
Academic Year 2023 - 2024

Master’s Dissertation

Presented by

Lamia SARAOUI

&

Raouf ABDALLAH ELHIRTSI

To obtain a Master’s degree in Telecommunication

Option: Networks and Telecommunications

Topic

Classification of Plant Disease Using Deep Learning

Proposed by: Dr. F. FODHIL

Co-Advisor: Dr. Hocine AIT SAADI

 الجـمهورية الجزائرية الديمقراطية الشعبية
République Algérienne démocratique et populaire

العــلمــي والبحــثوزارة التعليم الــعــالي

Ministère de l’enseignement supérieur et de la recherche

scientifique

 جــامعة سعد دحلب البليدة

Université SAAD DAHLAB de BLIDA

كلية التكنولوجيا

Faculté de Technologie

ونيـك قسم الإلكتر

Département d’Électronique

Dedication
I offer this humble piece of work to

My mother “Chahera”, you’re the best mother anyone could ask for in this

life, your unconditional love, sacrifice, constant prayers, and delicate care

was what kept me going.

My father “Ahmed”, the selfless man who gave me all the support in the

world, and your confidence in my capabilities has laid the groundwork

for my accomplishments.

I am profoundly thankful for the numerous ways in which both of you

have influenced my path and encouraged me to strive for my objectives.

I extend my appreciation to my sister; your affection has been a

consistent source of solace throughout this expedition.

Furthermore, I extend my gratitude to my mentor, "Dr. Fodhil," for her

priceless advice and vision.

 my co-advisor, "Dr. Ait Saadi Hocine, » Your cheerful personality, work

ethic, and sagacity were instrumental throughout my journey at the

university, my deep gratitude.

I am thankful to all the esteemed professors in our department, whose

commitment to education has motivated me. Your enthusiasm for

knowledge has driven my pursuit of distinction.

I am grateful to all my relatives and friends, both near and far, who have

supported me and offered invaluable assistance on this journey.

Raouf ABDALLAH ELHIRTSI

Dedication

I dedicate this modest work to

My beloved family, whose unwavering support and love have been my greatest

strength.

To my mother and father, for their endless encouragement, sacrifices, and

unconditional love. Your belief in my potential has been the foundation of my

success.

Mom, your nurturing spirit and tireless support have been my guiding light.

Dad, your strength has taught me the value of perseverance and hard work. I am

deeply grateful for the countless ways you both have shaped my journey and

inspired me to reach for my goals.

To my sisters; «Loubna», «Nesrine», and «Nada», for their constant motivation

and companionship. Your support and love have been a source of comfort and

encouragement throughout this journey.

To my grandparents.

To my close friends «Ayoub», «Merouane», «Zohir», «Chiraz», and «Maissa»,

for their support and understanding. Your friendship has been a pillar of

strength during the challenging times. Your support has meant the world to me.

To my advisor, «Dr. Fodhil», and my co-advisor, «Dr. Ait Saadi Hocine», for

their guidance and wisdom.

To all the good professors of our department, whose dedication to teaching has

inspired me. Your passion for knowledge has fueled my pursuit of excellence.

To my dear cousins, «Lina», «Rania», and «Selma», for their love and

encouragement.

To my uncle's wife, for her kindness and support.

To my second Famely ITCommunity.

To all my relatives and friends who have been there for me, near and far, and

who have provided invaluable assistance throughout this journey. Your belief in

me has been a source of immense strength.

Thank you all for being a part of this incredible journey and for believing in me.

Lamia SARAOUI

Acknowledgments
With immense gratitude, we extend our sincere thanks to God the Almighty for bestowing

upon us the health and strength that empowered us to undertake and complete this modest

work.

We extend our deepest gratitude to our advisor, Dr. Fodhil, for her invaluable guidance,

wisdom, and patience throughout this research. Your contributions have been pivotal in

shaping the direction and quality of our work.

 A special thanks to our co-advisor, Dr. Ait Saadi Hocine, for his exceptional dedication,

insightful advice, and continuous encouragement. Your support has been instrumental in our

academic growth and success.

We also express our sincere thanks to the members of the jury for their time, effort, and

valuable feedback, by agreeing to review our work.

To the CRTI team, particularly Abdelghani Zabel, your collaboration and assistance have

been greatly appreciated. Your support has played a crucial role in the successful completion

of this research.

To all the professors of our department. Your teaching, mentorship, and encouragement have

been essential in our academic journey.

Finally, we express deep gratitude to all those who contributed to this endeavor, whether

near or far. Your valuable insights, assistance, and collaboration played a pivotal role in

shaping the outcome of this work. Each contribution, no matter how small, has left an

indelible mark on our collective achievement.

النباتية تحدياً : ملخص للزراعة وتؤثر على صحة المحاصيل والأمن الغذائي العالمي. وتعد تشكل الأمراض كبيراً

الطرق التقليدية للكشف عن الأمراض، التي تعتمد على الفحص اليدوي، عرضة للأخطاء وعدم الكفاءة. تستكشف

تطبيق الأطروحة العميق هذه نماذج (DL) التعلم ثلاثة على التركيز مع النباتية، الأمراض عن الكشف : في

MobileNetV2و ،AgriNetBoost ،وVision Transformer (ViT) . وقد اختيرت هذه النماذج لكفاءتها في

هذا البيئات المحدودة الموارد مثل الأجهزة المحمولة. تقوم الدراسة بتقييم دقة النماذج وسرعتها وكفاءتها الحسابية في

للنشر في الوقت الحقيقي. تتمثل الأهداف في تعزيز قدرات Streamlit وتنفيذ حل عملي باستخدام إطار عمل المجال

 .الكشف عن الأمراض ودعم الممارسات الزراعية المستدامة

المفتاحية:) الكلمات الآلي التعلم العالمي، الغذائي الأمن الزراعة، النبات، العميق MLأمراض التعلم ،)(DL) ،

MobileNetV2 ،LightGBM(محول الرؤية ،ViT).

Résumé: Les maladies des plantes représentent un défi important pour l'agriculture, car elles

affectent la santé des cultures et la sécurité alimentaire mondiale. Les méthodes traditionnelles de

détection des maladies, qui reposent sur l'inspection manuelle, sont sujettes aux erreurs et à

l'inefficacité. Cette thèse explore l'application de l'apprentissage profond (DL) dans la détection

des maladies des plantes, en se concentrant sur trois modèles: MobileNetV2, LightGBM et Vision

Transformer (ViT). Ces modèles sont choisis pour leur efficacité dans des environnements à

ressources limitées, tels que les appareils mobiles. L'étude évalue la précision, la vitesse et

l'efficacité de calcul des modèles dans ce domaine et met en œuvre une solution pratique utilisant

le cadre Streamlit pour un déploiement en temps réel. Les objectifs sont d'améliorer les capacités

de détection des maladies et de soutenir les pratiques agricoles durables.

Mots clés: Maladies des plantes, agriculture, sécurité alimentaire mondiale, apprentissage

automatique (ML), apprentissage profond (DL), MobileNetV2, LightGBM, Vision Transformer

(ViT).

Abstract: Plant diseases pose a significant challenge to agriculture, affecting crop health and

global food security. Traditional disease detection methods, reliant on manual inspection, are

prone to errors and inefficiencies. This thesis explores the application of Deep Learning (DL) in

detecting plant diseases, focusing on three models: MobileNetV2, AgriNetBoost, and the Vision

Transformer (ViT). These models are chosen for their efficiency in resource-constrained

environments such as mobile devices. The study evaluates the models' accuracy, speed, and

computational efficiency in this field and implements a practical solution using the Streamlit

framework for real-time deployment. The objectives are to enhance disease detection capabilities

and support sustainable agricultural practices.

Keywords: Plant diseases, agriculture, global food security, Machine Learning (ML), Deep

Learning (DL), MobileNetV2, AgriNetBoost, Vision Transformer (ViT).

Lists of acronyms and abbreviations

AI Artificial Intelligence

ANN Artificial neural networks

API Application Programming Interface

CPU Central Processing Unit

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

DL Deep Learning

DMTK Distributed Machine Learning Toolkit

FAO Food and Agriculture Organzation

GAP Global AveragePooling

GBT Gradient Boosting Tree

GELU Gaussian Error Linear Unit

GIS Geographic Information Systems

GPS Global Positioning Systems

GPU Graphic Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

IDM Integrated Disease Management

IFPRI International Food Policy Research Institute

JAX Just Another XLA (Accelerated Linear Algebra)

LightGBM Light Gradient Boosting Machine

LLMs Large Language Models

LSTMs Long Short-Term Memories

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

MT Machine Translation

NLP Natural Language Processing

NMT Neural Machine Translation

ONNX Open Neural Network Exchange

PIL Python Imaging Library

RAM Random Access Memory

ReLU Rectified Linear Unit

RGB Red, Green, Blue (color model)

RNA Ribonucleic acid

RNAi Ribonucleic acid interference

RTX Ray Tracing Texel eXtreme (NVIDIA's graphics cards)

SGD Stochastic Gradient Descent

SVM Support Vector Machine

ToMV Tomato mosaic virus

UAVs Unmanned Aerial Vehicles

UNDP United Nations Development Programme

USD United state dollar

ViT Vision Transformer

XGBoost eXtreme Gradient Boosting

1D One dimension

2D Two dimensions

Table of contents

General introduction .. 1

Chapter I: State of The Art – Plant Diseases ... 4

I.1. Introduction ... 4

I.2. Plant diseases .. 4

I.2.1. Types of plant disease .. 5

I.3. Economic and environmental impact of plant diseases... 11

I.4. Plant Disease Management ... 12

I.4.1. Principle of control ... 12

I.4.2. Integrated Disease Management (IDM) ... 13

I.4.3. Recent Advances in Plant Disease Management ... 14

I.5. Precision agriculture .. 15

I.5.1. Definition ... 15

I.5.2. Diverse technologies in precision agriculture .. 16

I.6. Conclusion .. 19

Chapter II: State of the Art - Machine Learning & Deep Learning 21

II.1. Introduction .. 21

II.2. Machine Learning .. 21

II.2.1. Machine Learning approaches .. 22

II.3. Gradient Boosting Tree .. 23

II.3.1. LightGBM ... 23

II.4. Lightweight Models ... 24

II.5. Neural Network.. 25

II.5.1. Biological Neural Network ... 25

II.5.2. Artificial Neural Network ... 26

II.6. Deep Learning.. 27

II.6.1. Convolutional Neural Networks (CNNs).. 28

II.6.2. Transfer Learning ... 33

II.6.3. Transformers ... 35

II.7. Lightweight Models in Plant Disease Detection .. 37

II.8. Conclusion ... 39

Chapter III: Fine-tuning and Evaluation Metrics .. 41

III.1. Introduction .. 41

III.2. Hyperparameters ... 41

III.2.1. CNN hyperparameters ... 41

III.2.2. Transformers hyperparameters .. 43

III.2.3. LightGBM hyperparameters .. 44

III.3. Evaluation metrics .. 44

III.3.1. Confusion matrix ... 45

III.3.2. Accuracy .. 45

III.3.3. Precision .. 45

III.3.4. Recall ... 46

III.3.5. F1 score ... 46

III.4. Conclusion .. 46

Chapter IV: Design, Implementation & Results ... 48

IV.1. Introduction .. 48

IV.2. Working environment .. 48

IV.3. Presentation of the languages used ... 48

IV.3.1. Introducing the Python language ... 49

IV.3.2. Introducing the imported libraries ... 49

IV.4. Methodology .. 51

IV.4.1. System architecture ... 51

IV.4.2. Used dataset .. 51

IV.4.3. Dataset preparation .. 54

IV.4.4. Used models .. 58

IV.5. Results and Discussion ... 64

IV.5.1. MobileNetV2 Results .. 64

IV.5.2. Google vit Results ... 68

IV.5.3. AgriNetBoost .. 72

IV.6. Practical implementation .. 75

IV.6.1. Model Selection and Training ... 75

IV.6.2. Web application development ... 75

IV.6.3. Test and validation .. 78

IV.7. Results and Comparison ... 81

IV.8. Conclusion .. 83

General Conclusion .. 84

Annex ... 85

Bibliography ... 90

Figures list

Chapter I: State of The Art – Plant Diseases

Figure I.1. Schematic representation of plant diseases and pathogens 5

Figure I.2. Potato leaf infected with early blight ... 6

Figure I.3. Pepper leaf infected with bacterial leaf spot .. 7

Figure I.4. Tomato leaf infected with mosaic virus ... 8

Figure I.5. Potato plant with severe nematode damage .. 8

Figure I.6. Life cycle of a root parasitic plant, Orobanche minor .. 9

Figure I.7. Environmental stressors affecting plants .. 10

Figure I.8. Comprehensive impacts of plant diseases on global agriculture, economy, and

food security ... 12

Figure I.9. Precision agriculture: Integrating technology for optimized farming 16

Figure I.10. Satellite scanning a field ... 17

Figure I.11. Smartphone usage in precision agriculture ... 19

Chapter II: State of the Art - Machine Learning & Deep Learning

Figure II.1. Supervised learning .. 22

Figure II.2. Level-wise growth vs leaf-wise growth ... 24

Figure II.3. Knowledge distillation ... 25

Figure II.4. Biological Neural Network .. 26

Figure II.5. Artificial Neural Network .. 27

Figure II.6. Convolutional Neural Networks architecture ... 28

Figure II.7. Convolution operation .. 29

Figure II.8. Three types of pooling operations .. 20

Figure II.9. ReLU activation function operation process .. 29

Figure II.10. Timeline of CNN models ... 32

Figure II.11. The MobileNetV2 network architecture .. 33

Figure II.12. Traditional machine learning vs Transfer learning .. 34

Chapter IV: Design, Implementation & Results

Figure IV.1. Detailed Workflow Diagram ... 51

Figure IV.2. Visual dataset for identification and classification of plant diseases 52

Figure IV.3. Visualization of data augmentation ... 57

Figure IV.4. MobileNetV2 model visualization .. 58

Figure IV.5. Google ViT Model visualization ... 62

Figure IV.6. AgriNetBoost model visualization .. 64

Figure IV.7. MobileNetV2 Training and Validation Performance 65

Figure IV.8. MobileNetV2 Model evaluation on the test dataset .. 65

Figure IV.9. MobileNetV2 plot training and validation accuracy and loss values 65

Figure IV.10. MobileNetV2 Confusion Matrix ... 66

Figure IV.11. MobileNetV2 Classification Report .. 67

Figure IV.12. Training and Validation Performance - Google ViT 68

Figure IV.13. Google ViT Model Evaluation on the test dataset .. 68

Figure IV.14. Google ViT Plot training and validation accuracy and loss values 69

Figure IV.15. Google ViT Confusion Matrix .. 70

Figure III.16. Google ViT Classification Report .. 71

Figure III.17. Training and Validation Performance - AgriNetBoost 72

Figure III.18. AgriNetBoost Confusion Matrix .. 73

Figure III.19. AgriNetBoost Classification Report ... 74

Figure III.20. User Interface Screenshots ... 76

Figure III.21. Choosing a model ... 76

Figure III.22. The diagnostic ... 77

Figure III.23. Test images ... 78

Figure III.24. Classification and confidence results in a healthy Potato leaf 79

Figure III.25. Classification and confidence results on a Pepper bell bacterial spot infected

leaf .. 80

Figure III.26. Classification and confidence results on a Tomato late blight leaf 80

Figure III.27. Classification and confidence results on a tomato leaf infected with YLCV

 .. 81

Table list

Chapter I: State of The Art – Plant Diseases

Table I.1. A comparison between satellites and drones in agriculture 18

Chapter II: State of the Art - Machine Learning & Deep Learning

Table II.1. Lightweight models in plant disease detection .. 39

Chapter III: Fine-tuning and Evaluation Metrics

Table III.1. Confusion matrix .. 45

Chapter IV: Design, Implementation & Results

Table IV.1. Distribution of PlantVillage dataset samples .. 53

Table IV.2. Distribution of PlantVillage dataset samples .. 55

Table IV.3. MobileNetV2 model summary .. 59

Table IV.4. Google ViT Model Summary .. 61

Table IV.5. Comparative table of results of all models ... 81

General introduction

1

General introduction

Plant diseases pose a significant threat to global agricultural productivity, potentially

leading to up to 40% annual crop losses worldwide, according to the (FAO) [1]. Early detection

of these diseases is crucial, as it can reduce yield losses by as much as 50%, as indicated by

research in the Journal of Plant Pathology [2]. The impact is especially severe in developing

countries, where over 1 billion people rely on agriculture for their livelihoods, contributing to

increased food insecurity, as highlighted by the (IFPRI) [3]. Studies from the (UNDP)

underscore that these countries bear the brunt of plant disease impacts, with up to 80% of their

rural population dependent on agriculture [4]. Therefore, there is a growing emphasis on

identifying and managing plant diseases to safeguard agricultural productivity and mitigate

their detrimental effects on global food security.

Traditionally, disease detection relied heavily on manual inspection, a method prone to

human error and inefficiencies. However, recent advancements in technology, particularly in

the fields of machine learning (ML) and deep learning (DL enabling automated and accurate

identification of plant diseases based on visual symptoms and patterns.

This thesis explores the application of ML and DL techniques in the domain of plant

disease detection. Specifically, it investigates the efficacy of lightweight models designed to

operate efficiently on resource-constrained environments, including mobile devices and remote

agricultural settings. By evaluating and comparing various ML and DL models, this research

aims to identify the most effective approach for enhancing disease detection capabilities.

This thesis investigates the application of state-of-the-art ML and DL techniques in the

detection of plant diseases, with a specific focus on three distinct models: MobileNetV2, a DL

model optimized for mobile platforms; LightGBM, a gradient boosting framework known for

its speed and accuracy; and the Vision Transformer (ViT), a DL model that has shown

promising results in image classification tasks by leveraging self-attention mechanisms. These

models are evaluated for their ability to analyze visual symptoms of plant diseases captured

through image data. Furthermore, the research explores the practical implementation of these

models using the Streamlit framework a versatile tool for building and deploying data-centric

web applications.

General introduction

2

Streamlit facilitates the development of interactive and intuitive interfaces, enabling

seamless access and utilization of disease detection models by stakeholders in agriculture. The

deployment phase focuses on optimizing model performance, and user interface design

ensuring practical applicability in agricultural settings.

The study's objectives are twofold: first, to assess and compare the performance of these

models in terms of accuracy, speed, and computational efficiency for plant disease detection;

second, to develop a practical solution using the Streamlit framework for real-time deployment

in agricultural settings. By achieving these objectives, this research contributes to advancing

disease monitoring capabilities and supporting sustainable agricultural practices.

The first chapter provides a comprehensive overview of plant diseases, their types,

causes, and impacts, along with management strategies and the role of precision agriculture.

The second chapter will delve into the evolution and applications of ML and DL,

focusing on core principles like supervised and unsupervised learning. It will highlight neural

networks such as CNNs and Transformers. Additionally, it will explore the role of lightweight

models in enabling efficient AI applications on resource-constrained devices.

The third chapter explores fine-tuning deep learning models for plant disease detection,

focusing on essential hyperparameters for CNNs, Transformers, and LightGBM, and evaluation

metrics including confusion matrices, accuracy, precision, recall, and F1 score to assess

classification model performance with imbalanced data.

The fourth chapter will feature the case study that will showcase our work. We will

build three lightweight models, discuss their outcomes, implement them in a web application,

and conclude with a comparative analysis of these models.

Chapter I

State of The Art

Plant Diseases

Chapter I: State of The Art - Plant Diseases

4

Chapter I: State of The Art – Plant Diseases

I.1. Introduction

Plant diseases represent a significant issue within the realm of agriculture, carrying

extensive economic and environmental implications. This section delves into the intricate facets

of plant diseases, thoroughly examining their origins, manifestations, and the wide-ranging

effects they have on agriculture and ecosystems, along with strategies for their control.

Furthermore, we will explore both conventional and innovative methods for handling plant

diseases, emphasizing efficient techniques for mitigating their impact.

 Upon completing this section, readers will possess a robust comprehension of plant

diseases and their mitigation, equipped to further explore these pivotal areas of research.

Concluding this section, a cutting-edge analysis will be presented on the utilization of advanced

technologies in detecting plant diseases, merging classical plant pathology with contemporary

approaches like precision agriculture and machine learning.

I.2. Plant diseases

A plant disease can be defined as any condition that disrupts the normal growth and

development of a plant, leading to a decrease in its economic or aesthetic value. This disruption

affects the functioning of the plant, resulting in lower yields or reduced quality, which in turn

impacts the income of farmers, reduces food supplies, and may increase consumer prices.

Unlike injuries caused by immediate factors like insect feeding or mechanical damage, plant

diseases develop gradually over time. Symptoms of the disease typically become apparent only

after several days of its onset [5].

These diseases can be caused by either living agents, such as microorganisms and

parasitic plants (referred to as pathogens or biotic agents), or non-living agents, such as

environmental factors, inadequate nutrition, and chemical substances (referred to as abiotic

agents). Some diseases involve a combination of both pathogens and abiotic factors.

Figure I.1 displays a diagram showing the complex interactions between pathogens,

environmental conditions, and host plant characteristics in plant diseases. It highlights the

importance of considering these three factors in plant pathology. The visual representation helps

understand how pathogens, environmental factors, and host vulnerabilities contribute to and

affect plant diseases.

Chapter I: State of The Art - Plant Diseases

5

Figure I.1. Schematic representation of plant diseases and pathogens [6]

I.2.1. Types of plant disease

Manifestations of plant diseases often appear as discernible marks or lesions on leaves,

stems, flowers, or fruits. Each disease or pest exhibits unique characteristics aiding in diagnosis,

changes in leaf color, texture, edges, and size serve as telltale signs of declining plant health [7].

Plant diseases can be broadly categorized based on the primary cause of infection,

whether it is infectious or non-infectious in nature [8].

I.2.1.1. Infectious plant disease

Infectious plant diseases result from living agents called pathogens, which can spread

from infected plants to healthy ones. These pathogens include microorganisms like nematodes,

fungi, bacteria, and mycoplasmas, as well as viruses and viroids, which rely on living cells for

reproduction [5].

Chapter I: State of The Art - Plant Diseases

6

a. Fungi

Fungi are composed of hyphae, tiny filaments made of small cells only visible under a

microscope. The tangled mass of hyphae is known as mycelium. Fungi can form colonies on

improperly stored bread or vegetables. Some fungi grow inside plants or organic debris, while

others become mushrooms. Fungi produce spores that spread through wind, water, or people to

germinate on plants. Hyphae can enter plants through openings or wounds, damaging tissues

with toxins or enzymes. Fungicides are used to kill fungi causing plant diseases [5]. In figure

I.2 shows a potato leaf infected with early blight, caused by Alternaria solani fungus, affects

tomato and potato plants. Symptoms include small brown spots with rings on lower leaves.

Disease spreads outwards leading to yellowing, withering, and death of leaves. Infection can

also impact stem, fruit, and upper part of the plant inducing severe damage to crops [9].

Figure I.2. Potato leaf infected with early blight [10]

b. Bacteria

Bacteria, as single-celled microorganisms, possess rigid cell walls and reproduce

through binary fission, with certain strains exhibiting rapid division rates under optimal nutrient

conditions. This accelerated multiplication, coupled with the secretion of toxins and enzymes,

contributes significantly to the degradation of plant tissues. Plant diseases stemming from

bacterial infection are predominantly attributed to rod-shaped strains, which enter plants

through wounds or natural openings. Additionally, some bacterial species produce growth-

regulating substances, leading to aberrant tissue growth. Management strategies often involve

the use of bactericides, and specialized antibiotics targeting bacterial pathogens, to mitigate

bacterial-induced plant diseases [5].

Chapter I: State of The Art - Plant Diseases

7

Figure I.3 represents a Bacterial leaf spot, attributed to “Xanthomonas campestris

pv.vesicatoria”, that poses a significant threat to pepper cultivation. This rod-shaped bacterium

has a remarkable ability to survive in seeds and plant residue across seasons. Its diverse strains

exhibit specificity towards certain pepper cultivars, manifesting disease symptoms in those

varieties. The impact can be profound, with early defoliation and fruit malformation leading to

substantial crop losses. As the disease progresses, its control becomes increasingly challenging,

often resulting in irreversible damage to the plants [11].

Figure I.3. Pepper leaf infected with bacterial leaf spot [11]

c. Viruses and Viroid

Tiny invaders called viruses and viroids wreak havoc on plants. These microscopic

entities, much smaller than 300 nanometers, hijack plant cells using their RNA genetic material.

Viruses, with shapes like rods or spheres, manipulate the cell's machinery to make more viruses,

while viroids are even simpler, just RNA molecules. Both disrupt plant growth, causing

diseases. Spread through insects, contaminated tools, or even by us, these plant pathogens are

a challenge to control, as effective treatments are still being developed. [5]. Figure I.4 shows

tomato leaf infected with mosaic virus, it is a single-stranded RNA virus from the family

Virgaviridae, genus Tobamovirus, infecting plants globally. It has a broad host range, affecting

vegetables, flowers, and seedlings. ToMV leads to mosaic disease in various crop plants, posing

a significant threat to worldwide tomato production [12].

Chapter I: State of The Art - Plant Diseases

8

Figure I.4. Tomato leaf infected with mosaic virus [13]

d. Nematodes

Nematodes, small eel-shaped worms often invisible to the naked eye, use a tiny style to

extract nutrients from plants. They reproduce by laying eggs that hatch into larvae, which go

through four molts to become adults. Some nematodes can complete their life cycle in under 30

days. Nematodes that affect plant roots are particularly important, though many species can

feed on different parts of the plant. Substances used to eradicate nematodes are known as

nematicides [5]. Figure I.5 presents a visual representation of a potato plant suffering from a

severe nematode infection, evident through the wilting, discoloration, stunted growth, and

implication of root knotting.

Figure I.5. Potato plant with severe nematode damage

Chapter I: State of The Art - Plant Diseases

9

e. Parasitic Plants

Parasitic plants are angiosperms that propagate through authentic seeds. The majority

of these parasitic plants possess altered root-like structures that adhere to plant tissues for the

acquisition of nutrients and water, yet lack root systems capable of absorbing nutrients from the

soil. By utilizing nutrients that would typically be assimilated by the host plant, parasitic plants

diminish the vigor of the host. Mistletoes represent one of the most commonly observed

parasitic plant species. In certain instances, in which mistletoes afflict forest trees, the plant

tissues may become so disarrayed that the integrity of the wood is compromised, resulting in

the deformation of branches [5]. Figure I.6 illustrates the life cycle of a root parasitic plant,

Orobanche minor, (a) Seed germination is elicited by host-derived stimulants, including

strigolactones. (b) Seedling attaches to host root with haustoria. (c–d) Parasite tubercles grow

underground for several weeks or months before emergence of the flowering shoots. (e) The

parasite produces a large number of seeds, which remain viable for many years in soil [14].

Figure I.6. Life cycle of a root parasitic plant, Orobanche minor [14]

f. Disease Complexes

Plant diseases, particularly those caused by soilborne pathogens, frequently involve

multiple pathogens. Co-occurrence of pathogens can lead to increased plant damage or death.

Plants may resist one parasite but struggle when attacked by multiple. Plant-disease interaction

occurs when the combined damage of multiple pathogens exceeds the damage caused by

individual ones. For instance, tomatoes with root-knot may succumb faster to the Granville-

wilt bacterium. Peach trees have short lives due to cold injury, bacterial canker, improper

pruning, and root-rotting organisms [5].

Chapter I: State of The Art - Plant Diseases

10

I.2.1.2. Non-infectious Plant Diseases

Non-infectious plant diseases are caused by non-living agents, typically environmental,

nutritional, or chemical factors. Environmental extremes in temperature, moisture, or light can

hinder plant development, while nutritional imbalances can lead to disease-like symptoms.

Diseases induced by chemicals often result from inappropriate soil pH, fertilizer and pesticide

misuse, or air contamination. Air pollutants from vehicular and industrial sources have

increasingly been linked to plant health deterioration, with acid rain further impacting plant

species and water quality in lakes [5]. Figure I.7 effectively conveys how abiotic factors—

sunlight, water, temperature, soil composition, and physical weather events—interact to

influence plant health. It underscores the importance of managing environmental conditions to

mitigate non-infectious plant diseases, which are critical for sustaining healthy plant growth

and agricultural productivity.

Figure I.7. Environmental stressors affecting plants [15]

Chapter I: State of The Art - Plant Diseases

11

I.3. Economic and environmental impact of plant diseases

Plants play a crucial role in the sustenance of the human species, accounting for 80% of

the food sources we rely on and producing 98% of the oxygen crucial for our survival. Recent

years have witnessed a substantial increase in the global trade of agricultural goods, tripling in

size to a value of USD 1.7 trillion, particularly driven by the growth in emerging economies

and developing countries. Nonetheless, the challenge of meeting the future demand for food

presents a formidable obstacle, necessitating a 60% rise in agricultural output by 2050 to cater

to a larger and wealthier population. This endeavor is further complicated by the pervasiveness

of plant diseases, which annually lead to losses of up to 40% in global food crops, translating

to trade deficits exceeding USD 220 billion. Furthermore, the effects of climate change worsen

these challenges by jeopardizing crop yields and nutritional value, with increasing temperatures

fostering the spread of plant diseases to new regions and earlier time frames [1]. Additionally,

research by the International Food Policy Research Institute (IFPRI) highlights that agricultural

productivity losses due to plant diseases contribute to increased food insecurity, affecting over

1 billion people worldwide [3]. Moreover, a study published in the Journal of Plant Pathology

found that early detection of plant diseases can lead to a 50% reduction in yield losses [2].

Furthermore, studies conducted by the United Nations Development Programme (UNDP)

reveal that developing countries, heavily reliant on agriculture, bear the brunt of plant disease

impacts, with up to 80% of the rural population depending on agriculture for their livelihoods

[4]. Figure I.8 presented below comprehensively illustrates the multifaceted impacts of plant

diseases across various critical categories. Each category highlights a different dimension of

the broader socio-economic and environmental ramifications of plant diseases.

Chapter I: State of The Art - Plant Diseases

12

Figure I.8. Comprehensive impacts of plant diseases on global agriculture, economy, and

food security

I.4. Plant Disease Management

Once the cause of a disease is accurately identified, effective strategies for its

management and control can be developed. Over the past century, extensive research has

thoroughly explored pathogens, diseases, and various management techniques. This wealth of

knowledge now provides a robust foundation for enhancing disease control initiatives.

Efficiently managing plant diseases is not only a scientific necessity but also an economic

imperative, crucial for preventing devastating outbreaks and catastrophic famines [16].

I.4.1. Principle of control

Control of a plant disease involves reducing the extent of damage incurred. Attaining

absolute control is uncommon, yet achieving profitable control, where the increased yield

outweighs the expenses of chemicals and labor, is feasible. The foundational principles of

control encompass exclusion, eradication, protection, resistance, and therapy.

a. Exclusion pertains to the prevention of pathogens from infiltrating and establishing in

uninfected areas like gardens, states, or countries. Home gardeners practice exclusion by

utilizing certified seeds or plants, inspecting bulbs before planting, discarding questionable

ones, potentially treating seeds or tubers, and avoiding visibly diseased specimens from

nurseries or dealers. At the state and country level, exclusion involves imposing quarantines or

legal restrictions.

Chapter I: State of The Art - Plant Diseases

13

b. Eradication refers to eradicating a pathogen once it has taken hold on a plant or within a

garden. It involves removing diseased specimens or parts, such as rouging for virus diseases or

pruning cankered tree limbs, as well as practices like cultivation, deep ploughing, crop rotation,

and disinfection using chemicals or heat treatment.

c. Protection entails placing a protective barrier between the susceptible part of the host plant

and the pathogen. This often involves applying protective sprays or dust pre-emptively,

eliminating inoculating agents like insects, or installing physical barriers like windbreaks.

d. Resistance is managed through the development of resistant cultivars. Resistant cultivars

have been present since ancient times. The process of natural selection has historically

eliminated unsuitable varieties, however, since approximately 1890, humans have accelerated

this process through intentional breeding, selection, and propagation of plants resistant to

prevalent diseases.

e. Therapy involves controlling the pathogen by inoculating or treating the plant with

substances that deactivate it. Chemotherapy entails using chemicals to deactivate the pathogen,

whereas thermotherapy or heat is occasionally employed to deactivate or impede virus

development in infected plant tissues, enabling the growth of new tissue free from the

pathogen [17].

I.4.2. Integrated Disease Management (IDM)

Integrated Disease Management (IDM) in agriculture is a multifaceted approach that

combines various control strategies to minimize the impact of pathogens on crop and livestock

production. This approach, which includes biological, cultural, physical, and chemical control

methods, is effective and sustainable in both fish farming [18] and plant disease management

[19], [20], [21]. However, successful implementation of IDM in developing countries requires

a supportive policy environment and the adoption of participatory approaches [20].

Furthermore, the choice of specific disease management strategies should consider their impact

on soil and crop health, as well as on the broader agricultural and non-agricultural environments

[19]. IDM can target specific diseases like potato late blight, with goals of reducing inoculum

and enhancing host resistance. Successful disease management relies on research about plant

pests, crop resistance, and environmental conditions. Continuous research is needed for

effective control measures [5].

Chapter I: State of The Art - Plant Diseases

14

Integration of Diverse Tactics: IDM utilizes various disease management tactics,

such as:

a. Cultural practices: Techniques like crop rotation, sanitation, and proper irrigation to create

a less hospitable environment for pathogens.

b. Resistant crop varieties: Selecting plant varieties with natural resistance to specific

diseases.

c. Biological control: Introducing beneficial organisms like predators or parasites to control

pathogen populations.

d. Chemical control: Using pesticides judiciously and only when necessary, considering

economic thresholds and environmental impact.

e. Monitoring systems: Regularly monitoring crops or populations for disease presence and

severity.

f. Synergistic Effect: By combining these tactics, IDM aims to create a synergistic effect,

where the combined impact is greater than the sum of individual strategies.

Decision-Based Approach: IDM emphasizes monitoring and scouting to determine the

need for intervention. Treatments are only applied, when necessary, based on economic

thresholds and the specific disease situation.

I.4.3. Recent Advances in Plant Disease Management

Some of the recent advance techniques and approaches used in Plant Disease

Management:

Integrated Management Strategies: These approaches combine various tools and

practices to enhance disease control and minimize environmental impact [22].

Marker-Assisted Molecular Breeding and Biotechnological Approaches: Marker-

assisted breeding allows precise selection of disease-resistant traits, while biotechnological

methods like CRISPR-Cas and RNAi offer targeted gene modifications [23]. These tools aid in

detecting and identifying plant pathogens, crucial for effective disease management [24].

Nanotechnology Applications: Nanotechnology is increasingly used in plant disease

management, with nano-based sensors detecting pesticide residues and mycoflora [16],

Nanoparticles can enhance plant defense mechanisms [25].

Chapter I: State of The Art - Plant Diseases

15

Electronic Monitoring (E-monitoring): This technology provides real-time data on

disease spread, enabling timely interventions [26]. Furthermore, disease forecasting models and

computer simulations are crucial for surveillance and mapping [16].

In summary, a multifaceted approach that integrates modern technologies, sustainable

practices, and eco-friendly alternatives is essential for effective plant disease management.

I.5. Precision agriculture

Agricultural and forestry experts traditionally identify diseases and pests, but this

method is subjective, time-consuming, and inefficient. Modernizing agriculture to increase

efficiency and profitability has led to significant changes in practices. These include intensified

land use, new crop management techniques, modern cultivars, changes in food preferences and

policies, evolving trade regulations, and increased international movement of goods and people.

These changes have diverse impacts on the agricultural system [27].

I.5.1. Definition

Precision farming, also known as precision agriculture, is a comprehensive system that

optimizes agricultural production through the application of crop information, advanced

technology, and management practices [28]. It involves the use of information and technology-

based farm management systems to identify, analyze, and manage spatial and temporal

variability within fields for optimum productivity and profitability [29]. This approach is based

on variable soil and microclimate conditions within fields and is guided by technologies such

as Global Positioning Systems (GPS), digital maps, Geographic Information Systems (GIS),

and computers on-board agricultural vehicles [30]. Recent advancements in precision farming

include the integration of technical equipment, automation, and robotics to achieve autonomous

robotized systems [31]. Thus, customizing farming practices to accommodate this variability

can enhance outcomes and mitigate undesirable effects [32]. Figure I.9 depicts various

technological advancements in precision agriculture, highlighting the integration of modern

technologies such as smartphones, drones, sensors, and automated machinery. These tools

facilitate real-time data collection and analysis, enhancing decision-making processes and

optimizing agricultural practices.

Chapter I: State of The Art - Plant Diseases

16

Figure I.9. Precision agriculture: Integrating technology for optimized farming [33]

I.5.2. Diverse technologies in precision agriculture

Precision agriculture leverages a wide range of cutting-edge technologies to improve

the efficiency and sustainability of farming practices. These technologies include:

a. Satellite and remote sensing technologies

Agriculture depends on factors such as soil composition, weather, temperature, rainfall,

crop growth stages, and topography. Satellites and space-borne technologies allow for easy

monitoring of these variables from computer displays, providing data for strategic agricultural

interventions. The use of satellites in agriculture is growing, evolving from data collection to

precise farming activities like using GPS-equipped tractors for harvesting. Satellites primarily

generate accurate geospatial data on farmlands and crops using multiple satellites and

trilateration. Equipped with efficient sensors, satellites monitor and measure key agricultural

variables, making them essential tools in modern farming practices [34]. Figure I.10 shows a

satellite using remote sensing to gather data from an agricultural field.

Chapter I: State of The Art - Plant Diseases

17

Figure I.10. Satellite scanning a field [35]

b. Drones and UAVs

Drones are increasingly utilized within the realm of agriculture as a component of a

comprehensive sustainable farming strategy, enabling agronomists and farmers to facilitate the

optimization of processes while acquiring crucial insights on their crops through detailed data

analysis and topographical assessments. Specifically, the monitoring of crops is streamlined by

the data obtained from agricultural drones, which is subsequently utilized in the development

and execution of ongoing improvements such as adjustments in fertilizer application or drainage

positioning. By utilizing GPS coordinates at different intervals throughout the journey, as

opposed to labor-intensive and time-consuming data collection methods, food can be accurately

traced from the farm to the consumer's plate. Within agriculture, drones can be integrated with

various imaging technologies including hyperspectral, multispectral, and thermal imaging,

among others, to provide farmers with timely and location-specific details regarding crop

vitality, fungal outbreaks, growth impediments, and more. Unmanned Aerial Vehicles (UAVs)

prove to be highly efficient in meticulously monitoring vast stretches of agricultural terrain,

considering factors such as slope and elevation, for example, in order to determine the most

optimal planting schedule. Notably, the high-resolution data obtained from drones can be

leveraged to assess the fertility levels of crops, enabling agronomists to precisely apply

fertilizers, minimize wastage, and develop or enhance irrigation systems [36].

Chapter I: State of The Art - Plant Diseases

18

Table I.1 presents a comparative analysis of drones and satellites in the context of

agricultural precision, highlighting several key differences, while satellites offer extensive

coverage and are suitable for large-scale monitoring, drones provide higher spatial resolution,

up-to-date data, and detailed 3D modeling capabilities. This makes drones particularly valuable

for precise, localized agricultural applications.

Category Satellite Drone

Cost High, per use Low, cost of the drone

Speed Wait for satellite Deploy on command

Temporal Resolution Out-of-date Up-to-date

Spatial Resolution 25 cm resolution Centimeter-level accuracy

with RTK

Map Area Unlimited 3 km² in one flight

3D Models and Point

Clouds

No Yes

Table I.1. A comparison between satellites and drones in agriculture [37]

c. Smartphone application

The outbreak of Artificial Intelligence (AI) has significantly advanced precision

agriculture, revolutionizing how farmers monitor and manage their crops. Leveraging the power

of AI, smartphone applications have emerged as indispensable tools in modern farming

practices. Smartphone applications play a crucial role in precision agriculture by providing

farmers with advanced tools for monitoring and managing their crops. These applications

leverage the various sensors embedded in smartphones, such as motion, image, environment,

and position sensors, to support real-time farming activities efficiently and at a low cost. The

applications can be categorized into several groups, including agriculture management

information, resource information, calculators, news, weather updates, and m-government

services (mobile government). Specific apps focus on tasks like crop monitoring, disease

detection, pest management, and soil analysis, offering functionalities that range from basic

data recording to sophisticated data analytics and machine learning capabilities.

Chapter I: State of The Art - Plant Diseases

19

This integration of smartphone technology into agriculture not only enhances the

accuracy and efficiency of farming practices but also provides a cost-effective solution for

small-scale and resource-constrained farmers. Figure I.11 illustrates the application of smart

farming technology, showcasing a smartphone displaying agricultural analytics. The phone

screen presents data on crop yield, soil erosion, moisture stress, and soil cultivability.

Surrounding icons represent key aspects of agriculture such as location tracking, weather, water

management, plant health, pest control, and crop growth.

Figure I.11. Smartphone usage in precision agriculture [38]

I.6. Conclusion

This chapter explores plant diseases, their types, causes, and significant economic and

environmental impacts. It outlines various management strategies and introduces precision

agriculture, highlighting the role of advanced technologies in disease monitoring and

management. Integrating these modern technologies with traditional methods enhances

agricultural practices, ensuring crop health and contributing to increased productivity and

sustainability.

The following chapter will discuss Machine learning, Deep Learning concepts, and

some lightweight models used in plant disease detection.

Chapter II
State of the Art - Machine

Learning & Deep Learning

Chapter II: State of The Art - Machine Learning & Deep Learning

21

Chapter II: State of the Art - Machine Learning & Deep Learning

II.1. Introduction

Machine Learning (ML) and Deep Learning (DL) are two of the most transformative

technologies of our time, and they are playing increasingly important roles in our lives. They

are used in a variety of areas such as healthcare, business, finance, education, and more, and

have the potential to drastically alter how we interact with the world around us.

This chapter will provide an overview of these two fields, including their history,

applications, and recent advancements. We will also discuss the differences between machine

learning and deep learning, and how they are used in various industries. By the end of this

chapter, readers should have a solid understanding of machine learning and deep learning and

be ready to dive deeper into these exciting areas of study.

Toward the end of this chapter, we will present a state-of-the-art review on the

application of Machine Learning and Deep Learning in plant disease detection.

II.2. Machine Learning

In 1959, Arthur Samuel, a prominent computer scientist and pioneer in the field of

machine learning, defined machine learning as the “field of study that gives computers the

ability to learn without being explicitly programmed” [39]. This definition emphasizes the

autonomous nature of learning in machines.

Tom Mitchell, in his book dedicated to machine learning, characterized machine

learning as "the study of computer algorithms that allows computer programs to automatically

improve through experience" [40]. Learning, according to Mitchell, occurs when a computer

program demonstrates improved performance in a defined set of tasks by learning from a

specific set of experiences.

Machine learning, a subset of artificial intelligence, equips computers and machines

with the capability to assimilate information from data sets and utilize this knowledge to execute

similar tasks without the need for explicit programming.

The categorization of ML algorithms commonly encompasses supervised and

unsupervised learning, along with additional variations like reinforcement learning and semi-

supervised learning [41].

Chapter II: State of The Art - Machine Learning & Deep Learning

22

II.2.1. Machine Learning approaches

II.2.1.1. Supervised learning

Supervised learning is the learning process where the output variable is known. The

training process requires the explicit use of the variable's output. In supervised learning, data

has labels. To put it simply, you are aware of the outcome you are aiming for. The algorithm

has a specific goal or result that it aims to forecast from a set of factors that influence it

(independent variables). By utilizing these specified parameters, a function is created that links

inputs to expected results. Figure II.1 depicts the training process, which continues until the

model reaches the desired level of accuracy on the training data. In the current era, data is

essential for training and improving your models’ learning capabilities. Nevertheless, the

proportion of data changes depending on its size [42].

Figure II.1. Supervised learning [42]

II.2.1.2. Unsupervised learning

Unsupervised learning is a type of machine learning that identifies patterns and

structures in data without any prior knowledge of the outcome. It clusters data based on

similarities and identifies hierarchies among those clusters. It does not rely on pre-labeled

datasets, making it useful for tasks with unknown outcome variables. It is commonly used for

customer segmentation, identifying clusters among groups of customers [42].

II.2.1.3. Semi-supervised learning

In semi-supervised learning, a small amount of labeled data is combined with a large

amount of unlabeled data during training. Some supervision guides the model despite the

majority of data being unlabeled, leading to improved learning accuracy [41].

Chapter II: State of The Art - Machine Learning & Deep Learning

23

II.2.1.4. Self-supervised learning

Self-supervised learning, dubbed “the dark matter of intelligence” [43] is a variant of

unsupervised learning used to address image annotation challenges. It involves creating pretext

tasks to replace human-labeled data with computed pseudo-labels from raw input. In this

process, the model learns one input part from another part. The main concept is to generate

supervisory signals by interpreting unlabeled data in an unsupervised manner during the initial

iteration [44].

II.2.1.5. Reinforced learning

Reinforcement learning involves agents learning from interactions. It includes agents,

environments, and rewards. Agents observe, act, and sequentially receive feedback. The aim is

to learn an optimal policy for maximizing rewards [44].

II.3. Gradient Boosting Tree

GBT is a tree-based ensemble algorithm. Boosting is used to create a strong learner from

weak learners in GBTs. Decision trees are trained sequentially with each succeeding tree

reducing the error of the previous one. Residuals of the previous model are used to fit the next

model in GBTs. The residual correction process is repeated for a set number of iterations

determined by cross-validation until residuals are minimized [45].

II.3.1. LightGBM

On October 17, 2016 [45], LightGBM emerged as a formidable competitor in the realm

of tree-based gradient boosting within Microsoft’s Distributed Machine Learning Toolkit

(DMTK) initiative. Its design prioritizes speed and distribution, leading to accelerated training

speed and minimal memory consumption. The platform encompasses support for GPU

utilization, parallel learning, and adept handling of substantial datasets.

Numerous benchmarks and experiments with public datasets have demonstrated

LightGBM's superior speed and accuracy over XGBoost. Through the implementation of

histograms for binning continuous features, LightGBM gains various performance benefits,

such as decreased memory usage, lower computation costs for split gain calculation, and

reduced communication overhead in parallel learning. Furthermore, LightGBM enhances its

performance by employing histogram subtraction on a node's sibling and parent to compute the

node's histogram.

Chapter II: State of The Art - Machine Learning & Deep Learning

24

Decision tree training typically follows two primary strategies: level-wise and leaf-wise

growth. While level-wise growth represents the conventional approach in most tree-based

ensembles like XGBoost, LightGBM has introduced the leaf-wise growth strategy. In contrast

to level-wise growth, leaf-wise growth often achieves faster convergence and lower loss

rates [45]. The difference between Level-wise growth and leaf-wise growth is presented in

Figure II.2.

Figure II.2. Level-wise growth vs leaf-wise growth [45]

II.4. Lightweight Models

Lightweight machine learning models are created to be efficient and resource-friendly,

making them ideal for deployment on devices with limited resources. They are crucial for

deploying machine learning solutions on resource-constrained devices like mobile phones, edge

devices, and embedded systems. These models balance complexity and computational

efficiency to achieve reasonable performance while minimizing the computational burden. Here

are some lightweight models we will discuss in detail in this chapter; MobileNet, CNNLite,

TinyML, MobileViT. Key characteristics include:

• Reduced Parameters: These models have fewer learnable parameters than their larger

counterparts, reducing memory footprint and inference time.

• Simplified Architectures: Streamlined architectural choices, such as depth-wise

separable convolutions, group convolutions, or factorized convolutions, enable efficient

feature extraction.

Chapter II: State of The Art - Machine Learning & Deep Learning

25

• Quantization and Pruning: Techniques like quantization (reducing the precision of

weights and activations) and pruning (removing unimportant connections) further

reduce model size.

• Knowledge Distillation: Lightweight models can be trained using knowledge

distillation, where a larger pre-trained model (teacher) guides the training of a smaller

model (student), see Figure II.3 [46].

Figure II.3. Knowledge distillation [46]

II.5. Neural Network

II.5.1. Biological Neural Network

The brain is composed of interconnected nerve cells called neurons. It has around 10

billion neurons and 60 trillion synapse connections. Multiple neurons working together make

the brain faster than computers. Neurons are simple but powerful, with a soma, dendrites, and

an axon as illustrated in Figure II.4. Neurons communicate through electrochemical reactions

and exhibit plasticity. Neural networks learn and process information globally. Strengthened

connections lead to learning, while weakened ones diminish. Neural networks learn through

experience, like biological neural networks. Emulating biological neural networks is attempted

in computer systems [47].

Chapter II: State of The Art - Machine Learning & Deep Learning

26

Figure II.4. Biological Neural Network [47]

II.5.2. Artificial Neural Network

Artificial neural networks, or ANNs, are computational models that draw inspiration

from the complex web of neurons in a mammal’s nervous system. These networks are

composed of layers of interconnected neurons that communicate with each other to perform

computations.

The inception of ANNs can be traced back to the 1950s with the introduction of the

perceptron model, followed by the development of the back-propagation algorithm in the late

1960s. Some scholars suggest that the origins of these techniques might be even older.

The study of neural networks was a major focus of research until the 1980s. However,

the dawn of the 21st century saw a resurgence in interest, spurred by the advent of rapid learning

algorithms, the availability of Graphics Processing Units (GPUs) for computation, and the

abundance of data. This renewed interest paved the way for the evolution of Deep Learning,

characterized by networks with over 200 layers.

Chapter II: State of The Art - Machine Learning & Deep Learning

27

The structure of deep learning networks mirrors the layered organization of the human

visual system. The visual cortex, V1, is responsible for basic image properties, with billions of

connections. Subsequent visual areas like V2, V3, V4, and others process more complex

concepts like shapes and faces. Deep learning draws inspiration from this hierarchical visual

system organization [48]. Figure II.5 displays a schematic drawing of an Artificial Neural

Network.

Figure II.5. Artificial Neural Network [47]

II.5.2.1. Multi-Layer Perceptron

A multilayer perceptron is among the methods in machine learning used to solve various

problems. It has a reasonably simple and understandable structure. MLP must have at least three

layers, the input data, weights, and biases, and an activation function. The neurons of one layer

transmit the output to the next layer’s neurons with the help of the adaptive weight coefficients.

After each neuron’s output is multiplied by the weight coefficient, a non-linear activation

function is applied to get its final value, often as a sigmoid or hyperbolic tangent. Weights are

then re-evaluated using an error function at the end of the training process, and the weights are

multiplied by the learning rate and the error in each epoch. The process is repeated until the

calculated weights are the last, the number specified before training [49].

II.6. Deep Learning

Deep learning, being a subset within the realm of machine learning and artificial

intelligence, leverages deep, multilayered artificial neural networks. Numerous advancements

in artificial intelligence can be attributed to this field. The efficacy of deep learning is most

pronounced when tackling intricate issues, although it can also handle simpler classification

tasks [50]. In specific domains, deep learning has empowered machines to rival or sometimes

exceed human capabilities [45].

Chapter II: State of The Art - Machine Learning & Deep Learning

28

II.6.1. Convolutional Neural Networks (CNNs)

A convolutional neural network (CNN) is a specialized form of neural network designed

for image analysis, with the capability to also process audio and text data. In contrast to fully

connected (dense) layers, where each neuron connects with all neurons in the preceding layer,

CNNs arrange neurons in three dimensions: height, width, and depth. Through the utilization

of convolutional layers, CNNs can detect local patterns like textures and edges, resulting in

reduced parameter size and mitigated risks of overfitting compared to dense layers [45].

CNNs demonstrate notable efficacy in image classification due to their spatial

consciousness, mirroring the hierarchical organization of the visual cortex in the human brain.

This enables them to interpret data ranging from individual pixels to intricate characteristics

such as objects and facial features. These networks have quickly become a disruptive

technology, setting new performance benchmarks in various domains beyond image

processing [48].

II.6.1.1. Convolutional Neural Networks architecture

The architecture of the Convolutional Neural Network consists of multiple layers

responsible for extracting and acquiring significant features from the input data, thereby

facilitating classification through the efficient representation of the input data. Figure II.6

illustrates a depiction of a Convolutional Neural Network Architecture.

Figure II.6. Convolutional Neural Networks architecture [44]

Chapter II: State of The Art - Machine Learning & Deep Learning

29

• Convolution layer

The fundamental components of CNNs are the convolutional layers, which are

responsible for applying learnable filters (referred to as kernels) to the input data through

convolution operations. These filters are designed to identify particular features or structures

within the input, such as edges, textures, or shapes. Through the utilization of multiple filters,

the network is capable of acquiring hierarchical representations that exhibit greater levels of

complexity, the convolution operation is illustrated in Figure II.7 [44].

Figure II.7. Convolution operation [51]

• Pooling layer

The pooling layer plays a crucial role in subsampling the feature maps generated by

convolutional operations. Its main goal is to reduce the size of the feature maps while retaining

the significant features at each pooling stage. The pooling operation involves assigning stride

and kernel sizes, and there are various types of pooling methods available, including max, min,

and GAP pooling. While Figure II.8 demonstrates these three techniques, other methods such

as tree pooling, gated pooling, and average pooling can be used.

However, it is worth noting that the pooling layer may sometimes decrease the overall

performance of the CNN model. This is because it focuses solely on identifying specific

features' accurate locations and may overlook other essential information [52].

Chapter II: State of The Art - Machine Learning & Deep Learning

30

Figure II.8. Three types of pooling operations [52]

• Flatten layer

The flattening layer transforms a two-dimensional matrix into a one-dimensional vector

before the input of the data into the fully connected dense layer [45].

• Fully connected layer

Adding a Fully Connected layer (also known as a Dense layer) allows learning non-

linear combinations of high-level features from the convolutional layer. The fully connected

layer learns non-linear functions in that space. Flattening an image into a column vector

prepares it for a Multi-Level Perceptron. The flattened output is used in a feed-forward neural

network with backpropagation during training. Through epochs, the model can distinguish

between different features in images and classify them using Softmax Classification, which

assigns probabilities to each class and selects the most likely class for a given input [53].

o Dropout layer

Dropout, a common regularization method, is employed in neural networks to combat

overfitting. Overfitting in CNNs often occurs due to a high number of trainable parameters. A

pre-set dropout rate determines the likelihood of a neuron being excluded during training,

addressing overfitting. This rate is referred to as the dropout rate [41].

Chapter II: State of The Art - Machine Learning & Deep Learning

31

II.6.1.2. Activation function

• ReLu function

ReLU (Rectified Linear Unit), setting negative values to zero. ReLU helps the output of

a convolutional layer contain only positive values, aiding learning and reducing vanishing

gradients (Figure II.9). ReLU is popular in CNNs for its simplicity, efficiency, and accuracy

improvement on various tasks.

The function is defined by:

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) II.1

Figure II.9. ReLU activation function operation process [54]

• Softmax Function

 In the field of machine learning, the Softmax function is a commonly employed

mathematical function that converts numerical values into a probability distribution. The

function generates a vector that signifies the probability distributions of various potential

outcomes. This method is utilized to standardize the network's output into a probability

distribution among predicted output classes [55], [56].

The function is defined by:

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ ⬚𝑘
𝑗=1 𝑒

𝑧𝑗
 II.2

Categorical Cross-Entropy Loss Function

 The categorical cross-entropy loss function, also known as Softmax loss, is commonly

used for multi-class classification problems. It measures the performance of a classification

model whose output is a probability value between 0 and 1.

The function is defined by:

 𝐿𝑜𝑠𝑠 = − ∑ ∑ 𝑦𝑖,𝑐log (�̂�𝑖,𝑐)𝐶
𝑐=1

𝑛
𝑖=1 II.3

Chapter II: State of The Art - Machine Learning & Deep Learning

32

II.6.1.3. CNN Models

Numerous CNN models have been developed by scholars in previous studies. These

models exhibit varied architectures characterized by differences in layer dimensions, the overall

quantity of layers, types of layers, and interconnections among layers [57]. Some of the most

popular models include AlexNet, VGGNet, GoogleNet, ResNet, and EfficientNet

(Figure II.10).

Figure II.10. Timeline of CNN models [58]

Lightweight and performance-efficient inference models have also been deployed

applications in resource-constrained devices through the utilization of software libraries and

Application Programming Interfaces (APIs). These libraries/APIs incorporate a variety of

kernels and quantization techniques aimed at minimizing the memory and computational

demands of conventional machine learning (ML) models [59].

▪ MobileNetV2

MobileNetV2 is a convolutional neural architecture design renowned for its efficient

performance on mobile devices. It is based on a suboptimal residual architecture, where the

primary connections exist between the bottleneck layers. The central expansion layer channels

serve as a form of non-linearity through the utilization of lightweight depth-wise convolutions.

In essence, the structure of MobileNetV2 consists of an initial 32-channel fully convolutional

layer, succeeded by 19 residual bottleneck layers [60] (Figure II.11). MobileNet is a favorable

Chapter II: State of The Art - Machine Learning & Deep Learning

33

option when seeking an equilibrium between a sophisticated, high-performing deep neural

network and efficiency [61].

Figure II.11. The MobileNetV2 network architecture [62]

II.6.1.4. Advantages and Disadvantages of Convolutional Neural Networks

• Advantages

➢ A notable advantage of this approach is its high level of precision.

➢ This method is specifically crafted to handle visual data.

➢ It can hierarchically capture spatial characteristics [63].

• Disadvantages

➢ Requires large amounts of labeled data.

➢ High computational costs.

➢ Optimizing this model can be challenging due to the extensive parameter scale [63].

II.6.2. Transfer Learning

Based on our collective expertise, individuals possess the capacity to acquire novel

expertise with ease. Our aptitude for learning is heightened, particularly when the current task

aligns with our prior experiences. To illustrate, mastering a new programming language for a

computer expert or operating a different kind of vehicle for an experienced driver is notably

uncomplicated, drawing from our established knowledge.

Chapter II: State of The Art - Machine Learning & Deep Learning

34

Transfer learning is a domain within Machine Learning that strives to leverage the

acquired insights from addressing a particular issue to tackle a distinct yet interconnected

problem [64].

Transfer learning occurs when knowledge or skills obtained in one specific area,

referred to as the source, are utilized in another region, known as the target. An illustration of

this concept is the application of a CNN which has been trained on a substantially labeled

dataset, to a different dataset that connects with the original training data. This practice holds

particular significance in image analysis, especially when CNNs trained on the extensive

ImageNet database are directly employed in other image analysis tasks within a specific

domain, or are retrained using relatively small datasets with minimal adjustments from this new

domain [60]. Figure II.12 illustrates the difference between Traditional machine learning and

Transfer learning.

Figure II.12. Traditional machine learning vs Transfer learning [65]

II.6.2.1. How Transfer Learning Works

• Pre-trained Model: Start by utilizing a model that has undergone prior training for a

specific task with a vast amount of data. Often trained on substantial datasets, this model

has recognized overarching characteristics and trends applicable to various associated tasks.

• Transfer Layers: Refer to a group of layers identified in the pre-existing model, which are

responsible for capturing fundamental information that applies to both the new task at hand

and the original task. These particular layers are inclined towards acquiring basic details

and are commonly situated close to the uppermost part of the network.

Chapter II: State of The Art - Machine Learning & Deep Learning

35

• Fine-tuning: Involves the utilization of the dataset obtained from the recent challenge to retrain the

selected layers, a process that is explicitly labeled as fine-tuning. The primary objective of this

approach is to maintain the existing knowledge acquired during pre-training, thereby allowing the

model to adjust its parameters to align more effectively with the requirements of the present

task [66].

II.6.3. Transformers

Transformers represent a category of Deep Learning models that brought about a

paradigm shift in the field of natural language processing (NLP) by supplanting traditional

recurrent neural network designs such as LSTMs. In contrast to LSTMs, which sequentially

process elements within a sequence, transformers leverage an attention mechanism to enhance

the handling of sequential data, leading to heightened efficiency and remarkable achievements

in NLP assignments.

The proliferation of transformer models has exerted a profound influence on machine

translation (MT), ushering in a new era of Neural Machine Translation (NMT) driven by the

capabilities of transformers. Noteworthy are the multilingual transformer models that have

surfaced to tackle the complexities inherent in language processing tasks, thereby influencing

the evolution of expansive language models (LLMs) and attention mechanisms across a

spectrum of applications [67].

Expanding beyond the realm of NLP, transformers have made inroads into the domain

of image processing through innovative architectures like the Vision Transformer (ViT). The

ViT framework dissects images into smaller patches, incorporates positional embeddings, and

applies a conventional transformer encoder to process the information. While originally

conceived for NLP purposes, transformers have demonstrated significant performance gains

over conventional convolutional neural networks (CNNs) particularly in scenarios involving

vast datasets, underscoring their adaptability across diverse domains beyond conventional

language-centric activities [68].

The foundation of the transformer architecture resides in the concept of self-attention,

which serves as the fundamental building block of transformer models. Self-attention enables

the model to evaluate the importance of various elements in the input sequence about each

other, leading to the creation of contextualized representations that encompass dependencies

throughout the entire sequence. Through this mechanism, transformers are capable of

concurrently processing input data, thus enhancing their scalability and efficiency.

Chapter II: State of The Art - Machine Learning & Deep Learning

36

The architecture of the transformer comprises a framework with an encoder-decoder

structure, where each element consists of numerous layers of self-attention and feed-forward

neural networks (Figure II.13).

During the processing of the input sequence, the encoder generates intricate contextual

embeddings, while the decoder utilizes these embeddings to produce the output sequence

incrementally.

Vision Transformers belong to a category of models that adapt transformer principles,

initially designed for NLP tasks, to the realm of computer vision. The key components include:

• Patch embedding: Vision Transformers initiate by partitioning an input image into

patches of fixed sizes, which are subsequently flattened and linearly transformed into

embeddings, similar to tokens in NLP. This procedure converts the 2D spatial data of

the image into a 1D token sequence suitable for transformer processing.

• Positional encoding: To preserve the positional details lost during patch embedding,

Vision Transformers integrate positional encodings into the patch embeddings, ensuring

the model can consider the position of each patch within the image.

• Transformer encoder: Comprising alternating layers of multi-head self-attention and

feed-forward neural networks, the transformer encoder enables the model to evaluate

the significance of different patches about each other, capturing both local and global

connections.

• Multi-head self-attention: Through the utilization of multi-head self-attention, the

transformer encoder enables the model to focus on diverse areas of the image

concurrently, facilitating the capture of a wide range of features.

• Feed-forward neural networks: Positioned between self-attention layers, these

networks apply additional transformations to the sequence of patch embeddings.

• Layer normalization: Within the encoder, normalization techniques are implemented

to enhance learning stability and convergence.

• Classification head: Positioned at the apex of the transformer, a classification head

(often a basic linear layer) is utilized to make predictions based on the encoded image

representations. ViTs use components like self-attention to process images similar to

how transformers handle sequential data. The scaled dot-product attention is crucial in

the multi-head self-attention of transformers and ViTs.

Here is how it works:

Chapter II: State of The Art - Machine Learning & Deep Learning

37

o It compares each query with keys using dot product to determine the focus on values.

o Scores are scaled down to prevent small gradients in Softmax due to large key

dimensions.

o Softmax function converts scaled scores into a probability distribution, reflecting the

importance of each value based on query-key similarity.

The weighted sum of values using Softmax weights produces the output sequence with attention

applied, incorporating information from other parts of the sequence [69].

Figure II.13. Vision Transformer architecture [68]

II.7. Lightweight Models in Plant Disease Detection

This work focuses on lightweight models due to their significant advantages, including

reduced computational requirements and faster processing times. These features make them

particularly suitable for deployment on resource-constrained devices such as mobile phones

and embedded systems. Table II.1 summarizes several lightweight models used in plant disease

detection, highlighting their architectures, datasets, and achieved accuracies.

Chapter II: State of The Art - Machine Learning & Deep Learning

38

Author
Yea

r
Algorithms Dataset

Main

findings

Memory

Requirement

Anita Shrotriya, et al

[70]
2023

lightweight Deep

Convolutional Neural

network model

Plant Village 97.73% /

Guan, Fu et al [71] 2023 Dise-Efficient model Plant Village 99.80% /

Feng, Song et al [72] 2023
isotropic CNN model,

FoldNet
Plant Village 99.84% /

Wang, Zhang et al [73] 2023

Ultra-lightweight

efficient network,

ULEN

Plantvillage,

Cassava,

98.13%,

54.97%
/

Sanida, Sanida et al [74] 2023
Lightweight CNN

model

PlantVillage

(Tomato)
99.04% /

Fang, Zhen et al [75] 2023

Lightweight

Multiscale CNN

Model

LWDCD2020

(wheat)
98.7% /

Verma, Kumar et al [76] 2023
Unified lightweight

CNN model

Corn, Rice,

and Wheat

The model

achieved 99.74%,

82.67%, and

97.5% accuracy

for Corn, Rice,

and Wheat,

respectively.

/

Huang, Wu et al [77] 2023

YOLOR-Light-v1,

YOLOR-Light-v2,

Mobile-YOLOR-v1,

and Mobile-YOLOR-

v2 models

PlantDoc

Achieved

60.4%

mAP@ .5 in

the PlantDoc

/

Liu, Song et al [78] 2023

NanoSegmenter model

based on the

Transformer structure

Collected

dataset
98% /

Thakur, Khanna et al

[79]
2022 lightweight PlantXViT

model combines CNN

Five datasets

Average accuracy

of 93.55%,

92.59%, and

98.33% on Apple,

Maize, and Rice

/

Chapter II: State of The Art - Machine Learning & Deep Learning

39

with Vision

Transformers

datasets,

respectively.

S. Wagle, et al. [80] 2021 compact convolutional

neural networks (N1,

N2, N3)

Plant Village N1: 99.45%

N2: 99.65%

N3: 99.55%

N1, N3: 14.8

MB

N2: 29.7 MB

Yang Liu, et al. [81]. 2021 CNN based on

SqueezeNet

Plant Village 98.46% 0.62 MB

Muhammad Hammad

Saleem, et al. [82]

2020 SSD, RCNN, and

RFCN

Plant Village 73.07% /

Table II.1. Lightweight models in plant disease detection

II.8. Conclusion

This chapter has explored some of the most cutting-edge and dependable methodologies

in machine learning (ML) and deep learning (DL). Specifically, we focused on the most

commonly used lightweight models for plant disease detection within these fields.

The subsequent chapter will discuss the hyperparameters and the evaluation metrics.

Chapter III

Fine-tuning and Evaluation

Metrics

Chapter III: Fine-tuning and Evaluation Metrics

41

Chapter III: Fine-tuning and Evaluation Metrics

III.1. Introduction

In the previous chapters, we reviewed the state-of-the-art advancements in plant disease

detection using deep learning.

This chapter delves into fine-tuning deep learning models for detecting plant diseases,

emphasizing key hyperparameters for CNNs, Transformers, and LightGBM. It also discusses

various evaluation metrics like confusion matrices, accuracy, precision, recall, and F1 score to

gauge the performance of classification models with imbalanced data.

III.2. Hyperparameters

Hyperparameters are parameters controlling model structure and learning process. They

are top-level parameters. Examples include train-test split ratio, learning rate, activation

function choice, cost function, number of layers and units, dropout rate, iterations, kernel sizes,

pooling size, and batch size. Hyperparameters are classified into different categories.

III.2.1. CNN hyperparameters

a) Hyperparameters related to network structure

1. Number of hidden layers

Determines the profundity of the neural network. Increased layers can capture more

intricate patterns but also elevate the likelihood of overfitting and computational cost.

2. Number of activation units (Neurons) in each layer

Specifies the width of the network. Augmented neurons can enhance the network's

capability to glean insights from data, yet they also contribute to the computational load.

3. Choice of activation function

Typical options comprise Sigmoid and ReLU. The choice of activation function impacts

the network's learning capability and its problem-solving aptitude. For instance, ReLU is

extensively utilized due to its effectiveness in mitigating the vanishing gradient problem.

4. Kernel or filter sizes in convolutional layers

Chapter III: Fine-tuning and Evaluation Metrics

42

The size of the filters (e.g., 3x3, 5x5) employed in the convolutional layers. This factor

influences the receptive field of neurons and the specificity of feature detection.

5. Pooling size

The size of the pooling window (e.g., 2x2) utilized in pooling layers. Pooling assists in

reducing the spatial dimensions of the input, thereby decreasing the computational burden and

helping to improve the translation invariance of the representation.

6. Dropout rate (Dropout probability)

A regularization method to forestall overfitting by randomly setting a portion of input

units to 0 during each update in the training phase.

b) Hyperparameters related to the training process

1. Train-Test split ratio

Determines the ratio of the dataset allocated for training versus testing. A prevalent split

is 80% for training and 20% for testing, although this distribution can vary based on the dataset

and the task. In our case, we use 80% for training, 10% for testing, and 10% for validation.

2. Learning rate

Regulates the step size in the gradient descent optimization process. A higher learning

rate can expedite training but may lead to suboptimal convergence or divergence. Conversely,

a lower learning rate ensures more consistent convergence but can make the training process

slow.

3. Choice of optimization algorithm

Diverse techniques such as Stochastic Gradient Descent (SGD), Adam, and RMSprop

can be employed. Each technique adjusts the learning rate and gradient handling uniquely,

impacting the speed and quality of convergence.

4. Choice of cost or loss function

Determines how the performance of the network is measured. Common loss functions

include Mean Squared Error (MSE) for regression tasks and Cross-Entropy Loss for

classification tasks.

Chapter III: Fine-tuning and Evaluation Metrics

43

5. Number of iterations (Epochs)

The number of times the entire dataset is processed by the network during training. More

epochs can enhance learning but also heighten the risk of overfitting.

6. Batch size

The number of training instances utilized in a single iteration. A larger batch size can

offer more consistent gradient approximations but necessitates more memory, whereas a

smaller batch size can introduce more noise in training while demanding less memory and often

yield better generalization.

Batch Size is among the important hyperparameters in Machine Learning. It specifies

the samples processed before updating model parameters. It is essential for maximizing model

performance [83], [84].

III.2.2. Transformers hyperparameters

a) Hyperparameters related to network structure

1. Number of encoder/decoder layers: Defines the depth of the transformer network. More

layers capture complex patterns but increase computational cost and overfitting risk.

2. Hidden size (d_model): Specifies the dimensionality of input and output vectors. Larger

sizes improve capacity but add computational load.

3. Number of attention heads: Number of parallel attention mechanisms per layer. More

heads improve the model’s ability to focus on different input parts.

4. Feed-forward network size: The number of units in the inner feed-forward network is

typically larger than the hidden size to ensure learning capacity.

5. Activation function: Common choices include ReLU and GELU, affecting learning ability

and performance.

6. Dropout rate: Probability of dropping units during training to prevent overfitting, applied

to attention weights and feed-forward outputs.

b) Hyperparameters related to the training process

1. Learning rate: Controls the optimization step size. Higher rates speed up training but risk

overshooting; lower rates stabilize but slow down training.

2. Batch size: Number of samples per iteration. Larger sizes stabilize gradients but need more

memory; smaller sizes introduce noise that aids generalization.

Chapter III: Fine-tuning and Evaluation Metrics

44

3. Warm-up steps: Initial steps with linearly increasing learning rate to stabilize early

training.

4. Optimizer choice: Algorithms like Adam, AdamW, or RMSprop, each impacting training

speed and convergence quality differently.

5. Weight decay: The regularization technique penalizes large weights to prevent overfitting.

6. Gradient clipping: Limits gradient magnitude to prevent exploding gradients.

7. Label smoothing: Prevents overconfidence by slightly altering target labels, and improving

generalization.

8. Sequence length (Max position embeddings): Maximum input sequence length the model

can handle, balancing context handling and computational complexity.

9. Number of epochs: Total passes through the training dataset. More epochs improve

learning but increase overfitting risk.

10. Cost or loss function: Measures performance and guides optimization. Choices include

Cross-Entropy Loss for classification and Mean Squared Error (MSE) for regression.

III.2.3. LightGBM hyperparameters

a) Core parameters

1. Objective: Defines the type of learning task, in our case, multiclass classification.

2. Boosting type: The boosting algorithm to use is the Gradient Boosting Decision Tree

(gbdt).

3. Num class: Specifies the number of classes in the multiclass classification problem.

4. Metric: The metric used to evaluate the model's performance, set to multi_logloss.

b) Learning control parameters

1. Learning rate: The learning rate controls the step size during gradient descent.

2. Num leaves: The maximum number of leaves in one tree, which controls the complexity

of the model.

3. Verbose: Controls the verbosity of the training process. A value of -1 suppresses most

of the output [85].

III.3. Evaluation metrics

Assessment measures are employed to evaluate the efficacy of the model. An essential

aspect within the realm of deep learning pertains to the methodology utilized for model

Chapter III: Fine-tuning and Evaluation Metrics

45

evaluation. The assessment of the model's predictive accuracy stands out as a fundamental

factor to consider in the model's developmental stage. Inadequate model assessment and

improper employment of assessment measures can lead to erroneous predictions, particularly

in scenarios involving imbalanced datasets. Therefore, it is advisable to utilize a diverse range

of evaluation metrics, as outlined below [48].

III.3.1. Confusion matrix

In classification, data points are labeled and compared to predicted classes. Results are

categorized into true positive, true negative, false positive, and false negative. These values are

used for evaluation metrics in classification tasks and are usually shown in a confusion matrix

table [48] (Table III.1).

 True Class

 Positive Negative

P
re

d
ic

te
d

 C
la

ss

P
o
si

ti
v
e

TP FP

N
eg

at
iv

e

FN TN

Table III.1. Confusion matrix.

III.3.2. Accuracy

Accuracy is an evaluation metric for classification models. It is defined as the number

of correct predictions divided by the total number of predictions. Accuracy is not the ideal

metric in situations where you have imbalanced datasets.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (III.1)

III.3.3. Precision

Precision is characterized as the quotient of true positives to the sum of true positives

and false positives. It indicates the frequency with which the model makes accurate

Chapter III: Fine-tuning and Evaluation Metrics

46

predictions when, they are positive. Precision is a valuable metric in situations with high

repercussions of false positives.

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (III.2)

III.3.4. Recall

Recall is a valuable metric to employ when the repercussions of false negatives are

significant. It is characterized as the quotient of true positives divided by the sum of true

positives and false negatives.

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (III.3)

III.3.5. F1 score

The F1 measure or F1 score combines precision and recall. It is used to evaluate

multiclass classifiers, especially with uneven class distribution. F1 score ranges from 0 to 1. A

good F1 measure indicates low false negatives and false positives. The formula for F1 measure

is:

𝐹1_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) [48] (III.4)

III.4. Conclusion

 This chapter explained the optimization of deep learning models for plant disease

detection. It emphasizes critical hyperparameters tailored for CNNs, Transformers, and

LightGBM, alongside key evaluation metrics like confusion matrices, accuracy, precision,

recall, and F1 score. These metrics are pivotal for evaluating classification model performance,

especially in scenarios involving imbalanced data.

 The following chapter will delve into a case study, presenting our proposed solution and

outlining the design of our application.

Chapter IV

Design, Implementation

& Results

Chapter IV: Design, Implementation & Results

48

Chapter IV: Design, Implementation & Results

IV.1. Introduction

In the previous chapters, we explained the different hyperparameters of CNNs,

Transformers, and LightGBM, as well as key evaluation metrics for said architectures.

This chapter focuses on the practical implementation of a plant disease detection system,

utilizing three deep learning models: MobileNetV2, Vision Transformer (ViT), and

AgriNetBoost. We detail the integration of these models into a web-based application and

present the results through validation examples. A comparative analysis is conducted to

determine the most effective model for plant disease classification.

IV.2. Working environment

The computational hardware employed while building the model comprises a personal

computer with a Linux (Ubuntu) operating system, equipped with an i9 12900KF central

processing unit, an Nvidia RTX 3090 graphics processing unit, and 64 Go of RAM DDR4. The

primary programming language utilized is Python within the Anaconda environment,

leveraging the Jupyter Notebook compiler and supplemented by using Google Colab for certain

tasks. Moreover, for the development and validation stages of the application, a laptop computer

running Windows 10 64-bit operating system, powered by an Intel (R) Core (TM) i5-9300H

CPU at 2.40 GHz and 24GB of RAM, is utilized. Python is used as the programming language

in conjunction with the Streamlit framework.

IV.3. Presentation of the languages used

The model under development pertains to a computer vision task (image classification).

The primary tools utilized in the implementation process include Python as the main

programming language and Streamlit for app deployment. This aligns with the prevalent

practice of leveraging Python and key libraries such as TensorFlow, Keras, Scikit-learn,

NumPy, PyTorch, LightGBM, Transformers, ONNX, and Streamlit in the development of deep

learning models.

Chapter IV: Design, Implementation & Results

49

IV.3.1. Introducing the Python language

Python is an object-oriented, high-level programming language that

provides developers with a versatile tool to efficiently and swiftly carry out tasks

while promoting code readability and maintainability. It offers a wide range of

libraries and frameworks that allow users to seamlessly integrate various systems, enhancing

productivity, and facilitating the development of robust and sophisticated software solutions.

(python website).

IV.3.2. Introducing the imported libraries

• TensorFlow: Developed by members of Google Brain's Machine

Intelligence team, is a versatile open-source platform designed for

machine learning and neural network research. Beyond its original

purpose, TensorFlow has become widely adaptable, finding

applications across various domains. Within its ecosystem, TensorFlow offers a plethora of

tools, libraries, and community resources, plus stable Python and C++ APIs and backward-

compatible APIs for multiple programming languages. These resources empower

researchers to push the boundaries of machine learning and enable developers to easily build

and deploy machine learning-driven applications that can seamlessly adapt to any

computing environment [86].

• Keras: keras is a Simple, Flexible, Powerful multi-backend

deep learning API, written in Python and capable of running

on top of either JAX, TensorFlow, or PyTorch. The benefits

include achieving optimal performance for models, maximizing ecosystem compatibility,

and increasing the distribution of open-source models. Furthermore, Keras supports data

pipelines from different sources, offering flexibility in training models [87].

• LightGBM: Is a framework for gradient boosting that

employs algorithms based on trees. It has been engineered to

exhibit qualities of being both distributed and efficient, boasting advantages such as

accelerated training speed and enhanced efficiency, reduced memory utilization, improved

accuracy, and the ability to support parallel, distributed, as well as GPU learning.

Furthermore, it demonstrates capability in managing data of large scales [88].

Chapter IV: Design, Implementation & Results

50

• Transformers: the library transformers by Hugging Face and

the community is used for cutting-edge Machine Learning in

PyTorch, TensorFlow, and JAX. It offers numerous pre-trained models for tasks in text,

vision, and audio across various modalities [89].

• Pytorch: Is a deep learning framework supported by the

PyTorch Foundation, operating under The Linux Foundation,

which fosters collaboration within the deep learning

community, it engages in various activities to improve user experience and promote AI and

deep learning tools within an open-source ecosystem. The Foundation's mission is to make

advanced tools accessible to everyone [90].

PyTorch provides high-level features such as tensor computation with GPU

acceleration and neural networks with an autograd system (short for automatic

differentiation), simplifying the development of deep learning models [91].

• ONNX: Is an open ecosystem for AI developers to select

tools as projects progress, offering a format for AI

models and a computation graph model. It includes

built-in operators and data type definitions. ONNX is well-supported in various

frameworks, tools, and hardware, promoting interoperability and accelerating AI

innovation. The community is encouraged to contribute and advance ONNX [92].

ONNX Runtime efficiently infers models from different frameworks (PyTorch,

Hugging Face, TensorFlow) on various software and hardware. It utilizes hardware

accelerators, supports multiple language APIs, and works on different devices and

servers [93].

• Streamlit: Being a freely available and collaborative open-source

Python framework, it serves as a valuable tool tailored specifically

for individuals within the data science and artificial

intelligence/machine learning engineering domains, offering them the capacity to create and

distribute interactive data-driven applications that are characterized by their dynamic

nature, all achieved through the utilization of a minimal amount of programming code. This

framework empowers users to swiftly construct and launch robust data applications within

a remarkably short span of time, exemplifying efficiency and effectiveness in the realm of

data visualization and manipulation [94].

Chapter IV: Design, Implementation & Results

51

IV.4. Methodology

IV.4.1. System architecture

The architecture of the plant disease detection system (Figure IV.1) comprises a number

of interconnected steps. Collecting data is initiated by utilizing the “PlantVillage” dataset,

followed by thorough data preprocessing. A trio of models were created: pre-trained CNN

(MobileNetV2), a Vision Transformer model (Google ViT) that was transformed into ONNX,

and a hybrid model AgriNetBoost (LightGBM + MobileNetV2), founded on decision trees. The

evaluation of the models was conducted based on specified performance metrics. The system

has been incorporated with a Streamlit web application, facilitating instantaneous disease

prognosis from downloaded images.

Figure IV.1. Detailed Workflow Diagram

IV.4.2. Used dataset

The dataset encompasses more than 50,000 photographs depicting both healthy and

infected leaves across 14 different crop varieties, which include but are not limited to Apple,

Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell Pepper, Potato, Raspberry, Soybean,

Squash, Strawberry, and Tomato. These images were procured at various research facilities tied

to Land Grant Universities in the United States, such as Penn State, Florida State, and Cornell.

Leaf samples were gathered by technicians from agricultural trials showcasing crops afflicted

with specific ailments, utilizing a conventional digital camera (Sony DSC-Rx100/13 20.2

Chapter IV: Design, Implementation & Results

52

megapixels) to capture multiple images under diverse lighting scenarios. In instances of larger

leaves, multiple segments were photographed. The dataset encompasses visuals of 17 fungal

infections, 4 bacterial infections, 2 mold (oomycete) infections, 2 viral infections, and 1

infection induced by a mite, in addition to illustrations of healthy leaves pertaining to 12 crop

varieties. The images underwent editing procedures involving background cropping and leaf

orientation adjustments to ensure the apex pointed upwards. This dataset facilitates the

advancement of machine learning algorithms for disease identification, with the objective of

harnessing computer vision technology to combat crop yield diminishment resulting from

plants diseases [95]. Figure IV.2 depicts a collection of leaf samples from various plants, each

labeled with the respective disease or condition affecting them.

Figure IV.2. Visual dataset for identification and classification of plant diseases

IV.4.2.1. Dataset sample distribution

In this study, a subset dataset comprising 21,458 images representing three distinct plant

species, namely bell pepper, potato, and tomato, was utilized. The analysis conducted involved

a multi-class pathology examination of the infections affecting these three plant varieties.

Specifically, pepper exhibited two distinct classes, potato demonstrated three classes, and

tomato showcased ten classes. Details regarding the distribution of samples per class are

provided in the table below.

Chapter IV: Design, Implementation & Results

53

Crops Disease Type Number of Images

Pepper Bacterial spot 997

Healthy 1478

Potato Early blight 1000

Late blight 1000

Healthy 152

Tomato Bacterial spot 2127

Early blight 1000

Late blight 1909

Leaf Mold 952

Septoria leaf spot 1771

Spider mites Two-spotted spider mite 1676

Target Spot 1404

Yellow Leaf Curl Virus 3208

Mosaic virus 373

Healthy 1591

Total 15 21458

Table IV.1. Distribution of PlantVillage dataset samples

IV.4.2.2. Dataset advantages

• Diversity of Disease Representation: The dataset contains various plant diseases on

tomato and pepper leaves. It facilitates thorough training of machine learning models to

identify different types of diseases.

• Facilitation of Data Augmentation.

• Real-world Application.

• Educational Resource.

• Open source.

Chapter IV: Design, Implementation & Results

54

IV.4.2.3. Dataset disadvantages

• Class Imbalance: The dataset exhibits notable class imbalance due to certain diseases

being underrepresented. Data augmentation can help address this issue but may not

completely offset the lack of diverse, real-world examples for minority classes.

• Potential for Overfitting: Due to a scarcity of images, particularly for minority classes,

there is a potential for overfitting, causing the model to focus on specific features of the

training images rather than general patterns.

• Scalability Issues: In large-scale applications, expanding the dataset may be necessary.

Acquiring and managing a bigger dataset can be resource and time consuming. This

scalability problem can impede the dataset's widespread use in various regions and

conditions.

• Variability in Image Quality: Variations in image quality, lighting conditions, and

angles impact dataset consistency. Challenges in model training arise due to this

variability, necessitating extra preprocessing for image normalization.

IV.4.3. Dataset preparation

IV.4.3.1. Dataset partitioning

A critical step in the process of data preparation involves partitioning the database into

distinct sets designated for training, validation, and testing objectives. The distribution of data

among these sets is enabled by the Scikit-learn package. In particular, 80% of the data is

assigned to training, while 10% is allocated for validation and another 10% for testing, as

illustrated in Table 05.

Chapter IV: Design, Implementation & Results

55

Crops Disease Type N°= of Images Training Validation test

Pepper

Bacterial spot 997 997 797 100

Healthy 1478 1478 1182 147

Potato

Early blight 1000 1000 800 100

Late blight 1000 1000 800 100

Healthy 152 152 121 15

Tomato

Bacterial spot 2127 2127 1701 212

Early blight 1000 1000 800 100

Late blight 1909 1909 1527 190

Leaf Mold 952 952 761 95

Septoria leaf spot 1771 1771 1416 177

Spider mites Two-

spotted spider mite
1676 1676 1341 167

Target Spot 1404 1404 1123 140

Yellow Leaf Curl

Virus
3208 3208 2566 321

Mosaic virus 373 373 298 37

Healthy 1591 1591 1272 159

Total 15 21458 21458 16505

Table IV.2. Distribution of PlantVillage dataset samples

Chapter IV: Design, Implementation & Results

56

IV.4.3.2. Data preprocessing

The preprocessing conducted in this research encompasses the actions of resizing and

normalizing the data:

• Resizing was carried out to address the variability in image sizes within the dataset. The

images were resized to a standardized dimension of 224x224 for MobileNetV2 and

AgriNetBoost, and to 256x256, which is the original size of the dataset images.

• In terms of normalization, the pixel values underwent normalization by being divided

by 255, which ensured that the pixel intensities fell within the range of 0 to 1.

These preprocessing procedures played a vital role in ensuring the compatibility of the

images with the models utilized in the study.

IV.4.3.2. Data augmentation

Imbalance within the dataset is evident, characterized by an uneven representation of

classes where some have more instances than others, it is essential to accurately identify

minority classes. to ensure that all classes are taken into account equally, and not just the

majority. This requires an increase in the volume of data for each class. A common method

known as “data augmentation” is widely adopted to improve the training dataset by

incorporating modified or synthetic data derived from the existing dataset. The following

section develops this technique.

▪ Random crop: Throughout the training process, this particular process will engage in

a random selection of a specific location for cropping images to a desired target size.

Moreover, it is important to note that all images within a given batch will undergo

cropping at an identical location [96].

▪ Random flip: This stratum will horizontally or vertically flip the images depending on

the mode attribute. In the period of inference, the resulting output will remain

indistinguishable from the initial input [96].

▪ Random translation: During the training process, this particular layer is responsible

for introducing random translations to each image. It accomplishes this task by utilizing

various factors such as height, width, fill mode, interpolation, fill value, and data format

to fill any empty space within the image [96].

Chapter IV: Design, Implementation & Results

57

▪ Random rotation: will implement arbitrary rotations to individual images, thereby

occupying vacant areas. By default, arbitrary rotations are exclusively employed

throughout the training phase. During the inference period, it remains inactive [96].

▪ Random zoom: randomly zooming images during training, this component adjusts

images by zooming in or out independently on each axis and filling any empty space

according to the specified fill mode. Its behavior is controlled by several arguments

height_factor, width_factor fill_mode etc [96].

▪ Random contract: will arbitrarily modify the contrast of an image or multiple images

through a stochastic factor. Contrast is altered autonomously for every channel of each

image while undergoing training. In the case of each channel, it calculates the average

of the image pixels within the channel and subsequently modifies each element of every

pixel.

▪ Random brightness: will arbitrarily augment/diminish the luminosity of the input RGB

images. During the inference stage, the resulting outcome will mirror the initial input.

Figure IV.3. Visualization of data augmentation

Chapter IV: Design, Implementation & Results

58

IV.4.4. Used models

Our system for detecting plant diseases has been created through the design of multiple

pre-trained models and a hybrid model, which incorporates a degree of fine-tuning tailored to

the specific study framework.

1) MobileNetV2

MobileNetV2 is founded on the principles of depth-wise separable convolutions, which

were first introduced in its predecessor MobileNetV1, accompanied by additional

enhancements. The fundamental elements of MobileNetV2 comprise:

• Depthwise Separable Convolutions: This procedure segregates the spatial and

channel-wise convolutions, leading to a notable reduction in computational complexity

and parameter count in contrast to standard convolutions.

• Inverted Residuals with Linear Bottlenecks: MobileNetV2 presents inverted residual

blocks, featuring a slim intermediate layer (bottleneck layer) succeeded by an expansion

layer. This configuration aids in upholding model efficiency and effectiveness.

• ReLU6 Activations: To avert the issue of vanishing gradients, MobileNetV2 adopts

ReLU6 activations as opposed to conventional ReLU.

The model used in this study is a pre-trained MobileNetV2, fine-tuned using the

PlantVillage dataset. We used MobileNetV2 as the base model with pre-trained weights from

ImageNet, keeping its layers non-trainable. On top of this, we added a

GlobalAveragePooling2D layer, followed by dropout layers, a dense layer with ReLU

activation, another dropout layer to mitigate overfitting, and a final dense layer with Softmax

activation to classify the plant disease categories. The model architecture is illustrated in

Figure IV.4.

Figure IV.4. MobileNetV2 model visualization

Chapter IV: Design, Implementation & Results

59

Implementation

The implementation begins with data preprocessing and augmentation to ensure the

model's ability to generalize effectively on unseen data. The dataset is partitioned into training,

validation, and testing subsets. Diverse data augmentation strategies are employed on the

training subset, encompassing random flips, rotations, translations, zooms, as well as

brightness/contrast modifications.

Subsequently, the pre-trained MobileNetV2 model, excluding its top layers, is loaded

and fine-tuned. The top layers are exchanged with a global average pooling layer, followed by

two dense layers.

The model is trained to utilize the Adam optimizer and sparse categorical cross-entropy

loss throughout 10 epochs with early stopping to prevent overfitting. The training and validation

accuracies are observed to detect signs of overfitting. Table IV.3 summarizes the model.

Layer (type) Output Shape Parameters

mobilenetv2_1.00_224

(Functional)
(None, 7, 7, 1280) 2257984

global_average_pooling2d_1

(GlobalAveragePooling2D
(None, 1280) 0

dropout (Dropout) (None, 1280) 0

flatten (Flatten) (None, 1280) 0

dense (Dense) (None, 128) 163968

dropout_1 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 15) 1935

Total params: 2423887 (9.25 MB)

Trainable params: 165903 (648.06 KB)

Non-trainable params: 2257984 (8.61 MB)

Table IV.3. MobileNetV2 model summary

Chapter IV: Design, Implementation & Results

60

2) Google ViT

The Vision Transformer (ViT) introduces a novel approach to image classification by

leveraging the principles of the Transformer architecture, traditionally used for natural language

processing tasks. The key elements of ViT comprise:

• Patch Embedding: The input image is divided into fixed-size patches, and each patch

is linearly embedded into a feature vector. This allows the model to treat patches as

tokens, similar to words in NLP tasks.

• Transformer Encoder: The sequence of patch embeddings is processed by a standard

Transformer encoder, which consists of multi-head self-attention layers and feed-

forward neural networks. This architecture allows the model to capture long-range

dependencies and complex relationships between patches.

• Class Token and Positional Encoding: A special class token is prepended to the

sequence of patch embeddings, and positional encodings are added to retain spatial

information. The output corresponding to the class token is used for classification.

• Layer Normalization and GELU Activations: ViT employs layer normalization to

stabilize the training process and GELU (Gaussian Error Linear Unit) activations to

enhance model performance.

The model used in this study is a pre-trained Vision Transformer (ViT), fine-tuned using

the PlantVillage dataset. The Vision Transformer model's inherent classification head is used

for the task, with data preprocessing and augmentation applied to enhance model generalization.

The model is trained using the Adam optimizer with a sparse categorical cross-entropy loss

over 10 epochs. Training and validation accuracies are monitored to detect overfitting.

Implementation

The implementation begins with data preprocessing and augmentation to ensure the

model's ability to generalize effectively on unseen data. The dataset is partitioned into training,

validation, and testing subsets. Diverse data augmentation strategies are employed on the

training subset, encompassing random flips, rotations, translations, zooms, as well as

brightness/contrast modifications.

Chapter IV: Design, Implementation & Results

61

Subsequently, the pre-trained Vision Transformer (ViT) model, google/vit-base-

patch16-224-in21k, is loaded and fine-tuned. The model is customized for the specific

classification task by setting the number of output labels to match the classes in the PlantVillage

dataset.

The model is trained using the Adam optimizer and sparse categorical cross-entropy

loss over several epochs. Training and validation accuracies are monitored to detect signs of

overfitting. Table IV.5 presents the model summary, including the output shape and parameter

count for each layer:

Layer (type) Output Shape Parameters

ViTModel
(Batch, Patch Embeddings,

768)
-

ViTPatchEmbeddings

(Conv2d)
(Batch, 14, 14, 768) 147 456

ViTEncoder (Layer x 12) (Batch, 14, 14, 768) -

ViTSdpaAttention (Linear) (Batch, 14, 14, 768) -

GELUActivation (Batch, 14, 14, 768) -

Linear (Feed-Forward) (Batch, 14, 14, 768) -

LayerNorm (Batch, 14, 14, 768) -

Classifier (Linear) (Batch, 15) 11 535

Total params: 85,810,191 (327.34 MB)

Trainable params: 85,810,191 (327.34 MB)

Non-trainable params: 0

Table IV.4. Google ViT Model Summary

Chapter IV: Design, Implementation & Results

62

Figure IV.5. Google ViT Model visualization

ONNX

Using ONNX for model conversion and deployment offers significant advantages in

terms of interoperability, optimization, and ease of deployment across different platforms. This

process ensures that the model can be efficiently run in diverse environments, leveraging the

optimizations provided by ONNX Runtime.

3) AgriNetBoost

AgriNetBoost combines the strengths of convolutional neural networks (CNNs) with

the gradient boosting framework to enhance plant disease detection. The hybrid model

integrates MobileNetV2 for feature extraction and LightGBM for classification, aiming to

leverage the deep learning model's feature extraction capabilities and the gradient boosting

model's strong classification performance. Components of AgriNetBoost:

1) MobileNetV2: Used for feature extraction.

o Depthwise separable convolutions: Reduce computational complexity and

parameters.

o Inverted residuals with linear bottlenecks: Enhance efficiency and

effectiveness.

o ReLU6 activations: Mitigate vanishing gradient issues.

2) LightGBM: Used for classification.

o Gradient bosting: Provides strong performance on tabular data.

o Efficient training: LightGBM is optimized for speed and memory usage.

Chapter IV: Design, Implementation & Results

63

✓ Implementation

❖ Data preprocessing and augmentation

The dataset is loaded and augmented to improve the model's generalization ability.

Various transformations, including rotations, translations, zooms, and flips, are applied to the

images.

❖ Feature extraction using MobileNetV2

MobileNetV2, pre-trained on ImageNet, is utilized to extract features from the images.

The features are then fed into the LightGBM model for classification.

❖ Model training

The extracted features are split into training, validation, and testing sets. LightGBM is

trained with a multiclass objective and evaluated using multi-log loss. The training process

includes callbacks to record evaluation metrics (Figure IV.6).

✓ Model summary

❖ MobileNetV2 architecture for feature extraction

• Input Shape: (224, 224, 3).

• Total Parameters: 2,257,984.

• Trainable Parameters: 0 (since MobileNetV2 is used only for feature extraction).

• Non-trainable Parameters: 2,257,984.

❖ LightGBM model for classification

• Objective: Multiclass classification.

• Number of Classes: 15 (corresponding to our dataset categories).

• Boosting Type: Gradient Boosting Decision Trees (GBDT).

• Number of Leaves: 31.

• Learning Rate: 0.05.

• Number of Boost Rounds: 100.

Chapter IV: Design, Implementation & Results

64

Figure IV.6. AgriNetBoost model visualization

IV.5. Results and Discussion

The different results obtained during the build of our system generated the results

described below:

IV.5.1. MobileNetV2 Results

a) Training and Validation Performance

• Accuracy: The model achieved a final training accuracy of 87.95% and a validation

accuracy of 94.14%, indicating good generalization to unseen data.

• Loss: The training loss decreased steadily, and the validation loss was consistently

lower, which is a positive sign of the model's stability.

• Overfitting: No significant overfitting was detected as the training and validation

accuracies were close, and the training loss did not significantly diverge from the

validation loss.

Chapter IV: Design, Implementation & Results

65

Figure IV.7. MobileNetV2 Training and Validation Performance

b) Test Performance

The model's performance is evaluated on the test dataset, achieving an impressive test

accuracy of 95.00%, demonstrating its robustness and effectiveness in classifying plant

diseases (Figure IV.8). The training and validation accuracy and loss curves are plotted to

visualize the model's performance over epochs in Figure IV.9.

Figure IV.8. MobileNetV2 Model evaluation on the test dataset

Figure IV.9. MobileNetV2 plot training and validation accuracy and loss values

c) Accuracy and Loss

Training and Validation Accuracy: The model consistently increases both training and

validation accuracy, indicating effective learning without significant overfitting.

Training and Validation Loss: Both training and validation loss decrease steadily, further

supporting the model's robustness.

Chapter IV: Design, Implementation & Results

66

d) Confusion Matrix and classification report

The confusion matrix and classification report provide a detailed analysis of the model's

performance across different classes, Figure IV.10 illustrates the Confusion Matrix:

Confusion Matrix: Each cell represents the number of predictions made for each class against

the true labels.

❖ Diagonal Cells (True Positives): High values along the diagonal indicate the model's

correct predictions. The darkest cells are:

▪ Tomato Healthy,

▪ Tomato Bacterial Spot,

▪ Tomato Spider Mites Two Spotted Spider Mites.

❖ Off-Diagonal Cells (Misclassifications): Lower values, indicating fewer

misclassifications. Notable misclassifications include:

▪ Potato Early Blight is misclassified as Potato Late Blight.

▪ Tomato Early Blight misclassified as Tomato Bacterial Spot.

Figure IV.10. MobileNetV2 Confusion Matrix

Chapter IV: Design, Implementation & Results

67

Classification Report: The report indicates high precision, recall, and F1 scores for most

classes, highlighting the model's reliability. Figure IV.11 illustrates the Classification Report.

Figure IV.11. MobileNetV2 Classification Report

e) Discussion

The MobileNetV2 model demonstrated strong performance in detecting plant diseases

from images, achieving a high accuracy of 95.00% on the test dataset. The use of data

augmentation helped improve the model's generalization capability, reducing the risk of

overfitting. The high precision, recall, and F1 scores across various classes indicate that the

model is reliable for practical applications.

Despite the model's overall success, there are a few areas for potential improvement:

Fine-Tuning: Allowing fine-tuning of the deeper layers of MobileNetV2 could potentially

improve accuracy further.

Dataset: a larger and better dataset should be used to improve the accuracy further.

Chapter IV: Design, Implementation & Results

68

IV.5.2. Google vit Results

a) Training and Validation Performance

• Accuracy: The model achieved a final training accuracy of 98.80% and a validation

accuracy of 99.49%, indicating excellent generalization to unseen data.

• Loss: The training loss decreased significantly from 0.2914 to 0.0036, and the

validation loss also showed a steady decrease from 0.3019 to 0.0316. This consistent

reduction in both losses is a positive sign of the model's stability and effective learning.

• Overfitting: There is no significant indication of overfitting, as the training and

validation accuracies are very close throughout the epochs. Additionally, the training

loss did not diverge significantly from the validation loss.

Figure IV.12. Training and Validation Performance - Google ViT

b) Test Performance

The model's performance on the test dataset was evaluated, achieving an impressive

test accuracy of 99.49%. This high accuracy demonstrates the model's robustness and

effectiveness in classifying plant diseases.

Figure IV.13. Google ViT Model Evaluation on the test dataset

c) Accuracy and Loss

The training and validation accuracy and loss curves are plotted to visualize the model's

performance over epochs in Figure IV.14.

Training and Validation Loss The left subplot in Figure IV.14 displays the training and

validation loss curves over 10 epochs. The training loss and validation loss both show a

consistent decrease, indicating effective learning and model stability.

Chapter IV: Design, Implementation & Results

69

Training and Validation Accuracy: The right subplot in Figure IV.14 illustrates the accuracy

curves over 11 epochs for both training and validation. The model maintains high accuracy

levels throughout the training process, with the validation accuracy closely mirroring the

training accuracy, demonstrating good generalization to the validation data.

Figure IV.14. Google ViT Plot training and validation accuracy and loss values

d) Confusion Matrix and classification report

The confusion matrix provides a detailed breakdown of the model's performance across

different classes, Figure III.15 illustrates the Confusion Matrix:

Overall Accuracy: The model exhibits a high level of accuracy, as evidenced by the strong

diagonal presence in the confusion matrix, where the majority of predictions align with the true

labels.

Class-specific Performance: Most classes exhibit high accuracy, with minimal

misclassifications.

▪ Pepper bell Bacterial spot and Potato Early blight both show nearly perfect

classification, with 198/199 and 200/200 correct predictions respectively.

▪ Tomato Yellow Leaf Curl Virus shows excellent performance with 642/643 correct

predictions, similarly high accuracy is observed for Tomato Late blight and Tomato

Target Spot.

▪ Minor misclassifications occur in classes like Tomato Early Blight and Potato Healthy,

but the errors are minimal.

Chapter IV: Design, Implementation & Results

70

Figure IV.15. Google ViT Confusion Matrix

Chapter IV: Design, Implementation & Results

71

Classification Report: The report indicates high precision, recall, and F1 scores for most

classes, highlighting the model's reliability. Figure IV.16 illustrates the Classification Report.

Figure IV.16. Google ViT Classification Report

e) Discussion

This study emphasizes Vision Transformers (ViTs) as effective for plant disease

identification in image classification. A pre-trained ViT model fine-tuned on the PlantVillage

dataset showed strong performance with 98.80% training accuracy and 99.49% validation

accuracy. Future research could focus on enhancing ViT architecture with advanced attention

mechanisms or hybrid CNN-transformer models. Dataset expansion to include more plant

species and diseases would enhance model generalizability. Real-time deployment in field

conditions would assess practical utility and performance. Improving model explainability

could increase trust in critical applications like agriculture.

Chapter IV: Design, Implementation & Results

72

IV.5.3. AgriNetBoost

a) Training and validation performance

• Training Accuracy: Steady increase during training.

• Validation Accuracy: Slightly lower than training accuracy, indicating good

generalization.

• Training Loss: Decreases consistently.

• Validation Loss: Consistently lower than training loss, indicating model stability.

Figure IV.17. Training and Validation Performance - AgriNetBoost

The steady increase in training accuracy observed during the training phase suggests

that the model was able to effectively learn from the training data. The validation accuracy,

while slightly lower than the training accuracy, is indicative of good generalization. This slight

difference is expected and acceptable, as it suggests that the model is not overfitting to the

training data. The consistent decrease in training loss, accompanied by validation loss being

consistently lower than the training loss, further corroborates the stability and reliability of the

model. Lower validation loss compared to training loss can be a sign that the model is learning

essential features that generalize well to unseen data.

b) Test performance

• Test Accuracy: 87.32% highlights the model's effectiveness in real-world scenarios.

Achieving such an accuracy on test data implies that AgriNetBoost is good at classifying

plant diseases, which is the primary objective of this model.

Chapter IV: Design, Implementation & Results

73

d) Confusion Matrix and classification report

Confusion Matrix: Provides a detailed view of the model's performance across different

classes.

• True Positives: The high values along the diagonal of the confusion matrix indicate a

high number of true positives, which means that the model is making correct predictions

for most classes.

• Misclassifications: The presence of misclassifications, as indicated by the lower values

off the diagonal, suggests that the model struggles with certain classes.

Figure IV.18. AgriNetBoost Confusion Matrix

Chapter IV: Design, Implementation & Results

74

Classification report: The classification report highlights high precision, recall, and F1-scores

for most classes, suggesting that the model performs well in terms of these metrics. However,

these metrics alone do not provide a complete picture.

The presence of classes with lower performance metrics indicates that the model's reliability

varies across different disease categories. This inconsistency needs to be addressed to ensure

uniform performance. Figure IV.19 illustrates the Classification Report.

Figure IV.19. AgriNetBoost Classification Report

e) Discussion

while AgriNetBoost illustrates promise as a mechanism for categorizing plant diseases,

its existing efficacy suggests that there exists a substantial opportunity for improvement. It is

imperative to rectify the recognized deficiencies to construct a more dependable and efficient

framework that can be securely implemented in agricultural processes.

Chapter IV: Design, Implementation & Results

75

IV.6. Practical implementation

The practical implementation of deep learning models in real-time applications is crucial

for providing accessible and user-friendly tools for end-users. This section details the

integration of trained deep learning models into a web application developed using Streamlit.

The application aids in identifying plant diseases from images uploaded by users, offering

instant predictions and confidence levels.

IV.6.1. Model Selection and Training

The selection of the models (MobileNetV2, Google ViT, and the hybrid model using

LightGBM), dataset preparation, and training process was:

a) MobileNetV2

MobileNetV2 was chosen for its efficiency and performance on mobile devices.

b) Google ViT

The Vision Transformer was selected for its ability to achieve state-of-the-art

performance on various image classification tasks.

c) AgriNetBoost

AgriNetBoost model involved extracting features using MobileNetV2 and classifying

them using a LightGBM classifier. This approach leveraged the strengths of both convolutional

neural networks and gradient-boosting techniques.

IV.6.2. Web application development

IV.6.2.1. User Interface

The app allows users to upload an image of a plant leaf, select a prediction model, and

receive real-time predictions. The interface is designed to be intuitive and accessible, enabling

users to easily interact with the application. The user interface is shown in Figure IV.20.

Chapter IV: Design, Implementation & Results

76

Figure IV.20. User Interface Screenshots

IV.6.2.2. Model Integration

Each trained model was integrated into the application. The following steps outline the

model integration process:

a) Loading Models: Pre-trained models (MobileNetV2, Google ViT, and AgriNetBoost) were

loaded into the application (Figure IV.21).

Figure IV.21. Choosing a model

Chapter IV: Design, Implementation & Results

77

b) Preprocessing: Uploaded images were preprocessed to match the input requirements of each

model.

c) Prediction: The preprocessed images were fed into the selected model, and the predictions,

along with confidence scores, were displayed to the user (Figure IV.22).

Figure IV.22. The diagnostic

Chapter IV: Design, Implementation & Results

78

IV.6.3. Test and validation

After integrating and deploying our models into the Streamlit web app and having the

interface ready to use, we move to test the performance of the models on a variety of leaf

images, the following will highlight the results we obtained:

a. Images for test

Figure IV.23 demonstrates the different images used to test the models; the images were

randomly chosen to test each model's capability for generalization:

Figure IV.23. Test images

Chapter IV: Design, Implementation & Results

79

b. Prediction

here we showcase the results obtained using the models across the different images,

each figure represents a case and gives the model classification and confidence level:

Figure III.24 here the ViT model gave a correct classification with an average

confidence of 57,98%, whereas the CNN and lightGBM models fell short and gave false

classification as shown.

Figure IV.24. Classification and confidence results in a healthy Potato leaf

Chapter IV: Design, Implementation & Results

80

Figure IV.25 The mobileNetV2 shows an amazing result for this case with a correct

classification and almost perfect confidence of 99,16%, the other 2 models performed well and

diagnosed the disease correctly with above-average confidence.

Figure IV.25. Classification and confidence results on a Pepper bell bacterial spot infected

leaf

Figure IV.26. The vision transformer performs the best with 91.38% confidence followed by

LightGBM with 87,27%, but the CNN model didn’t perform and gave an incorrect

classification.

Figure IV.26. Classification and confidence results on a Tomato late blight leaf

Chapter IV: Design, Implementation & Results

81

Figure IV.27 mobilenetV2 gets the perfect classification and confidence level, next the

ViT model with a correct classification and a confidence of 82.12%, whereas the lightGBM

fails to identify the disease correctly.

Figure IV.27. Classification and confidence results on a tomato leaf infected with YLCV

IV.7. Results and Comparison

The web application allows users to upload images of plant leaves and receive

predictions from different models. The performance of each model was compared based on

accuracy, inference time, and user feedback. Table 08 summarizes the performance metrics for

each model:

Model Train_acc Valid_acc Test_acc Inference

time

User

Feedback

MobileNetV2 87.95% 94.14% 95.00% Fast Positive

Google ViT 98.80% 99.49% 99.49% Fast Very

positive

AgriNetBoost 87.50% 86.50% 87.32% moderate negative

Table IV.5. Comparative table of results of all models

Chapter IV: Design, Implementation & Results

82

The MobileNetV2 model performed as expected, demonstrating its efficacy in image

classification tasks. Its alignment with the dataset resulted in satisfactory outcomes, as

previously discussed. MobileNetV2's inherent design for efficient and effective image

classification allowed it to achieve notable results, reinforcing its suitability for this type of

task.

The ViT model emerged as the leading performer in this study. Despite not being

initially tailored for image classification tasks, its performance surpassed that of the other

models following fine-tuning and adaptation to the PlantVillage dataset. This success

underscores the versatility and robustness of the ViT model, making it the most effective model

for plant disease classification in our case. The superior performance of the ViT model

highlights its potential for broader applications in similar domains.

The AgriNetBoost model represents a novel approach in this study, attempting to

leverage the advantages of the Gradient Boosting Machine (GBM) architecture. Despite not

achieving the desired results, this experiment opens avenues for further refinement and

optimization. The current performance indicates room for improvement, and ongoing efforts

are necessary to enhance its capability to handle image classification tasks. Integrating GBM

architecture into image classification remains a promising area for future research.

The Streamlit interface played a crucial role in facilitating this comparison. By

providing a user-friendly platform for real-time model evaluation and visualization, Streamlit

enabled efficient assessment of each model's performance. Users could upload images and

receive immediate predictions and confidence levels, allowing for a comprehensive evaluation

of the models. This interactive interface significantly aided in the comparative analysis,

underscoring the practical implications of integrating deep learning models into accessible

applications.

Chapter IV: Design, Implementation & Results

83

IV.8. Conclusion

This chapter covered the implementation of a plant disease detection system using three

deep learning models: MobileNetV2, Vision Transformer (ViT), and AgriNetBoost. Each

model was integrated into a web-based application and evaluated with validation examples.

MobileNetV2 performed reliably, demonstrating efficiency in image classification. ViT

emerged as the best performer, showcasing superior versatility and robustness. AgriNetBoost,

while innovative, requires further optimization.

General Conclusion

84

General Conclusion

The goals set by this study involve the application of machine learning (ML) and deep

learning (DL) models for detecting plant diseases, specifically three models: MobileNetV2,

LightGBM, and the Vision Transformer (ViT).

The implemented system enables the identification of plant diseases with high precision

and efficiency, which is crucial for supporting sustainable agricultural practices. The results

obtained showed encouraging performance based on the chosen parameters. For instance, the

MobileNetV2 model, optimized for mobile platforms, demonstrated a good balance between

accuracy and computational efficiency, making it suitable for field use. The Vision Transformer

(ViT), with its attention mechanisms, excelled in image classification tasks by capturing visual

symptoms of plant diseases. However, the LightGBM model did not perform as well as

expected and did not achieve the desired results in terms of accuracy and efficiency.

The study's deployment using the Streamlit framework ensured that these models could

be accessed and utilized effectively by agricultural stakeholders, supporting real-time disease

detection and decision-making. These results highlight the significant potential of ML and DL

models to improve plant disease detection capabilities, offering a substantial advantage over

traditional methods.

The study achieved two primary objectives: first, it assessed and compared the

performance of the selected models in terms of accuracy, speed, and computational efficiency;

second, it developed a practical solution for real-time deployment using Streamlit. The findings

contribute significantly to enhancing disease detection capabilities, supporting sustainable

agriculture, and mitigating the economic and environmental impacts of plant diseases.

In perspective, we recommend addressing the following themes:

1. Enhance the robustness and scalability of models to handle diverse plant diseases

and environmental conditions.

2. Integrate additional data sources, including environmental and climatic data, to

improve predictive accuracy.

3. Develop user-friendly mobile applications capable of functioning offline to support

farmers in remote areas with limited internet access.

4. Collaborate with agricultural experts and conduct field trials to validate real-world

applicability and gather feedback for improvements.

Annex

85

Annex

Annex 1: Appendix

Google Colab: Colab, a web-based platform developed by Google, offers

a hosted Jupyter Notebook service which boasts a seamless user

experience devoid of any initial setup requirements. Moreover, this service

generously grants users complimentary access to a plethora of computing resources, such as

Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs), without incurring any

costs. Colab stands out as an ideal choice for individuals engaged in diverse fields including

but not limited to machine learning, data science, and educational purposes due to its user-

friendly interface and extensive range of features catered towards enhancing productivity and

facilitating seamless collaboration [97].

 Jupyter Notebook: Jupyter Notebook serves as a robust instrument for

the interactive development and presentation of data science projects. The

integration of code, visualizations, narrative text, and various multimedia

elements within a unified document exemplifies a seamless and articulate

workflow. Jupyter Notebooks play a vital role in the data science processes

of businesses and institutions globally, facilitating efficient data exploration, hypothesis testing,

and insights sharing. Being an open-source endeavor, Jupyter Notebooks are readily accessible

without any cost. Moreover, they offer support for multiple programming languages [98].

Anaconda: Anaconda is a Python distribution for data scientists,

statisticians, and researchers focusing on scientific computing, data

analysis, and machine learning. It offers a user-friendly Python

distribution with various data science and machine learning tools like NumPy, Pandas, and

Scikit-learn. Key features include Conda package manager, 1,500+ pre-built packages,

Anaconda Navigator GUI, and Anaconda Prompt CLI. It is commonly used to manage

dependencies, install packages, and handle environments by professionals in Windows, macOS,

and Linux environments [99].

Annex

86

PyCharm: PyCharm serves as a specialized Integrated Development

Environment (IDE) for Python, offering a broad array of crucial resources for

Python programmers, intricately linked to establish a user-friendly setting

conducive to efficient Python, web, and data science programming [100].

Kaggle: serves as an internet-based community platform tailored for

individuals proficient in data analysis and machine learning. This platform

facilitates collaboration among its users, enabling them to discover and share datasets, utilize

notebooks equipped with GPU capabilities, and engage in competitive activities with fellow

data analysts aimed at resolving data-related predicaments. The primary objective of this virtual

platform revolves around assisting both professionals and novices in attaining their objectives

within the realm of data science, leveraging the assortment of potent tools and informational

reservoirs it offers. As of the year 2021, the total count of registered users on Kaggle surpasses

8 million [101].

Annex

87

Annex 2: Libraries

Torchvision: This library is designed to seamlessly integrate with the 'torch' package, drawing

heavily upon the 'PyTorch' vision package for its API design. The Torchvision library offers

access to a wide range of datasets, models, and preprocessing tools specifically designed for

deep learning tasks involving images [102].

Scikit-learn: also identified as sklearn, represents a python library utilized for the deployment

of machine learning models and statistical modeling. By means of scikit-learn, an assortment

of machine learning models can be applied, encompassing regression, classification, clustering,

along with statistical methodologies for the examination of said models. This library is built

upon NumPy, SciPy, and Matplotlib[103].

Pandas: is a Python software package utilized for the purpose of analyzing data. It is

constructed based on two fundamental Python libraries, namely matplotlib which is used for

visualizing data, and NumPy which is employed for carrying out mathematical computations.

Pandas functions as an intermediary layer above these libraries, enabling users to utilize a

multitude of methods from matplotlib and NumPy with reduced lines of code[104].

NumPy: NumPy serves as the essential framework for conducting scientific computations

within the Python programming language. This library in Python offers a versatile array object

capable of handling multiple dimensions, alongside a range of related objects like masked

arrays and matrices. Additionally, NumPy provides a diverse set of functions designed to

efficiently operate on arrays, encompassing mathematical, logical, and shape-altering

operations, as well as sorting, selection, input/output procedures, discrete Fourier

transformations, elementary linear algebra, fundamental statistical calculations, stochastic

simulations, and various other functionalities[105].

Seaborn: seaborn is a Python library for creating statistical graphics. It interfaces with

matplotlib and works well with pandas data structures. The library provides an API for creating

graphics based on datasets. It automatically maps data values to visual attributes, computes

statistical transformations, and adds informative labels and a legend to plots. Seaborn functions

can generate figures with multiple panels for comparing data subsets or different variable

pairings. It is designed to be useful for scientific projects, allowing for quick prototyping and

data exploration. Seaborn also offers customization options and access to underlying matplotlib

objects for creating high-quality figures[106].

Annex

88

OpenCV: OpenCV, abbreviated for Open-Source Computer Vision Library, constitutes a

substantial open-source repository dedicated to computer vision, machine learning, and image

processing. A broad spectrum of programming languages, including Python, C++, Java, among

others, is supported by OpenCV. Its capabilities encompass the processing of images and videos

for the purpose of object identification, facial recognition, and even handwriting analysis. Upon

integration with diverse libraries like Numpy, the operations achievable in Numpy can be

seamlessly amalgamated with OpenCV[107].

Pillow: Formerly recognized as PIL, Pillow is a publicly available library that is specially

crafted for carrying out image processing tasks through the utilization of Python. Serving as a

valuable resource for manipulating image files, Pillow stands out from its counterparts by

offering an extensive array of image processing capabilities. Its primary focus lies in the realm

of image processing, rendering it a highly comprehensive and finely tuned tool for image

manipulation. Despite the availability of more generalized libraries like OpenCV or MoviePy,

Pillow continues to be a popular choice in various crucial stages of projects involving computer

vision or video processing. The user-friendly nature of Pillow serves as one of its prominent

features, with its notations designed to be intuitive and its underlying classes and methods

meticulously developed to enhance the overall user experience[108].

Matplotlib: Matplotlib is a potent Python plotting library for static, animated, and interactive

visualizations. It aids in graphical data representation for easier analysis. This library generates

various plots like line, scatter, bar, histograms, and pie charts. It allows customization of line

styles, colors, markers, labels, and annotations. Integrated with NumPy, it simplifies data arrays

plotting. Matplotlib creates high-quality plots for publication with detailed aesthetic control. It

is extensible with add-ons such as Seaborn, Pandas plotting functions, and Basemap. The library

is cross-platform, working on Windows, macOS, and Linux. It also supports interactive plotting

with widgets and event handling for dynamic data exploration[109].

Annex

89

Annex 3: Plant diseases

Bacterial spot: Bacterial leaf spot, caused by Xanthomonas campestris pv. vesicatoria, is a

significant disease in peppers, tomatoes and other crops worldwide. The bacterium is gram-

negative and rod-shaped, with the ability to persist in seeds and plant debris. Different strains

of the bacterium are specific to certain pepper varieties, leading to distinct disease symptoms.

The disease can cause early defoliation of leaves and deformities in fruits, potentially leading

to plant death. Despite the challenge of finding a cure, growers have various preventive

measures available to manage the disease effectively[11].

Yellow leaf curl virus: yellow leaf curl virus (YLCV) belongs to Begomovirus genus and

Geminiviridae family. TYLCV leads to leaf yellowing, curling, stunting, bushy appearance,

flower drop, and reduced fruit yield. This viral disease poses significant threats to growers once

it establishes in the production area. YLCV can be found in various regions including temperate,

tropical, and sub-tropical areas globally. Adult whiteflies transmit YLCV, making it

challenging to control once introduced. YLCV mainly affects tomatoes but can also infect other

plants in the Solanaceae family (pepper, eggplant, potato, tobacco, jimsonweed) and some

ornamentals. Asymptomatic hosts can serve as reservoirs for the virus[110].

Tomato leaf mold: Tomato leaf mold is a foliar disease induced by the fungal pathogen

Passalora fulva (syn. Cladosporium fulvum), an ascomycete fungus thriving on the foliage of

tomato plants. The pathogen generates conidia which invade the underside of the leaves. Upon

contact with the leaves, the fungus settles and penetrates the stomata, specialized pores used by

plants for gas exchange. This infiltration leads to obstruction of the stomata, hindering the

respiration process of tomato plants and causing symptoms such as wilting, defoliation, and

susceptibility to infection[111].

Tomato Spider mites Two-spotted spider mite: The Tetranychus urticae, commonly known as

the two-spotted spider mite, belongs to the arachnid category and is closely associated with insects,

particularly in periods of warm and dry climatic conditions. These mites have the potential to cause

damage to various crops such as tomatoes, beans, muskmelons, watermelons, and sweet corn. The

proliferation of mites is particularly favored during prolonged spells of hot and dry weather. Initial

infestations are often observed at the periphery of cultivated areas, usually close to dense weed

populations or unpaved pathways.

 Bibliography

90

Bibliography

[1] “International Day of Plant Health, 12 May | Food and Agriculture Organization of the

United Nations,” PlantHealthDay. Accessed: Apr. 30, 2024. [Online]. Available:

https://www.fao.org/plant-health-day/en

[2] “The Plant Pathology Journal.” Accessed: May 02, 2024. [Online]. Available:

https://ppjonline.org/

[3] “Agriculture Production | IFPRI : International Food Policy Research Institute.”

Accessed: May 01, 2024. [Online]. Available: https://www.ifpri.org/topic/agriculture-

production

[4] “Transforming food and agriculture by United Nations Development Programme -

United Nations Development Programme | UNDP - Exposure.” Accessed: May 01, 2024.

[Online]. Available: https://stories.undp.org/transforming-food-and-agriculture

[5] E. L. Stewart, G. B. Lucas, C. L. Campbell, and L. T. Lucas, Introduction to Plant

Diseases: Identification and Management, vol. 83. 1991. Accessed: May 02, 2024.

[Online]. Available: https://www.jstor.org/stable/3759945?origin=crossref

[6] N. Gobalakrishnan, K. Pradeep, C. J. Raman, L. J. Ali, and M. P. Gopinath, “A

Systematic Review on Image Processing and Machine Learning Techniques for

Detecting Plant Diseases,” in 2020 International Conference on Communication and

Signal Processing (ICCSP), Chennai, India: IEEE, Jul. 2020, pp. 0465–0468. doi:

10.1109/ICCSP48568.2020.9182046.

[7] M. A. Ebrahimi, M. H. Khoshtaghaza, S. Minaei, and B. Jamshidi, “Vision-based pest

detection based on SVM classification method,” Computers and Electronics in

Agriculture, vol. 137, pp. 52–58, May 2017, doi: 10.1016/j.compag.2017.03.016.

[8] “Plant disease - Causes, Symptoms, Prevention | Britannica.” Accessed: May 02, 2024.

[Online]. Available: https://www.britannica.com/science/plant-disease

[9] “Early Blight Treatment & Control,” Planet Natural. Accessed: May 29, 2024. [Online].

Available: //www.planetnatural.com/pest-problem-solver/plant-disease/early-blight/

[10] “Potato Early Blight,” UW Vegetable Pathology. Accessed: Jun. 15, 2024. [Online].

Available: https://vegpath.plantpath.wisc.edu/diseases/potato-early-blight/

[11] “Extension | Bacterial Leaf Spot of Pepper.” Accessed: May 29, 2024. [Online].

Available: https://extension.wvu.edu/lawn-gardening-pests/plant-disease/fruit-

vegetable-diseases/bacterial-leaf-spot-of-pepper

 Bibliography

91

[12] “What Is Tomato Mosaic Virus,” CUSABIO. Accessed: May 29, 2024. [Online].

Available: https://www.cusabio.com/c-21032.html

[13] Marissa Schuh, Anna Johnson, Michelle Grabowski and Angela Orshinsky, “Tomato

viruses,” University of Minnesota, https://extension.umn.edu/disease-

management/tomato-viruses.

[14] X. Xie, K. Yoneyama, and K. Yoneyama, “The Strigolactone Story,” Annu. Rev.

Phytopathol., vol. 48, no. 1, pp. 93–117, Jul. 2010, doi: 10.1146/annurev-phyto-073009-

114453.

[15] T. K. Hamrita, Ed., Women in Precision Agriculture: Technological breakthroughs,

Challenges and Aspirations for a Prosperous and Sustainable Future. in Women in

Engineering and Science. Cham: Springer International Publishing, 2021. doi:

10.1007/978-3-030-49244-1.

[16] I. Ul Haq and S. Ijaz, Eds., Plant Disease Management Strategies for Sustainable

Agriculture through Traditional and Modern Approaches, vol. 13. in Sustainability in

Plant and Crop Protection, vol. 13. Cham: Springer International Publishing, 2020. doi:

10.1007/978-3-030-35955-3.

[17] R. K. Horst, Westcott’s Plant Disease Handbook. Dordrecht: Springer Netherlands,

2013. doi: 10.1007/978-94-007-2141-8.

[18] A. Sitjà-Bobadilla and B. Oidtmann, “Integrated pathogen management strategies in fish

farming,” in Fish diseases, Elsevier, 2017, pp. 119–144.

[19] D. Spadaro and M. L. Gullino, “Sustainable management of plant diseases,” Innovations

in Sustainable Agriculture, pp. 337–359, 2019.

[20] W. E. Khoury and K. Makkouk, “Integrated plant disease management in developing

countries,” Journal of Plant Pathology, pp. S35–S42, 2010.

[21] J. Köhl, “Integrated disease management,” 2006.

[22] P. P. Singh, A. Kumar, V. Gupta, and B. Prakash, “Recent advancement in plant disease

management,” in Food Security and Plant Disease Management, Elsevier, 2021, pp. 1–

18.

[23] M. Rani, K. Tyagi, and G. Jha, “Advancements in plant disease control strategies,” in

Advancement in Crop Improvement Techniques, Elsevier, 2020, pp. 141–157.

[24] T. Belete and N. Boyraz, “Biotechnological tools for detection, identification and

management of plant diseases,” African Journal of Biotechnology, vol. 18, no. 29, pp.

797–807, 2019.

 Bibliography

92

[25] S. Padmavathi and C. S. Anuradha, “Nanotechnology in plant disease management-an

overview,” Journal of Advanced Scientific Research, vol. 13, no. 10, pp. 01–06, 2022.

[26] A. Mohammad-Razdari, D. Rousseau, A. Bakhshipour, S. Taylor, J. Poveda, and H.

Kiani, “Recent advances in E-monitoring of plant diseases,” Biosensors and

Bioelectronics, vol. 201, p. 113953, 2022.

[27] R. Bandyopadhyay and R. A. Frederiksen, “Contemporary Global Movement of

Emerging Plant Diseases,” Annals of the New York Academy of Sciences, vol. 894, no. 1,

pp. 28–36, Dec. 1999, doi: 10.1111/j.1749-6632.1999.tb08040.x.

[28] A. Nabi et al., “Precision farming in vegetables,” Journal of Pharmacognosy and

Phytochemistry, vol. 6, no. 6, pp. 370–375, 2017.

[29] V. A. Hakkim, E. A. Joseph, A. A. Gokul, and K. Mufeedha, “Precision farming: the

future of Indian agriculture,” Journal of Applied Biology and Biotechnology, vol. 4, no.

6, pp. 068–072, 2016.

[30] R. Buick, “Precision agriculture: an integration of information technologies with

farming,” presented at the Proceedings of the New Zealand Plant Protection Conference,

1997, pp. 176–184.

[31] G. Tomisław, J. Tadeusz, K. Paweł, T.-S. Sylwia, and T. Uhl, “Recent advancement

approach for precision agriculture,” presented at the Advances in Mechanism and

Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and

Machine Science 15, Springer, 2019, pp. 2907–2916.

[32] “Oberč and Arroyo Schnell - 2020 - Approaches to sustainable agriculture exploring

t.pdf.”

[33] “Advances in Smart Agriculture with Remote Sensing as the Core and Its Applications

in Crops Field.” Accessed: Jun. 15, 2024. [Online]. Available:

https://www.mdpi.com/topics/BA5C0WKTZ8

[34] dementievgeopard, “How does hyperspectral satellite imagery help precision

agriculture?,” GeoPard - Precision agriculture software. Accessed: Jun. 03, 2024.

[Online]. Available: https://geopard.tech/blog/how-does-satellite-imagery-help-

precision-agriculture/

[35] “Innovate in farming with your space robot.” Accessed: Jun. 19, 2024. [Online].

Available: https://business.esa.int/news/innovate-farming-your-space-robot

[36] dementievgeopard, “How to use farming drones in precision agriculture?,” GeoPard -

Precision agriculture software. Accessed: Jun. 03, 2024. [Online]. Available:

https://geopard.tech/blog/how-to-use-drones-in-precision-agriculture/

 Bibliography

93

[37] D. J. I. Enterprise, “Precision Agriculture With Drone Technology.” Accessed: Jun. 02,

2024. [Online]. Available: https://enterprise-insights.dji.com/blog/precision-agriculture-

drones

[38] M. Costanzo, “What are the main technologies and applications of precision

agriculture?,” Wikifarmer. Accessed: Jun. 06, 2024. [Online]. Available:

https://wikifarmer.com/what-are-the-main-technologies-and-applications-of-precision-

agriculture/

[39] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM

Journal of Research and Development, vol. 44, no. 1.2, pp. 206–226, 2000.

[40] T. M. Mitchell, “Machine learning,” Engineering/Math, vol. 1, p. 27, 1997.

[41] E. Hossain, Machine Learning Crash Course for Engineers. Cham: Springer

International Publishing, 2024. doi: 10.1007/978-3-031-46990-9.

[42] Patanjali Kashyap, Machine Learning for Decision Makers: Cognitive Computing

Fundamentals for Better Decision Making, 2nd ed. Berkeley, CA: Apress, 2024. doi:

10.1007/978-1-4842-9801-5.

[43] “Self-supervised learning: The dark matter of intelligence.” Accessed: Apr. 25, 2024.

[Online]. Available: https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-

of-intelligence/

[44] F. Ros and R. Riad, Feature and Dimensionality Reduction for Clustering with Deep

Learning. in Unsupervised and Semi-Supervised Learning. Cham: Springer Nature

Switzerland, 2024. doi: 10.1007/978-3-031-48743-9.

[45] B. Quinto, Next-Generation Machine Learning with Spark: Covers XGBoost, LightGBM,

Spark NLP, Distributed Deep Learning with Keras, and More. Berkeley, CA: Apress,

2020. doi: 10.1007/978-1-4842-5669-5.

[46] Y. Mansar, “Build Powerful Lightweight Models Using Knowledge Distillation,”

Medium. Accessed: May 22, 2024. [Online]. Available:

https://towardsdatascience.com/build-powerful-lightweight-models-using-knowledge-

distillation-618f69b569d9

[47] M. Negnevitsky, Artificial intelligence: a guide to intelligent systems, 3. ed. Harlow

Munich: Addison-Wesley, 2011.

[48] A. Kapoor, A. Gullì, and S. Pal, Deep learning with TensorFlow and Keras: build and

deploy supervised, unsupervised, deep, and reinforcement learning models, Third

edition. Birmingham Mumbai: Packt Publishing, 2022.

 Bibliography

94

[49] Nasrin Talkhi et al., “Prediction of serum anti-HSP27 antibody titers changes using a

light gradient boosting machine (LightGBM) technique,” Scientific Reports, vol. 13, no.

1, Aug. 2023, doi: 10.1038/s41598-023-39724-z.

[50] NVIDIA, “Deep Learning.” Accessed: Apr. 26, 2024. [Online]. Available:

https://developer.nvidia.com/deep-learning

[51] A. H. Reynolds, “Convolutional Neural Networks (CNNs),” Anh H. Reynolds.

Accessed: May 01, 2024. [Online]. Available: https://anhreynolds.com/

[52] Laith Alzubaidi et al., “Review of deep learning: concepts, CNN architectures,

challenges, applications, future directions,” Journal of Big Data, vol. 8, no. 1, pp. 1–74,

2021, doi: 10.1186/s40537-021-00444-8.

[53] T. T. Teoh, Convolutional Neural Networks for Medical Applications. in SpringerBriefs

in Computer Science. Singapore: Springer Nature Singapore, 2023. doi: 10.1007/978-

981-19-8814-1.

[54] M. Parab and N. Mehendale, “Red Blood Cell Classification Using Image Processing

and CNN,” SN Computer Science, vol. 2, Apr. 2021, doi: 10.1007/s42979-021-00458-2.

[55] “Réseaux de neurones à classes multiples: Softmax | Machine Learning,” Google for

Developers. Accessed: May 08, 2024. [Online]. Available:

https://developers.google.com/machine-learning/crash-course/multi-class-neural-

networks/softmax?hl=fr

[56] M. A. I. Khan, “Introduction to Softmax Classifier in PyTorch,”

MachineLearningMastery.com. Accessed: May 08, 2024. [Online]. Available:

https://machinelearningmastery.com/introduction-to-softmax-classifier-in-pytorch/

[57] A. Munir, J. Kong, and M. A. Qureshi, Accelerators for Convolutional Neural Networks.

Canada: IEEE PRESS, 2024.

[58] B. Pragati, “Convolutional Neural Networks: Architectures, Types & Examples,” v7labs.

Accessed: May 01, 2024. [Online]. Available:

https://www.v7labs.com/blog/convolutional-neural-networks-guide

[59] G. Abich, L. Ost, and R. Reis, Early Soft Error Reliability Assessment of Convolutional

Neural Networks Executing on Resource-Constrained IoT Edge Devices. in Synthesis

Lectures on Engineering, Science, and Technology. Cham: Springer Nature Switzerland,

2023. doi: 10.1007/978-3-031-18599-1.

[60] M. Naved, V. A. Devi, L. Gaur, and A. A. Elngar, IoT-enabled Convolutional Neural

Networks: Techniques and Applications, 1st ed. New York: River Publishers, 2023. doi:

10.1201/9781003393030.

 Bibliography

95

[61] M. Elgendy, Deep learning for vision systems. Shelter Island, NY: Manning Publications

Co, 2020.

[62] M. Akay et al., “Deep Learning Classification of Systemic Sclerosis Skin Using the

MobileNetV2 Model,” IEEE Open J. Eng. Med. Biol., vol. 2, pp. 104–110, 2021, doi:

10.1109/OJEMB.2021.3066097.

[63] F. Thiele, A. J. Windebank, and A. M. Siddiqui, “Motivation for using data-driven

algorithms in research: A review of machine learning solutions for image analysis of

micrographs in neuroscience,” 2023, doi: 10.1093/jnen/nlad040.

[64] M. Swamynathan, Mastering Machine Learning with Python in Six Steps: A Practical

Implementation Guide to Predictive Data Analytics Using Python, 2nd ed. India: Apress,

2019. doi: 10.1007/978-1-4842-4947-5.

[65] D. Martinez, “Is Transfer Learning the final step for enabling AI in Aviation?,”

Datascience.aero. Accessed: May 23, 2024. [Online]. Available:

https://datascience.aero/transfer-learning-aviation/

[66] “What is Transfer Learning?,” GeeksforGeeks. Accessed: May 23, 2024. [Online].

Available: https://www.geeksforgeeks.org/ml-introduction-to-transfer-learning/

[67] N. Koenigstein, Transformers in Action, 7th ed. Manning Publications, 2024.

[68] L. Tunstall, L. von Werra, and T. Wolf, Natural Language Processing with

Transformers, 1st ed. United States of America: O’Reilly Media, 2022.

[69] Z. Ralte and I. Kar, Learn Python Generative AI, 1st ed. India: BPB, 2024.

[70] A. Shrotriya, A. K. Sharma, N. Pradhan, and P. Shukla, “A light weight Deep

Convolutional Neural network model for plant disease identification,” in 2023

International Conference on Computational Intelligence and Knowledge Economy

(ICCIKE), 2023, pp. 191–196. doi: 10.1109/ICCIKE58312.2023.10131878.

[71] H. Guan, C. Fu, G. Zhang, K. Li, P. Wang, and Z. Zhu, “A lightweight model for efficient

identification of plant diseases and pests based on deep learning,” Front. Plant Sci., vol.

14, p. 1227011, Jul. 2023, doi: 10.3389/fpls.2023.1227011.

[72] W. Feng, Q. Song, G. Sun, and X. Zhang, “Lightweight Isotropic Convolutional Neural

Network for Plant Disease Identification,” Agronomy, vol. 13, no. 7, p. 1849, Jul. 2023,

doi: 10.3390/agronomy13071849.

[73] B. Wang, C. Zhang, Y. Li, C. Cao, D. Huang, and Y. Gong, “An ultra-lightweight

efficient network for image-based plant disease and pest infection detection,” Precision

Agric, vol. 24, no. 5, pp. 1836–1861, Oct. 2023, doi: 10.1007/s11119-023-10020-0.

 Bibliography

96

[74] T. Sanida, M. V. Sanida, A. Sideris, and M. Dasygenis, “A Lightweight CNN Model for

Tomato Crop Diseases on Heterogeneous Embedded System,” in 2023 12th

International Conference on Modern Circuits and Systems Technologies (MOCAST),

2023, pp. 1–4. doi: 10.1109/MOCAST57943.2023.10176582.

[75] X. Fang, T. Zhen, and Z. Li, “Lightweight Multiscale CNN Model for Wheat Disease

Detection,” Applied Sciences, vol. 13, no. 9, p. 5801, May 2023, doi:

10.3390/app13095801.

[76] P. K. Sahil Verma and J. P. Singh, “A Unified Lightweight CNN-based Model for

Disease Detection and Identification in Corn, Rice, and Wheat,” IETE Journal of

Research, vol. 0, no. 0, pp. 1–12, 2023, doi: 10.1080/03772063.2023.2181229.

[77] Q. Huang et al., “Knowledge Distillation Facilitates the Lightweight and Efficient Plant

Diseases Detection Model,” Plant Phenomics, vol. 5, p. 0062, Jan. 2023, doi:

10.34133/plantphenomics.0062.

[78] Y. Liu et al., “High-Precision Tomato Disease Detection Using NanoSegmenter Based

on Transformer and Lightweighting,” Plants, vol. 12, no. 13, p. 2559, Jul. 2023, doi:

10.3390/plants12132559.

[79] P. S. Thakur, P. Khanna, T. Sheorey, and A. Ojha, “Explainable vision transformer

enabled convolutional neural network for plant disease identification: PlantXViT.”

arXiv, Jul. 16, 2022. Accessed: May 31, 2024. [Online]. Available:

http://arxiv.org/abs/2207.07919

[80] S. A. Wagle, R. Harikrishnan, S. H. M. Ali, and M. Faseehuddin, “Classification of Plant

Leaves Using New Compact Convolutional Neural Network Models,” Plants, vol. 11,

no. 1, p. 24, Dec. 2021, doi: 10.3390/plants11010024.

[81] Y. Liu, G. Gao, and Z. Zhang, “Plant disease detection based on lightweight CNN

model,” in 2021 4th International Conference on Information and Computer

Technologies (ICICT), 2021, pp. 64–68. doi: 10.1109/ICICT52872.2021.00018.

[82] M. H. Saleem, S. Khanchi, J. Potgieter, and K. M. Arif, “Image-Based Plant Disease

Identification by Deep Learning Meta-Architectures,” Plants, vol. 9, no. 11, p. 1451, Oct.

2020, doi: 10.3390/plants9111451.

[83] A. Munir, J. Kong, and M. A. Qureshi, “Accelerators for Convolutional Neural

Networks”.

[84] Devansh, “How does Batch Size impact your model learning,” Geek Culture. Accessed:

Jun. 07, 2024. [Online]. Available: https://medium.com/geekculture/how-does-batch-

size-impact-your-model-learning-2dd34d9fb1fa

 Bibliography

97

[85] “Parameters — LightGBM 4.4.0.99 documentation.” Accessed: Jun. 19, 2024. [Online].

Available: https://lightgbm.readthedocs.io/en/latest/Parameters.html

[86] M. Abadi et al., “TensorFlow, Large-scale machine learning on heterogeneous systems.”

Nov. 2015. doi: 10.5281/zenodo.4724125.

[87] K. Team, “Keras documentation: About Keras 3.” Accessed: Jun. 05, 2024. [Online].

Available: https://keras.io/about/

[88] “Welcome to LightGBM’s documentation! — LightGBM 4.0.0 documentation.”

Accessed: Jun. 05, 2024. [Online]. Available: https://lightgbm.readthedocs.io/en/stable/

[89] “Using transformers at Hugging Face.” Accessed: Jun. 05, 2024. [Online]. Available:

https://huggingface.co/docs/hub/transformers

[90] “PyTorch Foundation,” PyTorch. Accessed: Jun. 05, 2024. [Online]. Available:

https://pytorch.org/foundation

[91] J. Ansel et al., “PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode

Transformation and Graph Compilation,” 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume 2

(ASPLOS ’24). ACM, Apr. 2024. doi: 10.1145/3620665.3640366.

[92] “onnx/onnx.” Open Neural Network Exchange, Jun. 05, 2024. Accessed: Jun. 05, 2024.

[Online]. Available: https://github.com/onnx/onnx

[93] “ONNX Runtime | Inference.” Accessed: Jun. 05, 2024. [Online]. Available:

https://onnxruntime.ai/inference

[94] “Streamlit Docs.” Accessed: Jun. 05, 2024. [Online]. Available: https://docs.streamlit.io/

[95] D. P. Hughes and M. Salathé, “An open access repository of images on plant health to

enable the development of mobile disease diagnostics”.

[96] K. Team, “Keras documentation: Image augmentation layers.” Accessed: Jun. 19, 2024.

[Online]. Available:

https://keras.io/api/layers/preprocessing_layers/image_augmentation/

[97] “Google Colab.” Accessed: Jun. 18, 2024. [Online]. Available:

https://research.google.com/colaboratory/faq.html

[98] “Project Jupyter Documentation — Jupyter Documentation 4.1.1 alpha documentation.”

Accessed: Jun. 18, 2024. [Online]. Available: https://docs.jupyter.org/en/latest/

[99] “Anaconda vs Python Programming Explained With Differences,” BairesDev. Accessed:

Jun. 18, 2024. [Online]. Available: https://www.bairesdev.com/blog/anaconda-vs-

python-programming/

 Bibliography

98

[100] “Quick start guide | PyCharm,” PyCharm Help. Accessed: Jun. 18, 2024. [Online].

Available: https://www.jetbrains.com/help/pycharm/quick-start-guide.html

[101] “What is Kaggle?” Accessed: Jun. 19, 2024. [Online]. Available:

https://www.datacamp.com/blog/what-is-kaggle

[102] “torchvision — Torchvision 0.18 documentation.” Accessed: Jun. 18, 2024. [Online].

Available: https://pytorch.org/vision/stable/index.html

[103] Ashish, “15 Most Important Features of Scikit-Learn!,” Analytics Vidhya. Accessed:

Jun. 18, 2024. [Online]. Available: https://www.analyticsvidhya.com/blog/2021/07/15-

most-important-features-of-scikit-learn/

[104] “Pandas | Python Library - Mode,” Mode Resources. Accessed: Jun. 19, 2024. [Online].

Available: https://mode.com/python-tutorial/libraries/pandas/

[105] “What is NumPy? — NumPy v2.1.dev0 Manual.” Accessed: Jun. 19, 2024. [Online].

Available: https://numpy.org/devdocs/user/whatisnumpy.html

[106] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source

Software, vol. 6, no. 60, p. 3021, Apr. 2021, doi: 10.21105/joss.03021.

[107] “OpenCV Tutorial in Python,” GeeksforGeeks. Accessed: Jun. 19, 2024. [Online].

Available: https://www.geeksforgeeks.org/opencv-python-tutorial/

[108] Melanie, “Pillow: How to process images with Python,” Data Science Courses |

DataScientest. Accessed: Jun. 19, 2024. [Online]. Available:

https://datascientest.com/en/pillow-how-to-process-images-with-python

[109] “Introduction to Matplotlib,” GeeksforGeeks. Accessed: Jun. 19, 2024. [Online].

Available: https://www.geeksforgeeks.org/python-introduction-matplotlib/

[110] “Tomato Yellow Leaf Curl Virus | NC State Extension Publications.” Accessed: Jun. 18,

2024. [Online]. Available: https://content.ces.ncsu.edu/tomato-yellow-leaf-curl-virus

[111] “Tomato Leaf Mold | Cornell Vegetables.” Accessed: Jun. 18, 2024. [Online]. Available:

https://www.vegetables.cornell.edu/pest-management/disease-factsheets/tomato-leaf-

mold/

