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ABSTRACT

Functionally graded material (FGM) composites represent an exciting and active 
field of research in mechanical and aerospace engineering. These materials are 
characterized by a graded variation of certain material properties, which occurs 
generally between metal and ceramic. In parallel, nanomaterials are also catching 
the  interest  of  researchers  due  to  their  extraordinary  physical  properties,  
particularly in structural reinforcing. We study in this thesis the use of graphene 
platelets (Gpls) nanomaterial to reinforce porous metal-ceramic FGMs, which is a 
case of study that has not been previously reported in the literature. We utilize a 
three-steps modelling procedure to represent the material properties of this multi-
parametric  FGM,  and  a  hyperbolic  higher-order  plate  theory  to  represent 
transverse shear effects.  The general equations of equilibrium were derived by 
hand  using  Hamilton’s  principle,  and  were  solved  analytically  for  simply-
supported  plates.  After  method validation of  the  developed Python codes,  we 
carried out various parametric examples to study the influence of the base FGM 
composition, GPls, porosity, and plate’s dimensions on the mechanical behaviour 
of  rectangular  FGM  plates  (including  the  free  vibration,  static  bending,  and 
buckling). The obtained results can serve as a guideline for future research on 
porous GPls-reinforced metal-ceramic FGMs.

Keywords:  Functionally  graded  material,  composite  material,  plate,  free 
vibration, bending, buckling, graphene, porosity.



ملخص
ي��ة- الم��واد المركب��ة المتدرجة وظيفي��ا تمث��ل نط��اق بحث مث��ير ونش��ط في الهندس��ة الميكانيكي��ة و الجو
 الفضائية. هذه المواد تتميز بتغير متدرج في إحدى خص��ائص الم��ادة، والذي يك��ون عادة بين المع��دن
يائي��ة غير الإعتيادي��ة،  والس��يراميك. في المقاب��ل، تأخذ م��واد الن��انو اهتم��ام الب��احثين لخصائصها الفيز
ي��ة ي��ة لتقو فيحات الغ��رافين النانو ية. ندرس في هذه الأطروحة استعمال صُ ية البنيو  وخاصة في التقو
يُتطرق إليه��ا من قب��ل في الأعم��ال  مواد المعدن-سيراميك المتدرجة وظيفيا والمسامية، وهي مسألة لم 
 البحثي��ة.  إعتم��دنا على عملي��ة نمذجة من ثلاث خط��وات لتمثي��ل خص��ائص ه��ذه الم��ادة المتدرجة
ية قطع زائد عالية الرتبة لتمثيل آثار القص العرضي. تم استخراج معادلات  متعددة العوامل، و بنظر
يقة تحليلية لألواح مسندة بمفاصل ت بطر لَّ يا باستعمال مبدأ هاميلتون، ثم حُ  حالة التوازن العامة يدو
يقة أك��واد الب��ايثون المألف��ة، درس��نا مس��ائل عاملي��ة متنوعة لتحلي��ل  بسيطة. بعد التحقق من صحة طر
فيحات الغ��رافين، المس��امات، و أبع��اد اللوح على الإس��تجابة ين المادة المتدرجة، صُ  آثار كل من تكو
لة تفي��د  الميكانيكية )والتي تش��مل الإه��تزاز الح��ر، الإنثن��اء الس��كوني، والإحدداب (. النت��ائج المحصَّ
فيحات الغرافين. كمعيار للأبحاث القادمة على مواد المعدن-سراميك المتدرجة المسماية و المقواة بصُ

  م��ادة متدرجة وظيفي��ا، م��ادة مركب��ة، ل��وح أو صفيحة، إه��تزاز حر، إنثن��اء،كلم��ات مفتاحي��ة:
إحدداب، غرافين، مسامية.
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GENERAL INTRODUCTION

Subject of research

The  wide  application  range  of  composite  structures  in  the  construction  of 
important components in aircrafts and space shuttles, and the extreme mechanical 
stresses that these structures may experience in service, necessitates the use of  
reliable  materials  that  can  provide  sufficiently  high  resistance  and  structural 
integrity. These requirements drive a continuous improvement of current material 
technology,  and  functionally  graded  materials  (FGMs)  are  one  of  the  latest 
chapters in this development series. 

In this work we make a comprehensive treatment of the mechanical behaviour 
of porous FGM plates with GPls reinforcement. Our plate model consists initially 
of  a metal-ceramic FGM matrix that varies in a continuous manner along the 
thickness direction according to two types of FGM power-law:

• In the vibration and bending analysis: the FGM varies from pure metal at  
the bottom surface of the plate to pure ceramic at the top surface according 
to the traditional  power law, which gives a non-symmetric  variation of 
elastic properties.

• In the buckling analysis: the power-law is modified to make a symmetric 
variation,  where  the  FGM  is  metal-rich  at  the  middle  and  gradually 
changes towards the surfaces to be completely ceramic.

This  FGM  matrix  is  reinforced  by  GPls,  which  are  a  recently  discovered 
carbonaceous nanomaterial that takes the form of two-dimensional nano-sheets. 
Porosities are also included to simulate the defects of micro-scale voids that occur 
in many engineering materials, and which may be also introduced intentionally to 
reduce total weight, in addition to other benefits. Both parameters, ie GPls and 
porosities,  may  follow  four  different  forms  on  non-linear  distributions.  In 
addition, the base FGM variation-profile and the overall proportions of metal and 
ceramic are adjusted by the value given to the power-law index.

Incorporating  GPls  into  metal-ceramic  FGMs  was  shown  to  yield  very 
interesting  results  in  these  anisotropic  materials,  including  increased  effective 
modulus  and  stiffness  coefficients,  improved  mechanical  response,  and  more 
interestingly, the uncoupling of bending and extension in FGM plates. A visual 
abstract of the entire work is given in Figure 1. The results snapshots in the figure 
were obtained from our main article, which is introduced in the following section. 
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Scientific contribution

The recent FGM field has already reached a nearly mature stage of research, 
where an enormous works have been accomplished in all engineering aspects that 
relate  to  these  materials.  This  includes  the  linear  and  non-linear  mechanical 
responses  [1], [2], thermal effects  [3], integration of piezoelectric actuators  [4], 
bio-medical applications [5], and many other research directions as well.

Despite these considerable research efforts devoted to FGMs, we have found 
that no previous work has attempted to analyse metal-ceramic FGMs with GPls 
inclusions,  which  was  confirmed  after  careful  search  in  multiple  databases. 
Accordingly, we put our efforts on this line of research, which was eventually 
accomplished  by  the  publication  of  our  article  entitled  ‘Effects  of  graphene-
platelets reinforcement on the free vibration,  bending,  and buckling of porous 
functionally-graded metal-ceramic plates’, in the Journal of Composite Materials,  
from Sage publications group [6].

In addition to this investigation, we have made a conference communication in 
ICARESS’221 [7] on the use of graphene and other nanomaterials in photovoltaic 
cells, which are considered from the mechanical perspective as composite panels 
without  load-bearing  capacities.  This  communication  paper  was  chosen  for 

1 International Conference on Advanced Renewable Energy Systems, at UDES (Unité de 
Développement des Equipements Solaires), Bousmail.

Figure 1: Visual abstract of the analysed parameters and findings of this work. 
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publication in a national journal after the conference  [8], which was done after 
paper improvement and extension. We have also contributed by a comparative 
study of different higher-order shear-deformation plate theories using a quasi-3D 
analysis, with application to the flexural response of metal-ceramic FGM plates. 
This work was communicated to ICMA’232 [9].

Our  last  contribution  was  the  participation  in  the  international  conference 
ICCESEN-20233 by two papers. The first develops an analytical solution to the free 
vibration of GPls-reinforced metal-ceramic FGM beams with different boundary 
conditions [10], and the other investigates the effect of CNTs on the free vibration 
behaviour of FGM beams, also using an analytical method [11].

Organisation of the thesis

After setting an introductory background to the subject, I have organised the 
rest of the thesis as follows:

In Chapter I a comprehensive literature review was elaborated, focusing on the 
experimental  state-of-the-art  and  mechanical  analysis  works  of  metal-ceramic 
FGMs, graded porous materials,  and nano-reinforced materials.  The production 
techniques  and  theoretical  studies  of  each  of  these  material  types  were 
categorized  and  explained  thoroughly,  with  a  special  focus  on  most  recent 
approaches.

Chapter  II covers  the  theoretical  modelling  strategies  and  the  various 
mathematical models used to represent metal-ceramic FGMs, nano-additives, and 
porosities. After that, kinematic plate theories and common solution approaches 
were discussed in detail.

The mathematical problem of interest is formulated in Chapter III, involving a 
rectangular  FGM  plate  with  porosities  and  GPls  reinforcement.  A  unified 
displacement  field  that  admits  any  desired  plate  theory  was  used.  Then  the 
principle  of  Hamilton was applied to  derive  the  equilibrium equations,  which 
were solved analytically by specifying the support type with the corresponding 
boundary conditions.

Chapter  IV,  which is  the essential  part  of  the thesis,  exhibits  the numerical 
results of a multi-parametric study of the free vibration, bending, and buckling of 
porous GPls-reinforced FGM plates. This chapter has a direct correlation with our 
article  [6],  from which  some important  results  and  conclusions  were  used  to 
support  our  analysis.  The influence  of  various  parameters  was  examined  and 

2 International Conference on Mathematics and Applications, at Université of Blida 1, Blida.
3 10th International Conference on Computational and Experimental Science and Engineering, 

Turkiye.
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discussed, including the composition of the FGM, the amount and distribution of  
GPls and porosities, and loading settings.

At the end of this work we report our findings and conclusions, and we propose 
a  number  of  future  recommendations  to  extend  and  enrich  this  FGM  plates 
analysis.
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CHAPTER I:
STATE OF THE ART OF FGMS

I.1 Introduction

Functionally  graded  materials  are  advanced  composites  characterised  by  a 
graded variation in certain material parameters. This includes the composition of 
matrix  materials,  grains  size,  reinforcement  particles,  porosities,  or  any  other 
material property. Also, the gradation pattern of a given FGM plays an important 
role in the mechanical characteristics of an FGM structures. All these parameter 
are set during the manufacturing stage. Besides, it is necessary to perform prior  
calculations to simulate the behaviour of the FGM models that we want to realize.

In this first chapter we review the state-of-the-art of FGMs in experimental and 
theoretical  research,  including the latest  trends of  3D printing and the use of 
graphene  and other  nanomaterials  for  reinforcing  FGMs.  We also  review and 
discuss the important simulation works on FGM structures.

I.2 Bibliographic research methodology

The  bibliographic  research  was  accomplished  by  using  multiple  scholar 
databases.  Of which,  the most  useful  to us was Scopus.  We used the efficient 
search  engine  of  this  database  with  logic  operators  to  refine  results,  and  to 
exclude out-of-scope articles (like nonlinear FGM analysis in our research, see  
Figure I.1). Results were then sorted following two criteria: Cited by (highest), and 
Date (newest).  Sorting articles by citations allows to obtain the most important 
works for research community, and citations are one of the best indicators of the  
value and quality of work (generally but not always, because citations are often 
manipulated and boosted, unethically).
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On the other hand, sorting by recency allows to obtain the most up-to-date 
pieces of research. In this case, most recent works have few or even no citations at 
all,  irrespective of how good or mediocre they are, which makes the selection 
difficult.  Therefore,  these  works  were  filtered  by  personal  judgement  of  the 
contribution to the field. Similar methodology was used in other databases like 
Proquest and Sage.

I.3 Fabrication techniques of FGMs

Fabrication phase is an essential part of composites research because it defines 
all  the characteristics of the final product.  Realizing FGM composites with the 
desired  mechanical  qualities  requires  good  adjusting  of  material  variation, 
controlling voids, and avoiding the formation of cracks and uneven shrinkage of  
different FGM layers due to varying material properties.

Despite  the short  existence of  FGMs since their  first  proposition in 1983 to 
reduce  thermal  stresses  in  space  vehicles  [12],  research  community  has 
accumulated  a  considerable  amount  of  understanding  on  the  properties  and 
behaviour of these materials, and it can be considered now that these composites  
branch is almost as mature as that of laminates.

In this  respect,  FGMs fabrication techniques have followed a rapid curve of 
research and development, which was aided by the long experience in metallurgy 
and laminated  composites,  and  also  the  gained  knowledge  from recent  FGMs 
research. Many FGMs fabrication techniques exist today, but they all belong to 
three main classes, namely: deposition based methods, solid phase based methods, 

Figure I.1: Search interface in Scopus scholar database. 
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and  liquid  phase  based  methods.  Each  class  includes  a  family  of  different 
techniques, as it is shown in Figure I.2.

The most common techniques from this chart are explained briefly bellow [13]:

• Powder metallurgy: this is an old technique based on materials powders 
that  are  compacted  to  give  integrity,  and  then  subjected  to  high 
temperatures but bellow the melting point (called the sintering process). In 
the case of FGMs, the constituents are stacked in the mould with grading 
proportions.

• Centrifugal force:  this is a liquid-state method that is very popular in 
FGMs research. It allows to produce continuous FGMs by rotating a mould 
with high speeds, which generates a centrifugal force that drives heavier 
constituents  outwards,  creating  a  graded  composition  along  the  radial 
direction.

• Vapour deposition methods: in this methods the material is condensed 
from a  vapour  phase  under  high  temperatures  to  solid  layers  that  are 
deposited on a substrate. This method may be of physical or chemical type. 
We note that chemical vapour deposition can also be used to produce high 
quality graphene sheets [14].

Figure I.2: Overview and classification of current manufacturing methods of FGMs.
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• Additive manufacturing (AM): also known as 3D printing [15], this is a 
very advanced method that has many advantages over the other methods, 
such as the precise control of the composition and geometry in 3D space, 
the rapid printing speed that  allows mass production,  and the near-net 
forming character of the procedure, which reduces byproducts and wasted 
materials  [16]. Some new hybrid methods that combine this method with 
other procedures were developed as well, such as wire-arc AM and friction 
stir AM.

Figure  I.3 shows  some  recent  FGMs  realisations  from  these  fabrication 
techniques. In Figure I.3(a) we see a 32-layered metallic FGM (Al-W), realised by 
Kelly et al. [17] using directed energy deposition, where W phase varies from 0% 
at the bottom layer to 55% at the top layer. In  Figure I.3(b) we see an 8-layered 
metal-ceramic FGM (Ti-PSZ), fabricated by Fujii et al. [18] using spark plasma 
sintering  (a  powder  metallurgy  method),  in  which  the  FGM varies  from full-
ceramic to full-metal. In  Figure I.3(c) we see a 5-layered metallic FGM (Cu-W), 
realised by Matějíček et al. [19] using thermal spray method. We can see that even 
though layers are few, the FGMs have nearly continuous variation. Also, we can 
observe by comparison that  the more layers in the FGM, the smoother is  the 
variation.
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Continuous transition of material composition was demonstrated to in many 
recent FGM production techniques  [13]. Even with discrete multilayered FGMs, 
quasi-continuous variation without abrupt changes in inter-laminar boundaries is  
observed, which is due to the thermal diffusion of materials at the interfaces of 
deposited layers  [20]. The FGM gradation smoothness can be controlled by the 
number of layers as shown in Figure I.4 from Su et al. [20].

Figure I.3: FGM microstructures resulting from different fabrication techniques: (a) Al-
W FGM realised using directed energy deposition (Al is the dark phase, and  W  is the 
white). Adapted from Kelly et al. [17].  (b) PSZ-Ti FGM realized using a powder 
metallurgy method. Adapted from Fujii et al. [18]. (c) Cu-W FGM realised using a 
thermal spray method (Cu is the dark phase and W is the white). Adapted from 
Matějíček et al. [19].



10

In  this  example,  measurements  of  ultimate  tensile  strength  and  maximum 
elongation showed an increase between the 5-layers sample and the 10-layers 
sample,  but deteriorated in the 30-layers sample because of heat accumulation 
associated  with  many  deposited  layers  [20].  This  negative  effect  may  not 
necessary occur in all fabrication methods, especially with the most sophisticated 
ones like 3D printing.

The global elastic properties of entire FGM samples are determined in the same 
manner as with isotropic and composite materials (for example, using the usual 
tensile test). In addition to this, it is possible to obtain experimentally a layer-by-
layer profile of  elastic  modulus using advanced inverse minimization methods 
combined with instrumented tests, such as micro-indentation tests [21] and four-
point  bending  tests  [22].  The results  allow to  visualize  the  through-thickness 
stiffness  variation,  and  also  to  assess  the  accuracy  of  FGMs  micromechanics 
models that estimate theoretically the effective properties.

I.4 Types of FGMs

I.4.1 Metal-ceramic FGMs

The most explored type of FGMs is the metal-ceramic FGM, which is designed 
primarily for thermal protection structures [12], [23]–[26]. Typically, ceramics are 
used at one surface (ie, an extreme FGM layer) for heat resistance and insulation,  
and metals are used at the other surface to provide structural rigidity, and the 
transition  in  between  is  made  gradually  according  to  specified  profiles. 
Experimental and simulation results of these FGMs revealed good heat insulation,  
smooth temperature variation, and maintained structural integrity after prolonged 
thermal cycling. Material gradation in metal-ceramic coatings can also reduce the  

Figure I.4: Different transition modes of 316 L/Inconel718 FGM: (a) 5-layered FGM 
region. (b) 10-layers FGM region. (c) 30-layers FGM region. Adapted from Su et al. [20].

(a) (c)
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amplitude  of  mode-I  stress  intensity  factor  under  mechanical  and  thermal 
loadings [27].

Before FGMs, conventional duplex ceramic-metal thermal-barrier coatings had 
only two discrete regions of metal and ceramic, as shown in  Figure I.5(a).  The 
FGM  coating  improved  these  discontinued  structures  by  making  a  graded 
intermediate layer (Figure I.5(b)). For the same coating thickness in this illustrated 
example,  FGM  coatings  outperformed  standard  coatings  by  higher  thermal 
insulation,  longer  lifetime  under  cyclic  thermal  loads  and  greater  adhesion 
strength [28].

In a similar study, Saeedi et al. [29] showed that thermal barrier coatings with 
an FGM YSZ-NiCrAlY layer had 1.5 times higher bonding strength than duplex 
thermal barriers, and also formed less cracks after thermal shocks [29].

In biological fields, metal-ceramic FGMs are efficiently used to reduce thermal 
stress in ceramic dental  restorations,  and to give higher strength and fracture 
toughness to artificial bones replacements [5], [30].

In terms of theoretical research of metal-ceramic FGMs, Yang and Shen  [31] 
investigated the nonlinear  free vibration and transient  response of  FGM plate 
with initial thermo-mechanical loads and temperature-dependant properties. The 

Figure I.5: Metal-ceramic thermal coatings: (a) traditional duplex type, where YSZ is the 
ceramic, and NiCrAlY is the metal alloy. (b) FGM type. (c) Composition scheme of both 
coating types for the same total thickness. Adapted from Mohammadzaki et al. [28].



12

authors found that the transient response of FGM plates does not necessary lie 
between those of isotropic ceramic and metal plates. Huang and Shen [32] made a 
similar study with heat  conduction parameter,  and concluded that  the natural 
frequencies  can  be  reduced  by  increasing  the  volume  fraction  index  and 
temperature rise.  Zenkour studied the statics  [33] and buckling and dynamics 
[33] of sandwich FGM plate composed of metal core-layer bounded by two FGM 
layers using various higher-order shear-deformation theories  (HSDTs). Li et al. 
[34] made a three-dimensional analysis of vibrating FGM plates under thermal 
loadings.  The  solution  was  performed  using  the  Ritz  method  and  the 
displacements  were  expressed  by  Chebyshev  polynomials.  Qian  et  al.  [35] 
analysed  the  statics  and  dynamics  of  FGM plates  using  a  normal-deformable 
HSDT and a meshless local Petrov–Galerkin method for the solution. It was found 
that the deflection magnitude is not symmetric about the mid-plan for both FGM 
and isotropic plates. Han et al.  [36] used a four-variables third-order HSDT to 
analyse  the  dynamic  stability  of  sigmoid  FGM plates  under  periodic  in-plane 
excitation loads. It was found that the instability region increases with the values 
of elastic foundation parameters.  Huang et al.  [37] investigated the vibration of 
FGM plates with cutouts situated at  different positions and with various sizes 
using  the  finite  elements  method  (FEM).  Lahdiri  and  Kadri  [38] analysed  the 
vibration  of  FGM  porous  plates  with  different  geometric  forms  and  multi-
directional material gradation using an isogeometric approach. Nguyen et al. [39] 
developed a semi-analytical analysis of corrugated cylindrical FGM shells without 
or full of fluid and under dynamic loads. The solution was calculated using the 
fourth-order Runge–Kutta method, and it was revealed that vibration amplitudes 
of  corrugated  FGM  cylinders  are  substantially  reduced  from  those  of  non-
corrugated FGM cylinders with the same material quantity.

I.4.2 Porous FGMs

Porous materials are commonly used in aerospace and transportation industries 
because these fields emphasize on structural weight and also on minimizing the 
consumption  of  material  resources.  A  genius  way  for  these  objectives  is  to 
introduce microscale  air  voids  into  the  material,  or  porosity.  Porous  materials 
trade a percentage of the original mechanical properties for the gained benefits. 
However,  this  loss  is  often  compensated-for  by  thermal  treatment  procedures 
[40],  or  by reinforcing materials  [6].  The current  research direction in porous 
materials  is  the  graded  porosity,  which  was  shown  to  outperform  uniform-
porosity materials by many researchers [41]–[43].

Different techniques exist to introduce porosities into engineering materials. A 
long-standing technique consists of casting the liquid material around granules or 
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hollow spheres of low density, called space holders or pores-forming agents. These 
granules may be of inorganic origin like alumina [40] or organic origin like starch 
[44], [45], and they will eventually burn out by the heat of the procedure to leave  
spherical pores in place.

The size and density of pores can be controlled by adjusting the beads-size and 
the  volume-fraction  of  pores-forming agents  [43],  [46].  Figure  I.6,  reproduced 
with modification from the work of Vemoori et al.  [46], illustrates how pores-
forming agents (polystyrene beads here) can be used to adjust the characteristics 
of porous ceramic. Pores mean-diameter is adjusted through beads size, and pores 
density  is  adjusted  through  beads  volume-fraction.  These  parameters  affect 
directly the median wall-thickness of cells,  which plays a principal role in the 
mechanical resistance of cellular materials [46].

It  is  also  possible  to  realize  lamellar-shape  voids  in  centrifugal  techniques, 
where  the  matrix  material  is  pushed  outwards  by  high-speed  rotation  of  the 
mould, leaving more void spaces in the inner region [47]. This technique has the 
advantages of not requiring pores-forming agents, and the automatic creation of 
porosity gradient in the radial direction.

Additives  manufacturing of  porous materials  is  much investigated given the 
accuracy of this technique in adjusting pores distribution in the space.  In this 
respect,  Bin Liu  et  al.  [42] developed a  procedure to  control  porosity  field  in 
additively-manufactured FGMs, which allows consequently to tailor the elastic 

Figure I.6: Controlling pores size, density, and wall-thickness of cellular ceramic by 
varying the parameters of pores-forming agents. Adapted from Vemoori et al. [46].
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modulus  distribution  in  3D  space  [42].  This  method  was  demonstrated  in 
polyurethane samples, in which the elastic field was adjusted according to pre-
defined equations that were integrated in the process system (see Figure I.7).

Coffigniez et al. [48] developed a new 3D-printing method to control porosity in 
metal scaffolds (i.e tissues) by using the size of extruded metal powder.  Figure
 I.8(a) shows a titanium-alloy scaffold realised by this approach, and Figure I.8(d)-
(f) shows the graded porosities in the printed filaments of this scaffold.

In addition to these engineered porosities,  another type of  pores may occur 
unintentionally in the material. Figure I.8(c) shows an instance of these accidental 
pores (marked by red arrows). These pores are generally undesired as they make 
detrimental discontinuities in the material.

Figure I.7: Designing graded elastic field of polyurethane using pre-defined 3D-printing 
rules. Adapted from Bin Liu et al. [42].
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Graded porosity was shown to delay the compressive failure in metal-foams, 
which  is  due  to  the  gradual  collapsing  of  different  layers  instead  of  uniform 
collapsing at once in the case of homogenous porosity [43]. Similar improvements 
in compressive strength with graded porosity were obtained in porous ceramics 
[41], metal-lattice structures [49], [50], and porous polymers [42]. 

I.4.3 Graphene and nanomaterials-reinforced FGMs

Improving the physical properties of composite materials by nano-additives is a  
subject of extensive research in various fields. Graphene, in particular, is a very 
interesting nanomaterial because of its high elastic modulus of ∼1000 GPa , which 
makes  it  the  strongest  nanomaterial  [51].  Steel  for  comparison  –one  of  the 
strongest engineering metals– has a modulus of  ∼200 GPa. Graphene is a two-
dimensional  carbon-based  nanomaterial  with  a  hexagonal  atomic  lattice.  It  is 
often incorporated in the form of graphene nanoplatelets, or graphene oxide (GO).

Theoretical research on the effects of GPls addition to the flexion, buckling, and 
vibration of FGM plates is only in its first stages. Not long ago, Song et al.  [52] 
initiated this direction in 2017 by studying the free and forced vibration behaviour 
of GPls-reinforced polymer plates using the first-order shear-deformation theory 
(FSDT).  Wu et al.  [53] presented a parametric study on the buckling and free 
vibration of multi-layered FGM GPls-reinforced plates subjected to periodic in-

Figure I.8: Microscopic images of a 3D printed Ti-6A-4V porous scaffold. (a) Tissue 
filaments. (b) zoomed inset. (c) accidental pores highlighted. (d)-(f) porosities 
gradation between different filaments. Adapted from Coffigniez et al. [48].
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plane forces and uniform temperature rise. García-Macías et al. [54] conducted a 
comparative analysis of the bending and vibration of polymer plates reinforced by 
GPls  or  by  carbon  nanotubes  (CNTs),  and  used  an  FEM  simulation  with 
consideration of GPls orientation and agglomeration defects. The stiffening effect 
of  GPls  was  found  to  be  superior  than  that  of  CNTs  for  the  same  additives 
content. Yang et al.  [55] investigated the impacts of porosities and GPls on the 
buckling and dynamic behaviour of metal-matrix multi-layered plates using the 
FSDT and the Chebyshev-Ritz solution method. Zhao et al.  [56] investigated the 
vibrations  of  thick  porous  FGM  plates  using  the  three-dimensional  elasticity 
theory and the Rayleigh-Ritz solution method. Pashmforoush et al. [57] conducted 
a statistical analysis of the dynamic response of isotropic plates reinforced with 
graded GPls.  It  was found that boundary conditions and GPls volume-fraction 
were the most influencing parameters affecting natural frequency, followed by 
thickness ratio and GPls distribution modes,  respectively.  Thai and Phung-Van 
[58] solved  the  free  vibrations  problem  of  FGM  GPls-reinforced  plates  with 
circular or complicated holes using the moving-Kriging meshless method and a 
special integration scheme. Nguyen et al.  [59] used an isogeometric solution for 
the vibration and buckling of GPls-reinforced FGM porous plates using a refined 
three-variables  HSDT.  The  forced  vibration  and  resonance  of  metal-foam 
laminated plates  reinforced with GO were studied by  Zheng et  al. [60] using 
Galerkin method. Van Do and Lee [61] examined the nonlinear thermal buckling 
and  post-buckling  responses  of  GPls-reinforced  laminated  epoxy  plates  under 
different  kinds  of  thermal  loadings  using  an  isogeometric  approach. 
Sheikholeslami  et  al.  [2] made  a  non-linear  analysis  of  doubly-curved  GPls-
reinforced  micro-panels  with  double  curvature  under  non-uniform  thermal 
loadings.

We have recently treated the free vibration, bending, and buckling of porous 
metal-ceramic  FGM plates  reinforced  by  GPls  [6].  We found that  the  relative 
change of frequency due to GPls varies significantly with the composition of the 
base FGM, while the change due to porosities is nearly unaffected by varying the 
FGM. It was also demonstrated that GPls and porosities have marked effects on 
the bending-extension coupling of FGMs [6].

 CNTs,  which  are  graphene’s  uncle,  are  another  important  carbonaceous 
nanomaterial that is widely investigated in composites research. Salama et al. [62] 
fabricated a radially-graded aluminium-CNTs FGM (showed in  Figure I.9).  The 
FGM behaved like a bulk material without delamination of layers under loads, and 
showed an increase in the ultimate tensile strength by 107.1% with respect to pure 
Al samples, and by 10% with respect to uniformly-dispersed CNTs sample. Daikh 
et al. [63] studied the free vibration, bending and static stability of FGM polymer 
plates  reinforced  by  CNTs with  consideration  of  nonlocal  elasticity  theory.  A 
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quasi-3D formulation was used with Galerkin solution method. It was found that  
the introduction of  nonlocal  parameter  leads to  a  decrease of  calculated plate 
stiffness,  which  consequently  decreases  buckling  loads  and  frequencies,  and 
increases deformations.

Adding nano-clay particles and nano-silica particles to reinforced glass/epoxy 
composites can decrease the coefficient of hygroscopic expansion by 17% and 23%, 
respectively, which improved the dimensional stability of epoxy composites under 
corrosive environmental conditions [64].

I.4.4 Other types of FGMs

In addition to the common FGM types discussed above (metal-ceramic FGMs, 
porous FGMs, and particles-reinforced FGMs), some other types of graded cellular 
materials  are  also  attracting  researchers’  interest.  Traditional  honeycomb 
composites, for instance, have a large room of development using the FGM idea.  
These materials consist of two thin but rigid skins sandwiching a soft core. This  
core occupies most of the honeycomb thickness, and it is characterized by a unit 
cell that repeats in 2D patterns. Density gradient was shown to be an effective 
means for enhancing the energy absorbing properties and damping in honeycomb 
materials [65].

Lattice  structures  are  also  another  area  in  which the  FGM concept  is  being 
integrated. Lattice materials consist of ordered cellular patterns that repeat in the 
3D space (in contrast to honeycomb materials). The reduced elasticity moduli of 
lattice materials compared to highly stiff alloys makes them very suitable to be  
used  as  orthopaedic  materials  and  avoid  the  “stress  shielding”  effect  in 

Figure I.9: Al-CNTs FGM sample. Left: fractured sample after tensile test. Right: stress-
strain diagrams from tensile test, in which FG2  (the FGM sample) has equivalent CNTs 
content to uniform dispersion samples. Adapted from Salama et al. [62].
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conventional alloy implants  [66]. FGM lattices are realized using advanced AM 
printing procedures that allow to realize gradients with many possible geometric 
parameters.  FGM lattice structures with a gradient along the loading direction 
showed  optimal  mechanical  results,  with  and  increase  in  elastic  modulus  by 
17.53% and by 59.43% in energy absorption capacity (compared to uniform-lattice) 
[49]. Figure I.10 shows some examples of honeycomb and lattice FGMs from very 
recent experimental studies.

FGM Research  is  also  beign  applied  on  polymeric  composites,  which  are  a 
widely-used  materials  in  aeronautical  industry.  Graded  fiberglass  laminates 
demonstrated higher flexural  capacity and better resistance to sliding wear in 
comparison to conventional laminates [67]. Joining polymer matrix composites by 
FGM adhesives was shown to reduce the peel stress and facilitate the realization 
of lighter aircrafts structures, in contrast to heavy rivet-type joints [68]. 

Figure I.10: Cellular FGM structures. (a) honeycomb with length grading (left), and 
hybrid height-length grading (right). Adapted from Sahu and Sreekanth [65]. (b) FGM 
lattice with grading in cell-size. Adapted from Bai et al. [49]. (c)  FGM lattice with 
grading in both cell-size and structs diameters. Adapted from Yang et al. [50].

(a)

(c)

(b)
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CHAPTER II:
MODELLING AND SOLUTION APPROACHES 
OF FGM STRUCTURES

II.1 Introduction

The purpose of this chapter is  to investigate the theoretical  models used by 
researchers in the linear elastic analysis of FGM plates that we study specifically 
in this thesis. The first part of the chapter presents the material models applied to 
each of metal-ceramic FGMs, nanomaterials-reinforced composites,  and porous 
composites.  Then, the important models of shear-deformable plate theories are 
explored with their various applications in the FGM field. And finally we review 
the solution methods applied to FGM plates problems. 

II.2 FGM constitutive models

The physical properties of solid multi-phasic media, and in particular FGMs, are 
modelled  by  homogenization  –or  micromechanical–  models,  which  aim  to 
calculate the effective properties of these mediums by considering the effects of 
microstructures and the properties  of  individual  phases and their  interactions. 
Micromechanics  represents  an  important  part  of  the  mechanical  analysis  of 
composite  materials,  because  the  results  depend  essentially  on  the  estimated 
elastic moduli.

In the following sub-sections we will review the most common models used to 
model FGM material properties. Given that our analysed FGM plate is composed 
of a base metal-ceramic matrix, GPls inclusions, and porosities, then each of these 
parameters is treated apart.

II.2.1 Modelling metal-ceramic FGMs

Modelling  the metal-ceramic  FGM  matrix  is  done  in  the  most  part  of  the 
literature by the simple rule of mixture, also known as the Voigt model [69]. This 
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rule estimates the effective elastic property as a linear sum of phases properties 
weighted by their respective volume-fractions. Accordingly, the effective elastic 
modulus E and Poisson’s ratio ν  are calculated as:

Emat=EmV m+EcV c

ν mat=ν mV m+ν cV c
(II.1)

where mat denotes matrix, c denotes ceramic, and m denotes metal.

Mori-Tanaka homogenization model is also widely used to estimate the elastic 
properties in the case of a two-phases FGM material having a base-matrix with 
randomly distributed inclusions. This model expresses the effective shear  G and 
bulk K  moduli as:

G (z )=Gm+
V i

1
G i−Gm

+
6(Km+2Gm )(1−V i)

5Gm (3Km+4Gm )

K (z )=Km+
V i

1
K i−Km

+
3(1−V i)

3Km+4Gm

(II.2)

Where  subscripts  m  and  i denote  the  matrix  and  particles  inclusions, 
respectively.  The  elastic  modulus  and  Poisson’s  ratio  are  then  obtained  from 
equation (II.2) by the relationship:

E (z )= 9G (z )K (z )

G (z )+3K (z )

ν (z )= 3K (z )−2G (z )

2(G (z )+3K (z ))

(II.3)

A question arises in the Mori-Tanaka model as to which phase in the FGM to 
consider as the matrix and which one to consider as the inclusion, because the 
FGM varies from metal-rich with little ceramic as inclusions, to ceramic-rich with 
little metal as inclusions. Vel and Batra [70] used a combined technique for this 
case,  where  they  considered  the  bottom  and  top  regions  of  the  FGM  as  a 
particulate microstructure with ceramic and metal as inclusions, respectively, and 
a middle region with skeletal microstructure (see  Figure II.1 for illustration). In 
the top and bottom regions the Mori-Tanaka model was used, and in the skeletal 
region a self-consistent model was used.
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Ferreira  et  al.  [71] analysed  FGM  plates  modelled  using  either  the  rule  of 
mixture or the Mori-Tanaka homogenization technique. The authors found that 
when  Poisson’s  ratio  of  the  two  phases  has  very  similar  values,  the  two 
techniques give close values, but the results will diverge significantly for largely 
different ratios.

Other micromechanical  models exist  for the calculation of elastic properties,  
such as the Tamura model and the cubic local representative volume elements 
model [72], but are less used because of the increased complexity.

As for the effective mass density, it is always calculated using the rule of 
mixture, irrespective of the adopted model.

The  variation  profile  of  the  FGM  is  controlled  by  the  function  V (z ).  This 
function has been often described by adopting a convenient power-law function, 
given as:

V (z )=( zh + 1
2 )

n

(II.4)

Researchers have worked with many other functions as well, such as sigmoid 
rule  [11],  [36] and  exponential  rule  [9],  [73],  [74].  In  effect,  any  valid 
mathematical expression can serve the same purpose as these functions. Thus, the 
FGM can be tailored to a given application by specifying the profile of gradation 
to suit the design requirements. 

Figure II.1: Two-phases composite material with (a) skeletal microstructure, and (b) 
particulate microstructure.

(a) (b)
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II.2.2 Modelling the effects of porosity on FGMs

The most simple model of porosities is the modified rule of mixture, which is 
widely used to determine the elastic properties in metal-ceramic FGMs [38], [56], 
[75]–[79].  The rule of mixture assumes a linear decrease of elasticity modulus 
with  porosities,  but  this  assumption  is  only  valid  for  very  small  amounts  of  
porosities [80], [81]. Also, Abuteir and Boutagouga [3] have recently revealed that 
the  mathematical  expression  of  this  modified  rule  of  mixtures  is  physically 
inconsistent.

On the other  hand,  the Gibson-Ashby models  are  used to obtain the elastic 
properties of porous metal foams FGMs. Two Gibson-Ashby variants are used: the 
model  of  open-cells  cellular  solid (for  example in  [55]),  or  that  of closed-cells 
cellular solid (for example in [59]). Jalali et al.  [82] have recently reported that the 
open-cells  model  was  wrongly  simplified  in  86  recent  papers,  which  led  to 
significantly overestimated elastic modulus, and consequently in large errors in 
deflections and frequencies.

There  exist  a  simpler  and  more  accurate  exponential  relation  of  porosities 
proposed by Pabst and Gregorová  [80], [83]. The higher accuracy of this model 
over the others, including Gibson-Ashby models, was confirmed by experimental 
measurements  of  elastic  modulus  [84] and  by  computational  micro-structures 
simulation  [85].  In  our  article  on  porous  GPls-reinforced  FGMs  [6],  we  have 
adopted this exponential model and showed that it  gives very realistic results.  
Specifically,  the  natural  frequencies  will  decrease  with  higher  porosities 
irrespective of their distribution, which is a physical consequence of the reduced 
stiffness. On the other hand, the linear rule-of-mixture may lead to increasing 
frequencies with porosities amount [6].

II.2.3 Modelling the properties of nanomaterials-reinforced 
composites

Evaluating  the  mechanical  properties  of  composites  with  nanomaterials 
inclusions  is  a  challenging  task,  because  of  the  hierarchical  structures  of 
nanoparticles which is not limited to the nano-scale only. For example, graphene 
nanosheets are of the order of nanometers along the thickness, but the other two 
dimensions may be few micrometers long. Numerous models were developed for 
an  accurate  representation  of  nanomaterials-reinforced  composites  with  more 
focus on elastic properties, as they are directly involved in the static and dynamic 
analysis of these structures. The following strategies are used for modelling nano-
additives  in  composite  materials,  classified  from  the  simplest  to  the  most 
complicated [86]:
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• Micromechanical  models: these  are  the  most  used  models  in  FGMs 
research because of their closed-form explicit expressions. These models 
make use of Cauchy’s continuum mechanics to represent the matrix and 
nano-additives  without  considering nanoscale  interfacial  interactions.  In 
the  case  of  GPls-reinforced FGMs,  the  Halpin-Tsai  homogenization  [87] 
model is usually used. Improved Mori-Tanaka models are also utilized with 
consideration of interface and agglomeration defects [88], [89].

• Nanostructural modelling: this approach represents a more elaborated 
strategy which attempts to considers the morphology of nano-additives at 
the  nanoscale  while  keeping  the  hypothesis  of  continuity  like 
micromechanical  models.  Nanostructural  modelling  offers  more  precise 
insights on the nanomaterial-matrix interface interaction without loosing 
much simplicity.

• Molecular modelling: this is the most accurate strategy as it considers 
three  modelling  scales:  the  atomistic  model,  nanostructural  model  and 
micromechanical model. This approach abandons the continuity hypothesis 
to consider only discrete theories, which gives very realistic results, but at 
the expense of a very high computational penalty. Molecular dynamics is a 
very popular method in this type of modelling [90].

II.3 FGM plates theories

Plate  structural  elements  are  widely  used  in  many  industry,  and  they  are 
fabricated  in  various  shapes  and  compositions.  In  aeronautical  structures 
particularly,  plate  and  plate-like  structures  compose  tailplanes,  winglets,  and 
control surfaces (see Figure II.2 for illustration). The various applications of plates 
in engineering have made them extensively studied by researchers and engineers 
to optimize their material and geometric attributes and enhance their mechanical 
performance.
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Therefore, many plates theories have been proposed since the early works of 
Kirchhoff and  Love  in  the  19 th century  [91] on  isotropic  plates  with  many 
simplifying  assumptions,  to  the  recent  developed  models  of  shear-deformable 
plates with nonlinearity and non-local effects. The main goal in the field of plates 
modelling is to describe their mechanical behaviour with sufficient accuracy and 
with reduced computing costs compared to the exact –but complicated– elasticity 
solution. The most important characteristics in the elastic mechanical analysis of 
plates  are:  the  state  of  stresses  and  strains,  natural  frequencies,  and  critical 
buckling loads.

Despite the huge number of plates theories out there, the difference between 
two theories lies in four essential points:

• The  type  of  variables:  the  most  common  approach  is  to  assume  a 
displacement  field  that  satisfies  the  boundary  conditions  of  the  plate. 
Alternatively, some researchers prefer to start with an assumed stress field 
and  derive  the  equations  of  motion,  or  with  combined  stress  and 
displacement  fields.  We  will  focus  on  the  first  approach  as  it  is 
conventional now in plates modelling.

Figure II.2: Control surfaces exemplify well the use of plates structures in aeronautical 
engineering. Wing of Boeing 767-324. Image from www.airliners.net.
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• The number of variables: the literature review reveals that most HSDTs 
use  a  five-variables  kinematic  model  (three  displacements  and  two 
rotations). A four-variables formulation is also very common (using four 
displacements).

• The  shape  function: this  parameter  determines  the  variation  of 
transverse shear stresses and strains across the thickness. The choice of 
this function becomes very important for thick plates, which exhibit more 
influence of transverse shear effects.

• The  assumption  on  normal  transverse  deformation  (stretching): 
theories  that  consider  this  effect  are  called  quasi-3D  theories,  and  are 
mainly used for large thickness ratios. On the other hand, 2D formulations 
are based on the assumption of plane elasticity without stretching, and are 
deemed accurate for most practical engineering problems.

II.3.1 Shear-deformation plate theories

The simplest plate model is the classical plate theory (CPT), also known as thin 
plates  theory,  or  Kirchhoff plates  theory.  CPT  is  the  plate  equivalent  of  the  
classical Euler-Bernoulli beam theory, and it has served engineers from the times 
of manual calculation of mathematical tasks to recent days where it is used in 
FEM  formulations  for  its  computational  simplicity.  However,  the  CPT  totally 
neglects transverse shear stress and strain, which leads to inaccurate results in 
moderately-thick and thick plates.

Shear-deformation  theories  were  then  proposed  with  consideration  of  these 
transverse shearing effects. First by Reissner [92], [93], who derived the governing 
equations in function of the variables V x  and V y  (transverse shear resultants) and 

deflection. Mindlin [94] then proposed the first-order shear-deformation theory 
(FSDT) with the following displacement field:

u (x ,y ,z )=u 0(x ,y )−z w 0 ,x

v (x ,y ,z )=v 0(x ,y )−z w 0 ,y

w (x ,y )=w 0(x ,y )

(II.5)

Where u0 and v 0 are membrane extensions at the mid-plane level, and w 0 is the 

deflection.  The FSDT results in a uniform shear stresses distribution along the 
thickness  (σ xz and  σ yz),  when  they  should  vary  quadratically.  This  uniform 

variation also means that the zero transverse shear boundary condition at the top 
and  bottom  surface  of  the  plate  is  not  satisfied.  Mindlin  introduced  a  shear 

correction  factor  of  k=π 2/12 to  adjust  the  erroneously  calculated  shear 
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resultants,  but  the  distribution  of  transverse  shear  strain  and  stress  remains 
incorrect4,  and this  error  has  more impact  in  thicker  plates.  Timoshenko  [95] 
defined this factor as the ratio of the average shear strain on a given section to the 
shear strain at the geometric centroid of the cross section of a beam. Physically,  
the true value of this factor is a function of cross-sectional shape, Poisson’s ratio, 
material properties and boundary conditions, and it is harder to determine for 
laminated structures than single-layered ones [96]. Reissner [92], [93] introduced 
factor of k=5/6, which is numerically close to that of Mindlin.

It should be noted that the widespread naming of the ‘Reissner-Mindlin theory’ 
is  incorrect  because  the  two  theories  are  fundamentally  different. Reissner’s 
theory  assumes  quadratic  transverse  shear  stresses,  and  results  in  non-zero 
thickness extension (stretching).  In contrast,  Mindlin’s  FSDT leads to constant 
transverse  shear  stresses  and  zero  thickness  extension.  Wang  et  al.  [97] 
established  the  relationships  between  the  corresponding  quantities  of  these 
theories and has carried out numerical comparison for the same correction factor. 
Mota et al. [75] showed recently that the actual value of this factor varies largely 
between FGM power indices, and that it also changes with porosity amount and 
distribution.  Figure  II.3,  adapted  from  the  same  source,  demonstrates  the 
deviation of the shear correction factor of various FGMs from the constant value 
set by Reissner in function of porosity volume ratio (modelled by the modified 
rule of mixtures).

4 This mistake of the FSDT will be seen in the bending section of results chapter.

Figure II.3: Variation of the actual value of shear correction factor for different FGM 
power indices with respect to porosity ratio ɸ. Adapted from Mota et al. [75].
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Shimpi  et  al.  [98] proposed  two  FSDT  models  with  two  variables.  The 
displacement fields of these FSDT variants are given as:

u=– z
∂w b

∂x

v=– z
∂w b

∂y
w=w b+w s

(II.6)

or:

u=– z
∂ ϕ
∂x

v=– z
∂ ϕ
∂y

w=w 0

(II.7)

It can be seen that this work neglects in-plane displacements u0 and v 0, which is 

not justified in many cases of plate analysis. For instance, the magnitudes of  u0 

and  v 0 become significant when there is coupling of in-plane and out-of-plane 

motions, which occurs in FGM plates with material asymmetry [6]. Rezaei et al. 
[99] used the refined FSDT of equation (II.6) with in-plane effects to analyse the 
vibration  of  porous  FGM plates.  The equations  of  motion  were  decoupled  by 
algebraic procedure to obtain one single final equation. Bellifa et al. [100] used the 
refined  theory  of  equation  (II.7) with  membrane  contributions  to  analyse  the 
bending  and  vibration  of  FGM  plates.  The  authors  used  the  neutral  surface 
concept which uncoupled the equations of motion.

 Mindlin’s theory was later implemented in numerical methods to solve plates 
problems,  like  the  FEM  [24],  [26],  [101]–[105],  meshless  numerical  methods 
[106]–[108], differential quadrature methods (DQM) [109]–[111], and the discrete 
singular convolution method5 [112]–[114]. 

A number of other researchers have proposed FSDTs with integral terms instead 
of derivative terms as follows:

u=u0– z k 1∫ ϕ (x ,y )dx

v=v 0– z k 2∫ ϕ (x ,y )dy
w=w 0

(II.8)

5 Singular convolution method is a recent numerical method, developed in 1999 for fast and 
effective solving of mathematical physics problems.
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This approach was used by Mantari and Granados [115], [116], and then it was 
extended to quasi-3D FGM HSDTs by Abualnour et al. [1] and Zaoui et al. [117].

Kienzler and Schneider  [118] developed a second-order plate theory starting 
from the three dimensional  equations of  elasticity  and without  any kinematic  
assumptions.  They found that  their  proposed theory coincides  with Reissner’s 
theory [92], [93]. Second-order shear-deformation theories are not developed and 
used as much as the FSDT, mainly because of the insignificant gain in accuracy 
over the FSDT [119].

As  the  FSDT  makes  faulty  description  of  transverse  shear  variation,  some 
researchers have tried to modify it in order to ameliorate this aspect. Tati  [120] 
developed  an  improved  FSDT  model  by  imposing  a  parabolic  variation  of 
transverse shear stresses and including the stretching effect in the displacement 
field. He used this theory in a FEM analysis of FGM plates bending. A similar FEM 
approach was used by Vinh et al.  [76] to analyse the buckling and bending of 
porous FGM plates.

Higher  order  shear-deformation  theories  were  then  developed  to  reflect  a 
parabolic variation of transverse shear, which gives more realistic results for the 
mechanical behaviour. The term higher order was used initially to indicate that the 
displacements varied along the thickness following polynomials of order higher 
than the first  [121], and then this designation was extended to non-polynomial 
plate  theories.  The  displacement  field  of  a  general  two-dimensional  HSDT 
contains higher-order terms in the in-plane components u  and v : 

u (x ,y ,z ) = u 0(x ,y ) −z w 0 ,x + f (z ) θ x (x ,y )

v (x ,y ,z ) = v 0(x ,y ) −z w 0 ,y + f (z ) θ y (x ,y )

w (x ,y ) = w 0(x ,y )

(II.9)

The last  term in  each in-plane component  reflects  the  displacements  due to 
transverse-shear strains. f (z ) is the shape function, whose choice should be made 
so  that  the  resulting  transverse  shear  stresses  vanish  at  the  top  and  bottom 
surfaces with a quadratic variation in-between. HSDTs therefore do not require a  
shear correction factor like the FSDT. 

Third-order shear deformation theories (TSDTs) are the most common type of 
HSDTs  in  the  literature.  Historically,  a  third-order  polynomial  variation  of 
transverse shear was proposed first by a number of east-European researchers 
(see the review of Ghugal and Shimpi  [122] and the thesis of Hanna  [123] for 
detailed historical development of HSDTs). These works have aided Reissner [124] 
to develop his TSDT, defined by the shape function:
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f (z )=5
4
z (1−4

3
z 2

h2 ) (II.10)

Livenson [125] and Murthy [126] proposed a similar TSDT of the form:

f (z )=z (1−4
3
z 2

h2 ) (II.11)

Reddy  [127] adopted  the  shape  function  of  equation  (II.11) and  followed  a 
variationally consistent formulation unlike Levinson and Murthy. The accuracy of 
his theory was validated by Reddy and Phan [128] in the analysis of the vibration 
and buckling of plates.

Shi [129] proposed a new TSDT of the form:

u (x ,y ,z ) = u 0(x ,y ) + 5
4 (z−4

3h2 z
3)ϕ x (x ,y ) + (1

4
z−5

3h2 z
3)∂w 0

∂x

v (x ,y ,z ) = v 0(x ,y ) + 5
4 (z−4

3h 2 z
3)ϕ y (x ,y ) + (1

4
z−5

3h 2 z
3)∂w 0

∂y

w (x ,y ) = w 0(x ,y )

(II.12)

Shimpi  [130] developed a refined TSDT with the shape function of Reissner 
[124],  in  which  the  deflection  was  divided  into  bending  and  shearing 
contributions (w=w b+w s), such that:

u (x ,y ,z ) = u 0(x ,y ) – z
∂w b

∂x
+ h ( z4h −5

3 (zh )
3 ) ∂w s

∂ x

v (x ,y ,z ) = v 0(x ,y ) – z
∂w b

∂y
+ h ( z4h −5

3 (zh )
3 ) ∂w s

∂y
w (x ,y ) = w b (x ,y ) + w s(x ,y )

(II.13)

This theory was extended by Shimpi and Patel to the free vibration of isotropic 
and  orthotropic  plates  [131],  [132],  and  by  Demirhan  and  Taskin  [77] to  the 
bending and free vibration problems of Levy-type porous FGM plates. Thai and 
Choi considered thickness stretching effect in a five-variables analysis of FGM 
plates  [133] using Reissner’s  TSDT.  It  was  found that  the  reduced number  of 
variables affected marginally the accuracy, and the results were comparable to 
those of nine variables solutions [133].
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Non polynomial  HSDTs were developed in an earlier time when Levy  [134] 
assumed the in-plane displacements  as  trigonometric  series.  Kil'chevskiy  [135] 
used  similar  concept  for  shells  analysis.  Stein  and  Jegley  [136]–[138] used  a 
higher-order  sinusoidal  shear  deformation  theory  (SSDT),  which was  later 
adopted by Touratier [139]. This SSDT has the shape function of the form:

f (z )= h
π sin

π z
h

(II.14)

Touratier’s theory was adopted by Zenkour for the bending analysis of cross-
ply laminated plates and FGM plates [140], [141] and for the buckling analysis of 
visco-elastic composite plates [142]. Li and Pan [143] also used this theory for the 
bending and free vibration of FGM piezoelectric microplates based on modified 
couple-stress theory. The SSDT was used by Thai and Vo for the bending, buckling 
and vibration of nano-scale beams [144] and nano-scale plates [145].

Tounsi et al. [146] developed a simple SSDT involving reduced four unknowns 
for  the  bending  of  FGM and sandwich-FGM plates  under  thermal  loads.  This 
refined formulation was in parallel adopted by Merdaci et al. [147] and Ameur et 
al. [148], always in the static analysis of FGM plates. Thai and Vo [149] extended 
this four-variables SSDT formulation to the buckling and vibration of FGM plates.

By  introducing  an  additional  variable,  the  SSDT  can  capture  the  effects  of 
thickness normal deformation (a quasi-3D theory). Neves et al. [150] used a quasi-
3D SSDT for the bending and vibration analysis of FGM plates, in which nine 
unknowns were used to describe the motion. A six-variables quasi-3D SSDT was 
used by Zenkour [73] to study the bending of thick FGM plates, and by Zenkour 
and  Aljadani  [151] to  analyse  the  electro-mechanical  buckling  for  FGM 
piezoelectric plates.

 Thai and Kim  [152] used a quasi-3D SSDT for the analysis of FGM plates in 
which  the  number  of  unknowns  was  further  reduced  to  five.  This  quasi-3D 
formulation was used by Houari  et  al.  [153] and by Fekrar et  al.  [74] for  the 
thermo-mechanical analysis of FGM plates, and recently by Żur et al.  [154] to 
analyze the vibration and buckling of sandwich FGM nanoplates integrated with  
piezo-magnetic face-layers.

Zenkour  [155],  [156] introduced  certain  unknowns  relationships  to  further 
reduce  the  number  of  variables  in  the  quasi-3D  SSDT  to  four.  However,  we 
assume that the description of plate’s quasi three dimensional motion by only 
four  variables  will  be  far  less  accurate  than  a  full  formulation,  given  that 
stretching  effect  is  considered  with  the  other  effects.  Also,  this  refined 
formulation  [155],  [156] was  not  verified  side  by  side  with  the  3D  elasticity 
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solution, but only with some quasi-3D solutions, which does not fully validate its 
accuracy.

Other types of trigonometric HSDTs were proposed as well, including tangent 
shape  functions  [157],  inverse  tangent  function  [158],  and  tangential 
trigonometric function  [159].

Ait Atmane et al. [160] developed a new hyperbolic HSDT (hHSDT) for the free 
vibration  of  FGM  plates  supported  by  elastic  foundation.  This  theory  was 
extended by Benyoucef et al.  [161] to the bending of FGM plates. Meiche et al. 
[162] and  Nguyen Van Do et  al.  [61] used  similar  hHSDT in  a  refined four-
variables analysis of metal-ceramic FGM plates and GPls-reinforced FGM plates, 
respectively.  Zenkour and Aljadani  [79] extended this hHSDT to the quasi-3D 
analysis of FGM plates buckling. Thai et al. [163] presented a new quasi-3D HSDT 
that was adapted from the two-dimensional hHSDT of Soldatos [164].

Mahi et al.  [165] developed an efficient hHSDT for the vibration and bending 
analysis of isotropic, laminated and FGM plates, which has a shape function of the 
form:

f (z )= h
2

tanh(2z
h )− 4

3cosh2(1)
z 3

h2 (II.15)

 Using this shape function, Ebrahimi et al. [166] analysed the vibration of FGM 
beams under thermal loads in a refined formulation, and Zenkour and Aljadani 
[4] investigated the thermo-electrical buckling of piezoelectric FGM nanoplates 
using Eringen’s nonlocal theory. Recently, we have used this hHSDT to analyse 
the mechanics of porous GPls-reinforced FGM plates in our thesis article [6]. The 
solution was compared to many 3D and quasi-3D solutions from recent literature, 
and  we showed very  accurate  results  in  the  vibration,  bending,  and  buckling 
cases.  Singh  and  Kumar  used  this  theory  in  a  refined  formulation  with 
consideration of thickness stretching.

Karama  proposed  an  exponential  shear-deformation  theory  (ESDT)  for  the 
analysis of laminated composite beams [167] and plates [168], which is defined by 
the shape function:

f (z )=z e
−2( zh )

2

(II.16)

Zenkour  and  Radwan  [169] used  Karama’s  ESDT  in  a  four-variables  static 
analysis of FGM plates under temperature and moisture effects. The ESDT was 
also used with consideration of nonlocal strain gradient theory to investigate the 
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buckling and postbuckling of micro-sized FGM plates [170] and micro-sized FGM 
shells [171]. 

Aydogdu [172] developed a parametric ESDT shape function that represents a 
generalization of Karama’s theory:

f (z )=z α
−2(z /h)2

ln α , α >0 (II.17)

Some authors have worked on generalized formulations that can consider any 
HSDT by means of a parametric shape function (as in the form of equation (II.9)), 
which  allows  to  compare  theories  results.  For  instance,  Thai  et  al.  [173] 
investigated a number of HSDTs using a five-variables isogeometric analysis. We 
have  recently  developed  a  generalized  quasi-3D  formulation  of  FGM  plates 
bending to compare the performance of six HSDTs with the 3D solution [9].

In general, the use of an HSDT in FGM plates analysis is strongly recommended 
over the FSDT if one of the following cases are involved [174]:

• The thickness ratio a /h  is below 10.

• Requiring an accurate estimation of frequency modes higher than the first.

• The power-law exponent of the FGM has a large value.

• The FGM plate is supported by clamped edges.

Table 1 lists the most important plates HSDTs, in which only the most common 
theories  in  the  literature  were  selected (the  number  of  HSDTs is  actually  too 
large). In the second column we listed the theory variant followed by the initial  
author. We have also searched and collected all the works that we could find of 
other authors who adopted that theory in FGMs analysis. The CPT was excluded 
because it is not a shear-deformation theory (it neglects this effect), and also it is 
far  outperformed  by  more  recent  HSDTs.  We  note  finally  that  all  HSDTs,  in 
contrast to the FSDT, do not need a shear correction factor.
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Table 1: Noticeable shear-deformation plate theories in FGM literature.

Theory Shape 

function f (z )

Author/
adoptions

Theory variables Variation 
of 
transverse 
shear

Normal 
stretching 
effect

FSDT z Mindlin [94], 
also [175], 
[176].

u0 ,v 0 ,w 0 ,
ψ x ,ψ y

Constant Omitted

Shimpi  [98], 
also  [99].

u0 ,v 0 ,w b ,w s Constant Omitted

Shimpi  [98], 
also  [100].

u0 ,v 0 ,ϕ , w 0 Constant Omitted

Tati [120], also 

[76].

u0 ,v 0 ,w 0 ,
φ x , φ y

Parabolic Omitted

TSDT 5
4
z (1−4

3
z 2

h2 ) Reissner [124]. u0 ,v 0 ,w 0 ,
φ x , φ y

Parabolic Omitted

Shimpi [130], 
also [77], [147], 
[177].

u0 ,v 0 ,w b ,w s Parabolic Omitted

Thai and Choi 
[133], also 
[178].

u0 ,v 0 ,
w b ,w s ,w z

Parabolic Considered 

z (1−4
3
z 2

h2 ) Reddy [127], 
also [179].

u0 ,v 0 ,w 0 ,
φ x , φ y

Parabolic Omitted

Han et al. [36]. u0 ,v 0 ,w b ,w s Parabolic Omitted

SSDT h
π sin

π z
h

Touratier [139], 

also [141].

u0 ,v 0 ,w 0 ,
φ x , φ y

Parabolic Omitted

Zenkour

[73], also [63], 
[151], [180].

u0 ,v 0 ,w 0 ,
φ x , φ y , φ z

Parabolic Considered

Tounsi et al. 

[146], also [77], 

[147], [148].

u0 ,v 0 ,w b ,w s Parabolic Omitted

Thai and Kim 

[152], also [74], 
u0 ,v 0 ,w b ,w s ,φ z

Parabolic Considered
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[153], [154].

Zenkour [155], 

[156].

u0 ,v 0 ,w 0 ,φ Parabolic Considered

hHSDT Cz−
h
π sinh

π z
h

C−1
C = cosh ( π

2
)

Ait Atmane al. 
[160], also [61], 
[79], [161], 
[162].

u0 ,v 0 ,w 0,φ x ,φ y

: [160], [161]
u0 , v0 ,wb ,ws: 

[61], [162]

Parabolic Omitted

h
2

tanh( 2z
h )

−
4

3cosh2(1)
z 3

h2

Mahi et al. 
[165], also [4], 
[6].

u0 , v0 ,w0 ,
φx ,φ y

Parabolic Omitted

ESDT z e−2(z /h )2 Karama  [167], 
[168], also 
[169]–[172].

u0 , v0 ,w0 ,
φx ,φ y

Parabolic Omitted

Generalized 
formulation

Parametric Thai et al. 
[173].

u0 ,v 0 ,w 0 ,
φ x , φ y

Parabolic Omitted

Parametric Hassaine and 

Mahi [9].
u0 ,v 0 ,w 0 ,
φ x , φ y , φ z

Parabolic Considered

II.3.2 Unified formulations

In addition to the HSDTs discussed above, which have explicit expressions of 
the shape function, is also possible to expand the displacement field in a finite 
polynomial  Taylor  series,  a  non-polynomial  series,  or  a  mixture  of  both.  The 
displacement field with polynomial expansion is expressed as:

u (x ,y ,z ) = u 0(x ,y ) + z u1(x ,y ) + z 2u 2(x ,y ) + z 3u3(x ,y ) + ... + z N uN (x ,y )

v (x ,y ,z ) = v 0(x ,y ) + z v 1(x ,y ) + z 2v 2(x ,y ) + z 3v 3(x ,y ) + ... + z N v N (x ,y )

w (x ,y ,z ) = w 0(x ,y ) + z w 1(x ,y ) + z 2w 2(x ,y ) + z 3w 3(x ,y ) + ... + z N wN (x ,y )

(II.18)

in a non-polynomial expansion, the displacement field may be expressed in a 
trigonometric,  hyperbolic  or  exponential  series.  If  we  consider  the  sine 
trigonometric expansion, for example, the displacement field is given in the form:

u (x ,y ,z ) = u0(x ,y ) + z u1 (x ,y ) + sin (π z
h )u 2(x ,y ) + ... + sin ( n π z

h )uN +1(x ,y )

v (x ,y ,z ) = v 0(x ,y ) + z v 1(x ,y ) + sin (π z
h )v 2(x ,y )+ ... + sin ( n π z

h )v N +1(x ,y )

w (x ,y ,z ) = w 0(x ,y ) + z w 1(x ,y ) + sin ( 2 π z
h )w 3(x ,y ) + ... + sin ( n π z

h )w N +1(x ,y )

(II.19)
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And in  general,  all  expansion  types  enter  in  the  following  unified  form of 
displacement field:

u (x ,y ,z ) = F0(z )u 0(x ,y )+F1(z )u 1(x ,y ) +...+ FN (z )uN (x ,y )

v (x ,y ,z ) =F0(z )v 0(x ,y )+F1(z )v 1(x ,y ) +...+ FN (z )v N (x ,y )

w (x ,y ,z ) =F0(z )w 0 (x ,y )+F1(z )w 1(x ,y ) +...+FN (z )w N (x ,y )

(II.20)

Where  Fi (z ) are known functions chosen a priori, and the limit number  N  is 

determined by considering the desired approximation.

To  include  membrane  extension  in  the  analysis,  which  is  recommended  in 
general, we set F0(z ) = 1. Also, the presence of a linear term (that is: zu 1(x ,y )) was 

found to be very important for an accurate description of displacement and stress 
fields, and it will reduce the trigonometric and exponential terms needed to reach 
the intended degree of accuracy  [181]. We note that this type of unified plate 
theory formulation does not have an explicit form of shape function.

Using a polynomial  expansion equivalent to equation  (II.18) for FGM beams 
vibration, Giunta et al. [182] obtained good accuracy for a computational time of 
an order of seconds, while using Ansys 3D FEM took hours for a refined mesh, 
and minutes for the coarsest mesh [182]. 

The polynomial  series  expansion has  its  origin  in  the  analysis  of  laminated 
structures (beams, plates and shells), before it was extended to FGMs. This idea 
was first adopted by Carrera [183], [184] in what is known as the Carrera unified 
formulation, or CUF. Soon, CUF method was applied by Carrera et al. [185] to the 
mechanical  analysis  of  FGM structures with either analytical  or  FEM solution 
methods.  The  most  noticeable  FGM  works  using  CUF  include  the  studies  of 
Giunta et al.  [186] and He et al.  [187] for FGM beams; and Leetsch et al.  [188], 
Fazzolari  and Carrera  [189],  Ramos et al.  [190],  Frrokh et al.  [191],  and Dozio 
[174] for FGM plates; and Cinefra et al. [192] and Monge and Mantari [193], [194] 
for FGM shells. Using the element-free Galerkin method with CUF kinematics,  
Ghadiri  Rad  and  Hosseini  [195] solved  the  buckling  problem  of  GPls-CNTs 
reinforced  laminated  FGM plates  with  circular  cutouts.  Neves’  doctoral  thesis 
[196] involves  detailed  information  on  the  modelling  and  application  of  this 
method on FGM plates.

II.4 Solution methods

Deriving the full exact solution of FGM plates problems is quite difficult giving 
the multitude of parameters and coupled effects. Therefore, researchers recourse 
to  analytical  methods  to  obtain  approximate  but  sufficiently  accurate  results. 
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These solutions are written in the form of a finite number of terms (closed-form 
expressions).

Researchers  often  prefer  to  consider  the  analytical  method  of  Navier  that 
applies for four simply-supported edges (SSSS supports), because of its simplicity 
of implementation. Another popular analytical method is the Levy method, which 
can  solve  plates  problems  with  two  simply-supported  opposite  edges  and  an 
arbitrary choice for the rest (which makes 6 cases: SSSS, SFSF, SCSC, SFSC, SSSC,  
and SSSF,  where  F denotes  free  and  C denotes  clamped).  Navier’s  and Levy’s 
methods share similar concept of expanding displacements and loads in the form 
of trigonometric series.

For a plate problem with a free choice of edge supports, energy methods are 
used to provide approximate solutions. A solution of this type is written in the 
form of a finite linear combination of undetermined parameters and properly-
chosen functions. According to Scriven and Nayfeh and Pai  [197], [198], energy 
methods fall into two main categories

• Variational  methods: these  include  the  Ritz  and  the  Rayleigh-Ritz 
methods,  which differ in some minor aspects,  but are basically a single 
theory.

• Weighted-residuals: the most notable methods of this category are the 
Galerkin  method,  Petrov-Galerkin  method,  Collocation  method,  and 
Kantorovich method.

If the structural analysis involves complicated parameters such as plates with 
cutouts of arbitrary shapes, unconventional boundary conditions, or non-standard 
forms of loads, then analytical and energy methods are uncapable of providing 
the solution, and numerical methods are used instead. Numerical methods include 
the  FEM,  finite  differences  method,  and  element-free  methods.  Figure  II.4 
illustrates some examples of complex FGM settings from the works of Wang et al. 
[199] and  Gupta  and  Talha  [78],  in  which  the  FEM was  used  to  provide  the 
solution.
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A very important aspect in the solution procedure is the supports type of the 
plate. Supports are translated mathematically by a set of boundary conditions that  
consist of [200]:

• Kinematic –or essential– boundary conditions, which impose displacement 
and rotation constraints on the boundary domaine, and,

• Natural  boundary  conditions,  which  prescribe  the  boundary  forces  and 
moments.

These two types are present in every boundary value problem of all fields of 
physics.  In  solid  mechanics  particularly,  these  are  called  geometric  boundary 
conditions and force boundary conditions, respectively  [201]. Kinematic boundary 
conditions  are  intuitive  to  define,  but  force  boundary  conditions  are  not 
physically obvious. Variational approaches of deriving the equations of motion 
are advantageous in this  respect  by establishing force boundary conditions as 
automatic products of the integration-by-parts procedure  [200]. The importance 
of finding the boundary conditions relations appears when setting up numerical 
methods like the FEM.

Boundary conditions strongly affect the solution of FGM plates problems. Thai 
et al.  [173] showed that the deflection increases when changing the boundary 
condition from SFSF to  SSSS and CCCC because  of  the  increase  of  structural 
stiffness [173]. Gupta and Talha [78] found that the frequencies of FGM plate are 
the lowest in FFFF support, and they increase with more constrained supports, to 
a maximum in CCCC support. Shariyat and Asemi  [202] revealed that buckling 

Figure II.4: Analysis of complicated FGM configurations using FEM. Left, state of von 
Mises stress in a cutout FGM shell wall. Adapted from Wang et al. [199]. Right: 
unconventional FGM plate supports. Adapted from Gupta and Talha [78].
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occurs  in  lower  loading  for  FGM plates  with  less  constrained  edges,  so  that  
critical buckling load of CFFF plate is lower than that of SCSF plate, which is 
lower than that of SSSS plate. Pashmforoush  [57] made a statistical analysis of 
variance (ANOVA)  on the relative importance of the input parameters relating to 
the free vibration response of GPls-reinforced FGM composite plates. He found 
that  boundary  condition  type  is  the  most  influencing  parameter  on  natural 
frequencies, more than the volume fraction of GPls, or their distribution pattern, 
or thickness ratio.

II.5 Concept of neutral surface

In their typical form, metal-ceramic FGMs consist of a graded matrix that vary 
in an asymmetric manner from from full ceramic at one surface to full metal at 
the other. The bending and extension motions of FGM structures are coupled in 
both the elastic and dynamic responses. This coupling is generated by the non-
symmetric  distribution of  materials,  and as  a  result,  of  elastic/mass properties 
(transverse anisotropy).

Consequently, the neutral surface is shifted from the geometric mid-surface. In 
the case of FGM plates, they will exhibit non-zero mid-surface extension under 
pure  bending  (ie  u (z=0)≠0),  and  non-zero  deflections  under  the  smallest 

tensile/compressive loads on the edges.

Choosing  the  reference  xy  plane  as  the  neutral  surface  will  eliminate  this 
coupling and give identical equations to those of isotropic plates [203], [204]. This 
concept  is  analogous  to  the  use  of  the  elastic  centre  in  the  analysis  of 
inhomogeneous beams, which is treated in many relevant books (for example in 
[205]).

Another method to eliminate FGMs’ extension-bending coupling is to assume 
symmetric FGMs from the beginning. This approach was used by Mahi et al. [206] 
for  FGM beams along with  some simplifications  of  insignificant  terms  in  the 
equations of motions, which has uncoupled and simplified the problem. Then an 
analytical  method  was  applied  to  solve  the  equations  for  various  boundary 
conditions.  Mahi  and  Hassaine  extended  this  analytical  solution  to  the  free 
vibration of GPls-reinforced FGM beams [10], and CNTs reinforced FGM beams 
[11].

We have recently demonstrated that the addition of GPls with more amounts in 
the metal-rich regions will balance the transverse distribution of elastic properties 
and  consequently  uncouple  these  two  effects  (ie  extension  and  bending)  [6]. 
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Figure II.5 illustrates that the extension of the mid-plane of the base FGM does 
not vanish, but it does for the FGM with GPl-A distribution.

Figure II.5: Mid-plane extension of base FGM plate and FGMs with GPls inclusions, 
under bending. From Hassaine and Mahi [6].
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CHAPTER III:
FORMULATION OF THE FGM PLATE 
PROBLEM

III.1 Introduction

Describing the motion of elastic plates or other elastic structures requires a set 
of  three  basic  equations:  the  equations  of  geometry  of  deformation  relating 
displacements to strains, or kinematics; the equations of equilibrium which states 
the  balance  between  body  forces,  stresses  and  inertial  forces;  and  finally  the 
constitutive equations relating stresses to strains [198].

Accordingly, this chapter aims to obtain the final equations of motion by going 
through  all  these  modelling  equations.  Following  the  conventional  modelling 
order of recent FGM studies that we reviewed in the previous chapter, we will  
start by the base FGM which is modelled by the rule of mixtures between metal  
and  ceramic,  and  then  we  include  GPls  by  means  of  the  Halpin-Tsai 
micromechanical  model,  and  finally  we  consider  porosities  defects  using  the 
exponential  relation.  All  these  components  can  be  adjusted  by  their  volume 
fraction and also by their through-thickness distribution. After this step, strains 
are obtained from the generalized displacement field (with a parametric shape 
function),  and  then  stresses  are  obtained  according  to  linear  plane-elasticity.  
Finally, the equations of equilibrium are derived using Hamilton’s principle.

We  should  note  that  the  entire  formulation  was  done  manually  from  the 
beginning to the final governing equations of simply supported plate, including 
all the intermediary integrals and algebraic procedures. However, we preferred to 
demonstrate only the final expressions of each step, and the interested reader can 
refer to the thesis of Mahi [207] for the full development.
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III.2 Assumptions

We base our FGM plate model on the following assumptions:

1. The  FGM  constitutes  of  an  elastic  and  homogenous  mixture  of 
materials, with no materials discontinuities (except for micro-pores).

2. The FGM plate is isotropic in the xy  plane, but not in the transverse 
direction.

3. The displacements of the plate are far smaller than its thickness, so it  
is possible to consider infinitesimal strain assumption.

4. The order of magnitude of the transverse normal stress  σ z  is small 

and negligible compared to in-plane normal stresses σ x  and σ y .

5. A related point is that transverse normal strain ϵ z  is negligible. This 

leads to the result that the transverse displacement of a point of the 
plate is independent from its distance from the mid-plane, or in other 
words, all particles with the same xy -plane position but different z ’s 
will have the same deflection.

III.3 Definition of the FGM plate

We consider a rectangular plate of length a, width b and height h , as shown in 
Figure III.1. The associated coordinates system is such that the z  axis starts from 
the middle plane and points upwards, and the x  and y  axes start from one corner 
with 0⩽x⩽a and 0⩽y⩽b.

Figure III.1: Dimensions and coordinates system of the FGM plate.
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The base matrix is made of a graded mixture with two components: metal (at 
the bottom surface) and ceramic (at the top surface), and they vary in volume 
ratio according to the power rule:

  V (z )=( zh + 1
2 )

n

(III.1)

Where V  is ceramic volume fraction, noted hereafter as volume fraction shortly. 
V  equals 1 at z=h /2 and 0 at z=−h /2.  n  is the power-law index (or exponent), 
which determines the variation profile of the FGM, and whether the FGM plate is 
ceramic-rich (for small values of  n), or metal rich (for large values of  n),  Figure
 III.2 illustrates the volume fraction variation for different values of n .

In addition to these illustrated examples, we have also two special cases: when 
n=0, which produces a fully ceramic plate, and when n → ∞, which produces a 
fully metallic plate.

Figure III.2: Volume fraction of ceramic for different FGM power-law indices.
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III.4 Effective properties of porous GPls-reinforced 
FGM plate

We start the procedure of FGM properties modelling from the base FGM. The 
effective  properties  of  the  ceramic-metal  matrix  are  calculated  by  the  rule  of 
mixture:

  Pmat (z ) = PcV (z ) + Pm (1−V (z )) (III.2)

Where Pmat  denotes an equivalent material property such as the elastic modulus 

Emat , mass density ρ mat and Poisson ratio ν mat .

Adding graphene nanoplatelets will enhance the mechanical properties of our 

FGM plate, and the new elastic modulus Emat
GPl  can be estimated using the Halpin-

Tsai model [87]:

Emat
GPl

(z ) = 3
8 (1 + ξ L η L(z )V GPl (z )

1−η L(z )V GPl(z ) )Emat(z ) + 5
8 (1 + ξ T ηT(z )V GPl(z )

1−η T(z )V GPl(z ) )Emat(z )

with:

ηL (z ) =
(EGPl /Emat (z ))−1

(EGPl /Emat (z ))+ξ L

, η T (z ) =
(EGPl /Emat (z ))−1

(EGPl /Emat (z ))+ ξ T

ξ L = 2
aGPl

hGPl

, ξ T = 2
bGPl

hGPl

(III.3)

Where the parameters aGPl,  bGPl and hGPl denote the average length, width and 

thickness  of  these  nanoparticles,  respectively.  ξ L and  ξ T  are  measures  of 

reinforcements geometry, and  η L and  η T  are efficiency parameters which were 

modified  in  the  present  analysis  to  be  functions  of  z ,  because  the  matrix 
composition varies along the thickness.

Mass density ρ mat
GPl  and Poisson’s ratio ν mat

GPl  are calculated by the rule of mixture 

between the matrix and GPls:

  
ρ mat

GPl
(z ) = ρ GPlV GPl (z ) + ρ mat (z )(1−V GPl (z ))

ν mat
GPl

(z ) = ν GPl VGPl (z ) + ν mat (z )(1−V GPl (z ))
(III.4)
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Where ρ GPl and ν GPl are the corresponding properties of GPls, and V GPl is GPls’ 

volume fraction, which varies along the coordinate  z .  In the present thesis we 
propose the following variation patterns:

V GPl (z ) = {
π
2
V GPl cos( π z

h
) GPl-O (middle-rich GPls distibution)

π
2
V GPl |sin( π z

h
)| GPl-X (surface-rich GPls distibution)

π
2
V GPl cos( π z

2h
+ π

4
) GPl-A (bottom-rich GPls distibution)

π
2
V GPl sin( π z

2h
+ π

4
) GPl-V (top-rich GPls distibution)

(III.5)

V GPl denotes the global volume fraction of GPls with respect to the entire non-

porous FGM. V GPl is a volume quantity that is not practically measurable, but it 

can be obtained easily from the mass fraction wGPl by the following relation:

  V GPl =
wGPl

wGPl+ (ρ GPl / ρ mat
T )(1−wGPl )

(III.6)

Where  ρ mat
T  denotes the total mass density of the metal-ceramic FGM matrix, 

calculated by the integral:

  ρ mat
T = 1

h ∫
−h /2

h /2

ρ mat dz (III.7)

In addition to GPls, the plate has micro-scale pores which occur accidentally 
during manufacture stages.  It  is  also possible to synthesize these porosities to 
improve the structure in certain aspects,  such as the expected consequence of 
reducing weight, or relaxing stress at crack tips and increasing thermal insulation 
[208]. Modelling porosities is an active area of research which tries to approach 
the real  behaviour of porous materials.  Many mathematical  models have been 
proposed with more or less accuracy in predicting the elastic properties of porous 
materials. In this analysis we will use the simple and accurate exponential model 
that  was  validated  experimentally  and  theoretically,  as  we  have  discussed  in 
section II.2.2.

For spherical and uniformly-dispersed pores, this model is expressed as:
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E = E0e

−2 ϕ
1−ϕ

ν =ν 0e

−2 ϕ
1−ϕ

(III.8)

Where E and E0 denote respectively the elastic modulus of porous and solid (i.e 

non-porous) material, while ν  and ν 0 denote Poisson’s ratios in the same manner, 

and ϕ  is porosity (pores volume fraction).

In our work we will assume pores density to vary along the thickness of the 
FGM, so that  ϕ =ϕ (z ),  and we set  the solid material  as  the non-porous GPls-
reinforced  FGM.  Then,  the  effective  elastic  properties  of  our  porous  GPls-
reinforced FGM in their final form will be obtained as follows:

  
E (z ) = Emat

GPl
(z ) e

−2ϕ (z )

1−ϕ (z )

ν (z ) = ν mat
GPl (z ) e

−2 ϕ (z )

1−ϕ (z )

(III.9)

As for mass density, we know that this quantity should decreases linearly with 
porosities and not exponentially. Simply because mass is a linear superposition of 
individual masses,  and pores are microscopic mass  cuts from the solid matrix, 
where we cut a relative volume  ϕ  from the total (which corresponds to unity). 
Then mass density is calculated as follows:

  ρ (z )=ρ mat
GPl

(z ) (1−ϕ (z ) ) (III.10)

Porosity distribution function ϕ (z ) will have similar forms as those of GPls. This 
is to ensure conformity and simplicity, while always considering various cases:

ϕ (z ) = {
π
2
P cos( π z

h ) P-O (middle-rich pores distibution )

π
2
P |sin ( π z

h )| P-X (surface-rich pores distibution )

π
2
P cos( π z

2h
+ π

4 ) P-A (bottom-rich pores distibution )

π
2
P sin ( π z

2h
+ π

4 ) P-V (top-rich pores distibution )

(III.11)

Where P is the mean volume-fraction of porosity for the entire reinforced FGM, 
and it is the same for all distributions.
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Porosities  patterns  with  their  corresponding  mathematical  functions  are 
illustrated in Figure III.3 together with the GPls distribution modes that we also 
described. The third case of porosities (P-A, bottom-rich distribution) may be very 
interesting to FGMs research, as some experimental works showed that pores are 
eliminated  in  the  ceramic  phase  and  increase  along  the  metal  phase  [209]. 
However, this result may be technique-dependant only, and different procedures 
may reveal different results.

Any combination of porosities and GPls distributions can be chosen from 16 
possible  combination,  which  shows  the  variability  of  this  analysis.  This  is  in 
addition to the controllable FGM volume fraction using the index n .

III.5 Displacement field and shape function

The displacement field of the plate is expressed in a unified form as:

Figure III.3: Porosities distribution modes with illustrated pores density, and GPls 
distribution modes to the right.
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u (x ,y ,z , t ) = u 0 (x ,y ,t ) − z w 0 , x + f (z ) ( ψ x (x ,y ,t ) + w 0 , x )
v (x ,y ,z ,t ) = v 0 (x ,y ,t ) −z w 0 ,y + f (z ) ( ψ y (x ,y , t ) + w 0 ,y )
w (x ,y ,t ) = w 0 (x ,y ,t )

(III.12)

Where (u0 ,v 0) are the longitudinal displacements at the mid-plane in the (x ,y ) 
directions, and w 0 is the deflection of the plate.  ψ x  and ψ y  denote the bending 

rotations around the y  and x  axes at the middle plane level. A comma expresses 
spatial derivation and an upper dot will indicate time derivation.

f (z ) is  the  general  shape function that  determines  the  distribution of  shear 
strains and stresses. Writing this function as a general parameter allows us to 
present the final equations of motion for any plate theory, including the first-
order plate theory. Theory generalization also allows to test and compare different 
theories against the three-dimensional elasticity solution.

f (z ) is developed with consideration of the following criteria:

f (z) = −f (−z) Odd function
f ' (z=h /2) = f ' (z=−h /2) = 0 Traction-free boundary condition

(III.13)

Figure III.4 illustrates a number of shape functions with their corresponding 
first derivatives. It can be seen that all HSDTs satisfy these conditions and have 
parabolic variations of the first derivative, but the FSDT fails to meet the traction-
free  condition.  HSDTs  shows  little  differences  in  functions  plots,  but  these 
differences will make significant affect on the accuracy of results.
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In this analysis we will use the hHSDT proposed by Mahi [165]:

  f (z ) = h
2

tanh (2z
h ) − 4

3cosh2(1)
z 3

h2 (III.14)

The general strain tensor, known as Green’s tensor, is given by [200]:

ϵ ij =
1
2 ( ∂ u i

∂ x j

+
∂u j

∂ x i

+
∂u k

∂ x i

∂u k

∂ x j
) i , j = {x ,y ,z } (III.15)

As we have assumed infinitesimal deformations, the product of the derivatives 
of displacement components can be considered negligible next to the linear terms,  
which gives:

ϵ ij =
1
2 ( ∂ u i

∂ x j

+
∂u j

∂ x i
) (III.16)

Or in the abridged notation:

Figure III.4: Shape functions and their derivatives for various shear-deformation theories. 
For the shape functions expressions refer to Table 1.
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ϵ ij =
1
2

(u i , j + u j , i) (III.17)

By expanding this equation for strain components we obtain:

ϵ x = u , x

ϵ y = v ,y

ϵ z = w , z

γ yz = 2ϵ yz = v , z+w ,y

γ xz = 2ϵ xz = u , z+w , x γ xy = 2ϵ xy = u ,y+v , x

(III.18)

Where γ  is the engineering shear strain, which differs from the scientific strain 
ϵ ij (i ≠ j ) by a factor of 2. 

Substituting the displacements of equation (III.12) into the linear strain tensor 
gives the strain components of the FGM plate:

ϵ x = u 0 , x−z w ,xx+ f (z )(ψ x ,x+w , xx )
ϵ y = v 0 ,y −z w , yy+ f (z )(ψ y ,y+w ,yy )
ϵ z = 0

γ yz = f ,z (z ) (ψ y+w , y )
γ xz = f , z (z ) (ψ x+w , x )
γ xz = f , z (z ) (ψ x+w , x )
γ xy = u 0 ,y +v 0 ,x −2z w , xy+ f (z )(ψ x ,y+ψy ,x+2w , xy )

(III.19)

III.6 Constitutive relations

We consider material properties by the constitutive equation which relates the 
internal  stresses to strains through the stiffness matrix.  For a linear and fully 
anisotropic material, this constitutive relation is given by the generalized Hooke’s 
law [198]:

[
σ x

σ y

σ y z

σ xz

σ xy

] = [
C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

] [
ϵ x

ϵ y

γ yz

γ xz

γ xy

] (III.20)
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Where C ij are the elastic constants containing 21 independent parameters, and 

σ i are the components of stress tensor. It is noted that transverse stress  σ zz is 

omitted here because it is negligible in most plate problems, as Shames and Dym 
have demonstrated [200]. However, transverse shear stresses σ yz and σ xz  are not 

neglected since thick and moderately-thick plates may have significant transverse 
shear stresses.

Equation (III.20) is the most general constitutive law for materials without any 
planes  of  symmetry.  In  practice  however,  most  engineering  materials  have  a 
certain  degree  of  symmetry  that  will  simplify  this  equation,  and  as  assumed 
previously, our material has two orthogonal planes of symmetry. This will reduce 
the equation to:

[
σ x

σ y

σ yz

σ xz

σ xy

] = [
Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

] [
ϵ x

ϵ y

γ yz

γ xz

γ xy

] (III.21)

Where the elastic coefficients Qij  are expressed as:

Q11 = E (z )

1−ν 2
(z )

Q22 = Q11

Q12 = ν (z )E (z )

1−ν2
(z )

Q21 = Q12

Q44 = E(z )

2 (1+ν (z ))
Q55 = Q66=Q44

(III.22)

Next we define the stresses and moments resultants applied on the plate per 
unit of length as:
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(N x ,M x ,M x
a ) =∫−h /2

h /2
(1 ,z , f (z ))σ x dz

(N y ,M y ,M y
a ) =∫−h /2

h /2
(1 ,z , f (z ))σ y dz

(Qx y ,M x y ,M x y
a ) =∫−h /2

h /2
(1,z , f (z ))σ x y dz

(Qy z
a ,Qx z

a ) =∫−h /2

h /2

(σ y z ,σ x z ) f (z ),z dz

(III.23)

Where:

N x  and  N y  are  the resultants  of  normal  stresses  in the  x  and  y  directions, 

respectively.  M x  and  M y are  the bending moments  around the  y  and  x  axes, 

respectively,  and  M xy is  the  torsion  moment.  M x
a ,  M y

a and  M xy
a  are  the 

corresponding moments of higher-order.  Qxy,  Qy z
a  and  Qxz

a  are the resultants of 

shear stresses in the xy , yz  and xz  planes, respectively.

Substituting the expressions of strains (equation (III.19)) and stresses (equation 
(III.21))  into equation  (III.23),  and writing the result  in  matrix  form gives  the 
following constitutive relation:

[
N x

N y

M x

M y

M x
a

M y
a
] = [

A11 A12 B11 B12 B11
a B12

a

A12 A22 B12 B22 B12
a B22

a

B11 B12 D11 D12 D11
a D12

a

B12 B22 D12 D22 D12
a D22

a

B11
a B12

a D11
a D12

a D11
aa D12

a a

B12
a B22

a D12
a D22

a D12
aa D22

a a
] [

u 0 , x

v 0 ,y

−w 0 ,x x

−w 0 ,y y

ψ x ,x+w 0 , x x

ψ y ,y +w 0 ,y y

]
[Qx y

M x y

M x y
a ] = [A66 B66 B66

a

B66 D66 D66
a

B66
a D66

a D66
a a ] [ u 0 , y+v 0 , x

−2w 0 , x y

ψ x ,y +ψ y ,x+2w 0 , x y
]

[Qx z
a

Qy z
a ] = [A55

a 0

0 A44
a ] [ψ x+w 0 , x

ψ y+w 0 , y
]

(III.24)

Where the elements of stiffness matrices are defined as:
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(A i j ,Bi j ,Bi j
a ) =∫−h /2

h /2
Q i j (1 ,z , f (z )) dz    (i , j=1 ,2,6)

(D i j ,Di j
a ,Di j

a a) =∫−h/2

h /2
Q i j (z 2 ,z f (z ) , f 2

(z )) dz    (i , j=1 ,2 ,6)

A i j
a =∫−h /2

h/2
Qi j ( f , z (z ))2dz    (i , j=4 ,5)

(III.25)

Where:

A ij coefficients represent the extension stiffness [Pa.m],

Bij and Bij
a  coefficients represent the bending-extension coupling stiffness [Pa.m2], 

Dij ,D ij
a andDij

aa coefficients represent the bending stiffness [Pa.m3], and,

A ij
a coefficients represent the transverse-shear stiffness [Pa.m].6

III.7 Hamilton’s principle and the equilibrium equations

Having defined the stress resultants and stiffness coefficients,  we proceed to 
derive the equations of equilibrium using the principle of Hamilton. This principle 
states that between two arbitrary time points t 1 and t 2, we have:

∫
t 1

t 2

(δ EU+δW −δ EK) dt = 0 (III.26)

Where δ  is the variational operator, and EU is the strain energy, defined for the 

plate’s volume V  as:

EU = 1
2
∫
V

σ ij ϵ ij dV (III.27)

6 If the FSDT is used, then a shear correction factor k=5/6 is introduced so that:

A i j
a =k ∫−h /2

h /2
Q i j ( f ,z )2 dz
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EK  is the kinetic energy, defined as:

EK = 1
2
∫
V

ρ (z ) (u̇ 2 + v̇ 2 + ẇ 2) dV (III.28)

And W  is the work done by the external transverse and edge loads, which are 
illustrated in Figure III.5 and Figure III.6 bellow.

The virtual work done by these loads is given by the formula [6]: 

δW =−∫0

b

∫0

a
(q (x ,y ) + N x

0w 0 ,x x + N y
0w 0, y y )δ w 0dx dy (III.29)

Where:

Figure III.5: Applied transverse load on the FGM plate (sinusoidal distribution).

Figure III.6: Applied compressive loads on the FGM plate edges (uniform distribution).
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 q is  the transverse load or pressure on the top surface,  and it  causes plate 
flexure.

N x
0 and N y

0 are the in-plane loads applied on the edges x=0 ,a and y=0 ,b, and 

they cause buckling when they are compressive and attain the critical magnitude. 

We set N=N x
0 and relate N y

0 to N x
0 by a scalar μ  so that N y

0 = μ N x
0 = μ N , which 

allows us to consider two cases:

• The bi-axial compression, for which: μ =1 and N y
0=N x

0=N , and,

• The uni-axial compression, for which: μ =0 and N y
0=0.

By applying Hamilton’s principle and performing long algebraic operations and 
integrations by parts, and then by setting the coefficients of δ u 0, δ v 0, δ w 0, δ ψ x  

and δ ψ y  to zero, separately, we obtained the governing equilibrium equations of 

the FGM plate:

δ u 0 : N x ,x+Qx y ,y = I 1ü 0+ I 2
a ψ̈ x +( I 2

a−I 2) ẅ , x

δ v 0: N y ,y+Qx y ,x = I 1 v̈ 0+I 2
a ψ̈ y +( I 2

a−I 2) ẅ , y

δ w 0 : −M x ,x x+M x ,x x
a −M y ,y y+M y ,y y

a −Qy z ,y
a −Qx z ,x

a −2M x y ,x y

+2M x y ,x y
a = q (x ,y )+N (w 0, x x+μw 0, y y )+ ( I 2

a−I 2) ü , x

+ (I 3
a a−I 3

a) ψ̈ x ,x+( I 3−2I 3
a+I 3

a a ) ẅ , x x +( I 2
a−I 2) v̈ , y

+ (I 3
a a−I 3

a) ψ̈ y ,y +( I 3−2 I 3
a+I 3

a a ) ẅ ,y y−I 1ẅ

δ ψ x : M x ,x
a −Qx z

a +M x y ,y
a = I 3

a a ψ̈ x+I 2
a ü0+ (I 3

a a−I 3
a ) ẅ 0 ,x

δ ψ y : M y ,y
a −Qy z

a +M x y ,x
a = I 3

a a ψ̈ y +I 2
a v̈ 0+ ( I 3

a a−I 3
a ) ẅ 0 ,y

(III.30)

Where the inertia coefficients are calculated as follows:

(I 1 , I 2 , I 3) =∫−h /2

h /2
ρ (z )(1 ,z ,z 2) dz ,

(I 2
a , I 3

a , I 3
aa) =∫−h /2

h /2
ρ (z ) f (z )(1 ,z , f (z )) dz

(III.31)
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III.8 Solution procedure

The governing equations (equations  (III.30))  will  be solved analytically using 
Navier’s method, which can solve simply-supported plates along the four edges 
(SSSS). For this case, the boundary conditions are given as follows:

At edges x=0 ,a : v 0=w 0=ψ y=N x=M x=M x
a=0

At edges y=0 ,b : u0=w 0= ψ x=N y=M y=M y
a=0

(III.32)

It  can  be  verified  that  writing  displacements  in  the  following trigonometric 
series will satisfy the boundary conditions of equation (III.32): 

u0(x ,y ,t ) = ∑
m=1

∞

∑
n=1

∞

Umn cos(α x )sin (β y )sin (ω t )

v 0 (x ,y , t ) = ∑
m=1

∞

∑
n=1

∞

V mn sin (α x )cos(β y )sin (ω t )

w 0(x ,y ,t ) = ∑
m=1

∞

∑
n=1

∞

W mn sin (α x )sin (β y )sin (ω t )

ψ x (x ,y , t ) = ∑
m=1

∞

∑
n=1

∞

X mn cos(α x )sin (β y )sin (ω t )

ψ y (x ,y ,t ) = ∑
m=1

∞

∑
n=1

∞

Y mn sin (α x )cos(β y )sin (ω t )

(III.33)

Where  Umn ,V mn ,W mn ,X mn , andY mn are  the  amplitudes  of  displacements  for 

each pair  (m ,n ), α =m π /a and β =n π /b.

In vibration analysis, m  and n represent the numbers of half-waves formed by 
the plate along the x  and y  directions, when vibrating at mode mn.

The applied transverse load is also expanded in a double trigonometric series:

q (x ,y )=∑m=1

∞
∑n=1

∞
Qmn sin (α x )sin (β y ) (III.34)

In which Qmn is obtained for any arbitrary form of loads by the formula:

Qmn=∫0

b

∫0

a
q (x ,y ) sin (α x )sin (β y )dx dy (III.35)

The conventional forms of transverse load in the literature are:

a) Sinusoidally-distributed load, for which Qmn is simplified to:
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Qmn=q0 , with m=n=1 (III.36)

Where 𝑞0 is the maximum magnitude of the sinusoidal load at the centre of 

the plate (see Figure III.5).

a) Uniformly-distributed load, for which Qmn is simplified to:

Qmn=∑m=1

∞

∑n=1

∞ 16q0

m n π 2 , with m ,n=1 ,3 ,5. .. (III.37)

Where 𝑞0 here is the constant magnitude of transverse load.

By substituting the series of equations (III.33) and (III.34) into equation (III.30) 
we obtain the following algebraic system, which translates mathematically the 
motion of our simply-supported FGM plate:

(K+N Kg−ω mn
2 M )(

Umn

V mn

W mn

X mn

Y mn

)=(
0
0
Qmn

0
0

) (III.38)

Where K represents the stiffness matrix,  N  is the critical buckling load, Kg is 
the geometric stiffness matrix,  ω  is the natural frequency and  M is the inertia 
matrix. 

To solve the dynamic problem we omit the buckling load and load vector, so we 
will have in expanded form:

([
k 11 k 12 k 13 k 14 k 15

k 21 k 22 k 23 k 24 k 25

k 31 k 32 k 33 k 34 k 35

k 41 k 42 k 43 k 44 k 45

k 51 k 52 k 53 k 54 k 55

] − ω 2 [
m 11 m12 m 13 m 14 m 15

m 21 m22 m 23 m 24 m 25

m 31 m32 m 33 m 34 m 35

m 41 m 42 m 43 m 44 m 45

m 51 m52 m 53 m 54 m 55

]) (
Umn

V mn

W mn

X mn

Y mn

) = (
0
0
0
0
0
) (III.39)

Where the coefficients of K and M are given in Appendix A.

For the static problem, we set the buckling load and natural frequency to zero:
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[
k 11 k 12 k 13 k 14 k 15

k 21 k 22 k 23 k 24 k 25

k 31 k 32 k 33 k 34 k 35

k 41 k 42 k 43 k 44 k 45

k 51 k 52 k 53 k 54 k 55

] (
Umn

V mn

W mn

X mn

Y mn

) = (
0
0

Qmn

0
0

) (III.40)

And for the buckling problem, we omit the natural frequency and the transverse 
load:

([
k 11 k 12 k 13 k 14 k 15

k 21 k 22 k 23 k 24 k 25

k 31 k 32 k 33 k 34 k 35

k 41 k 42 k 43 k 44 k 45

k 51 k 52 k 53 k 54 k 55

] + N [
0 0 0 0 0
0 0 0 0 0
0 0 kg33 0 0

0 0 0 0 0
0 0 0 0 0

]) (
Umn

V mn

W mn

X mn

Y mn

) = (
0
0
0
0
0
) (III.41)

With kg33=α 2+μ β 2.
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CHAPTER IV:
RESULTS AND DISCUSSION

IV.1 Introduction

This fourth chapter is dedicated to the presentation and discussion of the results 
of the dynamic, bending and buckling investigations of porous GPls-reinforced 
FGM plates. Obtaining the results of such multi-parametric structures required 
the use of a performant programming language. Initially, the choice was between 
Fortran, Maple, and Python. After weighting the advantages and limits of each 
language, Python was easily chosen for many reasons:

• Python has a large number of libraries and packages in all domains, and 
particularly in scientific computing.

• It is open-source and free, unlike Maple.

• Extensive  maintenance  and  constant  upgrading  to  match  modern 
computing technologies, unlike Fortran.

• User-friendly interface and rich graphing tools.

• Active community and dedicated help forums.

The  general  organigram  of  our  in-house  developed  Python  algorithms  is 
depicted in Appendix B. Using that programming procedure, we have performed 
the computational solution and obtained our numerical and graphical results for 
each of  the  elastic  properties,  natural  frequencies,  stresses  and displacements, 
critical buckling loads, and vibration and buckling modes shapes.

IV.2 Material constants and non-dimensional 
quantities

In the following examples, and except otherwise indicated, we define metal and 
ceramic of our FGM matrix as aluminium (Al) and alumina (Al2O3). Aluminium 
alloys have extensive use in automobiles, aircrafts, and space vehicles for their 
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suitable mechanical characteristics that come with low weight penalty. On the 
other  hand,  alumina  is  an  excellent  thermal  insulator  that  is  incorporated  in 
thermal protection systems of space structures and in engines components. This 
suggests  that  Al−Al2O3 FGMs  have  a  good  potential  for  transportation  and 
aerospace uses, and it also justifies their choice for the present investigation.

The properties of  metal  and ceramic are  [38]:  Em=70 GPa,  ρ m=2702 kg/m3, 

Ec=380 GPa, ρ c=3800 kg /m3, and ν m=ν c=0.3

As  for  GPls,  we  have  from  the  data  of  [52]:  aGPl=2.5 μ m,  bGPl=1.5 μ m, 

hGPl=1.5 nm, EGPl=1010 GPa, ν GPl=0.186 and ρ GPl=1060 kg /m3.

Also, we will adopt the following non-dimensional parameters to conveniently 
present the results of mechanical response:

ω = a2

h √ρcEc

⋅ω (frequency parameter)

u =
100h3 Ec

q0a
4 ⋅u ( a

4
,
b
4
, z) (extension parameter)

w =
10h3 Ec

q0a
4 ⋅w ( a

2
,
b
2

) (deflection parameter)

σ x = h
q0a

⋅σ x ( a
2
,
b
2
,
h
3

) (bending stress parameter)

σ xz = h
q0a

⋅σ xz (0 ,
b
2
,0) (transverse-shear stress parameter)

N = b2

h3 Ec

⋅N (critical buckling load parameter)

(IV.1)

IV.3 Effects of GPls on elastic properties

In this section we will investigate the impact of GPls distributions on the profile 
of elastic modulus. Significant improvement is expected since GPls’ modulus is 
14.43 times higher than that of Al, and 2.66 times higher than that of Al2O3. We 
will  study  different  base-FGMs with  n={0 , 0.1 , 1 , 10},  which  represent  FGMs 
with  ceramic  isotropic  composition (CI),  ceramic-rich  composition (CR),  equal 
ceramic  and  metal  composition  (CM),  and  metal-rich  composition  (MR), 
respectively. GPls are included in the distributions given in equation  (III.5), and 
have  average  mass  ratios  of  wGpl={0.5%, 2%, 8%}.  The  results  of  all  these 

parameters are given graphically in Figure IV.1 (CI FGM), Figure IV.2 (CR FGM), 
Figure IV.4 (CM FGM), and Figure IV.3 (MR FGM).
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Figure IV.1: Effects of GPls on the profile and magnitude of elastic modulus of CI FGM 
plate.

Figure IV.2: Effects of GPls on the profile and magnitude of through-thickness elastic 
modulus of CR FGM plate.
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Figure IV.4: Effects of GPls on the profile and magnitude of through-thickness elastic 
modulus of CM FGM plate.

Figure IV.3: Effects of GPls on the profile and magnitude of  through-thickness elastic 
modulus of MR FGM plate.
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Starting by the CI FGM plate in Figure IV.1, the initial elastic modulus has the 
constant  value  of  E=Ec,  and  then  it  increases  by  GPls  according  to  their 

dispersion pattern: GPl-O will stiffen the inner core-region, GPl-X will stiffen the 
outer surface-regions, GPl-A will stiffen the lower metal-rich region, and GPl-V 
will stiffen the upper ceramic-rich region.

For the CR FGM plate in Figure IV.2, the elastic modulus of the base FGM has a 
value close to Ec across most of the plate, but it rapidly reduces to Em  in the lower 

quarter. The CM FGM in Figure IV.4 shows a linear transition from Em  to Ec, and 

the MR FGM in  Figure IV.3 has a modulus value adjacent to  Em  except in the 

upper quarter where it shifts rapidly to  Ec. GPls reinforcements are reflected in 

the increased modulus in a proportional manner to w GPl , similarly to CI FGM.

 We also note that the elastic modulus of GPls-reinforced CI FGM has the same 
sinusoidal profiles as GPls distributions. This is not the case in the CR, CM, and 
MR FGMs, whose variable initial  moduli  influence the sinusoidal  profiles after 
GPls addition. GPls loading of  0.5% has very small effect on the FGM, and the 
increase is noticeable from 2% and .

It is also interesting to observe the tendency of balancing of elastic modulus 
through the thickness by GPl-A in CR, CM, and MR FGMs, which results from the 
reinforcing of the softer metal region. Oppositely, GPl-V will further intensify the 
variation  of  E(z ) along  the  thickness,  increasing  the  degree  of  transverse 
anisotropy.

Changing elastic modulus magnitude and profile will directly affect the stiffness 
coefficients given in equation  (III.25).  Therefore,  we present in  Figure IV.5 the 

variation of coefficients  A 11,  B11,  D11, and  A 44
a  with GPls weight-fraction for CM 

FGM. We note that because of the isotropy in the  𝑥𝑦 plane we have:  A 11=A 22. 

B11=B22 , ... ,A 44
a =A55

a . Also, we have found in our article [6] that all the coefficients 
of  each  stiffness  category  exhibit  the  same  variation  with  GPls  as  the 
representative coefficients of this example.

We can observe in the figure that the extension stiffness A 11 increases in similar 

manners  for  different  GPls  distributions.  Coupling stiffness  B11 increases  with 

GPl-V,  but  decreases  with  the  other  distributions.  Bending  stiffness  D11 will 

increase for all GPls distribution with a maximum rate in GPl-X. Transverse-shear 

stiffness A 44
a  shows maximum increase in GPl-O. Notice that the graph scales are 

not equal, and the bending stiffness is smaller by at least one order of magnitude 
than the other stiffness coefficients, which reflects plates structures being more 
compliant in flexure than the other types of deformation (ie shear and extension).
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IV.4 Effects of porosity on elastic properties

Although that  certain amounts  of  porosity are  desired in many engineering 
fields  for  the  reduction  of  total  weight  and  minimization  of  materials 
consumption,  porosities  also  affect  negatively  the  structural  rigidity  and 
mechanical resistance.

To study this effect, we show in Figure IV.6, Figure IV.7, Figure IV.8, and Figure
 IV.9 how the elastic modulus is modified from the base FGM by porosities in 
different kinds of FGMs (GPls are not considered). The effects of 0.5% porosities 
are hardly discerned, but a small decrease of elastic modulus magnitude can be 
seen  in  P=2%.  The  effect  of  porosity  on  elastic  modulus  does  not  become 
significant  until  P=8%,  where  we  can  see  manifest  decrease.  Each  porosity 
pattern will touch and modify the region where it is concentrated: P-O will soften 
the inner region,  P-X will soften the uppermost and lowermost regions, P-A will 
soften  the  lower  region,  and  P-V  will  soften  the  upper  region.  Upon  close 
observation, we can see that P-V tends to reduce the variance of E(z ) across the 
thickness, while P-A has a contrary effect.

Figure IV.5: Change of stiffness coefficients with GPls weight-fraction under different 
distributions ( =1, ℎ=0.1 m).𝑛
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Figure IV.6: Effects of porosity volume-fraction on the profile and magnitude of through-
thickness elastic modulus of CI FGM plate.

Figure IV.7: Effects of porosity volume-fraction on the profile and magnitude of  
through-thickness elastic modulus of CR FGM plate.
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Figure IV.8: Effects of porosity volume-fraction on the profile and magnitude of  
through-thickness elastic modulus of CM FGM plate.

Figure IV.9: Effects of porosity volume-fraction on the profile and magnitude of  
through-thickness elastic modulus of MR FGM plate.
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The effect of porosity on stiffness coefficients is illustrated in Figure IV.10 for a 
CM FGM plate with porosity volume-fraction up to 30%, which includes the range 
of porosity in many porous engineering materials. We can see that these material 
defects  will  induce  a  remarkable  loss  in  stiffness  resulting  from compromised 
elastic modulus. However, coupling stiffness increases in P-A, which is due to the 
reduction of the elastic modulus in the softer metal-rich region, which increased 
the modulus discrepancy with the stiffer ceramic-rich region.

P-V,  in  an  opposite  action,  has  made  the  elastic  modulus  more  uniform by 
softening the ceramic-rich region, which has eventually cancel  B11 at a porosity 

amount  of  ∼25  %  (as  marked  by  the  red  tick).  This  suggests  that  increasing 
porosity in proportion with the local volume-fraction of ceramic will reduce and 
possibly eliminate the bending-extension coupling of metal-ceramic FGMs.

IV.5 Investigation of the mechanical behaviour

After investigating materials properties of porous GPls-reinforced FGM plates, 
we  will  now  analyse  their  mechanical  behaviour.  Because  of  the  absence  of 
previous studies on GPls-reinforced metal-ceramic FGM plates, the only sources 
which can be compared with are those treating porous metal-ceramic FGM plates, 
or  isotropic  plates  with  GPls  reinforcement.  First,  a  number  of  validation 
examples will be undertaken to show the accuracy of our method. Then we will 
investigate the dynamic, static, and stability results of our porous GPls-reinforced 
FGM plate.

Figure IV.10: Change of stiffness coefficients with porosity volume-fraction under 
different distributions ( =1, ℎ=0.1 m).𝑛
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IV.5.1 Free vibration response

IV.5.1.1 Validation examples

In order to demonstrate the accuracy of our method in free vibration analysis,  
we will show the frequency results of the present method using three theories:

• FSDT (with a shear correction factor k ),

• TSDT,

• hHSDT.

Then the calculated frequencies are normalized to the exact elasticity solution of 
Jin et al. [210], i.e:

normalized frequency=ω
ω exact

(IV.2)

This form of  presentation offers a visual  indication on the accuracy of  each 
theory by comparing the distance to 1. It is also possible to estimate the relative 
error from graph values by using the following expression:

relative error (%)=
ω exact−ω

ω exact
⋅100 = (1−normalized frequency )⋅100 (IV.3)

We consider a moderately-thick square FGM plate with a /h=10 (Figure IV.11) 
and a thick plate with a /h=5 (Figure IV.12). Both graphs are presented with equal 
y -axis gradations to view the change of accuracy with thickness ratio.

 For the moderately-thick plate in  Figure IV.11, the two HSDT models show 
excellent accuracy, and their relative frequency errors did not exceed 0.16%. On 
the other hand, the FSDT overestimates the frequencies but with tolerable error 
(maximum error ≈1.4 %). The divergence of the FSDT is more pronounced in thick 
plate (Figure IV.12), where maximum error was  ≈1.49 %. The TSDT and hHSDT 
remain accurate for thick plate, with less than  0.5% error. Overall,  the present 
generalized formulation is highly effective in predicting the natural frequencies 
using HSDTs, even for thick plates which are difficult to calculate accurately. The 
FSDT is less accurate, especially for thick plates and also for larger power-low 
exponents. After this validation example, we will use the hHSDT except otherwise 
indicated.
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Figure IV.11: Natural frequency normalized to the exact solution of reference [210] for a 
moderately-thick FGM plate (a/h=10).

Figure IV.12: Natural frequency normalized to the exact solution of reference [210] for a 
thick FGM plate (a/h=5).
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In the second example we will  study the free vibration behaviour of porous 
FGM  plates  with  different  geometric  and  material  settings.  The  results  are 
compared with the 3D meshless solution of Lahdiri and Kadri  [38],  where the 
modified rule of mixtures was used to obtain the equivalent material properties. 
The results are obtained from our article [6], and they show that our solution for 
porous FGM plates is excellently accurate compared to the 3D solution. 

Table 2: Validation of the results of fundamental frequency parameter ω  for porous FGM 
plates with different settings.

a /b n porosity method porosities distribution 
mode

even uneven

1 0 0 present
3D

5.9200
5.9258

5.9200
5.9258

0.1 present
3D

5.9507
5.9564

5.9912
5.9975

0.2 present
 3D

6.0026
6.0082

6.0694
6.0772

1 0 present
3D

4.5229
4.5279

4.5229
4.5279

0.1 present
3D

4.3830
4.3881

4.5343
4.5397

0.2 present
3D

4.2069
4.2120

4.5463
4.5528

5 0 present
3D

3.8880
3.8909

3.8880
3.8909

0.1 present
3D

3.5636
3.5659

3.8423
3.8446

0.2 present
3D

3.0173
3.0188

3.7783
3.7796

2 0 0 present
3D

3.7124
3.7168

3.7124
3.7168

0.1 present
3D

3.7312
3.7357

3.7571
3.7618

0.2 present
3D

3.7634
3.7679

3.8063
3.8119
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1 0 present
3D

2.8353
2.8392

2.8353
2.8392

0.1 present
3D

2.7472
2.7511

2.8425
2.8467

0.2 present
3D

2.6363
2.6404

2.8502
2.8550

5 0 present
3D

2.4401
2.4424

2.4401
2.4424

0.1 present
3D

2.2363
2.2384

2.4122
2.4143

0.2 present
3D

1.8930
1.8948

2.3731
2.3748

In the third validation example we present the natural frequencies results of 
GPls-reinforced composite plates for the first six modes of vibration. Frequencies 
are given in the following non-dimensional form:

ω̂ =ω h √ ρ m

Em

We use here the tabulated results that we obtained in our article [6] employing 
the  same  procedure  as  herein.  Our  results  are  given  for  both  the  FSDT and 
hHSDT, while those of the comparison sources ([52], [211]) use the FSDT. It can 
be seen that FSDT results agree well since the same plate theory is used. The 
hHSDT is also close but it shows higher difference, which is because the FSDT is 
less accurate than the hHSDT and does not satisfy the boundary conditions like 
other HSDTs.

Table  3:  Validation  of  non-dimensional  frequency  results  for  GPls-reinforced 
laminated FGM plates with different GPls distributions.

Distribution 
pattern

Method Modes

(1,1) (1,2) (2,2) (1,3) (2,3) (3,3)

UD Present hHSDT
Present FSDT
Song et al. [52]
Guo et al. [211]

0.1250
0.1215
0.1216
0.1216 

0.3086
0.2893
0.2895
0.2895 

0.4880
0.4433
0.4436
0.4434

0.6053
0.5396
0.5400
0.5400 

0.7781
0.6762
0.6767
0.6763 

1.058
0.8863
0.8869
-

FG-O Present hHSDT 0.1040 0.2569 0.4062 0.5039 0.6476 0.8805
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Present FSDT
Song et al.
Guo et al.

0.1020
0.1020
0.1020

0.2454
0.2456
0.2455

0.3794
0.3796
0.3793

0.4642
0.4645
0.4645

0.5856
0.5860
0.5855 

0.7750
0.7755
-

FG-X Present hHSDT
Present FSDT
Song et al.
Guo et al.

0.1428
0.1377
0.1378
0.1378 

0.3528 
0.3247
0.3249
0.3249

0.5579
0.4935
0.4939
0.4937

0.6920
0.5980
0.5984
0.5985

0.8894
0.7449
0.7454
0.7452

1.2090
0.9684
0.9690
-

FG-V Present hHSDT
Present FSDT
Song et al.
Guo et al.

0.1143
0.1117
0.1118
0.1118

0.2813
0.2671
0.2673
0.2673

0.4434
0.4107
0.4110
0.4108

0.5489
0.5010
0.5013
0.5013

0.7033 
0.6295
0.6299
0.6293

0.9513
0.8282
0.8287
-

IV.5.1.2 Parametric analysis

Having verified the solution method for the free vibration of FGM plates made 
of  porous  metal-ceramic  FGM or  GPls-reinforced polymer  FGM,  we will  now 
extend our analysis to the dynamic response of metal-ceramic FGM plates with 
both porosities and GPls.

In Figure IV.13 we present the evolution of natural frequency with GPls addition 
for CI, CR, CM, and MR FGM plates. We can see that frequencies always increase 
with GPls weight-fraction,  and that the most pronounced increment occurs in 
GPl-X, which reflects its optimal enhancement of bending stiffness. GPl-A gives 
the second highest increase in frequencies (for isotropic plates this distribution is 
identical to GPl-V because of material symmetry around the mid-plane). The least 
favourable distributions are GPl-O and GPl-V. We can also see that the increase of 
volume  index  n (i.e.  moving  towards  more  metal-rich  FGM)  decreases  the 
fundamental  frequency,  which leads  to  the  conclusion that  the  frequencies  of 
GPls-reinforced FGM plates are intermediate to those of GPls-reinforced isotropic 
plates.

In  Figure IV.14 we show the variation of fundamental frequency parameter  ω  
with porosity volume fraction for various power-indices. We can see that P-O has 
the least  effect on natural  frequencies,  while P-X is the most disadvantageous 
distribution on frequencies. This is explained by the contrasting effects of these 
two distributions on bending stiffness coefficients as we have showed in  Figure
 IV.10.  The frequencies of  P-A and P-V patterns always lie in an intermediate 
place, and for CI plate, they are are identical. For CR, CM, and MR FGMs, P-V 
cause less decrease than P-A.
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Figure IV.13: Evolution of non-dimensional frequency with GPls weight fraction for 
different FGMs.

Figure IV.14: Evolution of non-dimensional frequency with porosity volume fraction for 
different FGMs.
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A further parameter that affects the dynamic behaviour of FGM plates is the 
thickness ratio a /h . In Figure IV.15 we show the variation of the relative change 
of  fundamental  frequency  against  a /h  for  different  GPls  distributions  with 
wGPl=5%. The relative change is defined by ((ω −ω mat)/ω mat )⋅100, where ω mat is 

the natural frequency of the FGM matrix plate sans GPls. In all configurations, the 
relative change by GPls takes a constant value for thickness ratios greater than 10.  
For thicker plates, the sensitivity to GPls shows slight changes but with no great 
significance. It is also seen that the increase of n  will increase the relative effect of 
GPls addition.

Next we show in  Figure IV.16 the variation of the first four non-dimensional 
frequencies with GPls (in GPl-A) for a moderately-thick FGM plate. It is found 
that ω  increases as the nano-additive content increases whatever is the vibration 
mode of the plate. It further shows that the natural frequencies of FGM plates 
decrease with the increase of metal fraction. In Figure IV.17 we analyse the same 
behaviour  for  thick  FGM  plate.  The  same  remarks  are  obtained  as  with  the 
moderately-thick plate. We can also see that the thickness ratio influences the 
modes frequencies, which are reduced from those of moderately-thick FGM plate,  
and have also approached to each others.

Figure IV.15: Relative change of natural frequency from the non-reinforced case for 
different thickness ratios (with wGPl=5%).
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Figure IV.16: Variation of the first four frequencies with the increase of GPls weight 
fraction for different moderately-thick FGM plates (a/h=10).
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In Figure IV.18 we present the first three modes shapes of vibration for an FGM 
plate  with  b=2a,  a /h=10,  n=1 and  P=5% in  P-O  pattern.  Dimensionless 
frequencies are given for the non-reinforced FGM and also for GPls-reinforced 
FGM with  wGPl=5% in GPl-X distribution. The relative increase of frequency is 

44.2% for mode (1,1), 42.7% for mode (2,1), and 43.8% for mode (1,2), which makes 
very similar changes for the three modes. The rest of modes shapes for this FGM 
configuration until the ninth mode are given in our article [6].

Figure IV.17: Variation of the first four frequencies with the increase of GPls weight 
fraction for different thick FGM plates (a/h=5).
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IV.5.2 Bending response

IV.5.2.1 Validation examples

As we have mentioned earlier, the existing literature works on metal-ceramic 
FGM plates have focused only on FGMs with or without pores imperfections, but 
not with GPls reinforcement. Therefore, we will assess the validity of our analysis 
using the available three-dimensional solutions of metal-ceramic FGMs. The first 
validation  example  studies  the  non-dimensional  deflection  parameter  ω  
normalized to the exact solution of Nguyen and Nguyen-Xuan [212] for a square 
FGM  plate  carrying  a  sinusoidally-distributed  load  with  various  power-law 
exponents. The results are illustrated in  Figure IV.19 for moderately-thick plate, 
and in Figure IV.20 for thick plate.

Figure IV.18: First three modes shapes and dimensionless frequencies of a rectangular 
FGM plate with and without GPls.

mode (1,1)
ω̄=2.7536  (without GPls)
ω̄=3.9703  (with 5% GPls)

mode (2,1)
ω̄=8.9558  (without GPls)
ω̄=12.7774  (with 5% GPls)

mode (1,2)
ω̄=4.3549  (without GPls)
ω̄=6.2611  (with 5% GPls)

x
y
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Figure IV.19: Deflection parameter normalized to the exact solution of reference [212] for 
a moderately-thick FGM plate (a/h=10).

Figure IV.20: Deflection parameter normalized to the exact solution of reference [212] 
for a thick FGM plate (a/h=4).



78

Our method based on the hHSDT and TSDT shows excellent agreement with 
the three-dimensional elasticity solution, even for thick plates. These HSDTs yield 
close results to each others overall, and their maximum error for moderately-thick 
and  thick  plates  was  0. .25% and  1.58%,  respectively.  On  the  other  hand,  the 
accuracy of the FSDT is much lower, and the maximum error was 1.16% for the 
moderately-thick plate, and 4.44 % for the thick plate. It is also remarked that the 
FSDT accuracy is good and comparable to the HSDTs for small power indices, but 
it becomes unreliable for large power-law exponents, which was also observed in 
the vibration analysis.

IV.5.2.2 Parametric analysis

After  validating  our  bending  solution  method,  we  start  to  analyse  GPls-
reinforced FGM plates under sinusoidally-distributed loads. The transverse load is 
taken positively (ie traction), which allows to obtain positive values of deflection. 
We show in Figure IV.21, Figure IV.22, Figure IV.23, and Figure IV.24 the change of 
centre  deflection  parameter  w  with  GPls  weight-fraction  for  𝑛=0 (CI  plate), 
𝑛=0.1 (CR plate),  𝑛=1 (CM plate) and  𝑛=10 (MR plate), in that order. Isotropic 
metal plate was not considered since the similar case of ceramic isotropic (CI)  
plate was considered. Porosities are included by P=10 % in P-O distribution.
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Figure IV.21: Variation of non-dimensional deflection with GPls weight fraction for solid 
(–) and porous (--) CI FGM.

Figure IV.22: Variation of non-dimensional deflection with GPls weight fraction for solid 
(–) and porous (--) CR FGM.
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Figure IV.23: Variation of non-dimensional deflection with GPls weight fraction for solid 
(–) and porous (--) CM FGM.

Figure IV.24: Variation of non-dimensional deflection with GPls weight fraction for solid 
(–) and porous (--) MR FGM.
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We  can  see  that  GPls  incorporation  reduces  the  plate’s  deflection  in  all 
distributions, and that the greatest reduction occurs in GPl-X, followed secondly 
by GPl-A. The least reduction occurs in GPl-O for CI and CR FGMs, and in both 
GPl-O and GPl-V for CM and MR FGMs. For CI FGM plate, GPl-A and GPl-V 
results coincide since they are equivalent distributions for symmetric plates. It can 
be also seen that the slope of the plots decreases as the weight fraction of GPls 
increases, indicating that the relative change in deflection decreases for higher 
amounts  of  nano-additive.  It  is  also  observed  that  increasing  n increases  the 
centre deflection,  which results from the lower stiffness of  metal  compared to 
ceramic. Porous FGMs will have increased deflections due the impact of porosities 
on  stiffness.  The  change  from  non-porous  case  seems  to  be  insignificantly 
changed through the range of GPls weight-fraction.

Figure IV.25, Figure IV.26, Figure IV.27 and Figure IV.28 show the effects of GPls 
on  the  mid-plane  extension  parameter  u z=0=u 0.  Initially  when  no  GPls  are 

included,  the  mid-plane  extension  of  CI  plate  is  zero  because  of  material 
symmetry. But for non-symmetric CR, CM and MR FGMs, always at  wGPl=0%, 

non-zero  values  of  extension  occurs  because  of  the  existence  of  bending-
extension coupling that causes mid-plane extension in this bending state.

When GPls amount is increased in CI FGM, u0 increases for GPl-A and GPl-V in 

opposite but equal magnitudes, but it remains null in for symmetric GPl-O and 
GPl-X distributions. For the other FGMs, the mid-plane extension is reduced with 
increasing GPls in GPl-O, GPl-X and GPl-A. GPl-A has the greatest effect on u0, 

which will vanish in this distribution at 2.5%, 7.5%, and 3.75% of nano-additive in 
CR, CM, and MR FGMs, respectively. At those points, the elastic modulus was 
equilibrated  by  GPls  with  respect  to  the  middle  plane,  which  resulted  in 
uncoupled  response  of  the  FGM plate,  then  bending  the  plate  will  no  longer 
causes mid-plane extension.

It is also noted that porosity increases the longitudinal displacement in absolute 
value, which reflects its weakening effect on the FGM plate stiffness.
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Figure IV.26: Variation of non-dimensional mid-plane extension with GPls weight 
fraction for solid (–) and porous (--) CR FGM plate.

Figure IV.25: Variation of non-dimensional mid-plane extension with GPls weight 
fraction for solid (–) and porous (--) CI FGM plate.
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Figure IV.28: Variation of non-dimensional mid-plane extension with GPls weight 
fraction for solid (–) and porous (--) MR FGM plate.

Figure IV.27: Variation of non-dimensional mid-plane extension with GPls weight 
fraction for solid (–) and porous (--) CM FGM plate.
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In Figure IV.29, Figure IV.30, Figure IV.31 and Figure IV.32 we show the effects 
of  GPls  on  through-thickness  distribution  of  bending  stress  parameter  σ x  for 
FGM  plates  with  n=0,  n=0.1,  n=1 and  n=10,  respectively.  The  FGMs  are 
reinforced by 10 %wGPl .

Figure IV.29: Through-thickness variation of dimensionless bending stress of CI FGM 
plate with different GPls distributions.
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Figure IV.30: Through-thickness variation of dimensionless bending stress of CR FGM 
plate with different GPls distributions.

Figure IV.31: Through-thickness variation of dimensionless bending stress of CM FGM 
plate with different GPls distributions.
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We can see that the normal stress is always tensile at the upper region and 
compressive at the lower region, but the transition point (which determines the 
neutral plane) changes with the FGM composition and GPls distribution.

Focusing on the non-reinforced FGMs, we can see that σ x  varies linearly in CI 

FGM and has zero value in the mid-plane. In CR FGM, it varies quasi-linearly 
where ceramic is dominant but reduces abruptly in the lowermost region because 
metal fraction increases rapidly their. In CM FGM,  σ x  varies non linearly and 

vanish in displaced position from the mid-plane. In MR FGM,  σ x  varies quasi-

linearly in the lower region where metal is dominant, but at the uppermost region 
it increases suddenly following the rapid increase of ceramic volume fraction.

As for reinforced FGMs, we can see that GPls change the bending stress in  
noticeable manners which are quit complicated. GPl-O decreases the maximum 
tensile stress at the upper region and maximum compressive stress at the lower 
region in all FGMs, but it increases the stress magnitude in the proximity of the 
middle  region.  Other  GPls  distributions  cause  a  decrease  of  maximum tensile 
stress  in  most  FGMs.  Maximum  compressive  stress  in  the  lower  region  is 
increased by GPl-X and GPl-A, and is reduced by GPl-O and GPl-V.

Figure IV.32: Through-thickness variation of dimensionless bending stress of MR FGM 
plate with different GPls distributions.
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Next we investigate the effects of GPls on transverse-shear of FGM plates. This 
time we fix the FGM composition by n=1, and instead we vary the plate theory to 
see whether the traction-free boundary condition is satisfied in each case or not. 
Figure IV.33 shows the non-dimensional parameter of transverse shear stress σ xz 

using the FSDT.

We can see that  the transverse shear  stress  does not  vanish at  the top and 
bottom  surfaces  with  the  FSDT  calculation,  which  violates  the  boundary 
conditions of no traction at the bottom and top surfaces of the FGM plate. Also, 
σ xz should  follow  a  parabolic-like  through-thickness  variation,  which  isn’t 

satisfied either.

In  Figure  IV.34 and  Figure  IV.35 we use  Reddy’s  TSDT and the  hHSDT for 
transverse shear stress calculation. It is easily seen that both HSDTs satisfy the 
traction free boundary condition by having σ xz(z=±h /2)=0. For the base FGM 

plate, transverse shear stress varies parabolically but non-symmetrically, because 
of transverse anisotropy that results from non-symmetric elastic modulus across 
the FGM. On the other hand, GPl-A FGM exhibits a perfect parabolic variation 
with mid-plane symmetry,  as an isotropic plate would have.  GPl-O also has a 
nearly-symmetric profile of transverse shear stress.

Figure IV.33: Through-thickness variation of σxz for different GPls distributions using the 
FSDT calculation (with k=5/6).

FSDT

No traction-free 
boundary condition
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Figure IV.35: Through-thickness variation of σxz for different GPls distributions using 
the hHSDT calculation.

Figure IV.34: Through-thickness variation of σxz for different GPls distributions using the 
TSDT calculation.

TSDT

hHSDT

Satisfied traction-free
boundary condition

Satisfied traction-free
boundary condition

TSDT
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GPl-X affects the transverse shear stress by inducing sharp kink in the centre 
region. It is also noted that the maximum shearing stress in the initial FGM was 
decreased in both GPl-X and GPl-A, which helps to provide larger resistance to 
shear failure in FGM plates.

The comparison of  the  TSDT and hHSDT shows very  similar  features  with 
hardly observed differences. The positions of maximums and minimus are also the 
same.  On the other hand, the FSDT maximum and minimum values are totally 
erroneous and unreliable.

IV.5.3 Buckling response

IV.5.3.1 Validation examples

To validate the accuracy of our method in predicting the critical buckling loads 
we illustrate in Figure IV.36 the results of uni-axial buckling parameter:

 N̂= 1−ν 2

Eh
⋅N  

We consider in this example a GPls-reinforced laminated plate and compare our 
results  with  the  quasi-3D  hHSDT  solution  of  Ghandourah  et  al.  [213] that 
considers the stretching effect. The epoxy matrix data are: E=3 GPa and ν =0.34.
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The comparison of our results with the quasi-3D solution for each distribution 
mode reveals excellent accuracy in predicting the critical buckling loads of FGM 
plates with GPls reinforcement.

IV.5.3.2 Parametric analysis

After validating our buckling analysis  we will  study the buckling of  porous 
GPls-reinforced FGM plates. The typical bifurcation-type buckling does not occur 
in non-symmetric FGM plates –except the case of a completely-clamped plate–, 
which is caused by the existence of bending–extension coupling in this type of 
FGMs [6]. Therefore, we will consider a different symmetric FGM with a metal-
rich  core  and  ceramic-rich  surfaces.  This  FGM  is  modelled  by  the  following 
modified volume-fraction function:

Figure IV.36: Validation of uni-axial buckling results of laminated plates reinforced with 
GPls in various distributions. 
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V (z )=2|zh|
n

(IV.4)

This  volume-fraction  rule  will  result  in  symmetric  variations  as  illustrated 
bellow:

Adopting this rule, the variation of the critical buckling load for a square FGM 
plate with GPls volume-fraction is plotted in  Figure IV.38 for CR, CM and MR 
FGM plates with  a /h=10. Porosity parameter is also considered by 15% volume 
fraction in P-O and P-X distributions. P-A and P-V were not included as they will  
cause asymmetry around the mid-plane, which renders the buckling impossible. 
The buckling mode considered here is the first mode: (m ,n)=(1,1).

Figure IV.37: Symmetric ceramic-metal-ceramic FGM with various power-law indices.
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We can see that the buckling load increases with the increase of GPls weight-
fraction. The gains are greater in GPl-X than GPl-O, and the difference between 
the two distributions becomes larger with the increase of nano-additive amount. 
Buckling did not occur in GPl-A and GPl-V, which confirms that non-symmetric 
simply-supported plates do not experience this phenomenon.

Figure IV.38: Variation of non-dimensional critical buckling load for GPls-reinforced 
FGM plates with and without porosities.
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We observe also that porosities will reduce the supported buckling load by the 
FGM plate,  with a  greater  impact  in  P-X than P-O.  Increasing the  power-law 
exponent will also reduce the buckling loads in a continuous manner, indicating 
that the buckling loads of GPls-reinforced FGM plates lie between those of GPls-
reinforced isotropic plates. The case of bi-axial compression shows similar results 
and trends, except the magnitude of loads which is precisely halved (because the 
square plate is stressed from two direction instead of one).

In the next example we will  extend our analysis from square FGM plates to 
rectangular ones. Unlike beams which normally buckle in the first mode (ie with a 
single bump),  plates will  buckle in modes different than the first  if  they have 
rectangular shapes. To find the mode number at which a rectangular plate of a 
given aspect  ratio  will  buckle  at,  an inspection must  be  done by plotting the 
buckling loads against the aspect ratio  a /b for different values of the half-wave 
number m . The resulting graph for a CI FGM plate is presented in Figure IV.39.

 For a fixed aspect ratio in the graph above, increasing the compressive load to 
the critical level will cause the plate to buckle in the mode m  that has a minimum 
N . For example, the square plate (a /b=1) can support a compressive load up to 

N≈1.3⋅109 N /m,  at which buckling will occur in the first mode with a single 

hump. For a rectangular plate with  a /b=2,  buckling will  occur in the second 
mode with two humps on each side of the plane.

Figure IV.39: Critical buckling load versus the aspect ratio a/b. m indicates the buckling 
mode number along the x direction (a/h=10).
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Physically, the buckled rectangular plate divides itself into a whole number of 
sub-squares which alternate in convex and concave humps. In the  y -direction, 
which is unloaded, only one half-wave shows. For a better visualization of this 
phenomenon,  we  have  joined  in  Appendix  C the  buckling  modes  shapes  of 
rectangular  FGM  plates  under  uniaxial  loading  for  multiple  length-to-width 
ratios.  We like  to  mention  that  these  useful  graphs  were  accomplished  using 
Matplotlib Python library.

Next, the influence of grading exponent on uni-axial buckling load is studied in 
Figure IV.40 for rectangular FGM plates with different length-to-width ratios. We 
can also see here that the buckling mode changes with the aspect ratio of the 
FGM plate, and the transition from one mode to another takes place for the same 
aspect ratio for the different FGMs (ie, it is independent of the plate composition). 
The increase  of  FGM power-law exponent  reduces  the  critical  buckling loads, 
which  is  a  consequence  of  the  change  towards  softer  metal-rich  FGMs.  It  is 
interesting to note that for a fixed FGM power-law index, the critical buckling 
load reduces  with  the  increase  of  aspect  ratio  from 0.5  to  a  minimum of  0.9  
approximately, and then it increases until a /b≈1.3, where it shifts to the second 
mode and repeats the same variation, and so on.

The influence of GPls on buckling loads is investigated in  Figure IV.41, which 
reveals  that  nano-additives  increase  the  resistance  to  buckling,  and  that  the 
enhancement is exactly the same for different aspect ratios. It is also interesting 

Figure IV.40: Critical buckling load versus the aspect ratio for different FGM gradation 
indices.
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that the absolute increase in critical buckling loads is higher for the first 5%wGPls, 

and adding another 5% will continue to increase the buckling load but with less 
magnitude. This means that that the relative effect of GPls on buckling resistance 
is most significant in the first amounts and decreases afterwards. This conclusion 
is consistent with what we have found on GPls effects on vibration frequencies 
[6].

Figure IV.41: Critical buckling load versus the aspect ratio for different values of GPls 
weight fraction (n=0.1).
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CONCLUSION

Summary and key results

We  have  investigated  in  this  thesis  the  free  vibration,  static  bending,  and 
buckling  behaviours  of  rectangular  metal-ceramic  FGM  plates  with  porosities 
defects and GPls reinforcements (porous GPls-reinforced FGM plates). We started 
the  theoretical  analysis  by  the  definition  of  the  FGM  power-law,  in  the 
constitutive aspect, and in parallel the choice of the HSDT and displacements field 
model,  in  the  kinematic  aspect.  The  resulting  deformation  field  satisfies  the 
boundary conditions of zero traction at the upper and lower surfaces.

By  adopting  the  assumption  of  linear  elasticity  to  obtain  stresses,  and  by 
applying  the  principle  of  Hamilton,  we  derived  the  differential  equations  of 
equilibrium.  These  equations  were  then  solved  by  using  Navier’s  analytical 
method for a simply-supported plate.

Solution was carried out using a set of Python codes that were developed in-
house.  We  have  found  during  this  research  experience  that  the  line-by-line 
programming method has many advantages, which appeared in the richness of 
parametric examples that we could treat, and also in the graphical presentations 
of results. Therefore, we have concluded that programming scientific codes is a 
more  efficient  way  to  investigate  structural  mechanics  problems  than 
computational  simulation.  In  validation  examples,  our  programmed  method 
showed very good accuracy compared to the exact solutions based on meshed or 
meshless simulation methods.  We note that calculation time was of the order of 
seconds only, which is a great advantage over simulation methods that may take 
minutes or even hours, depending on the refinement of mesh.

After confirming our method’s efficiency in each of the dynamic,  static,  and 
stability  analyses,  we have carried out  a  number of  parametric  investigations,  
which consider a wide range of parameters relating to the base-FGM composition, 
GPls amount and distribution, porosities amount and distribution, and geometric 
dimensions of the FGM plate.

 The obtained results of this work are summarized as follows:

• The present method and mathematical models can be applied efficiently to 
study the mechanical problems of elastic FGM plates.
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• In  the  validation  examples,  the  generalized  plate  formulation  showed 
excellent accuracy even for thick plates, and in particular with the adopted 
hHSDT.

• Reddy’s TSDT also yielded very accurate results.

• The FSDT is obviously less accurate than 2-D HSDTs, and significantly less 
than the exact 3D solution.

• HSDTs  slightly  underestimate  the  natural  frequency,  while  the  FSDT 
largely overestimates this quantity.

• HSDTs give very close deflection results to the exact solution, but the FSDT 
results are highly underestimated.

• HSDTs satisfy the boundary condition of zero transverse stresses at the 
bottom and top surface of the FGM plate, which is totally neglected by the 
FSDT. 

• We have found that the FSDT is inaccurate to a large degree for:

a) thicker plates,

b) larger values of FGM power-index (that is, more metal-rich plates).

c) calculating the magnitude and distribution of transverse shear stress.

• Increasing power-law index,  which corresponds to  the  increase  of  total 
metal fraction, will reduce the rigidity of the FGM plate. This will lead to 
lower  frequencies,  larger  deformations,  and  lower  buckling  resistance 
capacity.

• GPls have a positive impact on the FGM stiffness,  which is reflected in 
increased natural frequency, reduced deflection and membrane extension, 
and higher critical buckling loads.

• GPl-X is the most advantageous distribution for a given amount of nano-
additive, followed by GPl-A. The latter has the interesting effect of reducing 
and vanishing the bending-extension coupling at certain weight fractions.

• Uncoupling the static response in GPl-A results from the quasi-symmetric 
elastic modulus profile along the thickness, which has shifted the neutral 
plane back to the middle-plane.

• Uncoupled  FGM  plates  show  zero  mid-plane  extension  in  bending 
response, and a linear variation of bending stress σ x , which is a property 

that characterizes isotropic plates.
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• P-O distribution is the most advantageous porosity distribution for FGM 
plates rigidity. P-V showed comparable results to GPl-A in uncoupling the 
static response.

• GPl-O  and  P-X  are  the  most  unfavourable  distributions  of  GPls  and 
porosities, respectively.

• The vibration frequencies, bending response, and critical buckling loads of 
GPls-reinforced  metal-ceramic  FGM  plates  lie  in  an  intermediate  place 
between those of GPls-reinforced isotropic plates.

• Bifurcation buckling does not take place when GPls are asymmetrically 
distributed through the thickness of symmetric FGM plates.

• Square FGM plates always buckle at the first mode with a single hump. But 
for rectangular plates,  the buckling mode changes with the aspect ratio 
a /h . This behaviour is invariant with the composition of the FGM.

• The relative effect of GPls on the mechanical response is maximal at the 
first added amounts.

Potential applications of the present FGM model

The  explored  metal-ceramic  FGM  plate  model  has  promising  aerospace 
engineering applications. The most suitable application the amelioration of FGM 
thermal protection systems in space vehicles, which occur in engines combustion 
compartments, and in outer protection shields that face the extreme environments 
in  atmospheric  re-entry.  FGMs  were  already  proposed  for  this  usage,  where 
ceramic serves as a heat insulation material, while metal gives structural integrity 
and  ductility.  The  novelty  here  is  that  GPls  are  added  to  enhance  structural 
stiffness, to dampen vibration amplitudes, and to reduce static deformations. This 
nano-additive may also aid to reduce total structural weight, as it has less mass 
density than most metals and ceramics.

On the other hand, porosities are incorporated in balanced amounts to reduce 
weight  and  to  cut  off material  consumption.  Material  voids  will  also  help  to  
increase thermal resistance, as air or vacuum –which may compose pores– are 
very good insulators.

Another interesting application to be considered is that of combustion chambers 
walls  in  automotive  vehicles,  which  can  attain  very  high  thermal  stresses. 
Incorporating GPls and porosities in studied amounts can improve the rigidity 
and thermal resistance of these components.
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Future recommendations

We have presented this work on porous GPls-reinforced FGM plates with the 
aim  of  giving  valuable  contribution  to  the  field  of  composite  materials,  and 
particularly FGMs.  This analysis  can be further  enriched by considering these 
additional parameters:

• We  recommend  to  apply  the  present  method  to  different  boundary 
conditions  other  than  simple  supports.  This  can  be  done  by  using  the 
analytical method of Levy for certain support combinations, or by the Ritz 
or Galerkin methods for all types of supports. Tackling this problem using 
simulation methods like the FEM is also encouraged.

• We also suggest the extension of this analysis to shells structures, which 
feature  special  geometric  complexity  that  can  reveal  more  interesting 
results.

• A useful extension of this work would be the combination of piezoelectric 
actuator layers with the studied FGM plate model. Piezoelectric devices are 
very interesting for the domain of structural dynamics as they have the 
potential of damping vibration.

• As for the experimental part, we suggest the realization of this FGM model 
using an appropriate experimental technique. We suggest the sophisticated 
technique of 3D printing that we described well in the first chapter, or by 
the long-standing method of powder-metallurgy.

• Finally,  in  order  to  fully  characterize  the  combined  microstructural 
interactions between the base FGM, GPls, and porosities, we advise other 
researchers to include 3D molecular dynamics modelling in the analysis.  
This approach may be very expensive in terms of computational resources 
and time,  but  it  will  predict  the  mechanical  behaviour  of  porous  GPls-
reinforced FGM plates in a very realistic way.
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APPENDIX A

Matrices elements

The elements of the stiffness and inertia matrices are given as follows:
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APPENDIX B

Solution algorithm

Figure B1: Organigram of solution algorithm for the mechanical analysis of porous GPls-
reinforced FGM plate.
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APPENDIX C

Buckling modes shapes

Figure C1: Effect of aspect ratio of rectangular FGM plates on the buckling mode shape.
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