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I 

 

ABSTRACT 

 

Audio retrieval based on language allows users to search for audio 

content using natural language queries. This technology, which has 

gained popularity in recent years, has numerous applications in fields 

such as entertainment, education, and healthcare. To achieve our goal, 

we conducted several tests and validated our results using a phonetic 

subtitle dataset, converting the sentences into vectors using sBert. We 

extracted log mel spectrograms from the corresponding audio files. Our 

analysis was further deepened by applying a convolutional neural 

network (CNN) architecture to extract features from the log mel 

spectrograms. We then calculated the similarity with subtitles using the 

cosine metric. This research underscores the potential for enhanced 

audio retrieval systems, paving the way for more intuitive and effective 

methods for accessing audio information.  

 

Keywords: Language-based audio retrieval, natural language 

queries, log mel spectrogram, sBert   
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RÉSUMÉ 

 

La récupération audio basée sur la langue permet aux utilisateurs 

de rechercher du contenu audio en utilisant des requêtes en langage 

naturel. Cette technologie, qui a gagné en popularité ces dernières 

années, trouve de nombreuses applications dans divers domaines tels 

que le divertissement, l'éducation et la santé. Pour atteindre notre 

objectif, nous avons mené plusieurs tests et validé nos résultats en 

utilisant l'ensemble de données de légende phonétique, convertissant les 

phrases en vecteurs à l'aide de sBert. Nous avons extrait les 

spectrogrammes log mel des fichiers audio correspondants. Notre 

analyse a été approfondie en appliquant une architecture de réseau de 

neurones convolutifs (CNN) pour extraire les caractéristiques des 

spectrogrammes log mel. Nous avons ensuite calculé la similarité avec 

les sous-titres en utilisant la métrique du cosinus. Cette recherche 

souligne le potentiel des systèmes de récupération audio améliorés, 

ouvrant la voie à des méthodes plus intuitives et efficaces pour accéder 

à l'information audio. 

 

Mots-clés : Récupération audio basée sur la langue, requêtes en 

langage naturel, spectrogramme log mel, sBert  
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 ملخص

 

تتيح استرجاع الصوت بناءً على اللغة للمستخدمين البحث عن المحتوى الصوتي 

باستخدام استفسارات باللغة الطبيعية. هذه التقنية، التي اكتسبت شعبية في السنوات الأخيرة، 

والتعليم والرعاية الصحية. لتحقيق هدفنا،  لها العديد من التطبيقات في مجالات مثل الترفيه

أجرينا عدة اختبارات وحققنا نتائجنا باستخدام مجموعة بيانات العناوين الصوتية، حيث قمنا 

استخرجنا الأطياف الميلية اللوغاريتمية من  .sBert بتحويل الجمل إلى متجهات باستخدام

كبر من خلال تطبيق هيكلية الشبكة العصبية الملفات الصوتية المقابلة. تم تعميق تحليلنا بشكل أ

لاستخراج الميزات من الأطياف الميلية اللوغاريتمية. ثم قمنا بحساب  (CNN) الالتفافية

التشابه مع العناوين باستخدام مقياس جيب التمام )الكوساين(. هذا البحث يؤكد على الإمكانيات 

أكثر فعالية وسهولة للوصول إلى لتحسين نظم استرجاع الصوت، مما يمهد الطريق لطرق 

 المعلومات الصوتية

 

الكلمات الرئيسية: ا استرجاع الصوت بناءً على اللغة، استفسارات باللغة الطبيعية، 

 sBertالطيف الميلي اللوغاريتمي، 
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Introduction General 

With the exponential growth of digital media, particularly audio content 

ranging from music and podcasts to spoken-word archives and voice recordings, 

the demand for efficient and accurate audio retrieval systems has surged. Users 

now expect to locate specific audio segments in massive databases swiftly and 

effortlessly. Traditional audio search engines, primarily reliant on keyword-based 

searches or manual tagging, are increasingly inadequate. These conventional 

methods often fall short in capturing the inherent richness and depth of audio 

content. For example, keyword-based searches depend on predefined metadata or 

textual descriptions, which can result in mismatches between the search query and 

the actual content. Additionally, they fail to capture the semantic meaning of 

sound—nuances such as emotions, tone, and context—which are critical for 

meaningful retrieval in domains like music, education, media production, and 

even security. 

Moreover, the inherent characteristics of audio data pose unique challenges 

that are not as prevalent in text-based search systems. Acoustic variability—the 

differences in how audio is produced, recorded, and perceived—compounds the 

difficulty of creating effective search tools. Furthermore, sound is subject to 

subjective interpretation: the same piece of audio can evoke different emotions or 

be understood differently by various listeners. Coupled with the linguistic 

diversity of audio files, where multiple languages or dialects can be involved, it 

becomes clear that a more sophisticated approach is needed. 

In response to these challenges, joint embedding has emerged as a powerful 

technique to improve audio retrieval systems. Joint embedding enables both audio 

content and textual queries to be represented within a shared vector space [1], 

allowing for more accurate matching and deeper semantic understanding. By 

mapping both types of data into a unified space, it becomes possible to assess their 

similarity in a more meaningful way, which can significantly enhance search 

precision. This method does not rely on keyword matching alone but instead 

leverages the underlying content, creating opportunities for better search 

experiences, particularly for applications where nuanced interpretation of sound 

is necessary. 

In this context, our research focuses on developing a high-performing audio 

search engine based on joint embedding techniques. We aim to address the 

limitations of existing systems by proposing a joint architecture that can represent 

audio and text within the same vector space, leading to more accurate retrieval. 
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This work is timely, given the increasing demand for robust search systems in 

industries that rely heavily on multimedia content. 

1. Motivations:  

The principal objective of this research is to design and implement a joint 

embedding architecture—specifically an Encoder-Encoder model—that 

effectively represents both audio data and textual queries within a common vector 

space. This unified representation will enable more precise matching between 

audio content and text, overcoming the aforementioned challenges associated 

with acoustic variability and subjective interpretation. Moreover, we aim to 

develop optimization mechanisms to enhance the similarity between the 

vectorized representations of audio and text, thus improving the overall accuracy 

and relevance of the search results. 

 

2. Objectives: 

The principal objective of this research is to develop a joint embedding 

architecture (Encoder-Encoder) that can efficiently represent audio data and 

textual queries within a unified vector space. Furthermore, it is imperative to 

devise optimization mechanisms that enhance the similarity between audio and 

text representations, thereby facilitating more accurate and precise audio retrieval. 

3. Thesis Organization: 

 This thesis is organized as follows: 

 Chapter 1: This chapter provides a comprehensive overview of the 

fundamental principles of audio signal processing and natural language 

processing, along with a review of related work in the field. 

 Chapter 2: This chapter outlines our proposed approach, including a 

detailed description of the architectures and methodologies employed. 

 Chapter 3: This chapter presents the empirical results of our research, 

offers a thorough analysis of the findings, and discusses potential 

directions for future work. 
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Chapter 1: fundamental concepts 

1.1 Introduction 

In this chapter, we will explore two significant areas of digital signal 

processing: audio processing and text processing. These domains involve the use 

of algorithms and techniques to manipulate and analyze data, but the types of data 

and applications are different. 

In the first part of this chapter, we will focus on audio processing. We will 

start by discussing the fundamentals of sound waves, audio signals, and sound 

parameters. We will then explore the various features of audio signals and the 

extraction pipeline. Following this, we will delve into the time and frequency 

domains of audio signals, including the Fourier transform and its different forms. 

We will also examine Mel spectrograms and Mel-frequency cepstral coefficients 

(MFCC) as essential features for audio processing. 

In the second part of this chapter, we will concentrate on text processing. 

Specifically, we will address the field of natural language processing (NLP) and 

its various techniques for analyzing and processing textual data. We will explore 

the basics of tokenization, stemming, and lemmatization, as well as techniques for 

handling stop words and text encoding. Additionally, we will discuss the bag-of-

words (BOW) model, TF-IDF, word embeddings, and some popular algorithms 

such as Word2Vec [1], GloVe, BERT [2], and sBERT [3]. 

Overall, this chapter will provide an overview of the fundamental concepts 

and techniques used in both audio and text processing, with a focus on practical 

applications and concrete examples. 

1.2 Pipeline ML(CNN, Autoencoder): 

Deep learning (DL), a significant branch of machine learning (ML) and 

artificial intelligence (AI), has revolutionized the handling of unstructured and 

large datasets, surpassing traditional ML techniques. This advancement has 

profoundly impacted diverse fields such as speech recognition, healthcare, 

autonomous driving, cybersecurity, and predictive analytics. Despite its 

successes, designing effective deep learning models remains challenging due to 

the complexity and dynamic nature of real-world problems. This paper surveys 

various deep learning models, including Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Generative Models, Deep Reinforcement 

Learning (DRL), and Deep Transfer Learning. We explore their structures, 

applications, advantages, and limitations. Additionally, we analyze the 
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performance of six prominent models—CNN, Simple RNN, Long Short-Term 

Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit (GRU), and 

Bidirectional GRU—using the IMDB, ARAS, and Fruit-360 datasets [4]. 

1.2.1 2. Convolutional Neural Networks (CNN): 

Convolutional Neural Networks (CNNs) are a powerful class of deep 

learning models widely used in tasks such as image classification, object 

detection, and speech recognition. CNNs automatically extract features from data 

through convolutional operations, eliminating the need for manual feature 

extraction. Their architecture, inspired by visual perception, includes several key 

components: 

 Convolutional Layer: This layer performs convolution operations using 

learnable kernels to extract features. Lower layers capture basic features 

like edges and textures, while higher layers detect more complex patterns. 

 Pooling Layer: This layer reduces the dimensionality of data through 

operations like Max Pooling or Average Pooling, which helps in reducing 

computational load and preventing overfitting while maintaining 

robustness against distortions. 

 Fully Connected Layer: Positioned at the end of the CNN, this layer 

connects every neuron to all neurons in the previous layer. It flattens the 

output from the convolutional and pooling layers to make predictions or 

classifications. 

1.2.2 3. Autoencoder 

Autoencoders are neural networks designed to learn a compressed 

representation of data through unsupervised learning. They consist of two main 

components: 

 Encoder: Maps input data to a lower-dimensional feature space. 

 Decoder: Reconstructs the original data from this feature space. 

Autoencoders are useful for tasks like dimensionality reduction, feature 

extraction, and anomaly detection. They come in various forms: 

 Regularized Autoencoders: Include models such as Sparse Autoencoder 

(SAE) and Denoising Autoencoder (DAE), which are used for tasks like 

classification and feature learning. 

 Variational Autoencoders (VAE): Employ probabilistic methods to 

generate new data by learning distributions over the latent space. VAEs 
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include an encoder that estimates a posterior distribution and a decoder 

that generates new samples from this distribution, facilitating data 

generation and representation learning. 

1.3 Textual Feature Extraction 

1.3.1 Introduction: 

Text processing involves the systematic manipulation and analysis of textual 

data to extract meaningful insights. This encompasses a variety of techniques for 

extracting, cleaning, transforming, and analyzing text data to uncover 

information, patterns, and trends. Such methods are applied across different 

applications, including natural language processing (NLP). 

1.4 Natural language processing: 

Natural language processing (NLP) [5] encompasses various submodules 

designed to handle different aspects of text and language data. Improved training 

data plays a crucial role, with large datasets from diverse sources like social media 

and online texts enhancing model performance in understanding and generating 

natural language. Multilingual and cross-lingual NLP research focuses on 

leveraging vast amounts of multilingual data to improve tasks such as information 

retrieval and machine translation. Domain-specific NLP utilizes large datasets 

from specialized fields, such as medical or legal texts, to create models tailored 

for specific domains, improving precision in those areas. 

Ethical considerations are also becoming increasingly important, addressing 

biases in training data and ensuring fair, inclusive NLP applications. Future 

research will likely explore how to handle these challenges and incorporate 

principles of accountability and transparency. 

Class-based language modeling (CBLM) improves language modeling 

efficiency by grouping words into classes based on semantic or syntactic 

similarity, reducing model complexity and enhancing generalization. Techniques 

like unsupervised clustering methods are used to classify words, which helps in 

handling out-of-vocabulary terms and capturing broader language patterns. 

1.4.1 Key NLP techniques include: 

 Machine Translation: Automatically translating text between 

languages, a complex task requiring deep semantic and syntactic 

understanding. 
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 Discourse Analysis: Examining text to understand relationships 

between segments, such as identifying speech acts and discourse 

structures. 

 Morphological Analysis: Breaking down words into their morphemes, 

crucial for languages with complex word structures. 

 Natural Language Generation and Understanding: Converting data 

into human-readable language and formalizing it for computational 

purposes. 

 Named Entity Recognition: Identifying and classifying entities like 

people, organizations, and locations within text. 

 Text Parsing: Analyzing grammatical structures of sentences, often 

facing challenges with ambiguities. 

 Speech Recognition: Converting spoken language into text, a complex 

task that involves segmenting continuous speech. 

 Sentiment Analysis: Determining the sentiment expressed in text, 

often used in marketing and social media analysis. 

 Word Boundary Detection: Identifying word boundaries in languages 

with or without explicit delimiters. 

 Word Sense Disambiguation: Determining the correct meaning of a 

word based on context. 

1.4.2 Advanced NLP strategies include: 

 Named Entity Recognition (NER): Identifying and classifying entities in 

text using deep learning methods. 

 Attention Mechanisms: Enhancing model performance by focusing on 

relevant parts of the input sequence. 

 Neural Machine Translation (NMT): Using deep learning for more 

accurate and fluent translations. 

 Transfer Learning: Leveraging pre-trained models for specific tasks, 

improving performance on smaller datasets. 

1.4.3 Conclusion and Recommendations 

NLP, a field bridging linguistics, artificial intelligence, and computer 

science, focuses on enabling effective communication between computers and 

human language. Current research emphasizes unsupervised and semi-supervised 

learning methods. Future work should explore advanced transformer models like 
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BERT for contextual understanding and LSTM networks for capturing sequential 

patterns in text. 

 

1.5 Audio Feature Extraction 

1.5.1 Introduction: 

As communication technologies have evolved, the role of sound in data 

processing has become increasingly significant. Sound encompasses a wide range 

of sources, including musical instruments, human speech, environmental noises, 

and other emitted sounds. These diverse audio sources add complexity to the data, 

with background noise often obscuring key information. This complexity 

underscores the importance of effective voice processing techniques. 

This chapter explores various aspects of audio processing. We begin by 

examining the nature of sound and waveforms, followed by an exploration of 

sound parameters and the analog-to-digital conversion process. We will then 

delve into audio features within both the temporal and frequency domains before 

discussing sound visualization and feature extraction pipelines. 

1.5.2 Sound and Waveforms: 

Sound originates from the vibrations of objects, which create oscillations that 

interact with surrounding air molecules. These interactions cause variations in air 

pressure, forming sound waves. Waveforms graphically represent these variations 

over time, providing insights into the frequency, intensity, and duration of the 

sound. Unlike electromagnetic waves, which can travel through a vacuum, sound 

waves require a medium like air to propagate. 

1.5.3 Sound Parameters: 

Key sound parameters include: 

 Period (T): The interval between consecutive peaks or troughs of a sound 

wave. 

 Frequency (f): The reciprocal of the period, measured in Hertz (Hz). 

Higher frequencies correspond to higher pitches. Frequencies are 

perceived similarly if they differ by a factor of 2. 

 Pitch: A logarithmic measure of frequency perception. The octave is 

divided into 1200 cents, and a pitch difference of 10-25 cents is 

perceptible. 
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 Amplitude (A): Indicates the extent of pressure variation from zero, with 

larger amplitudes representing louder sounds. 

 Phase (φ): Represents the phase difference between two waveforms of 

the same frequency, assessing the frequency shift or cycle discrepancy 

between signals. 

 Sound Power: The rate at which energy is emitted by a sound source in 

all directions, measured in Watts (W). 

 Sound Intensity: The power per unit area, measured in Watts per square 

meter (W/m²). Intensity level is represented in decibels (dB), where a 3 

dB increase signifies a doubling of intensity. The decibel scale is given by: 

dB(I) = 10 * log10(I/I₀), with I₀ = 10⁻¹² W/m². 

 Threshold of Hearing: The minimum sound intensity detectable by the 

human ear. 

 Threshold of Pain: The sound intensity levels that cause discomfort or 

pain. 

1.5.4 Audio Features: 

Audio features describe various aspects of sound that are useful for 

intelligent audio systems. Features can be categorized based on their level of 

abstraction, temporal scope, musical relevance, signal domain, and machine 

learning applications. They are generally divided into two categories: temporal 

and spectral features. 

 

1.5.4.1 Temporal Domain Features: 

Temporal domain features analyze audio signals over time. Key features 

include: 

 Amplitude Envelope (AE): The maximum amplitude within a frame, 

which gives an indication of intensity and sensitivity to outliers. AE is used 

for music genre classification and onset detection. 

 Root Mean Square (RMS) Energy: Represents the average quadratic 

energy within a frame, indicating volume with reduced sensitivity to 

outliers compared to AE. RMS is applied in audio segmentation and genre 

classification. 
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 Zero-Crossing Rate (ZCR): Counts the number of times a signal crosses 

the zero-axis, useful for speech recognition and music processing, 

particularly for distinguishing percussive sounds and estimating pitch. 

1.5.4.2 Spectral Domain Features: 

Spectral domain features involve analyzing the frequency composition of 

audio signals. Key features include: 

 Fourier Transform (FT): Converts a time-domain signal into its frequency 

components, represented by amplitude and phase. The FT output 

includes Fourier coefficients that provide information about the 

presence of specific frequencies in the signal. 

 Inverse Fourier Transform (IFT): Reconstructs the original signal by 

summing sinusoidal components weighted by their amplitude and phase. 

 Discrete Fourier Transform (DFT): Converts continuous signals into 

discrete frequency components using a finite number of samples. The 

DFT reveals redundancy due to symmetry and typically focuses on 

frequencies up to the Nyquist frequency. 

 Short-Time Fourier Transform (STFT): Analyzes the frequency content of 

a signal over time by applying the Fourier Transform to overlapping short 

segments of the signal. 

 Mel Spectrogram: Represents audio frequency content using the Mel 

scale, which aligns with human auditory perception. This involves 

transforming frequencies into Mel scale and calculating the Mel 

spectrogram. 

 Mel-Frequency Cepstral Coefficients (MFCCs): Extract key features 

relevant to human auditory perception by applying Mel scaling to the 

cepstrum and performing a discrete cosine transform. 

 Band Energy Ratio (BER): Measures the distribution of energy across 

different frequency bands, providing insights into the relative energy 

contribution of various frequency regions. 

 Spectral Centroid (SC): Estimates the "center of gravity" of a signal's 

spectrum, offering information on spectral characteristics and balance. 

 Bandwidth (BW): Measures the spread of frequency content in a signal's 

spectrum, indicating the range of frequencies present. 
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1.5.5 Sound Visualization (Spectrograms) 

Spectrogram visualization involves creating a matrix by squaring the 

amplitude of the Short-Time Fourier Transform (STFT). Unlike the complex 

numbers in the original STFT, this matrix uses real numbers. Spectrograms are 

essential in audio AI applications as they provide crucial features for algorithmic 

analysis. In a spectrogram, the x-axis represents discrete time intervals, while the 

y-axis shows frequency components. This time-frequency representation allows 

for observing how different frequency components change over time. 

1.5.6 Feature Extraction Pipeline 

A. Temporal Domain Feature Pipeline: Starts with analog sound, performs 

ADC (sampling and quantization), and digitizes the sound. The signal is divided 

into frames to obtain images. Temporal domain features are calculated for each 

frame, followed by aggregation (mean, median, or Gaussian Mixture Models) to 

produce a feature vector or matrix for the entire sound. 

B. Spectral Domain Feature Pipeline: Transitions from the time domain to 

the frequency domain using the Fourier Transform. After ADC and framing, 

windowing is applied to reduce spectral leakage, with overlapping frames 

addressing signal loss. The Fourier Transform is then applied, and features are 

calculated and aggregated to obtain feature vectors or matrices. 
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1.6 Related Works 

1.6.1 Introduction: 

Audio retrieval using human-generated subtitles is an emerging research area 

with potential applications across various fields. Key challenges in this domain 

include developing accurate and reliable subtitling systems and effective methods 

for aligning subtitles with the corresponding audio content. Machine learning 

algorithms have been investigated to accurately match subtitles to audio despite 

language, dialect, and tone variations, while natural language processing 

techniques have been explored to enhance subtitle matching accuracy. Despite 

notable advancements in recent years, many research questions and challenges 

remain unresolved. The following sections will review relevant studies in this 

field and discuss recent developments and future research directions. 

1.6.2 CD-JKU [6]:  

The study presents an innovative text-to-audio retrieval system that utilizes 

pretrained text and spectrogram transformers. This system maps audio recordings 

and textual descriptions into a unified space where related items are positioned 

close to one another. The authors highlight two critical factors for retrieval 

efficacy: the use of a self-attention-based audio encoder for embedding and the 

incorporation of extensive human-generated and synthetic datasets during pre-

training. They also explored enhancing ClothoV2 captions with additional 

keywords, which led to slight improvements. Notably, their system achieved first 

place in the 2023 DCASE Challenge, surpassing the existing state-of-the-art 

performance on the ClothoV2 benchmark by 5.6 percentage points in mAP@10. 

Natural language-based audio retrieval focuses on ranking audio recordings 

in relation to textual descriptions. Current approaches typically employ a dual-

encoder framework, which converts both recordings and descriptions into high-

level representations and aligns them within a shared embedding space. Ranking 

is then determined by the proximity between candidate audio recordings and 

textual descriptions within this space. This dual-encoder setup is prevalent in 

audio retrieval systems due to its efficiency in ranking and the advantage of 

utilizing pre-trained models. Typically, CNN architectures pre-trained on 

AudioSet [2] are used for audio encoding, while large transformer models like 

BERT [7] and RoBERTa [8] are employed for text encoding. Recent 

advancements have included the use of WavCaps [9], a large dataset featuring 

synthetic captions, which set a new benchmark in performance on ClothoV2 [10]. 
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The authors’ approach for subtask 6b of the 2023 DCASE challenge builds 

on the dual-encoder method but introduces three significant innovations. First, 

they utilize the PaSST [11] audio spectrogram transformer instead of the 

traditional CNN14 [2] for audio embedding. PaSST [11], which has shown 

superior performance on AudioSet [2] and other benchmarks, includes Patchout 

during training to enhance speed and memory efficiency while also serving as a 

regularizer. This change notably enhances retrieval performance. Second, the 

authors pre-train their models on AudioCaps [12] and WavCaps [9]—large 

datasets with both human-generated and synthetic captions—to address data 

limitations. This pre-training yields considerably improved retrieval results. 

Third, they augment training captions with additional metadata and generate extra 

captions using the GPT-3.5-turbo API (ChatGPT). Although this augmentation 

helps reduce overfitting during fine-tuning, it provides only marginal performance 

gains. The system implementation and the keyword-augmented captions are 

accessible in the authors’ GitHub repository. 

1.6.3 QFORMER [13]:  

The paper provides an overview of the audio retrieval system submitted for 

Task 6B of the DCASE2023 Challenge, which focuses on retrieving audio based 

on natural language queries. The authors' system combines a frozen pretrained 

audio encoder with a Qformer text encoder. For the contrastive learning 

component, the system leverages paired data from the AudioCaps and Clotho 

datasets, following the methodology of BLIP-2. The process involves encoding 

natural language queries using the text encoder, then retrieving the top-k audio 

embeddings. These embeddings are matched with the query text to form k data 

pairs, which are then reranked based on the model's matching performance to 

produce the final retrieval results. The system achieved a mean Average Precision 

(mAP) of 26.47% and a 16.02% recall at 1 (R@1) on the Clotho test set, showing 

improvements over the baseline system, which had an mAP of 22.2% and an R@1 

of 13.0%. 

Task 6B of the DCASE2023 challenge addresses the task of audio retrieval 

using natural language [14], a significant area in cross-modal research. Progress 

in this task is anticipated to improve the understanding of acoustic scenes and 

enable innovative manipulation of audio signals, with implications for fields such 

as audio content creation and acoustic scene analysis. The authors utilize the 

BEATs model [15] as their audio feature extractor. BEATs, a pre-trained model 

based on self-supervised learning, employs a discrete Tokenizer and a feature 

extractor guided by Masked Audio Modeling and is used for tasks such as 

classification. 
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The advent of CLIP [16] has greatly advanced the development of visual-

language multimodal models, with subsequent models like BLIP-2 [17] extending 

this advancement to larger language models. In the realm of audio-related 

multimodal research, models such as AudioClip [18], Wav2Clip [19], and CLAP 

[20] have applied CLIP-style contrastive learning techniques to audio signals. The 

authors' approach incorporates contrastive learning of audio and text using the 

Qformer and its multitask training methodology introduced by BLIP-2 [21]. The 

Qformer, a transformer encoder akin to BERT, processes both individual audio 

and text inputs to generate single-modal representations and can also produce 

multimodal embeddings to assess the compatibility between audio and text. 

1.6.4 IRIT-UPS [22]:  

The provided text offers an in-depth overview of the systems submitted for 

tasks 6a, "Automated Audio Captioning" (AAC), and 6b, "Language-Based 

Audio Retrieval" (LBAR) in the DCASE Challenge 2023. For task 6a, the authors 

employed four distinct submission strategies. The first utilized a conventional 

CNN14 encoder paired with a transformer decoder to generate captions for audio 

content. In the second approach, they replaced the CNN14 encoder with a 

ConvNeXt [23] model to improve audio representation. The third submission 

incorporated additional training data and introduced a novel task embedding 

technique to differentiate between various writing styles and audio types. The 

fourth approach involved an ensemble method that combined five models, each 

trained with different seeds, to enhance caption quality. 

For task 6b, the authors adapted their AAC models and proposed a novel 

approach that leverages the AAC system's loss function to perform language-

based audio retrieval. This strategy was implemented without requiring additional 

training, showcasing an efficient way to repurpose AAC models for LBAR tasks. 

The authors report that their most successful AAC and LBAR systems achieved 

a SPIDErFL score of 0.320 and an mAP@10 score of 0.269, reflecting significant 

improvements of 22.6% and 21.2% over the baseline scores for AAC and LBAR, 

respectively. 

The AAC task aims to generate captions that succinctly describe audio 

content, relationships, and attributes within a single sentence. In contrast, the 

LBAR task is focused on retrieving specific audio recordings from a database 

based on free-form textual descriptions. The DCASE2023 challenge presented an 

opportunity to evaluate systems addressing these multimodal tasks, and the 

authors aimed to develop a unified AAC model capable of handling both tasks 

effectively. 
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The AAC system employed a standard encoder-decoder architecture, 

utilizing a pre-trained encoder for audio modeling and a transformer decoder for 

caption generation. Enhancements to this system included additional data from 

captioning datasets, various data augmentation techniques, improvements in beam 

search for inference, and the integration of a task embedding to assist with caption 

generation across different datasets. For the LBAR task, the authors proposed a 

novel strategy that utilizes the AAC model’s loss function to rank audio files in 

response to textual queries. The source code for these systems is expected to be 

made available on GitHub following the conclusion of the challenge. 

The remainder of the text details the systems and experimental setup used by 

the authors, presents and discusses the results, and concludes with final remarks 

on their findings and contributions to the field. 

1.7 Overview 
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1.8 Conclusion 

This chapter has provided a thorough examination of audio processing, text 

processing, and related research. It began with an introduction that set the stage 

for the subsequent discussions. The first section focused on audio processing 

techniques, while the second section explored text processing within the context 

of natural language processing (NLP). The final section reviewed various studies 

and applications in the field. Overall, this chapter has established a robust 

foundation for further investigation into the intriguing domains of audio and text 

processing. 

  



15 

 

Chapter 2: Proposed Methodology 

2.1 Introduction 

Audio retrieval with human-written captions is a process that involves 

multiple steps to enable users to search for and retrieve specific audio content 

using written descriptions. In this process, we begin with written text, which 

serves as a search query to retrieve the relevant audio content. 

The first step is to extract features from the written text, which can be 

accomplished through natural language processing techniques. These features 

may include keywords, entities, and other relevant information that can be used 

to identify and retrieve audio content matching the search query. 

Once the textual features are extracted, they are passed to a model trained to 

convert these features into audio features. This is achieved by mapping the text 

features to audio characteristics such as pitch, tone, and rhythm, which are specific 

to the audio content. 

After the audio features are extracted, they are used to synthesize the audio 

content corresponding to the written text query. This process involves converting 

the audio features into audio signals that can be played through speakers or 

headphones, allowing users to hear the audio content that matches their search 

query. 

Overall, audio retrieval with human-written captions is a powerful tool that 

can help users quickly find and access relevant audio content using written 

descriptions. By extracting features from text and mapping them to audio features, 

this process allows users to search for and retrieve audio content in a more 

efficient and accessible manner. 
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2.2 Used Pipeline 

 

Figure 1: Schema of Global Workflow 

The proposed system for text-based audio retrieval operates through a 

structured two-segment process designed to effectively match text queries with an 

audio database. This process is outlined as follows: 

2.2.1 Text Query Processing: 

 Text Encoder: Text queries are processed through SBert (Sentence-BERT), 

which generates 768-dimensional embeddings for each text input. 
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 Dimensionality Reduction: These embeddings are subsequently reduced 

to 300 dimensions using a fully connected layer (FC1) to facilitate 

comparison with audio embeddings. 

2.2.2 2. Audio Database Processing: 

 Audio Feature Extraction: Audio data are converted into 2048-

dimensional feature vectors. 

 Dimensionality Reduction: These feature vectors are then reduced to 300 

dimensions using another fully connected layer (FC2) to match the text 

embeddings. 

2.2.3 3. Similarity Computation: 

Cosine similarity is computed between the 300-dimensional text embeddings 

and the 300-dimensional audio feature vectors to retrieve the most relevant audio 

files based on the text queries. 

2.3 Preprocessing Text 

In the text preprocessing stage, we utilize Sentence-BERT (SBERT) 

embeddings to transform textual data into a numerical format that can be 

efficiently processed by machine learning models. This process involves several 

key steps. 

First, we define global parameters, including the directory where our dataset 

is stored and the specific splits of the dataset we will be working with 

(development, validation, and evaluation). The SBERT model used for generating 

embeddings is the 'all-mpnet-base-v2', which produces 768-dimensional 

embeddings for each text input. 

For each dataset split, we read the corresponding text data from CSV files. 

These files contain the textual information that needs to be embedded. Each text 

entry is associated with a unique identifier (tid). 

As we iterate through the text data, we extract the raw text for each entry and 

use the SBERT model to encode this text into a fixed-dimensional embedding. 

These embeddings capture the semantic meaning of the text, allowing for 

effective downstream processing and analysis. 

The generated text embeddings are stored in a dictionary, with the unique 

identifier as the key and the corresponding embedding as the value. Once all text 

data has been processed, we save the embeddings to a file using the pickle module. 
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This serialized file format ensures that the embeddings can be easily loaded and 

utilized in subsequent stages of our pipeline. 

By preprocessing the text data in this manner, we convert unstructured text 

into a structured numerical format that retains the semantic information necessary 

for effective analysis and model training. 

2.4 Preprocessing Audio 

Preprocessing audio data is a critical step in preparing it for neural network 

analysis. The process involves transforming raw audio signals into a format that 

is more suitable for machine learning models. This section outlines the detailed 

steps involved in preprocessing audio data, focusing on two main tasks: extracting 

log-mel spectrograms and transferring pretrained CNN14 model parameters. 

2.4.1 Log-Mel Spectrogram Extraction 

To effectively preprocess audio data, it is first converted into log-mel 

spectrograms. A log-mel spectrogram is a powerful representation of the audio 

signal, capturing both time and frequency information in a compact form. The 

process involves several key steps: 

 Loading Audio Files: The audio data is organized into different splits, such 

as development, validation, and evaluation sets. Each audio file is 

identified using a unique identifier that maps to its filename. This 

information is stored in a pickle file, which is loaded at the beginning of 

the process. 

 Setting Parameters: Several parameters are defined to control the 

spectrogram extraction process. These include the sample rate, window 

length, hop length, and the number of mel bands. The sample rate 

determines how many samples per second are taken from the audio 

signal. The window length specifies the duration of each segment of the 

audio signal to be analyzed, while the hop length determines the interval 

between successive segments. The number of mel bands defines the 

resolution of the frequency analysis. 

 Generating Mel Spectrograms: The raw audio waveform is transformed 

into a mel spectrogram using the Short-Time Fourier Transform (STFT). 

This step involves segmenting the audio signal into overlapping windows, 

computing the Fourier transform for each window, and mapping the 

resulting frequency bins to the mel scale, which is designed to mimic the 

human ear's perception of sound. 
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 Applying Logarithmic Transformation: To enhance the dynamic range of 

the spectrogram and make it more suitable for neural networks, a 

logarithmic transformation is applied. This converts the linear mel 

spectrogram into a log-mel spectrogram, which emphasizes the lower 

amplitude components and compresses the higher amplitude ones. 

 Saving Spectrograms: The resulting log-mel spectrograms are stored in 

HDF5 files, organized by the dataset splits. Each spectrogram is associated 

with its corresponding audio file identifier, ensuring that the data is well-

structured and easily accessible for subsequent processing. 

2.4.2 Transferring Pretrained CNN14 Model Parameters 

The next step in preprocessing audio data involves utilizing a pretrained 

CNN14 model to enhance feature extraction. This process transfers the knowledge 

gained from a large-scale training on diverse audio data to a custom neural 

network encoder. The steps are as follows: 

 Mapping Parameters: A mapping is created to associate the parameter 

names of the custom encoder with those of the pretrained CNN14 model. 

This ensures that the parameters are correctly transferred to the 

corresponding layers in the custom encoder. 

 Loading Pretrained Parameters: The pretrained parameters of the CNN14 

model, which have been trained on a large audio dataset, are loaded from 

a specified path. These parameters contain valuable information that can 

significantly improve the performance of the custom encoder. 

 Initializing Custom Encoder: A custom CNN14 encoder is initialized with a 

specified output dimension. This encoder is designed to process the log-

mel spectrograms and extract relevant audio features. 

 Transferring Parameters: The pretrained parameters are transferred to 

the custom encoder by copying the state dictionary and mapping the keys 

accordingly. This step ensures that the custom encoder inherits the 

learned features and patterns from the pretrained model. 

 Saving Custom Encoder: The state dictionary of the custom encoder, now 

containing the transferred parameters, is saved to a specified path. This 

enables the custom encoder to be reused for various audio processing 

tasks, leveraging the benefits of the pretrained CNN14 model. 

By following these steps, the audio data is effectively transformed and 

prepared for neural network analysis, ensuring that the models can efficiently 

learn and extract meaningful patterns from the audio signals. 
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2.5 Post processing: 

The post-processing stage in this study is pivotal for evaluating and 

interpreting the performance of the cross-modal retrieval system. This phase 

involves calculating the similarity scores between audio and text data and 

subsequently measuring the effectiveness of these scores in retrieving relevant 

information. The post-processing tasks are primarily focused on two critical 

operations: computing cross-modal similarity scores and evaluating retrieval 

performance metrics. 

2.5.1 cosine measure: 

The cosine similarity measure is a fundamental component of the post-

processing pipeline, employed to quantify the similarity between audio and text 

embeddings. In our approach, we utilize cosine similarity to evaluate the 

relevance of audio-text pairs in the cross-modal retrieval system. 

Computation of Cross-Modal Scores: 

The cosine similarity measure is used to compute the cross-modal scores 

between audio and text features. This process involves encoding both 

modalities—audio and text—using their respective neural network branches. The 

encoded features are then compared using cosine similarity to determine their 

relative similarity. Specifically, each audio feature vector is compared against all 

text feature vectors using cosine similarity, resulting in a score that reflects the 

degree of correspondence between the audio and text data. 

The procedure involves the following steps: 

 Text Encoding: Text data is encoded into feature vectors through a text 

branch of the neural network. These feature vectors represent the 

semantic content of the text. 

 Audio Encoding: Similarly, audio data is encoded into feature vectors via 

an audio branch. These vectors encapsulate the auditory information from 

the audio inputs. 

 Similarity Calculation: Cosine similarity is computed between the audio 

and text feature vectors. This metric quantifies how closely the audio and 

text features align, with higher scores indicating greater similarity. 
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2. Retrieval Metrics Evaluation 

Post similarity computation, retrieval metrics are used to assess the 

performance of the system. The evaluation focuses on two primary aspects: the 

accuracy of retrieval results and the effectiveness of the similarity scores. 

 Retrieval Accuracy: Metrics such as recall and mean average precision 

(mAP) are computed to evaluate how well the system retrieves relevant 

items. Recall metrics assess the proportion of relevant items retrieved at 

various cutoffs (e.g., top-1, top-5, top-10), while mAP provides a measure 

of the average precision across multiple queries. 

 Performance Analysis: The effectiveness of the retrieval system is 

analyzed by comparing the retrieved results against the ground truth. This 

involves measuring how well the system retrieves relevant items and the 

ranking quality of these items. 

The results from these metrics are essential for understanding the 

performance of the cross-modal retrieval system. They provide insights into the 

accuracy of the retrieval process and the effectiveness of the similarity measure 

in distinguishing between relevant and non-relevant items. 

In summary, the post-processing phase, specifically through the cosine 

similarity measure, plays a crucial role in evaluating and fine-tuning the cross-

modal retrieval system. By calculating similarity scores and assessing retrieval 

metrics, we gain valuable insights into the system's performance and its ability to 

effectively match audio and text data. 

2.6 Conclusion 

This chapter has presented the proposed approach for sound retrieval with 

human-written captions. The primary objective was to elucidate each component 

of the architecture employed. The chapter discussed various elements and 

techniques involved in achieving this goal. These included text features, the 

storage of audio in the database, the application of models such as CNN and 

SBERT, and the significance of the loss function. By examining each of these 

aspects, we have established a solid foundation for the subsequent chapters, which 

will delve deeper into the implementation and evaluation of the system. 
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Chapter 3: Achievement 

3.1 Introduction  

This chapter provides a comprehensive overview of the experimental setup 

utilized in our investigation of audio retrieval using human-written captions. In 

the previous chapter, we outlined our approach to this task. Here, we delve into 

the tools employed in the development of our audio retrieval system, which 

encompasses a diverse range of technologies. Additionally, we offer a detailed 

description of our dataset, including the sources and characteristics of the audio 

and captions used in our experiments. Furthermore, we describe the procedure 

followed to analyze and discuss the results of our experiments, which involved 

evaluating the performance of our system using various metrics such as precision 

and recall. Overall, this chapter serves as a thorough guide to the development 

and evaluation of our audio retrieval system, highlighting the effectiveness of 

using human-written captions to match relevant audio content. 

3.2 Dataset presentation 

The Clotho dataset is specifically designed for the task of audio captioning, 

which involves generating textual descriptions of audio signals. Unlike speech-

to-text tasks, audio captioning focuses on describing general audio content, 

including sound events, acoustic scenes, and environmental sounds. The dataset 

consists of 4,981 audio samples, each ranging from 15 to 30 seconds in duration, 

accompanied by a total of 24,905 captions. 

The dataset was created by collecting audio samples from the Freesound 

platform. Captions were crowdsourced through Amazon Mechanical Turk, 

ensuring diversity in descriptions. Each audio sample is annotated with five 

captions, each consisting of 8 to 20 words. This process helps capture a range of 

descriptions for each audio signal, enhancing the dataset's overall diversity. 

To ensure the quality and relevance of the captions, unique words and named 

entities were removed during post-processing. Additionally, speech transcriptions 

were excluded to maintain focus on general audio content. 

Clotho was split into three distinct sets for training, development, and 

evaluation. The development and evaluation splits are publicly available, while 

the testing split is withheld for potential scientific challenges. This careful 

splitting ensures that each word appears in either the development split or one of 

the other two splits, which facilitates a balanced learning and evaluation process. 
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For detailed information and access to the Clotho dataset, refer to the 

provided Link1. 

3.3 Used Tools 

Deep learning research often requires large datasets and intensive 

computational operations, highlighting the need for parallel computing to 

accelerate model training. Although GPUs are a common choice for this purpose, 

their high acquisition and maintenance costs can lead to issues such as equipment 

depreciation and excessive use. To address these concerns, we opted for cost-

effective alternatives like COLAB and Kaggle. COLAB, a browser-based 

platform, and Kaggle, a renowned data science platform, enabled us to perform 

resource-intensive calculations and run Python [24] code efficiently. These 

economical alternatives to GPUs allowed us to speed up the training process while 

managing costs effectively. Additionally, we utilized Google Drive for secure 

storage and management of our datasets, model checkpoints, and experimental 

results, facilitating access and sharing within our research team while providing a 

reliable backup and synchronization solution. 

 

 

For development, we employed Jupyter, Conda, and PyCharm [25]. Jupyter 

served as an interactive development environment for experimentation and 

prototyping. Conda helped manage packages and create reproducible 

environments, ensuring consistency in our research. PyCharm provided a robust 

integrated development environment (IDE) for coding, debugging, and project 

management, enhancing our development workflow. 

 

 

Regarding libraries, we utilized a range of specialized tools. Librosa 

provided comprehensive audio analysis capabilities, while SBERT (Sentence-

BERT) offered advanced models for sentence embeddings. Additionally, Tkinter 

played a key role in developing graphical user interfaces (GUIs) for our 

interactive applications. Finally, we leveraged the combined capabilities of Keras 

and TensorFlow, leading deep learning frameworks, to effectively implement and 

experiment with various deep learning models. 

                                           
1 https://zenodo.org/records/4783391 

https://zenodo.org/records/4783391
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3.4 Dataset Description: 

The Clotho v2 dataset [10] is a valuable resource for audio analysis and 

retrieval. It comprises 6,974 audio samples, each accompanied by five human-

written captions, totaling 34,870 captions. The audio clips range from 15 to 30 

seconds in length, and the captions consist of 8 to 20 words. This dataset is 

instrumental in advancing and evaluating audio retrieval algorithms. 

The dataset is sourced from the Freesound platform [26], and the captions 

are generated through Amazon Mechanical Turk. It is divided into three subsets: 

Development, Validation, and Evaluation. The dataset also includes metadata 

stored in CSV files, which provide information such as file names, keywords, 

URLs, and uploader/user details. 

Managing the size and resources of this dataset is crucial due to the large 

number of captions and audio samples. Nevertheless, the well-organized structure 

of the Clotho v2 dataset [10] facilitates access and analysis, making it an 

invaluable resource for researchers and developers in the field of audio analysis 

and retrieval. 

3.5 Evaluation Metrics: 

3.5.1 Precision and Recall of a Binary/Non-Binary Classifier: 

For binary classification problems (where there are only two classes), 

precision and recall can be calculated using the following formulas: 

 Precision = TP / (TP + FP) 

 Recall = TP / (TP + FN) 

Where TP stands for True Positives, FP for False Positives, and FN for False 

Negatives. 

For non-binary classifiers, precision and recall can be calculated individually 

for each class using the same formulas. 
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3.5.2 Precision and Recall at Threshold k: 

Precision and recall at threshold k are evaluation metrics that consider the 

top k predictions made by a model. These metrics calculate the ratio of true 

positives (TP) to the sum of true positives and false positives (FP) for precision, 

and the ratio of true positives (TP) to the sum of true positives and false negatives 

(FN) for recall. This approach is useful when evaluating the model's performance 

at a specific threshold or cutoff. 

3.5.3 Mean Average Precision (MAP): 

Mean Average Precision (MAP) is a commonly used evaluation metric in 

information retrieval and recommendation systems. This metric provides a 

comprehensive assessment of a model's performance across different recall levels. 

It calculates the average precision at each recall level and then computes the 

overall average of these precision values. 

MAP is extensively used to evaluate the performance of cross-modal 

retrieval algorithms [27]. 

3.5.4 Mean Average Precision at K (mAP@K): 

Mean Average Precision at K (mAP@K), also known as "Mean Average 

Precision at 10" when K=10, is a variant of MAP that focuses on precision and 

recall at a specific threshold of 10. It measures the average precision of the top 10 

predictions made by a model, providing insight into the model's performance on 

the most relevant predictions. 

3.6 Tests 

3.6.1 Architecture of SBERT: 

The training loss values (trained for 300 epochs using the triplet loss 

function) are as follows: 
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Figure 2: les valeurs de perte pour le modèle sBert CNN14 

 

 

We calculated the 10 closest audio samples for each value in our evaluation 

dataset using the dot product. The results of the evaluation are as follows: 

 

Metric Value 

R1                                      0.075 

R5 0.179 

R10 0.251 

mAP10 0.072 
Figure 3: Results of the sBert CNN14 Architecture 

 

3.7 Discussion sur les résultats: 

In this section, we present the results obtained from the architecture used in 

our study. The performance metrics, including R1, R5, R10, and mAP10, were 

evaluated for the sBert architecture combined with CNN models using log mel 

spectrograms. 

3.7.1 sBert and CNN Performance: 

Our analysis demonstrated that the sBert and CNN model achieved 

significant performance across all evaluated metrics. The model delivered robust 

results for R1, R5, R10, and mAP10, showcasing its effectiveness in capturing 

audio patterns and performing well in recognition tasks. These results highlight 
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the effectiveness of combining sBert with CNNs for audio signal processing and 

classification. 

3.7.2 Method Evaluation: 

An important finding from our study is that the approach of extracting 

features from log mel spectrograms yielded superior performance compared to 

other methods involving direct predictions. This emphasizes the importance of 

feature extraction in enhancing the overall performance of the sBert and CNN 

architecture. 

3.7.3 Overall Performance: 

The sBert and CNN architecture demonstrated impressive performance in 

our experiments, achieving high recognition accuracy and effective retrieval 

results. This indicates that this architecture is well-suited for the audio processing 

tasks considered in our study. 

3.8 Conclusion 

In this chapter, we outlined our approach to audio retrieval using human-

generated subtitles. We began by detailing the tools and programming languages 

employed in our work, followed by a description of the dataset used for our 

experiments. We assessed our method using various parameters and presented the 

results along with an analysis. Our approach yielded promising outcomes, 

highlighting the potential of utilizing human-written subtitles for audio retrieval. 
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Conclusion 

In our proposed approach for audio retrieval using human-written subtitles, 

we provided a comprehensive overview of the techniques employed for audio and 

text processing, highlighting relevant related work in the field. We aimed to 

leverage advanced text processing techniques such as SBERT and utilized the 

Clotho dataset to enhance retrieval performance. Additionally, we employed 

various neural network architectures, specifically CNNs, to develop a model 

capable of extracting features from both textual and audio inputs. 

Our experiments assessed the effectiveness of our approach using different 

configurations that combined SBERT with CNN to derive log mel spectrogram 

features. Despite encountering challenges related to hardware limitations, we 

achieved promising results that underscored the potential of using human-written 

subtitles to enhance audio retrieval performance. 

We also detailed the tools utilized, including the Clotho dataset and 

evaluation metrics. Future research directions include exploring different neural 

network architectures, focusing on real-time automated audio subtitling, 

improving hardware compatibility, and extending the approach to new platforms. 

Additionally, integrating Pre-trained Audio Neural Networks (PANNs) could 

offer a promising avenue for future work, as they leverage transfer learning to 

capture valuable audio features from large-scale datasets, potentially enhancing 

the model's ability to recognize complex audio patterns and improving 

performance across various applications. 
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