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General Introduction

Clustering is an unsupervised machine learning technique used to group similar

data points into clusters based on their characteristics. It is widely used in fields such

as data mining, pattern recognition and image analysis to identify natural groupings

in data. Here’s an introduction to some of the most common clustering methods.

In marketing, clustering helps determine client categories for targeted campaigns.

In scientific research and text analysis, it groups data and documents to identify trends

and themes.

In image and video processing, clustering aids in segmenting images for object recog-

nition and clustering similar videos for search and recommendation purposes.

E-commerce uses clustering to suggest products based on user behavior. Common clus-

tering techniques include k-means, which is efficient for spherical clusters but requires

specifying the number of clusters; hierarchical clustering, which creates a hierarchy

of clusters without needing to specify the number in advance but is computationally

expensive; and DBSCAN, a density-based method. Clustering is versatile and valuable

for extracting information and improving decision-making, with the choice of technique

depending on the data and analysis objectives.

The thesis is structured as follows:

— Chapter 1: An introduction to classification and clustering. A detailed review

of existing clustering methods, including traditional and fuzzy approaches, and

their applications.

— Chapter 2: Detecting clusters with univariate and bivariate plots of data. A



description of the datasets, evaluation metrics, and experimental setup used in

the study.

— Chapter 3: Financial Application The implementation details of the clustering

algorithms, along with the results of their application to financial datasets.

— Chapter 4: Conclusion and Future Work. A summary of the findings, conclu-

sions drawn from the study, and potential directions for future research.



Chapitre 1

An introduction to classification

and clustering

1.1 What is Classification?

The problem of classification involves classifying objects into classes when there is al-

ready been classified by experts or by other means.

Classification aims to determine which class new objects belong to and develops au-

tomatic algorithms for doing so. Typically this involves assigning new observations to

the class whose objects they most closely resemble in some sense.

1.1.1 Supervised classification

In supervised classification, the algorithm is trained using a labeled dataset, where

each training example is paired with a corresponding label.

1.1.2 Unsupervised classification

In unsupervised learning, the dataset does not have labeled outputs. The goal is to

identify inherent structures in the data, such as grouping similar instances together.

1



This is often referred to as clustering rather than classification, but it serves a similar

purpose of categorizing data.

Figure 1.1 – Examples of supervised learning

1.2 What is a cluster?

Clustering this is unsupervised learning it is an exploratory data analysis technique

used to summarize information about the data or determine connections between

points.

The goal is to discover the inherent structure in the data without predefined labels.K-

means , hierarchical clustering and DBSCAN are popular clustering algorithms.An

application could be grouping cunstomers based on purchasing behavior to target

marketing strategies effectively in data.

1.2.1 Example of the use of clustering

The general problem which cluster analysis addresses appears in many disciplines me-

decine, bank, marketing, etc.

Here we describe briefly the number of applications of cluster analysis reported in some

of this discipline.

1. Bank: In banking, clustering is a popular unsupervised learning technique that

divides clients into discrete groups according to their financial actions, behavior,

or traits. This can assist banks in managing risks, identifying new business

prospects, enhancing customer service, and customizing their marketing efforts.

2



2. Market research: Dividing customers into homogeneous groups is one of the

basic strategies of marketing. A market researcher may, for example, ask how

to group consumers who seek similar benefits from a product so he or she can

communicate with them better.

Or a market analyst may be interested in grouping financial characteristics of

companies so as to be able to relate them to their stock market performance.

An early specific example of the use of cluster analysis in market research Green

and Krieger (1995).

3. Astronomy: Astronomers want to know how many distinct classes of, for

example, stars there are on the basis of some statistical criterion.

4. Psychatry: Cluster analysis has also been used to find a classification of in-

dividuals who attempt suicide, which might form the basis for studies into the

causes and treatment of the problem Rassaby Paykel et al. (1980), for example,

studied 236 suicide attempters presenting at the main emergency service of a

city in the USA.

5. Archaeology: In archaeology, the classification of artefacts can help in unco-

vering their different uses, the periods they were in use and which populations

they were used by.

Similarly, the study of fossilized material can help to reveal how prehistoric

societies lived. An early example of the cluster analysis of artefacts Hodson

(1970).

6. Physics and Chemistry: The Periodic Law belongs among the most profound

achievements in the discipline, as it links four aspects of the elements: the

internal structure of the atoms, their bondage into molecules, their chemical

interaction properties, and their physical features.

3



Figure 1.2 – A version of the Periodic Chart from Sisler Macri (1963)

1.2.2 Numerical methods of classification – Cluster analysis

Numerical techniques for deriving classifications originated largely in the natural

sciences such as biology and zoology in an effort to rid taxonomy of its traditionally

subjective nature. The aim was to provide objective and stable classifications.

Objective in the sense that the analysis of the same set of organisms by the same

sequence of numerical methods produces the same classification;Stable in that the

classification remains the same under a wide variety of additions of organisms or of

new characteristics describing them .

I =



X11 · · · X1p

X21
... · · ·

...
... · · ·

Xn1 · · · Xnp


The entry Xij in X gives the value of the j variable on object i. Such a matrix is

often termed ‘two-mode’, indicating that the rows and columns correspond to different

things. The variables in X may often be a mixture of continuous, ordinal and/or

categorical, and often some entries will be missing.
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1.3 Statistic Clustering Method

Statistical clustering methods are techniques used to partition data into groups or

clusters based on statistical criteria. These methods aim to identify homogeneous

subgroups within a dataset, where instances within the same cluster are more similar to

each other than to those in other clusters. Here, we briefly outline some key statistical

clustering methods.

Key Methods

1. K-means Clustering

K-means clustering is a partitioning method that aims to partition n obser-

vations into k clusters, where each observation belongs to the cluster with the

nearest mean, serving as the cluster’s centroid.

Given a dataset X = {x1, x2, . . . , xn} where each xi ∈ Rd, and an initial set

of centroids {µ(0)
1 , µ

(0)
2 , . . . , µ

(0)
k }, the algorithm iteratively minimizes the within-

cluster sum of squares:

argmin
C1,C2,...,Ck

k∑
j=1

∑
xi∈Cj

∥xi − µj∥2

2. Hierarchical Clustering

Hierarchical clustering builds a hierarchy of clusters, either agglomeratively

(bottom-up) or divisively (top-down), based on the pairwise distances between

data points. It does not require the number of clusters k to be specified in

advance.

3. Gaussian Mixture Models (GMM)

Gaussian Mixture Models represent the distribution of data points as a mix-

ture of several Gaussian distributions. Each Gaussian component represents a

cluster, and the model parameters (mean, covariance, and mixing proportions)

are estimated using the Expectation-Maximization (EM) algorithm.

5



4. Density-Based Clustering

Density-based clustering methods, such as DBSCAN (Density-Based Spatial

Clustering of Applications with Noise), identify clusters as dense regions of data

points separated by regions of lower density. These methods are effective for

datasets with irregular shapes and varying densities.

1.4 Other Considerations in Clustering

— Both K-means and hierarchical clustering will assign each observation to a

cluster.

— However,sometimes this might not be appropriate.

— For instance,Suppose that most of the observations truly belong to a small

number of (unknown) subgroups, and a small subset of the observations are

quite different from each other and from all other observations.

— Then since K-means and hierarchical clustering force every observation into

a cluster, the clusters found may be heavily distorted due to the presence of

outliers that do not belong to any cluster.

— Mixture models are an attractive approach for accommodating the presence

of such outliers.

— These amount to a soft version of K-means clustering, and are described in

Hastie Steinley (2006).

1.5 Criteria for correct classification

The main objective of classification techniques is to find a partition in which

the objects in a class should be similar . Objects in a class should be similar (to

each other), objects in different classes should be different should be different ,

a good classification should fulfil different criterion :

6



1.5.1 Validity

It can be defined as :

— Each class in a score must be homogeneous: Objects belonging to the same

class must be similar.

— Classes must be isolated from each other: Objects in different classes must

be different.

— Classification must be adapted to the data: The classification must be able

to explain the variation in the data.

1.5.2 Interpretability

Classes must have a substantive interpretation.Possible to give names to the

classes, at best the names must correspond to the types deduced from a certain

theory.

1.5.3 Stability

Classes must be stable, which means that small changes to the data and methods

in the methods must not change the results.

1.5.4 Other criteria

Sometimes the size and number of classes are used as additional crite-

ria.additional criteria: the number of classes should be as small as possible,

and the should not be too small.

1.6 Reasons for classifying

Classifying, or categorizing, is a fundamental process used in various fields to

simplify, organize, and make sense of complex data. It enables efficient retrieval,

analysis, and understanding of information by grouping similar items together

7



based on predefined criteria. Classification helps in identifying patterns, ma-

king predictions, and drawing meaningful insights from data, which is crucial

for decision-making and problem-solving. In business, it aids in market seg-

mentation and customer profiling; in science, it helps in taxonomy and species

identification; and in machine learning, it enhances the accuracy and perfor-

mance of predictive models.

1.7 Statistic clustering method

(a) K-means clustering: K-means clustering is a method of vector quantiza-

tion, originally from signal processing, that aims to partition n observations

into K clusters in which each observation belongs to the cluster with the

nearest mean (cluster centers or cluster centroid), serving as a prototype of

the cluster. This results in a partitioning of the data space into Voronoi cells.

K-means clustering minimizes within-cluster variances (squared Euclidean

distances), but not regular Euclidean distances, which would be the more

difficult Weber problem: the mean optimizes squared errors, whereas only

the geometric median minimizes Euclidean distances. For instance, better

Euclidean solutions can be found using K-medians and K-medoids.

Figure 1.3 – K-means clustering

(b) Hierarchical clustering:

In a hierarchical classification the data are not partitioned into a particu-

lar number of classes or clusters at a single step. Instead the classifica-

8



tion consists of a series of partitions, which may run from a single cluster

containing all individuals, to n clusters each containing a single individual.

Hierarchical clustering techniques may be subdivided into agglomerative me-

thods, which proceed by a series of successive fusions of the n individuals into

groups, and divisive methods, which separate the n individuals successively

into finer groupings. Both types of hierarchical clustering can be viewed as

attempting to find the optimal step, in some defined sense , at each stage in

the progressive subdivision or synthesis of the data, and each operates on a

proximity matrix of some kind (1.4).

Figure 1.4 – Hierarchical methods

(c) Fuzzy C-Means Clustering:

Is a form of clustering in which each data point can belong to more than

one cluster. Clustering or cluster analysis involves assigning data points to

clusters such that items in the same cluster are as similar as possible, while

items belonging to different clusters are as dissimilar as possible. Clusters

are identified via similarity measures.

These similarity measures include distance, connectivity, and intensity.

Different similarity measures may be chosen based on the data or the appli-

cation (1.5).

(d) Gaussian Mixture Models (GMM):

A Gaussian mixture model (GMM) is useful for modeling data that comes

9



Figure 1.5 – Fuzzy C-means clustering

from one of several groups: the groups might be different from each other,

but data points within the same group can be well-modeled by a Gaussian

distribution (1.6).

Figure 1.6 – Gaussian Mixture Models

(e) DBSCAN (Density-Based Spatial Clustering of Applications with

Noise)

It is a data clustering algorithm proposed by Martin Ester, Hans-Peter

Kriegel, Sander et al. (1998). It is a density-based clustering non-parametric

algorithm: given a set of points in some space, it groups together points that

are closely packed together (points with many nearby neighbors), marking

as outliers points that lie alone in low-density regions (whose nearest neigh-

bors are too far away), DBSCAN is one of the most common, clustering

10



algorithms.

Figure 1.7 – DBSCAN Clustering
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Chapitre 2

Detecting clusters with

univariate and bivariate plots of

Data

2.1 Introduction

It is generally argued that a unimodal distribution corresponds to a homoge-

neous, unclustered population and, in contrast, that the existence of several

distinct modes indicates a heterogeneous, clustered population, with each mode

corresponding to a cluster of observations. Although this is well known not to

be universally true.

But here we shall not give details of these methods, preferring to concentrate on

a rather more informal ‘eye-balling’ approach to the problem of mode detection

using suitable one and two-dimensional plots of the data.
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2.2 Histograms

The simple histogram is often a useful first step in finding modes in the data,

especially, of course, if the data are uni-variate. Figure (2.1), for example, shows

a histogram of myelinated fiber size in the lumbosacral ventral root of a kitten

of a given age. The distribution is clearly bimodal, suggesting the presence of

two relatively distinct groups of observations in the data.

Figure 2.1 – Histogram myelinated fiber size in the lumbosacral ventral root of a kitten
of a given age

2.3 Density Estimation

In statistics, probability density estimation or simply density estimation is

the construction of an estimate, based on observed data, of an unobservable

underlying probability density function. The unobservable density function

is thought of as the density according to which a large population is dis-

tributed; the data are usually thought of as a random sample from that

population. A variety of approaches to density estimation are used, including

Parzen windows and a range of data clustering techniques, including vector

quantization. The most basic form of density estimation is a rescaled histogram.

From the definition of a probability density, if the random variable X has

13



Figure 2.2 – Coppejans and Sieg (2005) estimate showing individual kernels

density f

f(x) = lim
h→0

1

2h
P (x− h < X < x+ h) (2.1)

Where P is the probability distribution For any given h, a näıve estimator of

P (x − h < X < x + h) is the proportion of the observations X1, X2, . . . , Xn

falling in the interval (x− h, x+ h); that is

f̂(x) =
1

2hn
[no. of X1, X2, . . . , Xn falling in (x− h, x+ h)

]
.

If we introduce a weight function W given by

W (x) =


1
2

if |x| < 1

0 otherwise

 ,

then the naive estimator can be rewritten as

f̂(x) =
1

n

n∑
i=1

1

h
W

(
x−Xi

h

)
.

Unfortunately, this estimator is not a continuous function and is not satis-

factory for practical density estimation. It does, however, lead naturally to the

kernel estimator defined by

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K is known as the kernel function and h as the bandwidth or smoothing
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parameter. The kernel function must satisfy the condition

∫ ∞

−∞
K(x)dx = 1.

Usually, but not always, the kernel function will be a symmetric density

function, for example, the normal.

2.4 Scatterplot matrices

A scatter plot matrix is table of scatter plots. Each plot is small so that many

plots can be fit on a page. When you need to look at several plots, such as at

the beginning of a multiple regression analysis, a scatter plot matrix is a very

useful tool.

Figure 2.3 – Scatterplot of FMRI data enhanced with estimated bivariate density (Li
et al. (2011))
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2.5 Hierarchical clustering

Hierarchical clustering is a method of cluster analysis which seeks to build

a hierarchy of clusters. There are two main types of hierarchical clustering:

Agglomerative and Divisive.

2.5.1 Hierarchy types

(a) Bottom Up - Agglomerative

(b) Starts by considering each observation as a cluster of it’s own.

(c) Clusters are merged as we move up the hierarchy.

5. Top Down - Divisive.

— Starts by considering all observations in one cluster.

— Clusters are divided as we move down the hierarchy.

2.5.2 Distance Functions

Certain mathematical proprieties are expected of any distance measure, or me-

tric:

(a) d(x, y) = 0, ∀x, y

(b) d(x, y) = 0 ⇐⇒ x = y

(c) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ( triangle inequality)

Euclidean distance
√∑d

i=1 (xi − yi))
2.

The most commonly used metric. Not that it weight all features/dimensions

“equally”.

(a) Decompose data objects into several levels of nested partitioning (tree of

clusters), called a dendrogram.
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Figure 2.4 – Scatterplot Matrix

Figure 2.5 – Dendrogram showing single linkage clustering of simulated data set
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(b) A clustering of the data objects is obtained by cutting the dendrogram at

the desired level, then each connected component forms a cluster.

6. A tree that shows how clusters are merged/split hierarchically

7. Each node on the tree is a cluster; each leaf node is a singleton cluster

8. A clustering of the data objects is obtained by cutting the dendrogram at the

desired level, then each connected component forms a cluster

Figure 2.6 – Hierarchical clustering dendogram

2.5.3 Agglomerative Clustering

Agglomerative clustering is a “bottom-up” approach. Here, we start with indivi-

dual elements and successively merge them into clusters. The process continues

until all elements are in a single cluster.

Formally, let X = {x1, x2, . . . , xn} be the set of elements to be clustered.

The steps are as follows:

(a) Start withnclusters, each containing one element {{x1}, {x2}, . . . , {xn}}.

(b) At each step, merge the two clusters Ci and Cj with the smallest distance

d(Ci, Cj), where the distance d can be defined in various ways (e.g., single-

linkage, complete-linkage, average-linkage).

(c) Repeat until there is only one cluster left.
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Distance Metrics

Different methods for measuring the distance between clusters lead to different

types of agglomerative clustering:

— Single-linkage clustering:

d(Ci, Cj) = min{d(xp, xq) : xp ∈ Ci, xq ∈ Cj}

— Complete-linkage clustering:

d(Ci, Cj) = max{d(xp, xq) : xp ∈ Ci, xq ∈ Cj}

— Average-linkage clustering:

d(Ci, Cj) =
1

|Ci||Cj|
∑

xp∈Ci

∑
xq∈Cj

d(xp, xq)

Figure 2.7 – Agglomerative approach
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2.5.4 Divisive Clustering

Divisive clustering is a “top-down” approach. Here, we start with all elements in a

single cluster and recursively split them into smaller clusters.

Formally, let X = {x1, x2, . . . , xn} be the set of elements to be clustered. The steps

are as follows:

1. Start with one cluster containing all elements {X}.

2. At each step, split the cluster C into two clusters Ci and Cj such that a chosen

criterion is optimized (e.g., minimizing the within-cluster variance).

3. Repeat until each element is in its own cluster.

2.5.5 Splitting Criteria

Different methods for splitting clusters lead to different types of divisive clustering:

— Variance Minimization (e.g., k-means based splitting):

Minimize
∑
k

∑
xi∈Ck

∥xi − µk∥2

where µk is the mean of cluster Ck.

— Spectral Clustering:

Use the eigenvectors of the Laplacian matrix of the graph representation of

the data to partition the graph.

2.6 Quantifying output value an axiomatic ap-

proach

Let us focus on the similarity case, where cost and objective are used interchangeably.

Consider an undirected weighted graph G = (V,E,w), where T is a cluster tree

for the graph. We are interested in cost functions for cluster trees that measure the

quality of the hierarchical clustering produced by T .
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Axiom: A desirable property for the cost function is that a cluster tree T has

minimum cost if and only if T is a generating tree for G.

This means the objective function can determine whether a given tree is generating

and thus whether it represents the underlying ground-truth hierarchical clustering.

Hence, the objective function acts as a “guide” for finding the correct hierarchical

classification. Note that there may be multiple trees that are generating for the same

graph.

For instance, if G = (V,E,w) is a clique with all edges having the same weight, then

every tree is a generating tree. In such cases, all generating trees are valid ground-truth

hierarchical clusterings.

Building on the recent work of DasguptaKobren et al. (2017),we adopt an approach

where we assign a cost to each internal node of the tree T to reflect the quality of the

split at that node and restrict the search space for such cost functions.

For an internal node N in the clustering tree T , where A and B (A ∪ B ⊂ V ) are

the leaves of the subtrees rooted at N ’s left and right children, respectively, we define

the cost Γ of the tree T as the sum of the costs at every internal node N :

Γ(T ) =
∑
N

cost(N)

The cost function cost(N) for an individual node N is defined as:

cost(N) = δ(N) =

( ∑
x∈A,y∈B

W (x, y)

)
· g(|A|, |B|)

where g(a, b) = a+ b.

Figure 2.8 – Objective Functions and Algorithms
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2.6.1 Distance, Similarity, and their use :

Before clustering, the phase of data measurement or measurement of the observable is

crucial. In this phase, we need to measure the elements and their distances to determine

group memberships. There are several key considerations for this process, particularly

related to metrics and spatial embeddings.

To group data, we require a method to measure distances between elements. This

can be done using similarity or dissimilarity measures. A distance function must satisfy

the following properties:

— Symmetry: d(i, j) = d(j, i)

— Positive Definiteness: d(i, j) ≥ 0 and d(i, j) = 0 if i = j

— Triangular Inequality: d(i, j) ≤ d(i, k) + d(k, j)

If the triangular inequality is not satisfied, we have a dissimilarity measure. A

similarity measure can be defined as:

s(i, j) = maxi,j{d(i, j)} − d(i, j)

A traditional way to measure distances in a vector space is using the Minkowski

distance, which is a family of metrics defined as:

d(i, j) =

(
n∑

k=1

|xk
i − xk

j |p
)1/p

where p ≥ 1 is a parameter that determines the specific type of Minkowski distance,

such as the Euclidean distance (p = 2) or the Manhattan distance (p = 1).

2.7 K-means clustering

The K-means algorithm developed by McQueen in 1967 Hofmann et al. (2008)), one of

the simplest unsupervised unsupervised learning algorithms, called the moving center

algorithm, assigns each point in a cluster, It assigns each point in a cluster to the

nearest centroid. nearest. The center is the average of all points in the cluster, and its
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coordinates are the arithmetic mean for each dimension separately of all the Points in

the cluster, i.e. each cluster is represented by its center of gravity.

2.7.1 Objective Function

The objective of K-means is to minimize the sum of squared distances between each

data point and the centroid of its assigned cluster. Mathematically, this is represented

as:

min
C

K∑
k=1

∑
i∈Ck

∥xi − µk∥2

where:

— xi is the i-th data point.

— µk is the centroid of the k-th cluster.

— Ck is the set of indices of data points that belong to cluster k.

— ∥ · ∥ denotes the Euclidean norm.

2.7.2 An Overview of K-Means Clustering

Clustering models aim to group data into distinct “clusters” or groups. This can both

serve as an interesting view in an analysis, or can serve as a feature in a supervised

learning algorithm.

Consider a social setting where there are groups of people having discussions in dif-

ferent circles around a room. When you first look at the room, you just see a group of

people. You could mentally start placing points in the center of each group of people

and name that point as a unique identifier. You would then be able to refer to each

group by a unique name to describe them. This is essentially what K-means clustering

does with data.

In the left-hand side of the diagram above, we can see 2 distinct sets of points that

are unlabeled and colored as similar data points. Fitting a K-means model to this

data (right-hand side) can reveal 2 distinct groups (shown in both distinct circles and
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Figure 2.9 – K-means clustering

colors).

In two dimensions, it is easy for humans to split these clusters, but with more dimen-

sions, you need to use a model.

2.7.3 K-means clustering algorithm

1. Randomly assign a number, from 1 to K, to each of the observations. These

serve as initial cluster assignments for the observations.

2. Iterate until the clustering algorithm stops changing.

— For each of the K clusters, compute the centroid. The k cluster centriod is

the vector of the p feature averages for the observations in the cluster k.

— Assign each observation to the cluster whose centroid is closest (where closest

is defined using Euclidean distance).

X̄kj =
1

|Ck|
∑
i∈Ck

Xij (2.2)

The above algorithm is guaranteed to decrease the value of the objective

function at each step.

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(Xij −Xi′j)
2 = 2

∑
i∈Ck

p∑
j=1

(Xij − X̄kj)
2
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Where

X̄kj =
1

|Ck|
∑
i∈Ck

xij (2.3)

is the mean for data point (feature) j incluster Ck

— In Step 2(a), the cluster means for each data point are the constants that mini-

mize the sum of squared deviations.

— In Step 2(b), reallocating the data points can only improve the the within sum

of squares.

— This means that as the algorithm is run, the clustering obtained will continually

improve until the result no longer changes and the objective of equation 1 will

never increase!

— I When the result no longer changes, we reach a local optimum.

This example is use K-means algorithm to identificate the clusters.

Figure 2.10 – Top left, the data is shown. Top center, each observation is randomly
assigned to a cluster. Top right, the cluster centroids are computed

Example Calculation

For a simple example with three points in 2D space and two clusters:

— Data points: x1 = (1, 2), x2 = (1, 4), x3 = (5, 6)

— Initialize centroids: µ1 = (1, 2), µ2 = (5, 6)
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Assignment

— Distance from x1 to µ1: ∥x1 − µ1∥2 = 0

— Distance from x1 to µ2: ∥x1 − µ2∥2 = 32

— Thus, x1 is assigned to cluster 1.

— Similarly, compute for x2 and x3.

Update

— Recalculate µ1 as the mean of points in cluster 1.

— Recalculate µ2 as the mean of points in cluster 2.

Repeat until convergence.

This process ensures that the sum of squared distances between points and their

respective centroids is minimized, resulting in compact and well-separated clusters.

2.7.4 When will K-means cluster analysis fail

K-means clustering performs best on data that are spherical. Spherical data are data

that group in space in close proximity to each other either.

This can be visualized in 2 or 3 dimensional space more easily.

Data that aren’t spherical or should not be spherical do not work well with K-means

clustering.

For example, K-means clustering would not do well on the below data as we would not

be able to find distinct centroids to cluster the two circles or arcs differently, despite

them clearly visually being two distinct circles and arcs that should be labeled as such.

2.7.5 K-means clustering advantages and disadvantages

K-means clustering is very simple and fast algorithm. It can efficiently deal with very

large data sets. However there are some weaknesses, including:
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Figure 2.11 – cluster

— It assumes prior knowledge of the data and requires the analyst to choose the

appropriate number of cluster (K) in advance.

— The final results obtained is sensitive to the initial random selection of cluster

centers.

Why is this a problem? Because, for every different run of the algorithm on the

same data set, you may choose a different set of initial centers.

This may lead to different clustering results on different runs of the algorithm.

— It’s sensitive to outliers.

— If you rearrange your data, it’s very possible that you’ll get a different solution

every time you change the ordering of your data.

Possible solutions to these weaknesses, include:

1. Solution to issue 1: Compute K-means for a range of k values, for example

by varying k between 2 and 10. Then, choose the best k by comparing the

clustering results obtained for the different K Values.

2. Solution to issue 2: Compute K-means algorithm several times with different

initial cluster centers.The run with the lowest total within cluster sum of square

is selected as the final clustering solution .

3. To avoid distortions caused by excessive outliers,It’s possible to use PAM algo-

rithm, which is less sensitive to outliers.
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2.7.6 Difficult questions posed by K-means

K-means clustering is a widely used unsupervised learning algorithm for partitioning a

dataset into k distinct, non-overlapping clusters. Despite its popularity and simplicity,

K-means poses several challenging questions and issues that are important to consider.

1. Key Questions

Sensitivity to Initial Cluster Centers

One of the primary challenges with K-means clustering is its sensitivity to the

initial selection of cluster centers. The algorithm may converge to different

solutions depending on where these centers are initially placed.

Choosing the Optimal Number of Clusters (k)

Determining the optimal number of clusters (k) is another challenging aspect

of K-means clustering. Various methods, such as the elbow method, silhouette

score, or gap statistic, can be used, but none are foolproof and the choice often

requires domain knowledge or additional validation.

Handling Non-Globular Clusters

K-means assumes that clusters are spherical or globular in shape due to its re-

liance on Euclidean distance. Handling clusters that are non-linear or irregularly

shaped can lead to suboptimal results or misclassification.

Impact of Outliers

Outliers can significantly influence K-means clustering results, as the algorithm

tries to minimize the sum of squares distances from each point to its assigned
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cluster center. Outliers may pull cluster centers away from the main concentra-

tion of data points, affecting cluster boundaries.

Robustness to Noise and Scaling

K-means clustering is sensitive to noise and requires careful preprocessing, such

as scaling or normalization of features, to produce meaningful clusters. Without

proper preprocessing, clusters may not reflect the underlying structure of the

data.

2. Mathematical Formulation

The K-means algorithm minimizes the within-cluster sum of squares:

Given a dataset X = {x1, x2, . . . , xn}, where each xi ∈ Rd, the objective

function is:

argmin
C1,C2,...,Ck

k∑
j=1

∑
xi∈Cj

∥xi − µj∥2

where µj is the centroid (mean) of cluster Cj.

3. Conclusion

K-means clustering offers a straightforward approach to partitioning data, but

it comes with several challenges that can affect its performance and reliability.

Addressing these challenges often requires a combination of algorithmic modi-

fications, preprocessing techniques, and domain-specific knowledge to achieve

meaningful cluster assignments.

29



2.8 Fuzzy C-Means Clustering

Fuzzy C-Means (FCM) clustering is a method of clustering which allows one piece of

data to belong to two or more clusters. This method is based on the minimization of

the following objective function:

2.8.1 Objective Function

The Fuzzy C-Means objective function is defined as:

Jm =
N∑
i=1

C∑
j=1

um
ij∥xi − cj∥2

where:

— N is the number of data points.

— C is the number of clusters.

— m is a real number greater than 1 (typically m = 2) that controls the fuzziness

of the resulting clusters.

— uij is the degree of membership of xi in the cluster j.

— xi is the i-th data point.

— cj is the centroid of the j-th cluster.

— ∥ · ∥ denotes the Euclidean norm.

2.8.2 Membership and Centroid Update Equations

The membership degrees and the centroids are updated iteratively according to the

following equations:

Membership Update

uij =
1∑C

k=1

(
∥xi−cj∥
∥xi−ck∥

) 2
m−1
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Centroid Update

cj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

2.8.3 Euclidean-Distance-Based Fuzzy C-Means Clustering

In the FCM algorithm, distance calculations are used to measure the similarity between

data points to determine the probability that a data point belongs to a cluster. The

traditional FCM algorithm is based on Euclidean distance. While Euclidean distance is

optimized to detect spherical structural clusters, studies show that it does not compute

accurate clustering with high dimensional data.

Let the Euclidean distance between two vectorsX = (X1, ..., Xd)
T and Y = (Y1, ..., Yd)

T

be :

d(x, y) =

√√√√ d∑
p=1

(xp − yp)2

In performing fuzzy c-means clustering, the goal is to minimize the objective function:

J(U,C;X,m) =
c∑

i=1

n∑
j=1

um
ijd

2
ij

subject to :
c∑

i=1

Uij,∀j ∈ 1, ..., n (2.4)

n∑
j=1

uij > 0, ∀j ∈ 1, ..., c (2.5)

Where:

m is the degree of fuzziness (m > 1),

X = (x1, . . . , xn) is a set of data points,

C = (c1, ..., cc) is the set of cluster prototypes ,

U = (uij)cn is the fuzzy partition matrix ,

dij = d(ci, xj).

We apply the Lagrange multipliers method to solve the above optimization problem.

Let λj ,0 ⩽ j ⩽ n be the Lagrange multipliers in accordance with (2,4). Then, the
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Lagrangian is

ζ(U,C, λ,X,m) =
c∑

i=1

n∑
j=1

um
ijd

2
ij +

n∑
j=1

λj

(
1−

c∑
i=1

uij

)

Minimizing the membership and the prototype yields the following optimal membership

and cluster prototype update formula for the ith prototype and jth data point

2.8.4 Fuzzy C-Means Algorithm (FCM)

Steps in the Algorithm

1. Initialization:

— Initialize the membership matrix U = [uij] with random values such that

the sum of the memberships for each data point is 1:
C∑

j=1

uij = 1, ∀i ∈ {1, . . . , N}

2. Repeat until convergence:

— Update the centroids cj using the centroid update equation.

— Update the membership matrix U using the membership update equation.

— Check for convergence. The algorithm converges when the change in the

membership matrix U falls below a predefined threshold or after a maximum

number of iterations.

Convergence Criterion

The convergence of the Fuzzy C-Means algorithm is typically determined by checking

whether the change in the membership values is below a certain threshold, or if the

maximum number of iterations has been reached.

∥U (t+1) − U (t)∥ < ϵ

where ϵ is a small positive number (e.g., 10−5).
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2.9 Gaussian Mixture Models (GMM)

Objective

The objective of GMM clustering is to maximize the likelihood of the observed data

under the model. This is achieved by estimating the parameters of the Gaussian

components (means, covariances, and mixing coefficients).

2.9.1 Model Definition

A GMM is defined as a weighted sum of K Gaussian components:

p(x) =
K∑
k=1

πkN (x|µk,Σk)

where:

— πk is the weight (mixing coefficient) of the k-th Gaussian component, with∑K
k=1 πk = 1 and πk ≥ 0.

— N (x|µk,Σk) is the Gaussian distribution with mean µk and covariance matrix

Σk.

The Gaussian distribution for a data point x given mean µk and covariance matrix

Σk is:

N (x|µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
where d is the dimensionality of the data.

Observation X = (x1, x2, ..., xp) ∈ Rp are assumed iid with density f(Xi) =
∑k

j=1.

f(xi) =
k∑

j=1

πjφaj,
∑
j

(Xj) (2.6)

parameters π i
∑

j will be estimaed by maximum likelihood
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2.9.2 Mixture of K -Gaussian distributions: (Multi-modal dis-

tribution)

2.9.3 Gaussian Mixture Model (GMM)

— There are k components.

— Component i has an associated mean vector µ.

— Each component generates data from a Gaussian with mean µi and covariance

matrix Σi.

— Each data point is generated according to the following recipe:

— Pick a component at random: Choose component i with probability P (y =

i).

— X ∼ (µi,Σi).

p(x|y = i) ∼ N (µi, σ
2I)

p(x) =
∑
i

p(x|y = i)P (y = i)
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2.9.4 Expectation-Maximization (EM) Algorithm

The EM algorithm is used to find the maximum likelihood estimates of the parameters.

It iteratively performs the following steps:

Initialization

Initialize the parameters πk, µk, and Σk for each Gaussian component.

Expectation Step (E-step)

Calculate the responsibility that each Gaussian component k takes for each data point

xi:

γik =
πkN (xi|µk,Σk)∑K
j=1 πjN (xi|µj,Σj)

where γik is the posterior probability that data point xi belongs to cluster k.

Maximization Step (M-step)

Update the parameters πk, µk, and Σk based on the responsibilities:

Nk =
N∑
i=1

γik

πk =
Nk

N

µk =
1

Nk

N∑
i=1

γikxi

Σk =
1

Nk

N∑
i=1

γik(xi − µk)(xi − µk)
T

where N is the total number of data points, and Nk is the effective number of points

assigned to cluster k.
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Repeat

Repeat the E-step and M-step until convergence, i.e., until the parameters do not

change significantly.

Convergence

The EM algorithm converges when the change in the log-likelihood of the data given

the model parameters falls below a predefined threshold or after a maximum number

of iterations.

Log-Likelihood

The log-likelihood of the data given the model parameters is:

logL(X|π,µ,Σ) =
N∑
i=1

log

(
K∑
k=1

πkN (xi|µk,Σk)

)
Maximizing this log-likelihood function with respect to the parameters π,µ, and

Σ is the goal of the EM algorithm in GMM clustering.

2.9.5 Density-Based Spatial Clustering of Applications with

Noise (BSCAN)

The density-based clustering algorithm is introduced in Ester 1996 Ester (2018), which

can be used to identify clusters of any shape in a data set containing noise and outliers.

The basic idea behind the density-based clustering approach is derived from a human

intuitive clustering method. For instance, by looking at the figure below, one can

easily identify four clusters along with several points of noise, because of the different

in the density of points. Clusters are dense regions in the data space, separated by

regions of lower density of points. The DBSCAN algorithm is based on this intuitive

notion of “clusters” and “noise”. The key idea is that for each point of a cluster, the
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neighborhood of a given radius has to contain at least a minimum number of points.

2.9.6 Why DBSCAN?

Partitioning methods (K-means, PAM clustering) and hierarchical clustering are sui-

table for finding spherical-shaped clusters or convex clusters. In other words, they work

well only for compact and well separated clusters. Moreover, they are also severely af-

fected by the presence of noise and outliers in the data.

2.9.7 DBSCAN Clustering Algorithm

Let D = {x1, x2, ..., xn} be the set of data points to be clustered.

Definitions

— Core Point: A point xi is a core point if:

|Nϵ(xi)| ≥ minPts

where Nϵ(xi) is the ϵ-neighborhood of xi.

— Directly Density Reachable: A point xj is directly density reachable from a

core point xi if:

|Nϵ(xj)| ≥ minPts and xj ∈ Nϵ(xi)

— Density Reachable: xj is density reachable from xi if there exists a chain of
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points x1, x2, ..., xk such that x1 = xi, xk = xj, and each xm+1 is directly density

reachable from xm.

— Density Connected (Cluster): A cluster is a maximal set of density connec-

ted points.

— Noise (Outlier): Points that do not belong to any cluster are considered noise

or outliers.

Parameters

— ϵ: Maximum radius of the neighborhood.

— minPts: Minimum number of points within ϵ distance.

Algorithm

The DBSCAN algorithm iteratively finds all core points and expands clusters from

them based on density reachability until all points are either assigned to a cluster or

marked as noise.

2.9.8 Distance Calculation in DBSCAN Clustering

Let D = {x1, x2, . . . , xn} denote the set of data points in your dataset.

Distance Metric

Let d(xi, xj) represent the distance between points xi and xj. This distance metric d

can be any suitable measure, such as:

— Euclidean Distance: For points xi = (xi1, xi2, . . . , xid) and xj =

(xj1, xj2, . . . , xjd):

deuclidean(xi, xj) =

√√√√ d∑
k=1

(xik − xjk)2
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— Manhattan Distance:

dmanhattan(xi, xj) =
d∑

k=1

|xik − xjk|

— Other Distance Metrics: Depending on your data and problem, other metrics

like cosine distance, Minkowski distance, or custom-defined distances might be

appropriate.

Distance Matrix

Compute the pairwise distances between all points in D to form a distance matrix D,

where Dij = d(xi, xj).

D =



d(x1, x1) d(x1, x2) · · · d(x1, xn)

d(x2, x1) d(x2, x2) · · · d(x2, xn)

...
...

. . .
...

d(xn, x1) d(xn, x2) · · · d(xn, xn)


Example: Euclidean Distance

For a concrete example, using the Euclidean distance metric deuclidean, the distance

between two points xi = (xi1, xi2) and xj = (xj1, xj2) in a 2-dimensional space is:

deuclidean(xi, xj) =
√
(xi1 − xj1)2 + (xi2 − xj2)2

This formalization provides a clear and structured approach to calculating distances

between points, essential for implementing DBSCAN clustering effectively.
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Figure 2.12 – Illustration of DBSCAN Clustering Concepts
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Chapitre 3

Financial Application

3.1 Introduction

In this chapter, we will explore applications of statistical clustering methods in the

context of financial data analysis.

Clustering is a powerful technique that helps in identifying patterns, segmenting data,

and uncovering hidden structures within large datasets. Financial data, characterized

by its volume, velocity, and variety, presents a perfect domain for the application of

these methods

In the first steps, we will simulate data to understand and compare different clustering

methods.

In the second step, we will apply clustering methods to a real financial dataset.

This practical approach will demonstrate how clustering can be used to extract mea-

ningful insights from financial data. Simulation studies and for real data are carried

out using R software.

3.2 Simulation

In this step, we simulate some samples from random data with different distributions
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3.2.1 Univariate Data

1. Histogram Clustering: We generate a mixture of two normally distributed

datasets (3.1) (N (0, 1),N (1, 1)) and three normally distributed datasets (3.2)

(N (0, 1),N (1, 1),N (2, 1)) for demonstration purposes.

Figure 3.1 – Histogram Clustering for two data sets

Figure 3.2 – Histogram Clustering for three data sets
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2. GMM Clustering: We generate a mixture of four normally distributed data-

sets (3.3) (N (0, 2),N (8, 4),N (15, 2),N (25, 3)) for demonstration purposes.

Figure 3.3 – Density Clustering

3. Fuzzy C-Means Clustering of Two Mixture Univariate Datasets: We

generate one mixture univariate datasets (data1 and data2) using rnorm. Each

dataset consists of 50 points from two different normal distributions.

We combine these datasets into a single vector data. We specify the number of

clusters and the fuzziness parameter (m) as 2 for the Fuzzy C-Means algorithm.

We use the cmeans function from the e1071 package to perform Fuzzy C-Means

clustering on data.

Figure 3.4 – Fuzzy C-means Clustering for Univariate sample
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3.3 Bivariate Data

3.3.1 K-means method

We apply the K-means method to cluster simulated three sample data of size 10000

with normal distribution with a means 0, 5, 10 with the same variance respectively. we

Figure 3.5 – K-means methods for three clusters

use the K-means clustering algorithm to group synthetic data points into three distinct

clusters, and visualizes the results. In this (3.5), we can see that we have kept the same

number of clusters.

Figure 3.6 – K-means methods for three cluster

In this example we have the same rate

1. Gaussian Mixture method:
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we use the Gaussian method to clustering a simulated data This block generates

Figure 3.7 – Gaussian Mixture method

a synthetic data set with three distinct clusters. Each cluster is created by

generating data from a normal distribution with different means and standard

deviations:

(a) The first cluster has a mean 10 and a standard deviation of 1.

(b) The second cluster has a mean 10 and a standard deviation of 2.

(c) The third cluster has a mean 10 and a standard deviation of 0.5.

2. DBSCAN method:

We use the DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) algorithm for data clustering and cluster display, membership prediction

for new data, and geographical data clustering using the DBSCAN algorithm.

To evaluate the efficacy of DBSCAN in contrast to alternative techniques, it

also contains a performance comparison with other implementations.

Uses the following parameters to apply the DBSCAN algorithm to standardized

iris scaled data:

— (eps = 0.5): Maximum radius around a point to define its vicinity.

— (minPts = 5): Minimum number of points in a neighborhood for a point to

be considered a core point.
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Figure 3.8 – DBSCAN methods

3. Hierarchical method: we use the Hierarchical method to clustering a simu-

lated data.

Hierarchical clustering methods are particularly effective for analyzing real data

when the relationships between data points can be represented hierarchically.

Here’s how hierarchical clustering works with real data and its applications.

3.4 Clustering real data application:

3.4.1 Cluster Analysis

Cluster analysis is a statistical approach that classifies items into mutually exclusive

groups (clusters) so that members of each group are as similar to one another as possible

while remaining as distinct as possible from members of other groups
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3.5 Applying Clustering Methods to Cluster

Cryptocurrencies

3.5.1 The Basics about Cryptocurrency

Cryptocurrency comes under many names. You have probably read about some of

the most popular types of cryptocurrencies such as Bitcoin, Litecoin, and Ethereum.

Cryptocurrencies are increasingly popular alternatives for online payments. Before

converting real dollars, euros, pounds, or other traditional currencies into (the symbol

for Bitcoin, the most popular cryptocurrency), you should understand what crypto-

currencies are, what the risks are in using cryptocurrencies, and how to protect your

investment.

3.5.2 What is cryptocurrency?

A cryptocurrency is a digital currency, which is an alternative form of payment

created using encryption algorithms. The use of encryption technologies means that

cryptocurrencies function both as a currency and as a virtual accounting system. To

use cryptocurrencies, you need a cryptocurrency wallet. These wallets can be software

that is a cloud-based service or is stored on your computer or on your mobile device.

The wallets are the tool through which you store your encryption keys that confirm

your identity and link to your cryptocurrency.

3.5.3 What are the risks to using cryptocurrency?

Cryptocurrencies are still relatively new, and the market for these digital currencies

is very volatile. Since cryptocurrencies don’t need banks or any other third party

to regulate them; they tend to be uninsured and are hard to convert into a form of

tangible currency (such as US dollars or euros.) In addition, since cryptocurrencies

are technology-based intangible assets, they can be hacked like any other intangible
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technology asset. Finally, since you store your cryptocurrencies in a digital wallet, if

you lose your wallet (or access to it or to wallet backups), you have lost your entire

cryptocurrency investment.

3.5.4 Key Features of Cryptocurrencies:

1. Decentralization: Cryptocurrencies operate on decentralized networks of com-

puters (nodes) that use consensus mechanisms to validate and record transac-

tions. This decentralization removes the need for intermediaries like banks or

payment processors, making transactions more direct and potentially more effi-

cient.

2. Blockchain Technology: Most cryptocurrencies use blockchain technology,

which is a distributed ledger that records all transactions across a network of

computers. Each block in the blockchain contains a set of transactions, and new

blocks are added to the chain in a chronological order through a process called

mining.

3. Security: Cryptocurrencies use cryptographic techniques to secure transactions

and control the creation of new units. Public and private keys are used to

authenticate transactions and ensure that only the owner of the cryptocurrency

can access and transfer their funds.

4. Anonymity and Transparency: While cryptocurrency transactions are pseu-

donymous (meaning they are linked to addresses rather than real-world identi-

ties), the blockchain provides a transparent and immutable record of all tran-

sactions. This transparency can enhance trust and accountability in the cryp-

tocurrency ecosystem.

5. Limited Supply: Many cryptocurrencies have a predetermined maximum sup-

ply or a fixed issuance schedule, which helps prevent inflation and maintain the

value of the currency over time. For example, Bitcoin has a maximum supply

of 21 million coins.

48



3.5.5 Examples of Cryptocurrencies:

1. Bitcoin (BTC): Bitcoin is the first and most well-known cryptocurrency, crea-

ted by an unknown person or group of people using the pseudonym Satoshi

Nakamoto in 2009.

2. Ethereum (ETH): Ethereum is a decentralized platform that enables de-

velopers to build and deploy smart contracts and decentralized applications

(DApps). It was proposed by Vitalik Buterin in late 2013 and development was

crowdfunded in 2014, with the network going live on July 30, 2015.

3. Ripple (XRP): Ripple is a digital payment protocol and cryptocurrency that

aims to enable fast and low-cost cross-border transactions. It was released

in 2012 by Ripple Labs Inc., a technology company based in San Francisco,

California.

4. Litecoin (LTC): Litecoin is a peer-to-peer cryptocurrency created by Charlie

Lee in 2011. It is based on the Bitcoin protocol but with some differences, such

as a shorter block generation time and a different hashing algorithm.

5. Cardano (ADA): Cardano is a blockchain platform that aims to provide a

more secure and scalable infrastructure for the development and execution of

smart contracts and DApps. It was founded by Charles Hoskinson, one of the

co-founders of Ethereum, and launched in 2017.

These examples represent just a small fraction of the thousands of cryptocurrencies

that exist today. Each cryptocurrency has its own unique features, use cases, and

communities, contributing to the diverse and dynamic landscape of the cryptocurrency

market.

3.5.6 Clustering cryptocurrencies

Applying clustering methods to cluster cryptocurrencies involves similar steps to clus-

tering oil prices. Here’s how you can do it:
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1. Data Collection: Gather historical data for various cryptocurrencies, including

dollar exchange rate, trading volume, market capitalization, and other relevant

metrics.

2. Feature Selection: Decide which features to use for clustering. Consider

incorporating price data, trading volume, market capitalization, price volatility,

correlations with other cryptocurrencies or financial instruments, and technical

indicators.

3. Data Preprocessing: Normalize or scale the features as necessary to ensure

they are on a similar scale and comparable.

4. Choose Clustering Algorithm: Select a clustering algorithm suitable for

your data and objectives, such as K-means, hierarchical clustering, DBSCAN,

or Gaussian mixture models.

5. Determine Number of Clusters: Decide on the number of clusters to use,

using techniques such as the elbow method or silhouette score.

6. Apply Clustering Algorithm: Apply the chosen clustering algorithm to the

preprocessed cryptocurrency data.

7. Interpret Results: Analyze the clusters formed by the algorithm, looking for

patterns or insights in each cluster.

8. Evaluate and Refine: Evaluate the quality of the clustering results and refine

the analysis as needed by adjusting parameters or trying different algorithms.

9. Visualization: Visualize the clustering results using scatter plots, heatmaps,

or other techniques to make them interpretable.

10. Monitoring: Continuously monitor cryptocurrency data and update the clus-

tering analysis periodically to identify emerging trends or patterns in the cryp-

tocurrency market.
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Figure 3.9 – Clustering for three clusters

Figure 3.10 – DBSCAN Clustering

This figure shows a 2D scatter plot with clusters represented by different colors.

The clusters are enclosed by convex hulls, and each cluster has a label indicating its

number. Red crosses denote the centroids of each cluster. The plot is titled “Convex

Cluster Hulls” and demonstrates the spatial distribution of clusters in the x− y plane.

51



Figure 3.11 – K-means

This figure consists of four subplots showing the results of clustering using the

K-Means algorithm.

Each subchart is labeled “Clustering with K-Means” and displays clusters in a

two-dimensional scatter plot with X andY axes.

The top left subplot shows clustering in 4 clusters, while the top right subplot shows

clustering in 3 clusters, The lower left subgraph shows the clustering in 2 clusters with

different initialization, The lower right bottom subgraph shows the grouping in one

group.

Different clusters are indicated by different colors and symbols.

The X-axis represents a range of values up to approximately 70,000, while the Y -axis

ranges from 0 to 350.
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Figure 3.12 – Data of Price

Figure 3.13 – Data of Volume

Figure 3.14 – Data of Market-Cap

These scatter plots show the distribution of the variable “e,d,b” across different

indices. It is clear from the graphs that there are a few outliers where the variable

“e,d,b” reaches very high values, while the majority of the data points are clustered

near zero. This indicates that the e variable has a highly skewed distribution, with a

long tail extending towards higher values.
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Figure 3.15 – Histogramm of data Price

Figure 3.16 – Histogramm of Volume

Figure 3.17 – Histogramm of data Market-Cap

The histogram shown represents the distribution of cryptocurrencies (Market-Cap

, Volume , Price) As observed, the majority of the data points are concentrated at the

lower end of the range (near zero), with very few occurrences of higher values. This

indicates a highly skewed distribution. Most of the frequency counts are in the first

bin, suggesting that ’Market-Cap,Volume , Price’ has a large number of very small
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values and a few extremely large values.

3.5.7 Applying Clustering Methods to Cluster Development

Indices

3.5.8 Background and Motivation

The development and economic progress of countries around the world are measu-

red using various indices that reflect key aspects such as health, education, and in-

come. These indices provide a comprehensive view of a country’s socio-economic status

and are crucial for policy-making, resource allocation, and international comparisons.

However, the sheer volume and complexity of the data can make it challenging to iden-

tify patterns and insights that can inform effective decision-making. This study aims to

employ clustering techniques to analyze the development indices of 48 countries, the-

reby uncovering underlying patterns and grouping countries with similar development

profiles.

3.6 Importance of Clustering Development Indices

Clustering is an unsupervised machine learning technique that groups similar data

points based on their characteristics. When applied to development indices, clustering

can reveal natural groupings of countries with similar socio-economic profiles. These

groupings can:

— Facilitate Comparative Analysis: By clustering countries with similar deve-

lopment indices, policymakers and researchers can perform more targeted com-

parative analyses.

— Identify Development Patterns: Clustering can uncover hidden patterns

and trends in development data that might not be apparent through traditional

analysis methods.
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— Assist in Policy Formulation: Understanding which countries share similar

development challenges and strengths can help in formulating more effective and

tailored policy interventions.

— Enhance Resource Allocation: Clustering can guide international organi-

zations and governments in allocating resources more efficiently by targeting

clusters of countries with similar needs.

3.6.1 Development Indices

Development indices of countries are quantitative measures that capture various as-

pects of a nation’s socio-economic progress and well-being. These indices are designed

to provide a comprehensive overview of a country’s development status by aggregating

data across multiple dimensions, such as economic performance, health, education, and

living standards.

They serve as critical tools for policymakers, researchers, and international organiza-

tions to assess and compare the development levels of different countries, track progress

over time, and identify areas requiring intervention and improvement.

1. Human Development Index(IDH): The Human Development Index, is a

composite statistical index designed to assess the rate of human development of

the world’s countries. The HDI was initially based on three criteria: GDP per

capita, life expectancy at birth and educational attainment of children aged 17

and over.

2. PIB per Inhabitant: Gross domestic product per capita, or per capita (GDP

per capita or per capita) is an indicator of the level of economic activity. It

is the value of GDP divided by the number of inhabitants in a country. It is

more effective than GDP in measuring a country’s development, but it is only

an average, and therefore cannot account for inequalities of income and wealth

within a population.

3. IPM: The Multidimensional Poverty Index (MPI)1, also known as the
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Multidimensional Poverty Index, is a statistical index assessing poverty in de-

veloping countries, created by a department at Oxford University in 2010.

4. Gini Index: The Gini coefficient, or Gini index, is a statistical measure of the

distribution of a variable (income, wealth, etc.) within a population. Primarily,

it measures the degree of income inequality in a country1.

5. IPH (HPI): (Human Poverty Index) The Human Poverty Index or HPI is a

composite index, created by the UNDP (United Nations Development Program),

whose aim is to measure the level of poverty within a country.

6. IDG: IDG, Infrastructure de Données Géographiques, in English SDI for Spatial

Data Infrastructure) is an organization based on sharing agreements, coordina-

tion between its members and IT systems that integrate a set of services (ca-

talogs, servers, software, data, applications, web pages, etc.) used to manage

geographic information (maps, orthophotoplans, satellite images, etc.).

7. Life Quality Index: The Life Quality Index (LQI) is a calibrated compound

social indicator of human welfare that reflects the expected length of life in

good health and enhancement of the quality of life through access to income.

The Life Quality Index combines two primary social indicators: the expectancy

of healthy life at birth, E, and the real gross domestic product per person, G,

corrected for purchasing power parity as appropriate. Both are widely available

and accurate statistics.

8. IPC The Integrated Food Security Phase Classification (IPC) is a set of analyti-

cal tools and processes used to analyze and classify the severity of food insecurity

according to international scientific standards.

9. ICG: The International Crisis Group, also known as Crisis Group, is an in-

ternational non-profit NGO founded in 1995, whose mission is to prevent and

help resolve deadly conflicts through independent field research, analysis and

recommendations.
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3.6.2 Objectives of the Study

The primary objectives of this study are to gather and preprocess development indices

data for 48 countries, identifying relevant features such as GDP per capita, literacy

rate, life expectancy, and access to healthcare. Various clustering algorithms, including

K-means, hierarchical clustering, and DBSCAN, will be applied to group the countries

based on these indices. The resulting clusters will be analyzed to identify common

characteristics and differences among the countries. Visualization techniques will be

employed to present the clustering results in an interpretable manner. Finally, the im-

plications of these results for international development policies and resource allocation

will be discussed.

3.6.3 Clustering Index developement

Figure 3.18 – k-means cluster of the index development for 48 countries with Two
clusters.

This figure is a cluster plot showing the results of a clustering algorithm in 2D

space. There are two clusters:

Cluster 1 in red and Cluster 2 in blue. Points represent the clusters, enclosed by

ellipses, with the X-axis (Dim1) accounting for 77.6% of the variance and the Y -axis

(Dim2) for 10.6%.

Arrows indicate the direction and distance of points from the cluster centroids. The
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plot is titled “Cluster plot,” and the clusters are distinguished by color and shape (see,

3.18)
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Figure 3.19 – k-means cluster of the index development for 48 countries with Three
clusters.

This figure is a cluster plot showing the results of a clustering algorithm in 2D space.

There are three clusters: Cluster 1 in red, Cluster 2 in black and Cluster 3 in blue.

Points represent the clusters, enclosed by ellipses, with the X-axis (Dim1) accounting

for 77.6% of the variance and the Y -axis (Dim2) for 10.6%. Arrows indicate the

direction and distance of points from the cluster centroids. The plot is titled “Cluster

plot,” and the clusters are distinguished by color and shape (see, 3.19).

In conclusion, we can say that clustering for two clusters is better than clustering with

three clusters, because in the first case, the two clusters are well separated.
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Summary of Findings

A detailed review of traditional clustering methods, including K-means, hierarchical

clustering, DBSCAN, and Gaussian Mixture Models, Fuzzy clustering methods, parti-

cularly Fuzzy C-means (FCM), were introduced and their advantages over traditional

methods were highlighted. FCM’s ability to handle overlapping clusters and provide a

more nuanced representation of data was emphasized was conducted. Their strengths,

limitations, and suitable application scenarios were discussed.

The performance of various clustering algorithms was implemented and evaluated on

both synthetic and real-world datasets. The impact of different parameter settings and

initialization strategies on clustering outcomes was investigated.

Potential improvements and hybrid approaches were proposed to enhance the robust-

ness and applicability of clustering methods. These included combining multiple clus-

tering techniques and optimizing parameter selection.

Techniques for visualizing and interpreting clustering results were explored, demonstra-

ting the importance of clear and effective data presentation in understanding clustering

outcomes.

The practical applications of clustering methods in various domains, such as bioin-

formatics, market segmentation, image processing, and social network analysis, were

discussed. Case studies and examples illustrated the versatility and impact of clustering

techniques in real-world scenarios.
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Contributions to the Field

This thesis has made several contributions to the field of data clustering:

— Provided a comprehensive review and comparison of traditional and fuzzy clus-

tering methods.

— Demonstrated the practical application and effectiveness of Fuzzy C-means clus-

tering in handling complex datasets.

— Highlighted the importance of visualization and interpretation in the clustering

process.

Future Research Directions

While significant progress has been made, there are several areas for future research:

— Scalability and Efficiency: Further research is needed to develop scalable

and efficient clustering algorithms capable of handling large datasets.

— Dynamic Clustering: Exploring dynamic clustering methods that can adapt

to changes in data over time and handle streaming data effectively.

— Integration with Other Techniques: Investigating the integration of clus-

tering with other machine learning and data mining techniques, such as classi-

fication and regression, to enhance overall data analysis capabilities.

— Application-Specific Adaptations: Developing clustering methods tailored

to specific applications and domains, addressing unique challenges and require-

ments.

In conclusion, this thesis has advanced the understanding and application of clus-

tering methods in data analysis.

This study contributes to the ongoing development and refinement of clustering tech-

niques, paving the way for more effective and insightful data analysis in various fields.
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Appendices

Appendix 1: Histogram Clustering

1 # Load necessary libraries

2 library(ggplot2)

3

4 # Generate some example mixture univariate data

5 #set.seed (123)

6 data1 <- rnorm (100, mean = 0, sd = 1)

7 data2 <- rnorm (100, mean = 1, sd = 1)

8 data3 <- rnorm (100, mean = 5, sd = 1)

9

10 data <- c(data1 , data2 ,data3)

11

12 # Create a histogram of the data

13 hist_data <- hist(data , breaks = "Sturges", plot = FALSE)

14

15 # Extract the midpoints of the histogram bins

16 bin_midpoints <- hist_data$mids

17

18 # Apply k-means clustering to the bin midpoints

19 #set.seed (123)
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20 num_clusters <- 3 # Change this to the number of clusters you

want

21 kmeans_result <- kmeans(bin_midpoints , centers = num_clusters)

22

23 # Assign each data point to the nearest cluster based on the

bin it falls into

24 bin_assignments <- cut(data , breaks = hist_data$breaks , labels

= FALSE , include.lowest = TRUE)

25 data_clusters <- kmeans_result$cluster[bin_assignments]

26

27 # View the first few data points and their corresponding

clusters

28 head(data)

29 head(data_clusters)

30

31 # Plot data points colored by their cluster assignment

32 ggplot(data.frame(x = data , cluster = as.factor(data_clusters))

, aes(x, fill = cluster)) +

33 geom_histogram(binwidth = diff(hist_data$breaks)[1], alpha =

0.7, position = "identity") +

34 labs(title = "Histogram Clustering ", x = "Value", y = "

Frequency") +

35 scale_fill_manual(values = rainbow(num_clusters)) # Adding

colors to clusters

Appendix 2: Cryptocurrencies Clustering

1

2 MJ <- Cryptocurrencies $‘Market Cap ‘
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3 V <- as.numeric(Cryptocurrencies $Price)

4 D <- Cryptocurrencies $‘Volume (24h)‘

5

6 (classement <- data.frame( MJ,V, D))

7

8 head(classement)

9 colnames(classement)

10 #Number of Columns.

11 ncol(classement)

12 #Number of Rows.

13 nrow(classement)

14 #Check if there are missing values.

15 sum(is.na(classement))

16 duplicates <- classement %>% duplicated ()

17 #Displays how many duplicates are present in a table. If a

value is not a duplicate , it is placed in ’FALSE ’. If the

value is a duplicate , it is placed in ’TRUE ’.

18 duplicates_count <- duplicates %>%table ()

19 duplicates_count

20 #Scales/standardizes the data.

21 Cryptocurrencie <- scale(classement)

22 #Views the scaled data.

23 head(Cryptocurrencie)

24

25 #Complete Linkage Clustering Method

26 hcluster_com <- hclust(dist(Cryptocurrencie), method = "

complete")

27 plot(hcluster_com , main = "Complete Linkage Dendrogram")

28

29 #Average Linkage Clustering Method
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30 hcluster_ave <- hclust(dist(Cryptocurrencie), method = "average

")

31 plot(hcluster_ave , main = "Average Linkage Dendrogram")

32

33 km.res <- kmeans(classement , 3, nstart = 20)

34 km.res

35 df_member <- cbind(classement , cluster = km.res$cluster)

36 head(df_member ,166)

37

38 library(factoextra)

39 library(cluster)

40 fviz_cluster(km.res , data = classement ,

41 palette=c("red", "blue", "black", "darkgreen"),

42 ellipse.type = "euclid",

43 star.plot = T,

44 repel = T,

45 ggtheme = theme())

Appendix 3: Development Indices Clustering

1

2 data1 <- data.frame(

3 # Pays = c(" France", "Allemagne", " tats -Unis", "Inde", "

Chine", " B r s i l ", "Japon", "Royaume -Uni", "Canada", "

Australie",

4 # "Russie", "Mexique", " I n d o n s i e ", " N i g r i a ", "

Afrique du Sud", "Italie", "Espagne", " C o r e du Sud", "

Argentine",
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5 # "Arabie Saoudite", "Turquie", "Pays -Bas", "Suisse

", " S u d e ", "Pologne", "Belgique", " T h a l a n d e ", "Iran", "

Egypte",

6 # "Pakistan", "Philippines", "Vietnam", "Malaisie",

"Colombie", "Bangladesh", "Ukraine", "Chili", "Kazakhstan",

"Kenya",

7 # "Roumanie", "Hongrie", " G r c e ", "Portugal", "

Irlande", "Singapour", "Hong Kong", "Nouvelle - Z l a n d e ", "

Emirats Arabes Unis"),

8 PIBPH = c(41464 , 46245 , 62641 , 2100, 10410 , 8897, 40113 ,

42330 , 45045 , 56329 ,

9 11430 , 9360, 4120, 2222, 5996, 34240 ,

30176 , 34277 , 10400 ,

10 21123 , 12507 , 52835 , 81900 , 55601 ,

15730 , 43139 , 7279, 5983, 3560,

11 1430, 3120, 3450, 11515, 6067, 1900,

3610, 14810, 11239, 1854,

12 12630 , 15370 , 20690 , 23340 , 84650 ,

58603 , 48250 , 45800 , 67300) ,

13 IDH = c(0.901 , 0.939 , 0.926 , 0.645 , 0.761 , 0.765 , 0.915 ,

0.922 , 0.929 , 0.944 ,

14 0.824, 0.779, 0.718, 0.539, 0.705 , 0.880 , 0.891 ,

0.916, 0.825,

15 0.854, 0.820, 0.934, 0.955, 0.945 , 0.872 , 0.924 ,

0.765, 0.783, 0.707 ,

16 0.557, 0.706, 0.704, 0.805, 0.767 , 0.661 , 0.779 ,

0.851, 0.811, 0.579 ,

17 0.828, 0.845, 0.872, 0.850, 0.942 , 0.938 , 0.939 ,

0.920, 0.890) ,

18 IPM = c(0.007 , 0.005 , 0.008 , 0.123 , 0.038 , 0.049 , 0.004 ,

0.006 , 0.007 , 0.003 ,
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19 0.031, 0.051, 0.093, 0.187, 0.106 , 0.025 , 0.028 ,

0.004, 0.045,

20 0.018, 0.070, 0.004, 0.003, 0.002 , 0.046 , 0.005 ,

0.031, 0.035, 0.127 ,

21 0.197, 0.085, 0.052, 0.017, 0.064 , 0.140 , 0.056 ,

0.007, 0.020, 0.165 ,

22 0.044, 0.035, 0.055, 0.025, 0.002 , 0.002 , 0.002 ,

0.002, 0.003) ,

23 IG = c(0.29, 0.31, 0.41, 0.35, 0.38, 0.53, 0.33, 0.34, 0.32,

0.34,

24 0.41, 0.45, 0.39, 0.43, 0.62, 0.34, 0.32,

0.36, 0.42,

25 0.45, 0.42, 0.29, 0.28, 0.29, 0.33, 0.33,

0.37, 0.38, 0.31,

26 0.31, 0.42, 0.40, 0.41, 0.50, 0.32, 0.26,

0.47, 0.29, 0.43,

27 0.31, 0.30, 0.34, 0.32, 0.34, 0.45, 0.39,

0.34, 0.38),

28 IPH = c(0.045 , 0.037 , 0.059 , 0.197 , 0.085 , 0.093 , 0.041 ,

0.046 , 0.044 , 0.035 ,

29 0.073, 0.082, 0.154, 0.276, 0.229 , 0.048 , 0.047 ,

0.037, 0.071,

30 0.065, 0.057, 0.036, 0.033, 0.034 , 0.054 , 0.036 ,

0.095, 0.100, 0.145 ,

31 0.198, 0.120, 0.078, 0.040, 0.109 , 0.156 , 0.086 ,

0.048, 0.052, 0.174 ,

32 0.054, 0.045, 0.065, 0.045, 0.030 , 0.025 , 0.028 ,

0.034, 0.020) ,

33 IDG = c(0.995 , 0.964 , 0.992 , 0.827 , 0.942 , 0.999 , 0.993 ,

0.975 , 0.988 , 0.981 ,
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34 0.955, 0.913, 0.903, 0.838, 0.894 , 0.971 , 0.972 ,

0.985, 0.964,

35 0.951, 0.940, 0.978, 0.976, 0.979 , 0.960 , 0.974 ,

0.926, 0.927, 0.884 ,

36 0.802, 0.899, 0.911, 0.948, 0.923 , 0.891 , 0.905 ,

0.936, 0.914, 0.822 ,

37 0.942, 0.930, 0.940, 0.935, 0.978 , 0.976 , 0.980 ,

0.977, 0.967) ,

38 IQV = c(7.9, 8.1, 7.2, 5.4, 6.7, 6.2, 8.0, 7.8, 7.9, 8.5,

39 6.1, 6.0, 5.7, 4.9, 5.1, 7.5,

7.4, 8.2, 6.8,

40 6.7, 6.5, 8.1, 8.4, 8.6, 7.3,

7.6, 6.3, 6.0, 5.6,

41 5.2, 5.8, 5.7, 7.0, 6.2, 5.1,

5.9, 7.4, 6.7, 5.3,

42 7.1, 6.9, 7.3, 7.2, 8.3, 8.9,

8.7, 8.4, 8.5),

43 IPC = c(69, 80, 67, 40, 41, 38, 72, 77, 81, 73,

44 29, 31, 38, 25, 44, 52, 57, 56, 42,

45 53, 39, 83, 85, 84, 55, 75, 41, 29, 28,

46 25, 36, 37, 48, 40, 25, 37, 70, 52, 27,

47 44, 48, 55, 60, 85, 86, 88, 80, 83),

48 ICG = c(79.8, 81.2, 83.7, 61.4, 73.9, 62.5, 82.6, 81.4, 83.3,

83.1,

49 64.8, 64.0, 63.4, 53.9, 60.1, 68.7, 68.0, 82.2, 66.5,

50 70.4, 62.0, 82.7, 84.0, 84.2, 70.6, 81.2, 60.5, 59.3,

57.6,

51 51.5, 61.0, 60.8, 72.2, 61.5, 55.4, 60.2, 70.0, 63.7,

52.9,

52 67.4, 65.0, 68.0, 66.5, 84.6, 85.1, 85.2, 83.9, 84.5)

53 )
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54 data1

55 (classement <- data1)

56 head(classement)

57 colnames(classement)

58 #Number of Columns.

59 ncol(classement)

60 #Number of Rows.

61 nrow(classement)

62 #Check if there are missing values.

63 sum(is.na(classement))

64 duplicates <- classement %>% duplicated ()

65 #Displays how many duplicates are present in a table. If a

value is not a duplicate , it is placed in ’FALSE ’. If the

value is a duplicate , it is placed in ’TRUE ’.

66 duplicates_count <- duplicates %>%table ()

67 duplicates_count

68 #Scales/standardizes the data.

69 USdata <- scale(classement)

70 #Views the scaled data.

71 head(USdata)

72

73 #Complete Linkage Clustering Method

74 hcluster_com <- hclust(dist(USdata), method = "complete")

75 plot(hcluster_com , main = "Complete Linkage Dendrogram")

76

77 #Average Linkage Clustering Method

78 hcluster_ave <- hclust(dist(USdata), method = "average")

79 plot(hcluster_ave , main = "Average Linkage Dendrogram")

80

81 km.res <- kmeans(classement , 3, nstart = 20)

82 km.res
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83 df_member <- cbind(classement , cluster = km.res$cluster)

84 head(df_member ,48)

85

86 library(factoextra)

87 library(cluster)

88 fviz_cluster(km.res , data = classement ,

89 palette=c("red", "blue", "black", "darkgreen"),

90 ellipse.type = "euclid",

91 star.plot = T,

92 repel = T,

93 ggtheme = theme())
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Rank Name Symbol Market Cap Price Volume(24h)

1 Bitcoin BTC 1,364E+12 69199.21 24992292082

2 Ethereum ETH 4,582E+11 3814.12 11906845041

3 Tether USDt USDT 1,122E+11 0.9998 59516840776

4 BNB BNB 9,296E+10 629.87 2564716156

5 Solana SOL 7,593E+10 165.14 1832007554

6 USDC USDC 3,238E+10 1.00 4534472131

7 XRP XRP 2,883E+10 0.5199 1013278416

8 Dogecoin DOGE 2,343E+10 0.1621 765904252

9 Cardano ADA 1,621E+10 0.4541 291327875

10 Toncoin TON 1,594E+10 6.61 494816288

11 Shiba Inu SHIB 1,475E+10 0.00002502 478836295

12 Avalanche AVAX 1,414E+10 35.97 309135586

13 Chainlink LINK 1,053E+10 17.94 316311584

14 Polkadot DOT 1,024E+10 7.12 162197910

15 TRON TRX 9,94E+09 0.1138 289874030

16 Bitcoin Cash BCH 9,186E+09 465.96 235652155

17 NEAR ProtocolNEAR 7,872E+09 7.28 258444082

18 Polygon MATIC 7,011E+09 0.7076 273103291

19 Pepe PEPE 6,378E+09 0.00001516 1632195150

20 Litecoin LTC 6,242E+09 83.67 293622274

21 Uniswap UNI 5,797E+09 9.66 168860161

22 Internet ComputerICP 5,564E+09 11.98 59608138

23 UNUS SED LEOLEO 5,519E+09 5.96 3024417

24 Dai DAI 5,349E+09 1.00 356695284

25 Ethereum ClassicETC 4,298E+09 29.17 176069660

26 Aptos APT 3,957E+09 9.05 103314330

27 Render RNDR 3,913E+09 10.07 158003491

28 Hedera HBAR 3,666E+09 0.1025 62069911

29 Kaspa KAS 3,563E+09 0.1496 75612129

30 dogwifhat WIF 3,469E+09 3.47 702632894

31 Filecoin FIL 3,3E+09 5.90 149264473

32 Cosmos ATOM 3,299E+09 8.44 100628391

33 Immutable IMX 3,285E+09 2.22 50689240

34 Arbitrum ARB 3,272E+09 1.13 255031614

35 Mantle MNT 3,181E+09 0.9746 47738064

36 Stellar XLM 3,096E+09 0.1067 51539887

37 Cronos CRO 2,975E+09 0.112 11201083

38 Monero XMR 2,9E+09 157.24 58058920

39 The Graph GRT 2,855E+09 0.3002 72022224

40 First Digital USDFDUSD 2,844E+09 1.00 5123516884

41 Arweave AR 2,842E+09 43.29 64688272

42 OKB OKB 2,814E+09 46.90 3935716

43 Stacks STX 2,781E+09 1.90 52605413

44 FLOKI FLOKI 2,672E+09 0.0002795 633292948
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