

MINISTRY OF HIGHER EDUCATION AND

SCIENTIFIC RESEARCH

UNIVERSITY OF SAAD DAHLEB –

BLIDA 1

FACULTY OF SCIENCES

DEPARTMENT OF COMPUTER

SCIENCE

Report submitted for the fulfillment of the master degree in

Computer Science

Option : Computer Systems and Networks

Graduation Project

Audio search engine based on joint embedding

Realized by:

 Kadi Abdelhakim

Examiners :

 Mr Ould Khaoua

Mohamed

 Mme Ykhlef Hadjer

Supervisor :

 Mr A. KAMECHE

Academic year : 2023/2024

I

ABSTRACT

Audio retrieval based on language allows users to search for audio

content using natural language queries. This technology, which has

gained popularity in recent years, has numerous applications in fields

such as entertainment, education, and healthcare. To achieve our goal,

we conducted several tests and validated our results using a phonetic

subtitle dataset, converting the sentences into vectors using sBert. We

extracted log mel spectrograms from the corresponding audio files. Our

analysis was further deepened by applying a convolutional neural

network (CNN) architecture to extract features from the log mel

spectrograms. We then calculated the similarity with subtitles using the

cosine metric. This research underscores the potential for enhanced

audio retrieval systems, paving the way for more intuitive and effective

methods for accessing audio information.

Keywords: Language-based audio retrieval, natural language

queries, log mel spectrogram, sBert

II

RÉSUMÉ

La récupération audio basée sur la langue permet aux utilisateurs

de rechercher du contenu audio en utilisant des requêtes en langage

naturel. Cette technologie, qui a gagné en popularité ces dernières

années, trouve de nombreuses applications dans divers domaines tels

que le divertissement, l'éducation et la santé. Pour atteindre notre

objectif, nous avons mené plusieurs tests et validé nos résultats en

utilisant l'ensemble de données de légende phonétique, convertissant les

phrases en vecteurs à l'aide de sBert. Nous avons extrait les

spectrogrammes log mel des fichiers audio correspondants. Notre

analyse a été approfondie en appliquant une architecture de réseau de

neurones convolutifs (CNN) pour extraire les caractéristiques des

spectrogrammes log mel. Nous avons ensuite calculé la similarité avec

les sous-titres en utilisant la métrique du cosinus. Cette recherche

souligne le potentiel des systèmes de récupération audio améliorés,

ouvrant la voie à des méthodes plus intuitives et efficaces pour accéder

à l'information audio.

Mots-clés : Récupération audio basée sur la langue, requêtes en

langage naturel, spectrogramme log mel, sBert

III

 ملخص

تتيح استرجاع الصوت بناءً على اللغة للمستخدمين البحث عن المحتوى الصوتي

باستخدام استفسارات باللغة الطبيعية. هذه التقنية، التي اكتسبت شعبية في السنوات الأخيرة،

والتعليم والرعاية الصحية. لتحقيق هدفنا، لها العديد من التطبيقات في مجالات مثل الترفيه

أجرينا عدة اختبارات وحققنا نتائجنا باستخدام مجموعة بيانات العناوين الصوتية، حيث قمنا

استخرجنا الأطياف الميلية اللوغاريتمية من .sBert بتحويل الجمل إلى متجهات باستخدام

كبر من خلال تطبيق هيكلية الشبكة العصبية الملفات الصوتية المقابلة. تم تعميق تحليلنا بشكل أ

لاستخراج الميزات من الأطياف الميلية اللوغاريتمية. ثم قمنا بحساب (CNN) الالتفافية

التشابه مع العناوين باستخدام مقياس جيب التمام)الكوساين(. هذا البحث يؤكد على الإمكانيات

أكثر فعالية وسهولة للوصول إلى لتحسين نظم استرجاع الصوت، مما يمهد الطريق لطرق

 المعلومات الصوتية

الكلمات الرئيسية: ا استرجاع الصوت بناءً على اللغة، استفسارات باللغة الطبيعية،

 sBertالطيف الميلي اللوغاريتمي،

IV

Acknowledgement

First, we thank ALLAH Sobhanou for giving us the will and

courage to undertake and complete this work. We would like to express

our deepest and most sincere gratitude to our promoter and coach

ABDALLAH HICHAM KAMECHE, University of Blida, for guiding

and enriching our work. We thank him for his availability, his valuable

advice, his confidence despite our rather light knowledge in the field of

audio processing. We also thank him for his attention to detail and for

giving us the opportunity to conduct this research and providing us

invaluable guidance throughout our work that led to this work been

completed.

Our thanks also go to the members of the jury for agreeing to

examine our work and enrich it with their proposals. We would also like

to thank the faculty and administrative staff at BLIDA University who

have contributed to the success of our university studies.

Finally, many thanks go to all the people who have contributed to

the completion of our research work directly or indirectly.

Thanks again.

V

Table of Contents

ABSTRACT ... I

RÉSUMÉ .. II

 III .. ملخص

Acknowledgement ... IV

Table of Contents ... V

List of Figures : .. VIII

Introduction General ... 1

1. Motivations: ... 2

2. Objectives: ... 2

3. Thesis Organization: .. 2

Chapter 1: fundamental concepts .. 3

1.1 Introduction ... 3

1.2 Pipeline ML(CNN, Autoencoder): .. 3

1.2.1 2. Convolutional Neural Networks (CNN):................................. 4

1.2.2 3. Autoencoder ... 4

1.3 Textual Feature Extraction .. 5

1.3.1 Introduction: .. 5

1.4 Natural language processing: .. 5

1.4.1 Key NLP techniques include: .. 5

1.4.2 Advanced NLP strategies include: .. 6

1.4.3 Conclusion and Recommendations ... 6

1.5 Audio Feature Extraction .. 7

1.5.1 Introduction: .. 7

1.5.2 Sound and Waveforms: ... 7

1.5.3 Sound Parameters: ... 7

1.5.4 Audio Features: .. 8

1.5.5 Sound Visualization (Spectrograms) ... 10

1.5.6 Feature Extraction Pipeline ... 10

1.6 Related Works ... 11

VI

1.6.1 Introduction: .. 11

1.6.2 CD-JKU [6]: .. 11

1.6.3 QFORMER [13]: ... 12

1.6.4 IRIT-UPS [22]: .. 13

1.7 Overview ... 14

1.8 Conclusion ... 14

Chapter 2: Proposed Methodology ... 15

2.1 Introduction ... 15

2.2 Used Pipeline ... 16

2.2.1 Text Query Processing: ... 16

2.2.2 2. Audio Database Processing: .. 17

2.2.3 3. Similarity Computation: .. 17

2.3 Preprocessing Text .. 17

2.4 Preprocessing Audio ... 18

2.4.1 Log-Mel Spectrogram Extraction .. 18

2.4.2 Transferring Pretrained CNN14 Model Parameters 19

2.5 Post processing: ... 20

2.5.1 cosine measure: .. 20

2.6 Conclusion ... 21

Chapter 3: Achievement .. 22

3.1 Introduction ... 22

3.2 Dataset presentation .. 22

3.3 Used Tools ... 23

3.4 Dataset Description: .. 24

3.5 Evaluation Metrics: ... 24

3.5.1 Precision and Recall of a Binary/Non-Binary Classifier: 24

3.5.2 Precision and Recall at Threshold k: ... 25

3.5.3 Mean Average Precision (MAP): .. 25

3.5.4 Mean Average Precision at K (mAP@K): 25

3.6 Tests ... 25

3.6.1 Architecture of SBERT: .. 25

VII

3.7 Discussion sur les résultats: .. 26

3.7.1 sBert and CNN Performance: .. 26

3.7.2 Method Evaluation: ... 27

3.7.3 Overall Performance: ... 27

3.8 Conclusion ... 27

Conclusion ... 28

References: .. 29

VIII

List of Figures :

Figure 1: Schema of Global Workflow ... 16

Figure 2: les valeurs de perte pour le modèle sBert CNN14 26

Figure 3: Results of the sBert CNN14 Architecture 26

file:///D:/Users/Hakim/Downloads/Hakim/M2Sir%202eme%20Foix/S2/PFE/Mon%20Mémoire/Thesis_Kadi-Abdelhakim.docx%23_Toc178045237

1

Introduction General

With the exponential growth of digital media, particularly audio content

ranging from music and podcasts to spoken-word archives and voice recordings,

the demand for efficient and accurate audio retrieval systems has surged. Users

now expect to locate specific audio segments in massive databases swiftly and

effortlessly. Traditional audio search engines, primarily reliant on keyword-based

searches or manual tagging, are increasingly inadequate. These conventional

methods often fall short in capturing the inherent richness and depth of audio

content. For example, keyword-based searches depend on predefined metadata or

textual descriptions, which can result in mismatches between the search query and

the actual content. Additionally, they fail to capture the semantic meaning of

sound—nuances such as emotions, tone, and context—which are critical for

meaningful retrieval in domains like music, education, media production, and

even security.

Moreover, the inherent characteristics of audio data pose unique challenges

that are not as prevalent in text-based search systems. Acoustic variability—the

differences in how audio is produced, recorded, and perceived—compounds the

difficulty of creating effective search tools. Furthermore, sound is subject to

subjective interpretation: the same piece of audio can evoke different emotions or

be understood differently by various listeners. Coupled with the linguistic

diversity of audio files, where multiple languages or dialects can be involved, it

becomes clear that a more sophisticated approach is needed.

In response to these challenges, joint embedding has emerged as a powerful

technique to improve audio retrieval systems. Joint embedding enables both audio

content and textual queries to be represented within a shared vector space [1],

allowing for more accurate matching and deeper semantic understanding. By

mapping both types of data into a unified space, it becomes possible to assess their

similarity in a more meaningful way, which can significantly enhance search

precision. This method does not rely on keyword matching alone but instead

leverages the underlying content, creating opportunities for better search

experiences, particularly for applications where nuanced interpretation of sound

is necessary.

In this context, our research focuses on developing a high-performing audio

search engine based on joint embedding techniques. We aim to address the

limitations of existing systems by proposing a joint architecture that can represent

audio and text within the same vector space, leading to more accurate retrieval.

2

This work is timely, given the increasing demand for robust search systems in

industries that rely heavily on multimedia content.

1. Motivations:

The principal objective of this research is to design and implement a joint

embedding architecture—specifically an Encoder-Encoder model—that

effectively represents both audio data and textual queries within a common vector

space. This unified representation will enable more precise matching between

audio content and text, overcoming the aforementioned challenges associated

with acoustic variability and subjective interpretation. Moreover, we aim to

develop optimization mechanisms to enhance the similarity between the

vectorized representations of audio and text, thus improving the overall accuracy

and relevance of the search results.

2. Objectives:

The principal objective of this research is to develop a joint embedding

architecture (Encoder-Encoder) that can efficiently represent audio data and

textual queries within a unified vector space. Furthermore, it is imperative to

devise optimization mechanisms that enhance the similarity between audio and

text representations, thereby facilitating more accurate and precise audio retrieval.

3. Thesis Organization:

 This thesis is organized as follows:

 Chapter 1: This chapter provides a comprehensive overview of the

fundamental principles of audio signal processing and natural language

processing, along with a review of related work in the field.

 Chapter 2: This chapter outlines our proposed approach, including a

detailed description of the architectures and methodologies employed.

 Chapter 3: This chapter presents the empirical results of our research,

offers a thorough analysis of the findings, and discusses potential

directions for future work.

3

Chapter 1: fundamental concepts

1.1 Introduction

In this chapter, we will explore two significant areas of digital signal

processing: audio processing and text processing. These domains involve the use

of algorithms and techniques to manipulate and analyze data, but the types of data

and applications are different.

In the first part of this chapter, we will focus on audio processing. We will

start by discussing the fundamentals of sound waves, audio signals, and sound

parameters. We will then explore the various features of audio signals and the

extraction pipeline. Following this, we will delve into the time and frequency

domains of audio signals, including the Fourier transform and its different forms.

We will also examine Mel spectrograms and Mel-frequency cepstral coefficients

(MFCC) as essential features for audio processing.

In the second part of this chapter, we will concentrate on text processing.

Specifically, we will address the field of natural language processing (NLP) and

its various techniques for analyzing and processing textual data. We will explore

the basics of tokenization, stemming, and lemmatization, as well as techniques for

handling stop words and text encoding. Additionally, we will discuss the bag-of-

words (BOW) model, TF-IDF, word embeddings, and some popular algorithms

such as Word2Vec [1], GloVe, BERT [2], and sBERT [3].

Overall, this chapter will provide an overview of the fundamental concepts

and techniques used in both audio and text processing, with a focus on practical

applications and concrete examples.

1.2 Pipeline ML(CNN, Autoencoder):

Deep learning (DL), a significant branch of machine learning (ML) and

artificial intelligence (AI), has revolutionized the handling of unstructured and

large datasets, surpassing traditional ML techniques. This advancement has

profoundly impacted diverse fields such as speech recognition, healthcare,

autonomous driving, cybersecurity, and predictive analytics. Despite its

successes, designing effective deep learning models remains challenging due to

the complexity and dynamic nature of real-world problems. This paper surveys

various deep learning models, including Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Generative Models, Deep Reinforcement

Learning (DRL), and Deep Transfer Learning. We explore their structures,

applications, advantages, and limitations. Additionally, we analyze the

4

performance of six prominent models—CNN, Simple RNN, Long Short-Term

Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit (GRU), and

Bidirectional GRU—using the IMDB, ARAS, and Fruit-360 datasets [4].

1.2.1 2. Convolutional Neural Networks (CNN):

Convolutional Neural Networks (CNNs) are a powerful class of deep

learning models widely used in tasks such as image classification, object

detection, and speech recognition. CNNs automatically extract features from data

through convolutional operations, eliminating the need for manual feature

extraction. Their architecture, inspired by visual perception, includes several key

components:

 Convolutional Layer: This layer performs convolution operations using

learnable kernels to extract features. Lower layers capture basic features

like edges and textures, while higher layers detect more complex patterns.

 Pooling Layer: This layer reduces the dimensionality of data through

operations like Max Pooling or Average Pooling, which helps in reducing

computational load and preventing overfitting while maintaining

robustness against distortions.

 Fully Connected Layer: Positioned at the end of the CNN, this layer

connects every neuron to all neurons in the previous layer. It flattens the

output from the convolutional and pooling layers to make predictions or

classifications.

1.2.2 3. Autoencoder

Autoencoders are neural networks designed to learn a compressed

representation of data through unsupervised learning. They consist of two main

components:

 Encoder: Maps input data to a lower-dimensional feature space.

 Decoder: Reconstructs the original data from this feature space.

Autoencoders are useful for tasks like dimensionality reduction, feature

extraction, and anomaly detection. They come in various forms:

 Regularized Autoencoders: Include models such as Sparse Autoencoder

(SAE) and Denoising Autoencoder (DAE), which are used for tasks like

classification and feature learning.

 Variational Autoencoders (VAE): Employ probabilistic methods to

generate new data by learning distributions over the latent space. VAEs

5

include an encoder that estimates a posterior distribution and a decoder

that generates new samples from this distribution, facilitating data

generation and representation learning.

1.3 Textual Feature Extraction

1.3.1 Introduction:

Text processing involves the systematic manipulation and analysis of textual

data to extract meaningful insights. This encompasses a variety of techniques for

extracting, cleaning, transforming, and analyzing text data to uncover

information, patterns, and trends. Such methods are applied across different

applications, including natural language processing (NLP).

1.4 Natural language processing:

Natural language processing (NLP) [5] encompasses various submodules

designed to handle different aspects of text and language data. Improved training

data plays a crucial role, with large datasets from diverse sources like social media

and online texts enhancing model performance in understanding and generating

natural language. Multilingual and cross-lingual NLP research focuses on

leveraging vast amounts of multilingual data to improve tasks such as information

retrieval and machine translation. Domain-specific NLP utilizes large datasets

from specialized fields, such as medical or legal texts, to create models tailored

for specific domains, improving precision in those areas.

Ethical considerations are also becoming increasingly important, addressing

biases in training data and ensuring fair, inclusive NLP applications. Future

research will likely explore how to handle these challenges and incorporate

principles of accountability and transparency.

Class-based language modeling (CBLM) improves language modeling

efficiency by grouping words into classes based on semantic or syntactic

similarity, reducing model complexity and enhancing generalization. Techniques

like unsupervised clustering methods are used to classify words, which helps in

handling out-of-vocabulary terms and capturing broader language patterns.

1.4.1 Key NLP techniques include:

 Machine Translation: Automatically translating text between

languages, a complex task requiring deep semantic and syntactic

understanding.

6

 Discourse Analysis: Examining text to understand relationships

between segments, such as identifying speech acts and discourse

structures.

 Morphological Analysis: Breaking down words into their morphemes,

crucial for languages with complex word structures.

 Natural Language Generation and Understanding: Converting data

into human-readable language and formalizing it for computational

purposes.

 Named Entity Recognition: Identifying and classifying entities like

people, organizations, and locations within text.

 Text Parsing: Analyzing grammatical structures of sentences, often

facing challenges with ambiguities.

 Speech Recognition: Converting spoken language into text, a complex

task that involves segmenting continuous speech.

 Sentiment Analysis: Determining the sentiment expressed in text,

often used in marketing and social media analysis.

 Word Boundary Detection: Identifying word boundaries in languages

with or without explicit delimiters.

 Word Sense Disambiguation: Determining the correct meaning of a

word based on context.

1.4.2 Advanced NLP strategies include:

 Named Entity Recognition (NER): Identifying and classifying entities in

text using deep learning methods.

 Attention Mechanisms: Enhancing model performance by focusing on

relevant parts of the input sequence.

 Neural Machine Translation (NMT): Using deep learning for more

accurate and fluent translations.

 Transfer Learning: Leveraging pre-trained models for specific tasks,

improving performance on smaller datasets.

1.4.3 Conclusion and Recommendations

NLP, a field bridging linguistics, artificial intelligence, and computer

science, focuses on enabling effective communication between computers and

human language. Current research emphasizes unsupervised and semi-supervised

learning methods. Future work should explore advanced transformer models like

7

BERT for contextual understanding and LSTM networks for capturing sequential

patterns in text.

1.5 Audio Feature Extraction

1.5.1 Introduction:

As communication technologies have evolved, the role of sound in data

processing has become increasingly significant. Sound encompasses a wide range

of sources, including musical instruments, human speech, environmental noises,

and other emitted sounds. These diverse audio sources add complexity to the data,

with background noise often obscuring key information. This complexity

underscores the importance of effective voice processing techniques.

This chapter explores various aspects of audio processing. We begin by

examining the nature of sound and waveforms, followed by an exploration of

sound parameters and the analog-to-digital conversion process. We will then

delve into audio features within both the temporal and frequency domains before

discussing sound visualization and feature extraction pipelines.

1.5.2 Sound and Waveforms:

Sound originates from the vibrations of objects, which create oscillations that

interact with surrounding air molecules. These interactions cause variations in air

pressure, forming sound waves. Waveforms graphically represent these variations

over time, providing insights into the frequency, intensity, and duration of the

sound. Unlike electromagnetic waves, which can travel through a vacuum, sound

waves require a medium like air to propagate.

1.5.3 Sound Parameters:

Key sound parameters include:

 Period (T): The interval between consecutive peaks or troughs of a sound

wave.

 Frequency (f): The reciprocal of the period, measured in Hertz (Hz).

Higher frequencies correspond to higher pitches. Frequencies are

perceived similarly if they differ by a factor of 2.

 Pitch: A logarithmic measure of frequency perception. The octave is

divided into 1200 cents, and a pitch difference of 10-25 cents is

perceptible.

8

 Amplitude (A): Indicates the extent of pressure variation from zero, with

larger amplitudes representing louder sounds.

 Phase (φ): Represents the phase difference between two waveforms of

the same frequency, assessing the frequency shift or cycle discrepancy

between signals.

 Sound Power: The rate at which energy is emitted by a sound source in

all directions, measured in Watts (W).

 Sound Intensity: The power per unit area, measured in Watts per square

meter (W/m²). Intensity level is represented in decibels (dB), where a 3

dB increase signifies a doubling of intensity. The decibel scale is given by:

dB(I) = 10 * log10(I/I₀), with I₀ = 10⁻¹² W/m².

 Threshold of Hearing: The minimum sound intensity detectable by the

human ear.

 Threshold of Pain: The sound intensity levels that cause discomfort or

pain.

1.5.4 Audio Features:

Audio features describe various aspects of sound that are useful for

intelligent audio systems. Features can be categorized based on their level of

abstraction, temporal scope, musical relevance, signal domain, and machine

learning applications. They are generally divided into two categories: temporal

and spectral features.

1.5.4.1 Temporal Domain Features:

Temporal domain features analyze audio signals over time. Key features

include:

 Amplitude Envelope (AE): The maximum amplitude within a frame,

which gives an indication of intensity and sensitivity to outliers. AE is used

for music genre classification and onset detection.

 Root Mean Square (RMS) Energy: Represents the average quadratic

energy within a frame, indicating volume with reduced sensitivity to

outliers compared to AE. RMS is applied in audio segmentation and genre

classification.

9

 Zero-Crossing Rate (ZCR): Counts the number of times a signal crosses

the zero-axis, useful for speech recognition and music processing,

particularly for distinguishing percussive sounds and estimating pitch.

1.5.4.2 Spectral Domain Features:

Spectral domain features involve analyzing the frequency composition of

audio signals. Key features include:

 Fourier Transform (FT): Converts a time-domain signal into its frequency

components, represented by amplitude and phase. The FT output

includes Fourier coefficients that provide information about the

presence of specific frequencies in the signal.

 Inverse Fourier Transform (IFT): Reconstructs the original signal by

summing sinusoidal components weighted by their amplitude and phase.

 Discrete Fourier Transform (DFT): Converts continuous signals into

discrete frequency components using a finite number of samples. The

DFT reveals redundancy due to symmetry and typically focuses on

frequencies up to the Nyquist frequency.

 Short-Time Fourier Transform (STFT): Analyzes the frequency content of

a signal over time by applying the Fourier Transform to overlapping short

segments of the signal.

 Mel Spectrogram: Represents audio frequency content using the Mel

scale, which aligns with human auditory perception. This involves

transforming frequencies into Mel scale and calculating the Mel

spectrogram.

 Mel-Frequency Cepstral Coefficients (MFCCs): Extract key features

relevant to human auditory perception by applying Mel scaling to the

cepstrum and performing a discrete cosine transform.

 Band Energy Ratio (BER): Measures the distribution of energy across

different frequency bands, providing insights into the relative energy

contribution of various frequency regions.

 Spectral Centroid (SC): Estimates the "center of gravity" of a signal's

spectrum, offering information on spectral characteristics and balance.

 Bandwidth (BW): Measures the spread of frequency content in a signal's

spectrum, indicating the range of frequencies present.

10

1.5.5 Sound Visualization (Spectrograms)

Spectrogram visualization involves creating a matrix by squaring the

amplitude of the Short-Time Fourier Transform (STFT). Unlike the complex

numbers in the original STFT, this matrix uses real numbers. Spectrograms are

essential in audio AI applications as they provide crucial features for algorithmic

analysis. In a spectrogram, the x-axis represents discrete time intervals, while the

y-axis shows frequency components. This time-frequency representation allows

for observing how different frequency components change over time.

1.5.6 Feature Extraction Pipeline

A. Temporal Domain Feature Pipeline: Starts with analog sound, performs

ADC (sampling and quantization), and digitizes the sound. The signal is divided

into frames to obtain images. Temporal domain features are calculated for each

frame, followed by aggregation (mean, median, or Gaussian Mixture Models) to

produce a feature vector or matrix for the entire sound.

B. Spectral Domain Feature Pipeline: Transitions from the time domain to

the frequency domain using the Fourier Transform. After ADC and framing,

windowing is applied to reduce spectral leakage, with overlapping frames

addressing signal loss. The Fourier Transform is then applied, and features are

calculated and aggregated to obtain feature vectors or matrices.

11

1.6 Related Works

1.6.1 Introduction:

Audio retrieval using human-generated subtitles is an emerging research area

with potential applications across various fields. Key challenges in this domain

include developing accurate and reliable subtitling systems and effective methods

for aligning subtitles with the corresponding audio content. Machine learning

algorithms have been investigated to accurately match subtitles to audio despite

language, dialect, and tone variations, while natural language processing

techniques have been explored to enhance subtitle matching accuracy. Despite

notable advancements in recent years, many research questions and challenges

remain unresolved. The following sections will review relevant studies in this

field and discuss recent developments and future research directions.

1.6.2 CD-JKU [6]:

The study presents an innovative text-to-audio retrieval system that utilizes

pretrained text and spectrogram transformers. This system maps audio recordings

and textual descriptions into a unified space where related items are positioned

close to one another. The authors highlight two critical factors for retrieval

efficacy: the use of a self-attention-based audio encoder for embedding and the

incorporation of extensive human-generated and synthetic datasets during pre-

training. They also explored enhancing ClothoV2 captions with additional

keywords, which led to slight improvements. Notably, their system achieved first

place in the 2023 DCASE Challenge, surpassing the existing state-of-the-art

performance on the ClothoV2 benchmark by 5.6 percentage points in mAP@10.

Natural language-based audio retrieval focuses on ranking audio recordings

in relation to textual descriptions. Current approaches typically employ a dual-

encoder framework, which converts both recordings and descriptions into high-

level representations and aligns them within a shared embedding space. Ranking

is then determined by the proximity between candidate audio recordings and

textual descriptions within this space. This dual-encoder setup is prevalent in

audio retrieval systems due to its efficiency in ranking and the advantage of

utilizing pre-trained models. Typically, CNN architectures pre-trained on

AudioSet [2] are used for audio encoding, while large transformer models like

BERT [7] and RoBERTa [8] are employed for text encoding. Recent

advancements have included the use of WavCaps [9], a large dataset featuring

synthetic captions, which set a new benchmark in performance on ClothoV2 [10].

12

The authors’ approach for subtask 6b of the 2023 DCASE challenge builds

on the dual-encoder method but introduces three significant innovations. First,

they utilize the PaSST [11] audio spectrogram transformer instead of the

traditional CNN14 [2] for audio embedding. PaSST [11], which has shown

superior performance on AudioSet [2] and other benchmarks, includes Patchout

during training to enhance speed and memory efficiency while also serving as a

regularizer. This change notably enhances retrieval performance. Second, the

authors pre-train their models on AudioCaps [12] and WavCaps [9]—large

datasets with both human-generated and synthetic captions—to address data

limitations. This pre-training yields considerably improved retrieval results.

Third, they augment training captions with additional metadata and generate extra

captions using the GPT-3.5-turbo API (ChatGPT). Although this augmentation

helps reduce overfitting during fine-tuning, it provides only marginal performance

gains. The system implementation and the keyword-augmented captions are

accessible in the authors’ GitHub repository.

1.6.3 QFORMER [13]:

The paper provides an overview of the audio retrieval system submitted for

Task 6B of the DCASE2023 Challenge, which focuses on retrieving audio based

on natural language queries. The authors' system combines a frozen pretrained

audio encoder with a Qformer text encoder. For the contrastive learning

component, the system leverages paired data from the AudioCaps and Clotho

datasets, following the methodology of BLIP-2. The process involves encoding

natural language queries using the text encoder, then retrieving the top-k audio

embeddings. These embeddings are matched with the query text to form k data

pairs, which are then reranked based on the model's matching performance to

produce the final retrieval results. The system achieved a mean Average Precision

(mAP) of 26.47% and a 16.02% recall at 1 (R@1) on the Clotho test set, showing

improvements over the baseline system, which had an mAP of 22.2% and an R@1

of 13.0%.

Task 6B of the DCASE2023 challenge addresses the task of audio retrieval

using natural language [14], a significant area in cross-modal research. Progress

in this task is anticipated to improve the understanding of acoustic scenes and

enable innovative manipulation of audio signals, with implications for fields such

as audio content creation and acoustic scene analysis. The authors utilize the

BEATs model [15] as their audio feature extractor. BEATs, a pre-trained model

based on self-supervised learning, employs a discrete Tokenizer and a feature

extractor guided by Masked Audio Modeling and is used for tasks such as

classification.

13

The advent of CLIP [16] has greatly advanced the development of visual-

language multimodal models, with subsequent models like BLIP-2 [17] extending

this advancement to larger language models. In the realm of audio-related

multimodal research, models such as AudioClip [18], Wav2Clip [19], and CLAP

[20] have applied CLIP-style contrastive learning techniques to audio signals. The

authors' approach incorporates contrastive learning of audio and text using the

Qformer and its multitask training methodology introduced by BLIP-2 [21]. The

Qformer, a transformer encoder akin to BERT, processes both individual audio

and text inputs to generate single-modal representations and can also produce

multimodal embeddings to assess the compatibility between audio and text.

1.6.4 IRIT-UPS [22]:

The provided text offers an in-depth overview of the systems submitted for

tasks 6a, "Automated Audio Captioning" (AAC), and 6b, "Language-Based

Audio Retrieval" (LBAR) in the DCASE Challenge 2023. For task 6a, the authors

employed four distinct submission strategies. The first utilized a conventional

CNN14 encoder paired with a transformer decoder to generate captions for audio

content. In the second approach, they replaced the CNN14 encoder with a

ConvNeXt [23] model to improve audio representation. The third submission

incorporated additional training data and introduced a novel task embedding

technique to differentiate between various writing styles and audio types. The

fourth approach involved an ensemble method that combined five models, each

trained with different seeds, to enhance caption quality.

For task 6b, the authors adapted their AAC models and proposed a novel

approach that leverages the AAC system's loss function to perform language-

based audio retrieval. This strategy was implemented without requiring additional

training, showcasing an efficient way to repurpose AAC models for LBAR tasks.

The authors report that their most successful AAC and LBAR systems achieved

a SPIDErFL score of 0.320 and an mAP@10 score of 0.269, reflecting significant

improvements of 22.6% and 21.2% over the baseline scores for AAC and LBAR,

respectively.

The AAC task aims to generate captions that succinctly describe audio

content, relationships, and attributes within a single sentence. In contrast, the

LBAR task is focused on retrieving specific audio recordings from a database

based on free-form textual descriptions. The DCASE2023 challenge presented an

opportunity to evaluate systems addressing these multimodal tasks, and the

authors aimed to develop a unified AAC model capable of handling both tasks

effectively.

14

The AAC system employed a standard encoder-decoder architecture,

utilizing a pre-trained encoder for audio modeling and a transformer decoder for

caption generation. Enhancements to this system included additional data from

captioning datasets, various data augmentation techniques, improvements in beam

search for inference, and the integration of a task embedding to assist with caption

generation across different datasets. For the LBAR task, the authors proposed a

novel strategy that utilizes the AAC model’s loss function to rank audio files in

response to textual queries. The source code for these systems is expected to be

made available on GitHub following the conclusion of the challenge.

The remainder of the text details the systems and experimental setup used by

the authors, presents and discusses the results, and concludes with final remarks

on their findings and contributions to the field.

1.7 Overview

Related

Works

Audio

Modelling

Acoustic

Features

Text

Modelling

Metric

Monitored

for

Training

Dataset

CD-JKU

[6]

PaSST Log-mel

energies

BERT

RoBERTa

mAP Clotho

V2.1

QFORMER

[13]

BEATs Mel

energies

Qformer recall Clotho

V2.1

IRIT-UPS

[22]

CNN ConvNeXt-

tiny

Transformer FENSE Clotho

V2.1

1.8 Conclusion

This chapter has provided a thorough examination of audio processing, text

processing, and related research. It began with an introduction that set the stage

for the subsequent discussions. The first section focused on audio processing

techniques, while the second section explored text processing within the context

of natural language processing (NLP). The final section reviewed various studies

and applications in the field. Overall, this chapter has established a robust

foundation for further investigation into the intriguing domains of audio and text

processing.

15

Chapter 2: Proposed Methodology

2.1 Introduction

Audio retrieval with human-written captions is a process that involves

multiple steps to enable users to search for and retrieve specific audio content

using written descriptions. In this process, we begin with written text, which

serves as a search query to retrieve the relevant audio content.

The first step is to extract features from the written text, which can be

accomplished through natural language processing techniques. These features

may include keywords, entities, and other relevant information that can be used

to identify and retrieve audio content matching the search query.

Once the textual features are extracted, they are passed to a model trained to

convert these features into audio features. This is achieved by mapping the text

features to audio characteristics such as pitch, tone, and rhythm, which are specific

to the audio content.

After the audio features are extracted, they are used to synthesize the audio

content corresponding to the written text query. This process involves converting

the audio features into audio signals that can be played through speakers or

headphones, allowing users to hear the audio content that matches their search

query.

Overall, audio retrieval with human-written captions is a powerful tool that

can help users quickly find and access relevant audio content using written

descriptions. By extracting features from text and mapping them to audio features,

this process allows users to search for and retrieve audio content in a more

efficient and accessible manner.

16

2.2 Used Pipeline

Figure 1: Schema of Global Workflow

The proposed system for text-based audio retrieval operates through a

structured two-segment process designed to effectively match text queries with an

audio database. This process is outlined as follows:

2.2.1 Text Query Processing:

 Text Encoder: Text queries are processed through SBert (Sentence-BERT),

which generates 768-dimensional embeddings for each text input.

17

 Dimensionality Reduction: These embeddings are subsequently reduced

to 300 dimensions using a fully connected layer (FC1) to facilitate

comparison with audio embeddings.

2.2.2 2. Audio Database Processing:

 Audio Feature Extraction: Audio data are converted into 2048-

dimensional feature vectors.

 Dimensionality Reduction: These feature vectors are then reduced to 300

dimensions using another fully connected layer (FC2) to match the text

embeddings.

2.2.3 3. Similarity Computation:

Cosine similarity is computed between the 300-dimensional text embeddings

and the 300-dimensional audio feature vectors to retrieve the most relevant audio

files based on the text queries.

2.3 Preprocessing Text

In the text preprocessing stage, we utilize Sentence-BERT (SBERT)

embeddings to transform textual data into a numerical format that can be

efficiently processed by machine learning models. This process involves several

key steps.

First, we define global parameters, including the directory where our dataset

is stored and the specific splits of the dataset we will be working with

(development, validation, and evaluation). The SBERT model used for generating

embeddings is the 'all-mpnet-base-v2', which produces 768-dimensional

embeddings for each text input.

For each dataset split, we read the corresponding text data from CSV files.

These files contain the textual information that needs to be embedded. Each text

entry is associated with a unique identifier (tid).

As we iterate through the text data, we extract the raw text for each entry and

use the SBERT model to encode this text into a fixed-dimensional embedding.

These embeddings capture the semantic meaning of the text, allowing for

effective downstream processing and analysis.

The generated text embeddings are stored in a dictionary, with the unique

identifier as the key and the corresponding embedding as the value. Once all text

data has been processed, we save the embeddings to a file using the pickle module.

18

This serialized file format ensures that the embeddings can be easily loaded and

utilized in subsequent stages of our pipeline.

By preprocessing the text data in this manner, we convert unstructured text

into a structured numerical format that retains the semantic information necessary

for effective analysis and model training.

2.4 Preprocessing Audio

Preprocessing audio data is a critical step in preparing it for neural network

analysis. The process involves transforming raw audio signals into a format that

is more suitable for machine learning models. This section outlines the detailed

steps involved in preprocessing audio data, focusing on two main tasks: extracting

log-mel spectrograms and transferring pretrained CNN14 model parameters.

2.4.1 Log-Mel Spectrogram Extraction

To effectively preprocess audio data, it is first converted into log-mel

spectrograms. A log-mel spectrogram is a powerful representation of the audio

signal, capturing both time and frequency information in a compact form. The

process involves several key steps:

 Loading Audio Files: The audio data is organized into different splits, such

as development, validation, and evaluation sets. Each audio file is

identified using a unique identifier that maps to its filename. This

information is stored in a pickle file, which is loaded at the beginning of

the process.

 Setting Parameters: Several parameters are defined to control the

spectrogram extraction process. These include the sample rate, window

length, hop length, and the number of mel bands. The sample rate

determines how many samples per second are taken from the audio

signal. The window length specifies the duration of each segment of the

audio signal to be analyzed, while the hop length determines the interval

between successive segments. The number of mel bands defines the

resolution of the frequency analysis.

 Generating Mel Spectrograms: The raw audio waveform is transformed

into a mel spectrogram using the Short-Time Fourier Transform (STFT).

This step involves segmenting the audio signal into overlapping windows,

computing the Fourier transform for each window, and mapping the

resulting frequency bins to the mel scale, which is designed to mimic the

human ear's perception of sound.

19

 Applying Logarithmic Transformation: To enhance the dynamic range of

the spectrogram and make it more suitable for neural networks, a

logarithmic transformation is applied. This converts the linear mel

spectrogram into a log-mel spectrogram, which emphasizes the lower

amplitude components and compresses the higher amplitude ones.

 Saving Spectrograms: The resulting log-mel spectrograms are stored in

HDF5 files, organized by the dataset splits. Each spectrogram is associated

with its corresponding audio file identifier, ensuring that the data is well-

structured and easily accessible for subsequent processing.

2.4.2 Transferring Pretrained CNN14 Model Parameters

The next step in preprocessing audio data involves utilizing a pretrained

CNN14 model to enhance feature extraction. This process transfers the knowledge

gained from a large-scale training on diverse audio data to a custom neural

network encoder. The steps are as follows:

 Mapping Parameters: A mapping is created to associate the parameter

names of the custom encoder with those of the pretrained CNN14 model.

This ensures that the parameters are correctly transferred to the

corresponding layers in the custom encoder.

 Loading Pretrained Parameters: The pretrained parameters of the CNN14

model, which have been trained on a large audio dataset, are loaded from

a specified path. These parameters contain valuable information that can

significantly improve the performance of the custom encoder.

 Initializing Custom Encoder: A custom CNN14 encoder is initialized with a

specified output dimension. This encoder is designed to process the log-

mel spectrograms and extract relevant audio features.

 Transferring Parameters: The pretrained parameters are transferred to

the custom encoder by copying the state dictionary and mapping the keys

accordingly. This step ensures that the custom encoder inherits the

learned features and patterns from the pretrained model.

 Saving Custom Encoder: The state dictionary of the custom encoder, now

containing the transferred parameters, is saved to a specified path. This

enables the custom encoder to be reused for various audio processing

tasks, leveraging the benefits of the pretrained CNN14 model.

By following these steps, the audio data is effectively transformed and

prepared for neural network analysis, ensuring that the models can efficiently

learn and extract meaningful patterns from the audio signals.

20

2.5 Post processing:

The post-processing stage in this study is pivotal for evaluating and

interpreting the performance of the cross-modal retrieval system. This phase

involves calculating the similarity scores between audio and text data and

subsequently measuring the effectiveness of these scores in retrieving relevant

information. The post-processing tasks are primarily focused on two critical

operations: computing cross-modal similarity scores and evaluating retrieval

performance metrics.

2.5.1 cosine measure:

The cosine similarity measure is a fundamental component of the post-

processing pipeline, employed to quantify the similarity between audio and text

embeddings. In our approach, we utilize cosine similarity to evaluate the

relevance of audio-text pairs in the cross-modal retrieval system.

Computation of Cross-Modal Scores:

The cosine similarity measure is used to compute the cross-modal scores

between audio and text features. This process involves encoding both

modalities—audio and text—using their respective neural network branches. The

encoded features are then compared using cosine similarity to determine their

relative similarity. Specifically, each audio feature vector is compared against all

text feature vectors using cosine similarity, resulting in a score that reflects the

degree of correspondence between the audio and text data.

The procedure involves the following steps:

 Text Encoding: Text data is encoded into feature vectors through a text

branch of the neural network. These feature vectors represent the

semantic content of the text.

 Audio Encoding: Similarly, audio data is encoded into feature vectors via

an audio branch. These vectors encapsulate the auditory information from

the audio inputs.

 Similarity Calculation: Cosine similarity is computed between the audio

and text feature vectors. This metric quantifies how closely the audio and

text features align, with higher scores indicating greater similarity.

21

2. Retrieval Metrics Evaluation

Post similarity computation, retrieval metrics are used to assess the

performance of the system. The evaluation focuses on two primary aspects: the

accuracy of retrieval results and the effectiveness of the similarity scores.

 Retrieval Accuracy: Metrics such as recall and mean average precision

(mAP) are computed to evaluate how well the system retrieves relevant

items. Recall metrics assess the proportion of relevant items retrieved at

various cutoffs (e.g., top-1, top-5, top-10), while mAP provides a measure

of the average precision across multiple queries.

 Performance Analysis: The effectiveness of the retrieval system is

analyzed by comparing the retrieved results against the ground truth. This

involves measuring how well the system retrieves relevant items and the

ranking quality of these items.

The results from these metrics are essential for understanding the

performance of the cross-modal retrieval system. They provide insights into the

accuracy of the retrieval process and the effectiveness of the similarity measure

in distinguishing between relevant and non-relevant items.

In summary, the post-processing phase, specifically through the cosine

similarity measure, plays a crucial role in evaluating and fine-tuning the cross-

modal retrieval system. By calculating similarity scores and assessing retrieval

metrics, we gain valuable insights into the system's performance and its ability to

effectively match audio and text data.

2.6 Conclusion

This chapter has presented the proposed approach for sound retrieval with

human-written captions. The primary objective was to elucidate each component

of the architecture employed. The chapter discussed various elements and

techniques involved in achieving this goal. These included text features, the

storage of audio in the database, the application of models such as CNN and

SBERT, and the significance of the loss function. By examining each of these

aspects, we have established a solid foundation for the subsequent chapters, which

will delve deeper into the implementation and evaluation of the system.

22

Chapter 3: Achievement

3.1 Introduction

This chapter provides a comprehensive overview of the experimental setup

utilized in our investigation of audio retrieval using human-written captions. In

the previous chapter, we outlined our approach to this task. Here, we delve into

the tools employed in the development of our audio retrieval system, which

encompasses a diverse range of technologies. Additionally, we offer a detailed

description of our dataset, including the sources and characteristics of the audio

and captions used in our experiments. Furthermore, we describe the procedure

followed to analyze and discuss the results of our experiments, which involved

evaluating the performance of our system using various metrics such as precision

and recall. Overall, this chapter serves as a thorough guide to the development

and evaluation of our audio retrieval system, highlighting the effectiveness of

using human-written captions to match relevant audio content.

3.2 Dataset presentation

The Clotho dataset is specifically designed for the task of audio captioning,

which involves generating textual descriptions of audio signals. Unlike speech-

to-text tasks, audio captioning focuses on describing general audio content,

including sound events, acoustic scenes, and environmental sounds. The dataset

consists of 4,981 audio samples, each ranging from 15 to 30 seconds in duration,

accompanied by a total of 24,905 captions.

The dataset was created by collecting audio samples from the Freesound

platform. Captions were crowdsourced through Amazon Mechanical Turk,

ensuring diversity in descriptions. Each audio sample is annotated with five

captions, each consisting of 8 to 20 words. This process helps capture a range of

descriptions for each audio signal, enhancing the dataset's overall diversity.

To ensure the quality and relevance of the captions, unique words and named

entities were removed during post-processing. Additionally, speech transcriptions

were excluded to maintain focus on general audio content.

Clotho was split into three distinct sets for training, development, and

evaluation. The development and evaluation splits are publicly available, while

the testing split is withheld for potential scientific challenges. This careful

splitting ensures that each word appears in either the development split or one of

the other two splits, which facilitates a balanced learning and evaluation process.

23

For detailed information and access to the Clotho dataset, refer to the

provided Link1.

3.3 Used Tools

Deep learning research often requires large datasets and intensive

computational operations, highlighting the need for parallel computing to

accelerate model training. Although GPUs are a common choice for this purpose,

their high acquisition and maintenance costs can lead to issues such as equipment

depreciation and excessive use. To address these concerns, we opted for cost-

effective alternatives like COLAB and Kaggle. COLAB, a browser-based

platform, and Kaggle, a renowned data science platform, enabled us to perform

resource-intensive calculations and run Python [24] code efficiently. These

economical alternatives to GPUs allowed us to speed up the training process while

managing costs effectively. Additionally, we utilized Google Drive for secure

storage and management of our datasets, model checkpoints, and experimental

results, facilitating access and sharing within our research team while providing a

reliable backup and synchronization solution.

For development, we employed Jupyter, Conda, and PyCharm [25]. Jupyter

served as an interactive development environment for experimentation and

prototyping. Conda helped manage packages and create reproducible

environments, ensuring consistency in our research. PyCharm provided a robust

integrated development environment (IDE) for coding, debugging, and project

management, enhancing our development workflow.

Regarding libraries, we utilized a range of specialized tools. Librosa

provided comprehensive audio analysis capabilities, while SBERT (Sentence-

BERT) offered advanced models for sentence embeddings. Additionally, Tkinter

played a key role in developing graphical user interfaces (GUIs) for our

interactive applications. Finally, we leveraged the combined capabilities of Keras

and TensorFlow, leading deep learning frameworks, to effectively implement and

experiment with various deep learning models.

1 https://zenodo.org/records/4783391

https://zenodo.org/records/4783391

24

3.4 Dataset Description:

The Clotho v2 dataset [10] is a valuable resource for audio analysis and

retrieval. It comprises 6,974 audio samples, each accompanied by five human-

written captions, totaling 34,870 captions. The audio clips range from 15 to 30

seconds in length, and the captions consist of 8 to 20 words. This dataset is

instrumental in advancing and evaluating audio retrieval algorithms.

The dataset is sourced from the Freesound platform [26], and the captions

are generated through Amazon Mechanical Turk. It is divided into three subsets:

Development, Validation, and Evaluation. The dataset also includes metadata

stored in CSV files, which provide information such as file names, keywords,

URLs, and uploader/user details.

Managing the size and resources of this dataset is crucial due to the large

number of captions and audio samples. Nevertheless, the well-organized structure

of the Clotho v2 dataset [10] facilitates access and analysis, making it an

invaluable resource for researchers and developers in the field of audio analysis

and retrieval.

3.5 Evaluation Metrics:

3.5.1 Precision and Recall of a Binary/Non-Binary Classifier:

For binary classification problems (where there are only two classes),

precision and recall can be calculated using the following formulas:

 Precision = TP / (TP + FP)

 Recall = TP / (TP + FN)

Where TP stands for True Positives, FP for False Positives, and FN for False

Negatives.

For non-binary classifiers, precision and recall can be calculated individually

for each class using the same formulas.

25

3.5.2 Precision and Recall at Threshold k:

Precision and recall at threshold k are evaluation metrics that consider the

top k predictions made by a model. These metrics calculate the ratio of true

positives (TP) to the sum of true positives and false positives (FP) for precision,

and the ratio of true positives (TP) to the sum of true positives and false negatives

(FN) for recall. This approach is useful when evaluating the model's performance

at a specific threshold or cutoff.

3.5.3 Mean Average Precision (MAP):

Mean Average Precision (MAP) is a commonly used evaluation metric in

information retrieval and recommendation systems. This metric provides a

comprehensive assessment of a model's performance across different recall levels.

It calculates the average precision at each recall level and then computes the

overall average of these precision values.

MAP is extensively used to evaluate the performance of cross-modal

retrieval algorithms [27].

3.5.4 Mean Average Precision at K (mAP@K):

Mean Average Precision at K (mAP@K), also known as "Mean Average

Precision at 10" when K=10, is a variant of MAP that focuses on precision and

recall at a specific threshold of 10. It measures the average precision of the top 10

predictions made by a model, providing insight into the model's performance on

the most relevant predictions.

3.6 Tests

3.6.1 Architecture of SBERT:

The training loss values (trained for 300 epochs using the triplet loss

function) are as follows:

26

Figure 2: les valeurs de perte pour le modèle sBert CNN14

We calculated the 10 closest audio samples for each value in our evaluation

dataset using the dot product. The results of the evaluation are as follows:

Metric Value

R1 0.075

R5 0.179

R10 0.251

mAP10 0.072
Figure 3: Results of the sBert CNN14 Architecture

3.7 Discussion sur les résultats:

In this section, we present the results obtained from the architecture used in

our study. The performance metrics, including R1, R5, R10, and mAP10, were

evaluated for the sBert architecture combined with CNN models using log mel

spectrograms.

3.7.1 sBert and CNN Performance:

Our analysis demonstrated that the sBert and CNN model achieved

significant performance across all evaluated metrics. The model delivered robust

results for R1, R5, R10, and mAP10, showcasing its effectiveness in capturing

audio patterns and performing well in recognition tasks. These results highlight

27

the effectiveness of combining sBert with CNNs for audio signal processing and

classification.

3.7.2 Method Evaluation:

An important finding from our study is that the approach of extracting

features from log mel spectrograms yielded superior performance compared to

other methods involving direct predictions. This emphasizes the importance of

feature extraction in enhancing the overall performance of the sBert and CNN

architecture.

3.7.3 Overall Performance:

The sBert and CNN architecture demonstrated impressive performance in

our experiments, achieving high recognition accuracy and effective retrieval

results. This indicates that this architecture is well-suited for the audio processing

tasks considered in our study.

3.8 Conclusion

In this chapter, we outlined our approach to audio retrieval using human-

generated subtitles. We began by detailing the tools and programming languages

employed in our work, followed by a description of the dataset used for our

experiments. We assessed our method using various parameters and presented the

results along with an analysis. Our approach yielded promising outcomes,

highlighting the potential of utilizing human-written subtitles for audio retrieval.

28

Conclusion

In our proposed approach for audio retrieval using human-written subtitles,

we provided a comprehensive overview of the techniques employed for audio and

text processing, highlighting relevant related work in the field. We aimed to

leverage advanced text processing techniques such as SBERT and utilized the

Clotho dataset to enhance retrieval performance. Additionally, we employed

various neural network architectures, specifically CNNs, to develop a model

capable of extracting features from both textual and audio inputs.

Our experiments assessed the effectiveness of our approach using different

configurations that combined SBERT with CNN to derive log mel spectrogram

features. Despite encountering challenges related to hardware limitations, we

achieved promising results that underscored the potential of using human-written

subtitles to enhance audio retrieval performance.

We also detailed the tools utilized, including the Clotho dataset and

evaluation metrics. Future research directions include exploring different neural

network architectures, focusing on real-time automated audio subtitling,

improving hardware compatibility, and extending the approach to new platforms.

Additionally, integrating Pre-trained Audio Neural Networks (PANNs) could

offer a promising avenue for future work, as they leverage transfer learning to

capture valuable audio features from large-scale datasets, potentially enhancing

the model's ability to recognize complex audio patterns and improving

performance across various applications.

29

References:

[1] K. Koutini, J. Schluter, H. Eghbal-zadeh et a. G. Widmer,

«Efficient training of audio transformers with patchout,» in 23rd

Annual Conf. of the Int. Speech Communication Association,

Interspeech, 2022.

[2] T. Mikolov, K. Chen, G. Corrado et a. J. Dean, «Efficient

estimation of word representations in Vector Space,»

arXiv:1301.3781, 2013.

[3] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang et a. M. D.

Plumbley, «PANNs: Large-scale pretrained audio neural networks for

audio pattern recognition,» IEEE/ACM Trans. Audio Speech Lang.

Process., pp. 2880–2894, 2020.

[4] R. N et G. I, «Sentence-bert: Sentence embeddings using

siamese bert-networks,» arXiv preprint arXiv:1908.10084, 2019 Aug

27.

[5] M. S. FARHAD, P. THINAGARAN, M. NORWATI et M.

RAIHANI, «A Comprehensive Overview and Comparative Analysis

on Deep Learning Models: CNN, RNN, LSTM, GRU,» University

Putra Malaysia (UPM), Malaysia, arXiv:2305.17473, 2023.

[6] J. P. Bharadiya, «A Comprehensive Survey of Deep Learning

Techniques Natural,» European Journal of Technology, Doctor of

Philosophy Information Technology, University of the Cumberlands,

USA, 2023.

[7] P. Paul, K. Khaled et W. Gerhard, «ADVANCING NATURAL-

LANGUAGE BASED AUDIO RETRIEVAL,» Institute of

Computational Perception (CP-JKU), LIT Artificial Intelligence Lab,

Johannes Kepler University, Austria, 2023.

[8] J. Devlin, M. Chang, K. Lee et a. K. Toutanova, «BERT:

pretraining of deep bidirectional transformers for language

understanding,» in Proc. of the North American Ch. of the Ass. for

Computational Linguistics: Human Language Technologies, NAACL-

HLT, 2019.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M.

Lewis, L. Zettlemoyer et a. V. Stoyanov, «Roberta: A robustly

30

optimized BERT pretraining approach,» CoRR, vol.abs/1907.11692,

2019.

[10] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M.

D.Plumbley, Y. Zou et a. W. Wang, «Wavcaps: A chatgptassisted

weakly-labelled audio captioning dataset for audiolanguage

multimodal research,» CoRR, vol. abs/2303.17395,, 2023.

[11] K. Drossos, S. Lipping et a. T. Virtanen, «Clotho: An audio

captioning dataset,» in Proc. ICASSP, 2020.

[12] C. D. Kim, B. Kim, H. Lee et a. G. Kim, «AudioCaps:

Generating captions for audios in the wild,» in Proc. of the North

American Ch. of the Ass. for Computational Linguistics: Human

Language Technologies, NAACL-HLT, 2019.

[13] F. Ziye et Z. Fengyun, «QFORMER BASED TEXT AUDIO

RETRIEVAL SYSTEM,» R&D, Lingban Technology Ltd,., Beijing,

China , 2023.

[14] A.-M. Oncescu, A. S. Koepke, J. F. Henriques, Z. Akata et a. S.

Albanie, «Audio Retrieval with Natural Language Queries,» July

2021.

[15] S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins, Z. Chen et a. F.

Wei, «BEATs: Audio Pre-Training with Acoustic Tokenizers,» Dec.

2022.

[16] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S.

Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger et a.

I. Sutskever, «Learning Transferable Visual Models From Natural

Language Supervision,» https://arxiv.org/abs/2103.00020v1, Feb.

2021.

[17] J. Li, D. Li, S. Savarese et a. S. Hoi, «BLIP-2: Bootstrapping

Language-Image Pre-training with Frozen Image Encoders and Large

Language Models,» Jan. 2023.

[18] A. Guzhov, F. Raue, J. Hees et a. A. Dengel, «AudioCLIP:

Extending CLIP to Image, Text and Audio,»

https://arxiv.org/abs/2106.13043v1, June 2021.

31

[19] H.-H. Wu, P. Seetharaman, K. Kumar et a. J. P. Bello,

«Wav2CLIP: Learning Robust Audio Representations From CLIP,»

https://arxiv.org/abs/2110.11499v2, Oct. 2021.

[20] B. Elizalde, S. Deshmukh, M. A. Ismail et a. H. Wang, «CLAP:

Learning Audio Concepts From Natural Language Supervision,»

https://arxiv.org/abs/2206.04769v1, June 2022.

[21] J. Li, D. Li, S. Savarese et a. S. Hoi, «BLIP-2: Bootstrapping

Language-Image Pre-training with Frozen Image Encoders and Large

Language Models,» Jan. 2023.

[22] L. Etienne, P. Thomas et P. Julien, «IRIT-UPS DCASE 2023

AUDIO CAPTIONING AND RETRIEVAL SYSTEM,» IRIT (UMR

5505), Universite Paul Sabatier, CNRS, Toulouse, France, Artificial

and Natural Intelligence Toulouse Institute (ANITI) , 2013.

[23] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell et a. S.

Xie, «A convnet for the 2020s,” in 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR),» p. pp. 11 966–11

976., 2022.

[24] Python et ". “Python,

«https://www.python.org/downloads/release/python-394/,» Apr. 04,

2021.

[25] F. d. PyCharm, «https://www.jetbrains.com/help/pycharm/quick-

start-guide.html».

[26] F. Font, G. Roma et a. X. Serra, «Freesound Technical Demo,»

in Proceedings of the 21st ACM International Conference on

Multimedia, ser. MM ’13. New York, NY, USA: Association for

Computing Machinery, p. pp. 411–412, 2013.

[27] P. Kaur, H. S. Pannu et a. A. K. Malhi, «Comparative analysis

on crossmodal information retrieval: A review,» Comput. Sci. Rev., p.

100336, 2021.

