Patrick Dehornoy

LICENCE · MAÎTRISE · AGRÉGATION

Mathématiques de l'informatique

Cours et exercices corrigés

Table des matières

AVA	NT-PRO	POS	*		XI
CHAI	PITRE 1	MOTS, LANGAGES ET ARBRES			1
1.1	Le type	emot			1
	1.1.1	Mots			2
	1.1.2	Concaténation			3
	1.1.3	Monoïdes			4
	1.1.4	Ordre préfixe			6
1.2	Le type	e langage			7
	1.2.1	Opérations sur les langages			8
	1.2.2	Homomorphismes			10
	1.2.3	Notion de langage décidable			11
1.3	Le type	e arbre			12
	1.3.1	Ordres et graphes			12
	1.3.2	Arbres		,	15
	1.3.3	Arbres et graphes			17
	1.3.4	Niveaux et branches			19
	1.3.5	Parcours d'arbres			21

	Table des matières
VI	lable des matteres

CH	APITRE 2	MONOÏDES ET GROUPES LIBRES	23
2.1	Struct	ures libres	23
	2.1.1	Variétés équationnelles	24
	2.1.2	Sous-structure engendrée par une partie	25
	2.1.3	Familles libres	26
	2.1.4	Bases	27
	2.1.5	Congruences et quotients	29
2.2	Monoi	des libres	32
	2.2.1	Familles génératrices	32
171	2.2.2	Familles libres	33
	2.2.3	Bases	33
	2.2.4	Congruences	34
	2.2.5	Présentations	35
2.3	Group	es libres	36
	2.3.1	Construction des groupes libres	37
	2.3.2	Présentations de groupes	40
CHA	APITRE 3	• AUTOMATES	47
3.1	Autom	nates	47
	3.1.1	La notion d'automate	47
	3.1.2	Langages automatiques	51
3.2	Constr	ruction d'automates	52
	3.2.1	Construction directe	52
	3.2.2	Opérations booléennes	54
	3.2.3	Homomorphismes	56
3.3	Extens	ions de la notion d'automate	57
	3.3.1	Automates non déterministes	57
	3.3.2	Epsilon-transitions	62
CH	APITRE 4	LANGAGES AUTOMATIQUES	69
4.1	L'auto	mate minimal d'un langage	69
	4.1.1	Minimalisation d'un automate	69
	4.1.2	Classes à droite suivant un langage	75
	4.1.3	Un exemple important	79
	4.1.4	Applications	80

Tabl	le des matières	 VII
4.2	Expressions régulières	82
	4.2.1 Propriétés de clôture	82
	4.2.2 Le théorème de Kleene	83
	4.2.3 Applications	85
	4.2.4 Alphabet à un élément	86
4.3	Propriétés d'itération	87
CHA	PITRE 5 • GRAMMAIRES FORMELLES	93
5.1	Réécriture et productions	93
	5.1.1 Règles de réécriture	94
	5.1.2 Productions	94
5.2	Construction de grammaires	97
	5.2.1 Grammaires régulières	98
	5.2.2 Quelques exemples	98
1	5.2.3 Systèmes d'équations dans les langages	100
	5.2.4 Grammaires formelles comme modèles	103
	5.2.5 Opérations sur les langages algébriques	104
5.3	Grammaires de formes particulières	105
	5.3.1 Suppression des epsilon-productions	106
	5.3.2 Suppression des productions-unité	108
	5.3.3 Forme normale de Chomsky	110
	5.3.4 Forme normale de Greibach	111
CHA	PITRE 6 • ARBRES DE DÉRIVATION ET AUTOMATES À PILE	117
6.1	Arbres de dérivation	117
	6.1.1 Arbres de dérivation	117
	6.1.2 La propriété d'itération	121
	6.1.3 Propriétés de non-clôture	123
6.2	Principe de l'analyse syntaxique	124
	6.2.1 Analyse descendante	124
	6.2.2 Tables d'analyse	126
6.3	Automates à pile	128
	6.3.1 Automates à pile	129
	6.3.2 Automates à pile déterministes	134

VIII	Table des matières
------	--------------------

CHA	PITRE 7 • MACHINES DE TURING		137
7.1	Machines de Turing		137
	7.1.1 Notion générale de calcul		138
	7.1.2 Machines de Turing pour un ruban		139
	7.1.3 Ensemble décidé par une machine de Turing		142
7.2	Simulation entre machines de Turing		145
	7.2.1 Machines de Turing pour plusieurs rubans		146
	7.2.2 Simulation .		150
7.3	Construction de machines de Turing		156
131	7.3.1 Fonctions MT-calculables		156
	7.3.2 Représentation des entiers		159
	7.3.3 Quelques exemples		160
	7.3.4 Indépendance du choix de la base		163
	7.3.5 Propriétés de clôture		164
	7.3.6 Réels MT-calculables		165
CHAI	PITRE 8 • FONCTIONS RÉCURSIVES	10.	171
8.1	Notion de fonction récursive	4 27	171
	8.1.1 Définitions de fonctions		171
	8.1.2 Calculabilité		175
	8.1.3 Ensembles récursifs		176
8.2	Récursivité des fonctions MT-calculables		179
	8.2.1 Fonctions usuelles		179
	8.2.2 Récurrence multiple		180
	8.2.3 Contrôle d'une machine de Turing		182
8.3	Deux contre-exemples		186
	8.3.1 Le castor affairé		186
	8.3.2 La fonction d'Ackermann		188
CHAI	PITRE 9 • COMPLEXITÉ ALGORITHMIQUE		197
9.1	La thèse de Church		197
5.1	9.1.1 Modèle de calcul		197
	9.1.2 Classes de complexité		200
9.2	Machines de Turing non déterministes		203
5.2	9.2.1 Résolution et vérification		203
	9.2.2 Complexité non déterministe		205
	9.2.3 Le problème P = NP		206
			and the second second

Table des mat	ères	IX
9.3 Évaluatio	d'algorithmes	
	n d'algorithmes Igorithmes de tri	207
	ultiplication des entiers	207
	alcul du pgcd	209
	ultiplication des matrices	212
7.5.1	displication des matrices	214
CHAPITRE 10 •	OGIQUE BOOLÉENNE	221
10.1 Formules	et réalisations	221
10.1.1 Fe	ormules booléennes	222
10.1.2 V	lleurs de vérité	223
10.1.3 L	théorème de compacité	227
10.2 Notion de	preuve	228
10.2.1 Pı	euves par coupure	228
10.2.2 La	méthode de résolution	231
10.3 Complexit	é du problème de satisfaisabilité	236
	problème sat	236
10.3.2 Pr	oblèmes NP-complets	239
	A CONTRACT LINE IN	27
CHAPITRE 11 • L	OGIQUE DU PREMIER ORDRE	243
11.1 Calcul des	prédicats	243
11.1.1 Te	rmes et formules	243
11.1.2 Ré	alisations et satisfaction	246
11.1.3 Po	uvoir d'expression	249
11.2 Théorèmes	de complétude	252
11.2.1 Pro	euves	253
11.2.2 Ar	plications	257
11.2.3 La	méthode de résolution	259
11.3 Logique et	complexité	262
11.3.1 Se	nidécidabilité	262
11.3.2 Inc	écidabilité	264
	omplétude	265
11.3.4 Su	tes de Goodstein	266
SOLUTIONS DES	EXERCICES	272
BIBLIOGRAPHIE		299
INDEX		301

SCIENCES SUP

Patrick Dehornoy

MATHÉMATIQUES DE L'INFORMATIQUE

Cours et exercices corrigés

Cet ouvrage, destiné en priorité aux étudiants de second cycle de mathématiques, intéressera également un public plus large : enseignants de mathématiques pratiquant l'informatique et désireux d'en approfondir les bases théoriques, étudiants ou ingénieurs en informatique intéressés par les aspects mathématiques de leur discipline.

Centré sur les notions de calcul et de définition, ce cours est une introduction à l'étude des structures mathématiques sous-jacentes à l'informatique. Les principaux développements concernent les automates, les langages algébriques, la calculabilité effective et la complexité des algorithmes, la logique booléenne et les logiques du premier ordre, dont les définitions et propriétés élémentaires usuelles sont exposées.

L'approche proposée est résolument mathématique et souligne une orientation générale tournée vers la théorie. Une attention spéciale a été portée à la rigueur et à la précision de la rédaction, en particulier dans les démonstrations.

Cent cinquante exercices d'application et de complément sont proposés, dont plus de la moitié avec un corrigé rédigé.

