
Academic Year 2023 - 2024 

 

 

 

 

 

 

 

Master’s Dissertation 

Presented by 

Lamia SARAOUI 

& 

Raouf ABDALLAH ELHIRTSI 

To obtain a Master’s degree in Telecommunication 

Option: Networks and Telecommunications 

 

Topic 

 

Classification of Plant Disease Using Deep Learning 

 

Proposed by: Dr. F. FODHIL 

Co-Advisor: Dr. Hocine AIT SAADI

 الجـمهورية الجزائرية الديمقراطية الشعبية 
République Algérienne démocratique et populaire  

 

العــلمــي والبحــثوزارة التعليم الــعــالي   

Ministère de l’enseignement supérieur et de la recherche 

scientifique   

 

 جــامعة سعد دحلب البليدة  

Université SAAD DAHLAB de BLIDA  

 

كلية التكنولوجيا     

Faculté de Technologie 

 

ونيـك   قسم الإلكتر

Département d’Électronique 



 

 

Dedication 
I offer this humble piece of work to 

My mother “Chahera”, you’re the best mother anyone could ask for in this 

life, your unconditional love, sacrifice, constant prayers, and delicate care 

was what kept me going. 

My father “Ahmed”, the selfless man who gave me all the support in the 

world, and your confidence in my capabilities has laid the groundwork 

for my accomplishments. 

I am profoundly thankful for the numerous ways in which both of you 

have influenced my path and encouraged me to strive for my objectives. 

I extend my appreciation to my sister; your affection has been a 

consistent source of solace throughout this expedition. 

Furthermore, I extend my gratitude to my mentor, "Dr. Fodhil," for her 

priceless advice and vision. 

 my co-advisor, "Dr. Ait Saadi Hocine, » Your cheerful personality, work 

ethic, and sagacity were instrumental throughout my journey at the 

university, my deep gratitude. 

I am thankful to all the esteemed professors in our department, whose 

commitment to education has motivated me. Your enthusiasm for 

knowledge has driven my pursuit of distinction. 

I am grateful to all my relatives and friends, both near and far, who have 

supported me and offered invaluable assistance on this journey. 

 

Raouf ABDALLAH ELHIRTSI 



 

 

Dedication 

I dedicate this modest work to 

My beloved family, whose unwavering support and love have been my greatest 

strength. 

To my mother and father, for their endless encouragement, sacrifices, and 

unconditional love. Your belief in my potential has been the foundation of my 

success. 

Mom, your nurturing spirit and tireless support have been my guiding light. 

Dad, your strength has taught me the value of perseverance and hard work. I am 

deeply grateful for the countless ways you both have shaped my journey and 

inspired me to reach for my goals. 

To my sisters; «Loubna», «Nesrine», and «Nada», for their constant motivation 

and companionship. Your support and love have been a source of comfort and 

encouragement throughout this journey. 

To my grandparents. 

To my close friends «Ayoub», «Merouane», «Zohir», «Chiraz», and «Maissa», 

for their support and understanding. Your friendship has been a pillar of 

strength during the challenging times. Your support has meant the world to me. 

To my advisor, «Dr. Fodhil», and my co-advisor, «Dr. Ait Saadi Hocine», for 

their guidance and wisdom. 



 

 

To all the good professors of our department, whose dedication to teaching has 

inspired me. Your passion for knowledge has fueled my pursuit of excellence. 

To my dear cousins, «Lina», «Rania», and «Selma», for their love and 

encouragement. 

To my uncle's wife, for her kindness and support. 

To my second Famely ITCommunity. 

To all my relatives and friends who have been there for me, near and far, and 

who have provided invaluable assistance throughout this journey. Your belief in 

me has been a source of immense strength. 

Thank you all for being a part of this incredible journey and for believing in me. 

 

Lamia SARAOUI 

 



 

 

Acknowledgments 
With immense gratitude, we extend our sincere thanks to God the Almighty for bestowing 

upon us the health and strength that empowered us to undertake and complete this modest 

work. 

We extend our deepest gratitude to our advisor, Dr. Fodhil, for her invaluable guidance, 

wisdom, and patience throughout this research. Your contributions have been pivotal in 

shaping the direction and quality of our work. 

 A special thanks to our co-advisor, Dr. Ait Saadi Hocine, for his exceptional dedication, 

insightful advice, and continuous encouragement. Your support has been instrumental in our 

academic growth and success. 

We also express our sincere thanks to the members of the jury for their time, effort, and 

valuable feedback, by agreeing to review our work. 

To the CRTI team, particularly Abdelghani Zabel, your collaboration and assistance have 

been greatly appreciated. Your support has played a crucial role in the successful completion 

of this research. 

To all the professors of our department. Your teaching, mentorship, and encouragement have 

been essential in our academic journey. 

Finally, we express deep gratitude to all those who contributed to this endeavor, whether 

near or far. Your valuable insights, assistance, and collaboration played a pivotal role in 

shaping the outcome of this work. Each contribution, no matter how small, has left an 

indelible mark on our collective achievement. 

 



 

 

النباتية تحدياً    : ملخص للزراعة وتؤثر على صحة المحاصيل والأمن الغذائي العالمي. وتعد تشكل الأمراض  كبيراً 

الطرق التقليدية للكشف عن الأمراض، التي تعتمد على الفحص اليدوي، عرضة للأخطاء وعدم الكفاءة. تستكشف  

تطبيق الأطروحة  العميق  هذه  نماذج (DL) التعلم  ثلاثة  على  التركيز  مع  النباتية،  الأمراض  عن  الكشف  : في 

MobileNetV2و ،AgriNetBoost  ،وVision Transformer (ViT)  .  وقد اختيرت هذه النماذج لكفاءتها في

هذا  البيئات المحدودة الموارد مثل الأجهزة المحمولة. تقوم الدراسة بتقييم دقة النماذج وسرعتها وكفاءتها الحسابية في  

للنشر في الوقت الحقيقي. تتمثل الأهداف في تعزيز قدرات   Streamlit وتنفيذ حل عملي باستخدام إطار عمل  المجال

 .الكشف عن الأمراض ودعم الممارسات الزراعية المستدامة

المفتاحية: )  الكلمات  الآلي  التعلم  العالمي،  الغذائي  الأمن  الزراعة،  النبات،  العميق  MLأمراض  التعلم   ،)(DL)  ،

MobileNetV2 ،LightGBM( محول الرؤية ،ViT). 

Résumé: Les maladies des plantes représentent un défi important pour l'agriculture, car elles 

affectent la santé des cultures et la sécurité alimentaire mondiale. Les méthodes traditionnelles de 

détection des maladies, qui reposent sur l'inspection manuelle, sont sujettes aux erreurs et à 

l'inefficacité. Cette thèse explore l'application de l'apprentissage profond (DL) dans la détection 

des maladies des plantes, en se concentrant sur trois modèles: MobileNetV2, LightGBM et Vision 

Transformer (ViT). Ces modèles sont choisis pour leur efficacité dans des environnements à 

ressources limitées, tels que les appareils mobiles. L'étude évalue la précision, la vitesse et 

l'efficacité de calcul des modèles dans ce domaine et met en œuvre une solution pratique utilisant 

le cadre Streamlit pour un déploiement en temps réel. Les objectifs sont d'améliorer les capacités 

de détection des maladies et de soutenir les pratiques agricoles durables. 

Mots clés: Maladies des plantes, agriculture, sécurité alimentaire mondiale, apprentissage 

automatique (ML), apprentissage profond (DL), MobileNetV2, LightGBM, Vision Transformer 

(ViT). 

Abstract: Plant diseases pose a significant challenge to agriculture, affecting crop health and 

global food security. Traditional disease detection methods, reliant on manual inspection, are 

prone to errors and inefficiencies. This thesis explores the application of Deep Learning (DL) in 

detecting plant diseases, focusing on three models: MobileNetV2, AgriNetBoost, and the Vision 

Transformer (ViT). These models are chosen for their efficiency in resource-constrained 

environments such as mobile devices. The study evaluates the models' accuracy, speed, and 

computational efficiency in this field and implements a practical solution using the Streamlit 

framework for real-time deployment. The objectives are to enhance disease detection capabilities 

and support sustainable agricultural practices. 

Keywords: Plant diseases, agriculture, global food security, Machine Learning (ML), Deep 

Learning (DL), MobileNetV2, AgriNetBoost, Vision Transformer (ViT). 
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General introduction 

Plant diseases pose a significant threat to global agricultural productivity, potentially 

leading to up to 40% annual crop losses worldwide, according to the (FAO) [1]. Early detection 

of these diseases is crucial, as it can reduce yield losses by as much as 50%, as indicated by 

research in the Journal of Plant Pathology [2]. The impact is especially severe in developing 

countries, where over 1 billion people rely on agriculture for their livelihoods, contributing to 

increased food insecurity, as highlighted by the (IFPRI) [3]. Studies from the (UNDP) 

underscore that these countries bear the brunt of plant disease impacts, with up to 80% of their 

rural population dependent on agriculture [4]. Therefore, there is a growing emphasis on 

identifying and managing plant diseases to safeguard agricultural productivity and mitigate 

their detrimental effects on global food security. 

Traditionally, disease detection relied heavily on manual inspection, a method prone to 

human error and inefficiencies. However, recent advancements in technology, particularly in 

the fields of machine learning (ML) and deep learning (DL enabling automated and accurate 

identification of plant diseases based on visual symptoms and patterns. 

This thesis explores the application of ML and DL techniques in the domain of plant 

disease detection. Specifically, it investigates the efficacy of lightweight models designed to 

operate efficiently on resource-constrained environments, including mobile devices and remote 

agricultural settings. By evaluating and comparing various ML and DL models, this research 

aims to identify the most effective approach for enhancing disease detection capabilities. 

This thesis investigates the application of state-of-the-art ML and DL techniques in the 

detection of plant diseases, with a specific focus on three distinct models: MobileNetV2, a DL 

model optimized for mobile platforms; LightGBM, a gradient boosting framework known for 

its speed and accuracy; and the Vision Transformer (ViT), a DL model that has shown 

promising results in image classification tasks by leveraging self-attention mechanisms. These 

models are evaluated for their ability to analyze visual symptoms of plant diseases captured 

through image data. Furthermore, the research explores the practical implementation of these 

models using the Streamlit framework a versatile tool for building and deploying data-centric 

web applications.  
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Streamlit facilitates the development of interactive and intuitive interfaces, enabling 

seamless access and utilization of disease detection models by stakeholders in agriculture. The 

deployment phase focuses on optimizing model performance, and user interface design 

ensuring practical applicability in agricultural settings. 

The study's objectives are twofold: first, to assess and compare the performance of these 

models in terms of accuracy, speed, and computational efficiency for plant disease detection; 

second, to develop a practical solution using the Streamlit framework for real-time deployment 

in agricultural settings. By achieving these objectives, this research contributes to advancing 

disease monitoring capabilities and supporting sustainable agricultural practices. 

The first chapter provides a comprehensive overview of plant diseases, their types, 

causes, and impacts, along with management strategies and the role of precision agriculture. 

The second chapter will delve into the evolution and applications of ML and DL, 

focusing on core principles like supervised and unsupervised learning. It will highlight neural 

networks such as CNNs and Transformers. Additionally, it will explore the role of lightweight 

models in enabling efficient AI applications on resource-constrained devices. 

The third chapter explores fine-tuning deep learning models for plant disease detection, 

focusing on essential hyperparameters for CNNs, Transformers, and LightGBM, and evaluation 

metrics including confusion matrices, accuracy, precision, recall, and F1 score to assess 

classification model performance with imbalanced data. 

The fourth chapter will feature the case study that will showcase our work. We will 

build three lightweight models, discuss their outcomes, implement them in a web application, 

and conclude with a comparative analysis of these models.
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Chapter I: State of The Art – Plant Diseases 

I.1. Introduction 

Plant diseases represent a significant issue within the realm of agriculture, carrying 

extensive economic and environmental implications. This section delves into the intricate facets 

of plant diseases, thoroughly examining their origins, manifestations, and the wide-ranging 

effects they have on agriculture and ecosystems, along with strategies for their control. 

Furthermore, we will explore both conventional and innovative methods for handling plant 

diseases, emphasizing efficient techniques for mitigating their impact. 

 Upon completing this section, readers will possess a robust comprehension of plant 

diseases and their mitigation, equipped to further explore these pivotal areas of research. 

Concluding this section, a cutting-edge analysis will be presented on the utilization of advanced 

technologies in detecting plant diseases, merging classical plant pathology with contemporary 

approaches like precision agriculture and machine learning. 

I.2. Plant diseases 

A plant disease can be defined as any condition that disrupts the normal growth and 

development of a plant, leading to a decrease in its economic or aesthetic value. This disruption 

affects the functioning of the plant, resulting in lower yields or reduced quality, which in turn 

impacts the income of farmers, reduces food supplies, and may increase consumer prices. 

Unlike injuries caused by immediate factors like insect feeding or mechanical damage, plant 

diseases develop gradually over time. Symptoms of the disease typically become apparent only 

after several days of its onset [5]. 

These diseases can be caused by either living agents, such as microorganisms and 

parasitic plants (referred to as pathogens or biotic agents), or non-living agents, such as 

environmental factors, inadequate nutrition, and chemical substances (referred to as abiotic 

agents). Some diseases involve a combination of both pathogens and abiotic factors. 

Figure I.1 displays a diagram showing the complex interactions between pathogens, 

environmental conditions, and host plant characteristics in plant diseases. It highlights the 

importance of considering these three factors in plant pathology. The visual representation helps 

understand how pathogens, environmental factors, and host vulnerabilities contribute to and 

affect plant diseases. 
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Figure I.1. Schematic representation of plant diseases and pathogens [6] 

I.2.1. Types of plant disease 

Manifestations of plant diseases often appear as discernible marks or lesions on leaves, 

stems, flowers, or fruits. Each disease or pest exhibits unique characteristics aiding in diagnosis, 

changes in leaf color, texture, edges, and size serve as telltale signs of declining plant health [7]. 

Plant diseases can be broadly categorized based on the primary cause of infection, 

whether it is infectious or non-infectious in nature [8]. 

I.2.1.1. Infectious plant disease 

Infectious plant diseases result from living agents called pathogens, which can spread 

from infected plants to healthy ones. These pathogens include microorganisms like nematodes, 

fungi, bacteria, and mycoplasmas, as well as viruses and viroids, which rely on living cells for 

reproduction [5].  
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a. Fungi 

Fungi are composed of hyphae, tiny filaments made of small cells only visible under a 

microscope. The tangled mass of hyphae is known as mycelium. Fungi can form colonies on 

improperly stored bread or vegetables. Some fungi grow inside plants or organic debris, while 

others become mushrooms. Fungi produce spores that spread through wind, water, or people to 

germinate on plants. Hyphae can enter plants through openings or wounds, damaging tissues 

with toxins or enzymes. Fungicides are used to kill fungi causing plant diseases [5]. In figure 

I.2 shows a potato leaf infected with early blight, caused by Alternaria solani fungus, affects 

tomato and potato plants. Symptoms include small brown spots with rings on lower leaves. 

Disease spreads outwards leading to yellowing, withering, and death of leaves. Infection can 

also impact stem, fruit, and upper part of the plant inducing severe damage to crops [9]. 

 

Figure I.2. Potato leaf infected with early blight [10] 

b. Bacteria 

Bacteria, as single-celled microorganisms, possess rigid cell walls and reproduce 

through binary fission, with certain strains exhibiting rapid division rates under optimal nutrient 

conditions. This accelerated multiplication, coupled with the secretion of toxins and enzymes, 

contributes significantly to the degradation of plant tissues. Plant diseases stemming from 

bacterial infection are predominantly attributed to rod-shaped strains, which enter plants 

through wounds or natural openings. Additionally, some bacterial species produce growth-

regulating substances, leading to aberrant tissue growth. Management strategies often involve 

the use of bactericides, and specialized antibiotics targeting bacterial pathogens, to mitigate 

bacterial-induced plant diseases [5]. 
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Figure I.3 represents a Bacterial leaf spot, attributed to “Xanthomonas campestris 

pv.vesicatoria”, that poses a significant threat to pepper cultivation. This rod-shaped bacterium 

has a remarkable ability to survive in seeds and plant residue across seasons. Its diverse strains 

exhibit specificity towards certain pepper cultivars, manifesting disease symptoms in those 

varieties. The impact can be profound, with early defoliation and fruit malformation leading to 

substantial crop losses. As the disease progresses, its control becomes increasingly challenging, 

often resulting in irreversible damage to the plants [11]. 

 

Figure I.3. Pepper leaf infected with bacterial leaf spot [11] 

c. Viruses and Viroid 

Tiny invaders called viruses and viroids wreak havoc on plants. These microscopic 

entities, much smaller than 300 nanometers, hijack plant cells using their RNA genetic material.  

Viruses, with shapes like rods or spheres, manipulate the cell's machinery to make more viruses, 

while viroids are even simpler, just RNA molecules. Both disrupt plant growth, causing 

diseases.  Spread through insects, contaminated tools, or even by us, these plant pathogens are 

a challenge to control, as effective treatments are still being developed. [5]. Figure I.4 shows 

tomato leaf infected with mosaic virus, it is a single-stranded RNA virus from the family 

Virgaviridae, genus Tobamovirus, infecting plants globally. It has a broad host range, affecting 

vegetables, flowers, and seedlings. ToMV leads to mosaic disease in various crop plants, posing 

a significant threat to worldwide tomato production [12]. 
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Figure I.4. Tomato leaf infected with mosaic virus [13] 

d. Nematodes 

Nematodes, small eel-shaped worms often invisible to the naked eye, use a tiny style to 

extract nutrients from plants. They reproduce by laying eggs that hatch into larvae, which go 

through four molts to become adults. Some nematodes can complete their life cycle in under 30 

days. Nematodes that affect plant roots are particularly important, though many species can 

feed on different parts of the plant. Substances used to eradicate nematodes are known as 

nematicides [5]. Figure I.5 presents a visual representation of a potato plant suffering from a 

severe nematode infection, evident through the wilting, discoloration, stunted growth, and 

implication of root knotting. 

 

Figure I.5. Potato plant with severe nematode damage 
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e. Parasitic Plants 

Parasitic plants are angiosperms that propagate through authentic seeds. The majority 

of these parasitic plants possess altered root-like structures that adhere to plant tissues for the 

acquisition of nutrients and water, yet lack root systems capable of absorbing nutrients from the 

soil. By utilizing nutrients that would typically be assimilated by the host plant, parasitic plants 

diminish the vigor of the host. Mistletoes represent one of the most commonly observed 

parasitic plant species. In certain instances, in which mistletoes afflict forest trees, the plant 

tissues may become so disarrayed that the integrity of the wood is compromised, resulting in 

the deformation of branches [5]. Figure I.6 illustrates the life cycle of a root parasitic plant, 

Orobanche minor, (a) Seed germination is elicited by host-derived stimulants, including 

strigolactones. (b) Seedling attaches to host root with haustoria. (c–d) Parasite tubercles grow 

underground for several weeks or months before emergence of the flowering shoots. (e) The 

parasite produces a large number of seeds, which remain viable for many years in soil [14]. 

 

Figure I.6. Life cycle of a root parasitic plant, Orobanche minor [14] 

f. Disease Complexes 

Plant diseases, particularly those caused by soilborne pathogens, frequently involve 

multiple pathogens. Co-occurrence of pathogens can lead to increased plant damage or death. 

Plants may resist one parasite but struggle when attacked by multiple. Plant-disease interaction 

occurs when the combined damage of multiple pathogens exceeds the damage caused by 

individual ones. For instance, tomatoes with root-knot may succumb faster to the Granville-

wilt bacterium. Peach trees have short lives due to cold injury, bacterial canker, improper 

pruning, and root-rotting organisms [5].  
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I.2.1.2. Non-infectious Plant Diseases 

Non-infectious plant diseases are caused by non-living agents, typically environmental, 

nutritional, or chemical factors. Environmental extremes in temperature, moisture, or light can 

hinder plant development, while nutritional imbalances can lead to disease-like symptoms. 

Diseases induced by chemicals often result from inappropriate soil pH, fertilizer and pesticide 

misuse, or air contamination. Air pollutants from vehicular and industrial sources have 

increasingly been linked to plant health deterioration, with acid rain further impacting plant 

species and water quality in lakes [5]. Figure I.7 effectively conveys how abiotic factors—

sunlight, water, temperature, soil composition, and physical weather events—interact to 

influence plant health. It underscores the importance of managing environmental conditions to 

mitigate non-infectious plant diseases, which are critical for sustaining healthy plant growth 

and agricultural productivity. 

 

Figure I.7. Environmental stressors affecting plants [15]  
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I.3. Economic and environmental impact of plant diseases  

Plants play a crucial role in the sustenance of the human species, accounting for 80% of 

the food sources we rely on and producing 98% of the oxygen crucial for our survival. Recent 

years have witnessed a substantial increase in the global trade of agricultural goods, tripling in 

size to a value of USD 1.7 trillion, particularly driven by the growth in emerging economies 

and developing countries. Nonetheless, the challenge of meeting the future demand for food 

presents a formidable obstacle, necessitating a 60% rise in agricultural output by 2050 to cater 

to a larger and wealthier population. This endeavor is further complicated by the pervasiveness 

of plant diseases, which annually lead to losses of up to 40% in global food crops, translating 

to trade deficits exceeding USD 220 billion. Furthermore, the effects of climate change worsen 

these challenges by jeopardizing crop yields and nutritional value, with increasing temperatures 

fostering the spread of plant diseases to new regions and earlier time frames [1]. Additionally, 

research by the International Food Policy Research Institute (IFPRI) highlights that agricultural 

productivity losses due to plant diseases contribute to increased food insecurity, affecting over 

1 billion people worldwide [3]. Moreover, a study published in the Journal of Plant Pathology 

found that early detection of plant diseases can lead to a 50% reduction in yield losses [2]. 

Furthermore, studies conducted by the United Nations Development Programme (UNDP) 

reveal that developing countries, heavily reliant on agriculture, bear the brunt of plant disease 

impacts, with up to 80% of the rural population depending on agriculture for their livelihoods 

[4]. Figure I.8 presented below comprehensively illustrates the multifaceted impacts of plant 

diseases across various critical categories. Each category highlights a different dimension of 

the broader socio-economic and environmental ramifications of plant diseases. 
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Figure I.8.  Comprehensive impacts of plant diseases on global agriculture, economy, and 

food security 

I.4. Plant Disease Management 

Once the cause of a disease is accurately identified, effective strategies for its 

management and control can be developed. Over the past century, extensive research has 

thoroughly explored pathogens, diseases, and various management techniques. This wealth of 

knowledge now provides a robust foundation for enhancing disease control initiatives. 

Efficiently managing plant diseases is not only a scientific necessity but also an economic 

imperative, crucial for preventing devastating outbreaks and catastrophic famines [16]. 

I.4.1. Principle of control 

Control of a plant disease involves reducing the extent of damage incurred. Attaining 

absolute control is uncommon, yet achieving profitable control, where the increased yield 

outweighs the expenses of chemicals and labor, is feasible. The foundational principles of 

control encompass exclusion, eradication, protection, resistance, and therapy. 

a. Exclusion pertains to the prevention of pathogens from infiltrating and establishing in 

uninfected areas like gardens, states, or countries. Home gardeners practice exclusion by 

utilizing certified seeds or plants, inspecting bulbs before planting, discarding questionable 

ones, potentially treating seeds or tubers, and avoiding visibly diseased specimens from 

nurseries or dealers. At the state and country level, exclusion involves imposing quarantines or 

legal restrictions.  
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b. Eradication refers to eradicating a pathogen once it has taken hold on a plant or within a 

garden. It involves removing diseased specimens or parts, such as rouging for virus diseases or 

pruning cankered tree limbs, as well as practices like cultivation, deep ploughing, crop rotation, 

and disinfection using chemicals or heat treatment. 

c. Protection entails placing a protective barrier between the susceptible part of the host plant 

and the pathogen. This often involves applying protective sprays or dust pre-emptively, 

eliminating inoculating agents like insects, or installing physical barriers like windbreaks. 

d. Resistance is managed through the development of resistant cultivars. Resistant cultivars 

have been present since ancient times. The process of natural selection has historically 

eliminated unsuitable varieties, however, since approximately 1890, humans have accelerated 

this process through intentional breeding, selection, and propagation of plants resistant to 

prevalent diseases.  

e. Therapy involves controlling the pathogen by inoculating or treating the plant with 

substances that deactivate it. Chemotherapy entails using chemicals to deactivate the pathogen, 

whereas thermotherapy or heat is occasionally employed to deactivate or impede virus 

development in infected plant tissues, enabling the growth of new tissue free from the 

pathogen [17]. 

I.4.2. Integrated Disease Management (IDM) 

Integrated Disease Management (IDM) in agriculture is a multifaceted approach that 

combines various control strategies to minimize the impact of pathogens on crop and livestock 

production. This approach, which includes biological, cultural, physical, and chemical control 

methods, is effective and sustainable in both fish farming [18] and plant disease management 

[19], [20], [21]. However, successful implementation of IDM in developing countries requires 

a supportive policy environment and the adoption of participatory approaches [20]. 

Furthermore, the choice of specific disease management strategies should consider their impact 

on soil and crop health, as well as on the broader agricultural and non-agricultural environments 

[19].  IDM can target specific diseases like potato late blight, with goals of reducing inoculum 

and enhancing host resistance. Successful disease management relies on research about plant 

pests, crop resistance, and environmental conditions. Continuous research is needed for 

effective control measures [5].  
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Integration of Diverse Tactics: IDM utilizes various disease management tactics, 

such as: 

a. Cultural practices: Techniques like crop rotation, sanitation, and proper irrigation to create 

a less hospitable environment for pathogens. 

b. Resistant crop varieties: Selecting plant varieties with natural resistance to specific 

diseases. 

c. Biological control: Introducing beneficial organisms like predators or parasites to control 

pathogen populations. 

d. Chemical control: Using pesticides judiciously and only when necessary, considering 

economic thresholds and environmental impact. 

e. Monitoring systems: Regularly monitoring crops or populations for disease presence and 

severity. 

f. Synergistic Effect: By combining these tactics, IDM aims to create a synergistic effect, 

where the combined impact is greater than the sum of individual strategies. 

Decision-Based Approach: IDM emphasizes monitoring and scouting to determine the 

need for intervention. Treatments are only applied, when necessary, based on economic 

thresholds and the specific disease situation. 

I.4.3. Recent Advances in Plant Disease Management 

Some of the recent advance techniques and approaches used in Plant Disease 

Management: 

Integrated Management Strategies: These approaches combine various tools and 

practices to enhance disease control and minimize environmental impact [22]. 

Marker-Assisted Molecular Breeding and Biotechnological Approaches: Marker-

assisted breeding allows precise selection of disease-resistant traits, while biotechnological 

methods like CRISPR-Cas and RNAi offer targeted gene modifications [23]. These tools aid in 

detecting and identifying plant pathogens, crucial for effective disease management [24]. 

Nanotechnology Applications: Nanotechnology is increasingly used in plant disease 

management, with nano-based sensors detecting pesticide residues and mycoflora [16], 

Nanoparticles can enhance plant defense mechanisms [25]. 
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Electronic Monitoring (E-monitoring): This technology provides real-time data on 

disease spread, enabling timely interventions [26]. Furthermore, disease forecasting models and 

computer simulations are crucial for surveillance and mapping [16].  

In summary, a multifaceted approach that integrates modern technologies, sustainable 

practices, and eco-friendly alternatives is essential for effective plant disease management.  

I.5. Precision agriculture  

Agricultural and forestry experts traditionally identify diseases and pests, but this 

method is subjective, time-consuming, and inefficient. Modernizing agriculture to increase 

efficiency and profitability has led to significant changes in practices. These include intensified 

land use, new crop management techniques, modern cultivars, changes in food preferences and 

policies, evolving trade regulations, and increased international movement of goods and people. 

These changes have diverse impacts on the agricultural system [27]. 

I.5.1. Definition  

Precision farming, also known as precision agriculture, is a comprehensive system that 

optimizes agricultural production through the application of crop information, advanced 

technology, and management practices [28]. It involves the use of information and technology-

based farm management systems to identify, analyze, and manage spatial and temporal 

variability within fields for optimum productivity and profitability [29]. This approach is based 

on variable soil and microclimate conditions within fields and is guided by technologies such 

as Global Positioning Systems (GPS), digital maps, Geographic Information Systems (GIS), 

and computers on-board agricultural vehicles [30]. Recent advancements in precision farming 

include the integration of technical equipment, automation, and robotics to achieve autonomous 

robotized systems [31]. Thus, customizing farming practices to accommodate this variability 

can enhance outcomes and mitigate undesirable effects [32]. Figure I.9 depicts various 

technological advancements in precision agriculture, highlighting the integration of modern 

technologies such as smartphones, drones, sensors, and automated machinery. These tools 

facilitate real-time data collection and analysis, enhancing decision-making processes and 

optimizing agricultural practices. 
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Figure I.9. Precision agriculture: Integrating technology for optimized farming [33] 

I.5.2. Diverse technologies in precision agriculture 

Precision agriculture leverages a wide range of cutting-edge technologies to improve 

the efficiency and sustainability of farming practices. These technologies include: 

a. Satellite and remote sensing technologies 

Agriculture depends on factors such as soil composition, weather, temperature, rainfall, 

crop growth stages, and topography. Satellites and space-borne technologies allow for easy 

monitoring of these variables from computer displays, providing data for strategic agricultural 

interventions. The use of satellites in agriculture is growing, evolving from data collection to 

precise farming activities like using GPS-equipped tractors for harvesting. Satellites primarily 

generate accurate geospatial data on farmlands and crops using multiple satellites and 

trilateration. Equipped with efficient sensors, satellites monitor and measure key agricultural 

variables, making them essential tools in modern farming practices [34]. Figure I.10 shows a 

satellite using remote sensing to gather data from an agricultural field. 
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Figure I.10. Satellite scanning a field [35] 

b. Drones and UAVs 

Drones are increasingly utilized within the realm of agriculture as a component of a 

comprehensive sustainable farming strategy, enabling agronomists and farmers to facilitate the 

optimization of processes while acquiring crucial insights on their crops through detailed data 

analysis and topographical assessments. Specifically, the monitoring of crops is streamlined by 

the data obtained from agricultural drones, which is subsequently utilized in the development 

and execution of ongoing improvements such as adjustments in fertilizer application or drainage 

positioning. By utilizing GPS coordinates at different intervals throughout the journey, as 

opposed to labor-intensive and time-consuming data collection methods, food can be accurately 

traced from the farm to the consumer's plate. Within agriculture, drones can be integrated with 

various imaging technologies including hyperspectral, multispectral, and thermal imaging, 

among others, to provide farmers with timely and location-specific details regarding crop 

vitality, fungal outbreaks, growth impediments, and more. Unmanned Aerial Vehicles (UAVs) 

prove to be highly efficient in meticulously monitoring vast stretches of agricultural terrain, 

considering factors such as slope and elevation, for example, in order to determine the most 

optimal planting schedule. Notably, the high-resolution data obtained from drones can be 

leveraged to assess the fertility levels of crops, enabling agronomists to precisely apply 

fertilizers, minimize wastage, and develop or enhance irrigation systems [36].  
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Table I.1 presents a comparative analysis of drones and satellites in the context of 

agricultural precision, highlighting several key differences, while satellites offer extensive 

coverage and are suitable for large-scale monitoring, drones provide higher spatial resolution, 

up-to-date data, and detailed 3D modeling capabilities. This makes drones particularly valuable 

for precise, localized agricultural applications.  

Category Satellite Drone 

Cost High, per use Low, cost of the drone 

Speed Wait for satellite Deploy on command 

Temporal Resolution Out-of-date Up-to-date 

Spatial Resolution 25 cm resolution Centimeter-level accuracy 

with RTK 

Map Area Unlimited 3 km² in one flight 

3D Models and Point 

Clouds 

No Yes 

Table I.1. A comparison between satellites and drones in agriculture [37] 

c. Smartphone application 

The outbreak of Artificial Intelligence (AI) has significantly advanced precision 

agriculture, revolutionizing how farmers monitor and manage their crops. Leveraging the power 

of AI, smartphone applications have emerged as indispensable tools in modern farming 

practices. Smartphone applications play a crucial role in precision agriculture by providing 

farmers with advanced tools for monitoring and managing their crops. These applications 

leverage the various sensors embedded in smartphones, such as motion, image, environment, 

and position sensors, to support real-time farming activities efficiently and at a low cost. The 

applications can be categorized into several groups, including agriculture management 

information, resource information, calculators, news, weather updates, and m-government 

services (mobile government). Specific apps focus on tasks like crop monitoring, disease 

detection, pest management, and soil analysis, offering functionalities that range from basic 

data recording to sophisticated data analytics and machine learning capabilities. 
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This integration of smartphone technology into agriculture not only enhances the 

accuracy and efficiency of farming practices but also provides a cost-effective solution for 

small-scale and resource-constrained farmers. Figure I.11 illustrates the application of smart 

farming technology, showcasing a smartphone displaying agricultural analytics. The phone 

screen presents data on crop yield, soil erosion, moisture stress, and soil cultivability. 

Surrounding icons represent key aspects of agriculture such as location tracking, weather, water 

management, plant health, pest control, and crop growth. 

 

Figure I.11. Smartphone usage in precision agriculture [38] 

I.6. Conclusion 

This chapter explores plant diseases, their types, causes, and significant economic and 

environmental impacts. It outlines various management strategies and introduces precision 

agriculture, highlighting the role of advanced technologies in disease monitoring and 

management. Integrating these modern technologies with traditional methods enhances 

agricultural practices, ensuring crop health and contributing to increased productivity and 

sustainability. 

The following chapter will discuss Machine learning, Deep Learning concepts, and 

some lightweight models used in plant disease detection. 
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Chapter II: State of the Art - Machine Learning & Deep Learning 

II.1. Introduction 

Machine Learning (ML) and Deep Learning (DL) are two of the most transformative 

technologies of our time, and they are playing increasingly important roles in our lives. They 

are used in a variety of areas such as healthcare, business, finance, education, and more, and 

have the potential to drastically alter how we interact with the world around us. 

This chapter will provide an overview of these two fields, including their history, 

applications, and recent advancements. We will also discuss the differences between machine 

learning and deep learning, and how they are used in various industries. By the end of this 

chapter, readers should have a solid understanding of machine learning and deep learning and 

be ready to dive deeper into these exciting areas of study. 

Toward the end of this chapter, we will present a state-of-the-art review on the 

application of Machine Learning and Deep Learning in plant disease detection. 

II.2. Machine Learning 

In 1959, Arthur Samuel, a prominent computer scientist and pioneer in the field of 

machine learning, defined machine learning as the “field of study that gives computers the 

ability to learn without being explicitly programmed” [39]. This definition emphasizes the 

autonomous nature of learning in machines. 

Tom Mitchell, in his book dedicated to machine learning, characterized machine 

learning as "the study of computer algorithms that allows computer programs to automatically 

improve through experience" [40]. Learning, according to Mitchell, occurs when a computer 

program demonstrates improved performance in a defined set of tasks by learning from a 

specific set of experiences. 

Machine learning, a subset of artificial intelligence, equips computers and machines 

with the capability to assimilate information from data sets and utilize this knowledge to execute 

similar tasks without the need for explicit programming. 

The categorization of ML algorithms commonly encompasses supervised and 

unsupervised learning, along with additional variations like reinforcement learning and semi-

supervised learning [41]. 
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II.2.1. Machine Learning approaches 

II.2.1.1. Supervised learning 

Supervised learning is the learning process where the output variable is known. The 

training process requires the explicit use of the variable's output. In supervised learning, data 

has labels. To put it simply, you are aware of the outcome you are aiming for. The algorithm 

has a specific goal or result that it aims to forecast from a set of factors that influence it 

(independent variables). By utilizing these specified parameters, a function is created that links 

inputs to expected results. Figure II.1 depicts the training process, which continues until the 

model reaches the desired level of accuracy on the training data. In the current era, data is 

essential for training and improving your models’ learning capabilities. Nevertheless, the 

proportion of data changes depending on its size [42]. 

Figure II.1. Supervised learning [42] 

II.2.1.2. Unsupervised learning 

Unsupervised learning is a type of machine learning that identifies patterns and 

structures in data without any prior knowledge of the outcome. It clusters data based on 

similarities and identifies hierarchies among those clusters. It does not rely on pre-labeled 

datasets, making it useful for tasks with unknown outcome variables. It is commonly used for 

customer segmentation, identifying clusters among groups of customers [42]. 

II.2.1.3. Semi-supervised learning 

In semi-supervised learning, a small amount of labeled data is combined with a large 

amount of unlabeled data during training. Some supervision guides the model despite the 

majority of data being unlabeled, leading to improved learning accuracy [41]. 
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II.2.1.4. Self-supervised learning 

Self-supervised learning, dubbed “the dark matter of intelligence” [43] is a variant of 

unsupervised learning used to address image annotation challenges. It involves creating pretext 

tasks to replace human-labeled data with computed pseudo-labels from raw input. In this 

process, the model learns one input part from another part. The main concept is to generate 

supervisory signals by interpreting unlabeled data in an unsupervised manner during the initial 

iteration [44]. 

II.2.1.5. Reinforced learning 

Reinforcement learning involves agents learning from interactions. It includes agents, 

environments, and rewards. Agents observe, act, and sequentially receive feedback. The aim is 

to learn an optimal policy for maximizing rewards [44]. 

II.3. Gradient Boosting Tree 

GBT is a tree-based ensemble algorithm. Boosting is used to create a strong learner from 

weak learners in GBTs. Decision trees are trained sequentially with each succeeding tree 

reducing the error of the previous one. Residuals of the previous model are used to fit the next 

model in GBTs. The residual correction process is repeated for a set number of iterations 

determined by cross-validation until residuals are minimized [45]. 

II.3.1. LightGBM 

On October 17, 2016 [45], LightGBM emerged as a formidable competitor in the realm 

of tree-based gradient boosting within Microsoft’s Distributed Machine Learning Toolkit 

(DMTK) initiative. Its design prioritizes speed and distribution, leading to accelerated training 

speed and minimal memory consumption. The platform encompasses support for GPU 

utilization, parallel learning, and adept handling of substantial datasets. 

Numerous benchmarks and experiments with public datasets have demonstrated 

LightGBM's superior speed and accuracy over XGBoost. Through the implementation of 

histograms for binning continuous features, LightGBM gains various performance benefits, 

such as decreased memory usage, lower computation costs for split gain calculation, and 

reduced communication overhead in parallel learning. Furthermore, LightGBM enhances its 

performance by employing histogram subtraction on a node's sibling and parent to compute the 

node's histogram. 
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Decision tree training typically follows two primary strategies: level-wise and leaf-wise 

growth. While level-wise growth represents the conventional approach in most tree-based 

ensembles like XGBoost, LightGBM has introduced the leaf-wise growth strategy. In contrast 

to level-wise growth, leaf-wise growth often achieves faster convergence and lower loss 

rates [45]. The difference between Level-wise growth and leaf-wise growth is presented in 

Figure II.2. 

 

Figure II.2. Level-wise growth vs leaf-wise growth [45] 

II.4. Lightweight Models 

Lightweight machine learning models are created to be efficient and resource-friendly, 

making them ideal for deployment on devices with limited resources. They are crucial for 

deploying machine learning solutions on resource-constrained devices like mobile phones, edge 

devices, and embedded systems. These models balance complexity and computational 

efficiency to achieve reasonable performance while minimizing the computational burden. Here 

are some lightweight models we will discuss in detail in this chapter; MobileNet, CNNLite, 

TinyML, MobileViT. Key characteristics include: 

• Reduced Parameters: These models have fewer learnable parameters than their larger 

counterparts, reducing memory footprint and inference time. 

• Simplified Architectures: Streamlined architectural choices, such as depth-wise 

separable convolutions, group convolutions, or factorized convolutions, enable efficient 

feature extraction. 
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• Quantization and Pruning: Techniques like quantization (reducing the precision of 

weights and activations) and pruning (removing unimportant connections) further 

reduce model size. 

• Knowledge Distillation: Lightweight models can be trained using knowledge 

distillation, where a larger pre-trained model (teacher) guides the training of a smaller 

model (student), see Figure II.3 [46]. 

Figure II.3. Knowledge distillation [46] 

II.5. Neural Network 

II.5.1. Biological Neural Network 

The brain is composed of interconnected nerve cells called neurons. It has around 10 

billion neurons and 60 trillion synapse connections. Multiple neurons working together make 

the brain faster than computers. Neurons are simple but powerful, with a soma, dendrites, and 

an axon as illustrated in Figure II.4. Neurons communicate through electrochemical reactions 

and exhibit plasticity. Neural networks learn and process information globally. Strengthened 

connections lead to learning, while weakened ones diminish. Neural networks learn through 

experience, like biological neural networks. Emulating biological neural networks is attempted 

in computer systems [47]. 
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Figure II.4. Biological Neural Network [47] 

II.5.2. Artificial Neural Network 

Artificial neural networks, or ANNs, are computational models that draw inspiration 

from the complex web of neurons in a mammal’s nervous system. These networks are 

composed of layers of interconnected neurons that communicate with each other to perform 

computations. 

The inception of ANNs can be traced back to the 1950s with the introduction of the 

perceptron model, followed by the development of the back-propagation algorithm in the late 

1960s. Some scholars suggest that the origins of these techniques might be even older. 

The study of neural networks was a major focus of research until the 1980s. However, 

the dawn of the 21st century saw a resurgence in interest, spurred by the advent of rapid learning 

algorithms, the availability of Graphics Processing Units (GPUs) for computation, and the 

abundance of data. This renewed interest paved the way for the evolution of Deep Learning, 

characterized by networks with over 200 layers. 
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The structure of deep learning networks mirrors the layered organization of the human 

visual system. The visual cortex, V1, is responsible for basic image properties, with billions of 

connections. Subsequent visual areas like V2, V3, V4, and others process more complex 

concepts like shapes and faces. Deep learning draws inspiration from this hierarchical visual 

system organization [48]. Figure II.5 displays a schematic drawing of an Artificial Neural 

Network. 

Figure II.5. Artificial Neural Network [47] 

II.5.2.1. Multi-Layer Perceptron 

A multilayer perceptron is among the methods in machine learning used to solve various 

problems. It has a reasonably simple and understandable structure. MLP must have at least three 

layers, the input data, weights, and biases, and an activation function. The neurons of one layer 

transmit the output to the next layer’s neurons with the help of the adaptive weight coefficients. 

After each neuron’s output is multiplied by the weight coefficient, a non-linear activation 

function is applied to get its final value, often as a sigmoid or hyperbolic tangent. Weights are 

then re-evaluated using an error function at the end of the training process, and the weights are 

multiplied by the learning rate and the error in each epoch. The process is repeated until the 

calculated weights are the last, the number specified before training [49]. 

II.6. Deep Learning 

Deep learning, being a subset within the realm of machine learning and artificial 

intelligence, leverages deep, multilayered artificial neural networks. Numerous advancements 

in artificial intelligence can be attributed to this field. The efficacy of deep learning is most 

pronounced when tackling intricate issues, although it can also handle simpler classification 

tasks [50]. In specific domains, deep learning has empowered machines to rival or sometimes 

exceed human capabilities [45]. 
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II.6.1. Convolutional Neural Networks (CNNs) 

A convolutional neural network (CNN) is a specialized form of neural network designed 

for image analysis, with the capability to also process audio and text data. In contrast to fully 

connected (dense) layers, where each neuron connects with all neurons in the preceding layer, 

CNNs arrange neurons in three dimensions: height, width, and depth. Through the utilization 

of convolutional layers, CNNs can detect local patterns like textures and edges, resulting in 

reduced parameter size and mitigated risks of overfitting compared to dense layers [45]. 

CNNs demonstrate notable efficacy in image classification due to their spatial 

consciousness, mirroring the hierarchical organization of the visual cortex in the human brain. 

This enables them to interpret data ranging from individual pixels to intricate characteristics 

such as objects and facial features. These networks have quickly become a disruptive 

technology, setting new performance benchmarks in various domains beyond image 

processing [48]. 

II.6.1.1. Convolutional Neural Networks architecture 

The architecture of the Convolutional Neural Network consists of multiple layers 

responsible for extracting and acquiring significant features from the input data, thereby 

facilitating classification through the efficient representation of the input data. Figure II.6 

illustrates a depiction of a Convolutional Neural Network Architecture. 

 

Figure II.6. Convolutional Neural Networks architecture [44]  
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• Convolution layer 

The fundamental components of CNNs are the convolutional layers, which are 

responsible for applying learnable filters (referred to as kernels) to the input data through 

convolution operations. These filters are designed to identify particular features or structures 

within the input, such as edges, textures, or shapes. Through the utilization of multiple filters, 

the network is capable of acquiring hierarchical representations that exhibit greater levels of 

complexity, the convolution operation is illustrated in Figure II.7 [44]. 

 

Figure II.7. Convolution operation [51] 

• Pooling layer 

The pooling layer plays a crucial role in subsampling the feature maps generated by 

convolutional operations. Its main goal is to reduce the size of the feature maps while retaining 

the significant features at each pooling stage. The pooling operation involves assigning stride 

and kernel sizes, and there are various types of pooling methods available, including max, min, 

and GAP pooling. While Figure II.8 demonstrates these three techniques, other methods such 

as tree pooling, gated pooling, and average pooling can be used. 

However, it is worth noting that the pooling layer may sometimes decrease the overall 

performance of the CNN model. This is because it focuses solely on identifying specific 

features' accurate locations and may overlook other essential information [52]. 
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Figure II.8. Three types of pooling operations [52] 

• Flatten layer 

The flattening layer transforms a two-dimensional matrix into a one-dimensional vector 

before the input of the data into the fully connected dense layer [45]. 

• Fully connected layer 

Adding a Fully Connected layer (also known as a Dense layer) allows learning non-

linear combinations of high-level features from the convolutional layer. The fully connected 

layer learns non-linear functions in that space. Flattening an image into a column vector 

prepares it for a Multi-Level Perceptron. The flattened output is used in a feed-forward neural 

network with backpropagation during training. Through epochs, the model can distinguish 

between different features in images and classify them using Softmax Classification, which 

assigns probabilities to each class and selects the most likely class for a given input [53]. 

o Dropout layer 

Dropout, a common regularization method, is employed in neural networks to combat 

overfitting. Overfitting in CNNs often occurs due to a high number of trainable parameters. A 

pre-set dropout rate determines the likelihood of a neuron being excluded during training, 

addressing overfitting. This rate is referred to as the dropout rate [41].  
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II.6.1.2. Activation function 

• ReLu function 

ReLU (Rectified Linear Unit), setting negative values to zero. ReLU helps the output of 

a convolutional layer contain only positive values, aiding learning and reducing vanishing 

gradients (Figure II.9). ReLU is popular in CNNs for its simplicity, efficiency, and accuracy 

improvement on various tasks. 

The function is defined by: 

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)            II.1 

 

 

Figure II.9. ReLU activation function operation process [54] 

• Softmax Function 

 In the field of machine learning, the Softmax function is a commonly employed 

mathematical function that converts numerical values into a probability distribution. The 

function generates a vector that signifies the probability distributions of various potential 

outcomes. This method is utilized to standardize the network's output into a probability 

distribution among predicted output classes [55], [56]. 

The function is defined by: 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ ⬚𝑘
𝑗=1 𝑒

𝑧𝑗
           II.2 

Categorical Cross-Entropy Loss Function 

 The categorical cross-entropy loss function, also known as Softmax loss, is commonly 

used for multi-class classification problems. It measures the performance of a classification 

model whose output is a probability value between 0 and 1. 

The function is defined by: 

 𝐿𝑜𝑠𝑠 = − ∑ ∑ 𝑦𝑖,𝑐log (�̂�𝑖,𝑐)𝐶
𝑐=1

𝑛
𝑖=1           II.3 
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II.6.1.3. CNN Models 

Numerous CNN models have been developed by scholars in previous studies. These 

models exhibit varied architectures characterized by differences in layer dimensions, the overall 

quantity of layers, types of layers, and interconnections among layers [57]. Some of the most 

popular models include AlexNet, VGGNet, GoogleNet, ResNet, and EfficientNet 

(Figure II.10). 

 

Figure II.10. Timeline of CNN models [58] 

Lightweight and performance-efficient inference models have also been deployed 

applications in resource-constrained devices through the utilization of software libraries and 

Application Programming Interfaces (APIs). These libraries/APIs incorporate a variety of 

kernels and quantization techniques aimed at minimizing the memory and computational 

demands of conventional machine learning (ML) models [59]. 

▪ MobileNetV2 

MobileNetV2 is a convolutional neural architecture design renowned for its efficient 

performance on mobile devices. It is based on a suboptimal residual architecture, where the 

primary connections exist between the bottleneck layers. The central expansion layer channels 

serve as a form of non-linearity through the utilization of lightweight depth-wise convolutions. 

In essence, the structure of MobileNetV2 consists of an initial 32-channel fully convolutional 

layer, succeeded by 19 residual bottleneck layers [60] (Figure II.11). MobileNet is a favorable 
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option when seeking an equilibrium between a sophisticated, high-performing deep neural 

network and efficiency [61]. 

 

Figure II.11. The MobileNetV2 network architecture [62] 

II.6.1.4. Advantages and Disadvantages of Convolutional Neural Networks 

• Advantages 

➢ A notable advantage of this approach is its high level of precision. 

➢ This method is specifically crafted to handle visual data. 

➢ It can hierarchically capture spatial characteristics [63]. 

• Disadvantages 

➢ Requires large amounts of labeled data. 

➢ High computational costs. 

➢ Optimizing this model can be challenging due to the extensive parameter scale [63]. 

II.6.2. Transfer Learning 

Based on our collective expertise, individuals possess the capacity to acquire novel 

expertise with ease. Our aptitude for learning is heightened, particularly when the current task 

aligns with our prior experiences. To illustrate, mastering a new programming language for a 

computer expert or operating a different kind of vehicle for an experienced driver is notably 

uncomplicated, drawing from our established knowledge. 
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Transfer learning is a domain within Machine Learning that strives to leverage the 

acquired insights from addressing a particular issue to tackle a distinct yet interconnected 

problem [64]. 

Transfer learning occurs when knowledge or skills obtained in one specific area, 

referred to as the source, are utilized in another region, known as the target. An illustration of 

this concept is the application of a CNN which has been trained on a substantially labeled 

dataset, to a different dataset that connects with the original training data. This practice holds 

particular significance in image analysis, especially when CNNs trained on the extensive 

ImageNet database are directly employed in other image analysis tasks within a specific 

domain, or are retrained using relatively small datasets with minimal adjustments from this new 

domain [60]. Figure II.12 illustrates the difference between Traditional machine learning and 

Transfer learning. 

Figure II.12. Traditional machine learning vs Transfer learning [65] 

II.6.2.1. How Transfer Learning Works 

• Pre-trained Model: Start by utilizing a model that has undergone prior training for a 

specific task with a vast amount of data. Often trained on substantial datasets, this model 

has recognized overarching characteristics and trends applicable to various associated tasks. 

• Transfer Layers: Refer to a group of layers identified in the pre-existing model, which are 

responsible for capturing fundamental information that applies to both the new task at hand 

and the original task. These particular layers are inclined towards acquiring basic details 

and are commonly situated close to the uppermost part of the network. 
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• Fine-tuning: Involves the utilization of the dataset obtained from the recent challenge to retrain the 

selected layers, a process that is explicitly labeled as fine-tuning. The primary objective of this 

approach is to maintain the existing knowledge acquired during pre-training, thereby allowing the 

model to adjust its parameters to align more effectively with the requirements of the present 

task [66]. 

II.6.3. Transformers 

Transformers represent a category of Deep Learning models that brought about a 

paradigm shift in the field of natural language processing (NLP) by supplanting traditional 

recurrent neural network designs such as LSTMs. In contrast to LSTMs, which sequentially 

process elements within a sequence, transformers leverage an attention mechanism to enhance 

the handling of sequential data, leading to heightened efficiency and remarkable achievements 

in NLP assignments. 

The proliferation of transformer models has exerted a profound influence on machine 

translation (MT), ushering in a new era of Neural Machine Translation (NMT) driven by the 

capabilities of transformers. Noteworthy are the multilingual transformer models that have 

surfaced to tackle the complexities inherent in language processing tasks, thereby influencing 

the evolution of expansive language models (LLMs) and attention mechanisms across a 

spectrum of applications [67]. 

Expanding beyond the realm of NLP, transformers have made inroads into the domain 

of image processing through innovative architectures like the Vision Transformer (ViT). The 

ViT framework dissects images into smaller patches, incorporates positional embeddings, and 

applies a conventional transformer encoder to process the information. While originally 

conceived for NLP purposes, transformers have demonstrated significant performance gains 

over conventional convolutional neural networks (CNNs) particularly in scenarios involving 

vast datasets, underscoring their adaptability across diverse domains beyond conventional 

language-centric activities [68]. 

The foundation of the transformer architecture resides in the concept of self-attention, 

which serves as the fundamental building block of transformer models. Self-attention enables 

the model to evaluate the importance of various elements in the input sequence about each 

other, leading to the creation of contextualized representations that encompass dependencies 

throughout the entire sequence. Through this mechanism, transformers are capable of 

concurrently processing input data, thus enhancing their scalability and efficiency. 
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The architecture of the transformer comprises a framework with an encoder-decoder 

structure, where each element consists of numerous layers of self-attention and feed-forward 

neural networks (Figure II.13). 

During the processing of the input sequence, the encoder generates intricate contextual 

embeddings, while the decoder utilizes these embeddings to produce the output sequence 

incrementally. 

Vision Transformers belong to a category of models that adapt transformer principles, 

initially designed for NLP tasks, to the realm of computer vision. The key components include: 

• Patch embedding: Vision Transformers initiate by partitioning an input image into 

patches of fixed sizes, which are subsequently flattened and linearly transformed into 

embeddings, similar to tokens in NLP. This procedure converts the 2D spatial data of 

the image into a 1D token sequence suitable for transformer processing. 

• Positional encoding: To preserve the positional details lost during patch embedding, 

Vision Transformers integrate positional encodings into the patch embeddings, ensuring 

the model can consider the position of each patch within the image. 

• Transformer encoder: Comprising alternating layers of multi-head self-attention and 

feed-forward neural networks, the transformer encoder enables the model to evaluate 

the significance of different patches about each other, capturing both local and global 

connections. 

• Multi-head self-attention: Through the utilization of multi-head self-attention, the 

transformer encoder enables the model to focus on diverse areas of the image 

concurrently, facilitating the capture of a wide range of features. 

• Feed-forward neural networks: Positioned between self-attention layers, these 

networks apply additional transformations to the sequence of patch embeddings. 

• Layer normalization: Within the encoder, normalization techniques are implemented 

to enhance learning stability and convergence. 

• Classification head: Positioned at the apex of the transformer, a classification head 

(often a basic linear layer) is utilized to make predictions based on the encoded image 

representations. ViTs use components like self-attention to process images similar to 

how transformers handle sequential data. The scaled dot-product attention is crucial in 

the multi-head self-attention of transformers and ViTs. 

Here is how it works: 
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o It compares each query with keys using dot product to determine the focus on values. 

o Scores are scaled down to prevent small gradients in Softmax due to large key 

dimensions. 

o Softmax function converts scaled scores into a probability distribution, reflecting the 

importance of each value based on query-key similarity. 

The weighted sum of values using Softmax weights produces the output sequence with attention 

applied, incorporating information from other parts of the sequence [69]. 

Figure II.13. Vision Transformer architecture [68] 

II.7. Lightweight Models in Plant Disease Detection 

This work focuses on lightweight models due to their significant advantages, including 

reduced computational requirements and faster processing times. These features make them 

particularly suitable for deployment on resource-constrained devices such as mobile phones 

and embedded systems. Table II.1 summarizes several lightweight models used in plant disease 

detection, highlighting their architectures, datasets, and achieved accuracies.  
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Author 
Yea

r 
Algorithms Dataset 

Main 

findings 

Memory 

Requirement 

Anita Shrotriya, et al 

[70] 
2023 

lightweight Deep 

Convolutional Neural 

network model 

Plant Village 97.73% / 

Guan, Fu et al [71] 2023 Dise-Efficient model Plant Village 99.80% / 

Feng, Song et al [72] 2023 
isotropic CNN model, 

FoldNet 
Plant Village 99.84% / 

Wang, Zhang et al [73] 2023 

Ultra-lightweight 

efficient network, 

ULEN 

Plantvillage, 

Cassava, 

98.13%, 

54.97% 
/ 

Sanida, Sanida et al [74] 2023 
Lightweight CNN 

model 

PlantVillage 

(Tomato) 
99.04% / 

Fang, Zhen et al [75] 2023 

Lightweight 

Multiscale CNN 

Model 

LWDCD2020 

(wheat) 
98.7% / 

Verma, Kumar et al [76] 2023 
Unified lightweight 

CNN model 

Corn, Rice, 

and Wheat 

The model 

achieved 99.74%, 

82.67%, and 

97.5% accuracy 

for Corn, Rice, 

and Wheat, 

respectively. 

/ 

Huang, Wu et al [77] 2023 

YOLOR-Light-v1, 

YOLOR-Light-v2, 

Mobile-YOLOR-v1, 

and Mobile-YOLOR-

v2 models 

PlantDoc 

Achieved 

60.4% 

mAP@ .5 in 

the PlantDoc 

/ 

Liu, Song et al [78] 2023 

NanoSegmenter model 

based on the 

Transformer structure 

Collected 

dataset 
98% / 

Thakur, Khanna et al 

[79] 
2022 lightweight PlantXViT 

model combines CNN 

Five datasets 

Average accuracy 

of 93.55%, 

92.59%, and 

98.33% on Apple, 

Maize, and Rice 

/ 
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with Vision 

Transformers 

datasets, 

respectively. 

S. Wagle, et al. [80] 2021 compact convolutional 

neural networks (N1, 

N2, N3) 

Plant Village N1: 99.45% 

N2: 99.65% 

N3: 99.55% 

N1, N3: 14.8 

MB 

N2: 29.7 MB 

Yang Liu, et al. [81]. 2021 CNN based on 

SqueezeNet 

Plant Village 98.46% 0.62 MB 

Muhammad Hammad 

Saleem, et al. [82] 

2020 SSD, RCNN, and 

RFCN 

Plant Village 73.07% / 

Table II.1. Lightweight models in plant disease detection 

II.8. Conclusion 

This chapter has explored some of the most cutting-edge and dependable methodologies 

in machine learning (ML) and deep learning (DL). Specifically, we focused on the most 

commonly used lightweight models for plant disease detection within these fields. 

The subsequent chapter will discuss the hyperparameters and the evaluation metrics. 
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Chapter III: Fine-tuning and Evaluation Metrics 

III.1. Introduction 

In the previous chapters, we reviewed the state-of-the-art advancements in plant disease 

detection using deep learning. 

This chapter delves into fine-tuning deep learning models for detecting plant diseases, 

emphasizing key hyperparameters for CNNs, Transformers, and LightGBM. It also discusses 

various evaluation metrics like confusion matrices, accuracy, precision, recall, and F1 score to 

gauge the performance of classification models with imbalanced data. 

III.2. Hyperparameters 

Hyperparameters are parameters controlling model structure and learning process. They 

are top-level parameters. Examples include train-test split ratio, learning rate, activation 

function choice, cost function, number of layers and units, dropout rate, iterations, kernel sizes, 

pooling size, and batch size. Hyperparameters are classified into different categories. 

III.2.1. CNN hyperparameters 

a) Hyperparameters related to network structure 

1. Number of hidden layers 

Determines the profundity of the neural network. Increased layers can capture more 

intricate patterns but also elevate the likelihood of overfitting and computational cost. 

2. Number of activation units (Neurons) in each layer 

Specifies the width of the network. Augmented neurons can enhance the network's 

capability to glean insights from data, yet they also contribute to the computational load. 

3. Choice of activation function 

Typical options comprise Sigmoid and ReLU. The choice of activation function impacts 

the network's learning capability and its problem-solving aptitude. For instance, ReLU is 

extensively utilized due to its effectiveness in mitigating the vanishing gradient problem. 

4. Kernel or filter sizes in convolutional layers 
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The size of the filters (e.g., 3x3, 5x5) employed in the convolutional layers. This factor 

influences the receptive field of neurons and the specificity of feature detection. 

5. Pooling size 

The size of the pooling window (e.g., 2x2) utilized in pooling layers. Pooling assists in 

reducing the spatial dimensions of the input, thereby decreasing the computational burden and 

helping to improve the translation invariance of the representation. 

6. Dropout rate (Dropout probability) 

A regularization method to forestall overfitting by randomly setting a portion of input 

units to 0 during each update in the training phase. 

b) Hyperparameters related to the training process 

1. Train-Test split ratio 

Determines the ratio of the dataset allocated for training versus testing. A prevalent split 

is 80% for training and 20% for testing, although this distribution can vary based on the dataset 

and the task. In our case, we use 80% for training, 10% for testing, and 10% for validation. 

2. Learning rate 

Regulates the step size in the gradient descent optimization process. A higher learning 

rate can expedite training but may lead to suboptimal convergence or divergence. Conversely, 

a lower learning rate ensures more consistent convergence but can make the training process 

slow. 

3. Choice of optimization algorithm 

Diverse techniques such as Stochastic Gradient Descent (SGD), Adam, and RMSprop 

can be employed. Each technique adjusts the learning rate and gradient handling uniquely, 

impacting the speed and quality of convergence. 

4. Choice of cost or loss function 

Determines how the performance of the network is measured. Common loss functions 

include Mean Squared Error (MSE) for regression tasks and Cross-Entropy Loss for 

classification tasks. 
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5. Number of iterations (Epochs) 

The number of times the entire dataset is processed by the network during training. More 

epochs can enhance learning but also heighten the risk of overfitting. 

6. Batch size 

The number of training instances utilized in a single iteration. A larger batch size can 

offer more consistent gradient approximations but necessitates more memory, whereas a 

smaller batch size can introduce more noise in training while demanding less memory and often 

yield better generalization. 

Batch Size is among the important hyperparameters in Machine Learning. It specifies 

the samples processed before updating model parameters. It is essential for maximizing model 

performance  [83], [84]. 

III.2.2. Transformers hyperparameters 

a) Hyperparameters related to network structure 

1. Number of encoder/decoder layers: Defines the depth of the transformer network. More 

layers capture complex patterns but increase computational cost and overfitting risk. 

2. Hidden size (d_model): Specifies the dimensionality of input and output vectors. Larger 

sizes improve capacity but add computational load. 

3. Number of attention heads: Number of parallel attention mechanisms per layer. More 

heads improve the model’s ability to focus on different input parts. 

4. Feed-forward network size: The number of units in the inner feed-forward network is 

typically larger than the hidden size to ensure learning capacity. 

5. Activation function: Common choices include ReLU and GELU, affecting learning ability 

and performance. 

6. Dropout rate: Probability of dropping units during training to prevent overfitting, applied 

to attention weights and feed-forward outputs. 

b) Hyperparameters related to the training process 

1. Learning rate: Controls the optimization step size. Higher rates speed up training but risk 

overshooting; lower rates stabilize but slow down training. 

2. Batch size: Number of samples per iteration. Larger sizes stabilize gradients but need more 

memory; smaller sizes introduce noise that aids generalization. 
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3. Warm-up steps: Initial steps with linearly increasing learning rate to stabilize early 

training. 

4. Optimizer choice: Algorithms like Adam, AdamW, or RMSprop, each impacting training 

speed and convergence quality differently. 

5. Weight decay: The regularization technique penalizes large weights to prevent overfitting. 

6. Gradient clipping: Limits gradient magnitude to prevent exploding gradients. 

7. Label smoothing: Prevents overconfidence by slightly altering target labels, and improving 

generalization. 

8. Sequence length (Max position embeddings): Maximum input sequence length the model 

can handle, balancing context handling and computational complexity. 

9. Number of epochs: Total passes through the training dataset. More epochs improve 

learning but increase overfitting risk. 

10. Cost or loss function: Measures performance and guides optimization. Choices include 

Cross-Entropy Loss for classification and Mean Squared Error (MSE) for regression. 

III.2.3. LightGBM hyperparameters 

a) Core parameters 

1. Objective: Defines the type of learning task, in our case, multiclass classification. 

2. Boosting type: The boosting algorithm to use is the Gradient Boosting Decision Tree 

(gbdt). 

3. Num class: Specifies the number of classes in the multiclass classification problem. 

4. Metric: The metric used to evaluate the model's performance, set to multi_logloss. 

b) Learning control parameters 

1. Learning rate: The learning rate controls the step size during gradient descent. 

2. Num leaves: The maximum number of leaves in one tree, which controls the complexity 

of the model. 

3. Verbose: Controls the verbosity of the training process. A value of -1 suppresses most 

of the output [85]. 

III.3. Evaluation metrics 

Assessment measures are employed to evaluate the efficacy of the model. An essential 

aspect within the realm of deep learning pertains to the methodology utilized for model 
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evaluation. The assessment of the model's predictive accuracy stands out as a fundamental 

factor to consider in the model's developmental stage. Inadequate model assessment and 

improper employment of assessment measures can lead to erroneous predictions, particularly 

in scenarios involving imbalanced datasets. Therefore, it is advisable to utilize a diverse range 

of evaluation metrics, as outlined below [48]. 

III.3.1. Confusion matrix 

In classification, data points are labeled and compared to predicted classes. Results are 

categorized into true positive, true negative, false positive, and false negative. These values are 

used for evaluation metrics in classification tasks and are usually shown in a confusion matrix 

table [48] (Table III.1). 
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Table III.1. Confusion matrix. 

III.3.2. Accuracy 

Accuracy is an evaluation metric for classification models. It is defined as the number 

of correct predictions divided by the total number of predictions. Accuracy is not the ideal 

metric in situations where you have imbalanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
              (III.1) 

III.3.3. Precision 

Precision is characterized as the quotient of true positives to the sum of true positives 

and false positives. It indicates the frequency with which the model makes accurate 
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predictions when, they are positive. Precision is a valuable metric in situations with high 

repercussions of false positives. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (III.2) 

III.3.4. Recall 

Recall is a valuable metric to employ when the repercussions of false negatives are 

significant. It is characterized as the quotient of true positives divided by the sum of true 

positives and false negatives. 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (III.3) 

III.3.5. F1 score 

The F1 measure or F1 score combines precision and recall. It is used to evaluate 

multiclass classifiers, especially with uneven class distribution. F1 score ranges from 0 to 1. A 

good F1 measure indicates low false negatives and false positives. The formula for F1 measure 

is: 

𝐹1_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ∗  (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) [48]            (III.4) 

III.4. Conclusion 

 This chapter explained the optimization of deep learning models for plant disease 

detection. It emphasizes critical hyperparameters tailored for CNNs, Transformers, and 

LightGBM, alongside key evaluation metrics like confusion matrices, accuracy, precision, 

recall, and F1 score. These metrics are pivotal for evaluating classification model performance, 

especially in scenarios involving imbalanced data.  

 The following chapter will delve into a case study, presenting our proposed solution and 

outlining the design of our application. 
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Chapter IV: Design, Implementation & Results 

IV.1. Introduction 

In the previous chapters, we explained the different hyperparameters of CNNs, 

Transformers, and LightGBM, as well as key evaluation metrics for said architectures. 

This chapter focuses on the practical implementation of a plant disease detection system, 

utilizing three deep learning models: MobileNetV2, Vision Transformer (ViT), and 

AgriNetBoost. We detail the integration of these models into a web-based application and 

present the results through validation examples. A comparative analysis is conducted to 

determine the most effective model for plant disease classification. 

IV.2. Working environment 

The computational hardware employed while building the model comprises a personal 

computer with a Linux (Ubuntu) operating system, equipped with an i9 12900KF central 

processing unit, an Nvidia RTX 3090 graphics processing unit, and 64 Go of RAM DDR4. The 

primary programming language utilized is Python within the Anaconda environment, 

leveraging the Jupyter Notebook compiler and supplemented by using Google Colab for certain 

tasks. Moreover, for the development and validation stages of the application, a laptop computer 

running Windows 10 64-bit operating system, powered by an Intel (R) Core (TM) i5-9300H 

CPU at 2.40 GHz and 24GB of RAM, is utilized. Python is used as the programming language 

in conjunction with the Streamlit framework. 

IV.3. Presentation of the languages used 

The model under development pertains to a computer vision task (image classification). 

The primary tools utilized in the implementation process include Python as the main 

programming language and Streamlit for app deployment. This aligns with the prevalent 

practice of leveraging Python and key libraries such as TensorFlow, Keras, Scikit-learn, 

NumPy, PyTorch, LightGBM, Transformers, ONNX, and Streamlit in the development of deep 

learning models. 
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IV.3.1. Introducing the Python language 

Python is an object-oriented, high-level programming language that 

provides developers with a versatile tool to efficiently and swiftly carry out tasks 

while promoting code readability and maintainability. It offers a wide range of 

libraries and frameworks that allow users to seamlessly integrate various systems, enhancing 

productivity, and facilitating the development of robust and sophisticated software solutions. 

(python website). 

IV.3.2. Introducing the imported libraries 

• TensorFlow: Developed by members of Google Brain's Machine 

Intelligence team, is a versatile open-source platform designed for 

machine learning and neural network research. Beyond its original 

purpose, TensorFlow has become widely adaptable, finding 

applications across various domains. Within its ecosystem, TensorFlow offers a plethora of 

tools, libraries, and community resources, plus stable Python and C++ APIs and backward-

compatible APIs for multiple programming languages. These resources empower 

researchers to push the boundaries of machine learning and enable developers to easily build 

and deploy machine learning-driven applications that can seamlessly adapt to any 

computing environment [86]. 

• Keras: keras is a Simple, Flexible, Powerful multi-backend 

deep learning API, written in Python and capable of running 

on top of either JAX, TensorFlow, or PyTorch. The benefits 

include achieving optimal performance for models, maximizing ecosystem compatibility, 

and increasing the distribution of open-source models. Furthermore, Keras supports data 

pipelines from different sources, offering flexibility in training models [87]. 

• LightGBM: Is a framework for gradient boosting that 

employs algorithms based on trees. It has been engineered to 

exhibit qualities of being both distributed and efficient, boasting advantages such as 

accelerated training speed and enhanced efficiency, reduced memory utilization, improved 

accuracy, and the ability to support parallel, distributed, as well as GPU learning. 

Furthermore, it demonstrates capability in managing data of large scales [88].  
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• Transformers:  the library transformers by Hugging Face and 

the community is used for cutting-edge Machine Learning in 

PyTorch, TensorFlow, and JAX. It offers numerous pre-trained models for tasks in text, 

vision, and audio across various modalities [89]. 

• Pytorch: Is a deep learning framework supported by the 

PyTorch Foundation, operating under The Linux Foundation, 

which fosters collaboration within the deep learning 

community, it engages in various activities to improve user experience and promote AI and 

deep learning tools within an open-source ecosystem. The Foundation's mission is to make 

advanced tools accessible to everyone [90]. 

PyTorch provides high-level features such as tensor computation with GPU 

acceleration and neural networks with an autograd system (short for automatic 

differentiation), simplifying the development of deep learning models [91]. 

• ONNX: Is an open ecosystem for AI developers to select 

tools as projects progress, offering a format for AI 

models and a computation graph model. It includes 

built-in operators and data type definitions. ONNX is well-supported in various 

frameworks, tools, and hardware, promoting interoperability and accelerating AI 

innovation. The community is encouraged to contribute and advance ONNX [92]. 

ONNX Runtime efficiently infers models from different frameworks (PyTorch, 

Hugging Face, TensorFlow) on various software and hardware. It utilizes hardware 

accelerators, supports multiple language APIs, and works on different devices and 

servers [93]. 

• Streamlit: Being a freely available and collaborative open-source 

Python framework, it serves as a valuable tool tailored specifically 

for individuals within the data science and artificial 

intelligence/machine learning engineering domains, offering them the capacity to create and 

distribute interactive data-driven applications that are characterized by their dynamic 

nature, all achieved through the utilization of a minimal amount of programming code. This 

framework empowers users to swiftly construct and launch robust data applications within 

a remarkably short span of time, exemplifying efficiency and effectiveness in the realm of 

data visualization and manipulation [94].  
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IV.4. Methodology 

IV.4.1. System architecture 

The architecture of the plant disease detection system (Figure IV.1) comprises a number 

of interconnected steps. Collecting data is initiated by utilizing the “PlantVillage” dataset, 

followed by thorough data preprocessing. A trio of models were created: pre-trained CNN 

(MobileNetV2), a Vision Transformer model (Google ViT) that was transformed into ONNX, 

and a hybrid model AgriNetBoost (LightGBM + MobileNetV2), founded on decision trees. The 

evaluation of the models was conducted based on specified performance metrics. The system 

has been incorporated with a Streamlit web application, facilitating instantaneous disease 

prognosis from downloaded images. 

 

Figure IV.1. Detailed Workflow Diagram 

IV.4.2. Used dataset 

The dataset encompasses more than 50,000 photographs depicting both healthy and 

infected leaves across 14 different crop varieties, which include but are not limited to Apple, 

Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell Pepper, Potato, Raspberry, Soybean, 

Squash, Strawberry, and Tomato. These images were procured at various research facilities tied 

to Land Grant Universities in the United States, such as Penn State, Florida State, and Cornell. 

Leaf samples were gathered by technicians from agricultural trials showcasing crops afflicted 

with specific ailments, utilizing a conventional digital camera (Sony DSC-Rx100/13 20.2 
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megapixels) to capture multiple images under diverse lighting scenarios. In instances of larger 

leaves, multiple segments were photographed. The dataset encompasses visuals of 17 fungal 

infections, 4 bacterial infections, 2 mold (oomycete) infections, 2 viral infections, and 1 

infection induced by a mite, in addition to illustrations of healthy leaves pertaining to 12 crop 

varieties. The images underwent editing procedures involving background cropping and leaf 

orientation adjustments to ensure the apex pointed upwards. This dataset facilitates the 

advancement of machine learning algorithms for disease identification, with the objective of 

harnessing computer vision technology to combat crop yield diminishment resulting from 

plants diseases [95]. Figure IV.2 depicts a collection of leaf samples from various plants, each 

labeled with the respective disease or condition affecting them. 

 

Figure IV.2. Visual dataset for identification and classification of plant diseases 

IV.4.2.1. Dataset sample distribution 

In this study, a subset dataset comprising 21,458 images representing three distinct plant 

species, namely bell pepper, potato, and tomato, was utilized. The analysis conducted involved 

a multi-class pathology examination of the infections affecting these three plant varieties. 

Specifically, pepper exhibited two distinct classes, potato demonstrated three classes, and 

tomato showcased ten classes. Details regarding the distribution of samples per class are 

provided in the table below.  
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Crops Disease Type Number of Images 

Pepper Bacterial spot 997 

Healthy 1478 

Potato Early blight 1000 

Late blight 1000 

Healthy 152 

Tomato Bacterial spot 2127 

Early blight 1000 

Late blight 1909 

Leaf Mold 952 

Septoria leaf spot 1771 

Spider mites Two-spotted spider mite 1676 

Target Spot 1404 

Yellow Leaf Curl Virus 3208 

Mosaic virus 373 

Healthy 1591 

Total 15 21458 

Table IV.1. Distribution of PlantVillage dataset samples 

IV.4.2.2. Dataset advantages 

• Diversity of Disease Representation: The dataset contains various plant diseases on 

tomato and pepper leaves. It facilitates thorough training of machine learning models to 

identify different types of diseases. 

• Facilitation of Data Augmentation. 

• Real-world Application. 

• Educational Resource. 

• Open source. 
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IV.4.2.3. Dataset disadvantages 

• Class Imbalance: The dataset exhibits notable class imbalance due to certain diseases 

being underrepresented. Data augmentation can help address this issue but may not 

completely offset the lack of diverse, real-world examples for minority classes. 

• Potential for Overfitting: Due to a scarcity of images, particularly for minority classes, 

there is a potential for overfitting, causing the model to focus on specific features of the 

training images rather than general patterns. 

• Scalability Issues: In large-scale applications, expanding the dataset may be necessary. 

Acquiring and managing a bigger dataset can be resource and time consuming. This 

scalability problem can impede the dataset's widespread use in various regions and 

conditions. 

• Variability in Image Quality: Variations in image quality, lighting conditions, and 

angles impact dataset consistency. Challenges in model training arise due to this 

variability, necessitating extra preprocessing for image normalization. 

IV.4.3. Dataset preparation 

IV.4.3.1. Dataset partitioning 

A critical step in the process of data preparation involves partitioning the database into 

distinct sets designated for training, validation, and testing objectives. The distribution of data 

among these sets is enabled by the Scikit-learn package. In particular, 80% of the data is 

assigned to training, while 10% is allocated for validation and another 10% for testing, as 

illustrated in Table 05.  
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Crops Disease Type N°= of Images Training Validation test 

Pepper 

Bacterial spot 997 997 797 100 

Healthy 1478 1478 1182 147 

Potato 

Early blight 1000 1000 800 100 

Late blight 1000 1000 800 100 

Healthy 152 152 121 15 

Tomato 

Bacterial spot 2127 2127 1701 212 

Early blight 1000 1000 800 100 

Late blight 1909 1909 1527 190 

Leaf Mold 952 952 761 95 

Septoria leaf spot 1771 1771 1416 177 

Spider mites Two-

spotted spider mite 
1676 1676 1341 167 

Target Spot 1404 1404 1123 140 

Yellow Leaf Curl 

Virus 
3208 3208 2566 321 

Mosaic virus 373 373 298 37 

Healthy 1591 1591 1272 159 

Total 15 21458 21458 16505  

Table IV.2. Distribution of PlantVillage dataset samples  
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IV.4.3.2. Data preprocessing 

The preprocessing conducted in this research encompasses the actions of resizing and 

normalizing the data: 

• Resizing was carried out to address the variability in image sizes within the dataset. The 

images were resized to a standardized dimension of 224x224 for MobileNetV2 and 

AgriNetBoost, and to 256x256, which is the original size of the dataset images. 

• In terms of normalization, the pixel values underwent normalization by being divided 

by 255, which ensured that the pixel intensities fell within the range of 0 to 1. 

These preprocessing procedures played a vital role in ensuring the compatibility of the 

images with the models utilized in the study. 

IV.4.3.2. Data augmentation 

Imbalance within the dataset is evident, characterized by an uneven representation of 

classes where some have more instances than others, it is essential to accurately identify 

minority classes. to ensure that all classes are taken into account equally, and not just the 

majority. This requires an increase in the volume of data for each class. A common method 

known as “data augmentation” is widely adopted to improve the training dataset by 

incorporating modified or synthetic data derived from the existing dataset. The following 

section develops this technique. 

▪ Random crop: Throughout the training process, this particular process will engage in 

a random selection of a specific location for cropping images to a desired target size. 

Moreover, it is important to note that all images within a given batch will undergo 

cropping at an identical location [96]. 

▪ Random flip: This stratum will horizontally or vertically flip the images depending on 

the mode attribute. In the period of inference, the resulting output will remain 

indistinguishable from the initial input [96]. 

▪ Random translation: During the training process, this particular layer is responsible 

for introducing random translations to each image. It accomplishes this task by utilizing 

various factors such as height, width, fill mode, interpolation, fill value, and data format 

to fill any empty space within the image [96]. 
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▪ Random rotation: will implement arbitrary rotations to individual images, thereby 

occupying vacant areas. By default, arbitrary rotations are exclusively employed 

throughout the training phase. During the inference period, it remains inactive [96]. 

▪ Random zoom: randomly zooming images during training, this component adjusts 

images by zooming in or out independently on each axis and filling any empty space 

according to the specified fill mode. Its behavior is controlled by several arguments   

height_factor,  width_factor fill_mode etc [96]. 

▪ Random contract: will arbitrarily modify the contrast of an image or multiple images 

through a stochastic factor. Contrast is altered autonomously for every channel of each 

image while undergoing training. In the case of each channel, it calculates the average 

of the image pixels within the channel and subsequently modifies each element of every 

pixel. 

▪ Random brightness: will arbitrarily augment/diminish the luminosity of the input RGB 

images. During the inference stage, the resulting outcome will mirror the initial input. 

 

Figure IV.3. Visualization of data augmentation  
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IV.4.4. Used models 

Our system for detecting plant diseases has been created through the design of multiple 

pre-trained models and a hybrid model, which incorporates a degree of fine-tuning tailored to 

the specific study framework. 

1) MobileNetV2 

MobileNetV2 is founded on the principles of depth-wise separable convolutions, which 

were first introduced in its predecessor MobileNetV1, accompanied by additional 

enhancements. The fundamental elements of MobileNetV2 comprise: 

• Depthwise Separable Convolutions: This procedure segregates the spatial and 

channel-wise convolutions, leading to a notable reduction in computational complexity 

and parameter count in contrast to standard convolutions. 

• Inverted Residuals with Linear Bottlenecks: MobileNetV2 presents inverted residual 

blocks, featuring a slim intermediate layer (bottleneck layer) succeeded by an expansion 

layer. This configuration aids in upholding model efficiency and effectiveness. 

• ReLU6 Activations: To avert the issue of vanishing gradients, MobileNetV2 adopts 

ReLU6 activations as opposed to conventional ReLU. 

The model used in this study is a pre-trained MobileNetV2, fine-tuned using the 

PlantVillage dataset. We used MobileNetV2 as the base model with pre-trained weights from 

ImageNet, keeping its layers non-trainable. On top of this, we added a 

GlobalAveragePooling2D layer, followed by dropout layers, a dense layer with ReLU 

activation, another dropout layer to mitigate overfitting, and a final dense layer with Softmax 

activation to classify the plant disease categories. The model architecture is illustrated in 

Figure IV.4. 

 

Figure IV.4. MobileNetV2 model visualization 
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Implementation 

The implementation begins with data preprocessing and augmentation to ensure the 

model's ability to generalize effectively on unseen data. The dataset is partitioned into training, 

validation, and testing subsets. Diverse data augmentation strategies are employed on the 

training subset, encompassing random flips, rotations, translations, zooms, as well as 

brightness/contrast modifications. 

Subsequently, the pre-trained MobileNetV2 model, excluding its top layers, is loaded 

and fine-tuned. The top layers are exchanged with a global average pooling layer, followed by 

two dense layers. 

The model is trained to utilize the Adam optimizer and sparse categorical cross-entropy 

loss throughout 10 epochs with early stopping to prevent overfitting. The training and validation 

accuracies are observed to detect signs of overfitting. Table IV.3 summarizes the model. 

Layer (type) Output Shape Parameters 

mobilenetv2_1.00_224 

(Functional) 
(None, 7, 7, 1280) 2257984 

global_average_pooling2d_1 

(GlobalAveragePooling2D 
(None, 1280) 0 

dropout (Dropout) (None, 1280) 0 

flatten (Flatten) (None, 1280) 0 

dense (Dense) (None, 128) 163968 

dropout_1 (Dropout) (None, 128) 0 

dense_1 (Dense)   (None, 15) 1935 

Total params: 2423887 (9.25 MB) 

Trainable params: 165903 (648.06 KB) 

Non-trainable params: 2257984 (8.61 MB) 

Table IV.3. MobileNetV2 model summary 
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2) Google ViT 

The Vision Transformer (ViT) introduces a novel approach to image classification by 

leveraging the principles of the Transformer architecture, traditionally used for natural language 

processing tasks. The key elements of ViT comprise: 

• Patch Embedding: The input image is divided into fixed-size patches, and each patch 

is linearly embedded into a feature vector. This allows the model to treat patches as 

tokens, similar to words in NLP tasks. 

• Transformer Encoder: The sequence of patch embeddings is processed by a standard 

Transformer encoder, which consists of multi-head self-attention layers and feed-

forward neural networks. This architecture allows the model to capture long-range 

dependencies and complex relationships between patches. 

• Class Token and Positional Encoding: A special class token is prepended to the 

sequence of patch embeddings, and positional encodings are added to retain spatial 

information. The output corresponding to the class token is used for classification. 

• Layer Normalization and GELU Activations: ViT employs layer normalization to 

stabilize the training process and GELU (Gaussian Error Linear Unit) activations to 

enhance model performance. 

The model used in this study is a pre-trained Vision Transformer (ViT), fine-tuned using 

the PlantVillage dataset. The Vision Transformer model's inherent classification head is used 

for the task, with data preprocessing and augmentation applied to enhance model generalization. 

The model is trained using the Adam optimizer with a sparse categorical cross-entropy loss 

over 10 epochs. Training and validation accuracies are monitored to detect overfitting. 

Implementation 

The implementation begins with data preprocessing and augmentation to ensure the 

model's ability to generalize effectively on unseen data. The dataset is partitioned into training, 

validation, and testing subsets. Diverse data augmentation strategies are employed on the 

training subset, encompassing random flips, rotations, translations, zooms, as well as 

brightness/contrast modifications.  
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Subsequently, the pre-trained Vision Transformer (ViT) model, google/vit-base-

patch16-224-in21k, is loaded and fine-tuned. The model is customized for the specific 

classification task by setting the number of output labels to match the classes in the PlantVillage 

dataset. 

The model is trained using the Adam optimizer and sparse categorical cross-entropy 

loss over several epochs. Training and validation accuracies are monitored to detect signs of 

overfitting. Table IV.5 presents the model summary, including the output shape and parameter 

count for each layer: 

Layer (type) Output Shape Parameters 

ViTModel 
(Batch, Patch Embeddings, 

768) 
- 

ViTPatchEmbeddings 

(Conv2d) 
(Batch, 14, 14, 768) 147 456 

ViTEncoder (Layer x 12) (Batch, 14, 14, 768) - 

ViTSdpaAttention (Linear) (Batch, 14, 14, 768) - 

GELUActivation (Batch, 14, 14, 768) - 

Linear (Feed-Forward) (Batch, 14, 14, 768) - 

LayerNorm (Batch, 14, 14, 768) - 

Classifier (Linear) (Batch, 15) 11 535  

Total params: 85,810,191 (327.34 MB) 

Trainable params: 85,810,191 (327.34 MB) 

Non-trainable params: 0  

Table IV.4. Google ViT Model Summary 
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Figure IV.5. Google ViT Model visualization 

ONNX 

Using ONNX for model conversion and deployment offers significant advantages in 

terms of interoperability, optimization, and ease of deployment across different platforms. This 

process ensures that the model can be efficiently run in diverse environments, leveraging the 

optimizations provided by ONNX Runtime. 

3) AgriNetBoost 

AgriNetBoost combines the strengths of convolutional neural networks (CNNs) with 

the gradient boosting framework to enhance plant disease detection. The hybrid model 

integrates MobileNetV2 for feature extraction and LightGBM for classification, aiming to 

leverage the deep learning model's feature extraction capabilities and the gradient boosting 

model's strong classification performance. Components of AgriNetBoost: 

1) MobileNetV2: Used for feature extraction. 

o Depthwise separable convolutions: Reduce computational complexity and 

parameters. 

o Inverted residuals with linear bottlenecks: Enhance efficiency and 

effectiveness. 

o ReLU6 activations: Mitigate vanishing gradient issues. 

2) LightGBM: Used for classification. 

o Gradient bosting: Provides strong performance on tabular data. 

o Efficient training: LightGBM is optimized for speed and memory usage.  
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✓ Implementation 

❖ Data preprocessing and augmentation 

The dataset is loaded and augmented to improve the model's generalization ability. 

Various transformations, including rotations, translations, zooms, and flips, are applied to the 

images. 

❖ Feature extraction using MobileNetV2 

MobileNetV2, pre-trained on ImageNet, is utilized to extract features from the images. 

The features are then fed into the LightGBM model for classification. 

❖ Model training 

The extracted features are split into training, validation, and testing sets. LightGBM is 

trained with a multiclass objective and evaluated using multi-log loss. The training process 

includes callbacks to record evaluation metrics (Figure IV.6). 

✓ Model summary 

❖ MobileNetV2 architecture for feature extraction 

• Input Shape: (224, 224, 3). 

• Total Parameters: 2,257,984. 

• Trainable Parameters: 0 (since MobileNetV2 is used only for feature extraction). 

• Non-trainable Parameters: 2,257,984. 

❖ LightGBM model for classification 

• Objective: Multiclass classification. 

• Number of Classes: 15 (corresponding to our dataset categories). 

• Boosting Type: Gradient Boosting Decision Trees (GBDT). 

• Number of Leaves: 31. 

• Learning Rate: 0.05. 

• Number of Boost Rounds: 100. 
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Figure IV.6. AgriNetBoost model visualization 

IV.5. Results and Discussion 

The different results obtained during the build of our system generated the results 

described below: 

IV.5.1. MobileNetV2 Results 

a) Training and Validation Performance 

• Accuracy: The model achieved a final training accuracy of 87.95% and a validation 

accuracy of 94.14%, indicating good generalization to unseen data. 

• Loss: The training loss decreased steadily, and the validation loss was consistently 

lower, which is a positive sign of the model's stability. 

• Overfitting: No significant overfitting was detected as the training and validation 

accuracies were close, and the training loss did not significantly diverge from the 

validation loss. 
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Figure IV.7. MobileNetV2 Training and Validation Performance 

b) Test Performance 

The model's performance is evaluated on the test dataset, achieving an impressive test 

accuracy of 95.00%, demonstrating its robustness and effectiveness in classifying plant 

diseases (Figure IV.8). The training and validation accuracy and loss curves are plotted to 

visualize the model's performance over epochs in Figure IV.9. 

 

Figure IV.8. MobileNetV2 Model evaluation on the test dataset 

 

Figure IV.9. MobileNetV2 plot training and validation accuracy and loss values 

c) Accuracy and Loss 

Training and Validation Accuracy: The model consistently increases both training and 

validation accuracy, indicating effective learning without significant overfitting. 

Training and Validation Loss: Both training and validation loss decrease steadily, further 

supporting the model's robustness.  
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d) Confusion Matrix and classification report 

The confusion matrix and classification report provide a detailed analysis of the model's 

performance across different classes, Figure IV.10 illustrates the Confusion Matrix: 

Confusion Matrix: Each cell represents the number of predictions made for each class against 

the true labels. 

❖ Diagonal Cells (True Positives): High values along the diagonal indicate the model's 

correct predictions. The darkest cells are: 

▪ Tomato Healthy, 

▪ Tomato Bacterial Spot, 

▪ Tomato Spider Mites Two Spotted Spider Mites. 

❖ Off-Diagonal Cells (Misclassifications): Lower values, indicating fewer 

misclassifications. Notable misclassifications include: 

▪ Potato Early Blight is misclassified as Potato Late Blight. 

▪ Tomato Early Blight misclassified as Tomato Bacterial Spot. 

 

Figure IV.10. MobileNetV2 Confusion Matrix 
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Classification Report: The report indicates high precision, recall, and F1 scores for most 

classes, highlighting the model's reliability. Figure IV.11 illustrates the Classification Report. 

 

Figure IV.11. MobileNetV2 Classification Report 

e) Discussion 

The MobileNetV2 model demonstrated strong performance in detecting plant diseases 

from images, achieving a high accuracy of 95.00% on the test dataset. The use of data 

augmentation helped improve the model's generalization capability, reducing the risk of 

overfitting. The high precision, recall, and F1 scores across various classes indicate that the 

model is reliable for practical applications. 

Despite the model's overall success, there are a few areas for potential improvement: 

Fine-Tuning: Allowing fine-tuning of the deeper layers of MobileNetV2 could potentially 

improve accuracy further. 

Dataset: a larger and better dataset should be used to improve the accuracy further.  
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IV.5.2. Google vit Results 

a) Training and Validation Performance 

• Accuracy: The model achieved a final training accuracy of 98.80% and a validation 

accuracy of 99.49%, indicating excellent generalization to unseen data. 

• Loss: The training loss decreased significantly from 0.2914 to 0.0036, and the 

validation loss also showed a steady decrease from 0.3019 to 0.0316. This consistent 

reduction in both losses is a positive sign of the model's stability and effective learning. 

• Overfitting: There is no significant indication of overfitting, as the training and 

validation accuracies are very close throughout the epochs. Additionally, the training 

loss did not diverge significantly from the validation loss. 

 

Figure IV.12. Training and Validation Performance - Google ViT 

b) Test Performance 

The model's performance on the test dataset was evaluated, achieving an impressive 

test accuracy of 99.49%. This high accuracy demonstrates the model's robustness and 

effectiveness in classifying plant diseases. 

 

Figure IV.13. Google ViT Model Evaluation on the test dataset 

c) Accuracy and Loss 

The training and validation accuracy and loss curves are plotted to visualize the model's 

performance over epochs in Figure IV.14. 

Training and Validation Loss The left subplot in Figure IV.14 displays the training and 

validation loss curves over 10 epochs. The training loss and validation loss both show a 

consistent decrease, indicating effective learning and model stability. 
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Training and Validation Accuracy: The right subplot in Figure IV.14 illustrates the accuracy 

curves over 11 epochs for both training and validation. The model maintains high accuracy 

levels throughout the training process, with the validation accuracy closely mirroring the 

training accuracy, demonstrating good generalization to the validation data. 

 

Figure IV.14. Google ViT Plot training and validation accuracy and loss values 

d) Confusion Matrix and classification report 

The confusion matrix provides a detailed breakdown of the model's performance across 

different classes, Figure III.15 illustrates the Confusion Matrix: 

Overall Accuracy: The model exhibits a high level of accuracy, as evidenced by the strong 

diagonal presence in the confusion matrix, where the majority of predictions align with the true 

labels. 

Class-specific Performance: Most classes exhibit high accuracy, with minimal 

misclassifications. 

▪ Pepper bell Bacterial spot and Potato Early blight both show nearly perfect 

classification, with 198/199 and 200/200 correct predictions respectively. 

▪ Tomato Yellow Leaf Curl Virus shows excellent performance with 642/643 correct 

predictions, similarly high accuracy is observed for Tomato Late blight and Tomato 

Target Spot. 

▪ Minor misclassifications occur in classes like Tomato Early Blight and Potato Healthy, 

but the errors are minimal. 
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Figure IV.15. Google ViT Confusion Matrix  
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Classification Report: The report indicates high precision, recall, and F1 scores for most 

classes, highlighting the model's reliability. Figure IV.16 illustrates the Classification Report. 

 

Figure IV.16. Google ViT Classification Report 

e) Discussion 

This study emphasizes Vision Transformers (ViTs) as effective for plant disease 

identification in image classification. A pre-trained ViT model fine-tuned on the PlantVillage 

dataset showed strong performance with 98.80% training accuracy and 99.49% validation 

accuracy. Future research could focus on enhancing ViT architecture with advanced attention 

mechanisms or hybrid CNN-transformer models. Dataset expansion to include more plant 

species and diseases would enhance model generalizability. Real-time deployment in field 

conditions would assess practical utility and performance. Improving model explainability 

could increase trust in critical applications like agriculture.  
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IV.5.3. AgriNetBoost 

a) Training and validation performance 

• Training Accuracy: Steady increase during training. 

• Validation Accuracy: Slightly lower than training accuracy, indicating good 

generalization. 

• Training Loss: Decreases consistently. 

• Validation Loss: Consistently lower than training loss, indicating model stability. 

 

Figure IV.17. Training and Validation Performance - AgriNetBoost 

The steady increase in training accuracy observed during the training phase suggests 

that the model was able to effectively learn from the training data. The validation accuracy, 

while slightly lower than the training accuracy, is indicative of good generalization. This slight 

difference is expected and acceptable, as it suggests that the model is not overfitting to the 

training data. The consistent decrease in training loss, accompanied by validation loss being 

consistently lower than the training loss, further corroborates the stability and reliability of the 

model. Lower validation loss compared to training loss can be a sign that the model is learning 

essential features that generalize well to unseen data. 

b) Test performance 

• Test Accuracy: 87.32% highlights the model's effectiveness in real-world scenarios. 

Achieving such an accuracy on test data implies that AgriNetBoost is good at classifying 

plant diseases, which is the primary objective of this model.  
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d) Confusion Matrix and classification report 

Confusion Matrix: Provides a detailed view of the model's performance across different 

classes. 

• True Positives: The high values along the diagonal of the confusion matrix indicate a 

high number of true positives, which means that the model is making correct predictions 

for most classes. 

• Misclassifications: The presence of misclassifications, as indicated by the lower values 

off the diagonal, suggests that the model struggles with certain classes. 

 

Figure IV.18. AgriNetBoost Confusion Matrix 
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Classification report: The classification report highlights high precision, recall, and F1-scores 

for most classes, suggesting that the model performs well in terms of these metrics. However, 

these metrics alone do not provide a complete picture. 

The presence of classes with lower performance metrics indicates that the model's reliability 

varies across different disease categories. This inconsistency needs to be addressed to ensure 

uniform performance. Figure IV.19 illustrates the Classification Report. 

 

Figure IV.19. AgriNetBoost Classification Report 

e) Discussion 

while AgriNetBoost illustrates promise as a mechanism for categorizing plant diseases, 

its existing efficacy suggests that there exists a substantial opportunity for improvement. It is 

imperative to rectify the recognized deficiencies to construct a more dependable and efficient 

framework that can be securely implemented in agricultural processes. 
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IV.6. Practical implementation 

The practical implementation of deep learning models in real-time applications is crucial 

for providing accessible and user-friendly tools for end-users. This section details the 

integration of trained deep learning models into a web application developed using Streamlit. 

The application aids in identifying plant diseases from images uploaded by users, offering 

instant predictions and confidence levels. 

IV.6.1. Model Selection and Training 

The selection of the models (MobileNetV2, Google ViT, and the hybrid model using 

LightGBM), dataset preparation, and training process was: 

a) MobileNetV2 

MobileNetV2 was chosen for its efficiency and performance on mobile devices. 

b) Google ViT 

The Vision Transformer was selected for its ability to achieve state-of-the-art 

performance on various image classification tasks. 

c) AgriNetBoost 

AgriNetBoost model involved extracting features using MobileNetV2 and classifying 

them using a LightGBM classifier. This approach leveraged the strengths of both convolutional 

neural networks and gradient-boosting techniques. 

IV.6.2. Web application development 

IV.6.2.1. User Interface 

The app allows users to upload an image of a plant leaf, select a prediction model, and 

receive real-time predictions. The interface is designed to be intuitive and accessible, enabling 

users to easily interact with the application. The user interface is shown in Figure IV.20. 
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Figure IV.20. User Interface Screenshots 

IV.6.2.2. Model Integration 

Each trained model was integrated into the application. The following steps outline the 

model integration process: 

a) Loading Models: Pre-trained models (MobileNetV2, Google ViT, and AgriNetBoost) were 

loaded into the application (Figure IV.21). 

 

Figure IV.21. Choosing a model  
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b) Preprocessing: Uploaded images were preprocessed to match the input requirements of each 

model. 

c) Prediction: The preprocessed images were fed into the selected model, and the predictions, 

along with confidence scores, were displayed to the user (Figure IV.22). 

  

Figure IV.22. The diagnostic  
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IV.6.3. Test and validation 

After integrating and deploying our models into the Streamlit web app and having the 

interface ready to use, we move to test the performance of the models on a variety of leaf 

images, the following will highlight the results we obtained: 

a. Images for test  

Figure IV.23 demonstrates the different images used to test the models; the images were 

randomly chosen to test each model's capability for generalization: 

 

 

Figure IV.23. Test images  
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b. Prediction   

here we showcase the results obtained using the models across the different images, 

each figure represents a case and gives the model classification and confidence level: 

Figure III.24 here the ViT model gave a correct classification with an average 

confidence of 57,98%, whereas the CNN and lightGBM models fell short and gave false 

classification as shown. 

 

Figure IV.24. Classification and confidence results in a healthy Potato leaf  
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Figure IV.25 The mobileNetV2 shows an amazing result for this case with a correct 

classification and almost perfect confidence of 99,16%, the other 2 models performed well and 

diagnosed the disease correctly with above-average confidence. 

 

Figure IV.25. Classification and confidence results on a Pepper bell bacterial spot infected 

leaf 

Figure IV.26.  The vision transformer performs the best with 91.38% confidence followed by 

LightGBM with 87,27%, but the CNN model didn’t perform and gave an incorrect 

classification. 

 

Figure IV.26. Classification and confidence results on a Tomato late blight leaf 
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Figure IV.27 mobilenetV2 gets the perfect classification and confidence level, next the 

ViT model with a correct classification and a confidence of 82.12%, whereas the lightGBM 

fails to identify the disease correctly. 

 

Figure IV.27. Classification and confidence results on a tomato leaf infected with YLCV 

IV.7. Results and Comparison 

The web application allows users to upload images of plant leaves and receive 

predictions from different models. The performance of each model was compared based on 

accuracy, inference time, and user feedback. Table 08 summarizes the performance metrics for 

each model: 

Model Train_acc Valid_acc Test_acc Inference 

time 

User 

Feedback 

MobileNetV2 87.95% 94.14% 95.00% Fast Positive 

Google ViT 98.80% 99.49% 99.49% Fast  Very 

positive 

AgriNetBoost 87.50% 86.50% 87.32% moderate negative 

Table IV.5. Comparative table of results of all models  
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The MobileNetV2 model performed as expected, demonstrating its efficacy in image 

classification tasks. Its alignment with the dataset resulted in satisfactory outcomes, as 

previously discussed. MobileNetV2's inherent design for efficient and effective image 

classification allowed it to achieve notable results, reinforcing its suitability for this type of 

task. 

The ViT model emerged as the leading performer in this study. Despite not being 

initially tailored for image classification tasks, its performance surpassed that of the other 

models following fine-tuning and adaptation to the PlantVillage dataset. This success 

underscores the versatility and robustness of the ViT model, making it the most effective model 

for plant disease classification in our case. The superior performance of the ViT model 

highlights its potential for broader applications in similar domains. 

The AgriNetBoost model represents a novel approach in this study, attempting to 

leverage the advantages of the Gradient Boosting Machine (GBM) architecture. Despite not 

achieving the desired results, this experiment opens avenues for further refinement and 

optimization. The current performance indicates room for improvement, and ongoing efforts 

are necessary to enhance its capability to handle image classification tasks. Integrating GBM 

architecture into image classification remains a promising area for future research. 

The Streamlit interface played a crucial role in facilitating this comparison. By 

providing a user-friendly platform for real-time model evaluation and visualization, Streamlit 

enabled efficient assessment of each model's performance. Users could upload images and 

receive immediate predictions and confidence levels, allowing for a comprehensive evaluation 

of the models. This interactive interface significantly aided in the comparative analysis, 

underscoring the practical implications of integrating deep learning models into accessible 

applications.  
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IV.8. Conclusion 

This chapter covered the implementation of a plant disease detection system using three 

deep learning models: MobileNetV2, Vision Transformer (ViT), and AgriNetBoost. Each 

model was integrated into a web-based application and evaluated with validation examples. 

MobileNetV2 performed reliably, demonstrating efficiency in image classification. ViT 

emerged as the best performer, showcasing superior versatility and robustness. AgriNetBoost, 

while innovative, requires further optimization.
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General Conclusion 

The goals set by this study involve the application of machine learning (ML) and deep 

learning (DL) models for detecting plant diseases, specifically three models: MobileNetV2, 

LightGBM, and the Vision Transformer (ViT). 

The implemented system enables the identification of plant diseases with high precision 

and efficiency, which is crucial for supporting sustainable agricultural practices. The results 

obtained showed encouraging performance based on the chosen parameters. For instance, the 

MobileNetV2 model, optimized for mobile platforms, demonstrated a good balance between 

accuracy and computational efficiency, making it suitable for field use. The Vision Transformer 

(ViT), with its attention mechanisms, excelled in image classification tasks by capturing visual 

symptoms of plant diseases. However, the LightGBM model did not perform as well as 

expected and did not achieve the desired results in terms of accuracy and efficiency. 

The study's deployment using the Streamlit framework ensured that these models could 

be accessed and utilized effectively by agricultural stakeholders, supporting real-time disease 

detection and decision-making. These results highlight the significant potential of ML and DL 

models to improve plant disease detection capabilities, offering a substantial advantage over 

traditional methods. 

The study achieved two primary objectives: first, it assessed and compared the 

performance of the selected models in terms of accuracy, speed, and computational efficiency; 

second, it developed a practical solution for real-time deployment using Streamlit. The findings 

contribute significantly to enhancing disease detection capabilities, supporting sustainable 

agriculture, and mitigating the economic and environmental impacts of plant diseases. 

In perspective, we recommend addressing the following themes: 

1. Enhance the robustness and scalability of models to handle diverse plant diseases 

and environmental conditions. 

2. Integrate additional data sources, including environmental and climatic data, to 

improve predictive accuracy. 

3. Develop user-friendly mobile applications capable of functioning offline to support 

farmers in remote areas with limited internet access. 

4. Collaborate with agricultural experts and conduct field trials to validate real-world 

applicability and gather feedback for improvements.  
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Annex 

Annex 1: Appendix 

Google Colab: Colab, a web-based platform developed by Google, offers 

a hosted Jupyter Notebook service which boasts a seamless user 

experience devoid of any initial setup requirements. Moreover, this service 

generously grants users complimentary access to a plethora of computing resources, such as 

Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs), without incurring any 

costs. Colab stands out as an ideal choice for individuals engaged in diverse fields including 

but not limited to machine learning, data science, and educational purposes due to its user-

friendly interface and extensive range of features catered towards enhancing productivity and 

facilitating seamless collaboration [97]. 

 Jupyter Notebook: Jupyter Notebook serves as a robust instrument for 

the interactive development and presentation of data science projects. The 

integration of code, visualizations, narrative text, and various multimedia 

elements within a unified document exemplifies a seamless and articulate 

workflow. Jupyter Notebooks play a vital role in the data science processes 

of businesses and institutions globally, facilitating efficient data exploration, hypothesis testing, 

and insights sharing. Being an open-source endeavor, Jupyter Notebooks are readily accessible 

without any cost. Moreover, they offer support for multiple programming languages [98]. 

Anaconda: Anaconda is a Python distribution for data scientists, 

statisticians, and researchers focusing on scientific computing, data 

analysis, and machine learning. It offers a user-friendly Python 

distribution with various data science and machine learning tools like NumPy, Pandas, and 

Scikit-learn. Key features include Conda package manager, 1,500+ pre-built packages, 

Anaconda Navigator GUI, and Anaconda Prompt CLI. It is commonly used to manage 

dependencies, install packages, and handle environments by professionals in Windows, macOS, 

and Linux environments  [99].  
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PyCharm: PyCharm serves as a specialized Integrated Development 

Environment (IDE) for Python, offering a broad array of crucial resources for 

Python programmers, intricately linked to establish a user-friendly setting 

conducive to efficient Python, web, and data science programming [100]. 

Kaggle: serves as an internet-based community platform tailored for 

individuals proficient in data analysis and machine learning. This platform 

facilitates collaboration among its users, enabling them to discover and share datasets, utilize 

notebooks equipped with GPU capabilities, and engage in competitive activities with fellow 

data analysts aimed at resolving data-related predicaments. The primary objective of this virtual 

platform revolves around assisting both professionals and novices in attaining their objectives 

within the realm of data science, leveraging the assortment of potent tools and informational 

reservoirs it offers. As of the year 2021, the total count of registered users on Kaggle surpasses 

8 million [101].  
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Annex 2: Libraries 

Torchvision: This library is designed to seamlessly integrate with the 'torch' package, drawing 

heavily upon the 'PyTorch' vision package for its API design. The Torchvision library offers 

access to a wide range of datasets, models, and preprocessing tools specifically designed for 

deep learning tasks involving images [102]. 

Scikit-learn: also identified as sklearn, represents a python library utilized for the deployment 

of machine learning models and statistical modeling. By means of scikit-learn, an assortment 

of machine learning models can be applied, encompassing regression, classification, clustering, 

along with statistical methodologies for the examination of said models. This library is built 

upon NumPy, SciPy, and Matplotlib[103]. 

Pandas: is a Python software package utilized for the purpose of analyzing data. It is 

constructed based on two fundamental Python libraries, namely matplotlib which is used for 

visualizing data, and NumPy which is employed for carrying out mathematical computations. 

Pandas functions as an intermediary layer above these libraries, enabling users to utilize a 

multitude of methods from matplotlib and NumPy with reduced lines of code[104]. 

NumPy: NumPy serves as the essential framework for conducting scientific computations 

within the Python programming language. This library in Python offers a versatile array object 

capable of handling multiple dimensions, alongside a range of related objects like masked 

arrays and matrices. Additionally, NumPy provides a diverse set of functions designed to 

efficiently operate on arrays, encompassing mathematical, logical, and shape-altering 

operations, as well as sorting, selection, input/output procedures, discrete Fourier 

transformations, elementary linear algebra, fundamental statistical calculations, stochastic 

simulations, and various other functionalities[105]. 

Seaborn: seaborn is a Python library for creating statistical graphics. It interfaces with 

matplotlib and works well with pandas data structures. The library provides an API for creating 

graphics based on datasets. It automatically maps data values to visual attributes, computes 

statistical transformations, and adds informative labels and a legend to plots. Seaborn functions 

can generate figures with multiple panels for comparing data subsets or different variable 

pairings. It is designed to be useful for scientific projects, allowing for quick prototyping and 

data exploration. Seaborn also offers customization options and access to underlying matplotlib 

objects for creating high-quality figures[106]. 
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OpenCV: OpenCV, abbreviated for Open-Source Computer Vision Library, constitutes a 

substantial open-source repository dedicated to computer vision, machine learning, and image 

processing. A broad spectrum of programming languages, including Python, C++, Java, among 

others, is supported by OpenCV. Its capabilities encompass the processing of images and videos 

for the purpose of object identification, facial recognition, and even handwriting analysis. Upon 

integration with diverse libraries like Numpy, the operations achievable in Numpy can be 

seamlessly amalgamated with OpenCV[107]. 

Pillow: Formerly recognized as PIL, Pillow is a publicly available library that is specially 

crafted for carrying out image processing tasks through the utilization of Python. Serving as a 

valuable resource for manipulating image files, Pillow stands out from its counterparts by 

offering an extensive array of image processing capabilities. Its primary focus lies in the realm 

of image processing, rendering it a highly comprehensive and finely tuned tool for image 

manipulation. Despite the availability of more generalized libraries like OpenCV or MoviePy, 

Pillow continues to be a popular choice in various crucial stages of projects involving computer 

vision or video processing. The user-friendly nature of Pillow serves as one of its prominent 

features, with its notations designed to be intuitive and its underlying classes and methods 

meticulously developed to enhance the overall user experience[108]. 

Matplotlib: Matplotlib is a potent Python plotting library for static, animated, and interactive 

visualizations. It aids in graphical data representation for easier analysis. This library generates 

various plots like line, scatter, bar, histograms, and pie charts. It allows customization of line 

styles, colors, markers, labels, and annotations. Integrated with NumPy, it simplifies data arrays 

plotting. Matplotlib creates high-quality plots for publication with detailed aesthetic control. It 

is extensible with add-ons such as Seaborn, Pandas plotting functions, and Basemap. The library 

is cross-platform, working on Windows, macOS, and Linux. It also supports interactive plotting 

with widgets and event handling for dynamic data exploration[109].  
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Annex 3: Plant diseases 

Bacterial spot: Bacterial leaf spot, caused by Xanthomonas campestris pv. vesicatoria, is a 

significant disease in peppers, tomatoes and other crops worldwide. The bacterium is gram-

negative and rod-shaped, with the ability to persist in seeds and plant debris. Different strains 

of the bacterium are specific to certain pepper varieties, leading to distinct disease symptoms. 

The disease can cause early defoliation of leaves and deformities in fruits, potentially leading 

to plant death. Despite the challenge of finding a cure, growers have various preventive 

measures available to manage the disease effectively[11]. 

Yellow leaf curl virus: yellow leaf curl virus (YLCV) belongs to Begomovirus genus and 

Geminiviridae family. TYLCV leads to leaf yellowing, curling, stunting, bushy appearance, 

flower drop, and reduced fruit yield. This viral disease poses significant threats to growers once 

it establishes in the production area. YLCV can be found in various regions including temperate, 

tropical, and sub-tropical areas globally. Adult whiteflies transmit YLCV, making it 

challenging to control once introduced. YLCV mainly affects tomatoes but can also infect other 

plants in the Solanaceae family (pepper, eggplant, potato, tobacco, jimsonweed) and some 

ornamentals. Asymptomatic hosts can serve as reservoirs for the virus[110]. 

Tomato leaf mold: Tomato leaf mold is a foliar disease induced by the fungal pathogen 

Passalora fulva (syn. Cladosporium fulvum), an ascomycete fungus thriving on the foliage of 

tomato plants. The pathogen generates conidia which invade the underside of the leaves. Upon 

contact with the leaves, the fungus settles and penetrates the stomata, specialized pores used by 

plants for gas exchange. This infiltration leads to obstruction of the stomata, hindering the 

respiration process of tomato plants and causing symptoms such as wilting, defoliation, and 

susceptibility to infection[111]. 

Tomato Spider mites Two-spotted spider mite: The Tetranychus urticae, commonly known as 

the two-spotted spider mite, belongs to the arachnid category and is closely associated with insects, 

particularly in periods of warm and dry climatic conditions. These mites have the potential to cause 

damage to various crops such as tomatoes, beans, muskmelons, watermelons, and sweet corn. The 

proliferation of mites is particularly favored during prolonged spells of hot and dry weather. Initial 

infestations are often observed at the periphery of cultivated areas, usually close to dense weed 

populations or unpaved pathways.  
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