
Saad Dahleb University of Blida 1

Faculty of Sciences

Computer Science department
Thesis presented by:

• Mr.Atsamnia Youcef • Mr.Boucheloukh Naaman

For obtaining the Master’s Degree

Domaine : Mathematics and Computer Science

Major : Computer Science

Specialty : Computer system and network

eXplainable Artificial Intelligence for Intrusion Detection
System based on ML

Defended on 02/07/2024, in front of the jury composed of

President Ms. Boumahdi
Examiner Ms. Zahra
Supervisor Ms.Boustia Narimane
Co-Supervisor Mr SI Ahmed Ayoub



Acknowledgment

First and foremost, I thank ALLAH for granting me health, patience, energy, and

the will to complete this work.

I wish to thank the Head of the Computer Science Department for their constant

advice and support.

I would like to express my sincere appreciation to our supervisor, Professor

Ms. Boustia Narimane, for her continuous guidance, support, and encouragement

throughout my Masters at Blida University. I am also grateful to Mr. Si Ahmed Ay-

oub for his expertise, mentorship, and patience, which have significantly contributed

to the completion of this thesis. I extend my gratitude to all our teachers who con-

tributed to our education, all the teachers in the department, and especially to the

members of the jury. A special thanks to my thesis mate, Mr. Atsamnia Youcef, for

his collaboration, support, and teamwork throughout this journey.

Finally, I would like to thank my parents for their unwavering support throughout

my academic journey. Their love and support have been a source of strength and

motivation, without which this accomplishment would not have been possible.

I dedicate this work to:

My dear wife, who has been my steadfast support and source of strength, always

lighting up my life with her deep love and unwavering hope.

My sons, Ghaith and Abderrahmane, for their smiles and joy.

My brothers and sister, who have shared both my joys and challenges.

All my colleagues and professors, who have guided me in my academic journey.

My friends, with whom I have shared the experiences of my scientific journey and

my work colleagues.

All those who are close to my heart.

NAAMAN

i



First and foremost, we thank and praise ALLAH, the Almighty, for assisting and

taking care of us in each step we made along the path despite the wrong decisions

we make, and providing us with the strength and ability to complete this thesis. I

would also like to extend my heartfelt thanks to my supervisor, Pf. Ms. Bousita

Narimane, and my co-supervisor, Mr. SI-Ahmed Ayoub. Your guidance, patience,

and invaluable insights have been instrumental in shaping this thesis. my gratitude

to all our teachers who con- tributed to our education your dedication to my success

has been truly inspiring, and I am deeply appreciative of your mentorship.

I dedicate this work To my beloved parents, for their unwavering support and

endless encouragement.To my brother Mohamed keeping me always aiger for working

a and motivated, Abdelwahab Sharing my hard times with me, my sisters and there

kids keeping the smile and the joy on my face, thank you for your constant support

and for always being there to cheer me on. Your encouragement has been a source

of strength, and I am grateful for the bond we share.

A heartfelt thanks to Mr. Haireche Sofiane for consistently encouraging and mo-

tivating me to delve deeper into various fields of knowledge, continually pushing me

to learn and grow. Your support has been invaluable in expanding my understanding

across multiple domains.

I am also incredibly grateful to my friends Younes, Azzedine and Amani for

their support and camaraderie. Thank you for moments of laughter that made this

journey enjoyable. Your friendship has been a vital part of my life, and I cherish the

memories we have created together.

To my thesis mate, Naaman, thank you for your collaboration, support, and the

shared dedication to our research. Working alongside you has been a rewarding

experience, and your insights and companionship have greatly enriched this project.

Lastly, I would like to thank everyone who has contributed to this thesis in any way.

Your support and encouragement have made this accomplishment possible, and I am

deeply appreciative of each and every one of you.

YOUCEF

ii



Abstract

The advancement of technology has reshaped various domains, particularly cy-

bersecurity, where increasingly sophisticated cyberattacks pose significant threats.

Explainable Artificial Intelligence (XAI) addresses the crucial need for transparency

in AI systems. This thesis investigates XAI’s application to Intrusion Detection Sys-

tems (IDS) using Machine Learning (ML) and Deep Learning (DL) on Network-based

(NIDS) and Host-based (HIDS) datasets. Specifically, the study utilizes the UNSW-

NB15 and CIC-IDS2018 datasets to evaluate the performance of Artificial Neural

Networks (ANN) and XGBoost algorithms. Both algorithms have demonstrated sig-

nificant effectiveness, achieving high accuracy and robust detection capabilities in

identifying various types of cyberattacks.

The thesis further explores the use of local agnostic LIME (Local Interpretable

Model-agnostic Explanations) and global agnostic SHAP (SHapley Additive exPla-

nations) to enhance the interpretability of AI models. These XAI methods provide

detailed insights into model decisions, making the AI-driven processes more trans-

parent and trustworthy. Empirical evidence shows that LIME and SHAP not only

improve the understanding of model behavior but also highlight the strengths and

weaknesses of ANN and XGBoost in different scenarios.

The study offers valuable insights for cybersecurity professionals and policymak-

ers, demonstrating that the integration of AI, ML, DL, IDS, and XAI can significantly

improve cybersecurity by making AI-driven decisions more transparent and trustwor-

thy. These findings underscore the potential of combining advanced algorithms with

interpretability techniques to develop more reliable and effective intrusion detection

systems.

Keywords:

Explainable Artificial Intelligence (XAI), Intrusion Detection System (IDS), Machine



Learning (ML), Deep Learning (DL), Network Intrusion Detection System (NIDS),

Host-based Intrusion Detection System (HIDS), Local Interpretable Model-agnostic

Explanations (LIME), and SHapley Additive exPlanations (SHAP).
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Résumé

L’avancement de la technologie a remodelé divers domaines, en particulier la cy-

bersécurité, où des cyberattaques de plus en plus sophistiquées posent des menaces

significatives. L’Intelligence Artificielle Explicable (XAI) répond au besoin crucial

de transparence dans les systèmes d’IA. Cette thèse examine l’application de la XAI

aux systèmes de détection d’intrusion (IDS) en utilisant l’apprentissage automa-

tique (ML) et l’apprentissage profond (DL) sur des ensembles de données basés sur

le réseau (NIDS) et basés sur l’hôte (HIDS). Plus précisément, l’étude utilise les

ensembles de données UNSW-NB15 et CIC-IDS2018 pour évaluer les performances

des algorithmes de réseaux de neurones artificiels (ANN) et XGBoost. Les deux al-

gorithmes ont démontré une efficacité significative, atteignant une grande précision

et des capacités de détection robustes pour identifier divers types de cyberattaques.

La thèse explore en outre l’utilisation de LIME (Local Interpretable Model-

agnostic Explanations) agnostique local et de SHAP (SHapley Additive exPlana-

tions) agnostique global pour améliorer l’interprétabilité des modèles d’IA. Ces mé-

thodes XAI fournissent des informations détaillées sur les décisions des modèles,

rendant les processus pilotés par l’IA plus transparents et dignes de confiance. Les

preuves empiriques montrent que LIME et SHAP améliorent non seulement la com-

préhension du comportement des modèles, mais mettent également en évidence les

forces et les faiblesses des ANN et XGBoost dans différents scénarios.

L’étude offre des informations précieuses pour les professionnels de la cybersé-

curité et les décideurs, démontrant que l’intégration de l’IA, ML, DL, IDS et XAI

peut améliorer considérablement la cybersécurité en rendant les décisions pilotées

par l’IA plus transparentes et dignes de confiance. Ces résultats soulignent le poten-

tiel de la combinaison d’algorithmes avancés avec des techniques d’interprétabilité

pour développer des systèmes de détection d’intrusion plus fiables et efficaces.
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List of Figures

The rapid advancement of technology has significantly reshaped the landscape of

various domains, particularly in the realm of cybersecurity. As digital transformation

continues to accelerate, the sophistication and frequency of cyberattacks have also

increased, posing substantial threats to individuals, organizations, and governments

worldwide. AI is considered a vital tool to mitigate these evolving cyber threats. The

capability of AI to process and analyze vast amounts of data enables it to detect

anomalies that may indicate zero-day attacks and new vulnerabilities. Zero-day

attacks exploit previously unknown vulnerabilities and are particularly challenging

to identify with traditional methods. AI can recognize patterns and anomalies that

suggest such attacks, providing a crucial layer of defense.

Although the term Explainable Artificial Intelligence (XAI) has gained popularity

only recently, it is a concept with roots dating back several decades [2], to the early

stages of Artificial Intelligence (AI) and ML . In the last decade, the widespread

availability of cheap computational power and abundant data has propelled AI and

ML into nearly every domain. These advancements have led AI to achieve (super)

human performance in various tasks, driving its adoption in , law, defense, finance,

self-driving cars and healthcare.

For exemple in healthcare sector integration of the Internet of Things (IoT) has

significantly enhanced the efficiency and effectiveness of medical services. By 2023,

over 161 million IoT devices are expected to be in use in hospitals, ranging from

patient monitors to imaging systems. However, IoT systems suffer from significant

issues, particularly cybersecurity attacks. To mitigate these issues, IDS based on

ML are crucial. For cybersecurity experts to trust the decisions taken by IDS, it

is essential to understand how these decisions are made. XAI methods address this

problem by making the decision-making processes of AI systems more transparent,

turning black-box models into more interpretable.

In this thesis, the application of XAI to IDS using two complex models with high-

est accuracy, ML and DL are explored on two different types of datasets one based

on NIDS and the other on HIDS, aiming to improve the detection of sophisticated
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cyberattacks while maintaining transparency and trustworthiness. The primary ob-

jectives are to evaluate the effectiveness of XAI method local agnostic LIME and

global agnostic SHAP in making AI models more interpretable and to assess how

this impacts performance and trust. The contrubutions of thes study is providing

empirical evidence on the benefits and challenges of implementing XAI methods

for IDS, offering valuable insights for cybersecurity professionals, researchers, and

policymakers.

This thesis is organized into three chapters. Chapter I provides background

and related work. Chapter II details the research methodology used in the study.

Chapter III implementation and discusses the results. Finally, the general conclusion

summarizes the research, limitations, and recommendations for future study. .

x



Chapter I

BACKGROUND

1



Chapter I. BACKGROUND

I.1 Introduction

The rapid advancement of AI brings significant challenges, especially the opacity

and inscrutability of AI models, which are critical in domains like cybersecurity. To

address these challenges, Explainable AI (XAI) aims to clarify AI decision-making

processes, enhancing understanding and trust.

This chapter employs thematic analysis to examine various XAI approaches

within the context of intrusion detection, with a particular focus on LIME and

SHAP, two of the most prominent methods in the field. By exploring the founda-

tional concepts of XAI and its application to IDS, this chapter aims to illuminate the

path towards more transparent, accountable, and effective cybersecurity solutions.

The chapter also initiates a comprehensive review of the extant literature on XAI

and IDS, highlighting that ML-based IDS offer a self-learning solution and outper-

form traditional IDS. As AI continues to develop, the need for open and understand-

able models becomes increasingly apparent, especially in crucial domains such as

cybersecurity. Understanding how AI models make decisions is essential for maintain-

ing the reliability, accountability, and trustworthiness of automated decision-making

systems.

I.2 Definitions

I.2.1 Artificial Intelligence

Artificial Intelligence (AI) is a revolutionary computer program designed to mimic

human cognition and behavior, thereby enhancing our lives and productivity. Emerg-

ing at a time of improving living standards, AI with the use of AI models offers

unparalleled convenience and benefits to humanity [3]. This branch of computer sci-

ence aims to delve into the intricacies of intelligence, paving the way for the creation

of intelligent machines capable of learning, reasoning, and adapting to their environ-

ment. With applications spanning robotics, language and image recognition, natural

2



Chapter I. BACKGROUND

language processing, and more, AI continues to evolve, striving to surpass human

cognitive capabilities and redefine the boundaries of technological advancement [4].

I.2.2 Machine Learning

Machine Learning (ML) answers the question of how to build computers that auto-

matically improve with experience. It is one of the fastest growing technical fields

today, located at the intersection of computer science and statistics, and at the core

of AI and data science. Recent advances in ML have been spurred both by the devel-

opment of new and theoretical learning algorithms and by the availability of online

data and low-cost computations. The adoption of data-intensive ML methods can be

found in all areas of science, technology and business, leading to more evidence-based

decision-making in many areas of life [5].

Types of ML

ML algorithms are organized based on the desired outcomes, with one major category

being classification. Common types of ML algorithms include [6]:

1. Supervised learning : Where the algorithm generates a function that maps

inputs to desired outputs using labeled examples It is used to create predictive

models that can be used to make decisions and predictions [7].

2. Unsupervised learning: Which involves training algorithms to identify pat-

terns and relationships in data without the use of labels or prior knowledge. It

is used to explore and analyze data to discover hidden patterns and correlations

[8].

3. Semi-supervised learning: Which combines both labeled and unlabeled

examples to generate an appropriate function or classifier that can learn from

both labeled and unlabeled data and improve their accuracy [9].

3



Chapter I. BACKGROUND

4. Reinforcement learning: Reinforcement learning is a type of ML in which

an agent learns to make decisions

by interacting with its environment and receiving feedback in the form of re-

wards or penalties [10].

Figure I.1: Types of ML [1]

I.2.3 Deep Learning

DL is a branch of ML characterized by its focus on learning hierarchical represen-

tations of data through multiple levels of abstraction and feature extraction. These

representations, formed through cascades of nonlinear processing units across layers,

do not capture the semantics of real-world problems. However, the number of layers

may have the semantics; for example, only more than one hidden layer can represent

a non-linear classification relation between inputs and outputs [11], aim to capture

complex relationships and patterns within the input data. While DL algorithms do

not inherently assign semantics to individual layers, the number and arrangement of

layers can encode meaningful information, such as non-linear classification relations.

DL models prioritize learning data representations over task-specific algorithms and
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Chapter I. BACKGROUND

can operate in supervised, semi-supervised, or unsupervised learning settings. De-

spite variations in specialized methods like Artificial Neural Networks (ANN), DL

serves as a powerful tool for uncovering intricate structures and insights from diverse

data modalities, such as sound, image, and text.

I.2.4 eXplainable Artificial Intelligence

The term "eXplainable Artificial Intelligence (XAI)" refers to a branch of research

and development that aims at improving transparency and intelligibility of AI sys-

tems a branch of study that focuses on ML interpretability techniques. It was once

overlooked in favor of “black box” [12] models optimized for performance until AI

applications became complex and had societal effects. The drivers behind XAI are

primarily ethics, responsibility, and equity in the sense that the goal is to make trans-

parent the decision-making process of AI models so as to regain confidence among

human users. Main goals include among others ensuring balancedness, recognizing

mistakes, enabling collaboration between people and machines, plus making AI re-

sults more understandable. Various methods exist such as model-based approaches,

post-hoc explainability which include two important models (Black box/White box),

5



Chapter I. BACKGROUND

Figure I.2: The Importance of Explainable AI

White box models Black box models

Easily interpretable Not easily understandable

Low precision High precision

A ML model can be interpreted in a variety of ways using Explainable AI meth-

ods like agnostisity and scope.
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Chapter I. BACKGROUND

Figure I.3: XAI Usability General Categorization

focusing en the Global and Local explanation, the first one assists in identifying

the predominant features responsible for influencing the model’s output, on the other

hand the Local explanation Target individual predictions to explain,

Figure I.4: Global and Local Explanation general idea

A common idea to achieve the local explanation is the perturbation-based strat-
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Chapter I. BACKGROUND

egy, which provides post-hoc explanation to the prediction outcome by checking

the performance change after perturbing the input features [13], [14].

In the realm of interpretability techniques, methods can be categorized into two

broad stages:

1. Post-hoc method : Post-hoc methods approximate complex black-box ML

models by generating simpler surrogate models [15].These surrogate models

allow human examiners to grasp and appreciate the internal mechanisms of

black-box models.

2. Ant-hoc method : also named "inherent" or "intrinsic", built into the model,

from the start, ensuring that the model is inherently interpretable. Ante-hoc

methods typically include models like decision trees, linear regression, and rule-

based models, which are naturally interpretable. These models, often referred

to as "glass box" models, provide clarity on how decisions are made due to

their straightforward structure and the direct relationship between inputs and

outputs [16].

Figure I.5: Difference between Ant-hoc/Post-hoc stages

8



Chapter I. BACKGROUND

Figure I.6: Differents XAI methods

Several well-known XAI methods illustrate the diverse strategies used to interpret

ML model outputs:

1. Method SHAP (SHapley Additive exPlanations) : The SHAP ap-

proach, a game-theoretic technique, provides an explanation for the output of

ML models by distributing the prediction value fairly across multiple inputs.

Known for its reliability, it’s one of the most popular approaches, blending local

interpretations with effective credit allocability to ensure an even distribution

of estimates. Only symmetry, dummy, and additivity are the three properties

that Shapley values can satisfy among the available solutions[17].

2. Method LIME (Local Interpretable Model-agnostic Explanations) :

LIME is used to construct simple "surrogate" models that are built on selected

data points to understand how a more complex model can make predictions.

To train a simpler model, it creates another dataset that is centered on the

data point of interest by itself [13]. Any black-box model and a variety of data

formats can be utilized with this flexible approach. Despite not uncovering the

internal processes of the original model, domain knowledge provides validation

and confidence-building capabilities.

9



Chapter I. BACKGROUND

I.2.5 Intrusion Detection System

intrusions are defined as efforts made to compromise the confidentiality, integrity, or

availability of a computer or network, or to bypass the security measures in place for

them. So an IDS is a system (software or hardware) designed to monitor network

traffic and promptly notify of any suspicious or malicious activities that are detected

[18]. Hence, it is crucial to develop a reliable IDS to counter various types of attacks

effectively. IDS serves as a primary defense mechanism for network security [19].

To achieve this, IDS employs various techniques to identify anomalies. IDS can be

categorized based on two primary factors : the location of detection (network or

host) and the methodof detection employed (signature or anomaly-based) [20].

IDS classification by location of detection

There are two main types of IDS by location of detection : Host Intrusion Detection

System (HIDS) and Network Intrusion Detection System (NIDS) [21].

a. Host-based intrusion detection system :

HIDS keeps a log of system events to detect any unusual activities and con-

tinuously updates itself with information about device artifacts, operations,

and memory regions [22]. It’s important to note that a host-based IDS alone

is not considered an optimal solution. It has significant drawbacks, such as

consuming a high amount of system resources, which negatively impacts the

performance of the host. Additionally, certain attacks may go unnoticed unless

they successfully breach the host’s defenses.

b. Network-based intrusion detection system :

NIDS is strategically positioned at specific locations within the network to

analyze traffic from all connected networks [23]. It examines all the network

10



Chapter I. BACKGROUND

traffic passing through its subnet and compares it with an anomalies library to

identify potential intrusions. NIDS performs this monitoring process discreetly,

without raising suspicion.

IDS classification by the method of detection

There are two primary approaches used in IDS : signature-based detection and

anomaly-based detection [24].

a. Signature-based detection :

Signature-based intrusion detection relies on pattern recognition techniques to

identify attacks, often referred to as knowledge-based detection. It maintains a

repository of patterns from previous attacks and employs matching algorithms

to compare these known patterns with new data. If a new pattern closely re-

sembles a known signature, a warning signal is triggered to indicate a potential

intrusion. The main objective is to utilize a library of known attack signa-

tures to identify intrusions [21]. However, signature-based intrusion detection

encounters a significant challenge : if an attacker employs a new attack that

is not present in the signature library, the method fails to detect the attack.

Such attacks are commonly referred to as zero-day attacks [25].

b. Anomaly-based detection :

Anomaly-based intrusion detection serves as a solution to the challenges faced

by signature-based intrusion detection. It detects intrusions by analyzing user

behavior. A baseline or normal model of the system’s behavior is established

using statistical and other techniques. Any deviation or difference between the

actual behavior and the predicted behavior is flagged as an anomaly, poten-

tially indicating an intrusion [21]. However, anomaly-based intrusion detection

has its -own limitations. For instance, it struggles to identify attacks within
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encrypted packets, leaving a vulnerability. Additionally, creating an accurate

normal model for large-scale dynamic data is highly challenging, often resulting

in false alarms or incorrect identification of anomalies [26].

IDS classification by time aspect

In considering the temporal aspects of IDSs, it is necessary to distinguish between

two main groups: real-time (on-line) IDSs and off-line IDSs [27].

a. Real-time (on-line) IDSs:

attempt to detect intrusions in real-time or near real-time They operate on

continuous data streams from information sources and analyze the data while

the sessions are in progress. Real-time IDSs should raise an alarm as soon as

an attack is detected, so that action that affects the progress of the detected

attack can be taken.

b. Off-line IDSs:

perform post-analysis of audit data. This method of audit data analysis is

common among security analysts who often examine network behavior, as well

as behavior of different attackers, in an off-line mode. Many early host-based

IDSs used this timing scheme, since they used operating system audit trails

that were recorded as files.

IDS classification by architecture

There are two principal architectures that are used in IDSs, namely centralized and

distributed IDSs [27].

12
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a. Centralized IDS:

Most IDSs employ centralized architecture and detect intrusions that occur in

a single monitored system.

b. Distributed IDS:

there is a recent increasing trend towards distributed and coordinated attacks,

where multiple machines are involved, either as attackers (e.g. distributed

denial-of-service) or as victims (e.g. large volume worms). Analysis that uses

data from a single site and that is often employed by many existing intrusion

detection schemes is often unable to detect such attacks. To effectively combat

them, there is a need for distributed IDS and cooperation among security

analysts across multiple network sites. Unlike a centralized IDS, where the

analysis of data is performed on a fixed number of locations (independent of

how many hosts are being monitored), in a distributed IDS the analysis of data

is performed on a number of locations that is proportional to the number of

hosts that are being monitored.
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Figure I.7: IDS classification

I.3 Related Work

In the current time, there is still not much work in the field of applying XAI meth-

ods to IDS. Two of the most used methods are LIME and SHAP, which are already

defined in Chapter 01. In the work [28], a framework is proposed to provide an ex-

planation for IDS using SHapley Additive exPlanations (SHAP), counting on both

local and global scopes with the purpose of improving the explanation. This offers

multiple advantages such as high transparency. Additionally, the framework com-

pares two classifiers, one-vs-all and multiclass, facilitating adjustments to the IDS

structure based on differences in interpretation between these classifiers.

However, using an old dataset like NSL-KDD may pose several inconveniences.
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It lacks coverage of new cyber-attacks, potentially missing emerging threat patterns

that have evolved since its creation. Moreover, the dataset may not incorporate

recent advancements in intrusion techniques and defenses, potentially leading to

outdated detection models. also the data set contains only NIDS traffic, Training

exclusively on an NIDS traffic data further limits its capability. While proficient

in detecting network-level anomalies such as port scans, DoS attacks, and certain

exploits, it may struggle with anomalies observable only at the host level, like unau-

thorized access attempts, file system manipulations, or unusual process behaviors.

Additionally, sophisticated attacks often involve both network maneuvers and sub-

sequent actions on compromised hosts. Without exposure to both NIDS and HIDS

data, the IDS might miss the complete sequence or context of an attack, leading to

incomplete detection and compromised security efficacy.

While in the work [29], they plan to design a framework specifically for evaluating

XAI methods in the context of network intrusion detection, distinguishing itself from

prior works. This is noted considering that the complexity of the evaluation process

can increase while evaluating a diverse range of AI models. The usage of SHAP in

this work provides both global and local explanations. However, despite their great

work, a significant drawback is that the three datasets used show that the work was

done only on network traffic IDS.

The work [30] had an important advantage, the models exhibited high accuracy,

reaching 99%. This suggests that the models are effective at distinguishing normal

instances from attack ones, which is crucial for reliable intrusion detection. The

objective is to apply XAI techniques to enhance interpretability in the models, thus

achieving both high accuracy and interpretability. However, the same drawback of

the work [29] appears in the dataset used shows that the work was done only on

network traffic IDS, also they did not use local scope, This may frequently result

inability to provide an explanation for specific decisions, which make it hard for

experts to understand individual predictions.

In 2022, Swetha Hariharan et al. [31] conducted a study to investigate different
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XAI methods for IDS, focusing on both global and local explanation approaches.

The study compared local agnostic methods such as SHAP, LIME, and Contextual

Importance and Utility (CUI) with global agnostic methods such as SHAP and

Permutation Importance (PI) to assess their ability to explain IDS model behavior.

ML models such as Random Forest (RF), XGBoost, and LightGBM (LGBoost) were

used and tested on real data from the Kaggle IDS and NSL-KDD datasets, ensuring

practical relevance to cybersecurity.

This study has several advantages, such as providing a comprehensive comparison

of explanation methods, offering a range of insights into the behavior of IDS models,

and showing which techniques provide the most effective explanations. By leveraging

a range of explanatory methods, such as SHAP and LIME, the study allows for a

broader and more robust analysis of IDS models using real-world datasets like Kaggle

IDS and NSL-KDD. Despite these advantages, the study’s lack of experimentation,

as the solution is tested on only one dataset, may undermine the robustness and

generalizability of its findings.

In 2023, Harry Chandra Tanuwidjaja et al. [32] introduced the Hybrid Explain-

able Intrusion Detection System (X-IDS) framework, a significant development in

the analysis of the Ton-IOT IDS dataset, a Windows-based dataset released by the

University of New South Wales in 2021. The X-IDS framework uses different ex-

planatory methods to improve the understanding of various types of cyber-attacks.

By utilizing variable importance plots, which highlight key model features, individual

value plots, which visualize specific data points, and partial dependence plots, which

show how individual features affect predictions in general, this framework provides

a comprehensive perspective on cybersecurity threats.

The framework’s ability to leverage a range of explanatory methods, such as

SHAP and LIME, allows for a broader and more robust analysis of IDS models.

It helps identify discrepancies between explanatory techniques, providing a more

rounded approach to explainability. However, this study has some drawbacks, in-

cluding relying solely on NIDS traffic and training models on outdated datasets.
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In 2023, Mohammed M. Alani et al. [33] presented an explicable ensemble-based

approach for detecting cyber-attacks on the Internet of Medical Things (IoMT).

The study used a combination of multiple classifiers through a soft voting ensemble

method to improve accuracy. The classifiers included Random Forest (RF), Deci-

sion Tree (DT), Support Vector Machine (SVC), and Extreme Gradient Boosting

(XGB). The research utilized the WUSTL-EHMS-2020 dataset and employed SHAP

(SHapley Additive exPlanations) to provide insight into feature contributions.

The study has many advantages, such as an effective ensemble approach, where

the soft voting ensemble method combined predictions from multiple classifiers, re-

sulting in higher accuracy and reduced false positives and negatives. Additionally,

preprocessing steps ensured a balanced representation of normal and attack traffic,

reducing bias and improving model robustness.

Despite these advantages, the study has some weaknesses. The results are specific

to the WUSTL-EHMS-2020 dataset, which may limit their generalizability to other

datasets or environments. Furthermore, the study exclusively utilized the SHAP

method, overlooking the potential benefits of integrating LIME for a more compre-

hensive approach to explainability. Additionally, the test was conducted on only one

dataset.

In 2024, Diogo Gaspar et al. [34] sought to improve the interpretability of a

black-box intrusion detection system (IDS) for Internet of Things (IoT) devices.

Using the ADFA-LD dataset, they applied two XAI methods, LIME and SHAP, to

identify key system calls that influenced the predictions of the IDS model. To validate

these explanations, they performed a perturbation analysis where they changed or

removed the top 10 system calls identified by LIME and SHAP and observed how

these changes affected the model’s output. They also conducted a survey analysis to

measure the perceived clarity and trustworthiness of the XAI explanations from the

participants’ perspective.

This study covers several benefits, such as demonstrating the value of LIME and

SHAP in improving the transparency of IDS models and providing useful insights into
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the most influential features. It improved transparency by identifying the key system

calls that influenced the predictions of the IDS model. It also facilitated model

refinement by allowing targeted improvements to be made, focusing on correcting

specific system calls that could lead to misclassification.

Despite these advantages, relying solely on HIDS traffic restricts detection to

host-specific threats, such as internal infiltrations and user activity logs, potentially

overlooking broader network-based attacks identifiable by NIDS. Additionally, the

test was conducted on outdated datasets.

I.4 Conclusion

This overview begins by defining AI and ML, including its types and role in en-

hancing AI capabilities. It explores DL, a subset of ML with multi-layered neural

networks. The analysis highlights the importance of Intrusion Detection Systems IDS

in network security, categorizing them into NIDS and HIDS. Explainable AI (XAI)

techniques, such as post-hoc explanations and interpretable models, are discussed to

improve understanding and trust in AI decisions.

Reviewing XAI for IDS shows its growing importance in cybersecurity. XAI

methods like LIME and SHAP help validate and refine models by making black-

box models transparent, aiding cybersecurity professionals in understanding and

strengthening strategies. However, challenges exist. Many IDS datasets are outdated

or specific to HIDS or NIDS, limiting generalizability and potentially misrepresenting

modern threats. Limited experimentation in some studies raises concerns about the

robustness of XAI methods.
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[28] local

global
SHAP One-vs-All

Classifier
Multiclass
Classifier

NSL-KDD Utilizing both one-vs-all
and multiclass classifiers

- Old dataset used
- NIDS traffic only
- Lack of experimen-
tation

agnostic post-hoc
explana-
tion

[29] local
global

LIME
SHAP

LGBM,
DNN, MLP,
CNN, RF,
SVM, ADA,
KNN

NSL-KDD
SIMARGL2021
CIC-
IDS2017

- Use new datasets
- Use multiple datasets

- NIDS traffic only agnostic post-hoc
explana-
tion

[30] global SHAP LightGBM
CNN

CICIDS
2017

High Model Accuracy - No use for the local
scope - NIDS traffic
only

agnostic post-hoc
explana-
tion

[31] local
global

SHAP
LIME

RF XG-
Boost
LightGBM

Ton-IOT
IDS

- Comprehensive Analy-
sis
- use different techniques
- Detailed Comparison of
SHAP and LIME

- Lack of experimen-
tation

agnostic post-hoc
explana-
tion

[32] local
global

SHAP
LIME
CUI PI

RF NSL-KDD
Kaggle

- Comparison of Methods
Global and Local Scope
- Tests on Multiple Mod-
els of ML
- Real-World Data

- Use old dataset
analyse
- NIDS traffic only

agnostic post-hoc
explana-
tion

[33] local
global

SHAP RF, DT,
SVC, XGB

NSL-KDD
WUSTL-
EHMS-2020

- Use a combination of
multiple classifiers
- Effective Ensemble Ap-
proach
- Balanced Dataset

- Dataset Specificity
- use only SHAP
- Lack of experimen-
tation

agnostic post-hoc
explana-
tion

[34] local
global

LIME
SHAP

MLPClassifier ADFA-LD - Improved Transparency
- Model Refinement use
SHAP and LIME

- Use only HIDS
- Old dataset

agnostic post-hoc
explana-
tion

Table I.1: Summary Table of All Previous Articles:
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II.1 Introduction

In this chapter, the drawbacks identified in the previous research will be addressed,

and the advantages will be leveraged to enhance the proposed model.

One question often arises when discussing the integration of XAI: "Why use XAI if

we already have AI models with high accuracy?" This is a crucial question. Although

current AI models can provide accurate results, they often lack interpretability. Users

frequently find themselves asking the model, "Why did you do that?" or "How did

you come up with that result?" or "who do i correct error?" These questions highlight

the significant weakness of traditional AI models their lack of transparency.

The figure I.2 illustrates the importance of using XAI to explain and interpret

the decisions made by black-box AI models. Interpretability is the main reason

for moving to XAI. Being able to understand "why" a model makes certain de-

cisions makes the model clearer and more transparent. This transparency serves

multiple purposes, the most important being increased trust in the explained model.

By integrating XAI methods, users can gain a better understanding of the model’s

decision-making process, leading to more informed and confident use of AI systems

II.2 Proposed Architecture

The proposed IDS architecture integrates internal networks and a Demilitarized Zone

(DMZ) hosting critical services, including a web server, email server, and a powerful

server dedicated to advanced AI solutions utilizing models such as XGBoost and

ANN and XAI methods such as LIME and SHAP. This integration enhances the

security of the infrastructure. A centralized logging server has been implemented on

a powerful server.

The strategy for defense includes a hardware-based NIDS for real-time analysis of

network traffic, supplemented by software-based HIDS deployed across all worksta-

tions and servers. Each HIDS continuously forwards alerts and logs to the central-
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ized logging server. Upon detecting malicious activity, whether identified by HIDS

or NIDS, immediate notifications are relayed to the administrator situated at the

management station. The administrator then evaluates the threat, decides whether

to allow or block the traffic by adjusting firewall configurations, and finally utilizes

collected data to train AI models housed on the powerful server. These AI models

are trained on several types of attacks, including Reconnaissance, Backdoor, DoS,

Exploits, Worms, Shellcods, Analyses, Reconnaissance, Gneric and Infiltration from

inside the network. Subsequently, both local and global XAI methods are employed

on AI models to interpret and elucidate the decisions made by the IDS. This compre-

hensive approach ensures a thorough understanding of security events and facilitates

proactive measures against potential threats. The following figure illustrates all the

previous details.
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Figure II.1: Proposed architecture for IDS
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II.3 Methodology

This section presents a summary of the proposed methodology for XAI methods.

The datasets were selected as they are readily available on the internet. Figure II.2

represents the workflow for achieving the objectives of this study. This diagram

illustrates the detailed steps for using XAI methods to interpret the predictions of a

black-box AI model, as outlined below:

Figure II.2: XAI Model
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II.3.1 Data Selection

The initial step in the XAI process is data collection, which involves gathering com-

prehensive datasets to train the AI models (XGBoost for ML and ANN for DL). For

IDS, typical datasets include network traffic datasets (UNSW-NB15) and combined

NIDS and HIDS traffic datasets (CSE-CIC-IDS2018), encompassing both benign and

malicious activities. These datasets provide labeled examples of various cyber at-

tacks and normal traffic, ensuring the AI models can identify patterns and accurately

distinguish between benign and malicious traffic.

II.3.2 Pre-processing:

In this step, the raw data from the dataset is cleaned and transformed into a suitable

format for the AI model. The purpose of this step is to make the data ready for the

AI model, this include the following tasks.

1. Data cleaning : starting by identifying and addressing missing values, out-

liers, and noise within both datasets. This meticulous process was essential to

enhance data integrity and prevent distortions in analysis.

2. Normalization : Continuous features in both datasets were normalized or

standardized to establish a uniform scale. This standardization mitigated the

impact of varying scales on subsequent analysis and modeling.

3. Label encoding : While some labels in both datasets were already in the valid

format of 0 and 1, certain samples contained invalid formats. Consequently, a

comprehensive label encoding step was executed to ensure consistent format-

ting across all labels. This transformation facilitated seamless integration with

machine learning algorithms.

4. Dataset splitting : To facilitate rigorous model training and validation, the

preprocessed datasets were divided into training and validation subsets. This

25



Chapter II. METHODOLOGY

division ensured that models could be effectively trained on one subset and

then evaluated on the other, promoting robust performance assessment.

II.3.3 BLACK BOX (AI):

The study employed two distinct AI models, each of which was optimised to leverage

its respective strengths for training and prediction purposes. The first model is the

ML model, XGBoost.

1. XGBoost [35] (Extreme Gradient Boosting), which is renowned for having a

high efficient and scalable implementation of the gradient boosting framework,

which builds models in a stage-wise fashion. This approach optimizes a dif-

ferentiable loss function by iteratively adding weak learners, typically decision

trees, to minimize the loss, The loss function in XGBoost can be expressed as:

L(θ) =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (II.1)

where l is a differentiable convex loss function that measures the difference

between the prediction ŷi and the target yi. The term Ω(fk) represents the

regularization term for the k-th weak learner fk. One of the key features of

XGBoost is its inclusion of regularization terms, specifically L1 (Lasso) and L2

(Ridge) regularization, to prevent overfitting, which is not traditionally part

of the gradient boosting framework [36]. also, XGBoost includes a built-in

cross-validation mechanism at each iteration of the boosting process, ensuring

that model tuning and selection are performed efficiently. The second model

is the DL model, which is ANN.

2. ANN [37] consist of layers of interconnected nodes (neurons). These layers

are typically categorized as the input layer, which receives the initial data,
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hidden layers, which are intermediate layers where computations and feature

transformations occur, and the output layer, which produces the final output.

Each neuron in an ANN processes input data and passes the result to the next

layer. The processing involves weights, where each input to a neuron has an

associated weight indicating the importance of that input, and a bias, which

is an additional parameter in the neuron that helps adjust the output. The

weighted sum (linear combination) of inputs can be expressed as: The weighted

sum (linear combination) of inputs can be expressed as:

z =
n∑

i=1

wixi + b (II.2)

where:

• z is the weighted sum.

• xi are the input features.

• wi are the weights associated with each input feature.

• b is the bias term.

• n is the number of input features.

Common activation functions [38] include the sigmoid function, which outputs

values between 0 and 1, the ReLU (Rectified Linear Unit) function, which

outputs the input directly if it is positive, otherwise it outputs zero, and the

tanh function, which outputs values between -1 and 1.

II.3.4 Prediction:

The trained AI model employs techniques from both ML and DL to generate pre-

dictions on new input data by leveraging the intricate patterns and relationships it
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has assimilated during the training phase. This process entails the model applying

its internalised knowledge to meticulously analyse and interpret the new data, thus

producing outputs or predictions that are deeply informed by its prior learning. The

objective is to utilise the model’s capabilities to deliver accurate and reliable pre-

dictions on unseen data, thereby demonstrating its capacity to generalise effectively

beyond the training set.

II.3.5 XAI Methods:

Explainable AI methods enhance transparency and trust in black-box AI models by

providing local and global explanations of their predictions.

1. LIME : a method that focuses on individual predictions. It approximates the

black-box model with an interpretable one in order to explain the rationale

behind a specific instance.

(a) LIME main characteristics [13]:

i. Local Fidelity: LIME focuses on making the explanation accurate

around the prediction being explained.

ii. Model-Agnostic: LIME can be applied to any ML model, re-

gardless of its complexity or structure.

iii. Simplicity: By using simple interpretable models to approximate

the complex model, LIME ensures that the explanations are easy

to understand.

(b) LIME working Steps [39]:

i. Step 1: Select an Instance: Choose the instance (data point)

for which you want to generate an explanation. Let’s denote this

instance as x.
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ii. Step 2: Generate Perturbed Samples: Create a new dataset

by perturbing x. Perturbations involve slightly modifying the fea-

ture values of x. This generates a set of new samples around x.

The perturbed samples x′
i can be generated as:

x′
i = xi + ϵi (II.3)

where ϵi is small random noise, typically drawn from a normal

distribution.

iii. Step 3: Predict Perturbed Samples: Use the black-box model

to predict the outcomes for these perturbed samples. This provides

a set of predictions corresponding to the perturbed dataset.

iv. Step 4: Weight the Perturbed Samples: The perturbed sam-

ples are weighted based on their proximity to the original instance

x. A common weighting function used is the exponential kernel,

which assigns higher weights to samples closer to x. The weight w

for a perturbed sample x′ is calculated as:

w(x, x′) = exp

(
−D(x, x′)2

σ2

)
(II.4)

where D(x, x′) is the distance between x and x′, and σ is a kernel

width parameter controlling the rate of decay of the weights.

v. Step 5: Train an Interpretable Model: Fit a simple inter-

pretable model (e.g., a linear regression or decision tree) to the

weighted perturbed dataset. The goal is to approximate the com-

plex model locally around x.

vi. Step 6: Generate the Explanation: Extract the parameters
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(e.g., coefficients) of the interpretable model to understand the con-

tributions of each feature to the prediction for x. These parameters

form the explanation.

2. SHAP [40]: offers a comprehensive understanding of the model’s overall be-

haviour by assigning importance values to each feature based on game theory.

This elucidates the significance of features across all predictions.

(a) SHAP main characteristics [40]:

i. Consistency : SHAP values guarantee that if a model changes in

a way that increases a feature’s contribution to the prediction, the

Shapley value for that feature will not decrease.

ii. Model-Agnostic: SHAP can be used with any ML model, making

it very versatile.

(b) SHAP working Steps: how SHAP works can be devided in 3 steps :

i. Step 1: Define the cooperative game : Each feature is a player

in the game. The gain from the coalition of features is the prediction

made by the model[40].

ii. Step 2: Calculate Shapley Values [41]: For each feature, the

Shapley value is calculated as the average marginal contribution of

the feature across all possible subsets of features. Mathematically,

for a feature i:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (II.5)

where N is the set of all features, S is a subset of features not

including feature i, f(S) is the model prediction using only the fea-

tures in subset S, and f(S ∪ {i}) is the model prediction using the
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features in subset S plus feature i.

iii. Step 3: Interpret the Values : The calculated Shapley values

represent the contribution of each feature to the prediction for a

given instance. These values can be aggregated across instances

to understand the overall impact of each feature on the model’s

predictions.

II.3.6 Explanation:

The final stage is explanation, XAI methods involves generating clear explanations

for the AI model’s predictions. These explanations help cybersecurity experts un-

derstand the model’s decision-making process, fostering trust and validation of its

outputs. This transparency is crucial for identifying biases, improving accuracy, and

ensuring compliance. By providing detailed insights, XAI enhances collaboration

between human expertise and AI technology, boosting the reliability and acceptance

of AI systems, especially in distinguishing between attack and benign traffic.

II.4 Conclusion

This chapter presents a comprehensive methodology for developing, evaluating, and

interpreting AI models by using two different types of datasets. The objective is to

create models that are not only robust and accurate but also transparent and inter-

pretable. To this end, ML and DL techniques are integrated with XAI methods. The

use of local explanation techniques, such as LIME, and global explanation methods,

such as SHAP, helps to demystify the black-box nature of AI models, thereby en-

hancing their interpretability. The following chapter will provide a detailed account

of the preceding steps, accompanied by a comprehensive analysis of the results of

our experiments.
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III.1 Introduction

In this chapter, the methodology proposed in Chapter II is implemented by apply-

ing ANN and XGBoost models to the UNSW_NB15 and CIC-IDS-2018 datasets,

followed by model explanations using SHAP and LIME XAI methods. The prepro-

cessing steps are outlined, including data cleaning and normalization, along with a

detailed explanation of the performance metrics used: accuracy, precision, recall, F1

score, and confusion matrix. Results from SHAP and LIME interpretations of model

predictions are then presented, enhancing transparency and explainability. Finally,

the findings and their implications for improving intrusion detection systems are

discussed, offering insights for further research and development.

III.2 Development Environment

In order to implement and evaluate our proposed system, by utilizing a range of

powerful tools. Google Colab was employed for its cloud-based computational re-

sources and collaborative features, enabling us to leverage scalable computing power

for model training and experimentation [42]. Python [43] served as the primary pro-

gramming language, with TensorFlow and Keras used extensively for building and

training deep learning models, ensuring robust performance and flexibility in model

development [44] [45]. In the local environment, Anaconda provided a comprehensive

distribution for managing packages and dependencies, ensuring consistency across

development setups [46]. Jupyter Notebooks were instrumental in facilitating inter-

active coding and data analysis, enhancing our ability to explore data insights and

iterate on model designs effectively [47].
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III.3 Dataset

Nowdays Searching for a datasets is a real challenge, the dataset chosed should

contain both NIDS and HIDS traffic to recover much more percetnage of security,

and also it’s very important to take in consideration the release date of that dataset

therefore these two datasets will include both advantages :

III.3.1 CSE-CIC-IDS2018 Dataset :

The CSE-CIC-IDS2018 dataset is the product of a collaborative project between

the Communications Security Establishment (CSE) and the Canadian Institute for

Cybersecurity (CIC). It was created using a systematic approach based on the no-

tion of profiles to generate comprehensive cybersecurity data. The dataset provides

detailed descriptions of various intrusions, along with abstract distribution models

for applications, protocols, and lower-level network entities. It encompasses seven

different attack scenarios: Brute-force, Botnet, DoS, DDoS, Web attacks, and infil-

tration of the network from inside [48]. The CSE-CIC-IDS2018 dataset comprises

1,482,109 rows and 80 columns (features), spanning a total size of 10 GB. Despite its

vast scale, I utilize a more manageable subset of around 500 MB from this dataset.
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Figure III.1: Diagram of attacks types (CSE-CIC-IDS2018 )

III.3.2 UNSW-NB15 Dataset :

The UNSW-NB15 dataset is a comprehensive collection of network traffic data de-

signed for research in network intrusion detection. Developed by the Cyber Range

Lab of the Australian Centre for Cyber Security (ACCS) in 2015, ths dataset was

updated, the last updated version was released in 2021 it contains 82332 rows and

45 columns. the dataset aims to provide a realistic and challenging benchmark for

evaluating IDS [49]. It includes a variety of contemporary attack types and normal

network behaviors, representing modern network traffic more accurately than prior

datasets such as KDD99.
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Figure III.2: Diagram of attacks types(UNSW_NB15)

III.3.3 Attacks types :

The two datasets includes several different types of modern attacks such as (De-

nial of Service DoS, Exploits, Fuzzers, Generic, Reconnaissance, ShellCode, Worms,

Infiltration, DDos and Botnet ) alongside normal traffic.

1. Reconnaissance: A reconnaissance cyberattack is an initial phase where at-

tackers gather information about a target system or network to identify vulner-

abilities. This includes activities like network scanning and social engineering.

The data collected helps plan more targeted and effective future attacks [49].

2. Backdoor: A backdoor attack involves inserting a hidden malicious mecha-

nism into a system, allowing unauthorized access or control, often bypassing

normal authentication procedures [50].
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3. DoS: A Denial of Service (DoS) attack is an attempt to make a machine or

network resource unavailable to its intended users by temporarily or indefinitely

disrupting services of a host connected to the internet [49].

4. DDoS: A distributed denial-of-service DDoS attack is initiated by a vast

array of malware-infected host machines controlled by the attacker. These are

referred to as “denial of service” attacks because the victim site is unable to

provide service to those who want to access it. [51]

5. Botnet: A botnet refers to a group of computers infected with malware and

controlled by a malicious actor. The term botnet is a combination of robot and

network, each infected device is referred to as a bot. Botnets can be designed

to perform illegal or malicious tasks, including sending spam, stealing data and

DDoS attacks. [52]

6. Exploits: An exploit is a piece of code or a sequence of commands that takes

advantage of a vulnerability or bug in a software application, operating system,

or hardware device to cause unintended or unanticipated behavior, often to gain

unauthorized access or elevate privileges [49].

7. Worms: A type of malicious software that self-replicates and spreads across

computers and networks without needing to attach to a host program. They

exploit vulnerabilities in operating systems or applications to propagate, often

causing widespread disruption and damage [49].

8. Shellcods: Shellcodes are small pieces of code used as payloads in the ex-

ploitation of software vulnerabilities. Typically written in assembly language,

they are executed by an attacker to gain control of a compromised system [49].

9. Infiltration: An infiltration cyberattack from inside involves a malicious

actor gaining unauthorized access to a system or network from within the
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organization. This can be achieved through compromised employee credentials,

insider threats, or exploiting internal vulnerabilities [48].

10. BruteForce: A brute force attack is a hacking method that uses trial and

error to crack passwords, login credentials, and encryption keys. It is a simple

tactic for gaining unauthorized access to individual accounts and organizations’

systems and networks. The hacker tries multiple usernames and passwords,

often using a computer to test a wide range of combinations, until they find

the correct login information [53].

III.4 Preprocessing Steps

Effective preprocessing of the network and host datasets is done using the following

steps:

1. Transform Categorical Values into Numerical: Convert all categorical

values into numerical representations using one-hot encoding.

2. Handling Missing Values: Identify and address any missing values in the

dataset by imputing with mean or median values, or by removing rows or

columns with substantial missing data.

3. Normalize Data: Standardize the dataset using StandardScaler to ensure all

features have a consistent scale, enhancing the model’s performance.

4. Splitting the Data: Divide the dataset into 80% for training and 20% for

testing to train and fine-tune the model.

III.5 Metrics used

In ML, the evaluation of model performance is contingent upon the utilisation of

key metrics, including accuracy, recall, precision, F1-score and confusion matrix.

38



Chapter III. IMPLEMENTATION AND RESULTS

These metrics serve to assess the model’s capacity to predict outcomes in binary

classification tasks, thereby offering indispensable insights into its efficacy.

1. Accuracy the proportion of correctly predicted instances (both true positives

and true negatives) among the total number of instances evaluated [54]. Math-

ematically, accuracy is expressed as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(III.1)

The number of Correct prediction is referd to TP (True Positive) plus TN

(True Negative), and the Total Number of predection is referd to as TP plus

TN plus FP (False Positive) plus FN (False Negative).

2. Recall (sensibility) It is the proportion of correctly classified positive cases

to the total of positive cases that are correctly classified and negative cases

that are incorrectly classified [55].

Recall =
TP

TP + FN
(III.2)

3. Precision It is the proportion of correctly classified positive cases to the total

of the positive cases that are correctly and incorrectly classified [55].

Precision =
TP

TP + FP
(III.3)

4. F1-score It establishes the model’s accuracy for each class [56].

F1-score =
2 · precision · recall
precision + recall

(III.4)

5. Confusion Matrix A confusion matrix showed in table III.1 is a table that vi-

sualizes the performance of a ML model by summarizing the number of correct
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and incorrect predictions made across classes. It compares predicted values

with actual values to show the model’s accuracy in classification tasks [57].

True Labels Predicted
Positive Negative

Positive TP: When a real Attack is correctly
predicted

FP: When a real Attack is wrongly
predicted

Negative FN: When a fake Attack is wrongly
predicted

TN: When a fake Attack is correctly
predicted

Table III.1: Confusion matrix parameters

III.6 Algorithms Used

This section outlines the algorithms used for training, detailing the steps involved in

model training, as well as the functions and parameters utilized in the implementa-

tion of the models.

1. XGBoost (Extreme Gradient Boosting) : XGBoost, a supervised learning

algorithm developed by Chen and Guestrin in 2016, represents an efficient and

scalable implementation of the gradient boosting framework. Widely utilized

for regression, classification, and ranking tasks, its performance and speed have

made it a popular choice in ML competitions and applications [36]. During the

application of the XGBoost model on the dataset, several key functions and

parameters were utilized, including:

(a) Train and Validate XGBoost Model: initiate XGBoost classifier

giving it multi-class logarithmique loss as as value for evaluation metric

parameter, setting 42 as the random seed for reproducibility, and 100 the

number of trees in the ensemble with 3 as maximum depth for each tree,

then train the model with the model fit function.

(b) Predict on the Test Set: Use the model that have been trained pre-

viously to make predictions on the test data, using the predict function
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and giving it test data.

(c) Evaluate the Model: 4 metrics were calculated to evaluate the model

Accuracy, Precision, Recall and F1-Score.

2. ANN (Artificial Neural Networks): Artificial Neural Networks ANN are

computational models inspired by the human brain’s structure and function.

They are designed to recognize patterns, learn from data, and make decisions,

consist of interconnected layers of nodes, or "neurons, " each capable of per-

forming simple computations. [58] in the process of applying the ANN model

on the dataset several functions and parameters used for:

(a) Creating the model: Sequential functions to create sequential model

and Dense functions to have fully connected layer. For both datasets

UNSW_NB and CSE-CIC-IDS2018, three hidden layers were defined,

containing 128, 64, and 32 neurons respectively, each using the ReLU

activation function. For the output layer, the sigmoid activation function

was chosen to perform binary classification.

(b) Compiling the Model: Using the model compile function loaded with

the optimizer adam, binary crossentropy for the loss parameter and ac-

curacy used as matrics.

(c) Training the Model: using the model fit function that include trainig

data as parameter, the batch size was set for 64 and there were 30 epoch

to complete.

(d) Evaluating the Model: computing the metrics including accuracy pre-

cesion recall and f1-score using the testing and predicted parameters.
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III.7 Results and discussion:

In this subsection, the results of various metrics evaluated on different models using

different datasets are presented.

III.7.1 Evaluation of Key Metrics:

The table III.2 presents the results obtained from our experiment, which utilized two

different datasets, UNSW-NB15 and CSE-CIC-IDS2018 . by applying two different

AI models.

N° Model Datasets Accuracy Precision Recall F1-Score

01 XGBoost UNSW-NB15 0.97 0.98 0.97 0.97

02 XGBoost CSE-CIC-
IDS2018

0.93 0.94 0.93 0.93

03
ANN UNSW-NB15 0.96 0.97 0.96 0.96

04
ANN CSE-CIC-

IDS2018
0.95 0.94 0.91 0.92

Table III.2: Table of results

the first model is the ML model XGBoost, and the second DL model ANN. The

performance of these models was evaluated using various metrics including accu-

racy, recall, precision, F1-score and confusion matrix. Both models demonstrate

high accuracy across the datasets, indicating their reliability in making correct pre-

dictions, with XGBoost slightly outperforming ANN on the UNSW-NB15 dataset.

Precision, which measures the accuracy of positive predictions, is marginally higher

for XGBoost compared to ANN on both datasets, suggesting XGBoost is better at

minimizing false positives. Recall, which assesses the ability to correctly identify

all positive instances, is similar for both models on the CSE-CIC-IDS2018 dataset.
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However, XGBoost has a slightly higher recall on the UNSW-NB15 dataset, indi-

cating better performance in identifying actual positives (malicious traffic). The

F1-Score, representing a balance between precision and recall, shows XGBoost has

a slight edge over ANN on both datasets, particularly on the UNSW-NB15 dataset,

highlighting its better overall balance between precision and recall.

III.7.2 Confusion matrix:

This subsection contains an analysis of the performance of two machine learning

models: XGBoost and ANN, evaluating their ability to correctly classify normal

and malicious traffic based on their respective confusion matrices.

((a)) XGBoost ((b)) ANN

Figure III.3: Confusion matrix of models applied on (UNSW_NB15)

43



Chapter III. IMPLEMENTATION AND RESULTS

Figure III.4: Confusion matrix XGBoost/ANN (CSE-CIC-IDS2018 )

1. XGBoost Model Performance:

The XGBoost model as illustrated in Figure III.3 demonstrates varying per-

formance across different datasets. On the UNSW-NB15 dataset, it accu-

rately identified 10,905 instances of normal traffic, highlighting its proficiency

in benign traffic detection. However, it misclassified 360 instances of malicious

traffic as normal, indicating potential challenges in distinguishing certain types

of attacks.

Conversely, when applied to the CSE-CIC-IDS2018 dataset, the XGBoost

model exhibited robust performance metrics. It correctly classified 81,528 in-

stances of malicious traffic and 74,019 instances of Normal traffic, demonstrat-

ing its effectiveness in detecting attacks. Nevertheless, the model encountered

5,123 false positives and 6,453 false negatives, reflecting the dataset’s com-

plexity in managing accurate classifications across both Normal and malicious

traffic.
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1. ANN Model Performance:

Comparatively, the ANN model, depicted in Figure III.4, demonstrated con-

sistent performance across both datasets. On the UNSW-NB15 dataset, it

accurately predicted 23,499 out of 25,062 attacks and correctly identified

9,606 instances of normal traffic. This high accuracy underscores the ANN

model’s capability in distinguishing between benign and malicious traffic, mak-

ing it suitable for reliable traffic classification tasks.

Similarly, on the CSE-CIC-IDS2018 dataset, the ANN model demonstrated

strong predictive power. It correctly classified 83,883 instances of malicious

traffic and 71,557 instances of benign traffic. Despite encountering 8,915

false positives and 2,768 false negatives, the model maintained robust perfor-

mance in accurately identifying malicious activities, reflecting its adaptability

to varying dataset characteristics and complexities.

III.7.3 SHAP Explanation:

Explanation on how a SHAP Beeswarm Plot Works:

The graph produced by the SHAP method can be interpreted as follows [59] :

Features on the Y-Axis: Each row corresponds to a feature in the dataset.

SHAP Values on the X-Axis: The position on the X-axis indicates the impact

of the feature on the model’s prediction. Values to the right of the center represent

positive SHAP values, which tend toward the anomaly class, while values to the left

represent negative SHAP values, which tend toward the normal class.

Color Gradient: The color represents the feature value (usually from low to high).

Typically, blue indicates low feature values, and red indicates high feature values.

Density of Points: Each dot represents a single prediction (or instance). The

density of points (thickness of the swarm) indicates how frequently certain SHAP

values occur for that feature.

Interpretation: Features with wider swarms or more spread out points have a
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larger impact on the model’s predictions. The color distribution within a feature’s

row shows how different values of that feature contribute to the prediction.

((a)) XGBoost ((b)) ANN

Figure III.5: SHAP Value impact on model output for the (UNSW_NB15)

1. SHAP Beeswarm Plot Observation for UNSW_NB15

The Figure III.5 illustrates that feature ct_dst_src_ltm (count of destina-

tion and source in the last time window) represents the number of times a spe-

cific source and destination pair has communicated within a given time frame,

it exhibits a wide range of SHAP values, highlighting its strong importance for

both XGBoost and ANN model. low ct_dst_src_ltm values might reflect

unusual patterns in destination-source connections over a long-term period, of-

ten signaling potential security threats such as scanning attack due to repeated

or persistent connections from the same source to various destinations.

The sttl feature shows a significant impact on the XGBoost model predictions,

the sttl represents the source time-to-live (TTL) value of packets sent by the
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source during a communication session. This metric is useful for identifying

patterns in network traffic and detecting malicious activities. For instance,

TTL-based attacks, where attackers manipulate the TTL values to evade de-

tection or map network structures, can be detected by monitoring unusual

patterns in TTL values. An unusually consistent or deviant TTL value from

the source can indicate suspicious activities, such as packet spoofing or recon-

naissance efforts by an attacker trying to map out the network topology.

The feature dttl represents the difference in the TTL values between packets

sent and received during a communication session. the SHAP plot of III.5

shows that a high value for dttl indicates an attack ,such as TTL spoofing,

where attackers alter TTL values to mislead network defenses or trace routing

paths.

The feature swin represents the TCP window size offered by the source during

a communication session, in the SHAP plot swin shows a significant impact on

the ANN model prediction, a high value of the feature increase the probability

of attack classification, like backdoor attack by using TCP window sizes to

communicate with a backdoor in a stealthy manner, avoiding detection by

standard network monitoring tools.
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((a)) XGBoost ((b)) ANN

Figure III.6: SHAP Value impact on model output for the (CSE-CIC-IDS2018)

2. SHAP Beeswarm Plot Observation for CSE-CIC-IDS2018

Figure III.6 illustrates the most important features that impact the predic-

tions of the ANN and XGBoost models, along with their respective values, as

indicated in the following.

Fwd Seg Size Min: (Minimum Forward Segment Size) represents the smallest

segment size observed in forwarded packets. High values on the right side of

the SHAP plot for XGBoost and ANN indicate a significant impact on the

model’s output, often signaling malicious activities. This utilization of small

segment sizes in forwarded packets, potentially employed to evade detection by

transmitting minimal data per packet, this tactic frequently associated with

DoS or DDoS cyber attacks.

Init Fwd Win Byts: (Initial Forward Window Bytes) refers to the initial size

of the forward window in bytes, which indicates the size of the send window in
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TCP connections. High values observed on the right side of the XGBoost plot

and ANN plot suggest a potential association with DoS attacks, characterized

by using large window bytes to interrupt communications.

Fwd Pkt Len Std: (Forward Packet Length Standard Deviation) This fea-

ture represents the standard deviation of the lengths of packets in the forward

direction within a flow it observed has high values in the right of ANN and XG-

Boost plot in this situation represent an attack. In network traffic analysis, it

provides insights into the variability of packet sizes being sent from the source

to the destination. The variability in packet lengths can be due to different

responses from the target system as the attacker tries different credentials this

can be happen by bruteForce attack.

Dst Port: (Destination Port) Significant for specific port numbers, it has low

values in the left side of the ANN and XGBoost plot that indicate for normal

traffic.

III.7.4 LIME Explanation:

To comprehend the model’s classification for the given instance, begin by examining

the prediction probabilities. Each feature detailed in the table possesses a value

pertinent to the data point under analysis. The adjacent bar chart illustrates the

extent to which each feature influences the prediction: blue bars signify contributions

towards a "Normal" classification, whereas orange bars denote contributions towards

an "Attack" classification.
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1. For UNSW_NB15:

Figure III.8 and III.7 below shows us the Tabular LIME plot for two different

models: XGBoost (a) and ANN (b). Both models are applied to the same

instance from the UNSW-NB15 dataset to predict whether it is a normal or

an attack instance. Let’s delve into the specifics of each plot and observe the

key differences and similarities.

Figure III.7: LIME Explanation Prediction Probabilities for ANN (UNSW-NB15)
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Figure III.8: LIME Explanation Prediction Probabilities for XGBoost (UNSW-
NB15)

XGBoost Model

The XGBoost model relies heavily on sttl ≤ 62.00 and ct_dst_sport_ltm

≤ 1.00 for its decision, with these features having the highest weights towards

classifying the instance as normal.

ANN Model

The ANN model identifies is_sm_ips_ports (indicates if the source and

destination IP addresses and ports belong to the same subnet) ≤ -0.11 as

the most significant feature pushing towards the attack classification, however

the model still classify as normal, that goes for the other features like Sttl,

ct_dst_sport_ltm represents the count of connections from a specific source

port to a particular destination over the last time window and ct_state_ttl

which represents the count of connections in a specific state with a particular
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time-to-live (TTL), there impact collected impact kept the feature get classified

as normal.

2. For CSE-CIC-IDS2018:

Figure III.9: LIME Explanation Prediction Probabilities for XGBoost (CSE-CIC-
IDS2018)
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Figure III.10: LIME Explanation Prediction Probabilities for ANN (CSE-CIC-
IDS2018)

The XGBoost model for CSE-CIC-IDS2018 shows features like Fwd IAT Min

(Minimum Forward Inter-Arrival Time) and Idle Min (Minimum Idle Time)

contributing to benign predictions, while URG Flag Cnt (Urgent Flag Count)

indicates malicious activity, with high confidence in benign classification (1.00).

Similarly, the ANN model highlights features such as ECE Flag Cnt (Explicit

Congestion Notification-Echo Flag Count) and RST Flag Cnt (Reset Flag

Count) leaning towards benign predictions, while Init Fwd Win Byts (Initial

Forward Window Bytes) suggests malicious intent, also with high confidence

in benign classification (1.00).
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III.7.5 Discussion

Based on experimentation, it can be concluded that the evaluation metrics for both

ANN and XGBoost models demonstrate remarkably similar performance across two

distinct datasets. Metrics such as accuracy, precision, recall, and F1 score consis-

tently reflect the models’ effectiveness in classifying NIDS and HIDS data into benign

or malicious categories. The SHAP plots for both ANN and XGBoost models reveal

that the impacted features are mostly similar, indicating that both models respond

similarly to these features. This similarity is also observed in the LIME explana-

tions, where the features influencing individual instances are largely the same for

both models. Comparing the results provided by the Local (LIME) and the Global

(SHAP) explanations, it is evident that the features with the highest impact on both

ANN and XGBoost models are generally alike. another thing worth to be mentioned

is that some types of cyberattacks cannot be effectively observed in the plots due to

the scant number of samples in the datasets.

III.8 Conclusion

In this chapter, we implemented the methodology by applying ANN and XGBoost

models to the UNSW_NB15 and CIC-IDS-2018 datasets. We conducted data pre-

processing and evaluated performance using accuracy, precision, recall, and F1 score

metrics. SHAP and LIME were used to interpret model predictions, enhancing trans-

parency. The results highlighted the effectiveness of ANN and XGBoost in different

scenarios and the importance of model interpretability in cybersecurity. Our find-

ings suggest that SHAP and LIME are valuable for improving intrusion detection

systems, indicating areas for further research and development.
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In conclusion, modern technology, particularly AI, ML , DL, XAI, and IDS,

has significantly reshaped various domains, especially cybersecurity. This thesis ad-

dresses the challenge of the "black box" nature of AI and the need to build human

trust in the results generated by these AI models, with a particular focus on IDS.

XAI methods were applied to understand the decisions made by IDS based on ML.

Our contribution includes the use of two different types of datasets, which are rela-

tively new and encompass both NIDS and HIDS traffic. Two different AI methodolo-

gies were utilized: supervised ML XGBoost and supervised DL ANN. Finally, XAI

methods, such as local explanations LIME and global explanations SHAP, were ap-

plied to make AI models more transparent and to understand why IDS make certain

decisions, thereby increasing trust in these decisions.

While this thesis has laid a solid groundwork, several intriguing avenues for fur-

ther research in the domain of XAI remain:

1. Focus on testing models with more diverse and extensive datasets to validate

the generalizability and robustness of results;

2. Developing real-time XAI systems would offer immediate insights into IDS

decisions, enhancing their practical applicability in dynamic environments;

3. Using multiclassification AI models and SHAP for explanation enables us to

identify different types of cyberattacks with enhanced clarity and precision.

This approach allows us to discern specific features and patterns that charac-

terize various cyber threats.
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