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ة تتعلق بالبيئة والسلامة.    :ملخص ة وشدة حرائق الغابات تحديات كبير وع  يمثل تزايد وتير إلى تطوير  يهدف هذا المشر

التعلم العميق  ه على طائرات بدون طيار. باستخدام نموذج   نظام متكامل للكشف عن الحرائق والتنبيه بها يتم نشر

YOLOv8   ي الوقت الفعلىي ويصدر تنبيهات فورية. تثبت
ومجموعات بيانات صور الحرائق، يكتشف النظام الحرائق ف 

فعاليتها. تستكشف الدراسة تطبيقات التعلم العميق عير   F1 مقاييس التقييم مثل الدقة والضبط والاستدعاء ودرجة

نموذج تنفيذ  تفاصيل  المجالات وتناقش  الشخصية   .YOLOv8 مختلف  الكمبيوتر  أجهزة  الاختبار على  نتائج  تسلط 

 . والطائرات بدون طيار الضوء على قدرات النظام والتحسينات المحتملة   Raspberry Piو

نت الأشياء، الكشف عن الحرائق، طائرة بدون طيار.   YOLOالكلمات المفتاحية:  ، إنير  ، الذكاء الاصطناعي

Résumé: La fréquence et la gravité croissantes des incendies de forêt présentent 

d’importants défis en matière d’environnement et de sécurité. Ce projet vise à développer 

un système de détection et d'alerte d’incendie intégré à l'IA et déployé sur des drones. À 

l'aide du modèle d'apprentissage profond YOLOv8 et des ensembles de données d'images 

d'incendie, le système détecte les incendies en temps réel et émet des alertes immédiates. 

Les mesures d'évaluation telles que l'exactitude, la précision, le rappel et le score F1 

démontrent son efficacité. L'étude explore les applications d'apprentissage profond dans 

divers domaines et discute des détails de mise en œuvre du modèle YOLOv8. Les résultats 

des tests sur PC, Raspberry Pi et drones mettent en évidence les capacités du système et les 

améliorations potentielles. 

Mots-clés: AI, IoT, détection d'incendie, drone, YOLO. 

Abstract: The increasing frequency and severity of forest fire present significant 

environmental and safety challenges. This project aims to develop an AI-integrated fire 

detection and alert system deployed on drones. Using the YOLOv8 deep learning model and 

fire image datasets, the system detects fires in real-time and issues immediate alerts. 

Evaluation metrics like accuracy, precision, recall, and F1 score demonstrate its 

effectiveness. The study explores deep learning applications across various domains and 

discusses the implementation details of the YOLOv8 model. Results from testing on PCs, 

Raspberry Pi, and drones highlight the system's capabilities and potential improvements. 

Keywords: AI, IoT, fire detection, drone, YOLO. 
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General introduction 
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 In recent years, Algeria has faced significant challenges due to the increasing frequency 

and severity of wildfires in mountains and forests. Fire detection systems aim to promptly 

detect fires, triggering manual or automatic actions to prevent escalation and reduce risk to 

people and minimizing the likelihood of fire development and spread. 

Fire detection systems have known a great evolution over the years. Some traditional 

fire detection systems include: smoke detectors, heat detectors, flame detectors, manual call 

points and sprinkler systems. With more technological advancements and AI, modern fire 

detection systems have been developed, such as: smart smoke detectors, video-based fire 

detection, IoT enabled fire alarms, wireless mesh networks, and predictive analytics.    

 Smart drones play a very important role in the fire detection field. Drones have 

undergone a significant evolution since their inception. They were initially developed in the 

military sector. Nowadays, they serve diverse purposes such as research, mapping, and 

observing natural phenomena. Over time, these drones have become more sophisticated with 

improvements in navigation systems, sensors, and data processing capabilities. This evolution 

has enabled them to be used in a wide range of industries, including agriculture, construction, 

infrastructure inspection, and environmental monitoring.  

 One notable advancement in recent years is the integration of Artificial Intelligence (AI) 

and Machine Learning algorithms into drone systems. This allows drones to analyse vast 

amounts of data in real-time, enabling them to make autonomous decisions and perform 

complex tasks with greater efficiency and accuracy. The development of smart fire detection 

system drones represents a significant milestone in this evolution. These drones are equipped 

with advanced sensors, such as infrared cameras and gas detectors, which allow them to 

detect fires quickly and accurately.  

 The objective of this project is to build a smart fire detection and alert system drone, 

integrating Artificial Intelligence and Internet of Things by using image-based fire detectors 

and IoT enabled fire alarms.  
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1.1. Introduction 

Forest fires pose significant threats, leading to substantial economic and ecological 

damage while endangering human lives. The importance of early detection and continuous 

monitoring of forest fires has thus garnered global attention, aiming to preserve natural 

resources and ensure the safety of both people and property. 

To mitigate the risks associated with forest fires, effective and rapid detection tech-

niques are essential. Technological advancements, including drones, satellite imagery, and so-

phisticated machine learning algorithms, enhance the ability to promptly monitor and detect 

forest fires, facilitating quicker response and containment efforts. 

This opening chapter aims to provide a comprehensive overview of forest fire 

detection, starting with a specific focus on the incidence of forest fires in Algeria. It then delves 

into the various existing methods for detecting forest fires. Following this, the chapter explores 

the different systems currently in use for forest fire detection.  

1.2. Forest Fire in Algeria 

1.2.1. Weekly fire alerts in Algeria 

In Algeria, the peak fire season typically commences in mid-January and extends for 53 

weeks. Between the 15th of May, 2023, and 13th of May, 2024, there were 94,005 VIIRS fire 

alerts reported. This figure is consistent with the data from previous years dating back to 

2012 [1]. Figures 1.1, 1.2 and 1.3 show the range of fire alerts in Algeria from May 2023 to May 

2024. 
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Figure 1.1. Fire alerts in Algeria from May 2023-May 2024 [1] 

 

Figure 1.2. Fire alerts in Algeria week of May 2023 [1] 

            

Figure 1.3. Fire alerts in Algeria week of April 2024 [1] 
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1.2.2. Tree cover loss due to fires in Algeria 

From 2001 to 2023, Algeria experienced a loss of 168 thousand hectares of tree cover 

due to fires and an additional 59.0 thousand hectares from other causes. The year 2017 

witnessed the highest tree cover loss attributable to fires during this period, with 41.7 

thousand hectares burned, accounting for 91% of the total tree cover loss for that year.  Figures 

1.4 and 1.5 show the statistics of tree cover loss in Algeria from 2001 to 2023. 

 

Figure 1.4. Tree cover loss in Algeria from 2001 to 2023 [1] 

 

Figure 1.5. Tree cover loss in Algeria in 2017 [1] 

• Regions with the most tree cover loss due to fires in Algeria 

From 2001 to 2023, El Tarf experienced the highest rate of tree cover loss due to fires, 

averaging 1.71 kha per year. During this period, fires were responsible for 74% of the total tree 

cover loss in Algeria. The following is a breakdown of the average annual tree cover loss due 

to fires for the top ten regions: 

1. El Tarf: 1.71 kha 

2. Bejaia: 979 ha 
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3. Skikda: 843 ha 

4. Guelma: 547 ha 

5. Tizi Ouzou: 421 ha 

6. Annaba: 374 ha 

7. Jijel: 366 ha 

8. Aïn Defla: 355 ha 

9. Medea: 237 ha 

10. Tipaza: 219 ha 

1.2.3. Comparative between wilayas  

• In terms of burned area 

Figure 1.6 shows a map of cumulative burnt areas by Wilayas from 2000 to 2022 [2]. 

 

Figure 1.6. Map of cumulative burnt areas by Wilayas (2000-2022) [3] 

This map indicates that Tizi Ouzou and Bejaia are the wilayas most affected by forest 

fires, with a cumulative area of 55,000 to 100,000 Ha burned over 22 years, followed by El Tarf, 

Batna, and Sidi Bel Abbes, each experiencing a burnt area of 40,000 to 55,000 Ha. 

• In terms of the number of forest fire outbreaks 

Figure 1.7 shows a map of cumulative number of forest fire outbreaks by wilayas from 

2000 to 2022.  
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Figure 1.7. Map of the cumulative number of forest fire outbreaks by Wilayas [3] 

 This map indicates that Tizi Ouzou, Bejaia, Jijel, and Blida have experienced the highest 

number of forest fires, ranging from 3,500 to 5,000 incidents over 22 years. Followed by El 

Taref, Skikda, Boumerdes, Bouira, Medea, Ain Defla, and Tipaza, with 2,000 to 3,500 forest 

fires. Interestingly, although Batna and Sidi Bel Abbes do not have a high number of forest fire 

outbreaks, they are still among the most affected wilayas by burnt forest areas. 

1.2.4. Historical Fire Alerts in Algeria  

 Between the 2nd of January 2012 and the 20th of May 2024, Algeria experienced a 

total of 428,655 VIIRS fire alerts. Figure 1.8 illustrates a histogram of the fire alerts in Algeria 

from 2012 to 2024 [1]. 

 

Figure 1.8. Historical Fire Alerts in Algeria 2012-2024 [1] 
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1.3. Forest Fire Detection Existing Methods 

1.3.1. Traditional sensor-based approaches 

 Traditional sensor-based approaches for forest fire detection involve the use of various 

sensors to monitor environmental conditions and detect the presence of fire. These sensors 

include temperature sensors, smoke detectors, infrared (IR) sensors, and gas sensors, among 

others [4]. 

a) Thermal sensors 

 Fire detection systems based on heat sensing activate when ambient temperature or 

its rate of rise exceeds a predefined threshold. These sensors are unsuitable for early warning 

since they require proximity to the fire to activate. However, they are cost-effective, easy to 

install, and highly reliable in areas prone to false alarms from smoke detectors, such as 

kitchens, and in environments where smoke detectors are ineffective due to extreme 

temperatures. 

 Rate-of-rise (RoR) thermal sensing detectors respond to sudden changes in ambient 

temperature from a normal baseline. These detectors can trigger an alarm with any rapid 

temperature increase, allowing for a lower activation threshold compared to fixed set points. 

 An advanced thermal detector for fire detection is the distributed fiber optic 

temperature sensor. This sensor, utilizing an optical fiber cable, detects temperature 

fluctuations more quickly than traditional thermal detectors due to its low mass and is immune 

to various nuisance emissions. Introduced in the late 1980s, distributed fiber optic 

temperature sensors employing Rayleigh and Raman scattering have been used in challenging 

environments, including tunnels, underground railways, conveyor lines, steelworks, and the 

petroleum and chemical industries. Distributed optical fiber sensors using Rayleigh scattering 

measure temperature by detecting changes in reflected light when the fiber is micro-bent by 

heat. These sensors are primarily used in road tunnels and underground installations. Raman 

scattering-based fiber optic sensors detect temperature changes by measuring the ratio of 

Stokes to anti-Stokes backscattered intensity signals as a function of temperature. The Brillouin 

scattering-based fiber optic device is a potential successor to both Rayleigh and Raman 

scattering systems, offering superior spatial and thermal resolutions. 
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b) Smoke sensors 

 Smoke is generated significantly earlier than other fire signatures during the growth 

and development phases of a fire incident. Early detection of smoke at low levels by fire de-

tection systems maximizes the chances of successful fire suppression, escape, and survivabil-

ity. Historically, fire detection relied on visual inspection and confirmation by individuals. In 

the late 1930s, Swiss chemist Walter Jaeger accidentally discovered a sensor capable of de-

tecting smoke while developing a device for toxic gases, leading to modern smoke sensing 

technologies. The first automatic smoke detector, developed in 1940, used americium-241 as 

a radioactive source to sense ionization current. 

 Smoke detection systems are relatively recent innovations, becoming common in res-

idential and life safety applications in the 1970s and 1980s. There are two primary sensing 

approaches used in commercial fire detection devices: photoelectric detectors, which use light 

scattering, and ionization detectors. Smoke detectors, designed to mimic the human sense of 

smell, can identify fires in their smoldering or early flame phases. The main advantage of 

smoke detectors is their ability to detect fires at the incipient stage, making them the pre-

ferred method for life safety and high-value content applications as they provide critical time 

for emergency response before significant damage occurs. Properly selected and designed 

smoke detection systems offer high reliability with minimal false alarms, despite being more 

expensive to install. 

 Optical smoke sensing devices detect smoke by utilizing the light scattering properties 

of smoke particles. Ionization smoke sensors contain an ionization chamber with a radioiso-

tope, typically americium. In the absence of smoke, ionized air molecules in the chamber allow 

a small electrical current to pass between charged electrodes. Smoke particles reduce this 

current, triggering a fire warning. Standard fire detection systems sense backscattered light 

from a Light Emitting Diode (LED) reflected by smoke particles. However, these devices often 

have slow response times, a higher incidence of false alarms, and are unable to detect non-

smoke-producing fires. 
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c) Infrared IR sensors 

  Flame detectors mimic human sight and represent a major automated fire detection 

approach, utilizing line-of-sight systems that operate on infrared, ultraviolet, or combined 

principles. Radiant energy in the 4,000 to 7,700 angstrom range indicates a flaming condition. 

Flame detection devices identify this fire signature and transmit a signal to the fire notification 

module. Unlike thermal and smoke-based methods, flame detection requires a direct line of 

sight between the detector and the fire source. Despite this limitation, flame detectors are 

highly reliable in noisy environments and are often used in high-value energy and transporta-

tion applications where traditional sensors might fail due to spurious activities. Common ap-

plications include locomotive and aircraft maintenance facilities, refineries, fuel loading sta-

tions, and mines. 

 Infrared detectors recognize fire by detecting the characteristic flicker of flames, while 

ultraviolet detectors identify fires by detecting ultraviolet radiation emitted by flames. Flame 

detection devices can safeguard large areas and respond quickly as they do not rely on smoke 

or heat from combustion. However, false alarms can occur due to radiation from sources like 

welding, sunlight, and tungsten lamps. To mitigate these nuisance alarms, multi-wavelength 

radiation sensing and computational algorithms have been developed to determine object 

temperature, flame temperature, surface area, and flame presence. 

 Optical flame detectors offer higher reliability, greater long-term stability, and rapid 

response compared to smoke detection systems. They operate within specific spectral ranges 

to record electromagnetic energy at designated wavelengths, including infrared, visible, and 

ultraviolet. 

 Ultraviolet-only detectors operate at wavelengths shorter than 400 nm, detecting 

flames at speeds of 3-4 ms due to the high-energy radiation generated at ignition. Ultraviolet 

and infrared detectors compare threshold signals in two spectral ranges and their ratio to de-

termine fire signal reliability and minimize false alarms. Commercial ultraviolet flame detec-

tors, typically based on a Geiger-Muller counter—a quartz tube filled with inert gas that con-

ducts electricity when a photon between 185 and 260 nm is detected—are large, expensive, 

high-voltage, short-lived, and can interfere with nearby electronics. Therefore, compact, 

lower-voltage semiconductor ultraviolet sensors are preferred. 
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D) Gas sensors 

 Volatile chemicals are typically released during fire combustions before smoke parti-

cles are generated. Therefore, fire detection devices based on chemical gas sensors may re-

spond faster than current smoke detectors. The key hypothesis for developing gas sensor-

based fire detection is that many fire types produce gases and volatiles before smoke, allowing 

for shorter response times. 

 The initial step in using chemical gas sensors for fire detection involves sensitivity anal-

ysis of various sensing technologies to combustion products, primarily carbon monoxide and 

carbon dioxide. However, the feasibility of using chemical sensors for fire detection is chal-

lenged by their high cross-sensitivity to water vapor and a range of volatiles produced during 

everyday activities, making them susceptible to false alarms. Thus, designing robust fire de-

tection devices necessitates analyzing sensor sensitivity to combustion products and examin-

ing cross-sensitivity to interfering scenarios. 

 To address the drawbacks of cross-sensitivity and enhance robustness, sensor fusion 

algorithms have been explored. These algorithms aim to accurately detect fires while mini-

mizing nuisance effects. Various computational methods, such as logic rules, neural networks, 

probabilistic neural networks, hierarchical linear discriminant analysis, and k-nearest neigh-

bours, have been investigated, but further work is needed to improve detection times and 

reduce false alarms in chemical sensing-based fire detection. 

 A multi-sensor approach, combining multiple fire signatures, is motivated by the need 

to develop robust fire detection systems with fewer false alarms. This approach has driven 

recent research efforts towards developing advanced algorithms and image processing meth-

ods based on data from multiple sensors. Multi-sensor detectors, which combine different 

sensor types, effectively mitigate the shortcomings of single-sensor systems. 
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 Fonollosa et al. (2016) presented a multi-sensor system based on chemical sensing for 

fire detection. This system, tested in a sensing chamber with various fire types and interfer-

ences, was able to distinguish fire from non-fire situations and activated alarms faster than 

conventional smoke detection systems for certain fire types. However, there is still a need to 

further reduce response time and enhance robustness in chemical sensing-based fire detec-

tion devices. 

 In an effort to increase sensitivity and reduce false alarms, Sowah et al. (2014) devel-

oped a multi-sensor fire detection and alarm system using fuzzy logic. A microcontroller pro-

cessed data from smoke, temperature, and flame sensors to confirm fire status using a fuzzy 

logic algorithm. 

 Díaz-Ramírez et al. (2012) proposed and evaluated two algorithms for forest fire de-

tection based on information fusion techniques. The first algorithm uses a threshold method 

with nodes attached to temperature, humidity, and light sensors. The second algorithm em-

ploys the Dempster-Shafer theory, assuming nodes use temperature and humidity sensors. 

While gas sensing-based fire detection systems are well-suited for rapid fire detection due to 

their high sensitivity to early volatiles release, they have low specificity due to responses to 

non-fire volatiles. Pattern recognition algorithms can enhance the effectiveness of gas sensor-

based fire detection methods [3]. 

1.3.2. Satellite and Aerial Surveillance 

a) Manned aircraft surveillance 

 Fixed-wing aircraft and helicopters equipped with advanced cameras, infrared sensors, 

and various other instruments are widely utilized for detecting smoke and other early 

indicators of forest fires. Pilots conduct aerial surveys over remote and inaccessible areas, 

using high-resolution cameras to meticulously scan for smoke plumes or fire hotspots [5]. 

 These high-resolution cameras provide detailed images, enabling precise identification 

of potential fire outbreaks. Additionally, infrared sensors play a crucial role in this detection 

process, as they are capable of identifying heat signatures that emanate from wildfires, even 

through dense smoke or forest canopies.  
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The combination of these technologies allows for the effective monitoring of large forested 

areas, ensuring that any signs of fire are promptly detected and reported. This enables rapid 

response efforts to be mobilized, thereby mitigating the potential damage and spread of the 

fires, protecting both the environment and surrounding communities. 

b) Drones or UAVs 

 Drones, or Unmanned Aerial Vehicles (UAVs), are effectively utilized for the detection 

and monitoring of forest fires. These drones can be equipped with cameras, thermal sensors, 

and various other instruments to detect smoke and heat signatures. The high-resolution 

cameras provide detailed images that help in identifying the precise location of fire outbreaks, 

while the thermal sensors detect heat signatures even through dense smoke or forest 

canopies. Additionally, drones are capable of mapping the location and extent of a fire, offering 

a comprehensive view of the affected area. They continuously monitor the fire's progression, 

providing real-time data that is crucial for coordinating firefighting efforts and strategizing 

response actions. 

 This continuous monitoring allows for the assessment of fire behaviour, aiding in 

predicting its spread and impact. Furthermore, the use of drones reduces the risk to human 

life by allowing remote surveillance of hazardous areas that are difficult or dangerous for 

manned aircraft to access. This technological integration enhances the efficiency and safety of 

forest fire management operations. Examples of aerial surveillance systems used for forest fire 

detection include the DJI Mavic 2 Enterprise Dual, the Lockheed Martin INDAGO, and the insitu 

ScanEagle. The DJI Mavic 2 Enterprise Dual, equipped with visual and thermal cameras, quickly 

detects and monitors fires through smoke and in low-light conditions. The Lockheed Martin 

INDAGO, with its electro-optical and infrared camera, is rugged and weather-resistant, suitable 

for challenging environments and early fire warnings. The Insitu ScanEagle, a larger drone with 

a thermal camera, can stay aloft for up to 24 hours, covering large areas and transmitting real-

time data to command centers. 

 These are just a few examples of aerial surveillance systems that incorporate drones 

for forest fire detection. Drones are useful for monitoring forested areas and can provide early 

warning of potential fires, allowing firefighters and other first responders to respond quickly 

and effectively. 
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c) Satellite Surveillance 

 Satellites equipped with sensors capable of detecting changes in temperature, 

reflectance, and other indicators are extensively used for forest fire detection. These advanced 

sensors can identify the heat emitted by active fires, enabling early detection and rapid 

response. Additionally, they can detect smoke plumes, providing visual confirmation of fire 

locations and helping to assess the spread and intensity of the fires. Furthermore, these 

sensors monitor changes in vegetation, such as scorching or burning, that occur as a result of 

a fire. By capturing comprehensive data on temperature fluctuations, smoke, and vegetation 

changes, satellite-based systems offer a powerful tool for continuous and large-scale 

monitoring of forested areas, enhancing the effectiveness of fire management and mitigation 

strategies. Examples of aerial surveillance systems for forest fire detection include MODIS, 

Landsat, and Sentinel-2 satellites. MODIS, on NASA's EOS satellites, detects global active fires 

and hotspots with sensors measuring surface heat, identifying fires as small as 10 meters with 

near-real-time data. 

 Landsat provides multispectral data to detect vegetation changes indicating fire risk, 

helping create fire risk maps. Sentinel-2, from the EU's observation mission, offers high-

resolution imagery to monitor vegetation changes and potential fires, providing early 

warnings. Additionally, fire towers use optical instruments to spot smoke or fire and connect 

to central monitoring systems for responder communication. 

 Aerial surveillance provides an important complement to ground-based systems for 

forest fire detection. By using a combination of ground-based and aerial surveillance systems, 

forest managers can develop a comprehensive strategy for detecting and responding to 

wildfires. Aerial surveillance can also be used for forest fire prediction, in addition to detection. 

Here are some examples of how aerial surveillance is used for forest fire prediction.  
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1.3.3. Advanced AI and Machine Learning Techniques 

 The rapid development of digital camera technology and video processing has led to 

the replacement of conventional fire detection systems with computer vision-based systems. 

These systems operate through three stages: flame pixel classification, segmentation of 

moving objects, and analysis of candidate regions. The fire pixel classifier is crucial, as it 

identifies key areas for the system to analyse, requiring high accuracy and low false detection 

rates. A typical video flame detection system employs background subtraction and colour 

analysis to pinpoint potential flame regions in video frames, using attributes like colour 

probability to differentiate between fire and non-fire objects. Some methods also consider 

spatial variance, temporal variation, and contour variability of candidate regions, applicable to 

both greyscale and colour video sequences. 

 Deep learning has further enhanced fire detection by automating feature extraction 

and classification. Unlike traditional computer vision methods, where features are manually 

crafted by experts, deep learning algorithms automatically capture these features through 

extensive training on diverse datasets. This shifts the focus from feature engineering to 

designing effective neural network architectures and preparing comprehensive training data. 

In deep learning, the detector and classifier are trained simultaneously within the same neural 

network, making the design of an efficient network structure and training process critical for 

optimal performance [6]. 

1.4. Forest Fire Detection Existing Systems 

 Forest fire detection systems can be categorized into three major groups: terrestrial 

systems, UAV systems, and satellite systems [6]. 

1.4.1. Terrestrial Systems 

 Terrestrial-based early detection systems consist of either individual sensors, such as 

fixed, PTZ, or 360° cameras, or networks of ground sensors. To provide adequate visibility, 

these sensors must be strategically placed, typically in watchtowers situated at high vantage 

points to monitor high-risk areas. These watchtowers are used not only for fire detection but 

also for verification and localization. 
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 There are two primary types of cameras used for early fire detection: optical cameras 

and infrared cameras, capable of gathering data with resolutions ranging from low to ultra-

high for various detection scenarios. Recently, systems that combine both optical and infrared 

cameras have been introduced. Computer-based solutions can process large amounts of data 

while maintaining high accuracy and a low false alarm rate. 

1.4.2. Unmanned Aerial Systems 

 Terrestrial imaging systems can detect both flame and smoke; however, it is often 

nearly impossible to view wildfire flames in a timely manner from ground-based or forest 

watchtower-mounted cameras. To address this limitation, autonomous unmanned aerial 

vehicles (UAVs) offer a broader and more precise view of fires from above, even in regions that 

are inaccessible or too hazardous for firefighting crews. Fixed or rotary-wing UAVs cover larger 

areas and offer greater flexibility in monitoring, though they are subject to weather conditions 

and have limited flight durations. UAVs dedicated to forest fire monitoring and detection are 

in high demand due to their rapid maneuverability and enhanced personnel safety. 

 A UAV-based forest fire surveillance system typically comprises a team of UAVs 

equipped with various on-board sensors and a central ground station. The system aims to use 

UAVs to detect and track flames, predict their spread, and provide real-time fire information 

to human firefighters, as well as to assist in fire suppression. 

 The system performs fire monitoring (searching for prospective fires), detection 

(identifying potential fires and alerting firefighting personnel), diagnosis (calculating fire 

position, extent, and evolution), and prognosis (predicting fire propagation). 

 A crucial component of the UAV-based forest fire monitoring system is the computer 

vision-based fire detection technique. This technique offers multiple advantages, including the 

ability to monitor a wide range of objects, provide intuitive and real-time images, and 

conveniently record information. Typically, charge-coupled device (CCD) cameras and infrared 

(IR) cameras are mounted on UAVs. Significant efforts have been dedicated to developing more 

effective image processing schemes for fire detection.  
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 Colour and motion aspects in CCD camera visual images are typically used for fire 

detection. However, in some outdoor applications, CCD cameras are often considered 

insufficiently durable and reliable. Given the highly complex and unstructured forest 

environments, the possibility of smoke covering the fire, and the presence of fire analogues 

such as reddish leaves swaying in the wind and light reflections, the false fire alert rate is 

typically quite high. IR cameras, which can capture images in low or no light conditions and 

render smoke as transparent, are extensively used despite being more expensive than CCD 

cameras. They are capable of capturing monochromatic images both day and night. The use 

of IR cameras is anticipated to reduce the rate of false fire alarms and enhance the forest fire 

detection system's adaptability to various operating conditions. 

1.4.3. Satellite and Space-Based Observation Systems 

 Satellite detection is a widely used technique for monitoring forest wildfires globally. 

Recently, the increase in satellite launches and the reduction in associated costs have spurred 

significant research efforts to detect forest fires from satellite images. Satellites designed for 

Earth observation (EO) are commonly used for environmental monitoring and meteorology. 

They are categorized based on their orbits, each offering distinct advantages and 

disadvantages. 

 The main categories include (a) geostationary orbit (GEO), which provides a constant 

view of the same surface area from an altitude of 35,786 kilometers; (b) low Earth orbit (LEO), 

which operates at altitudes of 2000 kilometers or less and offers high bandwidth and low 

communication latency; and (c) polar sun-synchronous orbit (SSO), which allows satellites to 

cross the equator at the same local time during each orbit, ensuring consistent observation 

conditions. 

 EO satellites often use low Earth polar SSO orbits to maintain consistent lighting and 

shadow conditions in their observations. Sun-synchronous satellites provide high spatial 

resolution data but have low temporal resolution, while geostationary satellites offer high 

temporal resolution but lower spatial resolution. For instance, satellites like Landsat and 

Sentinel have long revisit periods, making them unsuitable for real-time active forest fire 

detection but useful for less time-sensitive tasks such as estimating burnt areas. Figure 1.9 

shows a generalized multispectral imaging system for early fire detection [3]. 
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Figure 1.9. Generalized multispectral imaging systems for early fire detection [7] 

1.5. Conclusion 

 This chapter highlights the essential need for effective forest fire detection to reduce 

the severe economic, ecological, and human toll of such events. Focusing on Algeria, the 

chapter outlines the extent and frequency of forest fires, underscoring the urgency for 

advanced detection methods. 

 Traditional sensor-based approaches, including thermal, smoke, infrared, and gas 

sensors, are foundational but have limitations like delayed responses and high false alarm 

rates. Innovations such as distributed fiber optic temperature sensors and multi-sensor 

systems improve detection speed and reliability. 

 Aerial surveillance, using manned aircraft and drones equipped with high-resolution 

and thermal cameras, provides detailed, real-time monitoring, especially valuable in remote 

or hazardous areas. Satellite surveillance enhances these efforts with continuous, large-scale 

monitoring using advanced sensors that detect temperature changes, smoke plumes, and 

vegetation alterations. 

 Advanced AI and machine learning techniques revolutionize fire detection by 

automating feature extraction, improving accuracy, and enabling better prediction and 

response. 
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 By integrating terrestrial, UAV, and satellite-based systems, forest managers can 

develop a comprehensive strategy for early detection and effective response, safeguarding 

natural resources, property, and human lives from forest fires.
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2.1.  Introduction 

Deep learning and the Internet of Things (IoT) are revolutionary technologies that drive 

innovation and efficiency across many industries. Deep learning, a branch of artificial 

intelligence, uses neural networks to analyze large datasets, enhancing tasks like image and 

speech recognition, predictive analytics, and autonomous control. Its applications span diverse 

fields, including autonomous vehicles, healthcare, robotics, and agriculture. 

IoT connects physical devices to the digital world, facilitating data collection and 

exchange across networks. This connectivity supports applications in smart cities, industrial 

automation, and environmental monitoring, improving efficiency, safety, and sustainability. 

This chapter provides an overview of deep learning and IoT, starting with their 

definitions and key applications. It explores deep learning's role in various domains, the 

principles of Convolutional Neural Networks (CNNs), and the evolution of computer vision. It 

also examines IoT's applications and development, emphasizing the synergy between these 

technologies. Understanding these foundations highlights their impact on modern 

technological advancements and solutions to contemporary challenges. 

2.2. Definition of Deep Learning 

 Artificial Intelligence (AI) is a field within computer science dedicated to developing 

systems that can perform tasks typically requiring human intelligence. To accomplish this, AI 

involves programming machines with rules and algorithms that emulate human-like 

intelligence. AI is divided into two main subcategories: Machine Learning (ML) and Deep 

Learning (DL) [3] as shown in figure 2.1. 

 

Figure 2.1. Relation between AI, ML and DL [8] 
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 Machine Learning (ML) is a subset of AI that enables machines to learn from data 

without explicit programming. It involves processing data in a manner that allows machines to 

make decisions and adapt their algorithms based on new information. ML encompasses two 

main types: supervised learning, where the algorithm is trained on labelled data, and 

unsupervised learning, where the algorithm identifies patterns and structures in unlabelled 

data. The primary objective of ML algorithms is to minimize errors and enhance the accuracy 

of predictions. 

Deep Learning (DL), is a subset of ML that uses computational models inspired by the 

architecture of biological neural networks in the human brain. Similar to the brain, DL 

processes new information by comparing it to known data, categorizing, and labelling it to 

derive meaning. This capability allows DL to extract relevant information and make precise 

predictions. 

Artificial neural networks (ANNs) comprise interconnected nodes that perform 

mathematical operations on input data. These nodes are organized into three layers: input, 

hidden, and output. The input layer receives raw data, the hidden layers extract patterns and 

relationships, and the output layer generates the final result of data processing.  

Deep Artificial Neural Networks (ANNs) are more complex than shallow ANNs due to 

their multiple hidden layers. This increased depth enables them to perform more intricate 

tasks by progressively recombining and refining simpler features into more complex ones as 

data passes through each layer.  
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In a traditional machine learning workflow, the initial step involves manually extracting 

relevant features from images to build a classification model. In contrast, deep learning 

automates this process by using neural network architectures to automatically extract 

pertinent features from images. Moreover, deep learning employs "end-to-end learning," 

where the network learns to complete a given task, such as classification, directly from raw 

data. 

Deep Learning (DL) is particularly effective for unstructured data and generally provides 

greater accuracy than Machine Learning (ML). However, achieving these results with DL 

requires a substantial amount of training data and significant hardware and software 

resources. 

2.3. Application domains of Deep Learning 

The potential of deep learning is extensive and diverse, with applications spanning 

across multiple domains [3], including: 

2.3.1. Autonomous vehicles 

  Deep learning is crucial in the development of self-driving cars, providing the 

technology necessary for these vehicles to identify objects, predict the behaviour of other 

vehicles and pedestrians, and determine the most efficient routes. 

 By leveraging advanced neural networks, self-driving cars can process vast amounts of 

sensor data in real-time, allowing them to make split-second decisions with a high degree of 

accuracy. This capability not only enhances the safety of autonomous vehicles by significantly 

reducing the likelihood of accidents but also improves overall traffic flow and efficiency. The 

integration of deep learning algorithms ensures that self-driving cars can adapt to complex and 

dynamic driving environments, continuously learning and improving their performance. As a 

result, the widespread adoption of self-driving cars powered by deep learning holds the 

potential to revolutionize transportation, leading to safer roads, reduced traffic congestion, 

and more efficient travel. 
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2.3.2. Healthcare 

 Deep learning is extensively utilized in medical imaging to enhance diagnostic accuracy, 

facilitate early disease detection, and advance drug discovery. By analysing complex medical 

images, deep learning algorithms can identify patterns and anomalies that may be difficult for 

human practitioners to detect, thereby improving the precision of diagnoses. Furthermore, 

deep learning techniques are instrumental in predicting patient outcomes and personalizing 

treatment plans. By processing vast amounts of patient data, these algorithms can identify the 

most effective treatments tailored to individual patients, optimizing therapeutic strategies. 

The application of deep learning in medical imaging not only accelerates the diagnostic process 

but also contributes to more targeted and effective healthcare, ultimately improving patient 

outcomes and advancing the field of medical science. 

2.3.3. Robotics 

 Deep learning is integral to the fields of robot vision, motion control, and grasping, 

empowering robots to interact with their environment and execute complex tasks. By utilizing 

deep learning algorithms, robots can interpret visual data to recognize and analyse objects, 

navigate through diverse settings, and make precise movements. This capability allows robots 

to perform intricate tasks such as picking up and manipulating objects, assembling 

components, and even performing delicate operations. The integration of deep learning in 

robotics not only enhances the accuracy and efficiency of these tasks but also expands the 

potential applications of robots in various industries, from manufacturing and logistics to 

healthcare and service sectors. 

 Through continuous learning and adaptation, robots equipped with deep learning 

capabilities can improve their performance over time, leading to more intelligent and versatile 

robotic systems. 

2.3.4. Agriculture 

 Deep learning is extensively utilized for crop and soil analysis, yield prediction, and 

disease detection, aiding farmers in making informed decisions to optimize their yields, 

thereby enhancing food security and sustainability.  
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 In summary, deep learning is particularly suited for emerging application areas due to 

its reliance on large datasets, specialized hardware, and automatic feature engineering. The 

advent of high-performance hardware, such as GPUs, has significantly accelerated the training 

of deep learning models, enhancing their efficiency. Moreover, deep learning's capability to 

automatically extract high-level features from raw data renders it more effective than 

traditional machine learning approaches. Given these advantages, deep learning is poised to 

be applied in numerous new areas and is anticipated to provide innovative solutions to 

complex problems across various fields as the technology continues to advance and evolve. 

2.4. Computer Vision 

2.4.1. Definition 

 Computer vision (CV) is a multidisciplinary field that aims to replicate aspects of the 

human vision system, enabling computers to interpret and understand digital images. It is 

considered a subfield of artificial intelligence (AI) and machine learning (ML) that focuses on 

allowing computers to "see" and analyse visual data. The primary objective of computer vision 

is to extract meaningful information from images, such as identifying objects, generating text 

descriptions, or creating three-dimensional models. This often involves developing techniques 

that mimic the complexity of human vision. Figure 2.2 demonstrates the relationship between 

AI and CV [6]. 

 

 

Figure 2.2. Relationship between AI and CV [6] 
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2.4.2. The Evolution of Computer Vision 

Early computer vision research began in the 1950s, and by the 1970s, it was being 

applied commercially to distinguish between typed and handwritten text. Today, the 

applications of computer vision have advanced significantly. 

Before the advent of deep learning, the capabilities of computer vision were quite 

limited and required extensive manual coding and effort from developers and human 

operators. For instance, running an object recognition model involves several steps: 

- Creating a database: Individual images of all the subjects to be tracked had to be captured in 

a specific format. 

- Annotating images: Numerous critical data points had to be manually entered for each 

individual image. 

- Capturing new images: New images had to be captured, either from photographs or video 

content. Subsequently, the measurement process had to be repeated, noting key points in the 

new image. The angle from which the photo was taken also had to be considered. After all this 

meticulous labour, the application could compare the measurements in the new image to 

those in its database and determine if it matched any of the profiles being tracked. In reality, 

most of the work was done manually, with very little automation, and the margin of error 

remained substantial. 

 Recent advances in artificial intelligence, particularly in deep learning and neural 

networks, coupled with the vast amounts of data we generate today, have significantly 

enhanced computer vision. AI has now surpassed human capabilities in several tasks related 

to recognizing and labeling objects. 

2.4.3. Computer Vision with Deep Learning Approach 

Deep learning represents a fundamentally new approach to computer vision. It is based 

on neural networks, which are versatile functions capable of solving problems represented by 

instances. By providing a neural network with a large number of labeled data instances, it can 

identify common patterns and transform them into a mathematical equation to categorize 

future data. Deep learning is an extremely effective algorithm for computer vision tasks. 
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Developing a robust deep learning system typically involves accumulating a vast amount of 

labelled training data and fine-tuning parameters such as the type and number of layers. 

Deep learning is easier and faster to design and deploy compared to previous methods. 

It is employed in most contemporary computer vision applications, including fire detection, 

self-driving cars, and facial recognition. Advances in hardware and cloud computing resources 

have enabled deep learning to evolve from a theoretical concept to a practical application. 

2.5. Internet of Things 

2.5.1. Definition 

The Internet of Things (IoT) is a sophisticated network of interconnected computing 

devices, mechanical and digital machines, objects, and even living organisms, all equipped 

with unique identifiers (UIDs) and the ability to transfer and receive data over the Internet. 

This system operates seamlessly without necessitating human-to-human or human-to-

computer interaction. IoT devices communicate autonomously within the network, enabling 

real-time data exchange and automation of various processes. This technology encompasses 

a wide range of applications, from smart home systems and industrial automation to 

healthcare monitoring and environmental management, thereby revolutionizing the way data 

is collected, analysed, and utilized across multiple domains. 

2.5.2. Devices of Internet of Things 

IoT hardware can be categorized into two categories: general devices and sensing 

devices. 

a) General devices: general devices serve as the core components of data hubs and 

information exchange systems, connected via either wired or wireless interfaces. 

b) Sensing devices: which include sensors and actuators, measure parameters such as 

temperature, humidity, light intensity, and other environmental factors. 

A complete IoT system consists of four distinct components: sensors, connectivity, data 

processing, and a user interface. Sensors collect data from their environment and transmit it 

to the cloud. These sensors are connected to the cloud through various means, such as cellular 

networks, Wi-Fi, Bluetooth, or directly via Ethernet. 
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Once the data reaches the cloud, it is processed by software. The processed 

information is then made useful to the end-user, either through alerts (such as email, text, or 

notifications) or by enabling the user to perform actions that affect the data. Some actions 

may also be performed automatically. The figure below shows the structure of Internet of 

Things. 

 

Figure 2.3. Structure of the Internet of Things [7] 

2.5.3. Application domains of Internet of Things 

The Internet of Things (IoT) has broad application domains, significantly impacting 

various sectors: 

• Industrial: IoT enhances operational efficiency through predictive maintenance, real-

time monitoring, and automation of manufacturing processes. 

• Medical: IoT facilitates remote patient monitoring, improves diagnostic accuracy, and 

streamlines healthcare delivery via connected medical devices. 

• House Automation: IoT enables smart homes where devices such as thermostats, 

lighting, and security systems are interconnected, providing convenience, energy efficiency, 

and enhanced security. 
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• Business: IoT optimizes supply chain management, improves customer experiences 

through personalized services, and increases operational efficiency with connected office 

equipment and infrastructure. 

2.6. Conclusion 

In conclusion, the exploration of deep learning and the Internet of Things (IoT) in this 

chapter sheds light on their transformative impact on various industries. Deep learning, as a 

subset of artificial intelligence, employs neural networks to analyse extensive datasets, 

enhancing tasks like image and speech recognition, predictive analytics, and autonomous 

control. Its applications span diverse fields, including autonomous vehicles, healthcare, 

robotics, and agriculture. 

On the other hand, the Internet of Things connects physical devices to the digital world, 

facilitating data collection and exchange across networks. This connectivity supports 

applications in smart cities, industrial automation, and environmental monitoring, significantly 

improving efficiency, safety, and sustainability. 

This chapter has provided a comprehensive overview of deep learning and IoT, 

beginning with their definitions and key applications. It has delved into deep learning's role in 

various domains, the principles of Convolutional Neural Networks (CNNs), and the evolution 

of computer vision. Additionally, it has examined IoT's applications and development, 

emphasizing the synergy between these technologies. Understanding these foundations 

highlights their impact on modern technological advancements and solutions to contemporary 

challenges.
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3.1. Introduction 

Recent advancements in artificial intelligence (AI) and deep learning have significantly 

enhanced the efficacy of image-based modelling and analysis (e.g., classification, real-time 

prediction, and image segmentation) across various applications. Additionally, the advent of 

nanotechnology in semiconductors has enabled the development of a new generation of 

Tensor Processing Units (TPUs) and Graphics Processing Units (GPUs), which offer 

extraordinary computational capabilities for data-driven methods. Moreover, modern drones 

and unmanned aerial vehicles (UAVs) can now be equipped with compact edge TPU/GPU 

platforms, enabling real-time on-board processing to facilitate early fire detection and prevent 

catastrophic events. 

To develop such a deep learning-based computer vision system for fire detection, two 

essential elements are required: the dataset and the trained model. In this chapter, we will 

discuss the techniques and approaches employed in designing and training the fire detection 

model. 

3.2. Working Environment 

3.2.1. Hardware 

 The hardware tools that have been used are: 

• A Thinkpad Personal Computer 

Processor  AMD Ryzen 5 pro 4650U  

RAM  16Go 

Hard disk  512Go SSD 

Operating system  Windows 11 pro x64 

Graphics card AMD Radeon (TM) Graphics 

 Table 3.1. Characteristics of the Thinkpad Personal Computer 
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• FPV drone (quadcopter): First-person view (FPV) drones are high-performance 

unmanned aerial vehicles designed for speed, agility, and precise control. They are 

commonly used in drone racing and freestyle flying. FPV drones typically feature 

advanced components such as powerful brushless motors, efficient electronic 

speed controllers (ESCs), and sophisticated flight controllers, which enable 

responsive and stable flight. Their frames are often lightweight and durable, made 

from materials like carbon fiber, to withstand crashes and impacts. FPV drones are 

known for their high maneuverability and the ability to perform complex aerial 

maneuvers. 

• Raspberry pi 3 model B+: Raspberry Pi 3 Model B+ is a compact single-board 

computer renowned for its versatility and affordability. It features a quad-core ARM 

Cortex-A53 processor running at 1.4GHz, coupled with 1GB of RAM, providing 

ample computing power for a wide range of applications. Equipped with built-in 

wireless networking (802.11ac Wi-Fi and Bluetooth 4.2), Gigabit Ethernet, HDMI 

output, and USB ports, the Raspberry Pi 3 Model B+ offers seamless connectivity 

and compatibility with various peripherals. Its compact form factor and low power 

consumption make it an ideal platform for educational projects, DIY electronics, 

prototyping, and embedded systems development. 

• Flysky remote: Flysky remote is a handheld radio transmitter commonly used in 

remote control applications, particularly in the field of unmanned aerial vehicles 

(UAVs) such as FPV drones. It operates on radio frequency (RF) signals and provides 

precise and reliable control over the drone's flight parameters. With ergonomic 

design and intuitive controls, the Flysky remote offers ease of use and 

responsiveness, making it an essential tool for pilots in the operation and 

maneuvering of FPV drones. Featuring a reliable control range of up to 1 kilometer, 

the Flysky remote ensures stable communication with the drone over significant 

distances, enabling efficient and controlled flight operations.  
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• BN220 GPS: BN220 GPS module is a compact and highly accurate Global Positioning 

System (GPS) receiver designed for various navigation and positioning applications. 

It utilizes advanced satellite positioning technology to provide precise location 

data, including latitude, longitude, altitude, and time. With its small form factor 

and low power consumption, the BN220 GPS module is suitable for integration into 

a wide range of devices, including drones, robotics, and IoT (Internet of Things) 

devices, enabling accurate and reliable positioning capabilities for diverse 

applications. 

• USB Logitech webcam: Logitech USB webcam is a compact imaging device 

designed for high-quality video capture and conferencing. It features a high-

resolution camera sensor capable of capturing crisp and clear video at various 

resolutions, including HD (720p) or Full HD (1080p). With plug-and-play USB 

connectivity, a built-in microphone, and autofocus capabilities, the Logitech USB 

webcam provides an immersive and user-friendly video conferencing experience, 

making it ideal for remote communication, online meetings, and live streaming. 

3.2.2. Software 

For the software part, we have used: 

• Google Colab: Google Colab, short for Google Colaboratory, is a cloud-based 

platform provided by Google that allows users to write, execute, and share Python 

code in a collaborative online environment. It provides free access to computing 

resources, including GPU and TPU accelerators, enabling users to run code without 

the need for expensive hardware. Google Colab is widely used for data analysis, 

machine learning, and scientific research, offering seamless integration with 

popular libraries such as TensorFlow, PyTorch, and OpenCV.  
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• Google Drive: Google Drive is a cloud-based storage service provided by Google 

that allows users to store, access, and share files securely from any device with an 

internet connection. It provides users with free storage space and offers seamless 

integration with other Google services such as Google Docs, Google Sheets, and 

Google Slides. With Google Drive, users can store various types of files, including 

documents, images, videos, and more, and easily access them from anywhere, at 

any time. Additionally, Google Drive allows for collaborative work, enabling 

multiple users to edit and comment on documents in real-time. 

• Visual Studio Code: VS Code is a lightweight, free source code editor developed by 

Microsoft. It supports multiple programming languages and frameworks and 

provides a rich set of features for coding, debugging, and version control. With an 

intuitive user interface, built-in tools like IntelliSense and a terminal, and a vast 

library of extensions, VS Code offers a highly customizable and productive coding 

environment used by developers across various software development domains. 

• Python IDE: Python Integrated Development Environment (IDE) is a software  

application designed for efficient Python programming. It offers features like syntax 

highlighting, code completion, debugging tools, and project management 

capabilities. Popular Python IDEs include PyCharm, Visual Studio Code, Spyder, and 

IDLE, enhancing developers' productivity and facilitating the creation of high-

quality Python applications. 

3.2.3. Libraries 

 The libraries that have been used in this project are: 

- Ultralytics: Ultralytics is a software library focused on computer vision, offering state-of-the-

art deep learning models and tools for various applications. 

- OpenCV: (Open-Source Computer Vision Library) is a widely used open-source software 

library that provides a comprehensive set of tools and algorithms for real-time computer vision 

and image processing tasks. 

- Math:  the standard Python math library, providing mathematical functions. 
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- Email.message: Specifically, the `EmailMessage` class from the email.message module, used 

for constructing email messages. 

- Smtplib: the standard Python library for sending emails using the Simple Mail Transfer 

Protocol (SMTP). 

- Datetime:  the standard Python library for manipulating dates and times. 

- Requests: A popular library for making HTTP requests, often used for interacting with web 

services and APIs. 

3.3. Evaluation Metrics 

3.3.1. Confusion Matrix 

The confusion matrix is a vital tool for summarizing the performance of classification 

models. To calculate various evaluation metrics, it is essential to first understand key compo-

nents such as True Positive (TP), True Negative (TN), False Negative (FN), and False Positive 

(FP), all of which are derived from the confusion matrix [10] (table 3.1). 

 Actual value  Actual value 

Predicted value                  TP                 FN 

Predicted value                  FP                 TN 

Table 3.2. The confusion matrix of a classification model 

• True Positive (TP): Instances where the model accurately predicts the presence of fire in 

the input image or video. 

• True Negative (TN): Instances where the model correctly identifies the absence of fire. 

• False Negative (FN): Cases where the model incorrectly predicts the absence of fire. 

• False Positive (FP): Cases where the model incorrectly identifies the presence of fire. 
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3.3.2. Accuracy 

 The accuracy metric is the most commonly used and straightforward method for eval-

uating the performance of a trained deep learning model. It quantifies the proportion of cor-

rect predictions made by the model out of the total number of predictions [11] as defined in 

Equation 1: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (3.1) 

3.3.3. Precision 

 Precision is a crucial evaluation metric that represents the proportion of true positives 

(correct predictions) to the total number of predicted positives. This metric indicates the 

accuracy of predicted bounding boxes in relation to the ground truth boxes [12]. The formula 

for calculating precision is as follows: 

                                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP 

(TP +FP)
                                       (3.2) 

3.3.4. Specificity 

 Specificity is another important evaluation metric used to assess model performance. 

It indicates the proportion of non-fire instances correctly identified by the model, thereby 

reflecting the model's ability to avoid false positives [13]. The specificity rate is calculated using 

the following equation: 

                                     𝑆 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                              (3.3) 

3.3.5. Recall 

 Recall, also known as sensitivity, is another essential evaluation metric used in object 

detection. It measures the proportion of true positives relative to the total number of actual 

positives in the ground truth [12]. It can be calculated using the following formula: 

                                                𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (3.4) 
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3.3.6. F1-score 

 The F1-score is an evaluation metric that considers both Precision and Recall rates. It 

represents a weighted harmonic mean of Precision and Recall [14] and is calculated using the 

following equation: 

                                                𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                             (3.5) 

3.4. The Architecture of The Proposed System 

 Figure 3.1 shows the architecture of the system. 

 

 

 

 

 

 

Figure 3.1. The architecture of the system 

3.4.1. Downloading the data 

 The dataset used for training and evaluating the AI fire detection model was sourced 

from Kaggle and exported via Roboflow.ai on June 13, 2021, at 3:22 PM GMT. The dataset 

includes 270 images with fire annotated in YOLO v5 PyTorch format.  

The following preprocessing was already applied to each image: 

- Auto-orientation of pixel data (with EXIF-orientation stripping) 

- Resize to 416x416 (Stretch) 

Additionally, the following augmentations were applied to create three versions of each 

source image: 

- 50% probability of horizontal flip 

Downloading 
the data

 

Model Training  

Email 
alert   

system

Results  Tests  Implementation  
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- 50% probability of vertical flip 

- Equal probability of one of the following 90-degree rotations: none, clockwise, 

counter-clockwise 

- Randomly crop between 0 and 20 percent of the image 

- Random shear of between -15° to +15° horizontally and -15° to +15° vertically 

- Random exposure adjustment of between -25 and +25 percent 

- Random Gaussian blur of between 0 and 10 pixels 

- Salt and pepper noise applied to 5 percent of pixels 

Despite extensive searching and inquiries, detailed information about the academic 

origin of the dataset was not provided. However, it is distributed under the GPL-2 license, 

which allows for use and distribution but prohibits modifications [9]. 

3.4.2. Fire detection model 

  After downloading the data that has already been pre-processed, we can proceed to 

undertake the development of a computer vision model. This process involves the 

construction, data input, training, testing, and deployment stages. As machine learning 

algorithms serve as the foundation upon which we enable deep learning and computer vision 

models, our initial step entails establishing a framework tailored to the computer vision model. 

To accomplish this, we will employ the YOLOv8 framework. YOLOv8, short for You Only Look 

Once version 8 is the latest iteration of the YOLO family of object detection models, known for 

their speed and accuracy. 
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a) YOLOv8 architecture:  

YOLOv8 architecture can be broadly divided into three main components [10]: 

• Backbone Network 

The backbone network is the foundation of YOLOv8, responsible for feature extraction 

from the input image. YOLOv8 employs CSPDarknet53, a variant of Darknet, as its backbone. 

The CSPDarknet53 architecture introduces a novel Cross-Stage Partial (CSP) 

connection, enhancing the information flow between different stages of the network and 

improving gradient flow during training. 

• Neck and Head Structures 

YOLOv8 introduces a Path Aggregation Network (PANet) as the neck structure. PANet 

facilitates information flow across different spatial resolutions, enabling the model to capture 

multi-scale features effectively.  

The head structure consists of multiple detection heads, each responsible for 

predicting bounding boxes, class probabilities, and objectness scores at different scales. 

• Detection Head 

The detection head of YOLOv8 is where the real innovation lies. It utilizes a modified 

version of the YOLO head, incorporating dynamic anchor assignment and a novel IoU 

(Intersection over Union) loss function. These improvements contribute to more accurate 

bounding box predictions and better handling of overlapping objects. Figure 3.2 illustrates the 

YOLO network architecture. 

 

Figure 3.2. YOLO network architecture [10] 
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3.4.3. YOLOv8 network training process 

To train our model, data was stored on Google Drive and accessed by mounting the 

drive to Google Colab. This facilitated easy handling and organization of datasets. Figure 3.3 

shows sample frames from the dataset that has been used.  

 

Figure 3.3. Sample frames from the dataset 

First, we need to check the status of the NVIDIA GPU available for our session to make 

sure the GPU is correctly set up and available for use as shown in Figure 3.4.  

 

Figure 3.4. GPU information 

 For the model configuration and training, the YOLOv8 model (`yolov8n.pt`) was 

selected for its balance between accuracy and computational efficiency. 
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 The training process was initiated using the ‘yolo’ command with the following key 

parameters: 

- ‘task=detect’: Specifies that the task is object detection. 

- ‘mode=train’: Indicates the mode is training. 

- ‘model=yolov8n.pt’: The pre-trained YOLOv8 model is used as the starting point. 

- ‘data=/content/drive/MyDrive/data2/data.yaml’: The path to the dataset configuration file. 

- ‘epochs=1000’: Number of training epochs. 

- ‘imgsz=640’: The image size used for training. 

 Figures 3.5 and 3.6 illustrate the training process for the first and the last 10 epochs:  

 

Figure 3.5. Training progress information for the first 10 epochs 
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Figure 3.6. Training progress information for the last 10 epochs 

3.4.4. Email Alert System Using SMTP 

 To implement the email alert system in this project, Python's `smtplib` library was 

utilized to send notifications via the Simple Mail Transfer Protocol (SMTP).  

 SMTP is a communication protocol used for sending emails across the Internet, 

designed to send emails from the sender's server to the recipient's server reliably and 

efficiently as explained in Figure 3.7 which demonstrates the SMTP architecture. 

 

Figure 3.7. SMTP architecture [15] 
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 The process involved the following steps: 

1. SMTP Server Connection: Connecting to the SMTP server using the email service provider’s 

details. 

2. Email Composition: Creating the email content, including the subject, sender, and recipient 

details, using the `MIMEText` class. 

3. Email Transmission: Sending the email via the SMTP server, ensuring secure transmission 

with the STARTTLS command and authenticating using the sender’s email credentials. 

 This approach ensured real-time and reliable email notifications, enhancing the 

responsiveness and reliability of the alert system within the project.  

3.4.5. Implementation 

 After successfully testing the system on a PC, we implemented it on a Raspberry Pi 

board. This process involved configuring the Raspberry Pi and transferring the data and the 

trained model to the device. 

 The following steps were followed to implement the system on the Raspberry Pi:  

➢ Configuring the Raspberry Pi: Initially, we installed the latest version of the Raspbian 

OS on the Raspberry Pi, we configured the Wi-Fi settings to ensure network 

connectivity, and we executed system updates to ensure all packages were current 

(Figure 3.8). 
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Figure 3.8. Installing updates on raspberry pi 

➢ Transferring data and the trained model: subsequently, we have transferred the data 

and the trained model (the weights folder) using a USB key.  

➢ Creating a virtual environment: for this step, we used `venv` on the Raspberry Pi 

command line, and conducted all subsequent work within this environment to ensure 

isolation and dependency management (figure 3.9). 

 

Figure 3.9. Creating and activating a virtual environment on Raspberry Pi 
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➢ Installing Required Libraries: we installed the necessary Python libraries (e.g., OpenCV, 

ultralytics library) (figures 3.10 and 3.11). 

 

Figure 3.10. Installing ultralytics on Raspberry pi 

 

Figure 3.11. Installing cv zone on Raspberry Pi 

➢ Setting up the execution environment: finally, we configured paths and dependencies 

and verified model compatibility and made adjustments to execute the python code 

on python 3 IDE.  
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By following these steps, the fire detection system was successfully deployed on the 

Raspberry Pi, enabling real-time fire detection and alert notifications in a compact, 

portable setup. 

After successfully implementing the system on the raspberry pi, we have added a GPS 

module to include the location of the fire in the email alert system, for this we have 

connected a Bn220 GPS module to the raspberry Pi as shows figure 6.12. 

 

Figure 6.12. GPS and Raspberry Pi wiring diagram 

 After completing the wiring, we verified the GPS activation by executing “sudo service 

gpsd status.” Subsequently, we initiated the GPS by running the Python script located in the 

GPS libraries folder. We then read the data received from the GPS module on the Raspberry 

Pi, including altitude, longitude, and other relevant information, to utilize it later in the fire 

detection system's Python code. Figures 3.13, 3.14 and 3.15 illustrate the aforementioned 

steps performed with the GPS module. 
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Figure 3.13. Verifying GPS status 

  

Figure 3.14. Activating the GPS application 
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Figure 3.15. Data received by the GPS module on Raspberry Pi 

 Once all preliminary work was completed, we connected a USB camera module to the 

Raspberry Pi. Initial fire detection tests were conducted on pre-downloaded videos. Following 

the connection of the external camera module, further tests were conducted using live 

footage. 

3.5. Conclusion 

 This chapter detailed the design and implementation of a forest fire detection model 

using YOLO. We established the working environment, specifying the required hardware, 

software, and libraries. We then defined evaluation metrics to assess model performance and 

provided an overview of the system architecture, including data preparation, the fire detection 

model, the YOLOv8 training process, and the email alert system. 

 The implementation section covered practical steps such as verifying GPS functionality, 

connecting a USB camera module, and conducting fire detection tests on both pre-recorded 

videos and live footage. 

 Leveraging AI, deep learning, and edge computing, our model offers a robust solution 

for real-time forest fire detection, enhancing accuracy and speed. This scalable system can be 

integrated with UAV platforms for effective environmental monitoring and disaster prevention.
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4.1. Introduction 

In this final chapter, we present the results and discussions of our trained forest fire 

detection model using the YOLO framework. This chapter aims to provide a comprehensive 

analysis of the model's performance, showcasing key metrics such as accuracy, loss, recall, and 

the confusion matrix. By examining these results, we aim to evaluate the effectiveness of the 

model in accurately detecting forest fires. Additionally, we will discuss the implications of these 

findings, potential limitations, and areas for future improvement. This analysis is crucial in 

understanding the model's strengths and weaknesses, thereby guiding further development 

and optimization efforts for enhanced real-time fire detection capabilities. 

4.2. Tests and Results 

4.2.1. Confusion Matrix 

Figure 4.1 illustrates the confusion matrix graph of the trained model. 

 

Figure 4.1. Confusion matrix result 
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The analysis of the confusion matrix reveals that the model correctly identified 

10 instances of the positive class (TP = 10), but did not correctly classify any instances 

of the negative class (TN = 0). There were 2 instances where the model incorrectly 

classified the negative class as positive (FP = 2) and 85 instances where the model 

misclassified the positive class as negative (FN = 85). 

These results indicate a notable bias towards predicting the positive class, 

potentially influenced by an imbalanced dataset or inadequate training data for the 

negative class. The high number of false negatives (85) and the absence of true 

negatives suggest that the model struggles significantly with identifying the negative 

class. This imbalance in the confusion matrix implies that the model is more inclined to 

predict the positive class, but with a considerable error rate in both positive and 

negative predictions.  

From the values given by the confusion matrix, we can calculate the accuracy, 

recall, precision, and F1 score. 

- True Positives (TP) = 10 

- True Negatives (TN) = 0 

- False Positives (FP) = 2 

- False Negatives (FN) = 85 

 

4.2.2. Accuracy 

Accuracy is the ratio of correctly predicted observations to the total observations, we 

can calculate it using equation 3.1:               

  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
10+0

10+0+2+85
= 0.103 

The accuracy is 0.103 (or 10.3%). 
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4.2.3. Precision 

Precision is the ratio of correctly predicted positive observations to the total predicted 

positives, we can calculate it using equation 3.2: 

              𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
10

10+2
= 0.833 

The precision is 0.833 or (83.3%). 

 

4.2.4. Recall 

Recall is the ratio of correctly predicted positive observations to all observations in the 

actual class, we can calculate it using equation 3.5: 

                                              𝑟𝑒𝑐𝑎𝑙𝑙 =  
10

10+85
= 0.105                   

The recall is 0.105 or (10.5%). 

4.2.5. F1 Score 

The F1 score is the harmonic mean of precision and recall, we can calculate it using 

equation 3.5: 

                                      𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
0.833∗0.105

0.833+0.105
= 0.186                     

   

F1 score is 0.186 or (18.6%). 

  4.3. Discussions 

The results of the classification model highlight several areas of success and 

opportunities for improvement. The model achieved a high precision of 83.3%, demonstrating 

its strength in accurately identifying positive instances and minimizing false positives.  

However, the model's accuracy of 10.3% and recall of 10.5% indicate room for 

enhancement in correctly identifying all relevant instances. The F1 score of 18.7% underscores 

the potential to balance precision and recall further. 
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4.3.1. Results Interpretation 

 From the confusion matrix values, we derived: 

- Accuracy: 10.3% 

- Precision: 83.3% 

- Recall: 10.5% 

- F1 Score: 18.7% 

 The high precision indicates the model's proficiency in correctly identifying positive 

instances, effectively minimizing false positives. This strength is crucial for applications where 

the cost of false positives is high, showcasing the model's capability in making accurate positive 

predictions. 

 However, the accuracy of 10.3% and recall of 10.5% highlight critical areas for 

enhancement. The modest accuracy suggests that the model needs improvement in correctly 

classifying all instances. The recall rate points to the model's current challenge in identifying 

all positive instances, which is essential for a balanced and effective classification system. 

 The F1 score of 18.7% reflects the need to improve the balance between precision and 

recall. Enhancing this balance will lead to a more robust model capable of delivering consistent 

performance across different scenarios. 

4.3.2. Proposed Improvements 

Addressing these issues requires targeted improvements, primarily focusing on data 

augmentation and collection: 

➢ Enhanced Data Collection: Future work should prioritize collecting more images of fire 

instances. This includes sourcing images from diverse environments and conditions to 

ensure the model can generalize well across different scenarios. 

➢ Data Augmentation: Applying data augmentation techniques can artificially increase 

the diversity and volume of the dataset. Techniques such as rotation, flipping, scaling, 

and colour adjustment can help in creating a more robust training set. 
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➢ Balanced Dataset: Ensuring a balanced dataset with an adequate number of positive 

and negative instances will help the model learn more effectively and improve its ability 

to detect fire instances accurately. 

 Despite the current limitations, the model provides a strong foundation for developing 

an effective classification system. The results underscore the importance of a balanced and 

comprehensive dataset. The high precision achieved in identifying positive instances is 

promising, indicating the model's potential once provided with a more balanced training 

dataset. Future work will focus on augmenting the dataset, refining the model architecture, 

and exploring advanced training techniques to enhance performance. 

4.4. Testing The Model on the PC 

We conducted multiple tests on the model using a PC, beginning with evaluations on 

two MP4 videos and subsequently on the PC's webcam. 

4.4.1. Tests on videos 

            a) tests on the first video 

 Figures 4.2 and 4.3 display the model's performance on the PC during the tests 

conducted using the first video. 

 

Figure 4.2. Test on video 65%                             figure 4.3. Test on video 61% 
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Figure 4.4. Email alert for the first video’s tests 

b) tests on the second video 

Figures 4.5 and 4.6 display the model's performance on the PC during the tests 

conducted using the second video. 

 

Figure 4.5. Test on video 87%                                Figure 4.6. Test on video 90% 

 

Figure 4.7. Email alert for the second video’s tests 
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As shown, the model successfully detects fire in both videos and indicates the fire's 

intensity with each detection. Figures 4.4 and 4.7 illustrate the email alerts sent each time the 

model detects fire. 

4.4.2. tests on the PC’s webcam 

Figures 4.8 and 4.9 display the model's performance on the PC’s webcam. 

      

Figure 4.8. Test on webcam 56%                          Figure 4.9. Test on webcam 74% 

 

Figure 4.10. Email alert for webcam’s tests 

The model also detects fire from the candles placed next to the webcam and 

successfully sends email alerts for each detection, as illustrated in Figure 4.10. 
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4.5. Testing The Model on Raspberry Pi 

4.5.1. Tests on video 

 Figures 4.11 and 4.12 display the test results on the video and the email alert sent upon 

fire detection. 

 

Figure 4.11. Test on video 87% 

 

Figure 4.12. Email alert for video 

4.5.2. Tests on The Logitech External Camera 

 In this step, we tested the system after integrating all components, including the 

external camera and GPS, with the Raspberry Pi. Figures 4.13 and 4.14 illustrate the tests 

conducted using the external camera connected to the Raspberry Pi. 
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Figure 4.13. Test on external webcam                   Figure 4.14. Test on external webcam 87% 

 

Figure 4.15. Email alert for the external webcam 

The system effectively detects fire and sends email alerts upon detection. Figure 4.15 

demonstrates an email alert generated when the system identified fire using the Logitech 

webcam. The alert includes the date and time of the fire detection. Although the alert is 

designed to report the fire's location, it states "Location: Address not found" in this instance. 

This indicates that the GPS could not acquire sufficient data to determine the exact location of 

the fire. This limitation arose because the tests were conducted indoors, where GPS signal 

reception is inadequate. Future tests will be conducted in various outdoor environments to 

improve location accuracy and achieve more reliable results. 
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4.6. Testing The System on Drone Deployment 

After conducting all necessary tests to ensure the system detects fire successfully on 

both PC and Raspberry Pi using videos and webcams, we deployed the system on the drone, 

as shown in figure 4.16: 

 

Figure 4.16. System’s deployment on the drone 

 We connected the 12V LiPo battery (the drone’s power source) to the Raspberry Pi. 

Specifically, we used a 5V amplifier to connect two cells (4.12V) from the battery to the 

Raspberry Pi, ensuring protection for the Raspberry Pi. 

 After deploying the system on the drone, we conducted tests at a height of 1.65 meters. 

Figures 4.17, 4.18, and 4.19 show the test results of the system on the drone. 
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Figure 4.17. testing the system on the drone 

 

Figure 4.18. drone’s test’s result 
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Figure 4.19. Email alert for the drone’s test 

The system successfully detected fire and sent the email alert; however, due to the 

model's modest accuracy and recall, fire detection from long distances was challenging while 

the drone was in motion. To address this, we stabilized the drone and reduced the distance 

slightly, ensuring the model could still detect fire, which it did successfully. Due to limited funds 

and time, we could not perform outdoor tests with the drone at heights exceeding 1.70 

meters. Future tests will be conducted outdoors, with the model improved as proposed in 

section 4.3.2. 

4.7. Conclusion 

 This chapter presented the results and discussions of our trained classification model. 

Despite achieving high precision in identifying positive instances, the model demonstrated 

limitations in overall accuracy and recall. The analysis of the confusion matrix revealed a bias 

towards predicting the positive class, indicating challenges primarily stemming from dataset 

imbalance. To address these limitations, future work should prioritize dataset augmentation, 

algorithmic refinement, and extensive testing to enhance the model's effectiveness in real-

world classification scenarios.
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In response to the escalating wildfire threat in Algeria's mountainous and forested 

regions, this work developed an advanced smart fire detection system integrating AI, ML, and 

IoT technologies. This system aims to enhance timely fire detection and mitigation, minimizing 

the impact on natural habitats, wildlife, and human communities. The shift from traditional 

fire detection methods to AI-driven approaches marks a critical advancement in wildfire 

management, leveraging real-time data processing and autonomous decision-making for swift 

and accurate fire detection. 

Key findings reveal high accuracy in negative instance detection with the YOLO-based 

fire detection model, but limitations in identifying positive instances due to data scarcity and 

class imbalance. This highlights the need for comprehensive datasets encompassing diverse 

fire scenarios for improved model robustness. 

Future advancements in AI algorithms, sensor technologies, and IoT integration are 

crucial for enhancing the scalability and adaptability of fire detection systems. Expanding 

dataset repositories, employing rigorous data augmentation techniques, balancing datasets, 

enhancing data collection, and using better camera modules will further bolster model 

generalization capabilities. 

In conclusion, this project has laid the groundwork for an effective smart fire detection 

system. Addressing the identified challenges and leveraging emerging technologies will pave 

the way for more resilient wildfire management strategies, protecting ecosystems and 

communities from wildfires in Algeria and beyond. 
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