REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SAAD DAHLAB DE BLIDA 1 FACULTE DE TECHNOLOGIE DEPARTEMENT DE MECANIQUE

Projet de Fin d'Etudes Pour l'obtention du Diplôme de Master en Construction mécanique

Thème :

Calcul de *KI* pour une section circulaire fissurée, chargée en traction verticale, par la Méthode de collocation de frontière

Proposé et encadré par :

Pr.FERDJANI Hicheme

Réalisé par :

RAHIM ISMAIL Reghioui Mohamed Amine

2023/2024

REMERCIEMENTS

Nous remercions DIEU tout puissant qui nous avoir donné le courage, la force et la volonté pour réaliser ce modeste travail.

Nous adressons nos plus grands remerciements à nos parents qui ont tellement sacrifié pour nous pendant toutes ces longues années et qui ont fait des efforts inhumains pour nous permettre d'être la aujourd'hui. Un grand merci à vous et à nos familles.

Nous voudrons aussi témoigner toute nos gratitudes envers Monsieur Hicheme Ferdjani, notre Promoteur, pour sa très grande disponibilité et son grand intérêt pour notre travail.

Ses connaissances, sa rigueur scientifique et son expérience ont été exemplaire qui nous permises de faire notre travail dans d'excellentes conditions.

Nous aimerions aussi remercions tous les enseignants du département mécanique (USDB).

Nomenclature général

Symboles latins :

- θ et r : composants du repère polaire
- a et b : rayons (axes) de la section elliptique
- X et Y : composantes de repère cartésien
- f : longueur de la fissure
- KI, KII : facture d'intensité de contrainte respectivement en mode 1 et 2
- C : nombre de points de collocation
- N : nombre de terme
- σ : contrainte radiale
- $\boldsymbol{\tau}$: contrainte circonférentielle
- Y : facture de forme

Sommaire

REMERCIEMENTS

Liste des figures	
Liste des tableaux	
Introduction générale	1
Chapitre 1 : Rappels Théoriques sur la mécanique de la rupture	
I.1.Introduction	3
I.2. Définition de la mécanique de la rupture [1]	3
I.2.1. Modes de rupture [3]	3
I.3. Développement des contraintes en série infinie en élasticité plane dans un milieu fissu	ré 4
I.4. Facteur de forme [4]	6
Chapitre 2 : Méthode de collocation de frontière et méthode des moindres carré	Ś
II.1.Introduction	8
II.2. La Méthode de collocation de frontière [5]	8
II.2.1. Cas de l'élasticité plane	8
II.3. La Méthode des moindres carrés [6]	10
II.3.1. Forme standard	10
II.3.2. Solution analytique	10
Chapitre 3:Problèmes Traités	
III.1 Introduction	15
III.2 Cas de Fissure centrale	15
III.2.1 Résultats	17
III-3 1 ^{er} cas de chargement non uniforme	19
III-3-1 Résultats	21
III-3-2 2eme cas de chargement non uniforme	22
III-3-3 Résultats	24
III.4. Cas de Fissure non centrale	26
III.4.1 Résultats	28
III.4.2 Détermination de l'expression analytique du facteur KI	29

III.4.3 Confirmation de la validité de l'expression KI en fissure central	31
III-4-4 Les résultats du logiciel Matlab ne sont pas stabilisés	33
Conclusion général	35
Références	36

Annexes 1 : Les programmes de calcul du FIC dans une section circulaire fissurée

A1-1 Programme pour fissure central

- chargement uniforme
- deux cas de chargement non uniforme
- A1-2 Programme pour fissure non central.

Annexe 2 : Les programmes pour les expressions du facteur KI

A2-1Programme pour fissure non central.

Annexe 3 : Résultats pour le cas d'une fissure non centrale

Résultats pour a=0.6

- Résultats pour a= 0.7
- Résultats pour a= 0.8
- Résultats pour a = 0.9
- Résultats pour a= 1
- Résultats pour a= 1.1
- Résultats pour a=1.2
- Résultats pour a=1.3
- Résultats pour a= 1.4
- Résultats pour a= 1.5
- Résultats pour a= 1.6

Annexe 4 : Déduction du développement des contraintes

Liste des figures :

Figure I-1 Les trois modes de rupture

- Figure I- 2 Champ de contrainte
- Figure III- 1 fissure centrale avec chargement vertical.
- Figure III- 2 fissure centrale, point de collocation

Figure III- 3 Evolution de KI en fonction de N, pour fissure centrale

Figure III-4 section circulaire fissuré avec chargement variable

Figure III- 5 Evolution de KI en fonction de N, fissure centrale pour 1^{er} cas de chargement non uniforme

Figure III- 6 section circulaire fissuré avec chargement variable dans le 2eme cas de chargement non uniforme

Figure III- 7 Evolution de KI en fonction de N, fissure centrale pour 2eme cas de chargement non uniforme

Figure III-4-1 fissure non centrale avec chargement vertical

Figure III-4-2 fissure non centrale avec chargement vertical, point de collocation

Figure III-4-3 facteur KI en fonction de N

Figure III-4-4 facteur KI en fonction de

Figure A5-1

Liste des tableaux :

Tableau III-1 KI en fonction N une fissure centrale

Tableau III-2 KI en fonction N une fissure centrale pour 1er cas de chargement non uniforme

Tableau III-3 KI en fonction N une fissure centrale pour 2eme cas de chargement non uniforme

Tableau III-4 Résultats pour différentes valeurs de a

Tableau III-5 Comparaison entre les résultats obtenus par III-7 et par collocation

Tableau III-6 Deuxième Comparaison entre les résultats obtenus par III-7 et par collocation

Tableau A4- 1 KI en fct de N (a=0.6)

Tableau A4- 2 KI en fct de N (a=0.7)

Tableau A4- 3 KI en fct de N (a=0.8)

Tableau A3- 4 KI en fct de N (a=0.9)

Tableau A4- 5 KI en fct de N (a=1)

Tableau A4- 6 KI en fct de N (a=1.1)

Tableau A4- 7 KI en fct de N (a=1.2)

Tableau A4- 8 KI en fct de N (a=1.3)

Tableau A4- 9 KI en fct de N (a=1.4)

Tableau A4- 10 KI en fct de N (a=1.5)

Tableau A4- 10 KI en fct de N (a=1.6)

Introduction

L'étude de la nocivité des fissures au sein des structures est cruciale en mécanique de la rupture, particulièrement dans le contexte de la rupture fragile. Un élément déterminant dans cette analyse est le facteur d'intensité de contraintes (FIC), qui joue un rôle central dans les critères de propagation des fissures. Sa précise évaluation est donc essentielle pour l'analyse des structures endommagées.

Parmi les diverses techniques de calcul du FIC, la méthode de collocation de frontière se distingue par sa fréquente utilisation en recherche, comme en témoignent plusieurs travaux de master en mode III mentionnés par des auteurs tels que KH. Serir[8], Y. Mezouani[9], ainsi que Sofiane BENTTAHLAH[7] et Wahid IZA[7]. Dans le cadre de cette étude, nous appliquerons cette méthode pour évaluer le FIC du mode I dans une structure cylindrique avec une fissure, en considérant une section circulaire du cylindre. La section est chargée en traction verticale (perpendiculaire au plan de la fissure). Nous examinerons deux configurations différentes : une fissure dont la pointe est située au centre, et une fissure avec la pointe décentrée et située sur un diamètre.

Notre mémoire est structuré en trois parties distinctes :

1. Le premier chapitre introduit les concepts fondamentaux qui sous-tendent ce travail.

2. Le second chapitre détaille la mise en œuvre de la méthode de collocation de frontière pour l'élasticité plane et fournit un bref exposé sur la méthode des moindres carrés, soutenant nos calculs.

3. Le dernier chapitre concerne les problèmes considérés :

- Fissure centrale avec chargement vertical.
- Fissure non centrale avec chargement vertical. Pour ce dernier cas, nous établissons une expression analytique approchée du FIC en fonction de la longueur de la fissure.

La conclusion générale synthétisera les résultats obtenus.

CHAPITRE I : Rappels Théoriques Sur la Mécanique de la rupture.

I.1.Introduction :

Ce chapitre présente les bases théoriques de notre travail en deux parties :

- Dans la première, nous parcourons quelques notions de mécanique de la rupture.

- Dans la seconde partie, nous exposerons le développement des contraintes en série infinie, qui est utilisé dans la méthode de collocation de frontière.

I.2. Définition de la mécanique de la rupture [1] :

La mécanique de la rupture permet de prévoir l'évolution d'une fissure, apparue consécutivement à l'existence d'un défaut, jusqu'à la ruine de la structure. Plus particulièrement, elle permet l'étude par laquelle on s'efforce de suivre la propagation de la fissure en fonction du chargement exercé et de la nature du matériau considéré.

I.2.1. Modes de rupture [3] :

Une fissure est définie comme un plan séparant localement un solide en deux portions. Les trois composantes vectorielles de la discontinuité des déplacements à travers ce plan, forment les trois modes de rupture (Figure. I.1) :

- le mode I : pour ouverture normale
- le mode II : cisaillement plan.
- et le mode III : glissement anti plan.

Le cas le plus réel est un mode mixte qui est une superposition de ces trois modes. On parle alors de mode mixte «mode I+II \pm III».

Figure I-1 Les trois modes de rupture

I.3. Développement des contraintes en série infinie en élasticité plane dans un milieu fissuré:

Considérons une fissure droite, avec un repère (O,x1,x2) avec O confondu avec la pointe et les coordonnées polaires (r,θ) correspondantes (Fig. I.2).

Figure I- 2 Champ de contrainte

Nous allons présenter ci-dessous, les expressions de σrr et $\sigma r\theta$ en fonction de r et θ , car nous en aurons besoin dans la suite du travail.

En effet, on peut établir que l'expression générale de σrr en élasticité plane pour une structure fissurée, est donnée par (voir Annexe 4) :

$$\sigma_{rr} = \sum_{n=1}^{\infty} [A_n E_1(r, n, \theta) + B_n F_1(r, n, \theta) + C_n G_1(r, n, \theta) + D_n H_1(r, n, \theta)] \dots (1.1)$$

$$\sigma_{r\theta} = \sum_{n=1}^{\infty} [A_n E_2(r, n, \theta) + B_n F_2(r, n, \theta) + C_n G_2(r, n, \theta) + D_n H_2(r, n, \theta)] \dots (1.2)$$

$$\sigma_{\theta\theta} = \sum_{n=1}^{\infty} [A_n E_2(r, n, \theta) + B_n F_3(r, n, \theta) + C_n G_3(r, n, \theta) + D_n H_3(r, n, \theta)] \dots (1.3)$$

Avec $n \in N$ et A_n , B_n , C_n , et D_n des constantes dépendant du chargement et de la géométrie. Les fonction $E_i(r, n, \theta)$, $F_i(r, n, \theta)$, $G_i(r, n, \theta)$ i= 1...3 sont données par :

$$\begin{split} E_1(r,n,\theta) &= r^{\left(n-\frac{3}{2}\right)} \left[\left(-n^2 + 4n - \frac{7}{4}\right) \sin\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n^2 - \frac{1}{4}\right) \sin\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ F_1(r,n,\theta) &= r^{\left(n-\frac{3}{2}\right)} \left[\left(-n^2 + 4n - \frac{7}{4}\right) \cos\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n^2 - \frac{1}{4}\right) \cos\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ G_1(r,n,\theta) &= r^{(n-1)} \left[\left(-n^2 + 3n\right) \sin((n-1)\theta + n(n-1)\sin((n+1)\theta)) \right] \\ H_1(r,n,\theta) &= r^{(n-1)} \left[\left(-n^2 + 3n\right) \cos((n-1)\theta + n(n-1)\cos((n+1)\theta)) \right] \end{split}$$

$$\begin{split} E_{2}(r,n,\theta) &= -\left(n - \frac{1}{2}\right)r^{\left(n - \frac{3}{2}\right)}\left[\left(n - \frac{3}{2}\right)\cos\left(\left(n - \frac{3}{2}\right)\theta\right) - \left(n + \frac{1}{2}\right)\cos\left(\left(n + \frac{1}{2}\right)\theta\right)\right] \\ F_{2}(r,n,\theta) &= -\left(n - \frac{1}{2}\right)r^{\left(n - \frac{3}{2}\right)}\left[\left(n - \frac{3}{2}\right) - \sin\left(\left(n - \frac{3}{2}\right)\theta\right) - \left(n + \frac{1}{2}\right)\sin\left(\left(n + \frac{1}{2}\right)\theta\right)\right] \\ G_{2}(r,n,\theta) &= -nr^{(n-1)}\left[\left(n - 1\right)\cos\left(\left(n - 1\right)\theta + \left(n - 1\right) - \cos\left(\left(n + 1\right)\theta\right)\right)\right] \\ H_{2}(r,n,\theta) &= -nr^{(n-1)}\left[\left(-n - 1\right)\sin\left(\left(n - 1\right)\theta + \left(n - 1\right) + \sin\left(\left(n + 1\right)\theta\left(n + 1\right)\right)\right)\right] \\ E_{3}(r,n,\theta) &= \left(n^{2} - \frac{1}{4}\right)r^{\left(n - \frac{3}{2}\right)}\left[\sin\left(\left(n - \frac{3}{2}\right)\theta\right) - \sin\left(\left(n + \frac{1}{2}\right)\theta\right)\right] \\ F_{3}(r,n,\theta) &= \left(n^{2} - \frac{1}{4}\right)r^{\left(n - \frac{3}{2}\right)}\left[\cos\left(\left(n - \frac{3}{2}\right)\theta\right) - \frac{n - \frac{3}{2}}{n + \frac{1}{2}}\cos\left(\left(n + \frac{1}{2}\right)\theta\right)\right] \\ G_{3}(r,n,\theta) &= \left(n^{2} + n\right)r^{n-1}\left[\sin\left(\left(n - 1\right)\theta\right) - \frac{n - 1}{n + 1}\sin\left(\left(n + 1\right)\theta\right)\right] \\ H_{3}(r,n,\theta) &= \left(n^{2} + n\right)r^{n-1}\left[\cos\left(\left(n - 1\right)\theta\right) - \cos\left(\left(n + 1\right)\theta\right)\right] \end{split}$$

Au lieu des séries infinies (I. 1), (1.2) et (I. 3), on utilise les séries tronquées suivantes :

$$\sigma_{rr} \approx \sum_{n=1}^{N} [A_n E_1(r, n, \theta) + B_n F_1(r, n, \theta) + C_n G_1(r, n, \theta) + D_n H_1(r, n, \theta) \dots (1.4)$$

$$\sigma_{r\theta} \approx \sum_{n=1}^{N} [A_n E_2(r, n, \theta) + B_n F_2(r, n, \theta) + C_n G_2(r, n, \theta) + D_n H_2(r, n, \theta) \dots (1.5)$$

$$\sigma_{\theta\theta} \approx \sum_{n=1}^{N} [A_n E_2(r, n, \theta) + B_n F_3(r, n, \theta) + C_n G_3(r, n, \theta) + D_n H_3(r, n, \theta) \dots (1.6)$$

où N est appelé nombre de termes du développement.

On constante dans (I.4), (I.5) et (I.6) que les facteurs multiplicatifs devant C_1 (n=1) s'annulent. Cela veut dire que ces équations contient 4N-1 constantes à déterminer $A_1 \dots A_N$, $B_1 \dots B_N$, $C_2 \dots C_N$ et $D_1 \dots D_N$

Remarque : le premier terme de (I.4), (I.5) et (1.6) (n=1) donne l'expression asymptotique des contraintes en pointe de fissure.

En effet, on posant :

$$K_I = B_1 \sqrt{2\pi}$$
 (I.7)
 $K_{II} = A_1 \sqrt{2\pi}$ (I.8)

K₁ et K₁₁ sont les FIC En mode I et II respectivement.

En remplaçant (I.7) et (I.8) dans (I-4) et (I.5) et en prenant n = 1, on obtient

$$\sigma_{rr} = r^{\left(-\frac{1}{2}\right)} \begin{cases} \frac{K_{II}}{\sqrt{2\pi}} \left[\left(\frac{5}{4}\right) \sin\left(\left(-\frac{1}{2}\right)\theta\right) + \left(\frac{3}{4}\right) \sin\left(\left(\frac{3}{2}\right)\theta\right] + \right] \\ \frac{K_{I}}{\sqrt{2\pi}} \left[\left(\frac{5}{4}\right) \cos\left(\left(-\frac{1}{2}\right)\theta\right) + \left(\frac{3}{4}\right) \cos\left(\left(\frac{3}{2}\right)\theta\right] \end{cases} \end{cases}$$
(I.8)

$$\sigma_{r\theta} = -\left(\frac{1}{2}\right) r^{\left(-\frac{1}{2}\right)} \begin{cases} \frac{K_{II}}{\sqrt{2\pi}} \left[\left(-\frac{1}{2}\right) \cos\left(\left(-\frac{1}{2}\right)\theta\right) - \left(\frac{3}{2}\right) \cos\left(\left(\frac{3}{2}\right)\theta\right] + \right] \\ \frac{K_{I}}{\sqrt{2\pi}} \left[\left(-\frac{1}{2}\right) \sin\left(\left(-\frac{1}{2}\right)\theta\right) + \left(-\frac{1}{2}\right) \sin\left(\left(\frac{3}{2}\right)\theta\right] \end{cases}$$
(I.9)

qui sont les expressions asymptotiques des contraintes (voir [4]).

Chapitre II Méthode de collocation de frontière. Méthode des moindres carrés

II.1.Introduction :

Dans ce paragraphe on introduit la méthode de collocation de frontière. Cette méthode mène à un système d'équation linéaire surdéterminé. Sa résolution est faite par la méthode des moindres carrées. On présente donc également cette méthode.

II.2. La Méthode de collocation de frontière [5] :

La méthode de collocation de frontière est une méthode de calcul du facteur d'intensité de contrainte basée sur le développement des contraintes en série infinie.

Le principe général est le suivant : connaissant les conditions aux limites pour un problème donné, on exprime les contraintes (et ou les déplacements) en un nombre fini de positions sur la frontière, appelée points de collocation, à l'aide du développement des contraintes avec des coefficients inconnus.

Pour chaque point de collocation, on trouve deux équations pour les coefficients inconnus. Le nombre de points de collocation est tel que le nombre d'équations soit au moins égal au nombre d'inconnues. Le système d'équations obtenu est résolu, et l'on détermine ainsi les constantes du développement des contraintes.

Les valeurs des coefficients associés au facteur $r^{\frac{-1}{2}}$ (r est la distance entre le point de collocation et la pointe de la fissure) donnent les facteurs d'intensité de contrainte,

II.2.1. Cas de l'élasticité plane :

Soit une section quelconque fissurée dont la frontière est soumise à un chargement connu.

Afin d'établir le système d'équations permettant de calculer $K_I \square$ \square et K_{II} , on choisit C points de collocations sur la frontière (Fig. II.1)

Figure II- 1 Exemple de points de collocation.

Sur la Figure II-1 :

- $\vec{T}_p(\sigma_p, \tau_p)$ représente le vecteur contrainte en p.
- \vec{n}_p représente la normale extérieure unitaire en p.
- (r_p, θ_p) représentent les coordonnées polaires de p.

Pour chaque point de collocation p, on a deux équations :

$$\sigma_{rr}(r_p, \theta_p)n_p^r + \sigma_{rr}(r_p, \theta_p)n_p^\theta = \sigma_p$$

$$\sigma_{r\theta}(r_p, \theta_p)n_p^r + \sigma_{\theta\theta}(r_p, \theta_p)n_p^\theta = \tau_p \qquad \text{P=1..C} \quad (\text{II.1})$$

En utilisant (I.3) et (I.4) on réécrit (II.1) de la manière suivante :

$$\sum_{n=1}^{N} \left\{ A_n \left[E_1(r_p, n, \theta_p,)n_p^r + E_2(r_p, n, \theta_p,)n_p^\theta + B_n \left[F_1(r_p, n, \theta_p,)n_p^r + F_2(r_p, n, \theta_p,)n_p^\theta \right] \right] + C_n \left[G_1(r_p, n, \theta_p,)n_p^r + G_2(r_p, n, \theta_p,)n_p^\theta + D_n \left[H_1(r_p, n, \theta_p,)n_p^r + H_2(r_p, n, \theta_p,)n_p^\theta \right] \right] = \sigma_p$$

$$\sum_{n=1}^{N} \left\{ A_n \left[E_2(r_p, n, \theta_p,)n_p^r + E_3(r_p, n, \theta_p,)n_p^\theta + B_n [F_2(r_p, n, \theta_p,)n_p^r + F_3(r_p, n, \theta_p,)n_p^\theta] \right] + C_n \left[G_2(r_p, n, \theta_p,)n_p^r + G_3(r_p, n, \theta_p,)n_p^\theta + D_n [H_2(r_p, n, \theta_p,)n_p^r + H_3(r_p, n, \theta_p,)n_p^\theta] \right] \right\} = \tau_p$$
..... (II-2)

(II.2) est un système de 2C équations à 4N-1 inconnues. On choisit C et N tels que 2C>4N-1.Le système obtenu est un système surdéterminé, Il sera résolu par la méthode des moindres carrés.

Remarque :

Dans la suite du travail, on prendra la valeur minimale pour C : C=2N.

II.3. La Méthode des moindres carrés [6]:

Raison d'être de la méthode des moindres carrés.

Utilisée fréquemment dans de nombreux domaines scientifiques, cette approche consiste à minimiser la somme des carrés des écarts entre les valeurs observées et celles estimées.

La théorie de l'erreur s'articule autour de trois défis principaux :

1. Fusionner les diverses erreurs pour déterminer une valeur optimale représentative du "juste milieu".

2. Établir la distribution probabilistique des erreurs.

3. Adopter une stratégie efficiente pour estimer des quantités à partir d'un ensemble d'équations plus nombreuses que les inconnues (système surdéterminé).

L'évaluation par la méthode du maximum de vraisemblance, quant à elle, est une approche statistique fréquemment exploitée pour déduire les paramètres qui régissent la distribution de probabilité d'un ensemble de données. Cet outil est primordial pour interpréter et inférer des conclusions statistiques à partir d'observations variées.

Ces méthodes sont des piliers dans l'analyse de données et jouent un rôle crucial dans l'avancement des sciences expérimentales. L'intégration de ces techniques permet de maximiser la précision des résultats et de réduire l'ambiguïté dans l'interprétation des mesures.

résultat suivant :

La valeur la plus probable est telle que la somme des carrés des différences entre les observations et cette valeur est minimale.

La première publication de la méthode des moindres carrés (destinée à déterminer des quantités dans un système d'équations surdéterminées) est de Legendre en1805 et de gauss en 1809.

On veut que d (b = Ax; b) soit minimale, ce qui s'écrit :

$$\min_{x\in \mathbb{R}^n} ||Ax - b|^2| \qquad (II.3)$$

II.3.1. Forme standard :

Définition : on appelle forme standard d'un problème de moindre carrés la donnée de :

• la matrice A=
$$\begin{pmatrix} V_{1,1} & V_{1,2} & V_{1,n} \\ V_{2,1} & V_{2,2} & V_{2,n} \\ V_{m,1} & V_{m,2} & V_{m,n} \end{pmatrix}$$
 ∈ *M*mn appelée matrice des données

. le vecteur réponse b =
$$\begin{cases} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{cases} \in \mathbb{R}^n$$

. L'expression du critère : on cherche $\mathbf{x} = \begin{cases} x_1 \\ x \\ \vdots \\ \vdots \\ x \end{cases}$

Réalisant : $\min_{x \in \mathbb{R}^n} ||Ax - b|^2|$

II.3.2. Solution analytique :

Soit $E(x) = ||Ax - b||^2$

la fonction erreur. On sait que E(x) est minimale $\implies E'(x) = 0$.

Dans le cas où E est strictement convexe, on renvoie : $E(x) \Leftrightarrow E'(x) = 0$

On cherche donc $x \in \mathbb{R}^n$

tel E'(x) = 0. Par conséquent, les dérivées partielles par rapport à tous les paramètres du vecteur x doivent être nulles :

$$\frac{\partial_E}{\partial_x} = \begin{pmatrix} \frac{\partial_E}{\partial_{x1}} \\ \frac{\partial_E}{\partial_{x2}} \\ \vdots \\ \vdots \\ \frac{\partial_E}{\partial_{xn}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$
(II.4)

Ou on peut faire autrement :

Prendre le système surdéterminé Ax=b, et effectuer le produit à gauche par la matrice transposée de A :

A'Ax=A'b (**II. 5**)

Le système (II.5) sera résolu par les méthodes classiques.

Exemple :

Soit le système d'équations suivant :

3x + 2y = 2 2x - 3y = 4 (II. 6) 4x + 2y = 3

(II.6) est un système surdéterminé de 3 équations à deux inconnues (x, y) qui ne peut être Résolue d'une manière exacte. On va le résoudre approximativement par la méthode des moindres carrés.

On cherche une solution approchée (, y) tel que l'erreur :

$$E(x,y) = (3x+2y-2)^2 + (2x-3y-4)^2 + (4x+2y-3)^2,$$

Soit minimale.

On annule les dérivées partielles par rapport à x et à y :

$$\frac{\partial E}{\partial x} = \mathbf{0}$$
 , $\frac{\partial E}{\partial y} = \mathbf{0}$ (II.7)

On obtient le système de deux équations à deux inconnues suivant :

29x + 8y = 26

$$8x + 17y = -2$$
 (II. 8)

Une autre manière d'obtenir (II.8) est de réécrire le système (II. 6) sous forme matricielle :

$$\begin{pmatrix} 3 & 2 \\ 2 & -3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} 3 & 2 & 4 \\ 2 & -3 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & -3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 2 & 4 \\ 2 & -3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

On abouti au même système que(II.6)

 $\begin{pmatrix} 29 & 8\\ 8 & 17 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 26\\ -2 \end{pmatrix}$ (II. 9)

(II. 9) est résolu par la méthode de cramer :

$$D = \begin{vmatrix} 29 & 8 \\ 8 & 17 \end{vmatrix} = 429$$
$$D_x = \begin{vmatrix} 26 & 8 \\ -2 & 17 \end{vmatrix} = 458$$
$$D_Y = \begin{vmatrix} 29 & 26 \\ 8 & -2 \end{vmatrix} = 150$$

$$x = \frac{D_x}{D} = \frac{458}{429}$$
 $y = = \frac{D_y}{D} = \frac{150}{429}$

En remplaçant dans (II. 6) on trouve :

3x + 2y = 3.902	
2x - 3y = 1.086	(II. 10)
4x + 2y = 4.969	

Ces observe à partir de (II. 10) que (II. 9) n'est que approximation (II.6).

Mais c'est la meilleure approximation possible au sens des moindres carrés

Chapitre III : Problèmes Traités

III.1 Introduction :

Ce chapitre est consacré à l'application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte K_I d'une section fissurée en mode I avec chargement vertical. Nous considérons un cas de chargement uniforme et deux non uniformes. Plusieurs longueurs de fissure seront considérés pour le cas uniforme.

Remarque

Tous les calculs et résultats présentés dans ce mémoire sont adimensionnels.

III.2 Cas d'une fissure centrale :

On considéré une section circulaire de rayon R, contenant une fissure centrale de longueur R, et chargement vertical uniforme. Dans toute la suite de ce travail on prend T=1 et R=1.

Figure III -1 : Fissure centrale avec chargement vertical

Figure III-2 : Fissure centrale, point de collocation.

Nous sélectionnons des points de collocation régulièrement espacés le long du périmètre du cercle. L'angle θp pour chaque point est déterminé à l'aide de la formule ci-dessous.

$$\theta_p = \frac{2\pi p}{2N+1} - \pi \qquad \text{(III.3)} \qquad p = 1 \text{à } 2N$$

Remarque :

Cette disposition des points sera appliquée à tous les problèmes abordés dans ce travail. La formule (III.3) a été conçue pour éviter les angles de - π et + π car, en ces points, la normale n'est pas définie.

Les composantes radiales et circonférentielle du vecteur contrainte \vec{T} sont données par:

Si
$$\theta_p \ge 0 \Rightarrow \sigma_p = sin(\theta_p), \quad \tau_p = cos(\theta_p)$$

Si $\theta_p < 0 \Rightarrow \sigma_p = -sin(\theta_p), \quad \tau_p = -cos(\theta_p)$ (III-4)

Les composantes radiale et circonférentielle de la normale \vec{n}^p sont données par:

$$n_r^p = 1 \qquad \qquad n_\theta^p = 0 \quad \text{(III-5)}$$

On reporte (III-3), (III-4), et (III-5) dans le système (II-2), on obtient :

$$\sum_{n=1}^{N} \left(\begin{cases} A_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \sin \left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n^2 - \frac{1}{4} \right) \sin \left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] + \\ B_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \cos \left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n - \frac{1}{2} \left(n - \frac{3}{2} \right) \cos \left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \right] \end{cases} \right) + \\ \sum_{n=1}^{N} \left(\left(R^{(n-1)} \left\{ C_n \left[\left(-n^2 + 3n \right) \sin \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \sin \left(\left(n + 1 \right) \right) \theta_p \right) \right] + \\ D_n \left[\left(-n^2 + 3n \right) \cos \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \cos \left(\left(n + 1 \right) \right) \theta_p \right) \right] + \\ D_n \left[\left(-n^2 + 3n \right) \cos \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \cos \left(\left(n + 1 \right) \right) \theta_p \right) \right] \end{cases} \right) \right) = \sigma_p$$

(III.6)

$$\sum_{n=1}^{N} \left(-(n-\frac{1}{2}) \begin{cases} A_n \left[\left(n-\frac{3}{2}\right) \cos\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n+\frac{1}{2}\right) \cos\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] + \\ B_n \left[-\left(n-\frac{3}{2}\right) \sin\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n-\frac{1}{2}\right) \sin\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] \end{cases} \right) + \\ \sum_{n=1}^{N} \left(-nR^{(n-1)} \begin{cases} C_n \left[(n-1) \cos\left((n-1)\theta_p\right) - (n-1) \cos\left((n+1)\theta_p\right) \right] + \\ D_n \left[-(n-1) \sin\left((n-1)\theta_p\right) + (n+1) \sin\left((n+1)\theta_p\right) \right] \end{cases} \right) = \tau_p \end{cases}$$
(III.7)

Résultats :

Nous effectuons des calculs en augmentant progressivement le nombre de termes N jusqu'à convergence. Les résultats sont présentés dans le tableau III.1 et la figure III.3 ci-dessous. Le programme Matlab correspondant est présenté en [Annexe 1].

N	KI	N	KI	N	KI
1	2.2281	20	9.0319	50	9.3052
2	4.4840	22	9.0740	55	9.3149
3	6.6961	25	9.1431	62	9.3359
4	7.5860	28	9.1665	70	9.3505
5	8.3022	30	9.1889	75	9.3588
6	8.1680	35	9.2267	80	9.3650
7	8.5439	38	9.2525	85	9.3727
8	8.5018	40	9.2639	98	9.3861
9	8.6762	42	9.2740	99	9.3861
10	8.7117	45	9.2791	100	9.3861

Tableau III.1 KI en fonction N, fissure central

Figure III- 3 Evolution de KI en fonction de N, fissure centrale

Le tableau III-1 et la figure III-3 montrent que le facteur KI converge vers la valeur de 9.3861 à partir de N = 100. Notre résultat est presque égal au résultat de [12] (9.47) obtenu par la méthode des éléments finis. Ceci est une validation de notre résultat.

III-2-1 1^{er} cas de chargement non uniforme :

on reprend le système (II-2) avec

Si $\theta_p \ge 0 \Rightarrow \sigma_p = |cos(\theta_p)|sin(\theta_p), \quad \tau_p = |cos(\theta_p)|cos(\theta_p)$ Si $\theta_p < 0 \Rightarrow \sigma_p = -|cos(\theta_p)|sin(\theta_p), \quad \tau_p = -|cos(\theta_p)|cos(\theta_p)$

Figure III-4 section fissuré avec chargement variable

$$\sum_{n=1}^{N} \left(\left\{ \begin{array}{l} A_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \sin \left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n^2 - \frac{1}{4} \right) \sin \left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] + \\ B_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \cos \left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n - \frac{1}{2} \left(n - \frac{3}{2} \right) \cos \left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \right\} \right) + \\ \sum_{n=1}^{N} \left(\left(R^{(n-1)} \left\{ \begin{array}{c} C_n \left[\left(-n^2 + 3n \right) \sin \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \sin \left(\left(n + 1 \right) \right) \theta_p \right) \right] + \\ D_n \left[\left(-n^2 + 3n \right) \cos \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \cos \left(\left(n + 1 \right) \right) \theta_p \right) \right] + \\ \end{array} \right) \right) \right] = \sigma_p \right) \right) \right) = \sigma_p$$

(**III.8**)

$$\sum_{n=1}^{N} \left(-(n-\frac{1}{2}) \begin{cases} A_n \left[\left(n-\frac{3}{2}\right) \cos\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n+\frac{1}{2}\right) \cos\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] + \\ B_n \left[-\left(n-\frac{3}{2}\right) \sin\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n-\frac{1}{2}\right) \sin\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] \end{cases} \right) + \\ \sum_{n=1}^{N} \left(-nR^{(n-1)} \begin{cases} C_n \left[(n-1) \cos\left((n-1)\theta_p\right) - (n-1) \cos\left((n+1)\theta_p\right) \right] + \\ D_n \left[-(n-1) \sin\left((n-1)\theta_p\right) + (n+1) \sin\left((n+1)\theta_p\right) \right] \end{cases} \right) = \tau_p$$

(**III.9**)

Résultats :

Nous effectuons des calculs en augmentant progressivement le nombre de termes N jusqu'à convergence. Les résultats sont présentés dans le tableau III.2 et la figure III.5 ci-dessous. Le programme Matlab correspondant est présenté en [Annexe 1].

Figure III- 5 Evolution de KI en fonction de N, fissure centrale pour 1^{er} cas du chargement non uniforme

N	KI	Ν	KI	Ν	KI
1	1.1141	11	5.6442	21	6.0218
2	0.4097	12	5.6990	22	6.0059
3	3.8292	13	5.7873	23	6.0519
4	4.5900	14	5.7913	24	6.0421
5	4.6628	15	5.8740	25	6.0752
6	5.2550	16	5.8537	26	6.0719
7	5.0910	17	5.9391	27	6.0969
8	5.4588	18	5.9152	28	6.1203
9	5.4590	19	5.9862	29	6.1203
10	5.6211	20	5.9636	30	6.1203

Tableau III.2 KI en fonction N, fissure central pour 1^{er} cas du chargement non uniforme

Discussion des résultats :

Le tableau III-2 et la figure III-5 montrent que le facteur KI converge vers la valeur de 6.1203 à partir de N = 30

III-2-2 2eme cas de chargement non uniforme :

Figure III-6 section fissuré avec chargement variable dans le 2eme cas du chargement non uniforme

$$\sum_{n=1}^{N} \left(\left\{ \begin{array}{l} A_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \sin \left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n^2 - \frac{1}{4} \right) \sin \left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] + \\ B_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \cos \left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n - \frac{1}{2} \left(n - \frac{3}{2} \right) \cos \left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \right\} \right) + \\ \sum_{n=1}^{N} \left(\left(R^{(n-1)} \left\{ \begin{array}{c} C_n \left[\left(-n^2 + 3n \right) \sin \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \sin \left(\left(n + 1 \right) \right) \theta_p \right) \right] + \\ D_n \left[\left(-n^2 + 3n \right) \cos \left(\left(n - 1 \right) \theta_p + n \left(n - 1 \right) \cos \left(\left(n + 1 \right) \right) \theta_p \right) \right] + \\ \end{array} \right) \right) \right] = \sigma_p$$

(III.9)

$$\sum_{n=1}^{N} \left(-(n-\frac{1}{2}) \begin{cases} A_n \left[\left(n-\frac{3}{2}\right) \cos\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n+\frac{1}{2}\right) \cos\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] + \\ B_n \left[-\left(n-\frac{3}{2}\right) \sin\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n-\frac{1}{2}\right) \sin\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] \end{cases} \right) + \\ \sum_{n=1}^{N} \left(-nR^{(n-1)} \begin{cases} C_n \left[(n-1) \cos\left((n-1)\theta_p\right) - (n-1) \cos\left((n+1)\theta_p\right) \right] + \\ D_n \left[-(n-1) \sin\left((n-1)\theta_p\right) + (n+1) \sin\left((n+1)\theta_p\right) \right] \end{cases} \right) = \tau_p$$

(**III.10**)

Résultats :

Nous effectuons des calculs en augmentant progressivement le nombre de termes N jusqu'à convergence. Les résultats sont présentés dans le tableau III.3 et la figure III.6 ci-dessous. Le programme Matlab correspondant est présenté en [Annexe 1].

Ν	KI	Ν	KI	Ν	KI
1	1.9296	11	5.6275	21	5.6238
2	4.9736	12	5.6268	22	5.6236
3	5.7455	13	5.6263	23	5.6235
4	5.5901	14	5.6258	24	5.6234
5	5.6205	15	5.6253	25	5.6233
6	5.6283	16	5.6249	26	5.6232
7	5.6299	17	5.6246	27	5.6231
8	5.6297	18	5.6244	28	5.6230
9	5.6290	19	5.6241	29	5.6230
10	5.6282	20	5.6239	30	5.6230

Tableau III.3 KI en fonction N, fissure central pour 2eme cas du chargement non uniforme

Figure III- 7 Evolution de KI en fonction de N, fissure centrale pour 2eme cas du chargement non uniforme

Discussion des résultats :

Le tableau III-3 et la figure III- 6 montrent que le facteur KI converge vers la valeur de 5.6230 à partir de $\rm N=30$

Comparaison entre les 3 cas :

On constate pour les 3 cas une convergence rapide des résultats. On constate également que le facteur KI est le plus élevé dans le cas du chargement uniforme . Concernant le cas non uniforme, on observe que le facteur est plus important dans le cas où le module de la force appliquée est $|cos(\theta_p)|$.

III-4 Cas d'une fissure non centrale :

Nous considérons le cas d'une fissure non centrale de longueur a dans une section circulaire. La frontière de la section est soumise à un chargement vertical uniforme (Figure III-3-1).

Figure III-4-1 : fissure non centrale avec chargement verticale

Figure III-4-2 : fissure non centrale avec chargement verticale, point de collocation

 θ_p^0 Est calculé avec la même formule précédemment utilisé ;

 $\theta_p^0 = \frac{2p\pi}{2N+1} - \pi$ $p = 1 \dots 2N$

 $\theta_p \, \text{Et} \, r_p$ sont donnés par les formules suivantes :

$$r_{p} = \sqrt{\left(R \sin\theta_{p}^{0}\right)^{2} + \left(R - a + R \cos\theta_{p}^{0}\right)^{2}}$$
$$\theta_{p} = \operatorname{Atan2}\left(R \sin\theta_{p}^{0}, R - a + R \cos\theta_{p}^{0}\right)$$

Les composantes radiale et circonférentielle de la normale \vec{n}^p sont données par

$$n_r^p = cos(\theta_p^0 - \theta_p)$$
 $n_{\theta}^p = sin(\theta_p^0 - \theta_p)$

Les composantes radiale et circonférentielle du vecteur contrainte $\overrightarrow{T_p}$ sont données par

Si
$$\theta_p \ge 0 \Rightarrow \sigma_p = sin(\theta_p), \quad \tau_p = cos(\theta_p)$$

Si $\theta_p < 0 \Rightarrow \sigma_p = -sin(\theta_p), \quad \tau_p = -cos(\theta_p)$ (III-4)

On remplace dans le système (II. 2), on obtient

$$\begin{split} & \sum_{n=1}^{N} \left\{ A_n \left[E_1(r_p, n, \theta_p,) n_p^r + E_2(r_p, n, \theta_p,) n_p^\theta + B_n [F_1(r_p, n, \theta_p,) n_p^r + F_2(r_p, n, \theta_p,) n_p^\theta] \right] + \\ & C_n \left[G_1(r_p, n, \theta_p,) n_p^r + G_2(r_p, n, \theta_p,) n_p^\theta + D_n [H_1(r_p, n, \theta_p,) n_p^r + H_2(r_p, n, \theta_p,) n_p^\theta]] \right] = \sigma_p \\ & \dots \quad \text{(II-4)} \\ & \sum_{n=1}^{N} \left\{ A_n \left[E_2(r_p, n, \theta_p,) n_p^r + E_3(r_p, n, \theta_p,) n_p^\theta + B_n [F_2(r_p, n, \theta_p,) n_p^r + F_3(r_p, n, \theta_p,) n_p^\theta] \right] + \\ & C_n \left[G_2(r_p, n, \theta_p,) n_p^r + G_3(r_p, n, \theta_p,) n_p^\theta + D_n [H_2(r_p, n, \theta_p,) n_p^r + H_3(r_p, n, \theta_p,) n_p^\theta] \right] \right\} = \tau_p \\ & \dots \dots \quad \text{(II-5)} \end{split}$$

III-4.1 Résultats

Le système d'équations est résolu numériquement à l'aide du logiciel Matlab. Le Programme correspondant est présenté dans l'Annexe 1. Nous effectuons des calculs pour la fissure a ∈ [0.6, 1.6]. Pour chaque valeur de a, nous augmentons le Nombre de points de collocation jusqu'à convergence du KI. Les résultats détaillés sont Présentés dans l'Annexe IV.

Remarque :

Pour a < 0.6 ou a > 1.6, les calculs sont instables et les résultats non précis.

Nous présentons dans le Tableau III-4 ci-dessous, les valeurs de KI pour différentes valeurs de a.

a	KI
0.6	4.7929
0.7	5.5924
0.8	6.5376
0.9	7.7081
1	9.1889
1.1	11.1076
1.2	13.6664
1.3	17.2022
1.4	22.3099
1.5	30.1872
1.6	43.4253

Tableau (III-4) : résultats pour différentes valeurs de a

Discussion des résultats

Nous remarquons que KI est une fonctions croissante de la longueur de la fissure a. Ce résultat est logique car en force imposée, plus la longueur de la fissure est grande, plus le danger de propagation est important et donc plus le K_I est grand.

III.4.2 Détermination de l'expression analytique de K_I en fonctions de a :

Dans ce paragraphe, on recherche une expression analytique de K_I en fonction de a. Nous Choisissons la forme polynomiale suivante utilisée par Benkrira [11] :

$KI(a) = [d1(a)^{1/2} + d2(a)^{3/2} + d3(a)^{5/2} + d4(a)^{7/2} + d5(a)^{9/2}]$ (III.6)

Où les coefficients d1...d5 seront déterminés par indentification avec les résultats du Tableau III-4. On obtient le système surdéterminé de 11 équations à 5 inconnues suivant :

$$d_{1} * (0.6)^{1/2} + d_{2} * (0.6)^{3/2} + d_{3} * (0.6)^{5/2} + d_{4} * (0.6)^{7/2} + d_{5} * (0.6)^{9/2} = 4.7929$$

$$d_{1} * (0.7)^{1/2} + d_{2} * (0.7)^{3/2} + d_{3} * (0.7)^{5/2} + d_{4} * (0.7)^{7/2} + d_{5} * (0.7)^{9/2} = 5.5924$$

$$d_{1} * (0.8)^{1/2} + d_{2} * (0.8)^{3/2} + d_{3} * (0.8)^{5/2} + d_{4} * (0.8)^{7/2} + d_{5} * (0.8)^{9/2} = 6.5376$$

$$d_{1} * (0.9)^{1/2} + d_{2} * (0.9)^{3/2} + d_{3} * (0.9)^{5/2} + d_{4} * (0.9)^{7/2} + d_{5} * (0.9)^{9/2} = 7.7081$$

$$d_{1} * (1)^{1/2} + d_{2} * (1)^{3/2} + d_{3} * (1)^{5/2} + d_{4} * (1)^{7/2} + d_{5} * (1)^{9/2} = 9.1889$$

$$d_{1} * (1.1)^{1/2} + d_{2} * (1.1)^{3/2} + d_{3} * (1.1)^{5/2} + d_{4} * (1.1)^{7/2} + d_{5} * (1.1)^{9/2} = 11.1076$$

$$d_{1} * (1.2)^{1/2} + d_{2} * (1.2)^{3/2} + d_{3} * (1.2)^{5/2} + d_{4} * (1.2)^{7/2} + d_{5} * (1.2)^{9/2} = 13.6664$$

$$d_{1} * (1.3)^{1/2} + d_{2} * (1.3)^{3/2} + d_{3} * (1.3)^{5/2} + d_{4} * (1.3)^{7/2} + d_{5} * (1.3)^{9/2} = 17.2022$$

$$d_{1} * (1.4)^{1/2} + d_{2} * (1.4)^{3/2} + d_{3} * (1.5)^{5/2} + d_{4} * (1.5)^{7/2} + d_{5} * (1.4)^{9/2} = 22.3099$$

$$d_{1} * (1.5)^{1/2} + d_{2} * (1.5)^{3/2} + d_{3} * (1.5)^{5/2} + d_{4} * (1.6)^{7/2} + d_{5} * (1.6)^{9/2} = 30.1872$$

$$d_{1} * (1.6)^{1/2} + d_{2} * (1.6)^{3/2} + d_{3} * (1.6)^{5/2} + d_{4} * (1.6)^{7/2} + d_{5} * (1.6)^{9/2} = 43.4253$$

Le système est résolu par la méthode des moindres carrés, le programme Matlab Correspondant est présenté dans l'Annexe II. Nous obtenons finalement l'expression Suivante :

$$\begin{split} \textbf{KI(f)} &= [61.8818(f)^{1/2} - 253.2134(f)^{3/2} \ +415.7044 \ (f)^{5/2} \ -293.9239(f)^{7/2} + 78.9170(f)^{9/2}] \\ \textbf{(III.7)} \end{split}$$

A titre de vérification, nous recalculons KI pour les valeurs de f du Tableau III-2 avec (III-7), Et nous comparons avec les valeurs de KI du même Tableau.
a	KI (Tableau III-2)	KI (III-7)	Erreur %
0.6	4.7929	4.9167	2.5
0.7	5.5924	5.4045	3.4
0.8	6.5376	6.4374	1.5
0.9	7.7081	7.7955	1.12
1	9.1889	9.3659	1.8
1.1	11.1076	11.2003	0.82
1.2	13.6664	13.5636	0.75
1.3	17.2022	16.9759	1.3
1.4	22.3099	22.2492	0.27
1.5	30.1872	30.5216	1.09
1.6	43.4253	43.2875	0.31

Tableau (III-5) : comparaison entre les résultats obtenus par (III-7) et par collocation

Discussion :

L'erreur est très petite cela veut dire que l'expression (III-7) est valide.

III.4.3 Confirmation supplémentaire de la validité de l'expression (III-7)

Pour plus de confirmation, nous recalculons KI avec l'expression (III-7) pour d'autres valeurs de a et nous comparons avec les valeurs obtenues avec la méthode de collocation. Les résultats obtenus sont présentés dans le Tableau III-4.

a	KI (collocation)	KI (III-7)	Erreur %
0.65	5.1854	5.2190	0.64
0.75	6.0410	5.9755	1.09
0.85	7.0902	7.0784	0.16
0.95	8.4030	8.4533	0.59
1.05	10.0831	10.1285	0.44
1.15	12.2902	12.2709	0.15
1.25	15.2831	15.2163	0.43
1 .35	19.5042	19.4971	0.03
1.45	25.7975	25.8663	0.26
1.55	35.3471	35.3192	0.07

Tableau (III-6) : Deuxième comparaison entre l'expression (III-7) avec les résultats obtenus par collocation

Discussion

L'erreur étant très faible, le Tableau (III-6) est une confirmation supplémentaire de

l'expression (III-7).

III-4-4 Les résultats du logiciel Matlab non stables.

Figure III-4-3 facteur KI en fct de N

pour a=1.8

Figure III-4-4 facteur KI en fct de N

Conclusion générale :

Ce travail est une application de la méthode de collocation de frontière en élasticité plane au Cas d'une section circulaire fissurée sous chargement vertical uniforme. Deux cas ont été Considérés : fissure centrale et non centrale. Les principaux résultats de ce travail sont les Suivants :

- Dans le cas de la fissure centrale, le facteur d'intensité de contrainte K_I a été calculé pour a = 1 et R=1. La valeur trouvée (9.39) est très proche de celle trouvée par [12] (9.47) par le méthode des éléments finis. Ceci est une validation de notre travail.
- Le facteur d'intensité de contrainte K_I a été calculé pour un chargement uniforme et un chargement non uniforme
- Dans le cas de la fissure non centrale, les facteurs d'intensité de contrainte K_I ont été calculés pour plusieurs longueurs de fissure a $\in [0.6, 1.6]$. Les résultats montrent que K_I est une fonction croissante de la longueur de la fissure a. Ce qui est logique car en force imposée, plus la longueur de la fissure augmente plus le danger de propagation devient important. Une expression analytique des facteurs d'intensité en fonction de la longueur de la fissure a été déduite et confirmée. Nous n'avons pas pu calculer le K_I pour a <0.6 ou a>1.6 car les calculs ne convergent pas.

Le principal problème rencontré est l'instabilité des calculs pour certaines valeurs de

a. Il est bien connu que la méthode de collocation induit des instabilités. Une manière de remédier à ce problème est d'utiliser la méthode des moindres carrés avec beaucoup plus d'équations que d'inconnues. En effet, on a résolu par cette méthode 4N équations avec 4N-1 inconnues ce qui est peut être insuffisant. Une solution pour éviter ce problème est probablement de prendre beaucoup plus d'équations que d'inconnues. Ceci fera l'objet d'un futur travail.

Bibliographie

[1] Saïd Hariri, Mansour Afzali & Haïdar Jaffal « NOCIVITE DES DEFAUTS ET PROPAGATION DE

FISSURES DANS LES EQUIPEMENTS SOUS PRESSION ». Ecole des Mines de Douai 2007

[2] Pierre-Olivier Bouchard- CONTRIBUTION A LA MODELISATION NUMERIQUE EN MECANIQUE

DE LA RUPTURE ET STRUCTURES MULTIMATERIAUX -thèse de Doctorat de l'Ecole Nationale

Supérieure des Mines de Paris Spécialité « Sciences et Génie des Matériaux » (20 septembre 2000).

[3] Mr Ahmed BENHAMOUDA UNIVERSITE MENTOURI CONSTANTINE FACULTE DES

SCIENCES DE L'INGENIEUR « ETUDE DU COMPORTEMENT DES FISSURES DANS LES TUBES

SOUS PRESSION INTERNE » mémoire de magister En Génie Mécanique (2010).

[4] cours Mr H.Ferdjani « mécanique de la rupture » Université Saad Dahleb Blida 01 (2023).

[5] Alan T.Zehnde,ph.d "lecture notes on fracture mechanics "Department of Theoretical and Applied

Mechanics Cornell University, Ithaca, NY 14853,(2007).

[6] Tony Bourdier « Mathématiques Numériques» Ecole Supérieure d'informatique et applications de

Lorraine (ESIAL) 2007-2008.

[7] Sofiane BENTTALAH et Wahid IZA « Exemple de calcul du facteur d'intensité de contrainte en mode

III avec la méthode de collocation de frontière » mémoire d'ingénieur d'etat en génie mécanique ECOLE

MILITAIRE POLYTECHNIQUE (2015)

[8] Serir Khair-Eddine « Exemple de calcul du facteur d'intensité de contrainte par la méthode de

collocation de frontière en mode III » mémoire de master UNIVERSITE SAAD DAHLEB BLIDA

(2011/2012).

[9] MEZOUANI Yassine « Application de la méthode de collocation de frontière au calcul du facteur

d'intensité de contrainte en mode III » mémoire de master UNIVERSITE SAAD DAHLEB BLIDA (2013/2014).

[10] F.B.Leblond « Mécanique de la rupture fragile et ductile » Hermes science publications (2003)

[11] Benkrira Sara «Calcul du facteur d'intensité de contrainte pour des sections fissurées circulaire et elliptique avec ABAQUS » mémoire de master, université Saad Dahleb Blida (2017/2018)

[12] L. Lamraoui, M.S Allal "CALCUL DES FACTEURS D'INTENSITÉ DES CONTRAINTES D'UN DISQUE FISSURÉ AVEC ABAQUS" Master, Université Saad Dahleb de Blida, 2024.

Annexe1

Les programmes de calcul du FIC dans une section circulaire fissurée

Programme pour la fissure centrale :

Chargement uniforme :

```
clear all
clc
%fissure centrale
T=1:
%Nmax=input('nombre des termes maximal =' );
Nmax=100;
for p=1:Nmax %nombre de termes
C=2*p; % nombre de points de collocation
for N=1:p %calculer les facteurs des termes du développement
for k=1:C
teta=(2*pi*k)/(C+1)-pi;
%r=1/sqrt((cos(teta)/a)^2+(sin(teta)/b)^2);
r=1;
nr=1;
nt=0;
E1=-r^(N - 3/2)*(sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - sin(teta*(N + 1/2)) *(N^2 -
1/4));
F1=-r^(N - 3/2)*(cos(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - cos(teta*(N + 1/2)) *(N -
1/2)*(N - 3/2));
G1=r^{(N-1)*(sin(teta^{(N-1)})*(3^{N-N^2}) + N^{sin(teta^{(N+1)})*(N-1))};
H1=r^{(N-1)*(cos(teta^{(N-1)})^{(3*N-N^2)} + N^{cos(teta^{(N+1)})^{(N+1)});}
E2=r^{(N - 3/2)*(cos(teta*(N + 1/2))*(N + 1/2)-cos(teta*(N - 3/2))*(N - 3/2))*(N - 1/2);
F2=-r^{(N-3/2)*(sin(teta^{(N+1/2)})-sin(teta^{(N-3/2)}))*(N-1/2)^{(N-3/2)};
G2=-N*r^(N - 1)*(cos(teta*(N - 1)) - cos(teta*(N + 1))) *(N - 1);
H2=N*r^{(N-1)}(sin(teta*(N-1))*(N-1) - sin(teta*(N+1))*(N+1));
E3=(N^{2}-1/4)*r^{(N-3/2)}(sin(teta*(N - 3/2))-sin(teta*(N + 1/2)));
F3=(N^2-1/4)*r^{(N-3/2)}(\cos(teta*(N-3/2))-(N-3/2)/(N+1/2)*\cos(teta*(N+1/2)));
G3=N*(N+1)*r^(N - 1)*(sin(teta*(N - 1))-(N-1)/(N+1)*sin(teta*(N +1)));
H3=N*(N+1)*r^(N - 1)*(cos(teta*(N - 1))-cos(teta*(N +1)));
%s1:coefs de sigma(rr)
```

```
A1(k,N)=E1*nr+E2*nt; %coef de An
B1(k,N)=F1*nr+F2*nt; %coef de Bn
C1(k,N)=G1*nr+G2*nt; %coef de Cn
D1(k,N)=H1*nr+H2*nt; %coef de Dn %s2:coifs de sigma(ro)
A2(k,N)=E2*nr+E3*nt; %coef de An
B2(k,N)=F2*nr+F3*nt; %coef de Bn
C2(k,N)=G2*nr+G3*nt; %coef de Cn
D2(k,N)=H2*nr+H3*nt; %coef de Dn
if teta<0
FF1(k)=-T*(sin(teta));
FF2(k)=-T*cos(teta);
else
FF1(k)=T*(sin(teta));
FF2(k)=T*cos(teta);
endif
end
end
S=[A1 B1 C1 D1;A2 B2 C2 D2];
F=[FF1';FF2'];
M=[S(:,1:2*p),S(:,2*p+2:4*p)] ;%la matrice sans la colonne nulle
%moindre carre
L=M'*M;
G=M'*F;
%resoudre par la methode directe
H=inv(L)*G;
%affichage vecteur des solutions
KI(p)=H(p+1)*sqrt(2*pi);
KII(p)=H(1)*sqrt(2*pi);
%Y(p)=KI(p)/(T*sqrt(a*pi));
end
ΚI
%Y
p=1:Nmax;
```

figure

plot(p,KI(p),'b*') xlabel('nombre des termes "N"') ylabel('Facteur d intensite "KI" ')

1^{er} cas de chargement non uniforme :

```
clear all
clc
%fissure centrale
T=1;
%Nmax=input('nombre des termes maximal =' );
Nmax=100:
for p=1:Nmax %nombre de termes
C=2*p; % nombre de points de collocation
for N=1:p %calculer les facteurs des termes du développement
for k=1:C
teta=(2*pi*k)/(C+1)-pi;
%r=1/sqrt((cos(teta)/a)^2+(sin(teta)/b)^2);
r=1;
nr=1;
nt=0;
E1=-r^(N - 3/2)*(sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - sin(teta*(N + 1/2)) *(N^2 -
1/4));
F1=-r^{N} - 3/2 (\cos(teta^{N} - 3/2))(N^{2} - 4^{N} + 7/4) - \cos(teta^{N} + 1/2))(N - 3/2) (N - 3/2) (N - 3/2) (N - 3/2))(N - 3/
1/2)*(N - 3/2));
G1=r^(N - 1)*(sin(teta*(N - 1))*(3*N - N^2) + N*sin(teta*(N + 1))*(N - 1));
H1=r^(N - 1)*(cos(teta*(N - 1))*(3*N - N^2) +N*cos(teta*(N + 1))*(N + 1));
E2=r^(N - 3/2)*(cos(teta*(N + 1/2))*(N + 1/2)-cos(teta* (N - 3/2))*(N - 3/2))*(N - 1/2);
F2=-r^(N - 3/2)*(sin(teta*(N +1/2))-sin(teta*(N-3/2))) *(N - 1/2)*(N - 3/2);
G2=-N*r^(N - 1)*(cos(teta*(N - 1)) - cos(teta*(N +1))) *(N - 1);
H2=N*r^(N - 1)*(sin(teta*(N - 1))*(N - 1) - sin(teta*(N + 1))*(N + 1));
E3=(N^2-1/4)*r^(N-3/2)*(sin(teta*(N - 3/2))-sin(teta*(N + 1/2)));
F3=(N^2-1/4)*r^(N-3/2)*(cos(teta*(N - 3/2))-(N-3/2)/(N+1/2)*cos(teta*(N + 1/2)));
G3=N*(N+1)*r^(N - 1)*(sin(teta*(N - 1))-(N-1)/(N+1)*sin(teta*(N +1)));
H3=N*(N+1)*r^(N - 1)*(cos(teta*(N - 1))-cos(teta*(N +1)));
%s1:coefs de sigma(rr)
A1(k,N)=E1*nr+E2*nt; %coef de An
B1(k,N)=F1*nr+F2*nt; %coef de Bn
C1(k,N)=G1*nr+G2*nt; %coef de Cn
D1(k,N)=H1*nr+H2*nt; %coef de Dn %s2:coifs de sigma(ro)
A2(k,N)=E2*nr+E3*nt; %coef de An
B2(k,N)=F2*nr+F3*nt; %coef de Bn
C2(k,N)=G2*nr+G3*nt; %coef de Cn
D2(k,N)=H2*nr+H3*nt; %coef de Dn
if teta<0
FF1(k)=-T*abs(cos(teta))*(sin(teta));
FF2(k)=-T**abs(cos(teta))*cos(teta);
else
FF1(k)=T*abs(cos(teta))*(sin(teta));
FF2(k)=T*abs(cos(teta))*cos(teta);
endif
end
end
S=[A1 B1 C1 D1;A2 B2 C2 D2];
F=[FF1';FF2'];
```

```
M=[S(:,1:2*p),S(:,2*p+2:4*p)];%la matrice sans la colonne nulle
%moindre carre
L=M'*M;
G=M'*F;
%resoudre par la methode directe
H=inv(L)*G;
%affichage vecteur des solutions
KI(p)=H(p+1)*sqrt(2*pi);
KII(p)=H(1)*sqrt(2*pi);
%Y(p)=KI(p)/(T*sqrt(a*pi));
end
KI
%Y
p=1:Nmax;
figure
plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur d intensite "KI" ')
```

2eme cas de chargement non uniforme :

```
clear all
clc
%fissure centrale
T=1;
%Nmax=input('nombre des termes maximal =' );
Nmax=100:
for p=1:Nmax %nombre de termes
C=2*p; % nombre de points de collocation
for N=1:p %calculer les facteurs des termes du développement
for k=1:C
teta=(2*pi*k)/(C+1)-pi;
%r=1/sqrt((cos(teta)/a)^2+(sin(teta)/b)^2);
r=1;
nr=1;
nt=0;
E1=-r^(N - 3/2)*(sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - sin(teta*(N + 1/2)) *(N^2 -
1/4));
F1=-r^{N} - 3/2 (\cos(teta^{N} - 3/2))(N^{2} - 4^{N} + 7/4) - \cos(teta^{N} + 1/2))(N - 3/2) (N - 3/2) (N - 3/2) (N - 3/2))(N - 3/
1/2)*(N - 3/2));
G1=r^(N - 1)*(sin(teta*(N - 1))*(3*N - N^2) + N*sin(teta*(N + 1))*(N - 1));
H1=r^(N - 1)*(cos(teta*(N - 1))*(3*N - N^2) +N*cos(teta*(N + 1))*(N + 1));
E2=r^(N - 3/2)*(cos(teta*(N + 1/2))*(N + 1/2)-cos(teta* (N - 3/2))*(N - 3/2))*(N - 1/2);
F2=-r^(N - 3/2)*(sin(teta*(N +1/2))-sin(teta*(N-3/2))) *(N - 1/2)*(N - 3/2);
G2=-N*r^(N - 1)*(cos(teta*(N - 1)) - cos(teta*(N +1))) *(N - 1);
H2=N*r^(N - 1)*(sin(teta*(N - 1))*(N - 1) - sin(teta*(N + 1))*(N + 1));
E3=(N^2-1/4)*r^(N-3/2)*(sin(teta*(N - 3/2))-sin(teta*(N + 1/2)));
F3=(N^2-1/4)*r^(N-3/2)*(cos(teta*(N - 3/2))-(N-3/2)/(N+1/2)*cos(teta*(N + 1/2)));
G3=N*(N+1)*r^(N - 1)*(sin(teta*(N - 1))-(N-1)/(N+1)*sin(teta*(N +1)));
H3=N*(N+1)*r^(N - 1)*(cos(teta*(N - 1))-cos(teta*(N +1)));
%s1:coefs de sigma(rr)
A1(k,N)=E1*nr+E2*nt; %coef de An
B1(k,N)=F1*nr+F2*nt; %coef de Bn
C1(k,N)=G1*nr+G2*nt; %coef de Cn
D1(k,N)=H1*nr+H2*nt; %coef de Dn %s2:coifs de sigma(ro)
A2(k,N)=E2*nr+E3*nt; %coef de An
B2(k,N)=F2*nr+F3*nt; %coef de Bn
C2(k,N)=G2*nr+G3*nt; %coef de Cn
D2(k,N)=H2*nr+H3*nt; %coef de Dn
if teta<0
FF1(k)=-T*abs(cos(teta))*(sin(teta));
FF2(k)=-T**abs(cos(teta))*cos(teta);
else
FF1(k)=T*abs(sin(teta))*(sin(teta));
FF2(k)=T*abs(sin(teta))*cos(teta);
endif
end
end
S=[A1 B1 C1 D1;A2 B2 C2 D2];
F=[FF1';FF2'];
```

```
M=[S(:,1:2*p),S(:,2*p+2:4*p)];%la matrice sans la colonne nulle
%moindre carre
L=M'*M;
G=M'*F;
%resoudre par la methode directe
H=inv(L)*G;
%affichage vecteur des solutions
KI(p)=H(p+1)*sqrt(2*pi);
KII(p)=H(1)*sqrt(2*pi);
%Y(p)=KI(p)/(T*sqrt(a*pi));
end
KI
%Y
p=1:Nmax;
figure
plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur d intensite "KI" ')
```

Programme pour la fissure non centrale :

```
clear all
clc
T=1; a=1;b=1;
Nmax=30;
%Nmax=input('nombre de termes maximal=');
%converge pour 0.6<=f<=1.6
f=input ('donne la longueur de la fissure f= ');
for p=1:Nmax
C=2*p; % nombre de collocation
for N=1:p %calculer les facteurs des termes
for k=1:C
teta0=2*pi*k/(C+1)-pi;
R=1/sqrt((cos(teta0)/a)^2+(sin(teta0)/b)^2);
x=R*cos(teta0)+a-f; y=R*sin (teta0);
r=sqrt (power(x, 2) +power (y, 2)); teta=atan2 (y, x);
fr=2*cos(teta)*(r*cos(teta)-a+f)/a^2+2*r*(sin(teta)/b)^2;
ft=-2*sin(teta)*(r*cos(teta)-a+f)/a^2+r*sin(2*teta)/b^2;
grad=sqrt(fr^2+ft^2);
nr=fr/grad;nt=ft/grad;
E1=-r^(N - 3/2)*(sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - sin(teta*(N + 1/2)) *(N^2 -
1/4));
F1=-r^(N - 3/2)*(cos(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - cos(teta*(N + 1/2)) *(N -
1/2)*(N - 3/2));
G1=r^(N - 1)*(sin(teta*(N - 1))*(3*N - N^2) + N*sin(teta*(N + 1))*(N - 1));
H1=r^(N - 1)*(cos(teta*(N - 1))*(3*N - N^2) +N*cos(teta*(N + 1))*(N + 1));
E2=r^(N - 3/2)*(cos(teta*(N + 1/2))*(N + 1/2)-cos(teta* (N - 3/2))*(N - 3/2))*(N - 1/2);
F2=-r^(N - 3/2)*(sin(teta*(N +1/2))-sin(teta*(N-3/2))) *(N - 1/2)*(N - 3/2);
G2=-N*r^(N - 1)*(cos(teta*(N - 1)) - cos(teta*(N +1))) *(N - 1);
H2=N*r^(N - 1)*(sin(teta*(N - 1))*(N - 1) - sin(teta*(N + 1))*(N + 1));
E3=(N^2-1/4)*r^(N-3/2)*(sin(teta*(N - 3/2))-sin(teta*(N + 1/2)));
F3=(N^2-1/4)*r^(N-3/2)*(cos(teta*(N - 3/2))-(N-3/2)/(N+1/2)*cos(teta*(N + 1/2)));
```

```
G3=N*(N+1)*r^(N - 1)*(sin(teta*(N - 1))-(N-1)/(N+1)*sin(teta*(N +1)));
```

```
H3=N*(N+1)*r^(N - 1)*(cos(teta*(N - 1))-cos(teta*(N +1)));
```

%s1:sigma(rr)

A1(k,N)=E1*nr+E2*nt; %coef de An

B1(k,N)=F1*nr+F2*nt; %coef de Bn

C1(k,N)=G1*nr+G2*nt; %coef de Cn

D1(k,N)=H1*nr+H2*nt; %coef de Dn %s2:coifs de sigma(ro)

A2(k,N)=E2*nr+E3*nt; %coef de An

B2(k,N)=F2*nr+F3*nt; %coef de Bn

C2(k,N)=G2*nr+G3*nt; %coef de Cn

D2(k,N)=H2*nr+H3*nt; %coef de Dn

if teta <0

FF1(k)=-T*(sin(teta));

FF2(k)=-T*cos(teta);

else

```
FF1(k)=T*(sin(teta));
```

```
FF2(k)=T*cos(teta);
```

```
endif
```

```
end
```

```
end
```

S=[A1 B1 C1 D1;A2 B2 C2 D2] ;%matrice des coefs

F=[FF1';FF2'] ;%vecteur des contraintes

M=[S(:,1:2*p),S(:,2*p+2:4*p)];%la matrice sans la colonne nulle

%moindre carre

L=M'*M;

G=M'*F;

%résoudre par la méthode directe

H=inv(L)*G;

KI(p)=H(p+1)*sqrt(2*pi); KII(p)=H(1)*sqrt(2*pi);

end

KI

p=1:Nmax;

figureplot(p,KI(p),'b*')

xlabel('nombre des termes "N"') ylabel('Facteur d'intensité "KI" ')

Annexe2

Le programme pour l'expression du facteur KI

Le programme pour l'expression du facteur KI pour la fissure non centrale

clear all

clc

```
F=[4.7929;5.5924;6.5376;7.7081;9.1889;11.1076;13.6664;17.2022;22.3099;30.1872;43.4253];
M= [0.6^0.5 0.6^1.5 0.6^2.5 0.6^3.5 0.6^4.5;
```

0.7^0.5 0.7^1.5 0.7^2.5 0.7^3.5 0.7^4.5;

0.8^0.5 0.8^1.5 0.8^2.5 0.8^3.5 0.8^4.5;

0.9^0.5 0.9^1.5 0.9^2.5 0.9^3.5 0.9^4.5;

1^0.5 1^1.5 1^2.5 1^3.5 1^4.5;

1.1^0.5 1.1^1.5 1.1^2.5 1.1^3.5 1.1^4.5;

1.2^0.5 1.2^1.5 1.2^2.5 1.2^3.5 1.2^4.5;

1.3^0.5 1.3^1.5 1.3^2.5 1.3^3.5 1.3^4.5;

1.4^0.5 1.4^1.5 1.4^2.5 1.4^3.5 1.4^4.5;

1.5^0.5 1.5^1.5 1.5^2.5 1.5^3.5 1.5^4.5;

1.6^0.5 1.6^1.5 1.6^2.5 1.6^3.5 1.6^4.5];

%moindre carre

D=M';

L=D*M;

G=D*F;

%resoudre par la methode directe

A=[LG];

n=size(A,1);

for k=1:n-1 ;

for i=k+1:n ;

w=A(i,k)/A(k,k);

for j=k:n+1;

A(i,j)=A(i,j)-w*A(k,j);

end

end

end

Α;

for i=n:-1:1 ;

s=0; for j=i+1:n ; s=s+A(i,j)*x(j); end x(i)=((A(i,n+1)-s)/A(i,i)); end H=x' %vecteur du facteur d'intensité KI a=input('a')

kl= 61.8818*(a)^0.5-253.2134*(a)^1.5+415.7044*(a)^2.5-239.9239*(a)^3.5+78.9170*(a)^4.5

Annexe 3

Résultats pour le cas d'une fissure non centrale

FigureA4-1 facteur	KI en fct de N
--------------------	----------------

Ν	KI	Ν	KI	Ν	KI
1	2.4399	11	4.4931	21	4.7508
2	1.6703	12	4.5382	22	4.7412
3	2.9378	13	4.5896	23	4.7696
4	3.5187	14	4.5976	24	4.7640
5	3.5978	15	4.6562	25	4.7851
6	4.1068	16	4.6435	26	4.7833
7	4.0722	17	4.6959	27	4.7982
8	4.3414	18	4.6820	28	4.7929
9	4.3376	19	4.7271	29	4.7929
10	4.4606	20	4.7142	30	4.7929

Tableau A3_1 KI en fonction de N

N	KI	Ν	KI	Ν	KI
1	2.3585	11	5.2543	21	5.5238
2	2.0705	12	5.3003	22	5.5132
3	3.5207	13	5.3536	23	5.5441
4	4.2383	14	5.3596	24	5.5610
5	4.3465	15	5.4193	25	5.5590
6	4.8855	16	5.4084	26	5.5754
7	4.8318	17	5.4650	27	5.5770
8	5.1162	18	5.4494	28	5.5924
9	5.0968	19	5.4983	29	5.5924
10	5.2247	20	5.4840	30	5.5924

FigureA4-2 facteur KI en fct de N

Tableau A3_2 KI en fonction de N

Ν	KI	Ν	KI	Ν	KI
1	2.2918	11	6.1675	21	6.4612
2	2.6191	12	6.2168	22	6.4494
3	4.3007	13	6.2746	23	6.4838
4	5.1287	14	6.2804	24	6.4769
5	5.2371	15	6.3462	25	6.5025
6	5.8064	16	6.3337	26	6.5186
7	5.7260	17	6.3963	27	6.5204
8	6.0265	18	6.3788	28	6.5376
9	6.0003	19	6.4330	29	6.5376
10	6.1381	20	6.4170	30	6.5376

FigureA4-3 facteur KI en fct de N

Tableau A3_3 KI en fonction de N

FigureA4-3	facteur K	I en fct o	de N
------------	-----------	------------	------

N	KI	Ν	KI	Ν	KI
1	2.2457	11	7.2923	21	7.6216
2	3.3867	12	7.3471	22	7.6083
3	5.3320	13	7.4116	23	7.6472
4	6.2274	14	7.4179	24	7.6395
5	6.3074	15	7.4919	25	7.6684
6	6.9190	16	7.4777	26	7.6660
7	6.8109	17	7.5482	27	7.6866
8	7.1424	18	7.8285	28	7.7081
9	7.1077	19	7.5897	29	7.7081
10	7.2608	20	7.5717	30	7.7081

Tableau A3_4 KI en fonction de N

riguitat-3 latitul IXI til itt ut l

Ν	KI	Ν	KI	Ν	KI
1	2.2281	11	8.7117	21	9.0892
2	4.4840	12	8.7741	22	9.0740
3	6.6961	13	8.8480	23	9.1186
4	7.5860	14	8.8551	24	9.1098
5	7.6229	15	8.9400	25	9.1431
6	8.3022	16	8.9238	26	9.1404
7	8.1680	17	9.0047	27	9.1640
8	8.5439	18	8.9822	28	9.1889
9	8.5018	19	9.0524	29	9.1889
10	8.6762	20	9.0319	30	9.1889

Tableau A3_5 KI en fonction de N

FigureA4-6 facteur	KI en	fct	de	Ν
--------------------	-------	-----	----	---

Ν	KI	Ν	KI	Ν	KI
1	2.2499	11	10.5488	21	10.9907
2	6.0979	12	10.6218	22	10.9731
3	8.5071	13	10.7081	23	11.0252
4	9.2685	14	10.7166	24	11.0151
5	9.2994	15	10.8158	25	11.0540
6	10.0786	16	10.7971	26	11.0508
7	9.9174	17	10.8917	27	11.0785
8	10.3543	18	10.8655	28	11.1076
9	10.3043	19	10.9476	29	11.1076
10	10.5075	20	10.9237	30	11.1076

Tableau A3_6 KI en fonction de N

FigureA4-7 facteur KI en fct de N

N	KI	Ν	KI	Ν	KI
1	2.3260	11	12.9978	21	13.5558
2	8.5832	12	13.0851	22	13.6022
3	10.9027	13	13.1882	23	13.5985
4	11.3449	14	13.1986	24	13.6316
5	11.5561	15	13.3170	25	13.6351
6	12.4314	16	13.4749	26	13.6573
7	12.2463	17	13.4465	27	13.6588
8	12.7652	18	13.5265	28	13.6664
9	12.7058	19	13.5056	29	13.6664
10	12.9482	20	13.5678	30	13.6664

Tableau A3_7 KI en fonction de N

FigureA4-8	facteur	KI	en	fct	de	Ν
.						

Ν	KI	Ν	KI	Ν	KI
1	2.4778	11	16.3816	21	17.0306
2	12.7313	12	16.4890	22	17.0052
3	13.9853	13	16.6154	23	17.0814
4	13.8608	14	16.6285	24	17.0668
5	14.8404	15	16.7735	25	17.1236
6	15.6179	16	16.7468	26	17.1192
7	15.4783	17	16.8851	27	17.1597
8	16.0921	18	16.8474	28	17.2022
9	16.0241	19	16.9673	29	17.2022
10	16.3207	20	16.9328	30	17.2022

Tableau A3_8 KI en fonction de N

FigureA4-9	facteur	KI	en	fct	de	Ν
I Igui VII I /	Incount		~	100	uv	× •

N	KI	Ν	KI	Ν	KI
1	2.7357	11	21.2759	21	22.0995
2	20.7736	12	21.4139	22	22.0675
3	17.6743	13	21.5727	23	22.1638
4	16.7499	14	21.5903	24	22.1457
5	20.1655	15	21.7735	25	22.2185
6	19.9377	16	21.7402	26	22.2118
7	20.3630	17	21.9150	27	22.2625
8	20.8701	18	21.8677	28	22.3099
9	20.8323	19	22.0192	29	22.3099
10	21.1990	20	21.9758	30	22.3099

Tableau A5 9 KI en Ioncuon de N	Tableau A	A3 9	KI en	fonction	de l	N
---------------------------------	-----------	------	-------	----------	------	---

Tableau A3_10 KI en fonction de

FigureA4-11 facteur	KI en	fct	de	Ν	
---------------------	-------	-----	----	---	--

N	KI	Ν	KI	Ν	KI
1	3.7718	11	41.3801	21	42.9516
2	222.4875	12	417930	22	42.9740
3	24.4722	13	41.8806	23	43.0849
4	21.7680	14	42.0986	24	42.9537
5	54.2212	15	42.3027	25	43.2028
6	31.4988	16	42.3341	26	43.3517
7	43.9379	17	42.5992	27	42.6881
8	38.5570	18	42.5483	28	43.4253
9	41.3157	19	42.8093	29	43.4253
10	41.0764	20	42.7366	30	43.4253

Tableau A	43_	11 K	I en	fonction	de	Ν
------------------	-----	------	------	----------	----	---

Annexe 4 Déduction du développement des Contraintes

En coordonnées polaire, $\sigma_{rr},\,\sigma_{r\theta}$ et $\sigma_{\theta\theta}$ sont données par

$$\sigma_{rr} = \frac{1}{r^2} \varphi_{,rr} + \frac{1}{r} \varphi_{,r}$$
(A5-1)

$$\sigma_{r\theta} = \left(\frac{1}{r}\varphi_{,\theta}\right)\mathbf{r} \tag{A5-2}$$

$$\sigma_{\theta\theta} = \varphi_{,rr} \tag{A5-3}$$

 φ (r, θ) Est la fonction d'Airy.

Considérons le problème d'un milieu fissuré en élasticité (figure A5-1)

Figure A5-1

On peut montrer ([4]) que dans ce cas φ (r, θ) est donnée par

$$\varphi(r,\theta) = r^{\alpha+2} \left[A \sin(\alpha\theta) + B \cos(\alpha\theta) + C \sin((\alpha+2)\theta) + D \cos((\alpha+2)\theta) \right]$$
(A4-3)

Avec α , A, B, C et D et des nombres réels.

Pour que l'énergie de déformation soit finie, il faut que $\alpha \ge -1/2$. De plus, on peut montrer que α est soit entier soit demi-entier [4]

Si α est entier :

$$\alpha = n - 1$$
 $n \in N$ et $n \ge 1$

Nous avons les relations suivantes ([4]):

$$\begin{cases} C = -A\frac{n-1}{n+1} \\ D = -B \end{cases}$$
 (A4-4)

Si α est demi-entier :

$$\alpha = n - \frac{3}{2}$$
 $n \in N$ et $n \ge 1$

Nous avons les relations suivantes :

$$\begin{cases} C = -A \\ D = -B \frac{n - \frac{3}{2}}{n - \frac{1}{2}} \end{cases}$$
 (A4-5)

En considérant toutes les valeurs possible de α (ou n), et en utilisant les formules (A5.1), (A5.2) et (A5.3), on aboutit aux développement (I-1), (I-2) et (I-3) du chapitre I.