pulses” must be properly chosen. By increasing the PRI, the radar 
ensures that echoes from distant targets do not overlap with those from closer ones 
in the next pulse cycle. The maximum unambiguous range Rmax is expressed as: 

                                                   𝑅௠௔௫  =
௖.௉ோூ

ଶ
                 (1.13) 

where c represents the speed of light[4]. 

1.9 Fluctuating target models 
When a radar signal encounters a target, the power reflected from the target 
depends on its radar cross section (or area). The RCS is related to the power Pr 
received by the target when it is immersed in a space with a power flux density 
W by the expression, 

                                                       𝑃௥ = 𝐴௘𝑊                                               (1.14)  

Where 𝐴𝑒 is the equivalent area of the target. Equation above shows that the larger 
the RCS, the higher the amplitude of the reflected signal. 

In general, the RCS of a real target is not constant over time when the target is in 
motion. As a result, when the target enters the radar beam, it receives a group of 
pulses for the duration of the illumination, and consequently reflects a train of 
pulses whose amplitude fluctuates more or less slowly from one pulse to the next.  

Depending on their speed, two types of RCS fluctuations can be distinguished. 
The fluctuations are called scan-to-scan if the amplitude of the reflected pulses 
located in the same group is constant, but can be variable from one group to 
another, i.e. from one scan to another; they are pulse-to-pulse if this amplitude 
varies from one pulse to another in the same group. In the first case, the RCS 
fluctuates with each scan and in the second case with each pulse.  

To model target fluctuation, there are mainly four cases, called Swerling cases, 
corresponding to mathematical models describing the envelope of the echo 
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amplitude distribution. These models are numbered 1 to 4 with an additional 
model 5 (or 0) less used than the previous ones[1] 

1.9.1 Swerling model 1 

In the Swerling Model 1, the fluctuations are sweeping. The envelope of the pulse 
train is a random variable with a Rayleigh probability density: 

                                                                                                                 (1.15) 

Where S is the signal-to-noise power ratio and 𝑚௦ is the mean of S. In addition, 
the initial phases of the pulses are statistically independent random variables with 
uniform density probabilities. 

                       
Figure 1.12 Swerling 1 

1.9.2 Swerling model 2 

In this case, the fluctuations are pulse to pulse. The amplitude of each pulse, 
instead of each group of pulses, is an independent random variable with the same 
density as case 1. The initial phases are also independent random variables with 
uniform densities. 

                                

Figure 1.13 Swerling 2 

1.9.3 Swerling model 3 

In this case, the fluctuations are sweeping. Model 3 differs from model 1 in the 
density probability: 
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                                                                                        (1.16) 

                                      

Figure 1.14 Swerling 3 

1.9.4 Swerling model 4 

In this case, the fluctuations are pulse to pulse. Model 4 is similar to model 2 but 
Equation 1.15 gives its density probability. 

             
Figure 1.15 Swerling 4 

1.9.5 Swerling model 5 (or 0) 

Model 5, also called Model 0, corresponds to non-fluctuating targets. The 
amplitude of the received signal is assumed to be constant and unknown. This 
case is less used than the previous cases. 

In practice, cases 1 and 2 correspond to targets consisting of many independent 
reflectors of comparable RCS (large aircraft) and cases 3 and 4 to targets having 
a dominant, non-fluctuating RCS reflector with other smaller, independent 
reflectors (missiles). 
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Figure 1.16 Swerling 5 

 

 

 

 

1.10 Signal processing phase 
The major blocks—the modulator, the transmitter, the receiver, the signal 
processor, the data processor, and the display—and their functions are now briefly 
described. 
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Figure 1.17 Signal and data processing in a modern pulse radar system. 

The Modulator Upon reception of each timing pulse, the modulator produces a 
high-pulse direct current and supplies it to the transmitter. 

The Transmitter The transmitter is a high-power oscillator. It generates a high 
peak power coherent train of pulses to illuminate the target. 

The Receiver Typically, the receiver is of a superheterodyne type. It provides 
frequency conversion (to a lower frequency called intermediate frequency, IF), 
interference rejection, and low-noise amplification. Noise reduction is an 
important consideration in radar receiver design, and it is accomplished by a 
matched filter that maximizes the SNR at the output. 

Signal Processor This device processes the target echoes and interfering signals 
to increase the signal-to-interference ratio. The operations may be pulse 
compression, Doppler range clutter suppression techniques, and CFAR 
processing. This is the part that will be developed in detail. However, we say 
briefly that the CFAR circuit keeps the rate of occurrence of false decisions 
(alarms) due to background noise and clutter at a constant and relatively low rate. 
This prevents saturation of the system and/or user. It estimates the noise and 
clutter level from a number of range, Doppler, and/or azimuth cells to allow the 
threshold to be set correctly. 

Data Processor It provides the target measurements in range, angle (azimuth and 
elevation), radial velocity, and possibly the target signature. 

Display The output is generally conveyed to a display to visualize the information 
contained in the target echo signal in a form suitable for operator action and 
interpretation. The plan position indicator (PPI) is the usual display employed in 
the radar receiver, and it indicates the range and azimuth of a detected target. 

When the transmitter and the receiver are in separate locations (Rb≠0), this is 
called a bistatic radar. In this case, the ranges R1 and R2 may not be the same. A 
multistatic radar is a radar with one transmitting antenna, but many receiving 
stations, all in a network. Most radars nowadays are active and of pulse type; that 
is, the radars have a transmitter, and the signal transmitted is a pulse [2]. 
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Conclusion 
In this chapter we have presented the different basic parameters of a radar 
system, the main components of a radar are: transmitter, receiver, antenna, 

detector and display. The radar equation is used to calculate the range of a radar, 
knowing the technical characteristics of the radar. The Doppler effect is used to 

estimate the radial speed of a target and to distinguish between moving and 
stationary targets. A proper limitation of the range of a radar avoids ambiguity in 

the estimation of the distance to targets. Swerling models are models of 
fluctuating targets and are used in estimating the performance of radar detectors. 
The decision whether a target is present or not depends on the comparison of the 

test sample to a threshold. 

In the following we will study the techniques of one part of radar signal 
processing, namely detection.



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 02 

Detection Fundamentals 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Summary 
This chapter will introduce the basic concepts of detection theory, firstly the 

detection decision criteria, and then we look at the detection techniques which 
represent the foundation for the further construction of this project. 
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2 Detection fundamentals  
2.1 Radar Detection as Hypothesis Testing 

For radar measurements, there are two possible hypotheses:  

1. The measurement is solely due to interference (null hypothesis H0). 

2. The measurement is due to both interference and target echoes (non-null 
hypothesis H1). 

The detection process evaluates each radar measurement and decides which 
hypothesis best explains it. If H0 is more suitable, the system concludes that no 
target is present at the specified range, angle, or Doppler coordinates. Conversely, 
if H1 is more appropriate, the system determines that a target is present [1].  

The decision between the two hypotheses relies on statistical decision theory, 
using probability density functions (PDFs) to describe the measurements. For a 
given sample y, two PDFs are needed: 

          py(y∣H0): PDF of y if no target is present. 

          py(y∣H1): PDF of y if a target is present. 

A crucial aspect of the detection problem involves developing models for the two 
PDFs. Radar performance analysis hinges on accurately estimating these PDFs 
for the specific system and scenario. Much of radar system design focuses on 
adjusting these PDFs to achieve optimal detection performance. In practice, 
detection is based on N data samples yn, which form a column vector y. 

                                                  𝑦 ≡ [𝑦଴ … 𝑦ேିଵ]                                             (2.1)   

The N-dimensional joint PDFs py(y|H0) and py(y|H1) are then used. Assuming 
the two PDFs are successfully modeled, the following probabilities of interest can 
be defined: 

Probability of Detection PD: The probability that a target is declared (i.e., H1 is 
chosen) when a target is in fact present. 

Probability of False Alarm PFA: The probability that a target is declared (i.e., H1 
is chosen) when a target is in fact not present 

Probability of Miss PM: The probability that a target is not declared (i.e., H0 is 
chosen) when a target is in fact present. 
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Note that𝑃ெ = 1 − 𝑃஽. Therefore, knowing 𝑃஽ and the probability of false alarm 
𝑃ி஺ is sufficient to define all relevant probabilities. It is important to recognize 
that, due to the statistical nature of the problem, there is always a finite chance of 
making incorrect decisions [2]. 

2.2  The Neyman-Pearson Detection Rule 
The next step in decision-making is to determine the optimal rule for choosing 
between the two hypotheses. This is a complex field. The Bayes optimization 
criterion assigns a cost or risk to each combination of the actual state (target 
present or not) and the decision (select H0 or H1). In radar, a common approach 
is the Neyman-Pearson criterion, a special case of the Bayes criterion. This 
criterion aims to maximize the probability of detection 𝑃஽ while ensuring that the 
probability of false alarm 𝑃ி஺ does not exceed a specified limit. The achievable 
𝑃஽ and 𝑃ி஺ combinations depend on the radar system's quality and signal 
processing design. For a fixed system design, increasing 𝑃஽ typically results in an 
increased 𝑃ி஺. Radar designers decide the acceptable false alarm rate based on the 
consequences of acting on a false alarm, such as allocating radar resources to track 
a non-existent target or, in extreme cases, firing a weapon. Given that radars can 
make millions of detection decisions per second, 𝑃ி஺ values must be very low, 
typically between 10ିସ and 10ି଼, yet this can still result in false alarms every few 
seconds. Higher-level logic in downstream data processing is often used to 
mitigate the number and impact of false alarms. 
In the context of decision-making based on measured data vectors y in an N-
dimensional space, each vector represents a point. To establish a complete 
decision rule, every possible point in this space, corresponding to all combinations 
of N data values, must be assigned to either of two decisions: H0 (target absent) 
or H1 (target present). When the radar observes a specific set of data values y, it 
categorizes the observation as either indicating "target absent" or "target present" 
based on the preassigned decision for that particular y. The region where H1 is 
chosen is denoted as region 1, which may consist of disconnected parts [2]. 
 
The probabilities of detection (detecting the target when it is present) and false 
alarm (incorrectly declaring the target when it is absent) can be expressed 
generally as integrals of the joint probability density functions (PDFs) over region 
1 in the N-dimensional space. 
                                              𝑃஽ =  ∫ 𝑝𝑦(𝑦 ∣ 𝐻1) 𝑑𝑦

ோభ
              (2.2) 

                                              𝑃ி஺ =  ∫ 𝑝𝑦(𝑦 ∣ 𝐻0) 𝑑𝑦
ோభ

        (2.3)  

Since probability density functions (PDFs) are always nonnegative, Equation 
(6.2) demonstrates that the probabilities of detection 𝑃஽ and false alarm 𝑃ி஺ must 
either both increase or both decrease together. When region 1, the area 
corresponding to a decision of H1, expands to include more possible observations 
y, the integrals over this region cover more of the N-dimensional space, resulting 
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in higher values for both 𝑃஽ and 𝑃ி஺. Conversely, if region 1 contracts, both 𝑃஽ 
and 𝑃ி஺ decrease. 
 
To increase the detection probability, the false alarm probability must also 
increase. In other words, achieving a good balance involves assigning points to 
region 1 that add more to the probability mass of 𝑃஽ than to 𝑃ி஺. If the system can 
be designed such that the PDFs             𝑝𝑦(𝑦 ∣ 𝐻1) and p𝑦(𝑦 ∣ 𝐻0) are largely 
disjoint, distinguishing between the two decisions becomes easier and more 
effective [2] 

2.3  The Likelihood Ratio Test 
The Neyman-Pearson criterion aims to achieve the optimal detection performance 
while ensuring that the false alarm probability remains within an acceptable limit. 
Therefore, the Neyman-Pearson decision rule is designed to chose 𝑅ଵso that 𝑃஽ is 
maximized, subject to  

                                                             𝑃ி஺ ≤ 𝛼                                               (2.4)  

where α is the maximum allowable false alarm probability. This optimization 
problem is solved by the method of Lagrange multipliers. Construct the function 

                                                 𝐹 ≡ 𝑃஽ + 𝜆(𝑃ி஺ − 𝛼)                                     (2.5) 

To find the optimum solution, maximize F and then choose λ to satisfy the 
constraint criterion PFA = α. Substituting (2.2) and (2.3) into Eq. (2.5) 

                       𝐹 = ∫ 𝑝𝑦(𝑦 ∣ 𝐻1) 𝑑𝑦
ோభ

+ 𝜆(∫ 𝑝𝑦( 𝑦 ∣∣ 𝐻0 ) 𝑑𝑦
ோభ

− 𝛼) 

                         𝐹 = −𝜆𝛼 + ∫ {𝑝𝑦( 𝑦 ∣∣ 𝐻1 ) + 𝜆𝑝𝑦( 𝑦 ∣∣ 𝐻0 )} 𝑑𝑦
ோభ

               (2.6)  

The design variable in this context is the selection of region 1. In the second line 
of (2.6), the first term remains constant regardless of the choice of region 1. Thus, 
to maximize F, the integral over region 1 must be maximized. Given that λ can be 
negative, the integrand can be positive or negative depending on the values of λ 
and the relative values of py(y∣H0) and py(y∣H1). To maximize the integral, 
region 1 should include all points in the N-dimensional space 𝑝𝑦( 𝑦 ∣∣ 𝐻1 ) + 𝜆𝑝𝑦
( 𝑦 ∣∣ 𝐻0 )>0. In other words, region 1 should consist of all points y where 𝑝𝑦
( 𝑦 ∣∣ 𝐻1 )> −𝜆𝑝𝑦( 𝑦 ∣∣ 𝐻0 ). This directly leads to the decision rule. 

                                                      
௣௬൫ 𝑦∣∣𝐻1 ൯

௣௬൫ 𝑦∣∣𝐻0 ൯
≷-𝜆                                            (2.7)  

Equation (2.7), known as the likelihood ratio test (LRT), provides a decision-
making rule under the Neyman-Pearson criterion for determining whether a target 
is present based on observed data y and a threshold -𝜆. The LRT states that the 
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ratio of the two probability density functions (PDFs) evaluated at y should be 
compared to this threshold. If the ratio exceeds the threshold, hypothesis H1 
(target present) is chosen; otherwise, hypothesis H0 (target not present) is chosen. 
This test ensures that the probability of a false alarm does not exceed the specified 
design value 𝑃ி஺ . Implementing the LRT requires models of 𝑝𝑦( 𝑦 ∣∣ 𝐻1 )and 𝑝𝑦
( 𝑦 ∣∣ 𝐻0 ), and it specifies the data processing operations needed on y. The LRT 
is fundamental in detection theory and statistical hypothesis testing, similar to the 
Fourier transform in signal processing, and is also the optimal solution under 
various decision criteria. The LRT can be conveniently expressed as follows: 

                                                         Λ(𝑦) ≷ 𝜂                                                 (2.8) 

Equation (6.6) defines the likelihood Λ(𝑦). Applying a monotone increasing 
transformation, such as the natural logarithm, to both sides simplifies the 
computations, resulting in the log likelihood ratio test. 

In detecting a constant in zero-mean Gaussian noise 𝜎௪
ଶ , Let w be a vector of 

independent identically distributed (i.i.d.) zero mean Gaussian random variables. 
Under hypothesis H0, the data vector y= w follows an N -dimensional normal 
distribution. Under hypothesis H1, y=m+w shifts the distribution to a nonzero 
positive mean, where m > 0. 

H0: y∽N (0ே,𝜎௪
ଶ 𝐼ே) 

H1: y∽N (m1ே,𝜎௪
ଶ 𝐼ே) 

where m > 0 and 0ே, 1ே, and 𝐼ே are, respectively, a vector of N zeros, a vector of 
N ones, and the identity matrix of order N. The model of the required PDFs is 
therefore: 

𝑝𝑦( 𝑦 ∣∣ 𝐻0 ) 𝑑𝑦 = ෑ
1

ඥ2𝜋𝜎௪
ଶ

𝑒
{
ିଵ
ଶ

ቀ
௬೙
ఙೢ

ቁ
మ

}
ேିଵ

௡ୀ଴
 

                               𝑝𝑦( 𝑦 ∣∣ 𝐻1 ) 𝑑𝑦 = ∏
ଵ

ඥଶగఙೢ
మ

𝑒
{

షభ

మ
ቀ

೤೙ష೘

഑ೢ
ቁ

మ
}ேିଵ

௡ୀ଴                      (2.9)   

The likelihood ratio Λ(y) and the log-likelihood ratio can be directly 

computed from (2.9): 

                                             Λ(𝑦) =
∏ ௘

{
షభ
మ

ቀ
೤೙
഑ೢ

ቁ
మ

}ಿషభ
೙సబ

∏ ௘
{
షభ
మ

ቀ
೤೙
഑ೢ

ቁ
మ

}ಿషభ
೙సబ

                                       (2.10)  

                                lnΛ(𝑦) =
ଵ

ఙೢ
మ ∑ 𝑚𝑦௡ −

ଵ

ଶఙೢ
మ

ேିଵ
௡ୀ଴ ∑ 𝑚²ேିଵ

௡ୀ଴                         (2.11) 
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Because of its simpler form, the log-likelihood ratio will be used. Substituting 
(2.11) into (2.8) and rearranging gives the decision rule: 

                                       ∑ 𝑦௡ ≷ேିଵ
௡ୀ଴

ఙೢ
మ

௠
ln(−𝜆) +

ே೘

ଶ
≡ 𝑇                             (2.12) 

The log-likelihood ratio simplifies the decision rule to comparing the sum of data 
samples ∑ 𝑦௡ to a threshold T. This method avoids explicitly evaluating PDFs and 
specifying regions in N-space. The term ∑ 𝑦௡, known as the sufficient statistic 
𝛾(𝑦), encapsulates all necessary information for the likelihood ratio, making it as 
effective as the original data for Neyman-Pearson optimal decisions. 

                                                                𝛾(𝑦) ≷ 𝑇                                                (2.13)  

The concept of a sufficient statistic is essential, encapsulating all useful 
information in a single coordinate. To determine the threshold 𝜂 = −𝜆 that 
ensures 𝑃ி஺ = 𝛼 , one must express 𝑃ி஺ in terms of the likelihood ratio Λor the 
sufficient statistic Υ and solve for 𝜂 or T. 

                                                                              (2.14) 

Eq. (2.14) can be solved to obtain the threshold T in terms of the tabulated inverse 
error function: 

                                                                            (2.15) 

Equations (2.14) and (2.15) explain the relationship between the false alarm 
probability 𝑃ி஺ and the threshold T. To perform the likelihood ratio test (LRT) 
using the sufficient statistic Υ(𝑦), we sum the data samples and compute T based 
on the number of samples, noise variance, and desired 𝑃ி஺. The detector's 
performance is assessed by creating a receiver operating characteristic (ROC) 
curve, which relates the probability of detection 𝑃஽  to 𝑃ி஺, noise power, and the 
constant m. To find 𝑃஽, we determine the probability density function of Υ under 
H0 and integrate from the threshold to infinity. Under H1, the mean of Υchanges 
to Nm, and we can express the relationship between 𝑃஽  and 𝑃ி஺  using the signal-
to-noise ratio, leading to a simplified form of the error function for performance 
evaluation [2]. 
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𝑃஽ =
1

2
[1 − erf ൜𝑒𝑟𝑓ିଵ൫1 − 2𝑃௙௔൯ − ට𝑥

2ൗ ൠ] 

                                      =
ଵ

ଶ
erf [𝑒𝑟𝑓ିଵ(2𝑃௙௔) − ට𝑥

2ൗ ]                               (2.16) 

2.4 Bayes' criterion 
Bayes' criterion assumes that the four possible events(D0,H0), (D0,H1), (D1,H0), 
(D1,H1) at the end of a decision, where (Di,Hi) ; i = 0,1 ; j = 0,1 means that the 
decision Di is taken when the hypothesis Hj is true, are each associated with a 
cost Cij which in practice represents the cost incurred by the corresponding 
decision. In addition, the priori probabilities of the realizations of the hypothesis 
H0 and H1 are assumed to be known.  
This criterion then determines the decision rule by minimising the average cost, 
called risk and noted R [2]. 

          (2.17) 

According to Bayes' law, we have 

  

Where                                                                                                             (2.18)     

 

is the a priori probability of the hypothesis Hj. Substituting (2.17) into (2.18), we 
get     

      

      (2.19) 

Finally, we replace the expressions for Pd and Pfa mentioned in hypothesis 
testing, we obtain 

     
        In this expression, the term C00 P0+C01 P1 does not depend on the domains 
Z0 and Z1. The decision rule is obtained by assigning to the domain Z1 the set of 
values of y(t) such that the integrant is negative 

                      (2.20) 
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Since C10-C00>0 and C10-C00>0, the cost of a wrong decision is higher than the 
cost of a right decision, the decision rule finally becomes  

                                                                  (2.21) 

The first member of the rule (2.21) is called the likelihood ratio and denoted Λ(y) 

                                                                                                       (2.22) 

and the second member is the detection threshold, denoted η, relative to Λ(y). 
Thus, the is simply written as 

                                                                                                   (2.23) 

2.5 Parameter Estimation 
Parameter estimation is a statistical process used to infer the values of unknown 
parameters in a model based on observed data. Given a set of noisy or incomplete 
measurements, the goal is to determine the most likely values of these parameters 
that characterize the underlying system or distribution. 

 

There are two main types of parameter estimation: 

 

o Maximum Likelihood Estimation (MLE): Estimates non-random 
parameters by finding the parameter values that maximize the likelihood of 
the observed data. 

o Bayesian Estimation: Estimates random parameters by incorporating prior 
knowledge about the parameter distribution, leading to a posterior 
distribution based on both the prior and the observed data [2]. 

2.5.1 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a method used to estimate nonrandom 
parameters from a set of observed data. The idea is to find the parameter value 
that makes the observed data most probable. 
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Let Y1,Y2,…,YK be K independent and identically distributed (i.i.d.) 
observations of a random variable Y, where the true distribution of Y depends on 
an unknown parameter θ. 

Let 𝑓௒/஀(y/𝜃) be the conditional probability density function of the random 
variable Y, given the parameter θ. The density function depends on θ, and our 
goal is to estimate θ. 

The likelihood function L(θ) represents the joint probability of observing the 
given data y1,y2,…,yK, assuming that the parameter θ is the true value. It is given 
by the product of the individual likelihoods for each observation: 

    (2.24) 

This is the likelihood function, which expresses how likely the observed data is 
for a given value of θ. 

To estimate θ, we seek the value 𝜃෠ that maximizes the likelihood function L(θ). 
The estimator 𝜃෠ that maximizes L(θ) is called the Maximum Likelihood Estimator 
(MLE). 

However, it's often easier to work with the logarithm of the likelihood function 
(called the log-likelihood) since taking logarithms turns the product into a sum: 

                                                                      (2.25) 

Maximizing ln L(θ) gives the same result as maximizing L(θ) because the 
logarithmic function is monotonically increasing. Therefore, the MLE is obtained 
by solving the following equation (also called the likelihood equation): 

                                                                                                                    (2.26) 

This gives the necessary condition for  𝜃෠ to be the maximum likelihood estimator 
[2]. 
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2.6 Detection techniques 
Radar detection techniques can be broadly categorized into classical and adaptive 
methods. In classical detection, a fixed threshold is used, whereas in adaptive 
detection, the threshold is continuously adjusted based on the noise level. This 
section of Chapter 2 introduces both techniques, focusing on adaptive detection. 
We begin by discussing traditional detection methods, where the threshold is 
fixed, highlighting their operational principles and primary drawbacks, which 
pave the way for understanding adaptive detection—the focus of this study. 

 

2.1 detection principle Figure 

 

Before delving into the operation of conventional detectors, also known as fixed 
threshold detectors, it is important to understand how radar monitors its 
surveillance volume, which is the area of space under observation. 

Radar emits pulses of duration τ, repeated at intervals of Tr, modulating a higher 
frequency carrier. If two targets in the same direction each produce their own 
echo, the radar cannot distinguish between them unless they are separated by a 
minimum distance, ΔR, known as range resolution, given by: 

                                                           Δ𝑅 =
௖ఛ

ଶ
   (2.27) 

where c is the speed of electromagnetic waves in the atmosphere. Additionally, 
the radar's beam, not being perfectly directional, has a certain angular width, 
which imposes angular resolution in both elevation and azimuth. 
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Figure 2.2 A Radar Scan 

The radar's surveillance volume is divided into small adjacent regions known as 
cells. A target remains detectable at the same distance as long as it stays within 
the same cell, and two targets within the same cell cannot be distinguished. 

When a target is within a cell of the surveillance volume, the radar illuminates 
this cell, causing the target to receive and reflect multiple successive pulses. These 
reflected pulses form a pulse train with variable amplitude. The detector receives 
several echoes from the same target, and the decision on target presence is made 
by comparing an estimated amplitude of these echoes to a detection threshold. 
The detector must therefore estimate the amplitude of the pulse train from the 
individual pulse amplitudes. This estimated amplitude is compared to the 
detection threshold to determine whether a target is present in the cell under test 
[2]. 
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2.6.1 Optimal detection 

The distribution of reflected pulse amplitudes depends on the model of target 
fluctuations. Numerous studies, particularly by Di Franco and Rubin, have shown 
that the optimal detector for white Gaussian noise is consistent across different 
Swerling cases. This optimal detector operates as follows: The received signal is 
passed through a single-pulse matched filter to maximize the signal-to-noise ratio. 
The signal from this filter is then fed into a quadratic detector, which extracts and 
squares the signal's envelope. The envelope is sampled at the pulse recurrence 
period, Tr. After the radar completes scanning the cell, N samples are obtained 
from the same target, each pulse contributing a sample. These N samples are 
summed, and the result, an estimate of the target's echo strength, is compared to 
a fixed threshold. If the sum exceeds the threshold, a target is detected in the cell 
(H1 is true); otherwise, the cell is deemed empty (H0 is true). 

Figure 2.3 Diagram of a Conventional Detector 

Radar detection involves a binary hypothesis test within an observation vector X 
of dimension N, where a known complex signal s, representing a target, is 
disrupted by additive clutter noise b. The binary hypotheses are: 

                                                              𝐻଴: 𝑋 = 𝑏                (No Target present) 

                                                 𝐻ଵ: 𝑋 = 𝑠 + 𝑏          (Target present) 

Here, Xi represents the secondary data, assumed to be independent and containing 
only clutter noise under hypothesis H0, which helps estimate the unknown clutter 
parameters. Under hypothesis H0, the received signal X contains only undesirable 
echoes, while under H1, it contains the target signal s embedded in clutter noise. 
The probability density functions under each hypothesis are given by 𝑃௑(𝑋/𝐻଴) 
and 𝑃௑(𝑋/𝐻ଵ), respectively [2]. 
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Optimal detection aims to minimize two types of errors: 

1. Miss (H0 is chosen when H1 is true), with probability: 

                                                          𝑃ெ = 𝑃(𝐻଴/𝐻ଵ)=1-𝑃஽                                    (2.28) 

2. False alarm (H1 is chosen when H0 is true), with probability: 

                                                  𝑃௙௔ = 𝑃(𝐻ଵ/𝐻଴)                                          (2.29) 

These probabilities are challenging to estimate unless the radar environment's 
statistics and the target's characteristics are well understood. 

2.6.2 Fixed Threshold Detection 

In radar systems, a decision must be made about the presence or absence of a 
target, with the output being a random process characterized by a probability 
density function (PDF). The presence of spurious noise introduces a risk of error 
in recognizing the useful signal, making it a statistical decision problem. Two 
hypotheses are considered: 

 𝐻଴: The Target is absent (noise only)  

𝐻ଵ: The Target is present with noise  

The detection problem can be summarized as follows: 

Decision Hypothesis 
 

H0 (absence) 
 

H1 (presence) 
 

𝑯𝟏 
 

False alarm 𝑃௙௔ Correct decision 𝑃஽ 

𝑯𝟎 
 

Correct decision 1-𝑃௙௔ Incorrect decision 1-𝑃஽ 

 

Table 2-1 Decision Hypothesis 

The detection threshold is determined by setting the probability of false alarm. 
Once this probability is set, the threshold remains constant. If the noise power 
increases, the threshold does not adjust, leading to potential false alarms. The false 
alarm rate (number of false alarms per unit of time) can become intolerable. To 
address this issue, adaptive detection was developed. 
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Figure 2.4 Principle of fixed threshold detection 

Fixed threshold detection is becoming less common due to its susceptibility to 
high false alarm rates, which has led to the adoption of adaptive thresholding to 
maintain a Constant False Alarm Rate (CFAR). This adaptive threshold adjusts to 
fluctuations in the average clutter level [2]. 

2.6.3 Adaptive Threshold Detection 

In radar systems, the goal is to detect the presence or absence of one or more 
targets, analyse the received signal, and obtain additional information such as the 
target's speed, altitude, and direction. The radar antenna emits pulses s(t) in the 
direction θ. If a target is present, the transmitted signal is reflected and received 
by the antenna with a delay time proportional to the distance d between the 
antenna and the target: 

                                       𝑅(𝑡) = 𝛼 𝑠൫𝑡 − 𝜏(𝑑)൯ + 𝑏(𝑡)                                 (2.30) 

      Where                                        𝜏(𝑑) =
ଶௗ

௖
                                              (2.31) 

α : depends on the target’s altitude, reflection properties, distance, etc.  

c: the speed of electromagnetic waves 

b(t): white noise 

This system addresses the decision problem between two hypotheses: 

𝐻଴: 𝑅(𝑡) = 𝑏(𝑡)                                  (No target) 

 𝐻ଵ: 𝑅(𝑡) = 𝛼 𝑠൫𝑡 − 𝜏(𝑑)൯ + 𝑏(𝑡)     (Target present) 

Here, H0 corresponds to the absence of a target in the direction θ, and H1 
corresponds to the presence of a target at a distance determined by τ(d). 
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Using fixed threshold detection can lead to a high number of false alarms due to 
the sensitivity of the false alarm probability to changes in clutter power. This 
challenge highlights the need for adaptive threshold detection [1]. 

           

Figure 2.5 Principle of adaptive threshold detection 

 

 

 

 

 

 

Conclusion 
In this chapter, some basic notions of decision criteria detection have been 

presented, as well as the detection techniques used. As a result, we have seen 
that fixed threshold detection cannot be used in a non-homogeneous 

environment. To solve this problem, we resort to adaptive threshold detection, 
which ensures a Constant False Alarm Rate. 
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3  Adaptive thresholding CFAR Detection  
3.1  Introduction  

In signal detection, the primary objective is to design an optimal receiver structure 
based on a specific criterion relevant to the application. Ideally, these optimal 
detectors require a comprehensive statistical description of the input signals and 
noise. However, in practical scenarios, such information may not be available 
beforehand, and the statistics of the input data may change over time. These 
limitations necessitate the use of non-optimal detectors. 

In real-world radar signal detection systems, the challenge is to automatically 
identify a target amidst thermal noise and clutter. Clutter refers to any unwanted 
radar signal from scatterers that are not of interest to the radar operator, such as 
reflections from terrain, sea, rain, birds, insects, and chaff. Chaff, consisting of 
metallic dipole reflectors, is released from aircraft to obscure the true target from 
radar. Although Doppler processing has reduced its effectiveness, it remains a 
concern for slow-moving targets. The operating environment of a radar, 
influenced by weather and physical location, makes the returned signals 
statistically nonstationary with an unknown variance at the receiver input. 

The ideal detector, which employs a fixed threshold, is highly sensitive to the total 
noise variance (thermal noise plus clutter). Even a slight increase in total noise 
power can significantly raise the probability of false alarms by several orders of 
magnitude. For single pulse detection, the probability of false alarm can be 
expressed mathematically. This sensitivity underscores the need for adaptive 
detection strategies in practical radar systems [2]. 

                                              𝑃ி = exp(
ିఊమ

ଶఙమ
)                                                   (3.1) 

where γ is the threshold level and σ2 is the total noise variance. Let 𝑃ிௗ be the 
design probability of false alarm based on a known variance 𝜎ௗ

ଶ. For a fixed 
threshold γ, the probability of false alarm in terms of the noise level and design 
probability of false alarm is obtained from (3.1) as 

                                             𝑃ி = (𝑃୊ୢ)ఙ೏
మ ఙమ⁄                                                   (3.2) 

In radar systems, maintaining a constant false alarm rate (CFAR) is critical, 
especially when dealing with variable noise environments. The design value, 
denoted as Pfa, represents the target probability of false alarm. As shown in Figure 
(3.1), even a 3 dB increase in noise power can cause the actual probability of false 
alarm to surge by more than 1,000 times, which is unacceptable for both computer 
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and human data processing. This significant sensitivity to noise necessitates the 
use of adaptive threshold techniques to ensure CFAR while maximizing the 
probability of target detection. 

To understand the practical aspects of adaptive threshold detection, it is essential 
to first grasp the basic principles of radar. Although radar concepts can be 
complex and are extensively covered in various books, this summary focuses on 
the fundamental aspects needed to comprehend adaptive thresholding CFAR 
detection. Following this, various adaptive CFAR techniques are discussed. The 
concept of adaptive CFAR detection is also explored in the context of mobile 
communications, particularly within code division multiple access (CDMA) 
systems. A brief overview of spread spectrum communication systems is provided 
to understand the applications and potential future developments of adaptive 
CFAR detection in these systems [2]. 

                       

Figure 3.1 Effect of the noise power increase on the probability of false alarm for a fixed threshold; design Pfa =10−6. 

3.2  Environment (background)  
the environment is the medium which surrounds a system, in our case the 
environment is the medium crossed by the electromagnetic waves intervening of 
a radar and are reflected, about the reflected signals the environments of the radar 
differ, the behaviour of the signal emitted in a space differs according to the 
crossed medium for example: if a radar emits signals in a space the signals 
reflected from the sea or of a region that it rains or a forest it is not the same [1].  
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3.2.1  Homogenous background  

this is the ideal environment for radar detection, it is the case of absence of clutter 
and interfering targets, the homogeneity is that the reflected signal samples are 
described by identically distributed independent exponential random variables  

3.2.2  non homogenous background  

When the reference window scans the environment in a given direction, different 
non-homogeneous situations can affect the configuration of the reference cells. 
These situations are caused by the presence of interfering targets (secondary 
targets) and/or clutter edges at the reference channel Figure (3.2). 

 
Figure 3.2 reference window scans a homogenous and non-homogenous environment 

                                             

a. Cell under test is immersed in the clutter 
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b. the cell under test is in thermal noise 

                                              

c. presence of clutter edge and interfering targets 

Figure 3.3 different situations of non-homogenous environnement 

3.3  Adaptive CFAR Detection 

3.3.1  principles  

When a target is present, the input signal at the radar receiver is a weakened 
version of the transmitted pulse, phase-shifted randomly and embedded in noise. 
A typical radar processor for a single-range cell aggregates the K samples from 
the matched filter output and compares this sum to a fixed threshold, as illustrated 
in Figure 3.4. In the case where the transmitted pulse is immersed in white 
Gaussian noise, the envelope of the clutter return signal follows a Rayleigh 
distribution. The optimal Neyman-Pearson detector for this scenario is depicted 
in Figure 3.5, with y(t) representing the received signal and ωc the carrier angular 
frequency. As seen in Figure 3.1, a slight increase in noise power can lead to an 
unacceptable rise in the probability of false alarms. Therefore, to manage the false 
alarm probability when the noise variance is unknown, [2]suggests using a 
reference channel. This channel provides an estimate of the noise environment, 
allowing the decision threshold to be adjusted accordingly [2]. 
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The radar uses the range cells surrounding the cell under test as reference cells, as 
shown in Figure 3.6. 

 

*Figure 3.4 A scheme for a fixed threshold radar detection. 

                      

Figure 3.5 Optimum receiver, square realization. 

              

Figure 3.6 A scheme for an adaptive threshold radar detection. 
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3.3.2  Cell Averaging CFAR Detection                                  
The Cell-Averaging Constant False Alarm Rate (CA-CFAR) detector is a widely 
used adaptive detection technique in radar systems. As proposed in [8], the CA-
CFAR detector dynamically adjusts the detection threshold based on the noise 
environment, ensuring a constant false alarm rate regardless of varying 
background conditions. 

In CA-CFAR, the adaptive threshold is derived from the arithmetic mean of the 
reference cells surrounding the Cell Under Test (CUT). The reference cells are 
used to estimate the noise level, and the arithmetic mean of these reference cell 
outputs serves as the detection threshold. 

For a homogeneous background noise and independent and identically distributed 
(I.I.D) reference cell outputs, the arithmetic mean acts as the maximum likelihood 
estimate of the noise level. This adaptive approach ensures that the detection 
threshold can adapt to changes in the environment, maintaining a constant false 
alarm rate. 

The noise observations for the CA-CFAR detector are obtained by sampling in 
both range and Doppler domains. As shown in Figure 3.7, the bandwidth of each 
Doppler filter (bandpass filter) is equal to the bandwidth of the transmitted 
rectangular pulse, denoted by B. The reference cells' outputs are sampled, and 
their arithmetic mean is used to compute the adaptive threshold. When the signal 
at the CUT exceeds this threshold, a target is detected [2]. 

           

Figure 3.7 Range and Doppler sampling process. 

 

Where 𝐵 =
ଵ

ఛ
 and τ is the transmitted pulse width, each output from the square-

law detector is sampled at intervals of τ seconds. This corresponds to a range 
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interval of  
ୡத

ଶ
 . Consequently, each sample represents the output of a range-

Doppler resolution cell with dimensions τ in time and 
ଵ

ఛ
 in frequency. This results 

in a matrix of range and Doppler resolution cells, as illustrated in Figure 3.8. 

              

Figure 3.8 Matrix of range and Doppler cells. 

For simplicity and without loss of generality, the CA-CFAR detector is depicted 
in Figure 3.9 for range cells only, focusing on a specific Doppler frequency. 

 

        

Figure 3.9 Cell averaging CFAR detector. 

The system operates as follows: the output from the square-law detector is fed 
into a tapped delay line, forming the reference cells. This design prevents any 
spillover of signal energy from the test cell into adjacent range cells. 

In a CA-CFAR detector, to avoid any signal energy spill from the test cell into 
adjacent range cells, which might affect the clutter power estimate, the adjacent 
cells, known as guard cells, are completely ignored. Each resolution cell is tested 
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independently to make a decision for the entire radar range. The cell under test is 
typically the central one. 

The statistics of the reference windows U and V are derived from the sum of the 
leading and lagging cells, respectively, with each set containing N/2 cells. 
Therefore, a total of N noise samples are utilized to estimate the background 
environment. These reference windows U and V are combined to produce the 
clutter power estimate Z. 

To keep the probability of false alarm Pf at a desired level, the adaptive threshold 
is scaled by a threshold multiplier T. The product TZ forms the adaptive threshold. 
The output Y from the test cell (the center tap) is then compared against this 
threshold to make a detection decision. 

The primary target model at the test cell is assumed to be a slowly fluctuating 
target, modeled as a Swerling Case 1 target. The signal-to-noise ratio (SNR) of 
the target is denoted as S. It is further assumed that the total background noise is 
white Gaussian. Given that both noise and Rayleigh targets have Gaussian 
quadrature components, the output of the square-law detector follows an 
exponential probability density function (PDF). If the noise variance is σ2 , then 
the conditional density function of the output of the test cell is given by 

                          𝑓௒ ு೔⁄ (𝑦 𝐻௜⁄ ) = {

ଵ

ଶఙమ(ଵାௌ)
exp[

ି௬

ଶఙమ(ଵାௌ)
], for𝐻ଵ

ଵ

ଶఙమ
exp[

ି௬

ଶఙమ
], for𝐻଴

                      (3.3) 

The hypothesis H0 represents the case of noise alone, while hypothesis H1 
represents the noise plus target signal case. The probability of detection is given 
by 

        𝑃஽ = ∫ 𝑃(𝑌 > TZ❘𝑍, 𝐻ଵ
ஶ

଴
)𝑓௒❘ுభ

(𝑦❘𝐻ଵ) 𝑑𝑦 = 𝐸௓[𝑃(𝑌 > TZ❘𝑍, 𝐻ଵ)]       (3.4) 

where Z is the estimated homogeneous background noise power level, f Z (z) is 
the density function of Z, and EZ [ ⋅ ] is the expected value over all values of z. 
Substituting (3.3) into (3.4) and solving the integral, we obtain 

 𝑃஽ = 𝐸௓{න
ଵ

ଶఙమ(ଵାௌ)
exp[

ି௬

ଶఙమ(ଵାௌ)
] 𝑑𝑦

ஶ

்ೋ

} = 𝐸௓{exp[
ି୘୞

ଶఙమ(ଵାௌ)
]} = 𝑀௓[

்

ଶఙమ(ଵାௌ)
]         (3.5) 

where MZ ( ⋅ ) denotes the MGF of the random variable Z. We can obtain the 
probability of false alarm in a similar way, or by setting the target SNR, S, to zero 
to obtain: 
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                                                     𝑃ி = 𝑀௓(
்

ଶఙమ
)                                              (3.6) 

Hence, for a design probability PF , the threshold multiplier T can be computed 
from (3.6). For the CA-CFAR detector, the reference window is: 

                                                    𝑍 = ∑ 𝑋௜
ே
௜ୀଵ                                                   (3.7) 

with X i , i = 1, 2,K, N, independent and identically distributed random variables. 
From Chapter 2, the gamma density function G(α,β) given in (2.98) is: 

                                             𝑓௫(𝑥) =
ଵ

௰(ఈ)ఉഀ
𝑥ఈିଵ𝑒

షೣ

ഁ                                       (3.8) 

with MGF 

                                                  𝑀௫(𝑡) =
ଵ

(ଵିஒ୲)ഀ
                                             (3.9) 

If we set α =1, we obtain the exponential distribution G(1,β) with density function 

                                                         

                                                              𝑓௫(𝑥)
ଵ

ఉ
𝑒

షೣ

ഁ                                                (3.10) 

which is equivalent to 𝑓௒❘ு೔
(𝑦❘𝐻௜) given in (3.3), with β = 2σ² under hypothesis 

H0, and β = 2σ² (1+ S) under hypothesis H1 . Thus, using (3.9), the probability of 
false alarm of the distribution G (N, 2σ²) is 

                          𝑃ி = 𝑀௓(
்

ଶఙమ
) = [1 − 2𝜎ଶ(

்

ଶఙమ
)]ିே =

ଵ

(ଵା்)ಿ
                     (3.11) 

The threshold multiplier is then: 

                                                  𝑇 = −1 + 𝑃ி

షభ

ಿ                                               (3.12) 

Replacing T / 2σ² by T /[2σ² (1+ S)] , the probability of detection is: 

                                    𝑃஽ = (1 +
்

ଵାௌ
)ିே = (

ଵାௌ

ଵାௌା்
)ே                                  (3.13) 

With the above cell averaging CFAR detector, assuming the data passed into the 
detector is from a single pulse, i.e., no pulse integration involved, the threshold 
factor can be written as 

                                                    𝛼 = 𝑁(𝑃
୤ୟ

షభ

ಿ − 1)                                         (3.14) 
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where Pfa is the desired false alarm rate [3]. 

 

3.3.3  Order Statistic CFAR 
An alternative to the cell-averaging CFAR is the rank-based or order statistic 
CFAR (OS CFAR). This approach, primarily designed to combat masking effects, 
retains the sliding window structure of CA CFAR, including optional guard cells. 
However, it forgoes averaging the reference window data to estimate interference 
levels. Instead, OS CFAR arranges the reference window data samples 
{x1,x2,...,xn}in ascending order to form a sequence {x(1),x(2),...,x(N)} The kth 
element in this ordered list is known as the kth order statistic. For instance, the 
first order statistic is the minimum value, the Nth is the maximum, and the (N/2)th 
is the median. In OS CFAR, a specific order statistic is chosen to represent the 
interference level, and the threshold is set as a multiple of this value [1]. 

This ranking from the minimum magnitude to the maximum magnitude ordered 
sequence is denoted as: 

                                𝑥(1) ≤ 𝑥(2) ≤. . . ≤ 𝑥(𝑘) ≤. . . 𝑥(𝑁).                            (3.15) 

                    

Figure 3.10 OS-CFAR Detector 

From this sequence, the Kth ordered value, X(k), is selected to estimate the total 
noise power and scaled by a factor (T) to yield an adaptive threshold to which the 
output of the cell under test (CUT) is compared. Assuming that the target in the 
test cell is slowly fluctuating according to the Swerling I model and the 
background noise is Gaussian, the Pfai and Pdi are given by 

                                          Pd௜ = ∫ Pr(𝑌 > TZ 𝑍⁄ , 𝐻ଵ)𝑓௓(𝑍) 𝑑𝑍
ஶ

଴
                            (3.16) 
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                                          Pfa௜ = ∫ Pr(𝑌 > TZ 𝑍⁄ , 𝐻଴)𝑓௓(𝑍) 𝑑𝑍
ஶ

଴
                           (3.17) 

where Pr(Y > T Z/Z, Hi ) is the conditional probability that Y > T Z given Z and 
Hi , i = 0, 1 and fz(Z) is the pdf of Z (the estimate of total noise power). Pdi and 
Pfai are given by: 

                                         Pd௜ = ි
(ேି௝)

ேି௝ା
೅

(భశೄ)

௄ିଵ

௝ୀ଴

                                      (3.18) 

                                                  Pfa௜ = ෑ
(ேି௝)

(ேି௝ା்)

௄ିଵ

௝ୀ଴
                                                    (3.19) 

 

3.3.4  CMLD-K CFAR 
The CMLD detector has the same first processing steps as the preceding one, 
except that the largest samples are censored, and the remaining K samples are 
combined to form the statistic Z as an estimate of the noise level in the CUT [6]. 

                    

 

Figure 3.11 CML-CFAR Detector 

 Pdi and Pfai are, respectively, given by 

                                   Pd௜ = (
𝑁
𝐾

) ෑ [
்

ଵାௌ
+

ேି௝ାଵ

௄ି௝ାଵ
]ିଵ

௄

௝ୀଵ
                             (3.20) 

                                   Pfa௜ = (
𝑁
𝐾

) ෑ [𝑇 +
ேି௝ାଵ

௄ି௝ାଵ
]ିଵ

௄

௝ୀଵ
                               (3.21) 
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Conclusion 
In this chapter, we have studied different types of CFAR detectors starting with 

the basic one which is the cell averaging after that the order statistic and the 
CMLD-k. Which will be used later on as the ground layer for customizing 

sensory systems.



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 04 

Optimization using Evolutionary Strategies 
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4  Optimization using Evolutionary Algorithms  
4.1 introduction (Evolutionary Algorithms) 

Many great inventions have been the result of bionics, i.e., the application of bio- 
logical or natural principles to the study and design of human systems. We mimic 
bats to invent radar, fish to invent submarine, etc. The natural evolution of species 
could be looked at as a process of learning how to adapt to the environment and 
optimizing the fitness of the species. So, we could mimic the viewpoint of modern 
genetics, i.e., "survival of the fittest" principle, in designing, optimizing or 
learning algorithms. Enter EAs. 

 

EAs are algorithms that perform optimization or learning tasks with the ability to 
evolve. They have three main characteristics: 

• Population-based. EAs maintain a group of solutions, called a population, to 
optimize or learn the problem in a parallel way. The population is a basic principle 
of the evolutionary process. 

 

• Fitness-oriented. Every solution in a population is called an individual. Every 
individual has its gene representation, called its code, and performance evaluation, 
called its fitness value. EAs prefer fitter individuals, which is the foundation of 
the optimization and convergence of the algorithms. 

 

• Variation-driven. Individuals will undergo a number of variation operations to 
mimic genetic gene changes, which is fundamental to searching the solution space 
[11]. 
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Since the 1960s, many algorithms with population-based, fitness-oriented, and 
variation-driven properties have been proposed. The timeline of the various EAS 
that will be introduced in this textbook is illustrated in Fig. 1.4. 

Figure 4.1 Timeline of various EAs 

Evolutionary Algorithms (EAs) are a class of general stochastic search algorithms 
inspired by natural evolution, used across a wide range of applications such as 
optimization, adaptation, and learning. The significance of EAs in solving 
optimization problems is continually growing. However, implementing an EA 
involves various decisions, including the type of algorithm to use, the choice of 
operators, and the parameter settings for optimization. Yao [9] summarized a 
typical EA as follows: 

 

1. Randomly generate the initial population P(0) and set i = 0; 

2. Repeat until the population converges or the time limit is reached: 

   a. Evaluate the fitness of each individual in P(i); 

   b. Select parents from P(i) based on their fitness; 

   c. Apply search operators to the parents to produce offspring, forming the next 
generation P(i + 1) from the offspring and possibly the parents. 

 

Among the prevalent EA implementations for optimization problems are Genetic 
Algorithms (GAs) and Evolutionary Strategies (ESs). The primary differences 
between these methods lie in the representation of individuals, the operators used 
(mutation and crossover), and the selection/reproduction mechanisms, as 
discussed in [9,10]. 
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4.2 Genetic Algorithm 

4.2.1 Introduction  
Genetic Algorithms (GAs) are computational models inspired by natural 
evolution, encoding potential solutions using a chromosome-like data structure. 
They employ recombination operators to preserve crucial information and are 
often used as function optimizers, though they apply to a wide range of problems. 
The process begins with a random population of chromosomes, evaluates their 
effectiveness, and allocates reproductive opportunities based on performance, 
favouring better solutions. 

 

The concept of GAs was introduced by John Holland in his 1975 book, 
"Adaptation in Natural and Artificial Systems," which laid the foundation for the 
field of evolutionary computing. In the 1960s, similar ideas were developed by 
scientists like Ingo Rechenberg, Hans-Paul Schwefel, Bremermann, and Fogel, 
who emphasized mutation and selection, key concepts in neo-Darwinian 
evolution. However, it wasn't until the 1980s that evolutionary computing gained 
significant traction, partly due to the increasing availability of computational 
power. 

 

Ken De Jong, a student of Holland, completed a doctoral thesis in 1975 that 
explored the optimization capabilities of GAs, sparking further studies and 
conferences. David Goldberg, another of Holland's students, produced an 
influential book in 1989, "Genetic Algorithms in Search, Optimization, and 
Machine Learning," which catalysed the rapid development of GA theory and 
applications. 

 

While optimization was not the primary focus of Holland's work on adaptive 
systems, most GA research emphasizes this aspect. De Jong argued that GAs are 
not inherently function optimizers, suggesting that their primary value lies in 
adaptation. Despite this, GAs are widely used for optimization and are often 
successful in real-world applications. 

 

Holland’s GA introduced recombination, setting it apart from earlier evolutionary 
algorithms that focused on mutation and resembled hill-climbing methods. This 
innovation parallels the development of heuristics in operational research during 
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the 1960s, where techniques like neighborhood search were used to explore 
combinatorial optimization problems by examining 'neighbors' of existing 
solutions [12]. 

4.2.2 Background 
Genetic Algorithms (GAs) are inspired by natural evolutionary processes, 
specifically the concept of survival of the fittest. GAs initiate with a set of 
potential solutions and evolve these through successive generations to enhance 
their effectiveness. This evolutionary computation method mirrors how living 
organisms adapt and become more successful over time. It starts with an initial 
population of solutions and applies genetic operations like crossover and mutation 
to generate new offspring that inherit traits from parent solutions, with the aim of 
improving overall performance. 

Chromosomes, composed of DNA, encode hereditary information through 
combinations of four bases: Adenine (A), Cytosine (C), Thymine (T), and 
Guanine (G). During reproduction, chromosomes undergo crossover, mixing 
genetic material from both parents, and occasionally mutation, where random 
errors introduce variations. While most mutations are harmful, some can result in 
beneficial traits, leading to the evolution of better-adapted species. Similarly, in 
GAs, these genetic variations are essential for exploring new solutions and 
achieving optimization in problem-solving [13]. 

4.2.3 Natural selection 
In nature, the individual that has better survival traits will survive for a longer 
period of time. This in turn provides it a better chance to produce offspring with 
its genetic material. Therefore, after a long period of time, the entire population 
will consist of lots of genes from the superior individuals and less from the inferior 
individuals. In a sense, the fittest survived and the unfit died out. This force of 
nature is called natural selection. 
 
The existence of competition among individuals of a species was recognized 
certainly before Darwin. The mistake made by the older theorists (like Lamarck) 
was that the environment had an effect on an individual. That is, the environment 
will force an individual to adapt to it. The molecular explanation of evolution 
proves that this is biologically impossible. The species does not adapt to the 
environment, rather, only the fittest survive [13]. 
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4.2.4 Genetic algorithm vocabulary 
Explanation of Genetic Algorithm terms [13]: 

Genetic Algorithms  Explanation 

Chromosome (string, individual) Solution (coding) 

Genes (bits)  Part of solution 

Locus Position of gene 

Alleles Values of gene 

Phenotype Decoded solution 

Genotype Encoded solution 
 

Table 4-1 Genetic Algorithm Terms 

 

4.2.5 Encoding and Representation 
In Genetic Algorithms (GAs), the representation of solutions, often referred to as 
chromosomes or individuals, plays a crucial role in determining the effectiveness 
and efficiency of the algorithm. The encoding method used for the individuals can 
directly influence the algorithm's ability to search the solution space and converge 
on an optimal or near-optimal solution [13]. 

o Binary Encoding 
The earliest and most widely known form of encoding in GAs is binary encoding, 
where each individual is represented as a string of bits (0s and 1s). John H. 
Holland's seminal work in GAs primarily utilized this form of representation. 
Each bit in the string corresponds to a component of the solution. The binary 
representation is particularly suitable for problems where the decision variables 
are naturally binary, such as combinatorial optimization problems. Additionally, 
binary encoding allows the use of straightforward genetic operators like bit-flip 
mutation and simple crossover, which can make the implementation of GAs more 
intuitive. 
However, binary encoding faces limitations in problems involving continuous 
variables. When the solution space is continuous, converting real-valued variables 
into binary form can lead to a loss of precision. This issue becomes more 
pronounced as the dimensionality of the problem increases. Consequently, real-
coded GAs were developed as an alternative to binary encoding to address these 
limitations [15]. 

o Real-Coded Representation 

Real-coded GAs represent the chromosomes as vectors of real numbers rather 
than binary strings. Each gene in the chromosome corresponds directly to a 
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parameter in the solution space, which can take any real value within specified 
bounds. Real-coded GAs are particularly useful for optimization problems in 
continuous domains, such as engineering design, signal processing, and machine 
learning. 

Real-coded GAs typically outperform binary-coded GAs in continuous 
optimization problems because they can explore the search space more 
efficiently. The precision of the representation is inherently higher than in binary 
encoding, and real-coded individuals can undergo more nuanced adjustments 
during the evolution process. For example, in a real-coded GA, crossover 
operations can blend the genes of two parents in a continuous manner, creating 
offspring that inherit characteristics from both parents more fluidly. 

One of the early proponents of real-coded GAs, A.H. Wright, demonstrated the 
superiority of real-coded GAs in real-parameter optimization problems. Wright 
showed that real-coded GAs could explore the search space more effectively by 
avoiding the need to discretize the solution space, which often introduces 
unnecessary complexity and reduces performance [15]. 

o Crossover in Real-Coded Gas 
 Discrete crossover 

his operator selects the gene value from either parent based on a random choice. 
For each gene, the value is chosen from one of the two parents with equal 
probability. Mathematically, this can be expressed as: 
 

                                               𝑥௜ = 𝑥௜
(்)  or 𝑥௜

(ௌ)                                              (4.1)  

Where 𝑥௜
(ௌ)

 and 𝑥௜
(்) represent the genes from parents S and T, respectively. 

 Arithmetic crossover 
this method creates offspring by taking a weighted average of the parent genes. 
For each gene, the value in the offspring is calculated as a linear combination of 
the parent values. This can be expressed as: 

                                      𝑥௜ = 𝛼𝑥௜
(ௌ)

+ (1 − 𝛼) 𝑥௜
(்)                                         (4.2) 

where α is a random number chosen uniformly from the interval [0,1]. This 
method allows for a smooth interpolation between the parents and is particularly 
useful in real-parameter optimization, as it creates offspring that are closer to the 
center of the parents' search space. 

o Mutation in real coded Gas 
 Gaussian Mutation : 

In real-coded GAs, Gaussian mutation adds a small normally distributed random 
value to each gene of the chromosome. This value is sampled from a normal 
distribution with a mean of zero and some standard deviation σ, which can be 
either fixed or adaptive. 
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Example: 
Original: [1.5 2.3 0.7] 
After mutation: [1.5 + N(0,σ), 2.3 + N(0,σ), 0.7 + N(0,σ)] 

 Isotropic Log-Normal Mutation (Self-Adaptive Mutation) : 

Isotropic log-normal mutation is a type of self-adaptive mutation used primarily 
in real-coded GAs. In this approach, each individual in the population not only 
evolves its solution but also adapts the mutation strength over time. The mutation 
strength σ\sigmaσ changes according to the individual’s performance, enabling 
the GA to fine-tune the search process adaptively. 

The mutation is applied as:                 

                                            𝑥௜ = 𝑥௜ + 𝜎 × 𝑁(0,1)                                                (4.3) 

where σ itself evolves based on a log-normal distribution:  

                                               𝜎௜ = 𝜎௜ × 𝑒ఛ×ே(଴,ଵ)                                                (4.4) 

Here, τ is a learning rate that governs the rate of adaptation. This self-adaptive 
scheme allows the mutation strength to adjust automatically as the GA progresses, 
helping the search to balance between exploration (diversity) and exploitation 
(convergence) [15]. 

4.2.6 Selection Mechanisms in Genetic Algorithms 

In genetic algorithms (GAs), selection plays a key role in shaping the population 
for the next generation. The main idea is to choose individuals from the current 
population to act as parents, who will pass their genetic material on to offspring. 
The objective is to ensure that higher-quality individuals have a better chance of 
being selected, while still maintaining diversity by giving all individuals a chance 
to contribute. This helps the GA evolve toward optimal solutions over time [13]. 

There are several methods for carrying out this selection process: 

 

a. Roulette wheel selection (Fitness Proportionate Selection): 

This method allocates selection probabilities based on fitness scores. Individuals 
with higher fitness are given a higher chance of selection, much like dividing a 
roulette wheel into segments corresponding to fitness levels. 
Each individual’s probability of being selected corresponds to their fitness 
value. The algorithm then randomly selects an individual based on this weighted 
probability. 
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Simple to use and ensures that better-performing individuals are more likely to be 
selected. 
If fitness differences between individuals are small, it can lead to slow progression 
since selection pressure is weak. 

                                                                                       (4.5) 

This formula represents the probability 𝑝௜ of selecting the ith string for 
reproduction. The fitness of the ith string, denoted as 𝐹௜, is divided by the total 
fitness of the entire population, ∑ 𝐹௜

௡
௜ୀଵ . Essentially, the probability is proportional 

to the relative fitness of the string compared to the total fitness of all strings. 

                                                                                                                           (4.6) 

This expression calculates the sum of the fitness values of all strings in the 
population, represented as F. It gives the overall fitness of the population, which 
helps in determining how the strings will be proportionally represented in the 
selection process. 

 
Figure 4.2 A roulette-wheel marked for five individuals according to their fitness values. Third individual has a higher 

probability of selection than any other 
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b. Tournament selection : 

This method randomly selects a small group (a "tournament") of individuals, and 
the best individual from that group is chosen as a parent. 

A few individuals are chosen at random, and the one with the highest fitness is 
selected. This process is repeated until the required number of parents is reached. 

Provides a straightforward way to control selection pressure by adjusting the 
tournament size. 

If the tournament size is too large, it can lead to premature convergence. 

4.2.7 Basic Principle 

The working principle of a canonical GA is illustrated in Fig (4.3). The major 
steps involved are the generation of a population of solutions, finding the 
objective function and fitness function and the application of genetic operators. 
These aspects are described briefly below. They are described in detail in the 
following subsection [14]. 
 
 
 
 
 

/*Algorithm GA */ 
formulate initial population 

randomly initialize population 
repeat 

evaluate objective function 
find fitness function 

apply genetic operators 
reproduction 

crossover 
mutation 

until stopping criteria 
Figure 4.3 The Working Principle of a Simple Genetic Algorithm 
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Figure 4.4 The basic GA operations: One generation is broken down into a selection phase and recombination phase. 

Strings are assigned into adjacent slots during selection. 
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4.3 Simulation description 
In this study, a Genetic Algorithm (GA) was implemented to optimize the 
parameters of CFAR systems, with a focus on the OS-CFAR and CMLD local 
detectors. The goal was to compare the performance of these detectors under 
various configurations and to enhance their detection capabilities while adhering 
to a desired false alarm rate. The fitness function guiding the GA was defined 
based on the Neyman–Pearson criterion [6]: 

                 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑁௜ , 𝐾௜ , 𝑇௜) = 𝑎𝑏𝑠(1 − 𝑃𝐷) +
ଵ

ఈబ
𝑎𝑏𝑠(𝑃𝐹 − 𝛼଴)              (4.7) 

 

In this function, Ni represents the number of reference cells at the ith sensor, Ki 
is the rank order at the ith sensor, Ti is the threshold at the ith sensor, α0 is the 
overall desired probability of false alarm, PD is the overall probability of 
detection, and PF is the overall probability of false alarm. This fitness function 
was designed to minimize deviations from the desired detection probability and 
false alarm rate, ensuring optimal system performance. 

The GA was initialized with a population of 100 chromosomes, each expressed 
as a vector of rank orders [K1,K2,…,Kn] and thresholds [T1,T2,…,Tn]. 

 For the crossover process, a linear crossover method was employed with a 
probability of 1. Discrete crossover was used for the K parameter to maintain 
integer values, while arithmetic crossover was applied to the T parameter to 
generate new threshold values by blending those of the parents. A mutation 
probability of 0.1 introduced random changes to the offspring, promoting 
diversity within the population and helping the GA avoid premature convergence 
to local optima. 

Two selection schemes were evaluated in [6], Elitist Multi-Selection (EMS) and 
Tournament Selection, were compared. Although EMS produced multiple 
optima, Tournament Selection, with a tournament size of 5, consistently 
converged to the best solutions identified by EMS. This reliability made 
Tournament Selection the preferred choice. To further improve the GA's 
performance, an adaptive mutation strategy based on the 1/5-success rule was 
implemented, with an initial standard deviation of 0.3, allowing the mutation rate 
to adjust dynamically and enhance exploration of the solution space. 
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Figure 4.5 flowchart of the Genetic algorithm 

 GA starts with a population of possible solutions (chromosomes), which are 
evaluated based on a fitness function. These solutions evolve over successive 
generations through selection, crossover, and mutation, aiming to improve 
detection performance while maintaining a constant false alarm rate. 

Initial Population: The algorithm begins by generating a population of 100 
chromosomes, where each chromosome represents potential values for the sensor 
parameters. This initial diversity ensures broad coverage of the solution space. 

Creating the Next Generation: 

o Selection: Tournament selection, where groups of solutions compete, is 
used to choose the best solutions for the next generation. This method 
reliably leads to optimal outcomes. 

o Crossover: Combines parent solutions using discrete crossover for rank 
orders (to keep values as integers) and arithmetic crossover for thresholds, 
producing new solutions for the population. 

o Mutation: Random changes are introduced with a probability of 0.1, 
maintaining diversity and preventing premature convergence. 
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Fitness Function: The fitness function evaluates how well each chromosome 
balances detection probability (PD) and false alarm rate (PF), driving the search 
towards optimal performance by minimizing deviations from the desired false 
alarm rate. 

Stopping Criteria: The algorithm terminates when either the fitness reaches a 
predefined value 10ି଺or the process completes 50 generations. 

Plotting Progress: Throughout the process, the fitness values of each generation 
are recorded, allowing the evolution of the solutions to be visualized. This helps 
in understanding the algorithm's progression toward the optimal solution. 

By following these steps, GA effectively optimizes CFAR parameters to ensure 
high detection performance in both homogeneous and non-homogeneous 
environments. The method adapts well to varying conditions and improves radar 
system reliability. 

 

 

 

 

We set the Signal-to-Noise Ratio (SNR) to 20 dB and apply both OR and AND 
fusion rules to compute the off-line values of T and K, which lead to optimal 
performance. Tables 4.2 to 4.5 below show the corresponding optimum values of 
T and K under different fusion rules and situations. The boundary values for T 
and K are set to [0, 25] and [1, 𝑁௜], respectively, where 𝑁௜ represents the reference 
window size of the i-th sensor, and Ni=32, with i=2,3,5 sensors. 

The simulation stops when the fitness value achieves 10ି଺and Pd approaches 1, 
ensuring the optimal trade-off between detection probability and false alarm rate. 
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4.4  OS-CFAR threshold optimization in distributed systems 

Using the Genetic Algorithm 

Results of OS-CFAR detectors for the genetic algorithm 

OR fusion rule  

𝛂𝟎 D=2 D=3 D=5 

𝟏𝟎ି𝟓 K=25 
T=11.0562 
PD=0.97818 

K=26 
T=10.4755 
PD=0.99641 

K=26 
T=11.0373 
PD=0.99989 

𝟏𝟎ି𝟔 K=25 
T=13.8761 
PD=0.96702 

K=27 
T=11.8232 
PD=0.99348 

K=29 
T=9.9056 
PD=0.99972 

𝟏𝟎ି𝟕 K=27 
T=13.9353 
PD=0.95329 

K=26 
T=15.988 
PD=0.98882 

K=30 
T=10.6343 
PD=0.99929 

𝟏𝟎ି𝟖 K=27 
T=16.6728 
PD=0.93625 

K=27 
T=17.1186 
PD=0.98278 

K=30 
T=12.6926 
PD=0.99849 

 

Table 4-2 OS-CFAR using GAs (with OR fusion rule) 

 

 

AND fusion rule 

𝛂𝟎 D=2 D=3 D=5 

𝟏𝟎ି𝟓 K=24 
T=4.9092 
PD=0.87814 

K=24 
T=3.0417 
PD=0.88603 

K=27 
T=1.3213 
PD=0.89043 

𝟏𝟎ି𝟔 K=25 
T=5.5311 
PD=0.85196 

K=26 
T=3.1872 
PD=0.85891 

K=25 
T=1.9472 
PD=0.86833 

𝟏𝟎ି𝟕 K=25 
T=6.6228 
PD=0.82549 

K=26 
T=3.7136 
PD=0.83763 

K=26 
T=2.1403 
PD=0.84342 

𝟏𝟎ି𝟖 K=25 
T=7.6774 
PD=0.80073 

K=28 
T=3.5596 
PD=0.81182 

K=25 
T=2.6949 
PD=0.82255 

 

Table 4-3 OS-CFAR using GAs (with AND fusion rule) 
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4.5 CMLD-CFAR threshold optimization in distributed systems 

Using the Genetic Algorithm 

Results of CMLD-CFAR detectors for the genetic algorithm 

OR fusion rule  

𝛂𝟎 D=2 D=3 D=5 

𝟏𝟎ି𝟓 K=26 
T=0.94287 
PD=0.98008 

K=26 
T=1.0103 
PD=0.9966 

K=24 
T=1.3409 
PD=0.99989 

𝟏𝟎ି𝟔 K=25 
T=1.3657 
PD=0.9676 

K=28 
T=0.96995 
PD=0.99464 

K=28 
T=1.003 
PD=0.99981 

𝟏𝟎ି𝟕 K=24 
T=1.8892 
PD=0.95214 

K=25 
T=1.7099 
PD=0.98938 

K=26 
T=1.5429 
PD=0.99948 

𝟏𝟎ି𝟖 K=25 
T=1.9947 
PD=0.9369 

K=25 
T=2.0621 
PD=0.98274 

K=28 
T=1.4786 
PD=0.99895 

 

Table 4-4 CMLD-CFAR using GAs (with OR fusion rule) 

 

 

 

AND fusion rule 

𝛂𝟎 D=2 D=3 D=5 

𝟏𝟎ି𝟓 K=24 
T=0.49275 
PD=0.87868 

K=24 
T=0.30085 
PD=0.88823 

K=25 
T=0.15922 
PD=0.89036 

𝟏𝟎ି𝟔 K=25 
T=0.52647 
PD=0.85777 

K=28 
T=0.24598 
PD=0.86354 

K=26 
T=0.17265 
PD=0.86966 

𝟏𝟎ି𝟕 K=25 
T=0.63689 
PD=0.83067 

K=26 
T=0.3666 
PD=0.8371 

K=24 
T=0.25857 
PD=0.84384 

𝟏𝟎ି𝟖 K=24 
T=0.86004 
PD=0.79812 

K=27 
T=0.37448 
PD=0.81764 

K=25 
T=0.26477 
PD=0.82444 

 

Table 4-5 CMLD-CFAR using GAs (with AND fusion rule) 
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In this representation, we explore various scenarios to assess the detection 
performance of the processors in both homogeneous and non-homogeneous 
environments. The evaluation focuses on two key metrics: the probability of 
detection (Pd) and the ability to control the false alarm rate (Pfa). The analysis is 
conducted using a fixed number of reference cells, with N=32. We consider 
several target false alarm rates, specifically Pfa values of 10ିହ, 10ି଺, 10ି଻and 
10ି଼ 

 

To optimize the parameters K and T, we employ a Genetic Algorithm (GA). The 
optimization is carried out for networks consisting of 2, 3, and 5 detectors. The 
GA works by iterating over multiple generations to find the optimal values for 
these parameters, enhancing the performance of the CFAR detectors. The 
robustness and adaptability of the optimized detectors are demonstrated in non-
homogeneous background environments, where the optimized settings of K and 
T show improved detection performance even under challenging conditions.  

 

This approach highlights the flexibility and effectiveness of GA in optimizing 
detector configurations to maintain high detection rates while keeping false alarm 
rates under control. 
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In Figure 4.6, the graph depicts the progression of the best fitness values across 
generations using the GA for both CMLDk and OS CFAR detectors. The fitness 
function is adjusted for each detector type to align with their unique 
optimization objectives. Although these functions differ, both plots show a clear 
trend of decreasing fitness values over iteration. This downward convergence 
highlights GA's efficiency in fine-tuning parameters specific to each CFAR 
detector, improving their ability to detect signals while reducing false alarms. 

 

 

Figure 4.6 Evolution of Best Fitness Values for both OS and CMLDK_CFAR detectors using GAs 
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The following graphics show the performance of an OS-CFAR using the AND 
fusion rule and the OR fusion rule respectively in both homogeneous and non-
homogeneous environments generated with MATLAB. The goal is to evaluate the 
probability of detection (Pd) under different Signal-to-Noise Ratio (SNR) values. 

 Homogeneous Background: The script simulates the detection process 
when there are no interferences, and both sensors receive similar noise 
levels. 

 Non-Homogeneous Backgrounds: The script introduces interference in 
different ways to see how it impacts detection. 

D1 and D2 are the numbers of interfering targets in the first detector, and the 
second detector, respectively 

 D1: 2 interferences, D2: 2interferences 

 D1: 2 interferences, D2: 5 interferences 

 D1: 5 interferences, D2: 5 interferences 

 

 

 

Figure 4.7 Probability of Detection using OR Fusion Rule with OS_CFAR in Different Backgrounds 
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Figure 4.8 Probability of Detection using AND Fusion Rule with OS_CFAR in Different Backgrounds 

 

 

 

 

Figure 4.9 Probability of Detection using OR Fusion Rule with CMLD_CFAR in Different Backgrounds 
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Figure 4.10 Probability of Detection using AND Fusion Rule with CMLD_CFAR in Different Backgrounds 

 

At Lower SNRs (10 dB - 15 dB): OS-CFAR with OR fusion generally shows 
lower detection probabilities (Pd) compared to CMLD with OR and AND fusion 
rules. OS-CFAR's performance improves with increasing SNR but is still lower 
compared to CMLD methods. 

At Higher SNRs (17.5 dB and above): OS-CFAR with OR fusion approaches 
near optimal values, but it is still outperformed by CMLD methods in most cases. 
CMLD consistently provides higher Pd values across different configurations and 
SNR levels. 

Comparison with AND Fusion: OS-CFAR with AND fusion shows better 
performance than with OR fusion but still lags behind CMLD methods. 

As shown it the table below, CMLD generally provides better performance across 
different SNR levels compared to OS-CFAR with OR fusion, especially at lower 
SNRs. At higher SNRs, both methods perform well, but CMLD continues to show 
a slight edge. 

The table below illustrates the superior performance of CMLD-CFAR over OS-
CFAR in both homogeneous and non-homogeneous environments. CMLD-
CFAR demonstrates greater robustness, especially at lower SNR levels and 
under non-homogeneous conditions. The data confirms the effectiveness of 
CMLD-CFAR, particularly when using the OR fusion rule, which consistently 
delivers higher detection probabilities across all scenarios. These findings align 
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with the simulation results I obtained, where CMLD-CFAR was shown to excel 
in handling both homogeneous and non-homogeneous backgrounds, as reflected 
in the graphical outputs. 

SNR 
(dB) 

Rule 
 
 
 
 

Pd 
Homogeneous 
(CMLD) 

Pd 
Homogeneous 
(OS-CFAR) 

Pd Non-
Homo 
D1:2, 
D2:2 
(CMLD) 

Pd 
Non-
Homo 
D1:2, 
D2:2 
(OS-
CFAR) 

Pd Non-
Homo 
D1:2, 
D2:5 
(CMLD) 

Pd 
Non-
Homo 
D1:2, 
D2:5 
(OS-
CFAR) 

Pd Non-
Homo D1:5, 
D2:5 
(CMLD) 

10 
 

OR 0.98300 0.37827 0.98097 0.27821 0.97946 0.19196 0.97737 

10 
 

AND 0.94892 0.65203 0.94549 0.60725 0.94292 0.55102 0.94021 

12.5 
 

OR 0.99426 0.63520 0.99364 0.53833 0.99303 0.41771 0.99219 

12.5 
 

AND 0.96934 0.77789 0.96752 0.74518 0.96595 0.70371 0.96431 

15 
 

OR 0.99801 0.82553 0.99773 0.76319 0.99748 0.66115 0.99733 

15 
 

AND 0.98199 0.86471 0.98100 0.84394 0.98002 0.81604 0.97891 

17.5 
 

OR 0.99941 0.92860 0.99934 0.89786 0.99924 0.83626 0.99920 

17.5 
 

AND 0.99008 0.92207 0.98936 0.90928 0.98890 0.89176 0.98832 

20 
 

OR 0.99980 0.97433 0.99981 0.96137 0.99977 0.93314 0.99976 

20 
 

AND 0.99424 0.95521 0.99385 0.94745 0.99354 0.93747 0.99315 

22.5 
 

OR 0.99992 0.99104 0.99992 0.98690 0.99988 0.97511 0.99987 

22.5 
 

AND 0.99706 0.97389 0.99686 0.96966 0.99672 0.96388 0.99652 

25 
 

OR 0.99998 0.99721 0.99998 0.99569 0.99998 0.99124 0.99998 

25 
 

AND 0.99833 0.98511 0.99821 0.98248 0.99814 0.97888 0.99803 

27.5 
 

OR 0.99998 0.99902 0.99998 0.99846 0.99998 0.99683 0.99998 

27.5 
 

AND 0.99888 0.99173 0.99883 0.99024 0.99875 0.98828 0.99872 

30 
 

OR 1.00000 0.99968 1.00000 0.99948 1.00000 0.99901 1.00000 

30 
 

AND 0.99950 0.99498 0.99945 0.99416 0.99937 0.99321 0.99937 

 

Table 4-6 Detection Probability Comparison for CMLD and OS-CFAR Methods Across Various SNR Levels and Fusion 
Rules 
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Figure 4.9 shows the performance of three CFAR systems according to the 
number of CMLD detectors in each system. The simulations were conducted by 
injecting noise and signal into a simulated radar environment. I ran 1 million 
iterations for each configuration, using SNR values ranging from 0 to 15 dB to 
represent various detection conditions. The output of the simulations was the 
probability of detection (Pd), which was recorded for each sensor configuration 
under different SNR levels. The Genetic Algorithm iteratively optimized the 
parameters for each run. 

 

 

 

 

Figure 4.11 Probability of Detection using OR Fusion Rule with CMLD_CFAR for Different Sensor Systems 

The graph here shows the probability of detection for 2, 3, and 5 sensors using the 
OR fusion rule across different SNR values. 

As expected, the system with 5 sensors had the highest detection probability, 
particularly in low SNR scenarios. 

The results also show that the Genetic Algorithm was successful in optimizing the 
CFAR parameters, as the detection probabilities were consistently higher 
compared to standard settings. 

The optimization provided substantial improvements in detection performance 
in scenarios with low signal-to-noise ratios, which is critical for radar 
applications. 



 
 

 

 

 

Conclusion 
The study demonstrated that the application of Genetic Algorithms (GA) 

significantly improved the performance of CFAR systems, particularly the OS-
CFAR and CMLD local detectors. Through optimization of parameters like rank 

orders (K) and thresholds (T) using the GA, both the probability of detection 
(Pd) and the false alarm rate were brought closer to desired values. The GA 
effectively explored the solution space, employing crossover and adaptive 
mutation strategies to avoid premature convergence, ultimately producing 

optimal configurations. Tournament Selection, with its reliable convergence, 
was instrumental in refining the results, proving its effectiveness in guiding the 

GA to the best solutions. 

 

Furthermore, the comparative analysis of OS-CFAR and CMLD detectors 
revealed that, across different SNR levels and background conditions, CMLD 
consistently outperformed OS-CFAR, especially at lower SNRs. As the SNR 

increased, both methods performed well, but CMLD maintained a slight 
advantage. The study's findings also confirmed that increasing the number of 

detectors improved detection performance, supporting the hypothesis that 
optimization via GA yields substantial gains in detection efficiency. This 

highlights the efficiency and applicability of GAs in optimizing CFAR system 
parameters, reinforcing the role of evolutionary strategies in enhancing radar 

detection systems. 
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