

UNIVERSITE SAAD DAHLEB BLIDA -1-

جامعة البليدة -1-

Faculté de technologie

كلية التكنولوجيا

Département de génie civil

دائرة الهندسة المدنية

MEMOIRE DE fin d'étude

Option : Construction Mixte et Métallique

CONCEPTION ET CALCUL PARASISMIQUE D'UNE PISCINE SEMI-OLYMPIQUE EN BETON ARME ET UNE TOITURE EN CHARPENTE METALLIQUE

Présenté par :

OUADHA NAKHLA

TAHAR NAILA

Devant le jury composé de :

M^r MENADI.B M^r ZAHAF.A M^r TEFRAOUT.S M^r DJIDJILI.F U. Saad Dahleb-blida

U. Saad Dahleb-blida

U. Saad Dahleb-blida

Président Examinateur Encadreur Co-encadreur

Blida, septembre 2022

Remerciement

Tout d'abord, nous remercions ALLAH le tout puissant pour son aide et pour nous avoir donné la force et la patience afin d'arriver à terminer ce travail. Nous remercions nos deux familles qui nous ont toujours encouragé et soutenu durant toutes nos études tout au long de notre parcours.

Nous tenons à exprimer nos vifs remerciements à notre encadrants monsieur **Tafraout Salim** et **Djijili Fayçal** pour tout le soutien, les orientations et la patience qu'ils ont manifestés durant leur encadrement tout le long de la réalisation de ce mémoire.

Nous remercions les membres de jury qui nous font l'honneur de juger ce travail.

Nous remercions aussi toutes les personnes qui nous ont aidés de prêt ou de loin à la réalisation de notre projet d'études.

Ouadha Nakhla

Tahar Naila

ملخص:

الهندسة المدنية هي فن تصميم وبناء أنواع مختلفة من المشاريع، مثل المنازل والإدارات ومراكز التسوق والمباني الصناعية والبنية التحتية للطرق والمجمعات الرياضية. كجزء من هذا الإطار الأخير، تقدم هذه الأطروحة دراسة التصميم الزلز الي ودراسة العناصر هيكلية لحوض سباحة شبه أولمبي يقع في مدينة عزابه بولاية سكيكدة. يتكون المشروع من عدة بنايات ذات طابق واحد أو طابقين كحد أقصى مصنوع من الخرسانة المسلحة بالإضافة إلى بناية كبيرة تضم عدة حمامات سباحة منه أولمبي يقع في مدينة عزابه بولاية سكيكدة. يتكون المشروع من عدة بنايات ذات طابق واحد أو طابقين كحد أقصى مصنوع من الخرسانة المسلحة بالإضافة إلى بناية كبيرة تضم عدة حمامات سباحة مغطاة بسقف مصنوع أو طابقين كحد أقصى مصنوع من الخرسانة المسلحة بالإضافة إلى بناية كبيرة تضم عدة حمامات سباحة مغطاة بسقف مصنوع من إطار فولاذي. يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل للجزائر (RPA99V2003) في منطقة زلز الياد من إطار فولاذي. يقع المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل للجزائر (RPA99V2003) في منطقة زلز الياد متوسطة (المنطقة عليه المشروع في مدينة مصنفة حسب قواعد البنايات المضادة للزلازل للجزائر (RPA99V2003) في منطقة زلز اليه متوسطة (المنطقة and وعني النماذج الرقمية ثلاثية الأبعاد باستخدام برنامج SAP2000 من أجل الحصول على زلز الية متوسطة (المنطقة الى العاد الرقمية ثلاثية الأبعاد باستخدام برنامج SAP2000 من أجل الحصول على تصميم يلبي كلاً من معايير الاستقرار العام للهيكل ومقاومة العناصر الهيكلية، مع الحفاظ على بنية المشروع. يتم حساب والتحقق من العناصر الهيكلية والتجمعات وأقسام التعزيز وما إلى ذلك بشكل أساسي وفقًا للقواعد المعمول بها في الجزائر (CBA93 /)، بناءً على القوى المسجلة في النماذج الرقمية.

كلمات مفتاحية

حوض سباحة شبه أولمبي، سقف معدني، تصميم زلزالي، نمذجة رقمية ثلاثية الأبعاد، RPA99 معدل 2003، CCM97، CBA93 / BAEL.

RESUME :

Le génie civil est un art de conception et de construction de divers types d'ouvrages, tels que les habitations, les administrations, les centres commerciaux, les bâtiments industriels, les infrastructures routières ainsi que les complexes sportifs. S'inscrivant dans ce dernier cadre, ce mémoire présente l'étude de conception parasismique et le dimensionnement des éléments structuraux d'une piscine semi-olympique implanté à la ville de Azzaba dans la willaya de Skikda. Le projet est composé de plusieurs blocs à un ou deux étages maximum réalisés en béton armé ainsi qu'une grande salle abritant plusieurs bassins, couverte par une toiture est en charpente métallique. Le projet est implanté dans une zone classée par le règlement parasismique Algérien (RPA 99 version 2003) en zone de moyenne séismicité (zone IIa). Des modèles numériques 3D ont été élaborées en utilisant le logiciel SAP2000 afin d'avoir une conception qui satisfait à la fois les critères de stabilité globale de la structure et la résistance des éléments structuraux, tout en conservant l'architecture du projet. Le calcul et vérification des éléments structuraux, les assemblages, les sections d'armatures, etc... sont principalement faits conformément aux règles en vigueurs en Algérie (CCM97/CBA93/ BAEL), en se basant sur les efforts enregistrés dans les modèles numériques.

Mots clés :

Piscine semi-olympique, Toiture métallique, Conception parasismique, Modélisation numérique 3D, RPA99 modifié 2003, CCM97, CBA93 /BAEL.

ABSTRACT:

Civil engineering is an art of designing and building various types of projects, such as homes, administrations, shopping centers, industrial buildings, road infrastructure and sports complexes. As part of this last framework, this thesis presents the seismic design study and the sizing of the structural elements of a semi-Olympic swimming pool located in the city of Azzaba in the wilaya of Skikda. The project is made up of several blocks with one or two floors maximum made of reinforced concrete as well as a large room housing several pools, covered by a roof made of steel structure. The project is located in an area classified by the Algerian earthquake resistant design code (RPA 99 version 2003) in an area of average seismicity (zone IIa). 3D digital models were developed using the SAP2000 software in order to have a design that satisfies both the criteria of overall stability of the structure and the resistance of the structural elements, assemblies, reinforcement sections, etc. are mainly done in accordance with the rules in force in Algeria (CCM97/CBA93/BAEL), based on the forces recorded in the numerical models.

Key words:

Semi-Olympic swimming pool, Steel structure roof, Seismic design, 3D digital modeling, RPA99 modified 2003, CCM97, CBA93 /BAEL.

SOMMAIRE

Introduction générale Chapitre I : Présentation de l'ouvrage	
I.1. Introduction	1
I.2. Dimensions géométriques du projet	1
I.3. Données environnementales du site du projet	3
I.4. Rapport d'étude de sol	4
I.5. Conception architecturale du projet	4
I.6. Système constructif du complexe sportif	5
I.6.1. Ossature en structure métallique	5
I.6.2. Ossature en béton armé	6
I.7. Règlements utilisés	7
I.8. Les matériaux utilisés	7
I.8.1. Acier pour la structure métallique	8
I.8.2. L'assemblage	8
I.8.3. Béton armé	8
I.8.4. Les aciers d'armatures	9
<u>Chapitre II :</u> Evaluation des charges II.1. Introduction	10
II.2. Charges permanentes	10
II.3. Surcharges d'exploitations	11
II.4. Surcharges climatiques	11
II.4.1. Charge de la neige	11
II.4.1.1. La charge de neige sur le sol Sk :	11
II.4.1.2. Coefficient de forme de la toiture :	12
II.4.2. Charge du vent	
II.4.2.1. Calcul de la pression du vent :	
II.4.2.2. L'effet du vent par unité de surface est donné par la formule suivante :	
II.4.2.3. La pression dynamique qpZe :	
II.4.2.4. Coefficient dynamique Cd :	14
II.4.2.5. Coefficient de pression extérieure Cpe :	16
II.4.2.6. Coefficient de pression intérieur Cpi :	20
II.4.2.7. Calcul forces de frottement Ffr :	24
Chapitre III : Prédimensionnement des éléments secondaires III.1. Introduction	25
III.2. Les pannes	25
III.2.1. Les données	25
III.2.2. Evaluation des charges et surcharges	26

III.2.3. Vérification à la sécurité (ELU)	28
III.2.3.1. Vérification à la flexion	28
III.2.3.2. Vérification au cisaillement	29
III.2.3.3. Vérification au déversement	29
III.2.3.4. Vérification à l'état limite de service (ELS)	31
III.2.3.4.1. Vérification à la flèche	31
III.2.4. Calcul des liernes	31
III.2.5. Calcul de l'échantignolle	33
III.3. Les potelets	35
III.3.1. Evaluation des charges et surcharges	35
III.3.2. Le pré dimensionnement du potelet	
III.3.2.1. Condition de flèche	36
III.3.2.2. Vérification de l'effort axial	
III.3.2.3. Vérification de l'effort tranchant	
III.3.2.4. Vérification de la stabilité au flambement	37
III.3.2.5. Vérification de la stabilité au déversement	
III.3.2.6. Vérification de la flèche	40
III.4. L'acrotère	41
III.4.1. Evaluation des charges	41
III.4.2. Détermination des sollicitations	42
III.4.3. Dimensionnement de l'acrotère	42
III.4.4. Vérification à L'ELS	44
III.5. Les escaliers	46
III.5.1. Définitions usuelles	47
III.5.2. La formule de BLONDEL	48
III.5.3. Descente de charge	49
III.5.4. Combinaison de charges	50
III.5.5. Détermination des sollicitations	51
III.5.6. Calcul des armatures	54
III.5.7. Armatures de répartition	56
III.5.8. Vérification à l'effort tranchant	56
<u>Chapitre IV:</u> Prédimensionnement des éléments principaux IV.1. Introduction	
IV.2. Bloc CM	
IV.2.1. Portigue traverse	
IV.2.1.1. Caractéristiques géométriques	
IV.2.1.2. Coefficient de rigidité de l'encastrement	57
~	

IV.2.1.3. Effet des charges verticales sur un portique	58
IV.2.1.4. Calcul des efforts internes	59
IV.2.1.5. Combinaisons à l'ELU	62
IV.2.1.6. Prédimensionnement de la traverse	63
IV.2.1.6.1. Condition de résistance	63
IV.2.1.6.2. Vérification de la traverse à l'ELS	63
IV.2.1.6.2.1. Vérification à la flèche	63
IV.2.1.6.3. Vérification de la traverse à l'ELU	64
IV.2.1.6.3.1. Les efforts	64
IV.2.1.6.3.2. Vérification de l'effort tranchant	64
IV.2.1.6.3.3. Vérification de l'effort normal	64
IV.2.1.6.3.4. Vérification à la flexion	64
IV.2.1.6.3.5. Vérification au déversement	65
IV.2.1.7. Prédimensionnement des poteaux	66
IV.2.1.7.1. Vérification des poteaux	66
IV.2.1.7.1.1. Vérification de l'effort tranchant	66
IV.2.1.7.1.2. Vérification de l'effort axial	66
IV.2.1.7.1.3. Vérification à la flexion	66
IV.2.1.7.1.4. Vérification de la stabilité au flambement	66
IV.2.1.7.1.5. Vérification de la stabilité au déversement	67
IV.3. Bloc A	69
IV.3.1. Les poutres	69
IV.3.2. Les poteaux	70
IV.3.2.1. Méthode de calcul	70
IV.3.2.2. Les poteaux carrés	72
IV.3.2.3. Les poteaux circulaires	74
IV.4. Bloc B	75
IV.4.1. Les poutres	75
IV.4.2. Les poteaux	76
IV.5. Bloc C	77
IV.5.1. Les poutres	77
IV.5.2. Les poteaux	78
<u>Chapitre V:</u> Etude sismique V.1. Introduction	80
V.2. Méthode dynamique modale spectrale	80
V.3. Etapes de modélisation de la structure	
V.4. Vérification de la structure	84

V.4.1. Bloc A	84
V.4.1.1. Analyse modale de la structure	
V.4.1.2. Vérification de la force sismique à la base	
V.4.1.3. Vérification des déplacements	86
V.4.2. Bloc B	
V.4.2.1. Analyse modale de la structure	
V.4.2.2. Vérification de la force sismique à la base	91
V.4.2.3. Vérification des déplacements	
V.4.3. Bloc C	
V.4.3.1. Analyse modale de la structure	
V.4.3.2. Vérification de la force sismique à la base	94
V.4.3.3. Vérification des déplacements	94
V.4.4. Bloc CM	95
V.4.4.1. Analyse modale de la structure	96
V.4.4.2. Vérification de la force sismique à la base	97
V.4.4.3. Vérification des déplacements	
V.4.4.4. Vérification de la structure sous le vent	
V.4.5. Justification de la largeur des joints sismiques	
Chapitre VI: Vérification des éléments structuraux en charpente métalliq	lue
VI.1. Introduction	
VI.2. Vérification des contreventements	
VI.2.1. Vérification de la résistance à la traction	
VI.2.2. Vérification de la résistance à la compression	
VI.2.3. Vérification par le logiciel Sap2000V14	
VI.3. Vérification des palées de stabilité	
VI.3.1. Vérification de la résistance à la traction	
VI.3.2. Vérification de la résistance à la compression	
VI.3.3. Vérification par le logiciel Sap2000V14	
VI.4. Les pannes	
VI.5. Les potelets	
VI.6. Les traverses	
VI.7. Les poteaux	116
VI.8. Les sablières	119
VI.9. Les sablières (de palée de stabilité)	
<u>Chapitre VII:</u> Calcule des assemblages VII 1. Introduction	124
VII 2 Calcul et vérifie les assemblages	124
	124

VII.2.1. Assemblage poteau-traverse	124
VII.2.1.1. Effort de calcul	
VII.2.1.2. Détermination des efforts dans les boulons	
VII.2.1.3. Dimensionnement des boulons	126
VII.2.1.4. Condition de résistance des boulons	126
VII.2.1.5. Moment résistant effectif de l'assemblage	126
VII.2.1.6. Vérification	127
VII.2.1.7. Calcul avec robot	128
VII.2.2. Assemblage traverse -traverse	135
VII.2.2.1. Calcul avec robot	135
VII.2.3. Assemblage contreventement	139
VII.2.3.1. Calcul avec robot	139
VII.2.4. Calcul du pied poteau	146
VII.2.4.1. Calcul avec robot	146
VII.2.4.1.1. Cas1 : à la compression	146
VII.2.4.1.2. Cas2 : à la traction	150
<u>Chapitre VII:</u> vérification et calcule de ferraillage des éléments en béton armé	
VIII.1. Vérifications des éléments en béton armé selon le RPA99v2003	153
VIII.1.1. Bloc A	153
VIII.1.1.1. Les poutres principales	153
VIII.1.1.2. Les poutres secondaires	153
VIII.1.1.3. Les poteaux carrés	
VIII.1.1.4. Les poteaux circulaires	153
VIII.1.2. Bloc B :	153
VIII.1.2.1. Les poutres principales	153
VIII.1.2.2. Les poutres secondaires	
VIII.1.2.3. Les poteaux carrés	
VIII.1.3. Bloc C	154
VIII.1.3.1. Les poutres principales	154
VIII.1.3.2. Les poutres secondaires	154
VIII.1.3.3. Les poteaux carrés	154
VIII.2. Ferraillages des éléments structuraux	154
VIII.2.1. Ferraillages des poteaux	154
VIII.2.2. Ferraillage des poutres	162
<u>Chapitre IX:</u> Etude des fondatios IX.1. Introduction	169
IX.2. Critères de choix du type des fondations	169

IX.3. Etude de sol	169
IX.4. Calcul des fondations :	170
IX.4.1. Prédimensionnement de la semelle « Poteau IPE600 »	170
IX.4.2. Prédimensionnement de la semelle « Poteaux 50×80-40×40 »	172
IX.4.3. Prédimensionnement de la semelle « Poteau 40×40 »	175
IX.5. Etudes des longrines	177
IX.6. Calcul du ferraillage des futs	179
Chapitre X : Etude et vérification des bassins des piscines	
X.1. Introduction	180
X.2. Modélisation	180
X.3. Détermination du coefficient de réaction de sol	180
X.4. Calcul du poids de l'eau	
X.5. Combinaison d'action	
X.6. Dimensionnement des éléments	181
X.7. Vérification de la contrainte au sol à l'ELS	
X.8. Calcul de ferraillage	
Conclusion générale	

LISTE DES TABLEAUX

Tableau	I.1 : la conception architecturale	4
Tableau	I. 2 : Règlement techniques utilisées pour la construction.	7
Tableau	I.3: Valeurs nominales de fy et fu	8
Tableau	I. 4 : Valeurs nominales de fy pour l'acier d'armature.	9
Tableau	II. 1 : les charges permanentes de plancher terrasse	10
Tableau	II. 2 : les charges permanentes de plancher courant.	10
Tableau	II.3 : les charges permanentes de toiture.	11
Tableau	II. 4 : définition des catégories de terrain.	.13
Tableau	II. 5: La pression dynamique.	.14
Tableau	II. 6: Coefficient dynamique <i>Cd</i> .	16
Tableau	II. 7 : les pressions extérieures sur les parois verticales-direction V1 du vent.	17
Tableau	II. 8 : les pressions extérieures sur la toiture-direction V1 du vent	18
Tableau	II. 9: les pressions extérieures sur les parois verticales-direction V2 du vent.	.19
Tableau	II. 10 : les pressions extérieures sur la toiture-direction V2 du vent	20
Tableau	II. 11 : les surfaces des ouvertures.	20
Tableau	II. 12 : la pression du vent sur les parois verticales-direction V1 du vent (Cas1)	21
Tableau	II. 13 : la pression du vent sur la toiture-direction V1 du vent (Cas1)	21
Tableau	II. 14: la pression du vent sur les parois verticales-direction V2 du vent (Cas1)	22
Tableau	II. 15 : la pression du vent sur la toiture-direction V2 du vent (Cas1)	22
Tableau	II. 16 : la pression du vent sur les parois verticales-direction V1 du vent (Cas2)	.23
Tableau	II. 17 : la pression du vent sur la toiture-direction V1 du vent (Cas2)	.23
Tableau	II. 18: la pression du vent sur les parois verticales-direction V2 du vent (Cas2)	.23
Tableau	II. 19 : la pression du vent sur la toiture-direction V2 du vent (Cas2)	.23
Tableau	II. 20 : les forces de frottements.	.24
Tableau	III1: Décomposition des charges.	27
Tableau	III2: Les combinaisons de charges.	28
Tableau	III 3: Caractéristiques géométriques d'un IPE100.	.29
Tableau	III 4: Le moment résistant de déversement	30
Tableau	III 5: Caractéristiques géométriques d'un IPE120.	31
Tableau	III 6: Le moment résistant de déversement	31
Tableau	III 7: Caractéristiques géométriques d'un IPE270.	.36
Tableau	III. 8: Les coefficients de flambement	.37
Tableau	III 9: Caractéristiques géométriques d'un IPE300.	38
Tableau	III 10: Les coefficients de déversement-Le moment résistant.	.39
Tableau	III. 11: Caractéristiques géométriques d'un IPE330.	.39

Tableau III. 12 : Les coefficients de déversement-Le moment résistant.	
Tableau III. 13: Caractéristiques géométriques d'un IPE360.	
Tableau III 14: Les coefficients de déversement-Le moment résistant.	
Tableau III. 15: Caractéristiques géométriques d'un IPE400.	40
Tableau III. 16: Les coefficients de déversement-Le moment résistant.	40
Tableau III. 17: Les charges permanentes de palier.	49
Tableau III. 18: Les charges permanentes de volé.	50
Tableau III. 19: Combinaison des charges à l'ELU.	
Tableau III. 20: Combinaison de charge à l'ELS.	50
Tableau IV. 1: Les effets du vent.	
Tableau IV. 2: Les efforts internes sous la charge unitaire.	
Tableau IV. 3: Les efforts internes sous les charges actuelles.	62
Tableau IV. 4: Les combinaisons des charges à l'ELU	62
Tableau IV. 5: Caractéristiques géométriques d'un IPE450.	63
Tableau IV. 6: Caractéristiques géométriques d'un IPE500.	64
Tableau IV. 7: Les coefficients de déversement	65
Tableau IV. 8: Les coefficients de flambement.	67
Tableau IV. 9: Les coefficients de déversement	67
Tableau IV. 10: Caractéristiques géométriques d'un IPE550.	68
Tableau IV. 11: Les coefficients de déversement-Le moment résistant.	68
Tableau IV. 12: Caractéristiques géométriques d'un IPE600.	68
Tableau IV. 13: Les coefficients de déversement-Le moment résistant.	68
Tableau. V.1 : valeurs des pénalités Pq.	
Tableau V.2 : Eléments constituant la structure A.	
Tableau V.3 : Participation massique de bloc A.	84
Tableau V.4 : Résultat des forces sismiques à la base de bloc A.	86
Tableau V.5 : Vérification de la force sismique à la base de bloc A.	
Tableau V.6 : Résultat du déplacement de bloc A.	
Tableau V.7 : Participation massique de bloc A après modification.	
Tableau V.8 : Résultat des forces sismiques à la base de bloc A après modification	89
Tableau V.9 : Vérification de la force sismique à la base de bloc A après modificat	ion89
Tableau V.10 : Résultat du déplacement de bloc A après modification.	

Tableau V.11 : Eléments constituant la structure B.	
Tableau V.12 : Participation massique de bloc B.	91
Tableau V.13 : Résultat des forces sismiques à la base de bloc B.	92
Tableau V.14 : Vérification de la force sismique à la base de bloc B.	92
Tableau V.15 : Résultat du déplacement de bloc B	92
Tableau V.16 : Eléments constituant la structure C.	93
Tableau V.17 : Participation massique de bloc C	93
Tableau V.18 : Résultat des forces sismiques à la base de bloc C.	94
Tableau V.19 : Vérification de la force sismique à la base de bloc C.	94
Tableau V.20 : Résultat du déplacement de bloc C	95
Tableau V.21 : Eléments constituant la structure CM	95
Tableau V.22 : Participation massique de bloc CM.	96
Tableau V.23 : Résultat des forces sismiques à la base de bloc CM.	97
Tableau V.24 : Vérification de la force sismique à la base de bloc CM	
Tableau V.25 : Résultat du déplacement de bloc CM.	
Tableau V.26 : Participation massique de bloc CM après modification	
Tableau V.27 : Résultat des forces sismiques à la base de bloc CM après modification	
Tableau V.28 : Vérification de la force sismique à la base de bloc après modification.	
Tableau V.29 : Résultat du déplacement de bloc CM après modification	
Tableau V. 30 : Résultat du déplacement de la structure sous le vent.	
Tableau VI1 : Caractéristiques du profilé L70 × 70 × 7.	
Tableau VI2 : Les coefficients de flambement	
Tableau VI3 : Caractéristiques du profilé L150 × 150 × 5.	
Tableau VI4 : Les coefficients de flambement.	
Tableau VI5 : Vérification de contreventement par le logiciel Sap2000V14.	
Tableau VI6 : Les coefficients de flambement.	
Tableau VI7 : Caractéristiques du profilé L90 × 90 × 9.	
Tableau VI8 : Les coefficients de flambement.	
Tableau VI9 : Vérification de Palée de stabilité par le logiciel Sap2000V14.	
Tableau VI10 : Vérification de panne par le logiciel Sap2000V14.	

Tableau VI11 : Vérification de potelet par le logiciel Sap2000V14	112
Tableau VI12 : Les coefficients de déversement.	114
Tableau VI13 : Les coefficients de flambement (suivant Z-Z)	114
Tableau VI14 : Vérification de traverse par le logiciel Sap2000V14	115
Tableau VI15 : Les coefficients de flambement.	117
Tableau VI16 : Les coefficients de déversement.	117
Tableau VI17 : Les coefficients de déversement.	118
Tableau VI18 : Les coefficients de flambement (suivant Z-Z).	118
Tableau VI19 : Vérification de poteau par le logiciel Sap2000V14	119
Tableau VI20 : Les coefficients de déversement.	120
Tableau VI 21 : Vérification de sablière par le logiciel Sap2000V14	120
Tableau VI22 : Les coefficients de déversement.	122
Tableau VI 23: Vérification de sablière par le logiciel Sap2000V14	122
Tableau VIII: Caractéristiques mécaniques des matériaux.	155
Tableau VIII2: Ferraillage de poteau carré (Pmax, Mcorr).	156
Tableau VII3: Ferraillage de poteau carré (Mmax, Pcorr).	156
Tableau № 4: Ferraillage de poteau carré (Pmin, Mcorr).	157
Tableau VII5: Ferraillage de poteau circulaire (Pmax, Mcorr).	157
Tableau VII6: Ferraillage de poteau circulaire (Mmax, Pcorr).	157
Tableau VII 7: Ferraillage de poteau circulaire (Pmin, Mcorr).	158
Tableau VII 8: Choix des armatures des poteaux.	158
Tableau VIII9 : Vérification des contraintes pour Poteaux (Psermax, Msercorr)	159
Tableau VII 10: Vérification des contraintes pour Poteaux (Msermax, Psercorr)	159
Tableau VIII 11: Vérification des contraintes pour Poteaux (Psermin, Msercorr)	159
Tableau VIII 12 : Vérification de la contrainte de cisaillement pour les poteaux	160
Tableau VIII 13: Espacement maximales selon RPA99 des poteaux	161
Tableau VIII 14: Choix des armatures transversales des poteaux.	162
Tableau VII 15 : Ferraillage de poutre principale en appuis.	164
Tableau VIII16: Ferraillage de poutre principale en travée.	164

Tableau VIII17: Ferraillage de poutre secondaire en appuis	164
Tableau VIII 18: Ferraillage de poutre secondaire en travée.	165
Tableau VIII 19: Choix des armatures des poutres.	165
Tableau VIII 20: Vérification de Condition de non fragilité.	165
Tableau VIII 21: Vérification des poutres à l'ELS.	166
Tableau VIII 22: Vérification de la contrainte de cisaillement des poutres	167
Tableau VIII 23: Choix des armatures transversales des poutres.	167

LISTE DES FIGURES

Figure I. 1: Vue en 3D	1
Figure I. 2: Plan d'étage	2
Figure I.3: coupe B-B	2
Figure I.4: Coupe A-A	2
Figure I. 5: localisation du site projet.	3
Figure I.6: Les deux bassins.	5
Figure I.7: les limites des deux systèmes structuraux du complexe sportif	6
Figure I.8 : Le système constructif de l'ouvrage	7
Figure II. 1: les directions de vent	
Figure II. 2 : les pressions extérieures sur les parois verticales-direction V1 du v	vent17
Figure II. 3 : les pressions extérieures sur la toiture-direction V1 du vent	
Figure II. 4 : les pressions extérieures sur les parois verticales-direction V2 du v	/ent19
Figure II. 5 : les pressions extérieures sur la toiture-direction V2 du vent	
Figure III. 1: Disposition des pannes dans la toiture.	
Figure III. 2: Cas de charge permanente.	
Figure III. 3: Cas de surcharge d'entretien	
Figure III. 4: Cas de charge de neige	
Figure III. 5: Cas de charge de vent.	
Figure III. 6: Décomposition des charges	
Figure III. 7: Coupe transversale des liernes.	
Figure III. 8: Représentation des efforts	
Figure III. 9: Vue en 3D de l'échantignolle.	
Figure III 10: Coupe transversale de l'échantignole.	
Figure III. 11: Représentation des potelets dans la structure.	
Figure III. 12: Disposition des charges.	
Figure III. 13: Dimensionnement d'acrotère	41
Figure III. 14: Ferraillage d'acrotère.	
Figure III. 15: Les éléments d'un escalier	
Figure III. 16 : Plan de l'escalier	
Figure III. 17 : Coupe d'un escalier	48
Figure III. 18: Schéma statique a l'ELU.	51
Figure III. 19: Schéma statique a l'ELS	51
Figure III. 20 : schéma de ferraillage des escaliers (un volé).	
Figure IV. 1: Dimensionnement de portique.	

Figure IV. 2: les effets du vent.	58
Figure IV. 3: les charges équivalentes du vent.	59
Figure IV. 4 : Charges verticales ver le bas	59
Figure IV. 5: Charges verticales vers le haut	60
Figure IV. 6: Vent horizontal (pression)	61
Figure IV. 7: Vent horizontal (dépression).	61
Figure IV. 8: Plan de bloc A	69
Figure IV. 9: Plan de bloc B	75
Figure IV. 10: Plan de bloc C	77
Figure V.1 : Spectre de réponse des blocs en béton armé	83
Figure V.2 : Spectre de réponse de bloc en CM	83
Figure V.3 : Modes fondamentaux du bloc A	84
Figure V.4 : déplacement de la structure A suivant les directions XX et YY	87
Figure V.5 : Modes fondamentaux du bloc A après modification	88
Figure V.6 : déplacement de la structure A suivant les directions XX et YY après mo	odification90
Figure V.7 : Modes fondamentaux du bloc B	91
Figure V.8 : déplacement de la structure B suivant les directions XX et YY	92
Figure V.9 : Modes fondamentaux du bloc C	93
Figure V.10 : déplacement de la structure A suivant les directions XX et YY	95
Figure V.11 : Modes fondamentaux du bloc CM	97
Figure V.12 : déplacement de la structure CM suivant les directions XX et YY	98
Figure V.13 : Modes fondamentaux du bloc CM après modification	100
Figure V.14 : déplacement de la structure CM suivant les directions XX et YY après	modification
	101
Figure V.15 : déplacement de la structure CM sous le vent (V1 et V2)	102
Figure V.16 : largeur minimum du joint sismique	103
Figure V.17 : les positions des joints	104
Figure VII1 : Assemblage poteau-traverse	124
Figure VII2 : assemblage traverse-traverse	134
Figure VII3: assemblage contreventement	138
Figure VII4: dimensionnement des pieds de poteaux	145
Figure VIII : Schéma de ferraillage de poteau (circulaire& carré)	162
Figure VIII 2 : Schéma de ferraillage de poutres (principale &secondaire)	168
Figure IX 1: Schéma d'une semelle isolée.	170
Figure IX 2: Schéma d'un ferraillage de semelle 1.	172
Figure IX 3: Schéma d'un ferraillage de semelle 2.	175
Figure IX 4: Schéma d'un ferraillage de semelle 3	177

Figure IX 5 : Schéma d'un ferraillage de longrine.	178
Figure IX 6 : Schéma d'un ferraillage de fut (40×40) cm2	179
Figure IX 7 : Schéma d'un ferraillage de fut (50×80) cm2	179
Figure X. 1: la pression de l'eau sur les radiers	181
Figure X. 2: la charge de sol sur les voiles	
Figure X. 3: Déformation de la structure à l'ELS.	
Figure X. 4: Diagramme de moment M11 à ELU.	
Figure X. 5: diagramme de moment M22 à ELU	184
Figure X. 6: disposition des armatures de radier.	184
Figure X.7 : disposition des armatures des voiles (Suivant l'axe xx et y-y)	185
Figure X. 8: disposition des armatures de radier.	186
Figure X.9: disposition des armatures des voiles.	186

LISTE DES NOTATIONS

Majuscules latines.

A : Section brute d'une pièce.

 A_{net} : Section nette d'une pièce.

 A_w : Section de l'âme.

 A_v : Aire de cisaillement.

 C_t : Coefficient de topographie.

 C_r : Coefficient de rugosité.

 $C_{p.net}$: Coefficient de pression nette.

 C_e : Coefficient d'exposition.

C_d : Coefficient dynamique.

E : Module d'élasticité longitudinale de l'acier.

F : Force en générale.

G : Module d'élasticité transversale de l'acier.

G : Charge permanente.

I : Moment d'inertie.

K₀ : Coefficient de flambement.

K_t : Facteur de terrain.

L : Longueur.

M : Moment de flexion.

M_{Sd}: Moment fléchissant sollicitant.

M_{Rd} : Moment résistant par unité de longueur dans la plaque d'assise.

M_{Pl} : Moment plastique.

M_{b,Rd} : Moment de la résistance au déversement .

N_{pl,Rd}: Effort normal de la résistance plastique de la section transversale brute.

N_{b,Rd}: Effort normal d'un élément comprimé au flambement.

N_{Sd} : Effort normal sollicitant.

N_{t,sd}: Effort normale de traction.

N_{c,sd} : Effort normal de compression.

 $N_{c,Rd}$: Valeur de calcul de la résistance de la section transversale à la compression.

Q : Charge d'exploitation.

R : Coefficient de comportement de la structure.

S: La charge de la neige.

V_{Sd}: Valeur de calcul de l'effort tranchant.

V_{réf} : Vitesse de référence du vent.

W_{pl} : Module de résistance plastique.

W : Poids de la structure.

Minuscules latines.

f : La flèche.

fy : Limite d'élasticité.

h : Hauteur d'une pièce.

L: Longueur d'une pièce (Poutre, Poteau).

Lf : Longueur de flambement.

t : Épaisseur d'une pièce.

tf : Épaisseur d'une semelle de poutre.

tw : Épaisseur de l'âme de poutre.

Z : Hauteur au-dessus du sol.

Z₀ : Paramètre de rugosité.

Z_{eq} : Hauteur équivalente.

Minuscules grecques

 χ : coefficient de réduction pour le mode de flambement approprié.

 β w : Facteur de corrélation.

 γ_M : Coefficient de sécurité.

 λ : Élancement.

 λ_{Lt} : Élancement de déversement.

 α : Facteur d'imperfection.

Ø : Rotation de déversement.

 τ : Contrainte limite de cisaillement en élasticité.

 ϵ : Coefficient de réduction élastique de l'acier.

 σc : Contrainte de l'acier.

 σ b : Contrainte du béton.

 ξ : Pourcentage d'amortissement critique.

 η : Facteur de correction d'amortissement.

 δ_{ek} : Déplacement dû aux forces sismiques.

 μ : coefficient de forme de la charge de neige.

Introduction générale

L'industrie du bâtiment est en perpétuel développement à travers le temps, beaucoup plus lors de ces dernières décennies qui ont été marquées par la révolution de la technologie informatique qui a pris part dans cette industrie à travers la création et l'intégration des logiciels de calcul et de dessins, dans le cycle de vie d'un projet de construction quel que soit son usage, à savoir : habitation, commercial, industriel ou sportif.

Caractérisés par leurs formes et dimensions géométriques importantes, la conception des complexes sportifs est généralement distinguée par l'utilisation de plusieurs systèmes constructifs en même temps tels que le béton armé et la charpente métallique. La considération de ces deux matériaux donne aux ingénieurs concepteurs une panoplie de choix du système structural le plus adéquat, en assurant à la fois l'aspect architectural du projet, la ductilité de la structure, son confort, ainsi que son économie.

S'inscrivant dans le cadre d'obtention du diplôme Master d'ingénieur en génie civil, option construction métallique et dans le but de complémenter notre formation universitaire à travers les années passées de notre cursus, nous présentons dans cette thèse une étude structurale d'un complexe sportif abritant une piscine semi-olympique, composé de plusieurs blocs. L'ossature des ouvrages est en systèmes autostables en béton armé pour les blocs à un et deux niveaux avec des trames régulières, et une ossature mixte avec des poteaux en béton armé et une toiture en charpente métallique pour le bloc central de la piscine. Le dimensionnement et calculs des bassins a été également présenté dans ce mémoire.

Le projet implanté à la ville de AZZABA dans la willaya de SKIKDA, classé par le règlement parasismique Algérien (RPA 99/version2003) comme une zone de moyenne sismicité (zone IIa).

La conception structurale du bâtiment est faite conformément aux règles et recommandations en vigueur, à savoir :

- Le règlement parasismique Algériens (RPA99 V 2003) ;
- Les règles de conception et de calcul des structures en charpente métallique (DTR-BC-2.44, CCM97);
- Les règles de conception et de calcul des structures en béton armé (DTR-BC-2.41, CBA93);
- Les règles de calcul des fondations superficielles (D.T.R. BC 2.33.2) ;

Le présent mémoire est constitué principalement de dix chapitres et une conclusion générale, structurés comme suit :

Chapitre 1 : présentation de l'ouvrage

Dans ce chapitre, nous présentons notre projet d'un point de vue architecturale, géométrique ainsi que son implantation

Chapitre 2 : évaluation des charges

Sur ce chapitre nous exposons les calculs détaillés des diverses charges utilisées dans notre projet, y compris la détermination des charges climatiques, tels que la neige et le vent selon la réglementation Algérienne RNV2013, et cela par rapport à l'implantation du projet.

Chapitre 3 : Prédimensionnement des éléments secondaires

Dans ce chapitre nous exposons les calculs détaillés des différents éléments non structuraux, tels que les pannes, les lisses, l'acrotère et les escaliers

Chapitre 4 : Prédimensionnement des éléments principaux

Une fois les charges et les surcharges sont définies, nous passerons aux prédimensionnements des éléments structuraux suivant la géométrie du bâtiment ainsi que la position des éléments.

Chapitre 5 : étude sismique

Ce chapitre occupe une partie essentielle de notre travail, car il expose les résultats de l'analyse dynamique et sismique des différents blocs avec la proposition des solutions adéquates de contreventement de chaque structure conformément à la réglementation en vigueur en Algérie. Des modèles numériques sont élaborés en utilisant le logiciel SAP2000 afin de calcul et vérifier la stabilité et la résistance de chaque bloc.

Chapitre 6 : vérification des éléments structuraux en charpente métallique :

Une fois la conception structurale du hangar est arrêtée, les calculs et vérification de la résistance des éléments structuraux (poutres, poteaux, pannes...) sont élaborés.

Chapitre 7 : calcul des assemblages

Après avoir calculé et vérifié les éléments structuraux, nous traitons dans ce chapitre le calcul détaillé des divers types de connexions des éléments en charpente métallique.

Chapitre 8 : vérification et calcul de ferraillage des éléments en béton armé

Une fois la conception structurale du bâtiment est arrêtée, les vérifications de la résistance et le ferraillage des éléments structuraux (poutres, poteaux) sont élaborés.

Chapitre 9 : étude des fondations

Cet avant dernier chapitre, expose les calculs et vérifications du système des fondations adoptées pour les différents blocs.

Chapitre 10 : étude et vérification des bassins des piscines :

Au final le calcul et les vérifications des bassins des piscines.

Nous terminons notre mémoire par une conclusion générale qui résume l'essentielle de notre travail.

<u>CHAPITRE I :</u> PRESENTATION DE L'OUVRAGE

I.1.Introduction :

Le présent chapitre, décrit notre projet de fin d'étude qui consiste à étudier une piscine semi-olympique, conçue sur la partie principale en charpente métallique et annexée sur deux côtés par autres blocs en béton armé.

Les images tridimensionnelles « 3D » suivantes présentent le projet objet de cette étude.

Figure I. 1:Vue en 3D.

I.2. Dimensions géométriques du projet :

Le bâtiment est principalement composé de plusieurs blocs dont la forme géométrique est relativement régulière. Les dimensions globales de l'ouvrage sont de :

- ➢ Longueur totale : 61 m
- ➢ Largeur totale : 49,85 m
- ➢ Hauteur : 11,42 m

Figure I.3: coupe B-B.

Figure I.4: Coupe A-A.

I.3. Données environnementales du site du projet :

Le projet objet de cette thèse est implanté à l'est du payé, plus précisément dans la ville de AZZABA, wilaya de SKIKDA.

Figure I. 5: localisation du site projet.

Les données relatives au site du projet selon la classification réglementaire des différents DTR Algériens se résument en ce qui suit :

- > Altitude : 83 m
- Zone sismique : IIa (selon RPA99v2003)
- Zone de neige par commune : Zone B (selon Règlement neige et vent 2013)
- ➤ Zone du vent : Zone II (selon Règlement neige et vent 2013)
- Catégorie de terrain : III (selon le rapport de sol)

I.4. Rapport d'étude de sol :

Dans le cadre de la réalisation d'une piscine à AZZABA, Wilaya de SKIKDA, en vue de procéder à une étude de sol, qui nous exposerons la discription et les conditions géologique du terrain, ce à la notifiée par un bon de commande N° 001530/2012 du 05/12/2012

I.5. Conception architecturale du projet :

Sur le plan architectural, la conception du bâtiment est principalement composée de deux bassins dont l'un est dédié pour l'apprentissage des enfants et l'autre pour les entrainements, ainsi que d'autres espaces utiles.

L'organisation ainsi que l'aménagement des espaces de ce complexe sportif sont organisées comme le présente le tableau suivant :

Désignations/Espaces	Situation	Nombre	Superficiaire (m ²)
Halle d'entrée	RDC	1	60
Régie	RDC	1	7,70
Cafétéria	RDC	1	43,05
Dépôt	RDC	1	14,98
Salle de matériel sportif	RDC	1	30,05
Chambre d'appel	RDC	1	20
Salle de musculation	RDC	1	97,60
Salle de GYM	RDC	1	17,50
Salle de sonorisation	RDC	1	19
Bassin semi-olympique	RDC	1	525
Vestiaire	RDC	14 (H)/10(F)	1,26
Bassin d'apprentissage	RDC	1	150
Doucho	PDC	16 (H)	41,25
Douche	KDC	14 (F)	28,80
Pédiluve	RDC	1 (H)/1 (F)	4,32

Tableau I.1 : la conception architecturale.

Chapitre I

Infirmerie	RDC	1	31.12
Sanitaires	RDC	6	32,5
Bureau de directeur	RDC	1	24
Salle de réunion	RDC	1	24,9
Cabine de presse	Etage	1	01
Gradins	Etage	581	0,16

I.6. Système constructif du complexe sportif :

L'ossature de la structure du bâtiment est principalement composée des systèmes suivants :

I.6.1. Ossature en structure métallique :

Cette structure couvre principalement les deux bassins et les gradins, tel qu'il est présenté sur les figures suivantes :

Figure I.6: Les deux bassins.

I.6.1.1.Le système structural est composé de :

- Poteaux en type IPE600 dans laquelle le terme entre les poteaux entre (4m et 3,9m) dans le grand bassin et entre (4,30m et 4,20m) dans le bassin d'apprentissage.
- Poutres de type IPE550.
- Les pannes en type IPE120 avec un espacement de 1,5m.
- ▶ Les potelets en type IPE 400.
- Le contreventement de la toiture en type L150×150×15 et le contreventement de longpon en type L90×90×9.
- Les sablières en type HEA120-HEA140.

I.6.2. Ossature en béton armé :

Cette partie couvre les ouvrages annexés à la partie centrale, tel que l'accueille et l'administration. Le système structural de ces blocs est principalement en structure auto stable poteaux-poutres en béton armé. Les images suivantes présentent un aperçu sur cette partie.

L'accueille

l'administration

Figure I.7: les limites des deux systèmes structuraux du complexe sportif.

Figure I.8: Le système constructif de l'ouvrage.

I.7. Règlements utilisés :

RNV version 2013	Règlement neige et vent version 2013
DTR B.C.2.2	Charges permanentes et charges d'exploitation
RPA99v2003	Règlement parasismique algériennes version 2003
BAEL91	Règles de conception et de calcu+l des structures en béton armé
CCM97	Règles de conception et de calcul des structures en acier

Tableau I.2: Règlement techniques utilisées pour la construction.

I.8. Les matériaux utilisés :

Les matériaux utilisés pour ce projet sont principalement l'acier pour la partie en charpente métallique et du béton armé pour la partie restante. Les caractéristiques mécaniques de chaque matériau se résument dans les paragraphes suivants :

I.8.1. Acier pour la structure métallique :

D'une manière générale les caractéristiques mécaniques des différentes nuances d'acier sont les suivantes :

Limite élastique fy (MPa) en fonction de l'épaisseur nominale :

Fableau I	.3:	Valeurs	nominales	de fy	et fu.
------------------	-----	---------	-----------	-------	--------

Nuance d'acier		Epaisseur	r en (mm)	
(EN 10025)	t≤ 40) mm	40 mm < t	≤100 mm
	fy(N/mm²)	fu(N/mm²)	fy(N/mm²)	fu(N/mm²)
Fe 360	235	360	215	340
Fe 430	275	430	255	410
Fe 510	355	510	355	490

Dans notre cas :

- ➤ La résistance à la traction : fu= 430 N/mm²
- > La limite élastique : $fy = 275 \text{ N/mm}^2$
- ► Le module de Young : E=210000MPA
- \blacktriangleright Le coefficient de poisson : v= 0,3
- > Le coefficient de dilatation thermique : $\alpha = 12 \times 10-6$ m/°C

I.8.2.L'assemblage :

Le moyen d'assemblage le plus utilisé en construction métallique c'est le boulonnage grâce à sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur site.

Dans notre cas on utilise les boulons HR et ordinaire.

I.8.3. Béton armé :

La classe du béton utilisé dans le projet sont caractérisé comme suit :

- ➢ Le béton utilisé est dosé à350kg/ m³.
- \blacktriangleright Béton de propreté est dosé à 150 kg/m³.

Le béton utilisé est défini, du point de vue mécanique par :

- \blacktriangleright La résistance à la compression a 28 jours : fc 28 = 25 MPa
- La résistance à la traction à 28 jours est déduite de celle de compression par la relation :

 $ft28 = 0.6 + 0.06 fc28 = 0.6 + (0.06 \times 25) = 2.1 MPa$

I.8.3.1.Les contraintes limites :

La contrainte admissible de compression à l'état limite ultime (ELU) est donnée par :

$$f_{bu} = \frac{0.85 \cdot f_{cj}}{\square_h} = \frac{0.85 \times 25}{1.15} = 18,48 MPa$$

Avec : $\mathbb{D}_b = 1,15$ (le coefficient de sécurité partiel)

La contrainte des compressions limite de service est donnée par :

$$\bar{\sigma}_{bc} = 0.6. f_{c28} = 0.6 \times 25 = 15 MPa$$

- I.8.4.<u>Les aciers d'armatures :</u>
- I.8.4.1. Caractéristiques mécaniques :

Nuance		Fy (MPA)
Barres HA	Fe400 Fe500	400 500

Les armatures utilisées sont de nuance fe400

I.8.4.2. Contraintes limites :

Etat limite ultime : La contrainte admissible à l'ELU a pour valeur :

- En cas de situations accidentelles σ_{st} =400 Mpa
- En cas de situations normales $\sigma_{st} = 348$ Mpa

Etat limite de service : On ne limite pas la contrainte de l'acier sauf en état limite d'ouverture des fissures :

- ▶ Fissuration peu nuisible : pas de limitation.
- ► Fissuration préjudiciable : $\sigma_{st} \le \sigma_{st} = \min(2/3 \text{ f e}, 110\sqrt{nf_{tj}})$.
- ► Fissuration très préjudiciable : $\sigma_{st} \le \sigma_{bc} = \min(1/2 \text{ f e }, 90\sqrt{nf_{tj}}).$

CHAPITRE II :

EVALUATION DES CHARGES

II.1.Introduction:

Dans ce chapitre, nous allons définir les différentes charges agissantes sur note structure, qui se résument dans l'action des charges permanentes et d'exploitation et des effets climatiques (neige et vent). Ces derniers ont une grande influence sur la stabilité de l'ouvrage. Pour cela, une étude approfondie doit être élaborée pour la détermination de ces différentes actions.

II.2. Charges permanentes :

Les charges permanentes sont des charges qui comprennent le poids propre des éléments porteurs et les poids des éléments incorporés aux éléments porteurs. Elles sont données dans le « DTR.BC 2.2 ».

Plancher terrasse (inaccessible) :

Types	Les charges (kN/m ²)
Dalle pleine	$0,20 \times 25 = 5,00$
Enduit sous plafond	$0,02 \times 18 = 0,36$
Isolation thermique	$0,04 \times 4 = 0,16$
Etanchéité multicouche	0,20
Béton forme de pente	$0,1 \times 22 = 2,20$
Gravier de protection	0,20
Total	8,12

Tableau II. 1 : les charges permanentes de plancher terrasse.

Plancher courant :

Tableau II. 2 : les charges permanentes de plancher courant.

Types	Les charges (kN/m ²)
Revêtement en carrelage	1,00
Mortier de pose	0,20
Lit de sable	$0,02 \times 18 = 0,36$
Dalle pleine	$0,20 \times 25 = 5,00$
Enduit sous plafond	$0,02 \times 18 = 0,36$
Cloisons légères	1,00
Total	7,92
> Toiture :

Tableau II.3 : les charges permanentes de toiture.

Types	Les charges (kN/m ²)
Panneaux sandwiches (TL75 P)	0,14
Accessoire de pose (TL75 P)	0,03
Total	0,17

II.3. Surcharges d'exploitations :

Les charges d'exploitation sont celles qui résultent de l'usages des locaux par opposition au poids des ouvrages qui constituent ces locaux, ou à celui des équipements fixes. Elles correspondent au mobilier, au matériel, aux matières en dépôt et personnes. Elles sont données dans le « DTR.BC 2.2 ».

- Surcharge de plancher terrasse (inaccessible) : 1,00 kN/m²
- Surcharge de plancher courant : 1,50 kN/m²
- Surcharge d'entretien : charges ponctuelles de 1,00 kN au 1/3 et 2/3 de la portée d'une poutre

II.4. Surcharges climatiques :

Les charges climatiques sont des charges variables (les charges du vent et de la neige), elles sont déterminées suivant le « DTR2-47 »

II.4.1.Charge de la neige :

L'accumulation de la neige sur la toiture de la piscine produit une surcharge qu'il faut prendre en compte pour cela on procédera à une étude climatique.

Le calcul de la surcharge climatique de la neige est en fonction de la localisation géographique et de l'altitude de lieu.

$$S = \mu * S_k$$
 [kN/m²]

- S : Charge caractéristique de la neige par unité de surface.
- S_k en (kN/m²): Charge de neige sur le sol.
- μ : Coefficient d'ajustement des charges, en fonction de la forme de la toiture appelé coefficient de forme.

II.4.1.1.La charge de neige sur le sol Sk :

Wilaya de SKIKDA : zone B
$$\implies$$
 S_k = $\frac{0,04H+10}{100} = \frac{0,04*83+10}{100}$
 \implies S_k = 0,133 kN/m²

II.4.1.2. Coefficient de forme de la toiture :

$$\alpha = 8^{\circ}$$

La toiture est à deux versants et $0^{\circ} \le \alpha = 8^{\circ} \le 30^{\circ}$

Donc : $\mu = 0.8$

 \Rightarrow S = 0, 8 * 0. 133 = 0. 106 kN/m²

II.4.2.Charge du vent

L'action du vent étant la sollicitation la plus importante des surcharges appliquées, relativement aux autres surcharges.

Figure II. 1: les directions de vent.

II.4.2.1. Calcul de la pression du vent :

$$q_j = C_d \times W(Z_j)$$
 [N/m²]

II.4.2.2. L'effet du vent par unité de surface est donné par la formule suivante :

$$W(Z_j) = q_p(Z_e) \times [C_{pe} - C_{pi}] \qquad [N/m^2]$$

- $W(Z_i)$: La pression aérodynamique.
- $q_p(Z_e)$: la pression dynamique du vent.
- C_{pe} : Coefficient de pression extérieur.
- C_{pi} : Coefficient de pression intérieur.

II.4.2.3. La pression dynamique $q_p(Z_e)$:

$$q_p(Z_e) = q_{réf} \times C_e(Z_e)$$
 [N/m²]

 $q_{r\acute{e}f}$ (en N/m^2) : La pression dynamique de référence ;

Wilaya de SKIKDA : zone II $\Longrightarrow \begin{cases} V_{réf} = 27 \text{ m/s} \\ q_{réf} = 435 \text{ N/m}^2 \end{cases}$

> $C_e(Z_e)$: Coefficient d'exposition au vent :

$$C_{e}(Z) = C_{t}^{2}(Z) \times C_{r}^{2}(Z) \times [1 + 7I_{v}(Z)]$$

 \succ C_t : Coefficient de topographie :

Site plat $\Rightarrow C_t(Z) = 1$.

 \succ C_r : Coefficient de rugosité :

$$\begin{cases} C_{r}(Z) = K_{T} \times Ln\left(\frac{Z}{Z_{0}}\right) & \text{pour} : Z_{\min} \leq Z \leq 200 \text{ m} \\ C_{r}(Z) = K_{T} \times Ln\left(\frac{Z_{\min}}{Z_{0}}\right) & \text{pour} : Z < Z_{\min} \end{cases}$$

 \blacktriangleright I_v : L'intensité de la turbulence :

$$\begin{cases} I_v(Z) = \frac{1}{C_t(Z) \times Ln\left(\frac{Z}{Z_0}\right)} & \text{pour}: \quad Z > Z_{\min} \\ I_v(Z) = \frac{1}{C_t(Z) \times Ln\left(\frac{Z_{\min}}{Z_0}\right)} & \text{pour}: \quad Z \le Z_{\min} \end{cases}$$

- Z (en m) : La hauteur considérée ;
 - Catégories de terrain :

Tableau II. 4 : définition des catégories de terrain.

Catégories de terrain	K _T	Z ₀ (m)	Z _{min} (m)	Е
III Zone à couverture végétale régulière ou des bâtiments, ou avec des obstacles isolés séparés d'aux 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forêts permanentes).	0,215	0,3	5	0,61

- K_T : Le facture de terrain.
- $Z_0(m)$: Le paramètre de rugosité.
- $Z_{\min}(m)$: La hauteur minimale.

<u>Pour h = 8,80 m :</u>

 $h = 8,80 \text{ m} < b = 37,35 \text{ m} \implies Z = h = 8,80 \text{ m}$

$$\Rightarrow Z_{\min} = 5 \text{ m} < Z = 8,80 \text{ m} < 200 \text{ m} \Rightarrow C_r(Z = 8,80) = 0,726$$

 \Rightarrow Z = 8,80 m > Z_{min} = 5 m \Rightarrow I_v(Z = 8,80) = 0,296

Pour h = 11,42 m :

 $h = 11,42 \text{ m} < b = 37,35 \text{ m} \implies Z = h = 11,42 \text{ m}$

 \Rightarrow Z_{min} = 5 m < Z = 11,42 m < 200 m \Rightarrow C_r(Z = 11,42) = 0,782

 \Rightarrow Z = 11,42 m > Z_{min} = 5 m \Rightarrow I_v(Z = 11,42) = 0,275

Tableau II. 5: La pression dynamique.

h = 8,80 m	h = 11,42 m
$C_{e} = 1,619$	$C_{e} = 1,789$
$q_p = 704,265 \text{N/m}^2$	$q_p = 778,215 \text{ N/m}^2$

II.4.2.4. Coefficient dynamique C_d :

Il donné par la formule suivante :

$$C_{d} = \frac{1 + 2 \times g \times I_{v}(Z_{eq}) \times \sqrt{Q^{2} + R^{2}}}{1 + 7 \times I_{v}(Z_{eq})}$$

 $Z_{eq}(m)$: la hauteur équivalente de la construction ;

 $Z_{eq} = 0.6 \times h$

 $I_v(Z_{eq})$: l'intensité de la turbulence pour $Z = Z_{eq}$;

 \triangleright Q^2 : la partie quasi-statique ;

$$Q^2 = \frac{1}{1 + 0.9 \times \left(\frac{(b+h)}{L_i(Z_{eq})}\right)^{0.63}}$$

 $L_i(Z_{eq})$: l'échelle de turbulence pour $Z = Z_{eq}$;

 $\begin{array}{ll} L_i(Z_{eq}) \ = \ 300 \times \left(\frac{Z_{eq}}{200} \right)^\epsilon & \quad \text{pour} \quad Z_{min} \leq Z_{eq} \leq 200 \ m \\ L_i(Z_{eq}) \ = \ L_i(Z_{min}) & \quad \text{pour} \quad Z_{eq} \leq Z_{min} \end{array}$

> R^2 : la partie résonante ;

$$R^{2} = \frac{\Pi^{2}}{2 \times \delta} \times R_{N} \times R_{h} \times R_{b}$$

 \triangleright R_N : la fonction adimensionnelle de la densité spectrale de puissance ;

$$R_{\rm N} = \frac{6.8 \times N_{\rm x}}{\left(1 + 10.2 \times N_{\rm x}\right)^{5/3}}$$

 \succ N_x : la fréquence adimensionnelle dans la direction x du vent ;

$$N_{x} = \frac{n_{1.x} \times L_{i}(Z_{eq})}{V_{m}(Z_{eq})}$$

> $n_{1.x}$ (Hz) : la fréquence fondamentale ;

$$n_{1.x} \frac{0.5}{\sqrt{f}}$$

f (m) : la flèche de la structure dû au poids propre appliqué dans la direction de vibration ;

$$f = \frac{h}{100}$$

 $\begin{array}{ll} \succ & V_m(Z_{eq}): \text{la vitesse moyenne du vent pour } Z = Z_{eq} ; \\ & V_m(Z_{eq}) = C_r(Z_{eq}) \times C_t(Z_{eq}) \times V_{réf} \quad [m/s] \end{array}$

 $C_t(Z_{eq}) = 1 \qquad ; \ V_{r\acute{e}f} = 27 \ m/s$

> R_h , R_b : des fonctions d'admittance aérodynamique ;

$$\begin{split} R_h &= \left(\frac{1}{\eta_h}\right) - \left(\frac{1}{2 \times \eta_h^2}\right) \times (1 - e^{-2 \times \eta_h}) \quad \text{pour } \eta_h > 0 \quad ; R_h = 1 \quad \text{pour } \eta_h = 0 \\ R_b &= \left(\frac{1}{\eta_b}\right) - \left(\frac{1}{2 \times \eta_b^2}\right) \times (1 - e^{-2 \times \eta_b}) \quad \text{pour } \eta_b > 0 \quad ; R_b = 1 \quad \text{pour } \eta_b = 0 \\ \text{Avec} : \end{split}$$

$$\eta_{h} = \frac{4.6 \times N_{x} \times h}{L_{i}(Z_{eq})} \hspace{1.5cm} ; \hspace{1.5cm} \eta_{b} = \frac{4.6 \times N_{x} \times b}{L_{i}(Z_{eq})}$$

> δ : le décrément logarithmique d'amortissement des vibrations pour le mode fondamental dans la direction du vent ;

$$\delta = \delta_{\rm s} + \delta_{\rm a}$$

 δ_s : le décrément logarithmique d'amortissement structural ;

 $\delta_s = 0.05$ (En acier)

 δ_a : le décrément logarithmique d'amortissement aérodynamique ;

$$\delta_a = 0$$

 $\Rightarrow \delta = 0.05$

➢ g : facteur de pointe ;

$$g = \sqrt{2 \times \ln(600 \times \nu)} + \frac{0.6}{\sqrt{2 \times \ln(600 \times \nu)}} \ge 3$$

 \triangleright v (Hz) : la fréquence moyenne ;

$$\nu = \mathrm{n}_{1.\mathrm{x}} \times \sqrt{\frac{R^2}{\mathcal{Q}^2 + R^2}} \ge 0,08$$

	V1 (θ	= 0°)	V2 ($\theta = 90^{\circ}$)					
Tuna da paroj	Paroi verticale	Toiture	Paroi verticale	Toiture				
i ype de paroi	h = 8,80 m	h = 11,42 m	h = 11,42 m	h = 11,42 m				
Z _{eq} (m)	5,28	6,85	6,85	6,85				
$I_v(Z_{eq})$	0,35	0,32	0,32	0,32				
$L_i(Z_{eq})$	32,68 m	38,31 m	38,31 m	38,31 m				
Q^2	0,44	0,45	0,49	0,49				
f (m)	0,088	0,114	0,114	0,114				
n _{1.x} (Hz)	1,69	1,48	1,48	1,48				
$C_r(Z_{eq})$	0,62	0,67	0,67	0,67				
$V_{\rm m}(Z_{\rm eq})$	16,74 m/s	18,09 m/s	18,09 m/s	18,09 m/s				
N _x	3,30	3,13	3,13	3,13				
R _N	0,06	0,06	0,06	0,06				
η_h	4,09	4,29	4,29	4,29				
η_b	22,81	18,45	14,04	14,04				
R _h	0,21	0,21	0,21	0,21				
R _b	0,04	0,05	0,07	0,07				
R ²	0,05	0,06	0,09	0,09				
ν (Hz)	0,54	0,51	0,58	0,58				
g	3,58	3,56	3,60	3,60				
Cd	0,80	0,81	0,85	0,85				

Tableau II. 6: Coefficient dynamique C_d .

II.4.2.5. Coefficient de pression extérieure C_{pe} :

> V1 ($\theta = 0^{\circ}$): <u>Paroi verticale</u>: h = 8,80 m ; b = 49,10 m ; d = 37,35 m

 $e = min(b; 2h) = min(49,10; 2 \times 8,80) = min(49,10; 17,60) = 17,60 m$ d = 37,35 m > e = 17,60 m:

- > Zone A : $\frac{e}{5} \times h = \frac{17,60}{5} \times 8,80 = 30,98 \text{ m}^2$ > Zone B : $\left(e - \frac{e}{5}\right) \times h = \left(17,60 - \frac{17,60}{5}\right) \times 8,80 = 123,90 \text{ m}^2$
- > Zone C : $(d e) \times h = (37,35 17,60) \times 8,80 = 173,80 m^2$
- > Zone D : b × h = 49,10 × 8,80 = 432,08 m²
- > Zone E : b × h = 49,10 × 8,80 = 432,08 m²

Zone	$C_{pe} = f(surface m^2)$	C _{pe}
А	$30,98 > 10 \text{ m}^2 \text{ donc}: C_{pe} = C_{pe.10}$	-1,0
В	$123,90 > 10 \text{ m}^2 \text{ donc}: C_{pe} = C_{pe.10}$	-0,8
C	$173,80 > 10 \text{ m}^2 \text{donc}: C_{\text{pe}} = C_{\text{pe.10}}$	-0,5
D	$432,08 > 10 \text{ m}^2 \text{ donc}: C_{pe} = C_{pe.10}$	+0,8
E	$432,08 > 10 \text{ m}^2 \text{ donc}: C_{pe} = C_{pe.10}$	-0,3

Figure II. 2 : les pressions extérieures sur les parois verticales-direction V1 du vent.

Toiture : h = 11,42 m; b = 49,10 m; d = 37,35 m; $\alpha = 8^{\circ}$ $e = \min(b; 2h) = \min(49,10; 2 \times 11,42) = \min(49,10; 22,84) = 22,84 \text{ m}$ \succ Zone $F : \frac{e}{10} \times \frac{e}{4} = \frac{22,84}{10} \times \frac{22,84}{4} = 13,04 \text{ m}^2$ \triangleright Zone $G : (b - 2 \times \frac{e}{4}) \times \frac{e}{10} = (49,10 - 2 \times \frac{22,84}{4}) \times \frac{22,84}{10} = 86,06 \text{ m}^2$ \triangleright Zone $H : (\frac{d}{2} - \frac{e}{10}) \times b = (\frac{37,35}{2} - \frac{22,84}{10}) \times 49,10 = 804,80 \text{ m}^2$ \triangleright Zone $J : \frac{e}{10} \times b = \frac{22,84}{10} \times 49,10 = 112,14 \text{ m}^2$ \triangleright Zone $I : (\frac{d}{2} - \frac{e}{10}) \times b = (\frac{37,35}{2} - \frac{22,84}{10}) \times 49,10 = 804,80 \text{ m}^2$ $\alpha = 8^{\circ} :$ entre $\alpha = 5^{\circ}$ et $\alpha = 15^{\circ}$, on procéder à l'interpolation linéaire entre les valeurs de même signe :

$$\Rightarrow f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}(x_1 - x_0)$$

Zone	$C_{ma} = f(surface m^2)$	C _{pe}			
Lone		$\alpha = 5^{\circ}$	$\alpha = 8^{\circ}$	$\alpha = 15^{\circ}$	
F	$13,04 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-1,7	-1,46	-0,9	
G	$86,06 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-1,2	-1,08	-0,8	
Н	$804,80 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-0,6	-0,51	-0,3	
Ι	$804,80 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-0,6	-0,54	-0,4	
J	$112,14 > 10 \text{ m}^2 \text{ donc}$: $C_{pe} = C_{pe.10}$	-0,6	-0,72	-1,0	

Tableau II. 8 : les pressions extérieures sur la toiture-direction V1 du vent.

Figure II. 3 : les pressions extérieures sur la toiture-direction V1 du vent.

 \succ V2 (θ = 90°):

Paroi verticale : h = 11,42 m ; b = 37,35 m ; d = 49,10 m

 $e = min(b; 2h) = min(37,35; 2 \times 11,42) = min(37,35; 22,84) = 22,84 m$ d = 49,10 m > e = 22,84 m:

- > Zone A : $\frac{e}{5} \times h = \frac{22,84}{5} \times 11,42 = 52,17 \text{ m}^2$
- > Zone B : $\left(e \frac{e}{5}\right) \times h = \left(22,84 \frac{22,84}{5}\right) \times 11,42 = 208,67 \text{ m}^2$
- > Zone C : $(d e) \times h = (49,10 22,84) \times 11,42 = 299,89 m^2$
- ➤ Zone D : b × h = 37,35 × 11,42 = 426,54 m²
- > Zone E : b × h = $37,35 \times 11,42 = 426,54 \text{ m}^2$

Evaluation des charges

Zone	$C_{pe} = f(surface m^2)$	C _{pe}
А	$52,17 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-1,0
В	$208,67 > 10 \text{ m}^2 \text{ donc} : C_{\text{pe}} = C_{\text{pe.10}}$	-0,8
C	$299,89 > 10 \text{ m}^2 \text{donc} : C_{\text{pe}} = C_{\text{pe.10}}$	-0,5
D	$426,54 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	+0,8
E	$426,54 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-0,3

Figure II. 4 : les pressions extérieures sur les parois verticales-direction V2 du vent. <u>Toiture :</u> h = 11,42 m ; b = 37,35 m ; d = 49,10 m ; $\alpha = 8^{\circ}$

$$e = min(b; 2h) = min(37,35; 2 \times 11,42) = min(37,35; 22,84) = 22,84 m$$

Zone F: $\frac{e}{10} \times \frac{e}{4} = \frac{22,84}{10} \times \frac{22,84}{4} = 13,04 \text{ m}^2$ Zone G: $\left(\frac{b}{2} - \frac{e}{4}\right) \times \frac{e}{10} = \left(\frac{37,35}{2} - \frac{22,84}{4}\right) \times \frac{22,84}{10} = 29,61 \text{ m}^2$ Zone H: $\left(\frac{e}{2} - \frac{e}{10}\right) \times \frac{b}{2} = \left(\frac{22,84}{2} - \frac{22,84}{10}\right) \times \frac{37,35}{2} = 170,61 \text{ m}^2$ Zone I: $\left(d - \frac{e}{2}\right) \times \frac{b}{2} = \left(49,10 - \frac{22,84}{2}\right) \times \frac{37,35}{2} = 703,67 \text{ m}^2$

 $\alpha=8^\circ$: entre $\alpha=5^\circ$ et $\alpha=15^\circ$, on procéder à l'interpolation linéaire entre les valeurs de même signe :

$$\Rightarrow f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} (x_1 - x_0)$$

Zone	$C_{\rm mo} = f({\rm surface} {\rm m}^2)$	C _{pe}			
Zone Spe (Surface III)		$\alpha = 5^{\circ}$	$\alpha = 8^{\circ}$	$\alpha = 15^{\circ}$	
F	$13,04 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-1,6	-1,51	-1,3	
G	$29,61 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-1,3	-1,3	-1,3	
Н	$170,61 > 10 \text{ m}^2 \text{ donc} : C_{pe} = C_{pe.10}$	-0,7	-0,67	-0,6	
Ι	$703,67 > 10 \text{ m}^2 \text{ donc}: C_{pe} = C_{pe.10}$	-0,6	-0,57	-0,5	

Figure II. 5 : les pressions extérieures sur la toiture-direction V2 du vent. II.4.2.6.<u>Coefficient de pression intérieur C_{pi} :</u>

$$C_{\rm pi} = f(\mu_{\rm p}, \frac{\rm h}{\rm d})$$

 $\mu_p = \frac{\sum \text{surface des ouvertures ou } Cpe \leq 0}{\sum \text{surface de toute les ouvertures}}$

Fableau II. 11 : les surfaces des ouvertures	ableau	I. 11 :	les surfaces	des ouvertures.
---	--------	----------------	--------------	-----------------

	PIGN	NON 1	PIGN	NON 2	LONG PAN 1		LONG PAN 2	
Туре	Nombre	Surface	Nombre	Surface	Nombre	Surface	Nombre	Surface
PORTE	0	/	0	/	1	1,6 × 2,5	0	/
EENIETDE	8	$0,5 \times 0,5$	0	/	23	2×2	0	2×2
FENEIKE	12	2×2		-			0	

Cas 1 : en considérant les ouvertures :

<u>V1 ($\theta = 0^{\circ}$):</u> h = 8,80 m ; d = 37,35 m
$\mu_{\rm p} = \frac{20(2 \times 2) + 8(0.5 \times 0.5)}{43(2 \times 2) + (1.6 \times 2.5) + 8(0.5 \times 0.5)} = 0.46$
$\frac{h}{d} = \frac{8,80}{37,35} = 0,24 < 0,25$
$\mu_{\rm p} = 0.46$ et $\frac{\rm h}{\rm d} \le 0.25$ \implies $C_{\rm pi} = +0.18$
<u>V2 (θ = 90°):</u> h = m ; d = 49,10 m
$\mu_{\rm p} = \frac{31(2 \times 2) + (1,6 \times 2,5)}{43(2 \times 2) + (1,6 \times 2,5) + 8(0,5 \times 0,5)} = 0,72$
$\frac{h}{d} = \frac{8,80}{49,10} = 0,18 < 0,25$
$\mu_{\rm p} = 0.72$ et $\frac{\rm h}{\rm d} \le 0.25$ \Longrightarrow $C_{\rm pi} = -0.1$
\succ V1 ($\theta = 0^{\circ}$):

Paroi verticale :

Tableau II. 12 : la pression du vent sur les parois verticales-direction V1 du vent (Cas1).

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
А	704,265	0,80	-1,0	+0,18	-831,033	-664,826
В	704,265	0,80	-0,8	+0,18	-690,180	-552,144
C	704,265	0,80	-0,5	+0,18	-478,900	-383,120
D	704,265	0,80	+0,8	+0,18	+436,644	+349,315
E	704,265	0,80	-0,3	+0,18	-338,047	-270,438

Toiture :

Tableau II. 13 : la pression du vent sur la toiture-direction V1 du vent (Cas1).

Zone	$q_p(N/m^2)$	Cd	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
F	778,215	0,81	-1,46	+0,18	-1276,273	-1033,781
G	778,215	0,81	-1,08	+0,18	-980,551	-794,246
Н	778,215	0,81	-0,51	+0,18	-536,968	-434,944
Ι	778,215	0,81	-0,54	+0,18	-560,315	-453,855
J	778,215	0,81	-0,72	+0,18	-700,394	-567,319

 \succ V2 (θ = 90°):

Paroi verticale :

Tableau	П. 14:	la pression	du vent sur	les parois	verticales-dire	ction V2	du vent (Cas1).
---------	--------	-------------	-------------	------------	-----------------	----------	-----------	--------

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
А	778,215	0,85	-1,0	-0,1	-700,394	-595,335
В	778,215	778,215 0,85 -0,8		-0,1	-544,751	-463,038
C	778,215	0,85	-0,5	-0,1	-311,286	-264,593
D	778,215	0,85	+0,8	-0,1	+700,394	+595,335
E	778,215	0,85	-0,3	-0,1	-155,643	-132,297

Toiture :

Tableau II. 15 : la pression du vent sur la toiture-direction V2 du vent (Cas1).

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
F	778,215	0,85 -1,51 -		-0,1	-1097,283	-932,691
G	778,215	0,85	-1,30	-0,1	-933,858	-793,779
Н	778,215	0,85	-0,67	-0,1	-443,583	-377,046
Ι	778,215	0,85	-0,57	-0,1	-365,761	-310,897

Cas 2 : les ouvertures sont fermées (pas d'ouvertures) :

<u>V1 ($\theta = 0^{\circ}$):</u> h = 8,80 m ; d = 37,35 m

On prend la valeur minimum :

$$\mu_{\rm p} = 0.3$$

 $\frac{h}{d} = \frac{8,80}{37,35} = 0,24 < 0,25$ $\mu_{p} = 0,3 \text{ et } \frac{h}{d} \le 0,25 \implies C_{pi} = +0,35$ $\frac{V2 (\theta = 90^{\circ}):}{h} = 8,80 \text{ m} ; d = 49,10 \text{ m}$ On prend la valeur minimum :

 $\mu_{\rm p} = 0.3$

$$\frac{h}{d} = \frac{8,80}{49,10} = 0,18 < 0,25$$

$$\mu_{\rm p} = 0,3 \quad \text{et } \frac{h}{d} \le 0,25 \implies C_{\rm pi} = +0,35$$

► V1 ($\theta = 0^\circ$):

Paroi verticale :

Tableau II. 16 : la pression du vent sur les parois verticales-direction V1 du vent (Cas2).

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$	
А	704,265	0,80	-1,0	+0,35	-950,758	-760,606	
В	704,265 0,8		-0,8	+0,35	-809,905	-647,924	
С	704,265	0,80	-0,5	+0,35	-598,625	-478,900	
D	704,265	0,80	+0,8	+0,35	+316,919	+253,535	
E	704,265	0,80	-0,3	+0,35	-457,772	-366,218	

Toiture :

Tableau II. 17 : la pression du vent sur la toiture-direction V1 du vent (Cas2).

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
F	778,215	0,81	-1,46	+0,35	-1408,569	-1140,941
G	778,215	0,81	-1,08	+0,35	-1112,847	-901,406
Н	778,215	0,81	-0,51	+0,35	-669,265	-542,105
Ι	778,215	0,81	-0,54	+0,35	-692,611	-561,015
J	778,215	0,81	-0,72	+0,35	-832,690	-674,479

II.4.2.6.1. $V2 (\theta = 90^\circ)$:

Paroi verticale :

Tableau II. 18: la pression du vent sur les parois verticales-direction V2 du vent (Cas2).

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
А	778,215	0,85	-1,0	+0,35	-1050,590	-890,002
В	778,215 0,85 -0,8		+0,35	-894,947	-760,705	
C	778,215	0,85	-0,5	+0,35	-661,483	-562,261
D	778,215	0,85	+0,8	+0,35	+350,197	+297,667
Е	778,215	0,85	-0,3	+0,35	-505,840	-429,964

Toiture :

Tableau II. 19 : la pression du vent sur la toiture-direction V2 du vent (Cas2).

Zone	$q_p(N/m^2)$	C _d	C _{pe}	C _{pi}	$W(N/m^2)$	$q_j(N/m^2)$
F	778,215	0,85	-1,51	+0,35	-1447,480	-1230,358
G	778,215	0,85	-1,30	+0,35	-1284,055	-1091,447
Н	778,215	0,85	-0,67	+0,35	-793,779	-674,712
Ι	778,215	0,85	-0,57	+0,35	-715,958	-608,564

II.4.2.7.<u>Calcul forces de frottement F_{fr} :</u>

$$F_{\rm fr} = C_{\rm fr} \times q_{\rm p}(Z_{\rm e}) \times A_{\rm fr}$$

C_{fr} : Coefficient de frottement ;

 $C_{\rm fr} = 0.01$ (Surface lisse)

A_{fr} : L'aire de la surface extérieure parallèle au vent ;

 \succ V1 ($\theta = 0^{\circ}$):

Paroi verticale :

 $A_{fr} = d \times h = 37,35 \times 8,80 = 328,68 \text{ m}^2$

Toiture :

 $A_{fr} = (\text{longueur ABC du développé}) × d$ $A_{fr} = 2 × [√(37,35/2)^2 + (11,42 - 8,80)^2] × 49,10 = 1851,84 \text{ m}^2$ ≥ V2 (θ = 90°) :

Paroi verticale :

 $A_{fr} = d \times h = 49,10 \times 11,42 = 560,722 \text{ m}^2$

Toiture :

 $A_{fr} = (longueur ABC du développé) \times d$

$$A_{fr} = 2 \times \left[\sqrt{(37,35/2)^2 + (11,42 - 8,80)^2}\right] \times 49,10 = 1851,84 \text{ m}^2$$

Tableau II. 20 : les forces de frottements.

	Type de paroi	$q_p(N/m^2)$	C _{fr}	A_{fr} (m ²)	F _{fr} (N)	$\sum F_{\rm fr}(N)$	
V1	Paroi verticale	704,265	0,01	328,68	2314,78	16726,08	
• 1	Toiture	778,215	0,01	1851,84	14411,30		
V2	Paroi verticale	778,215	0,01	560,722	4363,623	18775 613	
V Z	Toiture	778,215	0,01	1851,84	14411,99	10775,015	

<u>CHAPITRE Ⅲ:</u>

Prédimensionnement des

éléments secondaires

III.1.Introduction:

Dans ce chapitre on s'intéresse à définir les dimensions des éléments secondaires qui devront résister aux différentes sollicitations, le principe de la vérification nécessaire à la résistance et à la stabilité.

III.2.Les pannes :

Les pannes de couverture sont des poutrelles laminées généralement en (I ou en U) ; elles sont disposées perpendiculairement aux poutres secondaires. Destinées à transmettre les charges et les surcharges s'appliquant sur la couverture à la traverse ou bien à la ferme.

Figure III. 1: Disposition des pannes dans la toiture.

III.2.1.<u>Les données :</u> L = e(n - 1) + 0,60 On prend : e \leq 1.50 m $\cos(\alpha) = \frac{b/2}{L}$ L = $\frac{b/2}{\cos(\alpha)} = \frac{37,35/2}{\cos(8^{\circ})} = 18,86$ m $n \geq \frac{L-0,60}{e} + 1 = \frac{18,86-0,60}{1,5} + 1 = 13,17 \implies n = 14$ pannes $e \geq \frac{L-0,60}{n-1} = \frac{18,86-0.60}{14-1} = 1.40$ m $\implies e = 1,40$ m l (max) = 4,35 m III.2.2. Evaluation des charges et surcharges :

III.2.2.1. Charges permanentes G :

- Poids propre de panne (estimé) 12 kg/ml
- \blacktriangleright Couverture (TL75 P) 14 kg/m²

 $G = (0,14 + 0,03) \times 1,40 + 0,12 = 0,358 \text{ kN/ml}$

G = 0,358 kN/ml

Figure III. 2: Cas de charge permanente.

III.2.2.2. Surcharges d'entretien P :

Deux charges concentrées de 100 kg chacune situées à 1/3 et 2/3 de la portée.

$$M_{max} = \frac{Pl}{3} = \frac{P_{eq}l^2}{8} \implies P_{eq} = \frac{8P}{3l} = \frac{8 \times 100}{3 \times 4,35} = 61,30 \text{ kg/ml}$$

Figure III. 3: Cas de surcharge d'entretien.

26

III.2.2.3. Surcharge climatique de neige N :

- $N = 0,106 \text{ kN/m}^2$ (Voir Ch. II)
- $N = 0,106 \times 1,40 = 0,148 \text{ kN/ml}$

N = 0,148 kN/ml

Figure III. 4: Cas de charge de neige.

- III.2.2.4. Surcharge climatique de vent V :
- $V = -1230,358 \text{ N/m}^2$
- $V = -1,230 \times 1,40 = 1,722 \text{ kN/ml}$
- V = -1,722 kN/ml

Figure III. 5: Cas de charge de vent.

III.2.2.5. Décomposition des charges :

Tableau III: Décomposition des charges.

Suivant l'axe Z – Z	Suivant l'axe Y — Y
$G_z = G \cos(8^\circ) = 0.355 \text{ kN/ml}$	$G_y = G \sin(8^\circ) = 0,050 \text{ kN/ml}$
$Q_z = P_{eq} \cos(8^\circ) = 0,607 \text{ kN/ml}$	$Q_y = P_{eq} \sin(8^\circ) = 0,085 \text{ kN/ml}$
$V_z = V = -1,722 \text{ kN/ml}$	$V_y = 0 \text{ kN/ml}$
$N_z = N \cos(8^\circ) = 0.147 \text{ kN/ml}$	$N_{y} = N \sin(8^{\circ}) = 0,021 \text{ kN/ml}$

III.2.2.6.Les combinaisons de charges :

	les combinaisons	Suivant l'axe Z — Z	Suivant l'axe Y — Y		
ELU -	$q_{u.1} = 1,35G + 1,5Q$	1,390 kN/ml	0,195 kN/ml		
	$q_{u.2} = 1,35G + 1,5N$	0,700 kN/ml	0,099 kN/ml		
	q _{u.3}	$G_z + 1,5V_z = -2,288 \text{ kN/ml}$	$1,35G_y = 0,068 \text{ kN/ml}$		
	$q_u = Max(q_{u.1}; q_{u.2}; q_{u.3})$	2,288 kN/ml	0,195 kN/ml		
	$q_{s.1} = G + Q$	0,962 kN/ml	0,135 kN/ml		
FLS	$q_{s.2} = G + N$	0,502 kN/ml	0,071 kN/ml		
ELS -	$q_{s.3} = G + V$	−1,367 kN/ml	0,050 kN/ml		
	$q_{s} = Max(q_{s.1}; q_{s.2}; q_{s.3})$	1,367 kN/ml	0,135 kN/ml		

Tableau III.2: Les combinaisons de charges.

Figure III. 6: Décomposition des charges.

III.2.3.<u>Vérification à la sécurité (ELU) :</u> III.2.3.1.<u>Vérification à la flexion :</u>

$$\left(\frac{M_{y.Sd}}{M_{ply.Rd}}\right)^{\alpha} + \left(\frac{M_{z.Sd}}{M_{plz.Rd}}\right)^{\beta} \le 1.0$$

Section en I: $\alpha = 2$ et $\beta = 5n \ge 1$ Avec: $n = N_{sd}/N_{pl.rd} = 0 \implies \beta = 1$

On choisit le profilé suivant : IPE 100

G	h	b	t _w	t _f	Α	A_{vz}	A _{vy}	Iy	W _{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
8,1	100	55	4,1	5,7	10,32	5,1	6,7	171	39,41	4,07	15,92	9,15	1,24
$M_{y.Sd} =$	$A_{y.Sd} = \frac{q_{u.z} l^2}{8} = \frac{2,228 \times 4,35^2}{8} = 5,270 \text{ kN. m}$												

Tableau III. 3: Caractéristiques géométriques d'un IPE100.

$$M_{z.Sd} = \frac{q_{u.y} l^2}{8} = \frac{0.195 \times 4.35^2}{8} = 0.461 \text{ kN. m}$$

$$M_{ply.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{39,41 \times 275}{1,1} \times 10^{-3} = 9,853 \text{ kN. m}$$
$$M_{plz.Rd} = \frac{W_{plz} f_y}{\gamma_{M1}} = \frac{9,15 \times 275}{1,1} \times 10^{-3} = 2,288 \text{ kN. m}$$
$$(5,270)^2 + (0,461)^1 = 0.40 \le 1.0 \text{ km}$$

$$\left(\frac{5,270}{9,853}\right)^2 + \left(\frac{0,461}{2,288}\right)^1 = 0,49 < 1.0 \implies$$
Vérifiée

III.2.3.2. Vérification au cisaillement :

La vérification au cisaillement est donnée par les formules suivantes :

$$V_{z.Sd} \le V_{plz.Rd} \qquad ; \qquad V_{y.Sd} \le V_{ply.Rd}$$

$$V_{z.Sd} = \frac{q_{u.z} \times l}{2} = \frac{2,228 \times 4,35}{2} = 4,846 \text{ kN}$$

$$V_{plz.Rd} = \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{5,1 \times (275/\sqrt{3})}{1,1} \times 10^{-1} = 73,612 \text{ kN}$$

$$V_{z.Sd} = 4,846 \text{ kN} < V_{plz.Rd} = 73,612 \text{ kN} \implies \mathbf{V}$$
érifiée
$$V_{y.Sd} = \frac{q_{u.y} \times l}{2} = \frac{0,195 \times 4,35}{2} = 0,424 \text{ kN}$$

$$V_{ply.Rd} = \frac{A_{vy}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{6,7 \times (275/\sqrt{3})}{1,1} \times 10^{-1} = 96,706 \text{ kN}$$

$$V_{y.Sd} = 0,424 \text{ kN} < V_{ply.Rd} = 96,706 \text{ kN} \implies \mathbf{V}$$
érifiée
III.2.3.3. Vérification au déversement :

Le déversement est un phénomène d'instabilité qui se manifeste par une déformation latérale des parties comprimées de la section de panne sous l'action du vent en soulèvement.

Le moment résistant de déversement est donné par la relation suivant :

$$M_{Sd} \le M_{b.Rd}$$
$$M_{Sd} = \frac{(G_z + 1.5V_z)l^2}{8} = \frac{2.228 \times 4.35^2}{8} = 5,270 \text{ kN. m}$$
$$M_{b.Rd} = \chi_{LT}. \beta_w \frac{W_{ply} f_y}{\gamma_{M1}} = \chi_{LT}. \beta_w . M_{ply.Rd}$$

 $\beta_w = 1.0$ Pour les sections de classe 1 et classe 2. $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \left[\varphi_{\rm LT}^2 - \overline{\lambda}_{\rm LT}^2\right]^{0.5}}$ $\varphi_{\rm LT} = 0.5 \left[1 + \alpha_{\rm LT} (\overline{\lambda}_{\rm LT} - 0.2) + \overline{\lambda}_{\rm LT}^2 \right]$ $\bar{\lambda}_{\rm LT} = \left[\frac{\beta_{\rm w}.W_{\rm ply.}f_{\rm y}}{M_{\rm or}}\right]^{0.5} = \left[\frac{\lambda_{\rm LT}}{\lambda_{\rm 1}}\right]\sqrt{\beta_{\rm w}}$ $\lambda_{LT} = \frac{l/i_z}{C_1^{0.5} \left[1 + \frac{1}{20} \left[\frac{l/i_z}{h/t_f}\right]^2\right]^{0.25}} = \frac{435/1,24}{1,132^{0.5} \left[1 + \frac{1}{20} \left[\frac{435/1,24}{10/0,57}\right]^2\right]^{0,25}} = 154,039$ $\lambda_1 = \pi \sqrt{\frac{E}{f_v}} = 93,9\varepsilon$ $\varepsilon = \sqrt{\frac{235}{f_v}} = \sqrt{\frac{235}{275}} = 0,924 \implies \lambda_1 = 93,9 \times 0,924 = 86,764$ $\bar{\lambda}_{LT} = \left[\frac{154,039}{96,764}\right] \times \sqrt{1} = 1,775$ $\varphi_{\rm LT} = 0.5[1 + 0.21(1.775 - 0.2) + 1.775^2] = 2.241$ $\chi_{\rm LT} = \frac{1}{2.241 + [2.241^2 - 1.775^2]^{0.5}} = 0,277$ $M_{b.Rd} = 0,277 \times 1 \times 9,853 = 2,729 \text{ kN. m}$ $M_{Sd} = 5,270 \text{ kN. } \text{m} > M_{b.Rd} = 2,729 \text{ kN. } \text{m} \Longrightarrow$ Non vérifiée On doit ajouter les liernes, donc : l/2

Tableau III. 4: Le moment résistant de déversement.

λ_{LT}	$\bar{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ ext{LT}}$	M _{b.Rd} (kN.m)
105,345	1,214	1,343	0,522	5,143

 $M_{y.Sd} = 5,270 \text{ kN. } m > M_{b.Rd} = 5,143 \text{ kN. } m \Longrightarrow$ Non vérifiée

On doit augmenter la section : soit IPE 120

						1	U	-					
G	h	b	t _w	t_f	А	A_{vz}	A _{vy}	Iy	W _{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
10,4	120	64	4,4	6,3	13,21	6,31	8,6	317,8	60,73	4,9	27,67	13,58	1,45

Tableau III. 5: Caractéristiques géométriques d'un IPE120.

Tableau III. 6: Le moment résistant de déversement.

$\lambda_{L_{1}}$	ſ	$\overline{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ ext{LT}}$	$M_{b.Rd}(kN.m)$
99,0	72	1,142	1,251	0,568	8,624

 $M_{v.Sd} = 5,270 \text{ kN}. \text{ m} < M_{b.Rd} = 8,624 \text{ kN}. \text{ m} \implies \text{Vérifiée}$

III.2.3.4. Vérification à l'état limite de service (ELS):

III.2.3.4.1. Vérification à la flèche :

$$f \leq f_{ad}$$

Avec: $f_{ad} = \frac{l}{200}$

Flèche verticale (suivant zz) : sur deux appuis

$$f_{ad} = \frac{l}{200} = \frac{4,35 \times 10^3}{200} = 21,75 \text{ mm}$$
$$f_z = \frac{5}{384} \frac{q_{s.z.}l^4}{E.I_y} = \frac{5}{384} \times \frac{1,367 \times (4,35 \times 10^3)^4}{2,1 \times 10^5 \times 317,8 \times 10^4} = 9,55 \text{ mm}$$

 $f_z = 9,55 \text{ mm} < f_{ad} = 21,75 \text{ mm} \implies \text{Vérifiée}$

Flèche latérale (suivant yy) : sur trois appuis

$$f_{ad} = \frac{l/2}{200} = \frac{(4,35 \times 10^3)/2}{200} = 10,88 \text{ mm}$$

$$f_y = \frac{2,05}{384} \frac{q_{s.y.}(l/2)^4}{E.I_z} = \frac{2,05}{384} \times \frac{0,135 \times (4,35 \times 10^3/2)^4}{2,1 \times 10^5 \times 27,67 \times 10^4} = 0,28 \text{ mm}$$

$$f_y = 0,28 \text{ mm} < f_{ad} = 10,88 \text{ mm} \implies \text{Vérifiée}$$

Conclusion :

Le profilé choisit IPE 120 convient pour les pannes.

III.2.4. Calcul des liernes :

Les liernes sont des tirants qui fonctionnent en traction. Ils sont généralement formés de barres ronds ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des pannes.

Chapitre III Prédimensionnement des éléments secondaires

Figure III. 7: Coupe transversale des liernes.

III.2.4.1. Calcul de l'effort maximal revenant aux liernes :

La réaction R au niveau du lierne :

R = 1,25Qy ×
$$\frac{1}{2}$$
 = 1,25 × 0,195 × $\frac{4,35}{2}$ = 0,530 KN

Effort de traction dans le tronçon de lierne L₁ provenant de la panne sablière :

$$\begin{split} T_1 &= \frac{R}{2} = \frac{0,503}{2} = 0,265 \text{ kN} \\ T_2 &= R + T_1 = 0,503 + 0,265 = 0,795 \text{ kN} \\ T_3 &= R + T_2 = 0,503 + 0,795 = 1,325 \text{ kN} \\ T_4 &= R + T_3 = 0,503 + 1,325 = 1,855 \text{ kN} \\ T_5 &= R + T_4 = 0,503 + 1,855 = 2,385 \text{ kN} \\ T_6 &= R + T_5 = 0,503 + 2,385 = 2,915 \text{ kN} \\ T_7 &= R + T_6 = 0,503 + 2,915 = 3,445 \text{ kN} \\ T_8 &= R + T_7 = 0,503 + 3,445 = 3,975 \text{ kN} \\ T_9 &= R + T_8 = 0,503 + 3,975 = 4,505 \text{ kN} \\ T_{10} &= R + T_9 = 0,503 + 4,505 = 5,035 \text{ kN} \\ T_{11} &= R + T_{10} = 0,503 + 5,035 = 5,565 \text{ kN} \\ T_{12} &= R + T_{11} = 0,503 + 5,565 = 6,095 \text{ kN} \\ T_{12} &= 2T_{13} \sin \theta \text{ Donc}: T_{13} = \frac{T_{12}}{2 \sin \theta} \\ Tg(\theta) &= \frac{e}{l_{2}} \text{ Donc}: \theta = \arctan \frac{1,40}{4,35/2} = 32,768^{\circ} \\ T_{13} &= \frac{T_{12}}{2 \sin 32,768} = 5,631 \text{ kN} \end{split}$$

Figure III. 8: Représentation des efforts traction dans les liernes.

Le tronçon le plus sollicité L₁₂

$$N_{sd} \le N_{plRd}$$

 $N_{plRd} = \frac{A \times fy}{\mathbb{Z}_{M0}}$ $N_{sd} = T_{12}$

$$N_{sd} = T_{12} \le \frac{A \times fy}{\mathbb{Z}_{M0}}$$

$$A \ge \frac{T_{12} \times \mathbb{Z}_{M0}}{fy} = \frac{6,095 \times 10^3 \times 1,1}{275} = 24,38 \text{ mm}^2$$

$$A = \frac{\pi \Phi^2}{4} \ge 24,38 \text{ mm}^2$$

$$\phi \ge \sqrt{\frac{4 \text{ A}}{\pi}} = \sqrt{\frac{4 \times 24,38}{\pi}} = 5,57 \text{ mm}$$

Soit une barre ronde de diamètre : $\phi = 1$ cm = 14 mm ; Pour des raisons pratiques et pour plus de sécurité

III.2.5. Calcul de l'échantignolle :

L'échantignolle est un dispositif de fixation permettant d'attacher les pannes aux fermes. Le principal effort de résistance de l'échantignolle est le moment de renversement dû au chargement (surtout sous l'action de soulèvement du vent).

Figure III. 9: Vue en 3D de l'échantignolle.

III.2.5.1. Calcul des charges revenant à l'échantignolle :

L'excentrement « t » est limité par la condition suivante :

$$2 (b/2) \le t \le 3 (b/2)$$

Pour IPE 120 : (b= 6,4cm ; H=12 cm)

 $2(64/2) \le t \le 3(64/2)$

 $64 \le t \le 96$; soit: t = 90 mm

Sous la combinaison : $Q_z = G\cos\alpha - 1.5V$

 $Q_z = -2,228 \text{ KN/ml}$

 $R = Q_z . 1/2 = 4,846 \text{ KN}$ (échantignolle de rive)

 $2R = 2 \times 4,846 = 9,692$ kN (échantignolle intermédiaire)

III.2.5.2. Calcul du moment de renversement :

 $M_r = 2R \times t = 9,692 \times 90 \times 10^{-3} = 0,872 \text{ KN.m}$

III.2.5.3. Dimensionnement de l'échantignolle :

III.2.5.3.1. Flexion simple :

 $M_{Sd} \leq M_{el.Rd}$

 $Mel.Rd = \frac{Wel*fy}{@m0}$

 $Msd = Mr \le \frac{Wel*fy}{@m0}$

III.2.5.3.2. Calcul de l'épaisseur de l'échantignolle :

Wel
$$\geq \frac{Mr * @m0}{fy} = \frac{0.872 \times 10^6 \ 1.1}{275} = 3488 \ mm$$

Wel = $\frac{b * e^2}{6}$ (pour les sections rectangulaires)

 $e \ge \sqrt{\frac{6*Wel}{b}} = \sqrt{\frac{6*3488}{210}} = 9,98 \text{ mm} \text{ (Traverse : IPE550} \Longrightarrow b = 210 \text{ mm})$

On prend : e = 10 mm

Figure III. 10: Coupe transversale de l'échantignole.

III.3.Les potelets :

Les potelets sont des éléments secondaires le plus souvent des profilés en I ou H prévus sur le pignon, destiné à rigidifier la clôture et résister aux efforts horizontaux du vent.

> Ils sont considérés comme articulés dans les deux extrémités.

Figure III. 12: Disposition des charges.

III.3.2.Le pré dimensionnement du potelet :

III.3.2.1.<u>Condition de flèche :</u>

La vérification de la flèche se fait sous le vent (non pondéré).

$$f = \frac{5}{384} \times \frac{\text{Vl}^4}{\text{E ly}} \le f_{adm} = \frac{\text{L}}{200}$$
$$I_y \ge \frac{1000}{384} \times \frac{\text{V.l}^3}{\text{E}} = \frac{1000}{384} \times \frac{2,592 \times (11,19 \times 10^3)^3}{2.1 \times 10^5} = 4503,755 \times 10^4 \text{ mm}^4$$

III.3.2.1.1. Choix du profilé

Le profilé qui convient comme potelets est IPE 270.

G	h	b	t _w	t _f	А	A_{vz}	A_{vy}	Iy	W_{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
36,1	270	135	6,6	10,2	45,95	22,14	29	5790	484	11,23	419,9	96,95	3,02

Tableau III. 7: Caractéristiques géométriques d'un IPE270.

III.3.2.2. Vérification de l'effort axial :

Pour cette vérification on utilise la condition suivante :

$$\begin{split} N_{y.sd} &\leq \min\{0,25 \ N_{pl.rd} \ ; \frac{0,5A_w. f_y}{\gamma_{M0}}\} \\ N_{y.sd} &= (1,35 \ G) \times l = (1,35 \times 36,1)11,19 \times 10^{-2} = 5,45 \ kN \\ N_{pl.Rd} &= \frac{A \times fy}{\mathbb{Z}_{m0}} = \frac{45,95 \times 275}{1,1} \times 10^{-1} = 1148,75 \ kN \implies 0,25N_{pl.Rd} = 287,188 \ kN \\ A_w &= A - 2b \times t_f = 45,95 - (2 \times 13,5 \times 1,02) = 18,41 \ cm^2 \\ \frac{0,5A_w. f_y}{\gamma_{M0}} &= 0.5 \times \frac{18,41 \times 275 \times 10^{-1}}{1,1} = 230,125 \ kN \\ N_{sd} &= 5,45 \ kN < \min\left\{N_{pl.rd} \ ; \frac{0,5A_w. f_y}{\gamma_{M0}}\right\} = 230,125 \ kN \implies V\acute{erifiée} \end{split}$$

III.3.2.3. Vérification de l'effort tranchant :

Pour la vérification de l'effort tranchant on utilise la condition suivante :

 $V_{sd} \leq 0.5 \times V_{pl.rd}$

$$V_{sd} = \frac{(1,5V) \times l}{2} = \frac{(1,5 \times 2,592) \times 11,19}{2} = 21,75 \text{kN}$$

$$0.5V_{\text{pl.rd}} = 0.5 \frac{A_{\text{vz}}(f_y/\sqrt{3})}{\gamma_{\text{Mo}}} = 0.5 \times \frac{22.14(275/\sqrt{3})}{1.1} \times 10^{-1} = 159,78 \text{ kN}$$

 $V_{sd} = 21,75 \text{ kN} < 0,5 \text{ } V_{pl.rd} = 159,78 \text{ kN} \quad \Longrightarrow \qquad \text{V\acute{erifiée}}$

III.3.2.4. Vérification de la stabilité au flambement :

Pour la vérification de la stabilité au flambement on utilise la condition suivante :

$$\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} + \frac{k_y.M_{y.sd}}{M_{ply.rd}} \le 1,0$$

$$M_{y.sd} = \frac{(1,5 \text{ V})l^2}{8} = \frac{(1,5 \times 2,592)11,19^2}{8} = 60,855 \text{ KN. m } M_{ply.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{484 \times 275}{1,1} \times 10^{-3}$$
$$= 121 \text{ KN. m}$$

 $\frac{N_{sd}}{\chi_{\min}.N_{pl.rd}} > 0,1 \implies$ Il y a présence l'effort normal

$$k_y = 1 - \frac{\mu_y. N_{sd}}{\chi_y. A. f_y} \le 1.0$$

 $\chi_{\min} = \min(\chi_y; \chi_z)$ $\chi = \frac{1}{\varphi + [\varphi^2 - \bar{\lambda}^2]^{0.5}}$

$$\varphi = 0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right]$$

$$\alpha: \begin{cases} \frac{h}{b} = \frac{270}{135} = 2 > 1.2 \\ t_f = 10.2 \text{ mm} < 40 \text{ mm} \end{cases} \implies \begin{cases} \text{Axe} : Y - Y \implies \text{courbe } a \\ \text{Axe} : Z - Z \implies \text{courbe } b \end{cases}$$

 $\bar{\lambda} = \left[\frac{\lambda}{\lambda_1}\right] \sqrt{\beta_w} > 0,2 \implies \text{Il y a risque de flambement}$

- $\beta_w = 1.0 \quad \text{Pour les sections de classe 1 et classe 2.}$
- $\lambda = \frac{l_f}{i}$; ($l_f = l_0$: articulés dans les deux extrémités)

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = \pi \sqrt{\frac{2,1 \times 10^5}{275}} = 86,81$$

Tableau III. 8: Les coefficients de flambement.

	$l_f(m)$	λ	α	$\bar{\lambda}$	φ	χ	χ_{min}
Suivant Y – Y	11,19	99,64	0,21	1,15 > 0,2	1,26	0,56	0.05
Suivant Z – Z	11,19	370,53	0,34	4,27 > 0,2	10,31	0,05	0,00

 $\frac{N_{sd}}{\chi_{min} N_{pl,rd}} = \frac{5,45}{0,05 \times 1148,75} = 0,09 < 0,1 \implies L'effort normal est négligeable$ $\Rightarrow \begin{cases} k_y \simeq 1\\ \frac{N_{sd}}{x + N_{sd}} \simeq 0 \end{cases}$ $\frac{k_{y.M}}{M_{ply.rd}} = \frac{1 \times 60,855}{121} = 0,50 < 1,0 \implies$ Vérifiée III.3.2.5. Vérification de la stabilité au déversement : $\frac{N_{sd}}{\chi_{z}, N_{pl} rd} + \frac{k_{LT} M_{y.sd}}{\chi_{IT}, M_{pl} rd} \le 1.0$ $k_{LT} = 1 - \frac{\mu_{LT} N_{sd}}{\chi_z A f_v} \le 1.0$ $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \left[\varphi_{\rm LT}^2 - \overline{\lambda}_{\rm LT}^2\right]^{0.5}}$ $\varphi_{\rm LT} = 0.5 \left[1 + \alpha_{\rm LT} (\bar{\lambda}_{\rm LT} - 0.2) + \bar{\lambda}_{\rm LT}^2 \right]$ $\bar{\lambda}_{LT} = \left[\frac{\beta_{w} \cdot W_{ply} \cdot f_{y}}{M_{ov}}\right]^{0,5} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] \sqrt{\beta_{w}} > 0,4 \implies \text{II y a risque de déversement}$ $\lambda_{LT} = \frac{l/i_z}{C_1^{0.5} \left[1 + \frac{1}{20} \left[\frac{l/i_z}{h/t_f}\right]^2\right]^{0.25}} = \frac{11,19 \times 10^2/3,02}{1,132^{0.5} \left[1 + \frac{1}{20} \left[\frac{11,19 \times 10^2/3,02}{27/1,02}\right]^2\right]^{0,25}} = 192,12$ $\bar{\lambda}_{LT} = \left[\frac{192,12}{96,91}\right] \times \sqrt{1} = 2,21 > 0,4$ $\varphi_{\rm LT} = 0.5[1 + 0.21(2.21 - 0.2) + 2.21^2] = 3.15$ $\chi_{\rm LT} = \frac{1}{3,15 + [3,15^2 - 2,21^2]^{0.5}} = 0,19$ $\Longrightarrow \begin{cases} k_{LT} \simeq 1 \\ \frac{N_{sd}}{\gamma_{\tau} \cdot N_{r1} \cdot r^{3}} \simeq 0 \end{cases}$ $\frac{k_{\text{LT}}.M_{\text{y.sd}}}{\chi_{\text{LT}}.M_{\text{ply.rd}}} = \frac{1 \times 60,855}{0,19 \times 121} = 2,65 > 1,0 \quad \Longrightarrow$ Non vérifiée

On doit augmenter la section : soit IPE 300.

G	h	b	t _w	t _f	А	A_{vz}	A _{vy}	Iy	W _{ply}	i _y	I_z	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
42,2	300	150	7,1	10,7	53,81	25,68	33,7	8356	628,4	12,46	603,6	125,2	3,35

Tableau III. 9: Caractéristiques géométriques d'un IPE300.

I	N _{sd} (kN)	$\chi_{ m min}$	N _{pl.Rd} (kN)	λ_{LT}	$\bar{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$	M _{ply.Rd} (kN.m)
	6,37	0,06	1345,25	186,12	2,14 > 0,4	2,99	0,20	157,1

Tableau III. 10: Les coefficients de déversement-Le moment résistant.

 $\frac{N_{sd}}{\chi_{min}N_{pl.rd}} = \frac{6.37}{0.06 \times 1345.25} = 0.08 < 0.1 \implies \text{L'effort normal est négligeable}$

$$\Longrightarrow \begin{cases} k_{LT} \simeq 1 \\ \frac{N_{sd}}{\chi_{z}.N_{pl.rd}} \simeq 0 \end{cases}$$

 $\frac{k_{\text{LT}}.M_{\text{y.sd}}}{\chi_{\text{LT}}.M_{\text{ply.rd}}} = \frac{1 \times 60,855}{0,20 \times 157,1} = 1,94 > 1,0 \quad \Longrightarrow \quad \text{Non vérifiée}$

On doit augmenter la section : soit IPE 330

Tableau III. 11: Caractéristiques géo	ométriques d'un IPE330.
---------------------------------------	-------------------------

G	h	b	t _w	t _f	А	A _{vz}	A _{vy}	Iy	W _{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	Mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
49,1	330	160	7,5	11,5	62,61	30,81	38,7	11770	804,3	13,71	788,1	153,7	3,55

Tableau III. 12 : Les coefficients de déversement-Le moment résistant.

7,42 0,07 1565,25 181,92 2,10 > 0,4 2,90 0,20 201,08	N _{sd} (kN)	$\chi_{ m min}$	N _{pl.Rd} (kN)	λ_{LT}	$\bar{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$	M _{ply.Rd} (kN.m)
	7,42	0,07	1565,25	181,92	2,10 > 0,4	2,90	0,20	201,08

 $\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} = \frac{7,42}{0,07 \times 1565,25} = 0,07 < 0,1 \implies L'effort normal est négligeable$

$$\Longrightarrow \begin{cases} k_{LT} \simeq 1 \\ \frac{N_{sd}}{\chi_z.N_{pl.rd}} \simeq 0 \end{cases}$$

 $\frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} = \frac{1 \times 60,855}{0,20 \times 201,08} = 1,51 > 1,0 \implies \text{Non vérifiée}$

On doit augmenter la section : soit IPE 360.

Tableau III. 13: Caractéristiques	géométriques d'un IPE360.
-----------------------------------	---------------------------

G	h	b	t _w	t _f	А	A_{vz}	A _{vy}	Iy	W _{ply}	iy	I _z	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
57,1	360	170	8	12,7	72,73	35,14	45,3	16270	1019	14,95	1043	191,1	3,79

Tableau III 14: Les coefficients de déversement-Le moment résistant.

N _{sd} (kN)	$\chi_{ m min}$	N _{pl.Rd} (kN)	λ_{LT}	$\bar{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$	M _{ply.Rd} (kN.m)
8,63	0,08	1818,25	174,30	2,01 > 0,4	2,71	0,22	225,9

 $\frac{N_{sd}}{\chi_{min} \cdot N_{pl,rd}} = \frac{8,63}{0,08 \times 1818,25} = 0,06 < 0,1 \implies L'effort normal est négligeable$ $\implies \begin{cases} k_{LT} \simeq 1\\ \frac{N_{sd}}{\chi_z \cdot N_{pl,rd}} \simeq 0 \end{cases}$

 $\frac{k_{\text{LT}}.M_{\text{y.sd}}}{\chi_{\text{LT}}.M_{\text{ply.rd}}} = \frac{1 \times 60,855}{0,22 \times 225,9} = 1,22 > 1,0 \quad \Longrightarrow \quad \text{Non vérifiée}$

On doit augmenter la section : soit IPE 400.

Tableau	Ш	15:	Caractéristique	es géométric	ques d'un	IPE400.
---------	---	-----	-----------------	--------------	-----------	---------

G	h	b	t _w	t _f	А	A _{vz}	A _{vy}	Iy	W _{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
66,3	400	180	8,6	13,5	84,46	42,69	51,1	23130	1307	16,55	1318	229	3,95

Tableau III 16: Les coefficients de déversement-Le moment résistant.

N _{sd} (KN)	$\chi_{ m min}$	N _{pl.Rd} (KN)	λ_{LT}	λ_{LT}	$arphi_{ m LT}$	$\chi_{ m LT}$	M _{ply.Rd} (kN.m)
10,02	0,09	2111,5	173,31	2,0 > 0,4	2,69	0,22	326,75

 $\frac{N_{sd}}{\chi_{min}N_{pl.rd}} = \frac{10,02}{0,09 \times 2111,5} = 0,05 < 0,1 \implies \text{L'effort normal est négligeable}$

$$\Longrightarrow \begin{cases} k_{LT} \simeq 1 \\ \frac{N_{sd}}{\chi_{z}.N_{pl.rd}} \simeq 0 \end{cases}$$

 $\frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} = \frac{1 \times 60,855}{0,22 \times 326,75} = 0,85 < 1,0 \quad \Longrightarrow \quad \text{Vérifiée}$

III.3.2.6. Vérification de la flèche :

$$f \leq f_{adm}$$

$$f_{adm} = \frac{L}{200} = \frac{11,19 \times 10^3}{200} = 55,95 \text{ mm}$$

$$f = \frac{5}{384} \times \frac{Vl^4}{E \text{ Iy}} = \frac{5}{384} \times \frac{2,592 \times (11,19 \times 10^3)^4}{2,1 \times 10^5 \times 23130 \times 10^4} = 10,89 \text{ mm}$$

$$f = 10,89 \text{ mm} < f_{adm} = 55,95 \text{ mm} \implies \text{Vérifiée}$$

Conclusion :

L'IPE 400 convient comme les potelets.

III.4. L'acrotère :

C'est une sorte de muret en béton armé ayant pour le but d'empêcher l'infiltration des eaux pluviales. Il est considéré comme une console encastrée dans le plancher terrasse, soumis à son poids propre G, une surcharge horizontale due à la main courante et une force F_p due à l'effet sismique

Le calcul se fait pour un bond de 1 m, de largeur dont les dimensions sont les suivant :

- ➢ H = 60 cm
- ➢ b = 100 cm
- ➢ e = 10 cm

Figure III. 13: Dimensionnement d'acrotère.

III.4.1. Evaluation des charges :

III.4.1.1.Poids propre :

$$\begin{split} S &= (0.6 \times 0.1) + (0.08 \times 0.15) + (0.02 \times 0.15/2) = 0.074 \text{ m}^2 \\ \text{G} &= \text{Wp} = \text{S} \times \textcircled{2}_b = 0.074 \times 25 = 1.85 \text{ kN/ml} \end{split}$$

III.4.1.2. Surcharges d'exploitations :

Une charge due à l'application d'une main courante :

Q = 1KN/ml

III.4.1.3.La Force horizontale :

L'action des forces horizontales est donnée par la formule suivante :

$$F_p = 4 \times A \times C_p \times W_p$$

Dans lequel :

A : Coefficient d'accélération de la zone [R.P.A (version 2003) tableau (6.2.3)].
 A = 0,20 { zone □a groupe d'usage 1B
 C_p : Facteur de force horizontale variant (tableau.6.1 du R.P.A99).
 C_p = 0,8 (console)

 \succ W_p : poids de l'acrotère.

 $W_{p} = 1,85 \text{ kN/ml}$

 $F_p = 4 \times 0.20 \times 0.8 \times 1.85 = 1.185 \text{ KN/ml}$

III.4.2. Détermination des sollicitations :

 $M_{FP} = H \times F_p = 0.6 \times 1.185 = 0.710 \text{ KN. m}$ $M_P = H \times Q = 0.6 \times 1 = 0.6 \text{ KN. m}$ $M = \max(M_{FP}; M_P) = 0.710 \text{ KN. m}$

III.4.2.1.Effort N:

ELU : N = 1,35 × G = 1,35 × 1,85 = 2,50 KN ELS: N =1,85 KN

III.4.2.2.Moment M:

ELU : $M = 1,5 \times M = 1,065 \text{ KN. m}$ ELS : $M = M_{FP} = 0,710 \text{ KN. m}$

III.4.3.<u>Dimensionnement de l'acrotère :</u> III.4.3.1.<u>Données :</u>

$$f_{c28} = 25 \text{ MPa}$$
 $f_{t28} = 0.6 + 0.06 f_{c28} = 2.1 \text{ MPa}$
 $fe = 400 \text{ MPa}$

III.4.3.2.Position du centre de pression :

 $e_0 = \frac{Mu}{Nu} = \frac{1,065}{22,50} = 0,426 \text{ m}$ $e_0 = 0.426 \text{ m} \ge \frac{h}{2} - c' = \frac{0,1}{2} - 0,02 = 0,03 \text{ m} \rightarrow \text{Donc nous avons une section}$ partiellement comprimée.

Le centre de pression se trouve à l'extérieure de la section, donc elle est partiellement comprimée.

III.4.3.3.Calcul le moment fictif :

$$\begin{split} M_{f} &= Mu + Nu \times \left(\frac{h}{2} - c'\right) = 1,065 + 2,50 \times (0,03) = 1,140 \text{ KN. m} \\ \mu &= \frac{M_{f}}{bd^{2} \cdot \delta_{s}} = \frac{1,140}{1000 \times 80^{2} \times 14,17} = 0,013 \\ \mu &= 0,013 < \mu_{r} = 0,391 \rightarrow \Box = 10\% \text{ d'ou } \delta_{s} = \frac{fe}{\Box_{s}} = \frac{400}{1,15} = 347,83 \text{ MPa} \\ \alpha &= 1,25 \times \left[1 - \sqrt{1 - 2\mu}\right] = 1,25 \times \left[1 - \sqrt{1 - 2 \times 0,013}\right] = 0,016 \\ z &= d \times (1 - 0,4\alpha) = 8 \times (1 - 0,4 \times 0,016) = 7,95 \text{ cm} \\ \delta_{s} &= \frac{fe}{\Box_{s}} = \frac{400}{1,15} = 347,83 \text{ MPa} \\ As &= \frac{Mu}{z \times \delta_{s}} = \frac{1,140 \times 10^{6}}{79,5 \times 347,83} = 41,23 \\ As &= 0,412 \text{ cm}^{2} \\ A_{1} &= A'_{s} = 0 \\ A_{2} &= As - \frac{Nu}{\delta_{s}} = 41,23 - \frac{2,50 \times 10^{3}}{347,83} = 34,04 \text{ mm}^{2} \end{split}$$

On obtient : $A_2 = 0,34 \text{ cm}^2$; $A_2 = 0 \text{ cm}^2$

III.4.3.4. Condition de non fragilité :

$$As_{\min} = \max\left\{\frac{bh}{1000} ; 0,23 bd\left(\frac{f_{t28}}{fe}\right)\right\}$$

 $\begin{aligned} As_{\min 1} &= 0.23 \text{ bd} \left(\frac{f_{t28}}{fe} \right) = 0.23 \times 100 \times 8 \times \left(\frac{2.1}{400} \right) = 0.966 \text{ cm}^2 = 96.6 \text{ mm}^2 \\ As_{\min 2} &= \frac{bh}{1000} = \frac{1000 \times 100}{1000} = 100 \text{ mm}^2 \\ As_{\min} &= \max\{100; 96.6\} = 100 \text{ mm}^2 \\ On \text{ prend} : 4T6 \rightarrow As = 1.13 \text{ cm}^2 \\ Avec \text{ un espacement de} : S_t &= \frac{100}{4} = 25 \text{ cm} \\ III.4.3.5.\underline{Armatures de répartition :} \end{aligned}$

$$\frac{\frac{As}{2} \ge Ar \ge \frac{As}{4}}{\frac{1,13}{2} \ge Ar \ge \frac{1,13}{4}}$$

 $0,28 \ge Ar \ge 0,57$ On prend 2T6 \rightarrow Ar = 0.57 cm² Avec un espacement de : $S_t = \frac{60-2}{2} = 29$ cm On prend $S_t = 30 \text{ cm}$ III.4.4. Vérification à L'ELS : $e_0 = \frac{Mser}{Nser} = \frac{0.710}{1.85} = 0.38 \text{ m} = 38 \text{ cm}$ On prend : $e_0 = 40$ cm $e_0 = 0.40 \text{ m} \ge \frac{h}{2} - c' = \frac{0.1}{2} - 0.02 = 0.03 \text{ m} \rightarrow \text{Donc nous avons une section}$ partiellement comprimée. $e_A = \frac{Mser}{Nser} + \left(d - \frac{h}{2}\right) = \frac{0.710 \times 10^2}{1.85} + \left(8 - \frac{10}{2}\right) = 41.38 \text{ cm}$ $C = d - e_A = 8 - 41,38 = -33,38 \text{ cm}$ D'après le BAEL 91 modifier 99 : $y_{c}^{3} + py_{c} + q = 0$ $P = -3c^{2} + 6n(c - c')\frac{As}{b} + 6n(d - c)\frac{As}{b}$ $P = -3(-33,38)^{2} + (6 \times 15)(-33,38 - 2)\frac{1,13}{100} + (6 \times 15)(8 - 2)\frac{1,13}{100}$ P = -3372.55 $q = -2c^{3} + 6n(c - c')^{2} \frac{As}{b} + 6n(d - c)^{2} \frac{As}{b}$ $q = -2(-33,38)^3 + (6 \times 15)(-33,38 - 2)^2 \frac{1,13}{100} + 6n(8 - 2)^2 \frac{1,13}{100}$ q = 75695,26La solution de l'équation de troisième degré est obtenue par :

$$\Delta = q^{2} + \left(\frac{4 \times P^{3}}{27}\right) = 75695,26^{2} + \left(\left(\frac{4 \times (-3372,55)^{3}}{27}\right)\right) = 4,69 \times 10^{7}$$
$$\cos \phi = \frac{3q}{2p} \sqrt{\frac{-3}{p}} = \frac{3(75695,26)}{2(-3372,55)} \sqrt{\frac{-3}{-3372,55}} = -1,00$$
$$\phi = 180^{\circ}$$
$$a = 2\sqrt{\frac{-p}{3}} = 67,06 \text{ cm}$$

Donc :

$$y_1 = a \cos\left(\frac{\phi}{3} + 120\right) = 67,06 \cos\left(\frac{180}{3} + 120\right) = -67,06 \text{ cm}$$

$$y_2 = a \cos\left(\frac{\phi}{3}\right) = 67,06 \cos\left(\frac{180}{3}\right) = 33,53 \text{ cm}$$

$$y_3 = a\cos\left(\frac{\phi}{3} + 240\right) = 67,06 \cos\left(\frac{180}{3} + 240\right) = 33,53 \text{ cm}$$

La solution qui convient est :

 $\begin{array}{l} yc = 33,53 \\ \text{Car}: \\ 0 \leq y_{ser} = yc - c \leq d \\ 0 \leq y_{ser} = 33,53 - 33,38 \leq 8 \\ 0 \leq y_{ser} = 0,15 \text{cm} \leq 8 \end{array}$

III.4.4.1.Calcul le moment d'inertie de la section homogène réduite :

$$I = \frac{b}{3} y_{ser}^3 + 15[A'_s(y_{ser} - c')^2 + A_s(d - y_{ser})^2]$$
$$I = \frac{100}{3} 0,15^3 + 15[0(0,15 - 2)^2 + 1,13(8 - 0,15)^2]$$
$$I = 1044,61 \text{ cm}^4$$

III.4.4.2. Vérification des contraintes :

III.4.4.2.1.<u>Béton :</u>

$$\begin{split} \delta_{bc} &\leq \overline{\delta}_{bc} \\ \overline{\delta}_{bc} &= 0.6 \times f_{c28} = 0.6 \times 25 = 15 \text{ MPa} \\ \delta_{bc} &= \left(\frac{\text{Nser}}{\text{I}} \text{yc}\right) \text{y}_{ser} = \left(\frac{1.85}{1044.61} \times 33.53\right) \times 0.15 \times 10 = 0.09 \text{MPa} \end{split}$$

$$\delta_{bc} = 0,09MPa \le \overline{\delta}_{bc} = 15MPa$$

III.4.4.2.2.Acier :

$$\begin{split} \delta_{s} &\leq \bar{\delta}_{s} \\ \bar{\delta}_{s} &= \min \Big\{ \frac{2}{3} \, \text{fe} \; ; 110 \; \sqrt{\eta} f_{tj} \Big\} \\ \bar{\delta}_{s} &= \min \{ 266,67 \; \text{MPa}; \; 201,63 \, \text{MPa} \} = 201,63 \; \text{MPa} \\ \bar{\delta}_{s} &= 15 \times \Big(\frac{\text{Nser}}{\text{I}} \, \text{yc} \Big) \; (\text{d} - \text{y}_{\text{ser}}) = \Big(\frac{1,85}{1044,61} \times 33,53 \Big) \times (8 - 0,15) \times 10 = 69,92 \; \text{MPa} \\ \bar{\delta}_{s} &= 69,92 \; \text{MPa} \leq \bar{\delta}_{s} = 201,63 \; \text{MPa} \\ \bar{\delta}_{s}' &= 15 \times \Big(\frac{\text{Nser}}{\text{I}} \, \text{yc} \Big) \; (\text{y}_{\text{ser}} - \text{c}') = \Big(\frac{1,85}{1044,61} \times 33,53 \Big) \times (0,15 - 2) \times 10 = -16,48 \; \text{MPa} \\ \bar{\delta}_{s}' &= -16,48 \; \text{MPa} \leq \bar{\delta}_{s} = 201,63 \; \text{MPa} \end{split}$$
III.4.4.3. Vérification de l'effort tranchant :

$$\tau u = \frac{Tu}{b.d} \le \overline{\tau} u$$

$$\overline{\tau} u = \min\{0,1 \text{ f}_{c28}; 4 \text{ MPa} \}$$

$$\overline{\tau} u = \min\{2,5 \text{ MPa}; 4 \text{ MPa} \} = 2,5 \text{ MPa}$$

$$\tau u = \frac{Tu}{b.d} = \frac{1,5 \text{ Fp}}{b.d} = \frac{1,5 \times 1,184 \times 10^3}{80 \times 1000} = 0,02 \text{ MPa}$$

 $\tau u = 0,02 \text{ MPa} \leq \overline{\tau} u = 2,5 \text{ MPa}$

Figure III. 14: Ferraillage d'acrotère.

III.5.Les escaliers :

L'escalier est considéré comme un élément qui permet de se déplacer entre les différents niveaux d'une structure. Il est formé d'une succession de surfaces horizontales ce sont les marches et les paliers de repos, tout en assurant une fonction architecturale sécuritaire convenable.

Chapitre III Prédimensionnement des éléments secondaires

III.5.1. Définitions usuelles

III.5.1.1.<u>La marche</u>: Partie horizontale sur laquelle l'on pose le pied lorsqu'on utilise l'escalier.

III.5.1.2.<u>La contremarche</u> : Face verticale reliant deux marches successives.

III.5.1.3.<u>Le nez de marche :</u> Bord extérieur de la marche qui peut ou non être en saillie par rapport à la contremarche.

III.5.1.4.<u>Le palier :</u> Plan horizontal plus large que la marche. Il est appelé palier d'arrivée (ou de départ) lorsqu'il se situe au même niveau qu'un étage courant sinon c'est un palier de repos.

III.5.1.5.<u>La volée :</u> L'ensemble de marches/contremarches délimité par deux paliers successifs.

III.5.1.6.<u>Le giron</u> : Distance horizontale mesurée entre deux nez de marche successifs.

III.5.1.7. La hauteur de marche : Distance verticale séparant les faces supérieures de deux marches successives.

Figure III. 15: Les éléments d'un escalier.

Dans notre projet, nous avons des escaliers à paillasse en béton armé de trois volés, le

tracé de l'escalier est correct si :

III.5.2.La formule de BLONDEL :

 $\begin{cases} 60 \leq 2h + g \leq 66 \\ n = H/h \Longrightarrow h = H/n \\ n - 1 = L/g \Longrightarrow g = L/(n - 1) \end{cases}$

- ▶ (n-1): Nombre de marches.
- ▶ n : Nombre de contre marches.
- ▶ h : Hauteur de la marche g : Largeur de la marche (giron).
- L: Portée en plan de la volée (L=1,2m)
- > H : Hauteur entre les faces supérieures de deux paliers successifs.

Figure III 16 : Plan de l'escalier.

III.5.2.1.La hauteur de la marche : est compris entre

$$16,5 \leq h \leq 17,5$$

On prend h = 17 cm

III.5.2.2.Nombre de contre marches :

 $n = \frac{H}{h} = \frac{85}{17} = 5$ Contre marches (dans chaque volé)

III.5.2.3. Nombre de marches :

n - 1 = 5 - 1 = 4 Marches (dans chaque volé)

III.5.2.3.1.<u>Le giron :</u>

 $g = \frac{L}{n-1} = \frac{120}{4} = 30$ cm

III.5.2.4. Angle d'inclinaison :

 $tn\alpha = \frac{H}{L} = \frac{0.85}{1.20} = 0.71$

Donc : α = 35,31°

III.5.2.5. Epaisseur de paillasse :

$$\frac{L'}{30} \le e \le \frac{L'}{20}$$

avec: L' = $\frac{L}{\cos \alpha} = \frac{2,64}{\cos 35,31} = 3,235$ m

Donc :

$$\frac{323,5}{30} \le e \le \frac{323,5}{20} \implies 10,78 \le e \le 16,175$$

On prend : e = 15 cm

III.5.2.6. Epaisseur de palier :

Pour des raisons de sécurité et pour faciliter l'exécution on prend la même épaisseur pour la paillasse et la dalle de palier.

$$e_{p} = 15 \text{ cm}$$

III.5.3. Descente de charge :

III.5.3.1.Palier :

III.5.3.1.1. Charge permanente :

Couches	Poids en daN /m ²
Revêtement en carrelage (2cm)	44
Mortier de ciment (2cm)	40
Lit de sable (2cm)	36
Dalle pleine (20cm)	500
Enduit de ciment	27
Totale	647

Tableau III. 17: Les charge	es permanentes de palier.
-----------------------------	---------------------------

Chapitre III Prédimensionnement des éléments secondaires

III.5.3.1.2.<u>Surcharge d'exploitation : Q</u>= 250 daN/m²

III.5.3.2.<u>Volé :</u>

III.5.3.2.1. Charge permanente :

Tableau III. 18: Les charges permanentes de volé.

Couches	Poids en daN/m ²
Carrelage horizontal (2cm)	44
Mortier de pose (2cm)	40
Lit de sable (2cm)	36
Revêtement vertical (2cm)	24,5
Paillasse	459,54
Enduit de plâtre	18,38
Poids propre de la marche	187
Totale	809,42

III.5.3.2.2. <u>Surcharge d'exploitation :</u>

 $Q=250 \text{ daN/m}^2$

III.5.4. Combinaison de charges :

Pour une bande de 1 ml on a :

III.5.4.1.<u>ELU :</u>

Tableau III. 19: Combinaison des charges à l'ELU.

Volé	Qu ₁ =1467,717 Kg/ml
Palier	Qu ₂ =1248,45 Kg/ml

III.5.4.2.<u>ELS</u>

 Tableau III. 20: Combinaison de charge à l'ELS.

Volé	Qs1=1059,42 Kg/ml
Palier	Qs ₂ =897 Kg/ml

III.5.5. Détermination des sollicitations :

III.5.5.1. Détermination les réactions :

III.5.5.1.1.<u>ELU :</u>

Figure III. 18: Schéma statique a l'ELU.

$$\begin{split} & \sum Fv = 0 \rightarrow R_A + R_B - (3 \times 1467, 717 \times 1, 20) - (2 \times 1248, 45 \times 1, 23) = 0 \\ & R_A + R_B = 8354, 97 \text{ Kg} \dots 1 \\ & \sum M /_A = 0 \\ & \left[1467, 717 \times 1, 20 \times \frac{1.20}{2} \right] + \left[1248, 45 \times 1, 23 \times \left(1, 20 + \frac{1.23}{2} \right) \right] + \left[1467, 717 \times 1, 20 \times \left(2, 43 + \frac{1.20}{2} \right) \right] + \left[1248, 45 \times 1, 23 \times (3, 63 + \frac{1.23}{2}) \right] + \left[1467, 717 \times 1, 20 \times (4, 83 + \frac{1.20}{2}) \right] - 6,06R_B = 0 \\ & R_B = 4168, 76 \text{ Kg} \\ & \text{De 1 on trouve :} \\ & R_A = 8354, 97 - 4168, 76 = 41, 86, 21 \text{ Kg} \\ & \text{III.5.5.1.2.} \underline{\text{ELS :}} \end{split}$$

Figure III. 19: Schéma statique a l'ELS.

$$\sum Fv = 0 \rightarrow R_A + R_B - (3 \times 1059,42 \times 1,20) - (2 \times 897 \times 1,23) = 0$$

R_A+R_B = 6020,53 Kg1
$$\sum \frac{\Delta M}{A} = 0$$

Chapitre III Prédimensionnement des éléments secondaires

$$\begin{split} & \left[1059,42 \times 1,20 \times \frac{1,20}{2}\right] + \left[897 \times 1,23 \times (1,20 + \frac{1,23}{2})\right] + \left[1059,42 \times 1,20 \times (2,43 + \frac{1,20}{2})\right] + \\ & \left[897 \times 1,23 \times (3,63 + \frac{1,23}{2})\right] + \left[1059,42 \times 1,20 \times (4,83 + \frac{1,20}{2})\right] - 6,06R_{\rm B} = 0 \\ & R_{\rm B} = 3003,97 \text{ Kg} \end{split}$$

De 1 on trouve :

 $R_A = 6020,53 - 3003,97 = 3016,56 \text{ Kg}$

III.5.5.2. Détermination des efforts tranchants et moment fléchissant :

III.5.5.2.1.<u>ELU :</u>

 $0 \le x \le 3,03 \text{ m}$

$$T(x) = R_A - (1467,717 \times 1,20) - (1248,45 \times 1,23) - (1467,717 \times (x - 2,43))$$

T(x) = -1467,717x + 4455,91

$$M(x) = (R_A.x) - \left[1467,717 \times 1,20 \times \left(x - \frac{1,20}{2}\right)\right] - \left[1248,45 \times 1,23 \times \left(x - \left(1,20 + \frac{1,23}{2}\right)\right)\right] - \left[1467,717 \times \left(x - (1,20 + 1,23) \times \left(\frac{\left(x - (1,20 + 1,23)\right)}{2}\right)\right]$$

 $M(x) = 4186,21x - [1761,26 \times (x - 0,6)] - [1535,59 \times (x - 1,815)] - [1467,717 \times \frac{(x - 2,43)^2}{2}]$

$$\mathbf{x} = 0 \begin{cases} T(0) = 4455,91 \text{ Kg} \\ M(0) = -2603,02 \text{ Kg. m} \end{cases}$$

x = 3,03m

$$\begin{cases}
T(3,03) = 8,727 \text{ Kg} \\
M(3,03) = 6274,42 \text{ Kg. m}
\end{cases}$$

 $M_{max} \rightarrow T(x_m) = 0$

Donc : $x_m = 3,04 \text{ m}$

 $M_{max}(3,04) = 6274,44$ Kg.m

III.5.5.2.1.1. Moment en appuis :

 $M_{au} = -0.2 \times M_{u max} = -1254.89 \text{ Kg. m}$

III.5.5.2.1.2. Moment en travée :

 $M_{tu} = 0.8 \times M_{u max} = 5019,55$ Kg. m

III.5.5.3.<u>ELS :</u>

 $0 \le x \le 3,03 \text{ m}$

$$T(x) = R_A - (1059,42 \times 1,20) - (897 \times 1,23) - (1059,42 \times (x - 2,43))$$

T(x) = -1059,42x + 3216,34

$$M(x) = (R_A.x) - \left[1059,42 \times 1,20 \times \left(x - \frac{1,20}{2}\right)\right] - \left[897 \times 1,23 \times \left(x - \left(1,20 + \frac{1,23}{2}\right)\right)\right] - \left[1059,42 \times \left(x - (1,20 + 1,23) \times \left(\frac{\left(x - (1,20 + 1,23)\right)}{2}\right)\right]$$

$$M(x) = 3016,56x - [1271,30 \times (x - 0,6)] - [1103,31 \times (x - 1,815)] - \left[1059,42 \times \frac{(x - 2,43)^2}{2}\right]$$

$$\mathbf{x} = 0 \begin{cases} T(0) = 3216,34 \text{ Kg} \\ M(0) = -1888,16 \text{ Kg. m} \end{cases}$$

x = 3,03m

$$\begin{cases}
T(3,03) = 6,297 \text{ Kg} \\
M(3,03) = 4519,701 \text{ Kg. m}
\end{cases}$$

$$M_{max} \rightarrow T(x_m) = 0$$

Donc : $x_{m} = 3,04 \text{ m}$

 $M_{max}(3,04) = 4519,71$ Kg. m

III.5.5.3.1.1.Moment en appuis :

 $M_{as} = -0.2 \times M_{s \max} = -903.94$ Kg.m

III.5.5.3.1.2. Moment en travée :

 $M_{ts} = 0.8 \times M_{s max} = 3615,77 \text{ Kg. m}$

Chapitre III Prédimensionnement des éléments secondaires

III.5.6.<u>Calcul des armatures :</u> III.5.6.1.<u>ELU :</u>

III.5.6.1.1.<u>En appuis : Mau =-1254,89 kg.m</u>

III.5.6.1.1.1. Vérification de l'existence des armatures comprimées :

$$\begin{split} \mu &= \frac{M_{au}}{\delta_b \times b \times {d_x}^2} = \frac{1254,89}{14,2 \times 100 \times 13,5^2} = 4,85 \times 10^{-3} < \mu_{AB} = 0,392 \\ \alpha &= 1,25 \big(1 - \sqrt{1 - 2\mu}\big) = 3,03 \times 10^{-3} \\ \beta &= 1 - 0,4\alpha = 0,999 \end{split}$$

III.5.6.1.1.2. Détermination des armatures :

$$A_{au} = \frac{M_{au}}{\delta_s \times \beta \times d_x} = \frac{1254,89}{348 \times 0,999 \times 13,5} = 0,267 \text{ cm}^2$$

III.5.6.1.1.3. Condition de non fragilité :

$$A_{\min} = 0.23 \times \frac{f_{t28}}{fe} \times b \times h = 1.63 \text{cm}^2$$

 $A_a = \max(A_{au}; A_{min}) = 1,63 \text{ cm}^2$

Choix des armatures : 6T6/ml=1,70 cm²/ml

Espacement :
$$e = \frac{100 - 6 \times 0.6}{6} = 16,06 \text{ cm}$$

On prendre :6T12/ml - e = 15 cm

III.5.6.1.2.<u>En travée : Mtu =5019,55 kg.m</u>

III.5.6.1.2.1. Vérification de l'existence des armatures comprimées :

$$\mu = \frac{M_{tu}}{\delta_b \times b \times d_x^2} = \frac{5019,55}{14,2 \times 100 \times 13,5^2} = 0,019 < \mu_{AB} = 0,392$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 0,024$$

$$\beta = 1 - 0,4\alpha = 0,990$$

III.5.6.1.2.2.Détermination des armatures :

$$A_{tu} = \frac{M_{tu}}{\delta_s \times \beta \times d_x} = \frac{5019,55}{348 \times 0,990 \times 13,5} = 1,079 \text{ cm}^2$$

III.5.6.1.2.3. Condition de non fragilité :

$$A_{\min} = 0,23 \times \frac{f_{t28}}{fe} \times b \times h = 1,63 \text{cm}^2$$

 $A_{t} = \max(A_{tu}; A_{min}) = 1,63 \text{ cm}^{2}$

Choix des armatures : 6T6/ml=1,70 cm²/ml

Espacement :
$$e = \frac{100 - 6 \times 0.6}{6} = 16,06$$

On prendre :6T12/ml - e = 15 cm

III.5.6.2.<u>ELS :</u>

III.5.6.2.1.<u>En appuis : Mas =-903,94 kg.m</u>

III.5.6.2.1.1.Flexion simple

Section rectangulaire

$$\alpha \leq \frac{\boxed{2}-1}{2} + \frac{f_{c28}}{100} \rightarrow \delta_b \leq \overline{\delta_b} = 0,6f_{c28} = 15 \text{ MPa}$$

Avec :

$$\gamma = \frac{M_{au}}{M_{as}} = \frac{-1254,89}{-903,94} = 1,39$$

Donc :

$$\alpha = 3,03 \times 10^{-3} \le \frac{1,39 - 1}{2} + \frac{25}{100} = 0,445$$

III.5.6.2.2.<u>En travée : Mts</u> =-3615,77 kg.m

III.5.6.2.2.1. Flexion simple

➢ Section rectangulaire

$$\alpha \leq \frac{\boxed{2} - 1}{2} + \frac{f_{c28}}{100} \rightarrow \delta_b \leq \overline{\delta_b} = 0.6f_{c28} = 15 \text{ MPa}$$

Avec :

$$\gamma = \frac{M_{\rm tu}}{M_{\rm ts}} = \frac{5019,55}{3615,77} = 1,39$$

Donc :

$$\alpha = 0,024 \le \frac{1,39 - 1}{2} + \frac{25}{100} = 0,445$$

III.5.7.<u>Armatures de répartition :</u> III.5.7.1.<u>En appuis :</u> $Ar = \frac{A_a}{4} = \frac{1.63}{4} = 0.41 \text{ cm}^2/\text{ml}$ On opte pour Ar=3T5 = 0.59cm²/ml Espacement : $e = \frac{100-3\times0.5}{3} = 32,83 \text{ cm}$ On prendre :3T6/ml - e = 30 cmIII.5.7.2.<u>En travée :</u> $Ar = \frac{A_t}{4} = \frac{1.63}{4} = 0.41 \text{ cm}^2/\text{ml}$ On opte pour Ar=3T5 = 0.59cm²/ml Espacement : $e = \frac{100-3\times0.5}{3} = 32,83 \text{ cm}$ On prendre :3T6/ml - e = 30 cmIII.5.8.<u>Vérification à l'effort tranchant :</u> $V_{max} = R_A = 4186,21 \text{ Kg}$ $\tau_u = \frac{V_{max}}{b \times d} = \frac{4186,21 \times 10^{-5}}{(13,5 \times 100) \times 10^{-4}} = 0.31 \text{ MPa}$ $\bar{\tau}_u = 0.05 \times f_{c28} = 1.25 \text{ MPa}$

 $\tau_u < \overline{\tau}_u$; Donc les armatures transversales ne sont pas nécessaires.

Donc :

On prendre :6T12/ml - e = 15 cm

Figure III. 20 : schéma de ferraillage des escaliers (un volé).

<u>CHAPITRE Ⅳ:</u>

Prédimensionnement des éléments principaux

IV.1.Introduction:

Dans ce chapitre on s'intéresse à définir les dimensions des éléments principales de chaque bloc qui devront résister aux différentes sollicitations, le principe de la vérification nécessaire à la résistance et à la stabilité.

IV.2.Bloc CM :

IV.2.1.Portique traverse :

on va dimensionner les différentes composantes du portique qui constitue l'ossature principale de la structure, il est composés de traverses, qui supportent les pannes, et des poteaux qui supportent les traverses. Mais pour pouvoir dimensionner ces pièces, on doit tout d'abord calculer les forces et les moments qui les sollicitent.

Figure IV. 1: Dimensionnement de portique.

IV.2.1.1. Caractéristiques géométriques :

- ▶ l = 37,35 m
- ▶ h = 8,80 m
- ➤ s = 18,86 m
- ➤ f = 2,62 m
- Entre axe des portiques est de 4 m

IV.2.1.2. Coefficient de rigidité de l'encastrement :

$$k = \frac{\text{raideur-rampant}}{\text{raideur-bequille}} = \frac{I_2 \times h}{I_1 \times s}$$

On assume : $I_1 \approx I_2$
Donc : $k = \frac{h}{s} = \frac{8,80}{18,86} = 0,467$
 $\varphi = \frac{f}{h} = \frac{2,68}{8,80} = 0,305$

 $\Delta = k + 3 + 3\phi + \phi^2 = 0,467 + 3 + 3 \times 0,305 + 0,305^2 = 4,475$

IV.2.1.3. Effet des charges verticales sur un portique :

IV.2.1.3.1. Charges permanentes G :

- Poids propre de traverse (estimé) 12 kg/m²
- \blacktriangleright Couverture et accessoires de pose 17 kg/m²
- > Pannes : IPE 120 $10,4/1,4 = 7,43 \text{ kg/m}^2$

 $G = (12 + 17 + 7,43) \times 4 = 145,72 \text{ kg/ml} = 1,457 \text{ kN/ml}$

IV.2.1.3.2. Effet de la neige :

 $N = 0,106 \text{ kN/m}^2$ (Voir CH.2)

 $N = 0,106 \times 4 = 0,424 \text{ kN/ml}$

IV.2.1.3.3.Effet du vent : (Voir CH.2)

V1 ($\theta = 0^{\circ}$) : Cas 2 (le plus défavorable)

Tableau IV. 1: Les effets du vent.

Zone	$q_j(N/m^2)$	q _j (kN/ml)
D	+253,535	+1,014
Е	-366,218	-1,465
F	-1140,941	-4,564
G	-901,406	-3,606
Н	-542,105	-2,168
Ι	-561,015	-2,244
J	-674,479	-2,698

Figure IV. 2: les effets du vent.

Charge équivalente du vent :(cas 2 : le portique intermédiaire est le plus chargé vis-à-vis

de la vent)

Figure IV. 3: les charges équivalentes du vent.

IV.2.1.4. Calcul des efforts internes :

Calcul sous la charge unitaire :q = 1,0 kN/ml

IV.2.1.4.1. Charges verticales vers le bas : (charges permanentes et surcharge de neige)

$$\beta = \frac{8+5\varphi}{4\Delta} = \frac{8+5\times0,305}{4\times4,475} = 0,532$$

$$\gamma = 1 - \beta(1+\varphi) = 1 - 0,532(1+0,305) = 0,306$$

$$H_{A} = H_{E} = \beta \frac{q\times l^{2}}{8h} = 0,532 \times \frac{1,0\times37,35^{2}}{8\times8,80} = 10,542 \text{ kN}$$

$$V_{A} = V_{E} = \frac{q\times l}{2} = \frac{1,0\times37,35}{2} = 18,675 \text{ kN}$$

$$M_{B} = M_{D} = -\beta \frac{q\times l^{2}}{8} = -0,532 \times \frac{1,0\times37,35^{2}}{8} = -92,769 \text{ kN. m}$$

$$M_{C} = \gamma \frac{q\times l^{2}}{8} = 0,306 \times \frac{1,0\times37,35^{2}}{8} = 53,360 \text{ kN. m}$$

Figure IV. 4 : Charges verticales ver le bas.

IV.2.1.4.2. Charges verticales vers le haut : (Vent de soulèvement)

$$H_{A} = H_{E} = \beta \frac{q \times l^{2}}{8h} = 0,532 \times \frac{1,0 \times 37,35^{2}}{8 \times 8,80} = 10,542 \text{ kN}$$

$$V_{A} = V_{E} = \frac{q \times l}{2} = \frac{1,0 \times 37,35}{2} = 18,675 \text{ kN}$$

$$M_{B} = M_{D} = \beta \frac{q \times l^{2}}{8} = 0,532 \times \frac{1,0 \times 37,35^{2}}{8} = 92,769 \text{ kN. m}$$

$$M_{C} = -\gamma \frac{q \times l^{2}}{8} = -0,306 \times \frac{1,0 \times 37,35^{2}}{8} = -53,360 \text{ kN. m}$$

IV.2.1.4.3. Vent horizontal : (pression)

$$\begin{split} \delta &= \frac{5k+12+6\varphi}{8\Delta} = \frac{5\times0,467+12+6\times0,305}{8\times4,475} = 0,452\\ \beta &= 1 - \delta = 1 - 0,452 = 0,548\\ \gamma &= \frac{(1+\varphi)(5k+12+6\varphi)}{8\Delta} - \frac{1}{2} = \frac{(1+0,305)(5\times0,467+12+6\times0,305)}{8\times4,475} - \frac{1}{2} = 0,089\\ H_E &= \delta \frac{q\times h}{2} = 0,452 \times \frac{1,0\times8,80}{2} = 1,989 \text{ kN}\\ H_A &= qh - H_E = 1,0 \times 8,80 - 1,989 = 6,811 \text{ kN}\\ V_A &= -V_E = -\frac{q\times h^2}{2l} = -\frac{1,0\times8,80^2}{2\times37,35} = -1,037 \text{ kN}\\ M_B &= \beta \frac{q\times h^2}{2} = 0,548 \times \frac{1,0\times8,80^2}{2} = 21,219 \text{ kN}.\text{ m}\\ M_D &= -\delta \frac{q\times h^2}{2} = -0,452 \times \frac{1,0\times8,80^2}{2} = -17,501 \text{ kN}.\text{ m}\\ M_C &= -\gamma \frac{q\times h^2}{2} = -0,089 \times \frac{1,0\times8,80^2}{2} = -3,446 \text{ kN}.\text{ m} \end{split}$$

IV.2.1.4.4.<u>Vent horizontal :</u> (dépression)

 $H_{A} = \delta \frac{q \times h}{2} = 0,452 \times \frac{1,0 \times 8,80}{2} = 1,989 \text{ kN}$ $H_{E} = qh - H_{A} = 1,0 \times 8,80 - 1,989 = 6,811 \text{ kN}$ $V_{E} = -V_{A} = -\frac{q \times h^{2}}{2l} = -\frac{1,0 \times 8,80^{2}}{2 \times 37,35} = -1,037 \text{ kN}$ $M_{D} = -\beta \frac{q \times h^{2}}{2} = -0,548 \times \frac{1,0 \times 8,80^{2}}{2} = -21,219 \text{ kN. m}$ $M_{B} = \delta \frac{q \times h^{2}}{2} = 0,452 \times \frac{1,0 \times 8,80^{2}}{2} = 17,501 \text{ kN. m}$ $M_{C} = \gamma \frac{q \times h^{2}}{2} = 0,089 \times \frac{1,0 \times 8,80^{2}}{2} = 3,446 \text{ kN. m}$

Figure IV. 7: Vent horizontal (dépression).

> Tableaux récapitulatifs :

Efforts internes sous la charge unitaire (q = 1,0 kN/ml) :

		R	éactions d'	actions d'appuis (kN)			Moments (kN. 1			
Actions	q(kN/ml)	H _A	H _E	V _A	V _E	M _B	M _C	M _D		
G	1,0	+10,542	-10,542	+18,675	+18,675	-92,769	+53,360	-92,769		
Ν	1,0	+10,542	-10,542	+18,675	+18,675	-92,769	+53,360	-92,769		
V ₁ (soulèvement)	1,0	-10,542	+10,542	-18,675	-18,675	+92,769	-53,360	+92,769		
V_2 (pression)	1,0	-6,811	-1,989	-1,037	+1,037	+21,219	-3,446	-17,501		
V_3 (dépression)	1,0	-1,989	-6,811	-1,037	+1,037	+17,501	+3,446	-21,219		

Tableau IV. 2: Les efforts internes sous la charge unitaire.

Efforts internes sous les charges actuelles :

Tableau IV. 3: Les efforts internes sous les charges actuelles.

		F	Réactions d'	appuis (kN	Moments (kN.m)			
Actions	q(kN /ml)	H _A H _E		H _E V _A		M _B	M _C	$M_{\rm D}$
G	1,457	+15,360	-15,360	+27,209	+27,209	-135,164	+77,746	-135,164
N	0,424	+4,470	-4,470	+7,918	+7,918	-39,334	+22,625	-39,334
V ₁ (soulèvement)	2,321	-24,468	+24,468	-43,345	-43,345	+215,317	-123,849	+215,317
V ₂ (pression)	1,014	-6,906	-2,017	-1,052	+1,052	+21,516	-3,494	-17,746
V ₃ (dépression) 1,465		-2,914	-9,978	-1,519	+1,519	+25,639	+5,048	-31,086
$V = V_1 + V_2$	-34,288	-12,473	-45,916	-40,774	+262,472	-122,29	-166,485	

IV.2.1.5. Combinaisons à l'ELU :

Tableau IV. 4: Les combinaisons des charges à l'ELU.

	F	Réactions d'a	appuis (kN)	Мо	ments (kN. n	1)	
Combinaisons	H _A	H _E	VA	V _E	M _B	M _C	M _D
1,35G + 1,5N	+27,441	-27,441	+48,609	+48,609	-241,472	+138,895	-241,47
1,35G + 1,35N + 1,35V	-19,518	-9,932	-14,565	-7,623	+118,765	-29,597	-10,818
G + 1,5V	-36,072	+3,350	-41,665	-33,952	+258,544	-105,670	+114,56

IV.2.1.6. Prédimensionnement de la traverse :

La traverse est calculée en tenant compte de plusieurs conditions :

- Condition de résistance.
- Condition de flèche.
- Condition de non déversement.

IV.2.1.6.1. Condition de résistance

$$M_{y.sd} \le M_{ply.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} \implies W_{ply} \ge \frac{M_{y.sd} \cdot \gamma_{M1}}{f_y}$$

 $M_{y.sd} = M_{max} = M_B = 258,544 \text{ kN. m}$

$$\Rightarrow W_{\text{ply}} \ge \frac{258,544 \times 1,1}{275} \times 10^3 = 1034,176 \text{ cm}^3$$

Choix du profilé

Le profilé qui convient comme la traverse est IPE 400.

IV.2.1.6.2. Vérification de la traverse à l'ELS :

IV.2.1.6.2.1. Vérification à la flèche :

$$y_{\rm max} \le l/200$$

 $y_{\text{max}} = \frac{1}{384\text{E.I}_{y}} (5\text{q.} l^{4} - 48\text{M}_{\text{B}} l^{2})$ q = G + N = 1,457 + 0,424 = 1,881 kN/ml $M_{\text{B}} = M_{\text{B}}(\text{G}) + M_{\text{B}}(\text{N}) = -135,164 + (-39,334) = -174,498 \text{ kN. m}$ $\Rightarrow y_{\text{max}} = \frac{1}{384 \times 2.1 \times 10^{5} \times 23130 \times 10^{4}} (5 \times 1,881 \times (37,35 \times 10^{3})^{4} - 48 \times 174,498 \times 10^{6} \times (37,35 \times 10^{3})^{2}) = 354,83 \text{ mm}$ $l/200 = 37,35 \times 10^{3}/200 = 186,75 \text{ mm}$

 $y_{\text{max}} = 354,83 \text{ mm} > l/200 = 185,75 \text{ mm} \implies \text{Non vérifiée}$

On doit augmenter la section : soit IPE 450

Tableau IV. 5: Caractéristiqu	es géométriques d'un	IPE450.
-------------------------------	----------------------	---------

G	h	b	tw	t _f	А	A _{vz}	A _{vy}	Iy	W _{ply}	iy	Iz	W _{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm^4	cm ³	cm	cm ⁴	cm ³	cm
77,6	450	190	9,4	14,6	98,82	50,85	58,3	33740	1702	18,48	1676	276,4	4,12
$y_{\rm max} =$	$y_{\text{max}} = 243,25 \text{ mm} > l/200 = 185,75 \text{ mm} \implies \text{Non vérifiée}$												

On doit augmenter la section : soit IPE 500

Chapitre \mathbf{N} Prédimensionnement des éléments principaux

G	h	b	t _w	t _f	Α	A _{vz}	A _{vy}	Iy	W_{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
90,7	500	200	10,2	16	115,5	59,87	67,2	48200	2194	20,43	2142	335,9	4,31
$y_{\text{max}} = 170,28 \text{ mm} < l/200 = 185,75 \text{ mm} \implies \text{Vérifiée}$													

Tableau IV. 6: Caractéristiques géométriques d'un IPE500.

 $y_{\text{max}} = 170,28 \text{ mm} < l/200 = 185,75 \text{ mm} \implies$

IV.2.1.6.3. Vérification de la traverse à l'ELU :

IV.2.1.6.3.1.Les efforts :

 $M_{y.sd} = 258,544$ kN. m

 $N_{sd} = -41,665 \times \sin(8^{\circ}) - 36,072 \times \cos(8^{\circ}) = -41,520 \text{ kN}$

 $V_{sd} = -41,665 \times \cos(8^{\circ}) - 36,072 \times \sin(8^{\circ}) = -46,280 \text{ kN}$

IV.2.1.6.3.2. Vérification de l'effort tranchant :

$$V_{sd} \leq 0.5 \times V_{pl.rd}$$

$$V_{pl.rd} = \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{59,87(275/\sqrt{3})}{1,1} \times 10^{-1} = 864,149 \text{ kN}$$

$$0,5V_{pl.rd} = 0,5 \times 864,149 = 432,075 \text{ kN}$$

$$V_{sd} = 46,280 \text{ kN} < 0,5 \text{ V}_{pl.rd} = 432,075 \text{ kN} \implies \text{Vérifiée}$$

$$IV.2.1.6.3.3.\underline{Vérification de l'effort normal :}$$

$$\begin{split} N_{y.sd} &\leq \min\{0,25 \text{ N}_{pl.rd}; \frac{0,5A_{w}.f_{y}}{\gamma_{M0}}\} \\ N_{pl.Rd} &= \frac{A \times fy}{\mathbb{D}_{m0}} = \frac{115,5 \times 275}{1,1} \times 10^{-1} = 2887,5 \text{ kN} \implies 0,25N_{pl.Rd} = 721,875 \text{ kN} \\ A_{w} &= A - 2b \times t_{f} = 115,5 - (2 \times 20 \times 1,6) = 51,50 \text{ cm}^{2} \\ \frac{0,5A_{w}.f_{y}}{\gamma_{M0}} &= \frac{0,5 \times 51,50 \times 275}{1,1} \times 10^{-1} = 643,75 \text{ KN} \\ N_{sd} &= 41,520 \text{ kN} < \min\left\{N_{pl.rd}; \frac{0,5A_{w}.f_{y}}{\gamma_{M0}}\right\} = 643,75 \text{ kN} \implies \text{Vérifiée} \\ \text{IV.2.1.6.3.4.} \underline{Vérification à la flexion :} \end{split}$$

$$M_{y.sd} \le M_{ply.Rd}$$

 $M_{ply.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{2194 \times 275}{1,1} \times 10^{-3} = 548,50 \text{ kN. m}$
 $M_{y.sd} = 258,544 \text{ kN. m} < M_{ply.Rd} = 548,50 \text{ kN. m} \implies$ Vérifiée

IV.2.1.6.3.5. Vérification au déversement :

$$\frac{M_{y.sd}}{\chi_{LT}.M_{ply.rd}} \le 1.0$$

$$\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \left[\varphi_{\rm LT}^2 - \bar{\lambda}_{\rm LT}^2\right]^{0.5}}$$
$$\varphi_{\rm LT} = 0.5 \left[1 + \alpha_{\rm LT} (\bar{\lambda}_{\rm LT} - 0.2) + \bar{\lambda}_{\rm LT}^2\right]$$
$$\bar{\lambda}_{\rm LT} = \left[\frac{\beta_{\rm w} \cdot W_{\rm ply} \cdot f_{\rm y}}{M_{\rm cr}}\right]^{0.5} = \left[\frac{\lambda_{\rm LT}}{\lambda_1}\right] \sqrt{\beta_{\rm w}}$$

 $\beta_w = 1.0$ Pour les sections de classe 1 et classe 2.

$$\lambda_{1} = \pi \sqrt{\frac{E}{f_{y}}} = \pi \sqrt{\frac{2.1 \times 10^{5}}{275}} = 86,81$$

$$\lambda_{LT} = \frac{l/i_{z}}{c_{1}^{0.5} \left[1 + \frac{1}{20} \left[\frac{l/i_{z}}{h/t_{f}}\right]^{2}\right]^{0.25}} = \frac{18,86 \times 10^{2}/4,31}{1,132^{0.5} \left[1 + \frac{1}{20} \left[\frac{18,86 \times 10^{2}/4,31}{50/1,6}\right]^{2}\right]^{0.25}} = 226,85$$

$$\bar{\lambda}_{LT} = \left[\frac{226,85}{86,81}\right] \times \sqrt{1} = 2,613$$

$$\varphi_{LT} = 0,5[1 + 0,21(2,613 - 0,2) + 2,613^{2}] = 4,167$$

$$\chi_{LT} = \frac{1}{4,167 + [4,167^{2} - 2,613^{2}]^{0.5}} = 0,135$$

$$\frac{M_{y.sd}}{\chi_{LT}.M_{ply.rd}} = \frac{258,544}{0,135 \times 548,50} = 3,49 > 1,0 \implies \text{Non vérifiée}$$

On doit ajouter des palées, la longueur maximum entre deux palées 6 m.

Tableau IV. 7:	Les coefficients	de déversement.
----------------	------------------	-----------------

<i>l</i> (m)	λ_{LT}	$\overline{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$
6,0	110,13	1,269	1,417	0,488

 $\frac{M_{y.sd}}{\chi_{LT}.M_{ply.rd}} = \frac{258,544}{0,488 \times 548,50} = 0,97 < 1,0 \implies$ Vérifiée

IV.2.1.7. Prédimensionnement des poteaux :

Les poteaux sont sollicités en compression avec flexion, c'est pour cela on doit faire le calcul au flambement.

Remarque :

Il faut remarquer qu'on a adopté le profil **IPE 500** pour la traverse et qu'on ne peut pas adopter un profil plus petit pour les poteaux ; c'est pour cela on va commencer le calcul des poteaux avec le même profil.

IV.2.1.7.1. Vérification des poteaux :

$$\begin{split} M_{y.sd} &= 258,544 \text{ kN. m} \\ N_{sd} &= -41,665 \text{ kN} \\ V_{sd} &= -36,072 \text{ kN} \\ \text{IV.2.1.7.1.1. Vérification de l'effort tranchant :} \\ V_{sd} &= 36,072 \text{ kN} < 0,5 \text{ V}_{pl.rd} = 432,075 \text{ kN} \implies \text{Vérifiée} \\ \text{IV.2.1.7.1.2. Vérification de l'effort axial :} \\ N_{sd} &= 41,665 \text{ kN} < \min \left\{ N_{pl.rd}; \frac{0,5A_{w}.f_{y}}{\gamma_{Mo}} \right\} = 643,75 \text{ kN} \implies \text{Vérifiée} \\ \text{IV.2.1.7.1.3. Vérification à la flexion :} \\ M_{y.sd} &= 258,544 \text{ kN. m} < M_{ply.Rd} = 548,50 \text{ kN. m} \implies \text{Vérifiée} \\ \text{IV.2.1.7.1.4. Vérification de la stabilité au flambement :} \end{split}$$

$$\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} + \frac{k_{y}.M_{y.sd}}{M_{ply.rd}} \le 1.0$$

 $\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} > 0,1 \implies$ Il y a présence l'effort normal

$$k_{y} = 1 - \frac{\mu_{y} \cdot N_{sd}}{\chi_{y} \cdot A \cdot f_{y}} \le 1,0$$

$$\chi_{\min} = \min(\chi_{y}; \chi_{z})$$

$$\chi = \frac{1}{\varphi + [\varphi^{2} - \bar{\lambda}^{2}]^{0,5}}$$

$$\varphi = 0.5[1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^{2}]$$

$$\alpha: \begin{cases} \frac{h}{b} = \frac{500}{200} = 2,5 > 1,2\\ t_f = 16 \text{ mm} < 40 \text{ mm} \end{cases} \implies \begin{cases} Axe: Y - Y \implies \text{courbe } a\\ Axe: Z - Z \implies \text{courbe } b \end{cases}$$

 $\bar{\lambda} = \left[\frac{\lambda}{\lambda_1}\right] \sqrt{\beta_w} > 0.2 \implies \text{II y a risque de flambement}$

$$\beta_w = 1.0$$
 Pour les sections de classe 1 et classe 2.

$$\lambda = \frac{l_f}{i}$$

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = \pi \sqrt{\frac{2,1 \times 10^5}{275}} = 86,81$$

Tableau IV. 8: Les coefficients de flambement.

	$l_f(m)$	λ	α	$ar{\lambda}$	φ	χ	Xmin
Suivant Y – Y	8,80	43,07	0,21	0,49 > 0,2	0,654	0,926	0 1 5 7
Suivant Z – Z	8,80	204,18	0,34	2,350 > 0,2	3,627	0,157	0,107

$$\frac{N_{sd}}{\chi_{min}N_{pl.rd}} = \frac{41,665}{0,157 \times 2887,5} = 0,09 < 0,1 \implies L'effort normal est négligeable$$

$$\Rightarrow \begin{cases} k_{y} \simeq 1\\ \frac{N_{sd}}{\chi_{min}.N_{pl.rd}} \simeq 0 & \frac{k_{y}.M_{y.sd}}{M_{ply.rd}} = \frac{1 \times 258,544}{548,5} = 0,47 < 1,0 \quad \Rightarrow \qquad \text{Vérifiée} \end{cases}$$

IV.2.1.7.1.5. Vérification de la stabilité au déversement :

$$\frac{N_{sd}}{\chi_{z}.N_{pl.rd}} + \frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} \le 1.0$$

$$k_{LT} = 1 - \frac{\mu_{LT}.N_{sd}}{\chi_z.A.f_y} \le 1,0$$

Tableau IV. 9: Les coefficients de déversement.

	<i>l</i> (m)	λ_{LT}	$\overline{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$
	8,80	144,23	1,661	2,033	0,312
⇒	$\begin{cases} k_{LT}\simeq 1\\ \frac{N_{sd}}{\chi_z.N_{pl.rd}}\simeq 0 \end{cases}$				
$\frac{k_{LT}}{\chi_{LT}}$	$\frac{M_{y.sd}}{M_{ply.rd}} = \frac{1 \times 258,5}{0,312 \times 54}$	$\frac{44}{48,5} = 1,51 > 1,0$	\Rightarrow Non	vérifiée	

On doit augmenter la section : soit IPE 550

Chapitre \mathbf{N} Prédimensionnement des éléments principaux

									•				
G	h	b	tw	t _f	Α	A _{vz}	A _{vy}	Iy	W_{ply}	iy	Iz	W_{plz}	iz
kg/m	mm	mm	mm	Mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
106	550	210	11,1	17,2	134,4	72,34	76,1	67120	2787	22,35	2668	400,5	4,45

Tableau IV. 10: Caractéristiques géométriques d'un IPE550.

Tableau IV. 11: Les coefficients de déversement-Le moment résistant.

Xmin	^{Iv} pl.Rd(KIV)	Λ_{LT}	λ_{LT} $\overline{\lambda}_{LT}$		$\chi_{ m LT}$	M _{ply.Rd} (kN.m)	
0,166	3360	142,28	1,639 > 0,4	1,994	0,320	696,75	

 $\frac{N_{sd}}{\chi_{min}.N_{plrd}} = \frac{41,665}{0,166\times3360} = 0,07 < 0,1 \implies L'effort normal est négligeable$

$$\Longrightarrow \begin{cases} k_{LT} \simeq 1 \\ \frac{N_{sd}}{\chi_{z}.N_{pl.rd}} \simeq 0 \end{cases}$$

 $\frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} = \frac{1 \times 258,544}{0,320 \times 696,75} = 1,16 > 1,0 \implies \text{Non vérifiée}$

On doit augmenter la section : soit IPE 600

Tableau IV. 12: Caractéristiques géométriques d'un IPE600.

G	h	b	t _w	t _f	А	A _{vz}	A _{vy}	Iy	W_{ply}	iy	I _z	W_{plz}	i _z
kg/m	mm	mm	mm	Mm	cm ²	cm ²	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
122	600	220	12	19	156	83,78	87,9	92080	3512	24,3	3387	485,6	4,66

Tableau IV. 13: Les coefficients de déversement-Le moment résistant.

$\chi_{ m min}$	N _{pl.Rd} (kN)	λ_{LT}	$\bar{\lambda}_{LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$	M _{ply.Rd} (kN.m)
0,180	3900	137,36	1,582 > 0,4	1,896	0,340	878,0

 $\frac{N_{sd}}{\chi_{min}N_{plrd}} = \frac{41,665}{0,180\times3900} = 0,06 < 0,1 \implies L'effort normal est négligeable$

$$\Longrightarrow \begin{cases} k_{LT} \simeq 1 \\ \frac{N_{sd}}{\chi_z \cdot N_{pl.rd}} \simeq 0 \end{cases}$$

 $\frac{k_{\text{LT}}.M_{\text{y.sd}}}{\chi_{\text{LT}}.M_{\text{ply.rd}}} = \frac{1 \times 258,544}{0,340 \times 878,0} = 0,87 < 1,0 \quad \Longrightarrow \quad \text{Vérifiée}$

Chapitre \mathbf{N}

IV.3.Bloc A:

IV.3.1.Les poutres :

Sont des éléments horizontaux, dont leur rôle est de transmettre les charges des planchers aux poteaux et vers les fondations par la suite. Ils sont généralement sollicités en flexion simple.

Pour le prédimensionnement des poutres, on utilise des formules empiriques données par le règlement **BAEL91 « modifie 99 »** qui seront ensuite vérifiées selon les règles de l'**RPA99 « version 2003 ».**

Règle du BAEL91 :

La hauteur h de la poutre doit être \dots $\frac{L}{15} \le h \le \frac{L}{10}$

La largeur b de la poutre doit être $0,3h \le b \le 0,7h$

Avec :

➢ L: La portée de la poutre.

▷ b : La largeur de la poutre.

▶ h : La hauteur de la poutre.

Condition de RPA99 « version 2003 » :

 $\begin{cases} b \ge 20 \text{ cm} \\ h \ge 30 \text{ cm} \\ h/b \le 4 \end{cases}$ (P51 RPA99V2003)

IV.3.1.1.<u>Les poutres principales :</u> $L_{max} = 4,00 \text{ m}$

IV.3.1.1.1. Prédimensionnement :

26,67 cm $\leq h \leq$ 40 cm

On prend : h = 35 cm

 $10,5 \text{ cm} \le b \le 24,5 \text{ cm}$

On prend : b = 25 cm (pour une bonne disposition d'armatures)

IV.3.1.1.2. Vérification selon RPA99 :

 $\begin{cases} b = 25 \text{ cm} > 20 \text{ cm} \\ h = 35 \text{ cm} > 30 \text{ cm} \\ h/b = 1,4 < 4 \end{cases}$ Les trois conditions sont vérifiées

On choisit une poutre de b \times h = 25 \times 35 cm²

IV.3.1.2.<u>Les poutres secondaires : L = 3,60 m</u>

IV.3.1.2.1. Prédimensionnement :

$$24 \text{ cm} \le h \le 36 \text{ cm}$$

On prend : h = 30 cm

On prend : b = 25 cm (pour une bonne disposition d'armatures)

IV.3.1.2.2. Vérification selon RPA99 :

 $\begin{cases} b = 25 \text{ cm} > 20 \text{ cm} \\ h = 30 \text{ cm} = 30 \text{ cm} \\ h/b = 1,2 < 4 \end{cases}$ Les trois conditions sont vérifiées

On choisit une poutre de b \times h = 25 \times 30 cm²

IV.3.2.Les poteaux :

Les poteaux en béton armé sont des éléments essentiels de la structure dont la forme est généralement carrée, rectangulaire ou circulaire.

Pour le prédimensionnement des poutres, on utilise des formules données par le règlement BAEL91 « modifie 99 » qui seront ensuite vérifiées selon les règles de l'RPA99 « version 2003 ».

IV.3.2.1. Méthode de calcul :

Les poteaux calculés à la compression simple suivant la formule :

$$N_{u} \leq \alpha \left(\frac{B_{r} \cdot f_{c28}}{0.9\gamma_{b}} + \frac{A_{s} \cdot f_{e}}{\gamma_{s}} \right)$$

Avec :

 N_u : l'effort normal à l'ELU.

 $N_u = 1,35G + 1,5Q$

 B_r : section réduite du poteau (en cm²).

A_s : section d'acier comprimé prise en compte dans le calcul.

 f_{c28} : résistance à la compression de béton.

 f_e : limite d'élasticité de l'acier utilisé.

 $\gamma_b = 1,5$: coefficient de sécurité du béton.

 $\gamma_s = 1,15$: coefficient de sécurité de l'acier.

 α : coefficient dépendant de l'élancement mécanique λ des poteaux qui prend les valeurs :

$$\alpha = \begin{cases} \frac{0.85}{1+0.2\left(\frac{\lambda}{35}\right)^2} & \text{si} : \lambda \le 50\\ 0,60(\frac{50}{\lambda})^2 & \text{si} : 50 < \lambda \le 70 \end{cases}$$

D'après le RPA99 pour la zone $\Box a$: $A_s/B_r = 0.8\%$ (RPA art7.4.2.1)

On se fixe l'élancement mécanique $\lambda = 35$ pour reste toujours dans les compressions centrées.

 $\lambda = 35 < 50 \implies \alpha = 0,708$

On tire l'équation la valeur :

$$B_{r} \ge \frac{N_{u}}{\alpha \left(\frac{f_{c28}}{0.9\gamma_{b}} + \frac{A_{s}}{B_{r}} \cdot \frac{f_{e}}{\gamma_{s}}\right)} = \frac{N_{u}}{0.708 \left(\frac{25 \times 10^{-1}}{0.9 \times 1.5} + 0.8\% \times \frac{400 \times 10^{-1}}{1.15}\right)}$$

 $B_r \ge 0.66N_u$ ($B_r en(cm^2)$ et $N_u en(kN)$)

Pour les poteaux circulaires : B_r = (D-2)²/4π ⇒ D ≥ √(4×0,66N_u)/π + 2
 Pour les poteaux carrés : B_r = (a - 2)² ⇒ a ≥ √(0,66N_u) + 2

IV.3.2.1.1. Vérification selon RPA99 :

La section du poteau obtenu doit vérifier les conditions minimales imposées par le RPA99

En zone II a les dimensions doivent satisfaire les conditions suivantes :

IV.3.2.1.2. Vérification de flambement :

 $\lambda \le 50 \implies$ Il n'y a pas risque de flambement $\lambda = \frac{L_f}{i}$

Avec :

i : Rayon de giration
$$\left(i = \sqrt{\frac{I}{B}}\right)$$

I : Moment d'inertie de la section du poteau.

B : section de poteau

 L_f : La longueur de flambement ($L_f = 0,7L_f$)

IV.3.2.2. Les poteaux carrés :

IV.3.2.2.1.<u>Poteau de 1^{er} étage : $h = 2,54 \text{ m} \implies h_e = 2,54 - 0,35 = 2,19 \text{ m}$ </u>

IV.3.2.2.1.1. Prédimensionnement :

S : surface de plancher supportée par le poteau le plus défavorable.

$$S \simeq \left(\frac{4+4}{2}\right) \times \left(\frac{3,6}{2}\right) = 7,2 \text{ m}^2$$

$$G = 7,2 \times 8,12 + 25 \times (0,25 \times 0,35) \times \frac{3,6}{2} + 25 \times (0,25 \times 0,30) \times \frac{4+4}{2} = 69,90 \text{ kN}$$

$$Q = 7,2 \text{ kN}$$

$$N_u = 1,35 \times 69,90 + 1,5 \times 7,2 = 105,17 \text{ kN}$$

$$a \ge \sqrt{0,66 \times 105,17} + 2 = 10,33 \text{ cm}$$

On prend : a = 25 cm

Chapitre \mathbf{N} Prédimensionnement des éléments principaux

IV.3.2.2.1.2. Vérification selon RPA99 : b = h = a

(Min(b,h) = 25 cm) $\begin{cases} Min(b, h) = 25 \text{ cm} > he/20 = 10,95 \text{ cm} \\ 1/4 < h/b = 1 < 4 \end{cases}$ Les trois conditions sont vérifiées

IV.3.2.2.1.3. Vérification de flambement :

$$i = \sqrt{\frac{25^4/12}{25 \times 25}} = 7,22 \text{ cm}$$

$$\lambda = \frac{L_f}{i} = \frac{0.7 \times 254}{7,22} = 24,63$$

 $\lambda = 24,63 < 50 \implies$ Il n'y a pas risque de flambement

> On choisit un poteau de $a \times a = 25 \times 25 \text{ cm}^2$

IV.3.2.2.2. <u>Poteau de 2^{éme} étage :</u> $h = 3,6 \text{ m} \implies h_e = 3,6 - 0,35 = 3,25 \text{ m}$

IV.3.2.2.1.Prédimensionnement :

G = 7,2 × 7,92 + 25(0,25 × 0,25) × (2,54 + 2,67) + 25 × (0,25 × 0,35) ×
$$\frac{3,6}{2}$$
 + 2 × 25 × (0,25 × 0,30) × $\frac{4+4}{2}$ = 84,10 kN

 $Q = 7.2 \times 1.5 = 10.8 \text{ kN}$

 $N_u = 105,17 + 1,35 \times 84,10 + 1,5 \times 10,8 = 234,91 \text{ kN}$

 $a \ge \sqrt{0.66 \times 234.91} + 2 = 14.45$ cm

On prend : a = 25 cm

IV.3.2.2.2. <u>Vérification selon RPA99</u> : b = h = a

(Min(b,h) = 25 cm)Min(b,h) = 25 cm > he/20 = 16,25 cm(1/4 < h/b = 1 < 4)

Les trois conditions sont vérifiées

IV.3.2.2.3. Vérification de flambement :

$$i = \sqrt{\frac{25^4/12}{25 \times 25}} = 7,22 \text{ cm}$$

$$\lambda = \frac{L_f}{i} = \frac{0,7 \times 360}{7,22} = 34,90$$

$$\lambda = 34,90 < 50 \implies \text{II n'y a pas risque de flambement}$$

$$\blacktriangleright \text{ On choisit un poteau de a × a = 25 × 25 cm^2}$$

IV.3.2.3.Les poteaux circulaires :

IV.3.2.3.1.<u>Poteau de 1^{er} étage : $h = 2,54 \text{ m} \implies h_e = 2,54 - 0,35 = 2,19 \text{ m}$ </u>

IV.3.2.3.1.1.Prédimensionnement :

$$S \simeq \left(\frac{4+4}{2}\right) \times \left(\frac{3.6}{2}\right) = 7,2 \text{ m}^{2}$$

$$G = 7,2 \times 8,12 + 25 \times (0,25 \times 0,35) \times \frac{3.6}{2} + 25 \times (0,25 \times 0,30) \times \frac{5.38+5.38}{2} = 72,49 \text{ kN}$$

$$Q = 7,2 \text{ kN}$$

$$N_{u} = 1,35 \times 72,49 + 1,5 \times 7,2 = 108,66 \text{ kN}$$

$$D \ge \sqrt{\frac{4 \times 0.66 \times 108,66}{\pi}} + 2 = 11,56 \text{ cm}$$
On prend : D = 30 cm
$$IV.3.2.3.1.2.V\acute{erification selon RPA99 :}$$

$$\left\{ \begin{array}{l} D = 30 \text{ cm} \\ D = 30 \text{ cm} \\ D = 30 \text{ cm} \end{array} \right. \text{ Les deux conditions sont vérifiées}$$

$$IV.3.2.3.1.3.V\acute{erification de flambement :}$$

$$i = \sqrt{\frac{30^{5}\pi/64}{7,5}} = 23,71$$

$$\lambda = \frac{L_{f}}{i} = \frac{0.7\times254}{7,5} = 23,71$$

$$\lambda = 23,71 < 50 \implies \Pi \text{ n'y a pas risque de flambement} \\ \succ \text{ On choisit un poteau de D = 30 \text{ cm}}$$

$$IV.3.2.3.2.Poteau de 2^{\textit{dime}} \acute{etage} : h = 3,6 \text{ m} \Rightarrow h_{e} = 3,6 - 0,35 = 3,25 \text{ m}$$

$$IV.3.2.3.2.1.Prédimensionnement :$$

$$S \simeq \left(\frac{4+4}{2}\right) \times \left(\frac{3.6+4}{2}\right) - 7,2 = 8 \text{ m}^{2}$$

$$G = 7,2 \times 7,92 + 8 \times 8,12 + 25 \frac{(0.30^{2} \times \pi)}{4} \times (2,54 + 2,67) + \left[25 \times (0,25 \times 0,35) \times \frac{3.6}{2} + 25 \times (0,25 \times 0,30) \times \frac{5.38+5.38}{2}\right] + 25(0,25 \times 0,35)(\frac{5.38+5.38}{2} + 5 \times \frac{4}{2}) = 178,86 \text{ kN}$$

$$Q = 7,2 \times 1,5 + 8 = 18,8 \text{ kN}$$

$$N_{u} = 108,66 + 1,35 \times 178,86 + 1,5 \times 18,8 = 378,32 \text{ kN}$$

$$a \ge \sqrt{0,66 \times 240,22} + 2 = 14,59 \text{ cm}$$

$$D \ge \sqrt{\frac{4 \times 0.66 \times 378.32}{\pi}} + 2 = 18,83 \text{ cm}$$

On prend : D = 30 cm
IV.3.2.3.2.2.Vérification selon RPA99 :
$$\begin{cases} D = 30 \text{ cm} \\ D = 30 \text{ cm} > \text{he}/15 = 21,67 \text{ cm} \end{cases}$$

Les deux conditions sont vérifiées
IV.3.2.3.2.3.Vérification de flambement :
 $i = \sqrt{\frac{30^4 \pi/64}{30^2 \pi/4}} = 7,5 \text{ cm}$
 $\lambda = \frac{L_f}{i} = \frac{0.7 \times 360}{7.5} = 33,6$

 $\lambda = 33,6 < 50 \implies$ Il n'y a pas risque de flambement > On choisit un poteau de D = 30 cm

1

IV.4.<u>Bloc B :</u>

Figure IV. 9: Plan de bloc B.

IV.4.1.Les poutres :

IV.4.1.1.<u>Les poutres principales :</u> $L_{max} = 5,60 \text{ m}$

IV.4.1.1.1.Prédimensionnement :

37,33 cm \leq h \leq 56 cm

On prend : h = 40 cm

$$12 \text{ cm} \le b \le 28 \text{ cm}$$

On prend : b = 25 cm

IV.4.1.1.2. Vérification selon RPA99 :

 $\begin{cases} b = 25 \text{ cm} > 20 \text{ cm} \\ h = 40 \text{ cm} > 30 \text{ cm} \\ h/b = 1.4 < 4 \end{cases}$ Les trois conditions sont vérifiées

On choisit une poutre de b \times h = 25 \times 40 cm²

IV.4.1.2.<u>Les poutres secondaires :</u> L = 3,94 m

IV.4.1.2.1. Prédimensionnement :

26,27 cm \leq h \leq 39,4 cm

On prend : h = 30 cm

$$9 \text{ cm} \le b \le 21 \text{ cm}$$

On prend : b = 25 cm (pour une bonne disposition d'armatures)

IV.4.1.2.2. Vérification selon RPA99 :

 $\begin{cases} b = 25 \text{ cm} > 20 \text{ cm} \\ h = 30 \text{ cm} > 30 \text{ cm} \\ h/b = 1,2 < 4 \end{cases}$ Les trois conditions sont vérifiées

> On choisit une poutre de b \times h = 25 \times 30 cm²

IV.4.2.<u>Les poteaux :</u>

 $h = 3.6 \text{ m} \implies h_e = 3.6 - 0.40 = 3.20 \text{ m}$

IV.4.2.1. Prédimensionnement :

 $S \simeq \left(\frac{5,6+4,5}{2}\right) \times \left(\frac{3,44+3,44}{2}\right) = 17,37 \text{ m}^2$ $G = 17,37 \times 8,12 + 25(0,25 \times 0,40) \times \left(\frac{5,6+4,5}{2}\right) + 25(0,25 \times 0,30) \times \left(\frac{3,44+3,44}{2}\right) = 160,12 \text{ kN}$ Q = 17,37 kN $N_u = 1,35 \times 160,12 + 1,5 \times 17,37 = 242,22 \text{ kN}$ $a \ge \sqrt{0,66 \times 242,22} + 2 = 14,64 \text{ cm}$

On prend : a = 25 cm

IV.4.2.2. <u>Vérification selon RPA99</u> : b = h = a

 $\begin{cases} Min(b, h) = 25 \text{ cm} \\ Min(b, h) = 25 \text{ cm} > he/20 = 16 \text{ cm} \\ 1/4 < h/b = 1 < 4 \end{cases}$

Les trois conditions sont vérifiées

IV.4.2.3. Vérification de flambement :

$$i = \sqrt{\frac{25^4/12}{25 \times 25}} = 7,22 \text{ cm}$$

$$\lambda = \frac{L_f}{i} = \frac{0.7 \times 360}{7.22} = 34,90$$

 $\lambda = 34,90 < 50 \implies$ Il n'y a pas risque de flambement

> On choisit un poteau de $a \times a = 25 \times 25 \text{ cm}^2$

IV.5.1.Les poutres :

IV.5.1.1.<u>Les poutres principales :</u> $L_{max} = 4,85 \text{ m}$

IV.5.1.1.1.Prédimensionnement :

$$32,33 \text{ cm} \le h \le 48,5 \text{ cm}$$

On prend : h = 35 cm

$$10,5 \text{ cm} \le b \le 24,5 \text{ cm}$$

On prend : b = 25 cm (pour une bonne disposition d'armatures)

IV.5.1.1.2. Vérification selon RPA99 :

 $\begin{cases} b = 25 \text{ cm} > 20 \text{ cm} \\ h = 35 \text{ cm} > 30 \text{ cm} \\ h/b = 1,4 < 4 \end{cases}$ Les trois conditions sont vérifiées

On choisit une poutre de b \times h = 25 \times 35 cm²

IV.5.1.2.<u>Les poutres secondaires :</u> L = 4,00 m

IV.5.1.2.1. Prédimensionnement :

26,67 cm $\leq h \leq$ 40 cm

On prend : h = 30 cm

 $9 \text{ cm} \le b \le 21 \text{ cm}$

On prend : b = 25 cm (pour une bonne disposition d'armatures)

IV.5.1.2.2. Vérification selon RPA99 :

 $\begin{cases} b = 25 \text{ cm} > 20 \text{ cm} \\ h = 30 \text{ cm} > 30 \text{ cm} \\ h/b = 1,2 < 4 \end{cases}$ Les trois conditions sont vérifiées

On choisit une poutre de b \times h = 25 \times 30 cm²

IV.5.2.<u>Les poteaux :</u>

 $h = 3,6 \text{ m} \implies h_e = 3,6 - 0,35 = 3,25 \text{ m}$

IV.5.2.1. Prédimensionnement :

 $S = \left(\frac{4,85+4}{2}\right) \times \left(\frac{3,5+4}{2}\right) = 16,59 \text{ m}^2$ $G = 16,59 \times 8,12 + 25(0,25 \times 0,35) \times \left(\frac{4,85+4}{2}\right) + 25(0,25 \times 0,30) \times \left(\frac{3,5+4}{2}\right) = 151,42 \text{ kN}$ Q = 16,59 kN $N_u = 1,35 \times 151,42 + 1,5 \times 16,59 = 229,30 \text{ kN}$ $a \ge \sqrt{0,66 \times 229,30} + 2 = 14,30 \text{ cm}$ On prend : a = 25 cm

IV.5.2.2. <u>Vérification selon RPA99</u> : b = h = a

 $\begin{cases} Min(b,h) = 25 \text{ cm} \\ Min(b,h) = 25 \text{ cm} > he/20 = 16,25 \text{ cm} \\ 1/4 < h/b = 1 < 4 \end{cases}$ Les trois conditions sont vérifiées

IV.5.2.3. Vérification de flambement :

$$i = \sqrt{\frac{25^4/12}{25 \times 25}} = 7,22 \text{ cm}$$

 $\lambda = \frac{L_f}{i} = \frac{0.7 \times 360}{7.22} = 34,90$ $\lambda = 34,90 < 50 \implies \text{II n'y a pas risque de flambement}$ $\blacktriangleright \text{ On choisit un poteau de a × a = 25 × 25 cm^2}$

CHAPITRE V:

Etude sismique
V.1.Introduction:

Si la survenance des séismes est encore, pour une grande part, un phénomène imprévisible, on ne considère plus, depuis quelques années, comme une inéluctable fatalité, les catastrophes (destruction des ouvrages, nombreuses pertes de vies humaines) qu'ils sont susceptibles de provoquer. De ce fait, le comportement des constructions, sous action dynamique, est devenu un chapitre de théorie des structures qu'aucun Ingénieur de génie civil ne peut ignorer.

D'une manière générale, il existe plusieurs méthodes pour considérer l'effet dynamique sismique dans un calcul structural, nous utilisons dans notre cas d'étude la méthode dynamique modale spectrale.

V.2. Méthode dynamique modale spectrale :

V.2.1.Le Principe :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

V.2.2. Spectre de réponse de calcul :

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_{a}}{g} = \begin{cases} 1,25A\left(1+\frac{T}{T_{1}}\left(2,5\eta\frac{Q}{R}-1\right)\right) & 0 \le T \le T_{1} \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right) & T_{1} \le T \le T_{2} \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right)\left(\frac{T_{2}}{T}\right)^{2/3} & T_{2} \le T \le 3,0s \\ 2,5\eta(1,25A)\left(\frac{T_{2}}{3}\right)^{2/3}\left(\frac{3}{T}\right)^{5/3}\left(\frac{Q}{R}\right) & T > 3,0s \end{cases}$$
(équation 4.13 P34 RPA99V2003)

V.2.3. Détermination des paramètres du spectre de réponse de calcul :

Selon le RPA99V2003, les paramètres du spectre sont donnés par les valeurs suivantes :

V.2.3.1. Coefficient d'accélération de zone A :

Donné suivant la zone sismique et le groupe d'usage de la structure :

$$\begin{cases} \text{zone sismique: } \square a \\ \text{groupe d'usage: } 1B \end{cases} \implies A = 0,20 \quad (\text{Tab4.1 P26 RPA99V2003}) \end{cases}$$

V.2.3.2. Coefficient de comportement global de la structure R :

Donnée en fonction du système de contreventement. (Tab4.3 P28 RPA99V2003)

Béton armé :

Portiques auto stables avec remplissages en maçonnerie rigide \Rightarrow R = 3,5

Chapitre V

> Acier :

Ossature contreventée par palées triangulées en V \implies R = 3

V.2.3.3. Le pourcentage d'amortissement critique ξ :

Donnée en fonction du matériau constitutif, du type de structure des remplissages :

(Tab4.2 P26 RPA99V2003)

- \succ Acier dense ⇒ ξ = 5%
- ➢ Béton armé dense ⇒ ξ = 7%

V.2.3.4. Facteur de correction d'amortissement η :

Donnée par formule suivante :

 $\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7$ (équation 4.3 P34 RPA99V2003)

- Structure en acier (dense) : $\xi = 5\% \implies \eta = 1 > 0,7$
- > Structure en béton armée dense : $\xi = 7\% \implies \eta = 0.88 > 0.7$

V.2.3.5. <u>Périodes T_1 , T_2 du site :</u>

Donné suivant la catégorie de site.

Catégorie S₃(site meuble) $\Rightarrow \begin{cases} T_1 = 0.15 \text{ s} \\ T_2 = 0.50 \text{ s} \end{cases}$ (Tab4.7 P34 RPA99V2003)

V.2.3.6. Facteur de qualité Q :

Déterminée par la formule suivante :

 $Q = 1 + \sum_{1}^{6} P_q$ (équation 4.4 P29 RPA99V2003)

Avec :

 P_q : la pénalité à retenir selon que le critère de qualité $\ll q \gg$.

> Les critères de qualités $\ll q \gg$:

Tableau. V.1 : valeurs des pénalités P_q.

Critère (a >>	Acier		Béton armé		
Chicles q //	Observation	Pq	Observation	Pq	
Conditions minimales sur les files de contreventement.	Non observé	0,05	Non observé	0,05	
Redondance en plan.	Non observé	0,05	Non observé	0,05	
Régularité en plan.	Non observé	0,05	Non observé	0,05	
Régularité en élévation.	Observé	0	Non observé	0,05	
Contrôle de la qualité des matériaux.	Observé	0	Observé	0	
Contrôle de la qualité de l'exécution.	Non observé 0,10		Non observé	0,10	
	$\sum_{1}^{6} P_{q} = 0$,25	$_{1}^{6}P_{q} = 0$,30	

Donc :

Le facteur de qualité : $\begin{cases} Q = 1,25 & (acier) \\ Q = 1,30 & (béton armé) \end{cases}$

V.3. Etapes de modélisation de la structure :

V.3.1. Etapes de la modélisation de la structure :

- Opter pour un système d'unités (kN et m).
- Définition de la géométrie de base.
- Définition des matériaux.
- Définition des sections.
- > Affecter à chaque élément les sections déjà prédéfinies.
- Définition des charges à appliquées.
- Introduction du spectre de réponse.
- Définition des combinaisons de charges.
- Définition des conditions aux limites.
- Lancer l'analyse.

V.3.2. Spectre de réponse :

Le spectre est caractérisé par les donnes suivantes :

Figure V. 1 : Spectre de réponse des blocs en béton armé.

Figure V. 2 : Spectre de réponse de bloc en CM.

V.4. Vérification de la structure :

V.4.1.<u>Bloc A :</u>

Les éléments constituant la structure :

Tableau	V.2 : Eléments	constituant la	structure A.
---------	----------------	----------------	--------------

Elément de la structure	Sections			
Poutre principale	25 × 35			
Poutre secondaire	25 × 30			
Poteau carré	25 × 25			
Poteau circulaire	D = 30			

V.4.1.1.<u>Analyse modale de la structure :</u>

L'analyse modale de la structure du bloc A, a montré des résultats très satisfaisants avec des taux de participation massique de 100% dès le mode 5.

Modes		Période	UX	UY	SumUX	SumUY
		Sec	%	%	%	%
Mode	1	0,426	73%	0%	73%	0%
Mode	2	0,413	0%	77%	73%	77%
Mode	3	0,304	0%	9%	73%	86%
Mode	4	0,282	27%	0%	100%	86%
Mode	5	0,260	0%	14%	100%	100%

Tableau V.3 : Participation massique de bloc A.

Figure V. 3 : Modes fondamentaux du bloc A.

Chapitre V

V.4.1.2. Vérification de la force sismique à la base :

La résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par formule empirique appropriée.

 $V_{t} > 80\% V$

La force sismique totale V est donnée par la formule suivante :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec :

D : facteur d'amplification dynamique moyen.

$$D = \begin{cases} 2,5\eta & 0 \le T \le T_2 \\ 2,5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0s \\ 2,5\eta \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 3,0s \end{cases}$$
(équation 4.2 P26 RPA99V2003)

La période choisie pour le calcul du facteur D est :

$(T_{\text{analytique}} \leq T_{\text{empirique}})$	\Rightarrow T = T _{analytique}
$T_{empirique} < T_{analytique} < 1,3 T_{empirique}$	\Rightarrow T = T _{empirique}
$(T_{analytique} \ge 1.3 T_{empirique})$	\Rightarrow T = 1,3 T _{empirique}

La période empirique est donnée par la formule suivante :

$$T_{empirique} = C_T \times h_N^{3/4}$$

Avec :

h_N : hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (N).

 $h_{\rm N} = 8,81 \, {\rm m}$

 C_T : coefficient donnée en fonction du système de contreventement et du type de remplissage. (Tab4.6 P31 RPA99V2003)

 $C_T = 0.05$ (Portique auto stables en béton armé avec remplissages en maçonnerie)

 \Rightarrow T_{empirique} = 0,256s \Rightarrow 1,3 T_{empirique} = 0,333s

La période analytique obtenu par le logiciel SAP2000V14 : $T_{analytique} = 0,426s$

 $T_{analytique} = 0,426s > 1,3 T_{empirique} = 0,333s$

Donc : $T = 1,3 T_{empirique} = 0,333s$

➢ W : poids total de la structure.

 $W = \sum_{i=1}^{n} W_i$ avec $W_i = W_{Gi} + \beta W_{Qi}$ (équation 4.5 P30 RPA99V2003)

 β : coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation (Tab4.5 P30 RPA99V2003)

 $\beta = 0,30$ (Salles de sport)

Le poids total obtenu par le logiciel SAP2000V14 : W = 2536,04 kN

Les résultats obtenus sont récapitulés dans les tableaux suivants :

Tableau V.4 : Résultat des forces sismiques à la base de bloc A.

η	T(s)	T ₂ (s)	D	А	Q	R	W(kN)	V(kN)
0,88	0,333	0,50	2,2	0,20	1,30	3,5	2536,04	414,46

Tableau V.5 : Vérification de la force sismique à la base de bloc A.

	V _t (kN)	V(kN)	80%V(kN)	$V_{t} > 80\% V$
Sens X	396,28	414.46	331.57	Vérifiée
Sens Y	405,47		,-	Vérifiée

V.4.1.3. Vérification des déplacements :

Le déplacement horizontal à chaque niveau (k) de la structure est calculé comme suit :

 $\delta_{k} = R \times \delta_{ek}$ (équation 4.19 P37 RPA99V2003)

Avec :

 δ_{ek} : déplacement dû aux forces sismiques.

Les déplacements latéraux ne doivent pas dépasser 1,0% de la hauteur de l'étage.

 $\Delta_k \leq 1\% h_k$

Avec :

 $\Delta_{\rm k} = \delta_{\rm k} - \delta_{\rm k-1}$

Les résultats sont présentés sur le tableau suivant :

Tableau V.6 : Résultat du déplacement de bloc A.

	Niveau(m)	Hauteur(cm)	$\delta_{\rm ek}({ m cm})$	R	$\delta_{\rm k}({\rm cm})$	$\Delta_k(cm)$	1%h _k (cm)	$\Delta_k \le 1\%h_k$
Sens X	+8.81	254	1,94	3,5	6,79	1,89	2.54	Vérifiée
Sens Y	1 0,0 1		1,73	3,5	6,06	1,51	_,;; -	Vérifiée
Sens X	+6,27	267	1,40	3,5	4,90	2,97	2,67	Pas vérifiée
Sens Y			1,30	3,5	4,55	2,38	2,07	Vérifiée
Sens X	+3.60	360	0,55	3,5	1,93	1,93	3,60	Vérifiée
Sens Y	,		0,62	3,5	2,17	2,17		Vérifiée

Figure V. 4 : déplacement de la structure A suivant les directions XX et YY.

On doit augmenter les sections des poteaux :

- Poteaux carrés : 40×40 .
- Poteaux circulaires : D = 45 cm.

Analyse modale de la structure :

Le taux de participation massique atteint les 90% au 5^{éme} mode.

Modes		Période	UX	UY	SumUX	SumUY
		Sec	%	%	%	%
Mode	1	0,253	49%	0%	49%	0%
Mode	2	0,238	0%	56%	49%	56%
Mode	3	0,162	0%	1%	49%	57%
Mode	4	0,151	51%	0%	100%	57%
Mode	5	0,149	0%	35%	100%	92%

Tableau V.7 : Participation massique de bloc A après modification.

Figure V. 5 : Modes fondamentaux du bloc A après modification.

Vérification de la force sismique à la base :

La période choisie pour le calcul du facteur D est :

La période empirique est donnée par la formule suivante :

$$T_{empirique} = C_T \times h_N^{3/4}$$

La période analytique obtenu par le logiciel SAP2000V14 : $T_{analytique} = 0,253s$

 $T_{analytique} = 0,253s < T_{empirique} = 0,256s$

 $Donc: T = T_{analytique} = 0,253s$

Les résultats obtenus sont récapitulés dans les tableaux suivants :

Tableau V.8 : Résultat des forces sismiques à la base de bloc A après modification.

η	T(s)	T ₂ (s)	D	А	Q	R	W(kN)	V(kN)
0,88	0,253	0,50	2,2	0,20	1,30	3,5	2820,65	460,97

Tableau V.9 : Vérification de la force sismique à la base de bloc A après modification.

	V _t (kN)	V(kN)	80%V(kN)	$V_{t} > 80\% V$
Sens X	384,99	460,97	368,78	Vérifiée
Sens Y	377,19			Vérifiée

Vérification des déplacements :

Les résultats sont présentés sur le tableau suivant :

Tableau V.10 : Résultat du déplacement de bloc A après modification.

	Niveau(m)	Hauteur(cm)	$\delta_{\rm ek}({\rm cm})$	R	$\delta_{\rm k}({\rm cm})$	$\Delta_k(cm)$	1%h _k (cm)	$\Delta_k {\leq 1\% h_k}$
Sens X	+8.81	254	0,67	3,5	2,35	0,91	2.54	Vérifiée
Sens Y			0,60	3,5	2,10	0,77		Vérifiée
Sens X	+6,27	267	0,41	3,5	1,44	0,98	2,67	Vérifiée
Sens Y			0,38	3,5	1,33	0,87		Vérifiée
Sens X	+3,60	360	0,13	3,5	0,46	0,46	3,60	Vérifiée
Sens Y			0,13	3,5	0,46	0,46		Vérifiée

Chapitre V

Figure V. 6 : déplacement de la structure A suivant les directions XX et YY après modification.

V.4.2.<u>Bloc B :</u>

Les éléments constituant la structure :

Elément de la structure	Sections
Poutre principale	25 × 35
Poutre secondaire	25 × 30
Poteaux	40×40

V.4.2.1.<u>Analyse modale de la structure :</u>

L'analyse modale de la structure du bloc B, a montré des résultats très satisfaisants avec des taux de participation massique de 100% dès le mode 2.

Modes		Période	UX	UY	SumUX	SumUY
Modes		Sec	%	%	%	%
Mode	1	0,188	50%	50%	50%	50%
Mode	2	0,182	50%	50%	100%	100%

Tableau V.12 : Participation massique de bloc B.

Figure V.7: Modes fondamentaux du bloc B.

V.4.2.2. Vérification de la force sismique à la base :

La période choisie pour le calcul du facteur D est :
 La période empirique est donnée par la formule suivante :

$$T_{empirique} = C_T \times h_N^{3/4}$$

 $h_{\rm N} = 3,60 \text{ m}$

 $C_T = 0.05$ (Portique auto stables en béton armé avec remplissages en maçonnerie)

 \Rightarrow T_{empirique} = 0,131s \Rightarrow 1,3 T_{empirique} = 0,170s

La période analytique obtenu par le logiciel SAP2000V14 : $T_{analytique} = 0,188s$

 $T_{analytique} = 0,188s > 1,3 T_{empirique} = 0,170s$

Donc : $T = 1,3 T_{empirique} = 0,170s$

Les résultats obtenus sont récapitulés dans les tableaux suivants :

η	T(s)	T ₂ (s)	D	А	Q	R	W(kN)	V(kN)
0,88	0,170	0,50	2,2	0,20	1,30	3,5	895,75	146,39

Tableau V.13 : Résultat des forces sismiques à la base de bloc B.

Tableau V.14 : Vérification de la force sismique à la base de bloc B.

	V _t (kN)	V(kN)	80%V(kN)	$V_{t} > 80\% V$
Sens X	166,48	146,39	117,11	Vérifiée
Sens Y	166,49			Vérifiée

V.4.2.3. Vérification des déplacements :

Les résultats sont présentés sur le tableau suivant :

loc B.
loc E

	Hauteur(cm)	$\delta_{\rm ek}({ m cm})$	R	$\delta_{\rm k}({ m cm})$	$\Delta_k(cm)$	1%h _k (cm)	$\Delta_k {\leq 1\% h_k}$
Sens X	360	0,17	3,5	0,60	0,60	3.60	Vérifiée
Sens Y		0,17	3,5	0,60	0,60		Vérifiée

Figure V. 8 : déplacement de la structure B suivant les directions XX et YY.

V.4.3.<u>Bloc C :</u>

Les éléments constituant la structure :

TableauV.16 : Eléments constituant	la	structure C.
------------------------------------	----	--------------

Elément de la structure	Sections
Poutre principale	25 × 35
Poutre secondaire	25 × 30
Poteaux	40×40

V.4.3.1. Analyse modale de la structure :

L'analyse modale de la structure du bloc C, a montré des résultats très satisfaisants avec des taux de participation massique de 100% dès le mode 2.

Modes		Période	UX	UY	SumUX	SumUY
		Sec	%	%	%	%
Mode	1	0,191	0%	100%	0%	100%
Mode	2	0,186	100%	0%	100%	100%

Tableau V.17 : Participation massique de bloc C.

Figure V.9: Modes fondamentaux du bloc C.

V.4.3.2. Vérification de la force sismique à la base :

➢ La période choisie pour le calcul du facteur D est :

La période empirique est donnée par la formule suivante :

$$T_{empirique} = C_T \times h_N^{3/4}$$

 $h_{\rm N} = 3,60 \ {\rm m}$

 $C_T = 0.05$ (Portique auto stables en béton armé avec remplissages en maçonnerie)

 \Rightarrow T_{empirique} = 0,131s \Rightarrow 1,3 T_{empirique} = 0,170s

La période analytique obtenu par le logiciel SAP2000V14 : $T_{analytique} = 0,191s$

 $T_{analytique} = 0,191s > 1,3 T_{empirique} = 0,170s$

Donc : $T = 1,3 T_{empirique} = 0,170s$

Les résultats obtenus sont récapitulés dans les tableaux suivants :

Tableau V.18 : Résultat des forces sismiques à la base de bloc C.

η	T(s)	T ₂ (s)	D	А	Q	R	W(kN)	V(kN)
0,88	0,170	0,50	2,2	0,20	1,30	3,5	3349,43	547,39

Tableau V.19 : Vérification de la force sismique à la base de bloc C.

	V _t (kN)	V(kN)	80%V(kN)	$V_{t} > 80\% V$
Sens X	641,11	547,39	437,91	Vérifiée
Sens Y	640,84	,	,	Vérifiée

V.4.3.3. Vérification des déplacements :

Les résultats sont présentés sur le tableau suivant :

	Hauteur(cm)	$\delta_{\rm ek}({ m cm})$	R	$\delta_{\rm k}({ m cm})$	$\Delta_k(cm)$	1%h _k (cm)	$\Delta_k {\leq 1\% h_k}$
Sens X	360	0,18	3,5	0,63	0,63	3.60	Vérifiée
Sens Y		0,18	3,5	0,63	0,63	,	Vérifiée

Tableau V.20 : Résultat du déplacement de bloc C.

V.4.4.<u>Bloc CM :</u>

Les éléments constituant la structure :

Elément de la structure	Sections
Poteaux	IPE600
Traverses (toiture)	IPE500
Potelets	IPE400
Pannes (toiture)	IPE120
Palée / Sablière	HEA120
Contreventement	L70 × 7
Palée de stabilité	$2L70 \times 7/10$
Gradin :	
Poteaux de rive	50×80
Poteaux intermédiaires	40 imes 40
Poutre	45×50

V.4.4.1.<u>Analyse modale de la structure :</u>

Le taux de participation massique atteint les 90% au 29^{éme} mode.

Ма	1	Période	UX	UY	SumUX	SumUY
IVIO	des	Sec	%	%	%	%
Mode	1	0,956	3%	0%	3%	0%
Mode	2	0,892	2%	0%	5%	0%
Mode	3	0,646	1%	0%	6%	0%
Mode	4	0,646	0%	0%	6%	0%
Mode	5	0,636	0%	0%	6%	0%
Mode	6	0,630	0%	0%	6%	0%
Mode	7	0,630	0%	0%	6%	0%
Mode	8	0,601	0%	1%	7%	1%
Mode	9	0,554	0%	10%	7%	11%
Mode	10	0,517	0%	0%	7%	11%
Mode	11	0,374	0%	0%	7%	11%
Mode	12	0,310	0%	0%	7%	11%
Mode	13	0,277	6%	0%	13%	11%
Mode	14	0,273	0%	0%	13%	11%
Mode	15	0,269	1%	0%	14%	11%
Mode	16	0,268	0%	0%	14%	11%
Mode	17	0,267	0%	0%	14%	11%
Mode	18	0,266	0%	0%	14%	11%
Mode	19	0,256	0%	0%	14%	11%
Mode	20	0,255	0%	1%	14%	12%
Mode	21	0,249	0%	9%	14%	21%
Mode	22	0,222	2%	0%	16%	21%
Mode	23	0,212	0%	0%	16%	21%
Mode	24	0,207	0%	0%	16%	21%
Mode	25	0,197	1%	1%	17%	23%
Mode	26	0,190	7%	54%	24%	76%
Mode	27	0,187	67%	5%	91%	82%
Mode	28	0,172	0%	2%	91%	83%
Mode	29	0,164	0%	9%	91%	92%

Tableau V.22 : Participation massique de bloc CM.

Figure V. 11 : Modes fondamentaux du bloc CM.

V.4.4.2. <u>Vérification de la force sismique à la base :</u>

➢ La période choisie pour le calcul du facteur D est :

La période empirique est donnée par la formule suivante :

$$T_{empirique} = C_T \times h_N^{3/4}$$

 $h_{\rm N} = 11,42 \ {\rm m}$

 $C_T = 0.05$ (Contreventement assuré par des palées triangulées)

 \Rightarrow T_{empirique} = 0,311s \Rightarrow 1,3 T_{empirique} = 0,404s

La période analytique obtenu par le logiciel SAP2000V14 : $T_{analytique} = 0,956s$

 $T_{analytique} = 0.956s > 1.3 T_{empirique} = 0.404s$

Donc : $T = 1,3 T_{empirique} = 0,404s$

Les résultats obtenus sont récapitulés dans les tableaux suivants :

Tableau V.23 : Résultat des forces sismiques à la base de bloc CM.

η	T(s)	T ₂ (s)	D	А	Q	R	W(kN)	V(kN)
1,00	0,404	0,50	2,5	0,20	1,25	3,0	6850,85	1427,26

Tableau V.24 : Vérification de la force sismique à la base de bloc CM.

	V _t (kN)	V(kN)	80%V(kN)	$V_{t} > 80\% V$
Sens X	1234,81	1427 26	1141,81	Vérifiée
Sens Y	1118,16			Pas vérifiée

Si : $V_t < 80\%V$ (sens Y), il faudra augmenter les paramètres de la réponse dans le rapport :0,8V/ $V_t = 1141,81/1118,16 = 1,02$.

Donc :

 $V_{ty} = 1234,54 \text{ kN} > 80\%V = 1141,81 \text{ kN}$ Vérifiée

V.4.4.3. Vérification des déplacements :

Les résultats sont présentés sur le tableau suivant :

Tableau V.25 : Résultat du déplacement de bloc CM.

	Hauteur(cm)	$\delta_{\rm ek}({\rm cm})$	R	$\delta_{\rm k}({\rm cm})$	$\Delta_k(cm)$	1%h _k (cm)	$\Delta_k \le 1\%h_k$
Sens X	941	3,98	3,0	11,94	11,94	Q <i>1</i> ,1	Pas vérifiée
Sens Y	711	0,72	3,0	2,16	2,16	9,11	Vérifiée

Figure V. 12 : déplacement de la structure CM suivant les directions XX et YY.

Chapitre V

On doit ajouter les poutres au vent pour que la structure vérifier la condition du déplacement limite de 1% :

Analyse modale de la structure :

Le taux de participation massique atteint les 90% au 27^{éme} mode.

Tableau	V.26:	Participation	massique de	e bloc CM après	modification
---------	-------	---------------	-------------	-----------------	--------------

	Modes	Période	UX	UY	SumUX	SumUY
	Modes	Sec	%	%	%	%
Mode	1	0,646	1%	0%	1%	0%
Mode	2	0,646	0%	0%	1%	0%
Mode	3	0,630	0%	0%	1%	0%
Mode	4	0,630	0%	0%	1%	0%
Mode	5	0,599	0%	0%	1%	0%
Mode	6	0,580	3%	2%	4%	2%
Mode	7	0,518	0%	0%	4%	2%
Mode	8	0,413	1%	11%	5%	13%
Mode	9	0,337	4%	0%	9%	13%
Mode	10	0,297	3%	1%	12%	14%
Mode	11	0,276	4%	0%	16%	15%
Mode	12	0,276	0%	2%	16%	16%
Mode	13	0,273	0%	0%	16%	16%
Mode	14	0,269	1%	0%	17%	16%
Mode	15	0,267	0%	0%	17%	16%
Mode	16	0,266	0%	0%	17%	16%
Mode	17	0,256	0%	0%	17%	16%
Mode	18	0,256	0%	1%	17%	17%
Mode	19	0,254	0%	0%	17%	18%
Mode	20	0,229	1%	6%	19%	24%
Mode	21	0,221	2%	0%	21%	24%
Mode	22	0,208	0%	0%	21%	24%
Mode	23	0,197	3%	0%	24%	24%

Chapitre V

Etude sismique

Mode	24	0,193	1%	2%	25%	26%
Mode	25	0,188	25%	39%	49%	64%
Mode	26	0,183	41%	23%	90%	87%
Mode	27	0,169	0%	5%	90%	92%

Figure V. 13 : Modes fondamentaux du bloc CM après modification.

Vérification de la force sismique à la base :

La période empirique est donnée par la formule suivante :

$$T_{empirique} = C_T \times h_N^{3/4}$$

 $\begin{bmatrix} c_T = 0.05 \\ h_N = 11,42 \text{ m} \end{bmatrix} \implies T_{\text{empirique}} = 0,311 \text{s} \implies 1,3 T_{\text{empirique}} = 0,404 \text{s}$

La période analytique obtenu par le logiciel SAP2000V14 : $T_{analytique} = 0,646s$

 $T_{analytique} = 0,646s > 1,3 T_{empirique} = 0,404s$

Donc : $T = 1,3 T_{empirique} = 0,404s$

Les résultats obtenus sont récapitulés dans les tableaux suivants :

Tableau V.27 : Résultat des forces sismiques à la base de bloc CM après modification.

η	T(s)	$T_2(s)$	D	А	Q	R	W(kN)	V(kN)
1,00	0,404	0,50	2,5	0,20	1,25	3,0	6854,58	1428,04

Tableau V.28 : Vérification de la force sismique à la base de bloc après modification.

	V _t (kN)	V(kN)	80%V(kN)	$V_{t} > 80\% V$
Sens X	1135,87	1428.04	1142 43	Pas vérifiée
Sens Y	1252,03	1120,01	1112,15	Vérifiée

Si : $V_t < 80\%V$ (sens X), il faudra augmenter les paramètres de la réponse dans le rapport :0,8V/ $V_t = 1142,43/1135,87 = 1,01$.

Donc :

 $V_{tx} = 1252,93 \ \text{kN} > 80\% \text{V} = 1142,43 \ \text{kN} \qquad \text{Vérifiée}$

Vérification des déplacements :

Les résultats sont présentés sur le tableau suivant :

Tableau V.29 : Résultat du déplacement de bloc CM après modification.

	Hauteur(cm)	$\delta_{\rm ek}({\rm cm})$	R	$\delta_{\rm k}({\rm cm})$	$\Delta_k(cm)$	1%h _k (cm)	$\Delta_k \le 1\%h_k$
Sens X	941	1,01	3,0	3,03	3,03	9.41	Vérifiée
Sens Y	, , , , , , , , , , , , , , , , , , , ,	0,95	3,0	2,85	2,85	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Vérifiée

Figure V. 14 : déplacement de la structure CM suivant les directions XX et YY après modification.

V.4.4.4. Vérification de la structure sous le vent :

La valeur limite recommandée de flèche horizontale (flèche de la charge du vent) est donnée par la formule suivante :

 $\delta \le \delta_{Max}$ Avec : $\delta_{Max} = h/125$ (Figure 4.3 P20 CCM_BC244)

Les résultats sont présentés sur le tableau suivant :

		Hauteur(cm)	$\delta_{\max}(cm)$	$\delta(cm)$	$\delta \leq \delta_{\text{Max}}$
V	Sens X			3,34	Vérifiée
v ₁	Sens Y	000	7.04	0,15	Vérifiée
V	Sens X	000	7,04	3,08	Vérifiée
v ₂	Sens Y			0,34	Vérifiée

Tableau V. 30 : Résultat du déplacement de la structure sous le vent.

Figure V. 15 : déplacement de la structure CM sous le vent (V1 et V2).

V.4.5.Justification de la largeur des joints sismiques :

Deux blocs voisins doivent être séparés par des joints sismiques dont la largeur minimale d_{min} satisfait la condition suivante :

 $d_{min} = 15mm + (\delta_1 + \delta_2)mm \ge 40mm \quad (\text{équation}4.19 \text{ P39 RPA99V2003})$

Avec :

 $\delta_1 et \, \delta_2$: déplacements maximaux des deux blocs ;

Figure V.16 : largeur minimum du joint sismique.

Le joint 1 (entre bloc CM et bloc A) :

 $d_{\min} = 15 + (\delta_1 + \delta_2) = 15 + (27 + 23,5) = 65,5 \text{mm} > 40 \text{mm}$

Donc, on choisit : $d_{min} = 100 \text{ mm}$

Le joint 2 (entre bloc CM et bloc B) :

 $d_{\min} = 15 + (\delta_1 + \delta_2) = 15 + (4,1 \times 3 + 6,0) = 33,3 \text{ mm} < 40 \text{ mm}$

Donc, on choisit : $d_{min} = 50 \text{ mm}$

Le joint 3 (entre bloc CM et bloc C) :

 $d_{\min} = 15 + (\delta_1 + \delta_2) = 15 + (4,1 \times 3 + 6,3) = 33,6 \text{ mm} < 40 \text{ mm}$

Donc, on choisit : $d_{min} = 50 \text{ mm}$

Le joint 4 (entre bloc A et bloc B) :

 $d_{\min} = 15 + (\delta_1 + \delta_2) = 15 + (4,6 + 6,0) = 25,6 \text{ mm} < 40 \text{ mm}$

Donc, on choisit : $d_{min} = 50 \text{ mm}$

Le joint 5 (entre bloc B et bloc C) :

 $d_{min} = 15 + (\delta_1 + \delta_2) = 15 + (6,0 + 6,3) = 27,3 \text{ mm} < 40 \text{mm}$

Donc, on choisit : $d_{min} = 50 \text{ mm}$

CHAPITRE VI :

Vérification des éléments structuraux en charpente métallique

Chapitre VI Vérification des éléments structuraux en CM

VI.1.Introduction :

Après avoir fait le prédimensionnement des éléments structuraux dans les précédents chapitres et suivi par la modélisation de la structure en un modèle tridimensionnel « 3D » en utilisant le logiciel Sap2000V14, nous présentons dans ce chapitre les calculs et vérifications de la résistance des différents types d'éléments en sous les cas des sollicitations les plus défavorables, obtenus par le modèle numérique de calcul.

VI.2. Vérification des contreventements :

On choisit une cornière isolée de $L70 \times 70 \times 7$ et on vérifie sa résistance.

7.
2

Profile	Section		Dimension	Caract géomé	éristiques triques	
	A(cm ²)	h = b (mm)	t(mm)	r(mm)	$I_y = I_z$ (cm ⁴)	$i_y = i_z$ (cm)
$L70 \times 70 \times 7$	9,40	70	7	9	42,30	2,12

Section nette :

Une cornière de L70 \times 70 \times 7 Avec boulon de 12 mm et trous de 13 mm convient :

 $A_{net} = 9,40 - 0,7 \times 1,3 = 8,49 \text{ cm}^2$

 $N_{sd} = 111,96 \text{ kN}$ (Obtenue par le logiciel Sap2000V14)

VI.2.1. Vérification de la résistance à la traction :

$$N_{sd} \le N_{t.Rd} = Min\{N_{pl.Rd}; N_{u.Rd}\}$$

Résistance plastique de la section brute :

$$N_{pl.Rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{9,40 \times 275}{1,1} \times 10^{-1} = 235 \text{ kN}$$

Résistance ultime de la section nette :

$$N_{u.Rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 8.49 \times 430}{1.25} \times 10^{-1} = 262.85 \text{ kN}$$

$$\Rightarrow N_{sd} = 111,96 \text{ kN} < N_{t.Rd} = 235 \text{ kN} \quad \Rightarrow \qquad \text{V\acute{e}rifi\acute{e}}$$

VI.2.2. Vérification de la résistance à la compression :

$$N_{sd} \le N_{c.Rd}$$

Vérification au flambement :

$$N_{c.Rd} = N_{b.Rd} = \frac{\chi.\beta_A.A.f_y}{\gamma_{M1}}$$

 $\beta_A = 1.0$ Pour les sections de classe 1 et classe 2.

 $\chi = \min(\chi_y \, ; \chi_z)$

	$l_f(m)$	λ	α	$\bar{\lambda}$	φ	χ	χ	
Suivant Y – Y	6,52	307,55	0,34	3,54 > 0,2	7,33	0,07	0.07	
Suivant Z – Z	6,52	307,55	0,49	3,54 > 0,2	7,58	0,07	0,07	

$$N_{c.Rd} = N_{b.Rd} = \frac{0.07 \times 1 \times 9.40 \times 275}{1.1} \times 10^{-1} = 16,45 \text{ kN}$$

$$\Rightarrow N_{sd} = 111,96 \text{ kN} > N_{c.Rd} = 16,45 \text{ kN} \qquad \Rightarrow \qquad \textbf{Pas vérifiée}$$

On doit augmenter la section : soit $L150 \times 150 \times 15$ et vérifie par l'effort de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $N_{sd} = 146,47 \text{ kN}$ (Obtenue par le logiciel Sap2000V14)

Tableau VI3 : Caractéristiques du profilé $L150 \times 150 \times 5$.

Profile	Section		Dimension	Caract géomé	éristiques triques	
	A(cm ²)	h = b (mm)	t(mm)	r(mm)	$I_y = I_z$ (cm ⁴)	$i_y = i_z$ (cm)
$L150 \times 150 \times 15$	43,02	150	15	16	898,1	4,57

Tableau VI4 : Les coefficients de flambement.

_	$l_f(m)$	λ	α	$\overline{\lambda}$	φ	χ	χ
Suivant Y – Y	6,52	142,67	0,34	1,64 > 0,2	2,09	0,30	0.27
Suivant Z – Z	6,52	142,67	0,49	1,64 > 0,2	2,20	0,27	0,27

$$N_{c.Rd} = N_{b.Rd} = \frac{0.27 \times 1 \times 43.02 \times 275}{1.1} \times 10^{-1} = 290.39 \text{ kN}$$

$$\Rightarrow N_{sd} = 146.47 \text{ kN} < N_{c.Rd} = 290.39 \text{ kN} \implies \text{Vérifiée}$$

VI.2.3. Vérification par le logiciel Sap2000V14:

Tableau VI5 : Vérification de contreventement par le logiciel Sap2000V14.

Frame	DesignSect	Design Type	Status	Ratio	Ratio Type	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
737	L150X15	Brace	No Messages	38%	PMM	ELU
737	L150X15	Brace	No Messages	51%	PMM	ELU
737	L150X15	Brace	No Messages	38%	PMM	ELU
737	L150X15	Brace	No Messages	33%	PMM	ACC (Combs-général)
737	L150X15	Brace	No Messages	43%	PMM	ACC (Combs-général)
737	L150X15	Brace	No Messages	33%	PMM	ACC (Combs-général)
737	L150X15	Brace	No Messages	55%	PMM	ACC (Combs-stabilité)
737	L150X15	Brace	No Messages	65%	PMM	ACC (Combs-stabilité)
737	L150X15	Brace	No Messages	55%	РММ	ACC (Combs-stabilité)

VI.3. Vérification des palées de stabilité :

On choisit une double cornière de $2L70 \times 70 \times 7/10$ et on vérifie sa résistance.

 $N_{sd} = 153,55 \text{ kN}$ (Obtenue par le logiciel Sap2000V14)

Section nette :

Une cornière de $2L70 \times 70 \times 7/10$ Avec boulon de 12 mm et trous de 13 mm convient :

 $A_{net} = 9,40 \times 2 - 2 \times 0,7 \times 1,3 = 16,98 \text{ cm}^2$

VI.3.1. Vérification de la résistance à la traction :

$$N_{sd} \le N_{t.Rd} = Min\{N_{pl.Rd} ; N_{u.Rd}\}$$

Résistance plastique de la section brute :

 $N_{pl.Rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{9,40 \times 2 \times 275}{1,1} \times 10^{-1} = 470 \text{ kN}$

Résistance ultime de la section nette :

$$\begin{split} N_{u.Rd} &= \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 16.98 \times 430}{1.25} \times 10^{-1} = 525,70 \text{ kN} \\ \implies N_{sd} &= 153,55 \text{ kN} < N_{t.Rd} = 470 \text{ kN} \implies \text{Vérifiée} \end{split}$$

VI.3.2. Vérification de la résistance à la compression :

 $N_{sd} \leq N_{c.Rd}$

Vérification au flambement :

$$N_{c.Rd} = N_{b.Rd} = \frac{\chi \cdot \beta_{A} \cdot A \cdot f_{y}}{\gamma_{M1}}$$

 $\beta_A = 1.0$ Pour les sections de classe 1 et classe 2.

 $\chi = \min(\chi_y; \chi_z)$

Tableau VI6 : Les d	coefficients de	flambement.
---------------------	-----------------	-------------

	$l_f(m)$	λ	α	$\bar{\lambda}$	φ	χ	Xmin
Suivant Y – Y	3.69	174,06	0,34	2,01 > 0,2	2,83	0,21	0 1 9
Suivant Z – Z	3.69	174,06	0,49	2,01 > 0,2	2,96	0,19	0,19

$$N_{c.Rd} = N_{b.Rd} = \frac{0.19 \times 1 \times 9.40 \times 2 \times 275}{1.1} \times 10^{-1} = 89.3 \text{ kN}$$

 $\Rightarrow N_{sd} = 153,55 \text{ kN} > N_{c.Rd} = 89.3 \text{ kN} \Rightarrow Pas vérifiée$

On doit augmenter la section : soit $2L90 \times 90 \times 9/10$ et vérifie par l'effort de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $N_{sd} = 184,74 \text{ kN}$ (Obtenue par le logiciel Sap2000V14)

Tableau VI7 : Caractéristiques du profilé L90 × 90 × 9.

Profile	Section		Dimension	Caract géomé	éristiques triques	
	A(cm ²)	h = b (mm)	t(mm)	r(mm)	$I_y = I_z$ (cm ⁴)	$i_y = i_z$ (cm)
$L90 \times 90 \times 9/10$	15,5	90	9	11	115,8	2,73

Tableau VI8 : Les coefficients de flambement.

	$l_f(m)$	λ	α	$\bar{\lambda}$	φ	χ	Xmin
Suivant Y – Y	3.69	135,16	0,34	1,56 > 0,2	1,95	0,32	030
Suivant Z – Z	3.69	135,16	0,49	1,56 > 0,2	2,05	0,30	0,50

$$N_{c.Rd} = N_{b.Rd} = \frac{0.30 \times 1 \times 15,52 \times 2 \times 275}{1,1} \times 10^{-1} = 232,80 \text{ kN}$$

$$\implies N_{sd} = 184,74 \text{ kN} < N_{c.Rd} = 232,80 \text{ kN} \implies \text{Vérifiée}$$

VI.3.3. Vérification par le logiciel Sap2000V14:

Tableau VI9 : Vérification de Palée de stabilité par le logiciel Sap2000V14.

Frame	DesignSect	DesignType	Status	Ratio	Ratio Type	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
127	2L90X9/10/	Brace	No Messages	83%	PMM	ELU
127	2L90X9/10/	Brace	No Messages	72%	PMM	ELU
127	2L90X9/10/	Brace	No Messages	79%	PMM	ELU
127	2L90X9/10/	Brace	No Messages	69%	PMM	ACC (Combs-général)
127	2L90X9/10/	Brace	No Messages	63%	PMM	ACC (Combs-général)
127	2L90X9/10/	Brace	No Messages	66%	PMM	ACC (Combs-général)
127	2L90X9/10/	Brace	No Messages	77%	PMM	ACC (Combs-stabilité)
127	2L90X9/10/	Brace	No Messages	69%	PMM	ACC (Combs-stabilité)
127	2L90X9/10/	Brace	No Messages	74%	PMM	ACC (Combs-stabilité)

VI.4.Les pannes :

Nous avons introduit le profile IPE120 calculé manuellement dans le chapitre III et on vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

$M_{y.sd} = 5,26 \text{ kN. m}$; $M_{z.sd} = 0,11 \text{ kN. m}$
$V_{y.sd} = 0,45 \text{ kN}$; $V_{z.sd} = 4,89 \text{ kN}$

VI.4.1. Vérification à la flexion :

$$\left(\frac{M_{y.Sd}}{M_{ply.Rd}}\right)^{\alpha} + \left(\frac{M_{z.Sd}}{M_{plz.Rd}}\right)^{\beta} \le 1.0$$

 $M_{ply.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{60,73 \times 275}{1,1} \times 10^{-3} = 15,18 \text{ kN. m}$

$$M_{plz.Rd} = \frac{W_{plz} f_y}{\gamma_{M1}} = \frac{13,58 \times 275}{1,1} \times 10^{-3} = 3,40 \text{ kN.m}$$

$$\left(\frac{5,26}{15,18}\right)^2 + \left(\frac{0,11}{3,40}\right)^1 = 0,15 < 1.0 \implies$$
Vérifiée

VI.4.2. Vérification au cisaillement :

$V_{\text{plz.Rd}} = \frac{A_{\text{vz}}(f_{\text{y}}/\sqrt{3})}{\gamma_{\text{M0}}} = \frac{6.31 \times (275/\sqrt{3})}{1.1} \times 10^{-1} = 91,08 \text{ kN}$
$V_{\text{ply.Rd}} = \frac{A_{\text{vy}}(f_y/\sqrt{3})}{\gamma_{\text{M0}}} = \frac{8.6 \times (275/\sqrt{3})}{1.1} \times 10^{-1} = 124,13 \text{ kN}$
$V_{z.Sd} = 4,89 \text{ kN} < V_{plz.Rd} = 91,08 \text{ kN} \implies $ Vérifiée
$V_{y.Sd} = 0,45 \text{ kN} < V_{ply.Rd} = 124,13 \text{ kN} \Longrightarrow$ Vérifiée

VI.4.3. Vérification au déversement :

 $M_{y.Sd} \le M_{b.Rd}$

 $M_{b.Rd} = 8,62 \text{ kN. m}$ (Chapitre \square)

 $M_{y.Sd} = 5,26 \text{ kN}. \text{ m} < M_{b.Rd} = 8,62 \text{ kN}. \text{ m} \implies \text{Vérifiée}$

VI.4.4. <u>Vérification par le logiciel Sap2000V14:</u>

Tableau VI10 : Vérification de panne par le logiciel Sap2000V14.

Frame	DesignSect	DesignType	Status	Ratio	Ratio Type	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
437	IPE120	Beam	No Messages	6%	Major Shear	ELU
437	IPE120	Beam	No Messages	37%	PMM	ELU
437	IPE120	Beam	No Messages	65%	PMM	ELU
437	IPE120	Beam	No Messages	84%	PMM	ELU
437	IPE120	Beam	No Messages	93%	PMM	ELU
437	IPE120	Beam	No Messages	93%	PMM	ELU
437	IPE120	Beam	No Messages	84%	PMM	ELU
437	IPE120	Beam	No Messages	65%	PMM	ELU
437	IPE120	Beam	No Messages	37%	PMM	ELU
437	IPE120	Beam	No Messages	6%	Major Shear	ELU
437	IPE120	Beam	No Messages	2%	Major Shear	ACC (Combs-général)
437	IPE120	Beam	No Messages	17%	PMM	ACC (Combs-général)
437	IPE120	Beam	No Messages	36%	PMM	ACC (Combs-général)
437	IPE120	Beam	No Messages	46%	PMM	ACC (Combs-général)
437	IPE120	Beam	No Messages	51%	PMM	ACC (Combs-général)

Chapi	tre VI	Vérific	ation des	éléme	nts structu	iraux en CM
437	IPE120	Beam	No Messages	51%	РММ	ACC (Combs-général)
437	IPE120	Beam	No Messages	46%	PMM	ACC (Combs-général)
437	IPE120	Beam	No Messages	36%	PMM	ACC (Combs-général)
437	IPE120	Beam	No Messages	17%	PMM	ACC (Combs-général)
437	IPE120	Beam	No Messages	2%	Major Shear	ACC (Combs-général)

VI.5.Les potelets :

Nous avons introduit le profile IPE400 calculé manuellement dans le chapitre III et on vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $\begin{cases} M_{y.sd}^{max} = 59,76 \text{ kN. m} & N_{sd}^{corr} = 4,97 \text{ kN} \\ N_{sd}^{max} = 10,02 \text{ kN} & M_{y.sd}^{corr} = 0 \text{ kN. m} \\ V_{sd} = 21,56 \text{ kN} \end{cases}$

$$\begin{aligned} \text{VI.5.1.} \underbrace{\text{V\acute{e}rification de l'effort axial :}}_{N_{sd} &\leq \min\{0, 25 \text{ N}_{pl.rd}; \frac{0.5A_{w}.f_{y}}{\gamma_{Mo}}\} \\ \text{N}_{pl.Rd} &= \frac{A \times fy}{\mathbb{B}_{m0}} = \frac{84,46 \times 275}{1,1} \times 10^{-1} = 2111,5 \text{ kN} \implies 0,25 \text{ N}_{pl.Rd} = 527,88 \text{ kN} \\ \text{A}_{w} &= \text{A} - 2\text{b} \times \text{t}_{f} = 84,46 - (2 \times 18 \times 1,35) = 35,86 \text{ cm}^{2} \\ \frac{0,5A_{w}.f_{y}}{\gamma_{M0}} &= 0.5 \times \frac{35,86 \times 275 \times 10^{-1}}{1,1} = 448,25 \text{ KN} \\ \text{N}_{sd}^{corr} &= 4,97 \text{ kN} < \min\left\{\text{N}_{pl.rd}; \frac{0.5A_{w}.f_{y}}{\gamma_{M0}}\right\} = 448,25 \text{ kN} \implies \text{V\acute{e}rifi\acute{e}e} \\ \text{N}_{sd}^{max} &= 10,02 \text{ kN} < \min\left\{\text{N}_{pl.rd}; \frac{0.5A_{w}.f_{y}}{\gamma_{M0}}\right\} = 448,25 \text{ kN} \implies \text{V\acute{e}rifi\acute{e}e} \\ \text{VI.5.2.} \underbrace{\text{V\acute{e}rification de l'effort tranchant :}}_{V_{sd} &\leq 0.5 \times V_{pl.rd} \\ 0,5V_{pl.rd} &= 0,5 \frac{A_{vz}(f_{y}/\sqrt{3})}{\gamma_{M0}} = 0,5 \times \frac{42,69(275/\sqrt{3})}{1,1} \times 10^{-1} = 308,09 \text{ kN} \end{aligned}$$

$$V_{sd} = 21,56 \text{ kN} < 0,5 \text{ V}_{pl.rd} = 308,09 \text{ kN} \implies Vérifiée$$

VI.5.3. Vérification de la stabilité au flambement :

	$\frac{N_{sd}}{\chi_{\min}, N_{pl.rd}} + \frac{k_y. M_{y.sd}}{M_{ply.rd}} \le$	5 1,0
$\begin{cases} M_{ply.Rd} = 326,75 \text{ kN. m} \\ \chi_{min} = 0,09 \end{cases}$	(Chapitre	?)
$k_y = 1 - \frac{\mu_y . N_{sd}}{\chi_y . A. f_y}$		
$\mu_{y} = \overline{\lambda_{y}} (2\beta_{\rm My} - 4) + \frac{W_{\rm ply}}{W}$	$\frac{-W_{ely}}{W_{ely}} = 0,78(2 \times 1,3 - 4)$	$4) + \frac{1307 - 1156}{1156} = -0,96$
Cas 1 : $M_{y.sd}^{max} = 59,76 \text{ kN. n}$	m $N_{sd}^{corr} = 4,97 \text{ kN}$	
$k_y = 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A \cdot f_y} = 1 - \frac{1}{0.80}$	$\frac{-0.96\times4,97}{(84,46\times275\times10^{-1})} = 1,00$	
$\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} + \frac{k_y.M_{y.sd}}{M_{ply.rd}} = \frac{4,9}{0,09\times 2}$	$\frac{100}{2000} + \frac{1 \times 59,76}{326,75} = 0,21 \le$	$1,0 \implies V \acute{e}rifi\acute{e}$
Cas 2 : $N_{sd}^{max} = 10,02 \text{ kN}$	$M_{y.sd}^{corr} = 0$ kN. m	\Rightarrow Vérifiée
$\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} = \frac{10,02}{0,09 \times 2111,5} = 0,$	05 ≤ 1,0	

VI.5.4. Vérification par le logiciel Sap2000V14:

 Tableau VI11 : Vérification de potelet par le logiciel Sap2000V14

Frame	DesignSect	DesignType	Status	Ratio	Ratio Type	Combs
Texte	Texte	Texte	Texte	%	Texte	Texte
717	IPE400	Column	No Messages	No Messages 5%		ELU
717	IPE400	Column	No Messages	74%	PMM	ELU
717	IPE400	Column	No Messages	4%	Major Shear	ELU
717	IPE400	Column	No Messages	0%	PMM	ACC (Combs-général)
717	IPE400	Column	No Messages	0%	PMM	ACC (Combs-général)
717	IPE400	Column	No Messages	0%		ACC (Combs-général)
717	IPE400	Column	No Messages	0%	PMM	ACC (Pot-auto stable)
717	IPE400	Column	No Messages	0%	PMM	ACC (Pot-auto stable)
717	IPE400	Column	No Messages	0%		ACC (Pot-auto stable)

VI.6.Les traverses :

Nous avons introduit le profile IPE500 calculé manuellement dans le chapitre III et on vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $\begin{cases} M_{y.sd}^{max} = 650,61 \text{ kN. m} & ; \text{ N}_{sd}^{corr} = 79,78 \text{ kN} \\ \text{N}_{sd}^{max} = 183,61 \text{ kN} & ; \text{M}_{y.sd}^{corr} = 116,51 \text{ kN. m} \\ \text{V}_{sd} = 104 \text{ kN} \end{cases}$

VI.6.1. Vérification de l'effort tranchant :

 $V_{sd} \leq 0.5 \times V_{pl.rd}$

 $0.5V_{\text{pl.rd}} = 0.5 \frac{A_{\text{vz}}(f_{\text{y}}/\sqrt{3})}{\gamma_{\text{M0}}} = 0.5 \times \frac{59.87(275/\sqrt{3})}{1.1} \times 10^{-1} = 432,07 \text{ kN}$

 $V_{sd} = 104 \text{ kN} < 0.5 \text{ } V_{pl.rd} = 432,07 \text{ kN} \quad \Longrightarrow \qquad \text{V\acute{erifiée}}$

VI.6.2. Vérification de l'effort normal :

$$N_{y.sd} \le \min\{0, 25 N_{pl.rd}; \frac{0, 5A_w. f_y}{\gamma_{M0}}\}$$

$$N_{pl.Rd} = \frac{A \times fy}{B_{mo}} = \frac{115,5 \times 275}{1,1} \times 10^{-1} = 2887,5 \text{ kN} \implies 0,25N_{pl.Rd} = 721,88 \text{ kN}$$

$$A_w = A - 2b \times t_f = 115,5 - (2 \times 20 \times 1,6) = 51,50 \text{ cm}^2$$

$$\frac{0,5A_w.f_y}{\gamma_{M0}} = \frac{0,5 \times 51,50 \times 275}{1,1} \times 10^{-1} = 643,75 \text{ KN}$$

$$N_{sd}^{corr} = 79,78 \text{ kN} < \min \left\{ N_{pl.rd}; \frac{0,5A_w.f_y}{\gamma_{M0}} \right\} = 643,75 \text{ kN} \implies V\acute{erifiée}$$

$$N_{sd}^{max} = 183,61 \text{ kN} < \min \left\{ N_{pl.rd}; \frac{0,5A_w.f_y}{\gamma_{M0}} \right\} = 643,75 \text{ kN} \implies V\acute{erifiée}$$

VI.6.3. Vérification à la flexion :

$$M_{y.sd} \le M_{ply.Rd}$$

$$\begin{split} M_{ply.Rd} &= \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{2194 \times 275}{1.1} \times 10^{-3} = 548,50 \text{ kN. m} \\ M_{y.sd}^{max} &= 650,61 \text{ kN. m} > M_{ply.Rd} = 548,50 \text{ kN. m} \implies \text{Pas vérifiée} \\ M_{y.sd}^{corr} &= 116,51 \text{ kN. m} < M_{ply.Rd} = 548,50 \text{ kN. m} \implies \text{Vérifiée} \end{split}$$

On doit augmenter la section : soit IPE 550 et vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

$$\begin{cases} M_{y,sd}^{max} = 658,33 \text{ kN. m} & ; N_{sd}^{corr} = 79,45 \text{ kN} \\ N_{sd}^{max} = 183,67 \text{ kN} & ; M_{y,sd}^{corr} = 113,86 \text{ kN. m} \\ V_{sd} = 107,52 \text{ kN} & ; M_{y,sd}^{corr} = 113,86 \text{ kN. m} \\ \end{pmatrix} \\ \searrow \quad \text{Vérification de l'effort tranchant :} \\ V_{sd} = 107,52 \text{ kN} < 0,5 \text{ V}_{pl,rd} = 432,07 \text{ kN} \implies \text{Vérifiée} \\ \implies \text{Vérification de l'effort normal :} \\ N_{sd}^{corr} = 79,45 \text{ kN} < \min \left\{ N_{pl,rd} ; \frac{0,5A_w.f_y}{\gamma_{Mo}} \right\} = 777 \text{ kN} \implies \text{Vérifiée} \\ N_{sd}^{max} = 183,67 \text{ kN} < \min \left\{ N_{pl,rd} ; \frac{0,5A_w.f_y}{\gamma_{Mo}} \right\} = 777 \text{ kN} \implies \text{Vérifiée} \\ \implies \text{Vérification à la flexion :} \\ M_{y,sd}^{max} = 658,33 \text{ kN. m} < M_{ply,Rd} = 696,75 \text{ kN. m} \implies \text{Vérifiée} \\ M_{y,sd}^{corr} = 113,86 \text{ kN. m} < M_{ply,Rd} = 696,75 \text{ kN. m} \implies \text{Vérifiée} \\ \end{cases}$$

VI.6.4. Vérification au déversement :

$$\frac{N_{sd}}{\chi_{z}.N_{pl.rd}} + \frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} \le 1,0$$

 $\begin{cases} M_{y.sd} = 329,41 \text{ kN. m} \\ N_{sd} = 39,96 \text{ kN} \end{cases}$

Tableau VI12 : Les coefficients de déversement.

l(m)	λ_{LT}	$\bar{\lambda}_{LT}$	$lpha_{ m LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$
18,86	225,53	2,60	0,21	4,13	0,14

Tableau VI13 : Les coefficients de flambement (suivant Z-Z).

		$l_f(m)$	λ	α	$\bar{\lambda}$	φ	χ	
	Suivant Z – Z	18,86	423,82	0,34	4,88 > 0,2	13,20	0,04	
$\mu_{\rm L}$	$_{\rm T} = 0,15\overline{\lambda_z}.\beta_{\rm MLT}$	- 0,15 =	= 0,15 × 4,88	3 × 1,3 -	- 0,15 = 0,80)		
k _L	$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 1 - \frac{0.80 \times 39.96}{0.04 \times 134.4 \times 275 \times 10^{-1}} = 0.22$							
ľ χ _z .	$\frac{N_{sd}}{N_{pl.rd}} + \frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}}$	$=\frac{39,96}{0,04\times33}$	$\frac{1}{360} + \frac{0,22\times329}{0,14\times696}$	$\frac{0,41}{0,75} = 1$	\Rightarrow	Vérifiée	!	
Chapitre VI Vérification des éléments structuraux en CM

VI.6.5. Vérification par le logiciel Sap2000V14:

Tableau VI14 : Vérification de traverse par le logiciel Sap2000V14.

Frame	DesignSect	DesignType	Status	Ratio	Ratio Type	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
164	IPE550	Brace	No Messages	90%	PMM	ELU
164	IPE550	Brace	No Messages	84%	PMM	ELU
164	IPE550	Brace	No Messages	65%	PMM	ELU
164	IPE550	Brace	No Messages	49%	PMM	ELU
164	IPE550	Brace	No Messages	33%	PMM	ELU
164	IPE550	Brace	No Messages	19%	PMM	ELU
164	IPE550	Brace	No Messages	7%	Major Shear	ELU
164	IPE550	Brace	No Messages	6%	Major Shear	ELU
164	IPE550	Brace	No Messages	9%	PMM	ELU
164	IPE550	Brace	No Messages	14%	PMM	ELU
164	IPE550	Brace	No Messages	19%	PMM	ELU
164	IPE550	Brace	No Messages	27%	PMM	ELU
164	IPE550	Brace	No Messages	34%	PMM	ELU
164	IPE550	Brace	No Messages	38%	PMM	ELU
164	IPE550	Brace	No Messages	42%	PMM	ELU
164	IPE550	Brace	No Messages	41%	PMM	ELU
164	IPE550	Brace	No Messages	44%	PMM	ELU
164	IPE550	Brace	No Messages	45%	PMM	ELU
164	IPE550	Brace	No Messages	44%	PMM	ELU
164	IPE550	Brace	No Messages	70%	PMM	ACC
164	IPE550	Brace	No Messages	66%	PMM	(Combs-général)
164	IPE550	Brace	No Messages	52%	PMM	ACC
164	IPE550	Brace	No Messages	38%	PMM	(Combs-général)
164	IPE550	Brace	No Messages	27%	PMM	ACC
164	IPE550	Brace	No Messages	17%	PMM	(Combs-général)
164	IPE550	Brace	No Messages	7%	PMM	ACC
164	IPE550	Brace	No Messages	11%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	14%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	18%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	24%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	29%	PMM	ACC

Chapi	tre VI	Vérific	ation des	éléme	nts structu	ıraux en CM
						(Combs-général)
164	IPE550	Brace	No Messages	32%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	34%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	36%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	37%	PMM	ACC (Combs-général)
164	IPE550	Brace	No Messages	35%	PMM	ACC (Combs-général)

VI.7.Les poteaux :

Nous avons introduit le profile IPE600 calculé manuellement dans le chapitre III et on vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $\begin{cases} M_{y.sd}^{max} = 656,69 \text{ kN. m} & N_{sd}^{corr} = 32,14 \text{ kN} \\ N_{sd}^{max} = 154,96 \text{ kN} & M_{y.sd}^{corr} = 0,07 \simeq 0 \text{ kN. m} \\ V_{sd} = 179,48 \text{ kN} \end{cases}$

VI.7.1. Vérification de l'effort tranchant :

 $V_{sd} \leq 0.5 \times V_{pl.rd}$

$$0.5V_{\text{pl.rd}} = 0.5 \frac{A_{\text{vz}}(f_{\text{y}}/\sqrt{3})}{\gamma_{\text{M0}}} = 0.5 \times \frac{83,78(275/\sqrt{3})}{1,1} \times 10^{-1} = 604,63 \text{ kN}$$

 $V_{sd} = 179,48 \text{ kN} < 0,5 \text{ V}_{pl.rd} = 604,63 \text{ kN} \implies$ Vérifiée

VI.7.2. Vérification de l'effort axial :

$$\begin{split} N_{y.sd} &\leq \min\{0,25 \ N_{pl.rd} \ ; \frac{0,5A_w. f_y}{\gamma_{M0}}\} \\ N_{pl.Rd} &= \frac{A \times fy}{\mathbb{Z}_{m0}} = \frac{156 \times 275}{1,1} \times 10^{-1} = 3900 \ kN \implies 0,25N_{pl.Rd} = 975 \ kN \\ A_w &= A - 2b \times t_f = 156 - (2 \times 22 \times 1,9) = 72,4 \ cm^2 \\ \frac{0,5A_w. f_y}{\gamma_{M0}} &= \frac{0,5 \times 72,4 \times 275}{1,1} \times 10^{-1} = 905 \ KN \\ N_{sd}^{corr} &= 32,14 \ kN \qquad < \min\left\{N_{pl.rd} \ ; \frac{0,5A_w.f_y}{\gamma_{M0}}\right\} = 905 \ kN \implies V \text{\'erifiee} \end{split}$$

$$N_{sd}^{max} = 154,96 \text{ kN} < \min\left\{N_{pl.rd}; \frac{0.5A_w.f_y}{\gamma_{M0}}\right\} = 905 \text{ kN} \implies V\acute{erifiée}$$

VI.7.3. Vérification de la stabilité au flambement :

$$\frac{N_{sd}}{\chi_{min}.\,N_{pl.rd}} + \frac{k_y.\,M_{y.sd}}{M_{ply.rd}} \leq 1,0$$

Tableau VI15 : Les coefficients de flambement.

	$l_f(m)$	λ	α	$\overline{\lambda}$	φ	χ	χ_{min}
Suivant Y – Y	8,80	36,21	0,21	0,42 > 0,2	0,61	0,95	0 18
Suivant Z – Z	8,80	188,84	0,34	2,18 > 0,2	3,21	0,18	0,10
$u = \frac{1}{1}(20)$		$V_{\rm ply} - W_{\rm ely}$	0 4 2 (2	v 1 2 /) I	3512 —	3069	0.4.4

$$\mu_y = \overline{\lambda_y} (2\beta_{\rm My} - 4) + \frac{N_{\rm Ply} - N_{\rm ely}}{W_{\rm ely}} = 0,42(2 \times 1,3 - 4) + \frac{3312 - 3003}{3069} = -0,44$$

$$k_y = 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A \cdot f_y}$$

Cas 1 : $M_{y.sd}^{max} = 656,69 \text{ kN. m}$ $N_{sd}^{corr} = 32,14 \text{ kN}$

$$k_y = 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A \cdot f_y} = 1 - \frac{-0.44 \times 32.14}{0.95 \times 156 \times 275 \times 10^{-1}} = 1$$

 $\frac{N_{sd}}{\chi_{min}.N_{pl.rd}} + \frac{k_{y}.M_{y.sd}}{M_{ply.rd}} = \frac{32,14}{0,18\times3900} + \frac{1\times656,697}{878} = 0,79 \le 1,0 \Longrightarrow$ Vérifiée

Cas 2 :
$$N_{sd}^{max} = 154,96 \text{ kN}$$
 $M_{y.sd}^{corr} = 0,07 \simeq 0 \text{ kN. m}$

$$\frac{N_{sd}}{\chi_{min.Npl.rd}} = \frac{154,96}{0,18\times3900} = 0,22 \quad \Longrightarrow \qquad \text{Vérifiée}$$

VI.7.4. Vérification au déversement :

$$\frac{N_{sd}}{\chi_z.N_{pl.rd}} + \frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} \le 1,0$$

Tableau VI16 : Les coefficients de déversement.

λ_{LT}	$\overline{\lambda}_{LT}$	$arphi_{ ext{LT}}$	$\chi_{ m LT}$
137,36	1,58 > 0,4	1,90	0,34

 $\mu_{\text{LT}} = 0,15\overline{\lambda_z}.\,\beta_{\text{MLT}} - 0,15 = 0,15 \times 2,18 \times 1,3 - 0,15 = 0,28$

 $k_{LT} = 1 - \frac{\mu_{LT}.N_{sd}}{\chi_{z}.A.f_{y}}$

Cas 1 :
$$M_{y.sd}^{max} = 656,69 \text{ kN. m}$$
 $N_{sd}^{corr} = 32,14 \text{ kN}$

Chapitre VI Vérification des éléments structuraux en CM

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_z \cdot A.f_y} = 1 - \frac{0.28 \times 32.14}{0.18 \times 156 \times 275 \times 10^{-1}} = 0.99$$

$$\frac{N_{sd}}{\chi_z \cdot N_{pl,rd}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \cdot M_{ply,rd}} = \frac{32.14}{0.18 \times 3900} + \frac{0.99 \times 656.69}{0.34 \times 878} = 2.22 > 1.0 \implies Pas vérifiée$$

$$Cas \ 2: N_{sd}^{max} = 154.96 \text{ kN} \qquad M_{y,sd}^{corr} = 0.07 \simeq 0 \text{ kN. m}$$

$$\frac{N_{sd}}{\chi_z \cdot N_{pl,rd}} = \frac{154.96}{0.18 \times 3900} = 0.22 < 1 \implies Vérifiée$$

On doit diviser la longueur de déversement sur 3 (ajouter des palées) et vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

$$\begin{cases} M_{y.sd}^{max} = 656,57 \text{ kN. m} & N_{sd}^{corr} = 31,23 \text{ kN} \\ N_{sd}^{max} = 157,89 \text{ kN} & M_{y.sd}^{corr} = 0,07 \simeq 0 \text{ kN. m} \end{cases}$$

Tableau VI17 : Les coefficients de déversement.

l(m)	λ_{LT}	$\bar{\lambda}_{LT}$	$lpha_{ m LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$
2,93	56,48	0,65	0,21	0,76	0,87

Tableau VI18 : Les coefficients de flambement (suivant Z-Z).

		$l_f(m)$	λ	α	$\bar{\lambda}$	φ	χ		
	Suivant Z – Z	2,93	62,88	0,34	0,72 > 0,2	0,85	0,77		
$\mu_{\rm L}$	$\mu_{\rm LT} = 0.15\overline{\lambda_z}.\beta_{\rm MLT} - 0.15 = 0.15 \times 0.72 \times 1.3 - 0.15 = -0.01$								

Cas 1 : $M_{y.sd}^{max} = 656,57 \text{ kN. m}$ $N_{sd}^{corr} = 31,23 \text{ kN}$

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_z \cdot A \cdot f_v} = 1 - \frac{-0.01 \times 31.23}{0.77 \times 156 \times 275 \times 10^{-1}} = 1$$

 $\frac{N_{sd}}{\chi_z.N_{pl.rd}} + \frac{k_{LT}.M_{y.sd}}{\chi_{LT}.M_{ply.rd}} = \frac{31,23}{0,77\times3900} + \frac{1\times656,57}{0,87\times878} = 0,87 < 1,0 \implies \text{Vérifiée}$

Cas 2 : $N_{sd}^{max} = 157,89 \text{ kN}$ $M_{y.sd}^{corr} = 0,07 \simeq 0 \text{ kN. m}$

 $\frac{N_{sd}}{\chi_z.N_{pl.rd}} = \frac{157,89}{0,77\times3900} = 0,05 \quad \Longrightarrow \qquad \text{Vérifiée}$

Chapitre VI Vérification des éléments structuraux en CM

VI.7.5. Vérification par le logiciel Sap2000V14:

Frame	DesignSect	DesignType	Status	Ratio	Ratio Type	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
296	IPE600	Column	No Messages	7%	Major Shear	ELU
296	IPE600	Column	No Messages	29%	PMM	ELU
296	IPE600	Column	No Messages	43%	PMM	ELU
296	IPE600	Column	No Messages	44%	PMM	ELU
296	IPE600	Column	No Messages	62%	PMM	ELU
296	IPE600	Column	No Messages	91%	PMM	ELU
296	IPE600	Column	No Messages	5%	Major Shear	ACC (Combs-général)
296	IPE600	Column	No Messages	23%	PMM	ACC (Combs-général)
296	IPE600	Column	No Messages	34%	РММ	ACC (Combs-général)
296	IPE600	Column	No Messages	44%	PMM	ACC (Combs-général)
296	IPE600	Column	No Messages	70%	PMM	ACC (Combs-général)
296	IPE600	Column	No Messages	5%	Major Shear	ACC (Pot-auto stable)
296	IPE600	Column	No Messages	23%	PMM	ACC (Pot-auto stable)
296	IPE600	Column	No Messages	34%	PMM	ACC (Pot-auto stable)
296	IPE600	Column	No Messages	35%	PMM	ACC (Pot-auto stable)
296	IPE600	Column	No Messages	44%	PMM	ACC (Pot-auto stable)
296	IPE600	Column	No Messages	72%	PMM	ACC (Pot-auto stable)

Tableau VI19 : Vérification de poteau par le logiciel Sap2000V14.

VI.8. Les sablières :

Après les essais et les vérifications sur le logiciel Sap2000V14, le profilé HEA120 résiste aux sollicitations qui lui sont appliqués.

On vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $\begin{cases} M_{sd} = 0,63 \text{ kN. m} \\ V_{sd} = 0,58 \text{ kN} \end{cases}$

VI.8.1. Vérification à la flexion :

 $M_{Sd} \le M_{pl.Rd}$

$$M_{pl.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{119,5 \times 275}{1,1} \times 10^{-3} = 29,88 \text{ kN. m}$$

 $M_{Sd} = 0,63 \text{ kN. } m \le M_{pl.Rd} = 29,88 \text{ kN. } m \implies V \acute{e}rifi\acute{e}$

VI.8.2. Vérification au cisaillement :

 $V_{Sd} \leq V_{pl.Rd}$

$$V_{\text{pl.Rd}} = \frac{A_{\text{vz}}(f_{\text{y}}/\sqrt{3})}{\gamma_{\text{Mo}}} = \frac{8,46 \times (275/\sqrt{3})}{1,1} \times 10^{-1} = 122,11 \text{ kN}$$

 $V_{sd} = 0{,}58 \ \text{kN} < V_{pl.Rd} = 122{,}11 \ \text{kN} \Longrightarrow \qquad \textbf{V\acute{e}rifi\acute{e}}$

VI.8.3. Vérification au déversement :

 $M_{y.Sd} \le M_{b.Rd}$

$$M_{b.Rd} = \chi_{LT}. \, \beta_w \, \frac{W_{ply} \, f_y}{\gamma_{M1}} = \chi_{LT}. \, \beta_w \, . \, M_{ply.Rd}$$

Tableau VI20 : Les coefficients de déversement.

	l(m)	λ_{LT}	$\bar{\lambda}_{LT}$	$\alpha_{ m LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$	$M_{b.Rd}(kN.m)$
	4,35	86,11	0,99	0,21	1,07	0,68	20,32
M _{v.Sd}	= 0,63 kN	$M \leq M$. m	\Rightarrow	Vérifiée		

VI.8.4. Vérification par le logiciel Sap2000V14:

Tableau VI 21 : Vérification de sablière par le logiciel Sap2000V14.

Frame	DesignSect	DesignType	Status	Ratio	RatioType	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
293	HE120A	Beam	No Messages	10%	PMM	ELU
293	HE120A	Beam	No Messages	11%	PMM	ELU
293	HE120A	Beam	No Messages	12%	PMM	ELU
293	HE120A	Beam	No Messages	12%	PMM	ELU
293	HE120A	Beam	No Messages	12%	PMM	ELU
293	HE120A	Beam	No Messages	12%	PMM	ELU
293	HE120A	Beam	No Messages	12%	PMM	ELU
293	HE120A	Beam	No Messages	12%	PMM	ELU
293	HE120A	Beam	No Messages	11%	PMM	ELU
293	HE120A	Beam	No Messages	10%	PMM	ELU
293	HE120A	Beam	No Messages	5%	PMM	ACC

Chapitre VI		Vérific	Vérification des éléments structuraux en CM					
						(Combs-général)		
293	HE120A	Beam	No Messages	6%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	6%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	7%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	7%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	7%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	7%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	6%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	6%	PMM	ACC (Combs-général)		
293	HE120A	Beam	No Messages	5%	PMM	ACC (Combs-général)		

VI.9. Les sablières (de palée de stabilité) :

Après les essais et les vérifications sur le logiciel Sap2000V14, le profilé HEA140 résiste aux sollicitations qui lui sont appliqués.

On vérifie par les efforts de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $\begin{cases} M_{sd} = 20,51 \text{ kN. m} \\ V_{sd} = 10,01 \text{ kN} \end{cases}$

VI.9.1. Vérification à la flexion :

 $M_{Sd} \le M_{pl.Rd}$

$$M_{pl.Rd} = \frac{W_{ply} f_y}{\gamma_{M1}} = \frac{173,5 \times 275}{1,1} \times 10^{-3} = 43,38 \text{ kN. m}$$
$$M_{Sd} = 20,51 \text{ kN. m} \le M_{pl.Rd} = 43,38 \text{ kN. m} \implies \qquad \text{Vérifiée}$$

VI.9.2. Vérification au cisaillement :

$$\begin{split} V_{Sd} &\leq V_{pl.Rd} \\ V_{pl.Rd} &= \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{10,12 \times (275/\sqrt{3})}{1,1} \times 10^{-1} = 146,07 \text{ kN} \\ V_{sd} &= 10,01 \text{ kN} < V_{pl.Rd} = 146,07 \text{ kN} \implies \text{Vérifiée} \end{split}$$

VI.9.3. Vérification au déversement :

 $M_{y.Sd} \le M_{b.Rd}$

 $M_{b.Rd} = \chi_{LT}.\,\beta_w \frac{w_{ply}\,\mathit{f}_y}{\gamma_{M1}} = \chi_{LT}.\,\beta_w\,.\,M_{ply.Rd}$

Tableau VI22 : Les coefficients de déversement.

	l(m)	λ_{LT}	$\bar{\lambda}_{LT}$	$\alpha_{ m LT}$	$arphi_{ m LT}$	$\chi_{ m LT}$	$M_{b.Rd}(kN.m)$
	4,25	80,36	0,93	0,21	1,01	0,71	30,80
$M_{y.Sd} = 20,51 \text{ kN. m} \le M_{b.Rd} = 30,80 \text{ kN. m}$							Vérifiée

VI.9.4. Vérification par le logiciel Sap2000V14:

Tableau VI 23: Vérification de sablière par le logiciel Sap2000V14.

Frame	DesignSect	DesignType	Status	Ratio	Ratio Type	Combo
Texte	Texte	Texte	Texte	%	Texte	Texte
733	HE140A	Beam	No Messages	24%	PMM	ELU
733	HE140A	Beam	No Messages	37%	PMM	ELU
733	HE140A	Beam	No Messages	51%	PMM	ELU
733	HE140A	Beam	No Messages	64%	PMM	ELU
733	HE140A	Beam	No Messages	78%	PMM	ELU
733	HE140A	Beam	No Messages	92%	PMM	ELU
733	HE140A	Beam	No Messages	67%	PMM	ELU
733	HE140A	Beam	No Messages	56%	PMM	ELU
733	HE140A	Beam	No Messages	46%	PMM	ELU
733	HE140A	Beam	No Messages	35%	PMM	ELU
733	HE140A	Beam	No Messages	25%	PMM	ELU
733	HE140A	Beam	No Messages	15%	PMM	ELU
733	HE140A	Beam	No Messages	29%	PMM	ACC (Combs-général)
733	HE140A	Beam	No Messages	41%	PMM	ACC (Combs-général)
733	HE140A	Beam	No Messages	53%	РММ	ACC (Combs-général)
733	HE140A	Beam	No Messages	65%	РММ	ACC (Combs-général)
733	HE140A	Beam	No Messages	77%	РММ	ACC (Combs-général)
733	HE140A	Beam	No Messages	89%	PMM	
733	HE140A	Beam	No Messages	60%	PMM	ACC (Combs-général)
733	HE140A	Beam	No Messages	51%	PMM	ACC (Combs-général)

Chapitre VI Vérification des éléments structuraux			aux en CM			
733	HE140A	Beam	No Messages	41%	PMM	ACC (Combs-général)
733	HE140A	Beam	No Messages	32%	PMM	ACC (Combs-général)
733	HE140A	Beam	No Messages	23%	PMM	ACC (Combs-général)
733	HE140A	Beam	No Messages	14%	PMM	ACC (Combs-général)

<u>CHAPITRE ₩ :</u>

Calcul des assemblages

VII.1.Introduction :

En construction métallique, où les ossatures s'organisent en squelettes, la conception des assemblages est importante. L'élaboration d'un assemblage doit prendre en compte les trois fonctions suivantes :

- Transmettre les efforts entre les différents éléments structuraux.
- Correspondre au type de liaison voulue (encastrement, articulation, etc.).
- Assurer l'esthétique de l'ouvrage.

Il existe plusieurs modes d'assemblages des éléments utilisés dans la construction métallique, dont les principaux sont :

- ➢ Le boulonnage.
- ➢ Le soudage.

Qui correspondent à deux types de fonctionnement distincts :

- Fonctionnement par obstacle : c'est le cas des boulons ordinaires, dont les tiges reprennent les efforts et fonctionnent en cisaillement.
- Fonctionnement par adhérence : dans ce cas, la transmission des efforts s'opère par adhérence des surfaces des pièces en contact. Cela concerne le soudage, le collage, le boulonnage par boulons HR.

VII.2. Calcul et vérifie les assemblages :

VII.2.1. Assemblage poteau-traverse :

Figure VII 5 : Assemblage poteau-traverse.

VII.2.1.1.<u>Effort de calcul :</u>

 $N_{sd} = 76,79 \text{ KN}$

 $V_{sd} = 107,50 \text{ KN}$

 $M_{sd} = 658,14 \text{ KN}$

VII.2.1.2. Détermination des efforts dans les boulons :

Nous considérons uniquement les boulons tendus, c'est à dire les trois rangées supérieures des boulons.

→ $d_1 = 940 \text{ mm}$

- → $d_3 = 740 \text{ mm}$
- \succ d₄ = 640 mm
- \succ d₅ = 540 mm
- → $d_6 = 410 \text{ mm}$
- → $d_7 = 310 \text{ mm}$
- → $d_8 = 210 \text{ mm}$
- → $d_9 = 110 \text{ mm}$

 $\sum d_i^2 = 3158400 \text{ mm}^2$

$$N_i = \frac{M_{Rd} \times d_i}{\sum d_i^2}$$

N_i : L'effort maximal de traction du boulon le plus éloigné de centre de rotation.

d_i: Distance des boulons par rapport au centre de rotation.

$$N_{1} = \frac{M_{Rd} \times d_{1}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,94}{3,16} = 195,78 \text{ KN}$$

$$N_{2} = \frac{M_{Rd} \times d_{2}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,84}{3,16} = 174,95 \text{ KN}$$

$$N_{3} = \frac{M_{Rd} \times d_{3}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,74}{3,16} = 154,12 \text{ KN}$$

$$N_{4} = \frac{M_{Rd} \times d_{1}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,64}{3,16} = 133,29 \text{ KN}$$

$$N_{5} = \frac{M_{Rd} \times d_{5}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,54}{3,16} = 112,47 \text{ KN}$$

$$N_{6} = \frac{M_{Rd} \times d_{6}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,41}{3,16} = 85,39 \text{ KN}$$

$$N_{7} = \frac{M_{Rd} \times d_{7}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,31}{3,16} = 164,56 \text{ KN}$$

$$N_{8} = \frac{M_{Rd} \times d_{8}}{\Sigma d_{i}^{2}} = \frac{658,14 \times 0,21}{3,16} = 43,74 \text{ KN}$$

► N₉ =
$$\frac{M_{Rd} \times d_9}{\sum d_i^2} = \frac{658,14 \times 0,11}{3,16} = 22,91 \text{ KN}$$

VII.2.1.3. Dimensionnement des boulons :

Il faut vérifier que : $N_1 \le n \times FP$

Avec : FP = $0.7 \times f_{ub} \times A_s$

$$A_{s} \geq \frac{N_{1}}{0.7 \times f_{ub} \times A_{s}} = \frac{195,78 \times 10^{3}}{0,7 \times 1000 \times 2}$$

 $A_s \ge 139,84 \text{ mm}^2$

On choisit des boulons M20

Soit des boulons de diamètre $d_0 = 22 \text{ mm}$; de classe 10.9; AS = 245 mm².

VII.2.1.4. Condition de résistance des boulons :

➢ Entre axe des boulons :

$$P_1 \ge 2,2d_0 = 2,2 \times 22 = 48,4 \text{ mm}$$

On prend $P_1 = 100 \text{ mm}$

 $P_2 \ge 3d_0 = 3 \times 22 = 66 \text{ mm}$

On prend $P_2 = 80 \text{ mm}$

Pince longitudinale :

 $e_1 \ge 1,2d_0 = 1,2 \times 22 = 26,4 \text{ mm}$

On prend : $e_1 = 90 \text{ mm}$

 $e_2 \ge 1,5d_0 = 1,5 \times 22 = 33 \text{ mm}$

On prend : $e_2 = 75 \text{ mm}$

VII.2.1.5. Moment résistant effectif de l'assemblage :

$$M_{sd} \le M_{Rd} = \frac{n \times Fp \times \sum d_i^2}{d_i}$$

$$Fp = 0.7 \times 1000 \times 10^{-3} \times 245 = 171.5 \text{ KN (par boulon)}$$

$$M_{Rd} = \frac{2 \times 171.5 \times 3.16}{0.94} = 1153.06 \text{KN. m} > M_{sd} = 658.14 \text{ KN. m}$$

VII.2.1.6. Vérification :

VII.2.1.6.1. Résistance d'un boulon a l'interaction cisaillement-traction :

 μ = coefficient de frottement qui est pris égale à 0.3(Eurocode3 ; 6.5.8.3)

 $K_s = 1$ Coefficient qui est en fonction de la dimension des trous de perçage pour les trous à tolérance normale (Eurocode3 ; 6.5.8.1)

 $\gamma_{ms} = 1,25$

n =nombre d'interfaces de frottement = 1

FP = 171,5 KN (par boulon) (Eurocode3 ; 6.5.8.2)

$$F_{t.sd} = \frac{V_{sd}}{n} = \frac{76,79}{18} = 4,27 \text{ KN}$$

Effort de cisaillement sollicitant par boulon

$$F_{v.sd} = \frac{N_{sd}}{2} = \frac{76,79}{2} = 38,40 \text{ KN}$$

$$V_{\rm R} = \frac{1 \times 0.3 \times 1 \times (171,5-0,8 \times 4,27)}{1,25} = 40,34 \text{ KN} > 4,27 \text{ KN}....Vérifier}$$

VII.2.1.6.2. Vérification a la pression diamétrale :

Il faut vérifier que : $F_{vsd} \leq F_{brd} = 2.5. \alpha. d. tp. \frac{fu}{\gamma_{mo}}$

$$\alpha = \min(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1) = 1$$

 $F_{brd} = 2.5 \times 1 \times 2 \times 2 \times \frac{90}{1,25} = 720 \text{ KN} > F_{v.sd} = 38,40 \text{ KN}.....vérifier$

Il n'y a pas risque de rupture par pression diamétral

VII.2.1.6.3. Vérification à la résistance de l'âme du poteau dans la zone tendue :

On doit vérifier que : $F_v \leq F_{t.Rd}$

Avec :
$$F_{t.Rd} = t_w \cdot b_{eff} \cdot \frac{fy}{\gamma_{mo}}$$

F_{t.Rd}: Résistance de l'âme du poteau à la traction.

t_w: Epaisseur de l'âme du poteau.

b_{eff} = P : entraxe des rangées de boulons. (P=80cm)

Donc : $F_{t,Rd} = 12 \times 80 \times 235 \times 10^{-3} / 1 = 225,6 \text{ KN}$

L'effort de cisaillement vaut :

$$F_v = \frac{M_{sd}}{h - t_f} = \frac{658,14}{0,6 - 0,019} = 1132,77 \text{ KN} > F_{t.Rd} = 225,6 \text{ KN}....non vérifier$$

D'où nécessite de raidissage : (raidisseur de 10mm)

VII.2.1.6.4. Vérification à la résistance de l'âme du poteau dans la zone comprimée :

On doit vérifier que : $F_{vrd} = 1132,77 \text{ KN} \leq F_{crd} = \frac{f_y * t_w * b_{eff}}{\gamma_{mo}}$

$$b_{eff} = t_f + 2t + 5(t_p + r)$$

> $t_w = 12 \text{ mm}$ épaisseur de l'âme du poteau

▶ $t_f = 17 \text{ mm}$ épaisseur de la traverse

 \blacktriangleright t = 24 mm épaisseur de la platine

t_p =19 mm épaisseur de la semelle du poteau

Donc : $b_{eff} = 17 + 2 \times 24 + 5(19 + 24) = 272$

$$F_{crd} = \frac{235 \times 12 \times 272 \times 10^{-3}}{1} = 767,04 \text{ KN} < F_{vrd} = 1132,77 \text{ KN} \dots \text{condition non vérifier}$$

La résistance de l'âme du poteau en compression avec l'effort agissant, il faut donc prévoir un raidisseur de e=10mm

VII.2.1.6.5. Vérification à la résistance de l'âme du poteau dans la zone cisaillée :

On doit vérifier que : $F_v \leq F_{vrd} = \frac{0.58 \times fy \times h \times tw}{\gamma_{m0}}$

 $F_{vrd} = \frac{0.58 \times 235 \times 600 \times 12}{1} = 981,36 \text{ KN} < F_v = 1132,77 \text{ KN}....non vérifier$

D'où nécessite de raidissage : (raidisseur de 10mm)

VII.2.1.7. Calcul avec robot :

BOULONS

Barre 1-3

Le plan de cisaillement passe par la partie FILETÉE du boulon Classe = 8.8 Classe du boulon d = 18 [mm] Diamètre du boulon 20 [mm] Diamètre du trou de boulon $d_0 =$ 1,92 [cm²] Aire de la section efficace du boulon $A_s =$ 2,54 [cm²] Aire de la section du boulon $A_v =$ 550,00 [MPa] Limite de plasticité $f_{vb} =$ 800,00 [MPa] Résistance du boulon à la traction $f_{ub} =$ 4 Nombre de colonnes des boulons n = Espacement des boulons 70;70;70 [mm] 75 [mm] Distance de l'axe des boulons du bord de la barre $e_2 =$

Barre 2

Le plan	n de c	sisaillem	ient passe p	par la partie FILETÉE du boulon
Classe	=	8.	8	Classe du boulon
d =		1	8 [mm]	Diamètre du boulon
d0 =		2	0 [mm]	Diamètre du trou de boulon
A _s =		1,93	2 [cm ²]	Aire de la section efficace du boulon
A _v =		2,5	4 [cm ²]	Aire de la section du boulon
$f_{yb} =$		550,0	0 [MPa]	Limite de plasticité
$f_{ub} =$		800,0	0 [MPa]	Résistance du boulon à la traction
n =			3	Nombre de colonnes des boulons
Espace	emen	t des bo	oulons 70;	70 [mm]
e1 =	40	[mm]	Distance du	u centre de gravité du premier boulon de l'extrémité de la barre
e ₂ =	75	[mm]	Distance de	e l'axe des boulons du bord de la barre
e _c =	100	[mm]	Distance de	e l'extrémité de la barre du point d'intersection des axes des barres

Barre 4

Le plan	de cisaill	ement p	asse par la partie FILETÉE du boulon
Classe	= 8.8	3	Classe du boulon
d =	18	[mm]	Diamètre du boulon
d0 =	20	[mm]	Diamètre du trou de boulon
As =	1,92	[cm ²]	Aire de la section efficace du boulon
A _v =	2,54	[cm ²]	Aire de la section du boulon
$f_{yb} =$	550,00	[MPa]	Limite de plasticité
$f_{ub} =$	800,00	[MPa]	Résistance du boulon à la traction
n =	3	3	Nombre de colonnes des boulons
Espace	ment des	boulons	70;70 [mm]
e ₁ =	40 [mm] Dista	nce du centre de gravité du premier boulon de l'extrémité de la barre
e ₂ =	75 [mm] Dista	nce de l'axe des boulons du bord de la barre
e _c =	150 [mm] Dista	nce de l'extrémité de la barre du point d'intersection des axes des barres

GOUSSET

Ip =	660	[mm]	Longueur de la platine
h _p =	660	[mm]	Hauteur de la platine
t _p =	10	[mm]	Epaisseur de la platine

Paramètres

h1 =	0	[mm]	Grugeage
V ₁ =	0	[mm]	Grugeage
h ₂ =	0	[mm]	Grugeage
V ₂ =	0	[mm]	Grugeage
h3 =	0	[mm]	Grugeage
V ₃ =	0	[mm]	Grugeage
h4 =	0	[mm]	Grugeage
V4 =	0	[mm]	Grugeage

Centre de gravité de la tôle par rapport au centre de gravité des barres

(0;0)

e∨=	330	[mm]	Distance verticale de l'extrémité du gousset du point d'intersection des axes des barres
ен =	330	[mm]	Distance horizontale de l'extrémité du gousset du point d'intersection des axes des barres

Matériau:	ACIER E24		
f _y =	235,00	[MPa]	Résistance

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel	[2.2]
γ _{M2} =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas:

Calculs manuels

N _{b1,Ed} =	149,97	[kN]	Effort axial
$N_{b2,Ed} =$	149,86	[kN]	Effort axial
$N_{b3,Ed} =$	0,00	[kN]	Effort axial
$N_{b4,Ed} =$	149,86	[kN]	Effort axial

RESULTATS

BARRE 1-3

RESISTANCE DES BOULONS

$F_{v,Rd} =$	73,73	[kN]	Résistance de la tige d'un boulon au cisaillement	F _{v,Rd} = 0.6*f _{ub} *A _s *m/γ _{M2}
--------------	-------	------	---	--

Pression du boulon sur la barre

Direction	х
Dirocuori	~

k _{1x} =	2,50	Coefficient	pour le calcul	l de F _{b,Rd}		k _{1x} =r	nin[2.8*(e ₂ /d ₀)-	1.7, 2.5]
$k_{1x} > 0.0$			2,50 > 0	,00	vérifié			
$\alpha_{\rm bx} = 0$,6	7 Coefficie	nt dépendant de	l'espacemen	t des boulons	α _{bx} =n	nin[e1/(3*d0),	p ₁ /(3*d ₀)-0.25,	$f_{ub}/f_u, 1]$
α_{bx} > 0.0		0,67	> 0,00		vérifié			
F _{b,Rd1x} =	145,8[kN 0]	Résistance de ca trou	alcul à l'état li	mite de plasti	fication de	la paroi du	F _{b,Rd1x} =k _{1x} *α _b ,	x*fu*d*ti/γ M2

Direction z

k _{1z} =	2,50	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0		2,50 > 0,00	vérifié	
α_{bz} =	1,00	Coefficient pour le calcul de F _{b,Rd}		$\alpha_{bz}=min[e_2/(3^*d_0), f_{ub}/f_u, 1]$
α _{bz} > 0.0		1,00 > 0,00	vérifié	
$F_{b,Rd1z} = 2$	218,70 [kN] Résistance d'un boulon en pression diar	nétrale	F _{b,Rd1z} =k _{1z} *α _{bz} *f _u *d*ti/γ _{M2}

Pression du boulon sur la platine

Direction	х				
k _{1x} =	2,50	Coefficient pour le calcul d	e F _{b,Rd}	k1=	min[2.8*(e ₂ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$		2,50 > 0,0	00 vérifié		
$\alpha_{\rm bx} = 0$, 9	2 Coefficien	t dépendant de l'espacement d	es boulons at	ox=min[e1/(3*d0)	, p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0		0,92 > 0,00	vérifié		
F _{b,Rd2x}	120,4 [kN F	Résistance de calcul à l'état lim	ite de plastification	de la paroi du	$F_{b,Rd2x}=k_1^*\alpha_b^*f_u^*d^*t_i/\gamma_M$
=	5] t	rou			2

Direction	on z				
k _{1z} =	2,5	0	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₁ /d ₀)-	1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0$.0		2,50 > 0,00	vérifié	
$\alpha_{bz} =$	1,00)	Coefficient pour le calcul de F _{b,Rd}	αι	_z =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
$\alpha_{bz} > 0$.0		1,00 > 0,00	vérifié	
Fb,Rd2z	=131,4	0 [kN	 Résistance d'un boulon en pression diamé 	etrale	Fb,Rd2z=k1z*αbz*fu*d*ti/γм2
VERIF	ICATIO	N DE	L'ASSEMBLAGE POUR LES EFFORTS AG	SISSANT SUR LES E	BOULONS
cisaille	ement d	es bo	ulons		
e =	33	[mm]	Excentricité de l'effort axial par rapport à l'ax	e des boulons	
Mo =	4,88	[kN*m]	Moment fléchissant réel		$M_0=N_{b1,Ed}*e$
F _{NSd} =	37,49	[kN]	Force résultante dans le boulon due à l'influ	ence de l'effort axial	$F_{NSd} = N_{b1,Ed}/n$
F _{MSd} =	20,91	[kN]	Effort composant dans le boulon dû à l'influe	ence du moment	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$
F _{x,Ed}	37,49	[kN]	Effort de calcul total dans le boulon sur la di	rection x	$F_{x,Ed} = F_{NSd}$
F _{z,Ed}	20,91	[kN]	Effort de calcul total dans le boulon sur la di	rection z	$F_{z,Ed} = F_{MSd}$
$F_{Ed} =$	42,93	[kN]	Effort tranchant résultant dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	120,4 5	[kN]	Résistance résultante de calcul du boulon s	ur la direction x	F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	131,4 0	[kN]	Résistance résultante de calcul du boulon s	ur la direction z	F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})
F _{x,Ed} ≤	≤ F _{Rdx}		37,49 < 120,45	vérifi é	(0,31)
F _{z,Ed} ≤	≤ F _{Rdz}		20,91 < 131,40	vérifi é	(0,16)
F _{Ed} ≤ F	vRd		42,93 < 73,73	vérifi é	(0,58)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β3 =	0,58	Coefficient de réduction			[Tableau 3.8]
A _{net} =	40,02 [cr	n ²] Aire de la section nette			$A_{net} = A - d_0^* t_{f1}$
$N_{u,Rd} =$	752,06 [k	N] Résistance de calcul de la	section nette		$N_{u,Rd} = (\beta_3 * A_{net} * f_{u1}) / \gamma_{M2}$
$N_{\text{pl,Rd}} = 1$	064,75 [k	N] Résistance de calcul plast	ique de la section b	orute	$N_{pl,Rd} = (0.9^*A^*f_{y1})/\gamma_{M2}$
N _{b1,Ed} ≤	N _{u,Rd}	149,97	7 < 752,06	vérifié	(0,20)
$ N_{b1,Ed} \leq$	N _{pl,Rd}	149,97	1 < 1064,75	vérifié	(0,14)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	9,75 [cm² 9,75]	Aire nette de la zone de la section en traction		
A _{nv} =	27,00 [cm ²]	Aire de la zone de la section en traction		
V _{effRd}	⁵⁸⁶ , ⁶ ₃ [kN]	Résistance de calcul de la section affaiblie par les trous		V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/√3)*f _v *A _{nv} /γ _{M0}
N _{b1,Ed}	≤ V _{effRd}	149,97 < 586,63	vérifié	(0,26)

BARRE 2

RESISTANCE DES BOULONS

$F_{v,Rd} = 73,73$ [kN]	Résistance de la tige d'un boulon au c	isaillement	$F_{v,Rd} = 0.6^* f_{ub}^* A_s^* m / \gamma_{M2}$			
Pression du boulon sur la barre						
Direction x						
k _{1x} = 2,50	Coefficient pour le calcul de Fb,Rd	k 1	x=min[2.8*(e ₂ /d ₀)-1.7, 2.5]			
k _{1x} > 0.0	2,50 > 0,00	vérifié				
$\alpha_{bx} = 0$, 67 Coefficient	t dépendant de l'espacement des boulons	a _{bx} =min[e ₁ /(3*α	l ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]			
α _{bx} > 0.0	0,67 > 0,00	vé é	rifi			
F _{b,Rd1x} 145,8 [kN Re = 0] tro	ésistance de calcul à l'état limite de plasti ou	fication de la paroi du	F _{b,Rd1x} =K _{1x} *α _{bx} *fu*d*ti/γ M2			
Direction z						
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₁ /d)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]			
k _{1z} > 0.0	2,50 > 0,00 vérifié					
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}		$\alpha_{bz} = min[e_2/(3^*d_0), f_{ub}/f_u, 1]$			
α _{bz} > 0.0	1,00 > 0,00	vérifié				
$F_{b,Rd1z} = 218,70$ [k]	N] Résistance d'un boulon en pression	diamétrale	$F_{b,Rd1z}=k_{1z}^*\alpha_{bz}^*f_u^*d^*t_i/\gamma_{M2}$			
Pression du boulon	sur la platine					
Direction x						
k _{1x} = 2,50	Coefficient pour le calcul de F _{b,Rd}	k	1=min[2.8*(e ₂ /d ₀)-1.7, 2.5]			
k _{1x} > 0.0	2,50 > 0,00	vérifié				
$\alpha_{bx} = 0$, 92 Coefficient	t dépendant de l'espacement des boulons	$\alpha_{bx}=min[e_1/(3^*)]$	l ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]			
α _{bx} > 0.0	0,92 > 0,00	vé	érifi			
$F_{b,Rd2x}$ 120, 4 [kN Re = 5] tro	ésistance de calcul à l'état limite de plasti ou	fication de la paroi du	F _{b,Rd2x} =k1*αb*fu*d*ti/γ M2			
Direction z						
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k1z=min[2.8*(e1/d)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]			
k _{1z} > 0.0	2,50 > 0,00 vérifié					
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}		α _{bz} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]			
α _{bz} > 0.0	1,00 > 0,00	vérifié				
$F_{b,Rd2z} = 131, 40$ [kM	N] Résistance d'un boulon en pression	diamétrale	$F_{b,Rd2z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$			
VERIFICATION DE L	ASSEMBLAGE POUR LES EFFORTS	AGISSANT SUR LES	BOULONS			
cisaillement des bou	lons					
e = 33 [mm]	Excentricité de l'effort axial par rapport à	l'axe des boulons				
$M_0 = 4,87 [kN*m]$	Moment fléchissant réel		M0=Nb2 Ed*e			
$F_{NSd} = 49,95$ [kN]	Force résultante dans le boulon due à l'i	nfluence de l'effort ax	al $F_{NSd} = N_{b2,Ed}/n$			
$F_{MSd} = 34,82$ [kN]	Effort composant dans le boulon dû à l'ir	nfluence du moment	$F_{MSd} = M_0^* x_{max} / \sum x_i^2$			
$F_{x Ed} = 49.95$ [kN]	Effort de calcul total dans le boulon sur l	a direction x	$F_{x Ed} = F_{NEd}$			
$F_{x,Ed} = 34,82$ [kN]	Effort de calcul total dans le boulon sur l	a direction z	$F_{7,Ed} = F_{MSd}$			
$F_{z,zd} = 60.89$ [kN]	Effort tranchant résultant dans le boulon		$F_{r,r} = \sqrt{(F_{r,r})^2 + F_{r,r}^2}$			
$F_{Rdy} = 120.45$ [kN]	Résistance résultante de calcul du boulo	on sur la direction x	$F_{\text{Rdy}} = \min(F_{\text{Rdy}} + F_{\text{Rdy}})$			
$F_{Rdz} = 131.40$ [kN]	Résistance résultante de calcul du boulc	on sur la direction z	$F_{\text{Ed}_{7}}=\min(F_{\text{Ed}_{17}}, F_{\text{Ed}_{27}})$			
$ F_{x} E_{d} \leq F_{Rdv}$	49,95 < 120.	45 vérifié	(0,41)			
$ F_{z,Ed} \leq F_{Bdz}$	34.82 < 131.	40 vérifié	(0, 26)			
			(0/20/			

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

βз =	0,58		Coefficient de réduction		[Tableau 3.8]
A _{net} =	40,02	[cm ²]	Aire de la section nette		$A_{net} = A - d_0^* t_{f2}$
$N_{u,Rd} =$	752 , 06	[kN]	Résistance de calcul de la section nette		$N_{u,Rd} = (\beta_3 * A_{net} * f_{u2}) / \gamma_{M2}$
$N_{pl,Rd} = 2$	1064,75	[kN]	Résistance de calcul plastique de la section la	orute	$N_{pl,Rd} = (0.9^*A^*f_{y2})/\gamma_{M2}$
N _{b2,Ed} ≤	≤ N _{u,Rd}		149,86 < 752,06	vérifié	(0,20)
N _{b2,Ed} ≤	≤ N _{pl,Rd}		149,86 < 1064,75	vérifié	(0,14)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	9,75 [cm² 9,75]	Aire nette de la zone de la section en traction		
A _{nv} =	19,50 [cm ²]	Aire de la zone de la section en traction		
V _{effRd}	⁴⁶⁷ , ⁵ ₅ [kN]	Résistance de calcul de la section affaiblie par les trous		$V_{effRd} = 0.5^* f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_v^* A_{nv} / \gamma_{M0}$
Nb2,Ed	≤ V _{effRd}	149,86 < 467,55	vérifié	(0,32)

BARRE 4

RESISTANCE DES BOULONS

$F_{v,Rd} = 73,73$	[kN]	Résistance de la tige d'un boulon au cisaillement	$F_{v,Rd} = 0.6^* f_{ub}^* A_s^* m/\gamma_{M2}$
--------------------	------	---	---

Pression du boulon sur la barre

D ·		
I)Iro	ction	v
Dire	CUON	~

k _{1x} =	2,50	Coefficie	nt pour le cal	cul de F _{b,Rd}		k _{1x} =r	nin[2.8*(e ₂ /d ₀)-1	.7, 2.5]
k _{1x} > 0.0			2,50 >	0,00	vérifié			
$\alpha_{\text{bx}} = 0$, 6	7 Coefficie	nt dépendant o	de l'espacem	ent des boulo	ons α _t	_{ox} =min[e ₁ /(3*d ₀),	p ₁ /(3*d ₀)-0.25, f ₁	_{ub} /f _u , 1]
α _{bx} > 0.0		0,67	> 0,00		vérifié			
F _{b,Rd1x}	145,8[kN 0]	Résistance de trou	calcul à l'éta	at limite de pla	stification	de la paroi du	F _{b,Rd1x} =k _{1x} *a _{bx} *1	fu*d*ti/γ M2

Direction z

k _{1z} =	2,50	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(ε	e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0		2,50 > 0,00	vérifié	
α_{bz} =	1,00	Coefficient pour le calcul de F _{b,Rd}		$\alpha_{bz}=min[e_2/(3^*d_0), f_{ub}/f_u, 1]$
$\alpha_{bz} > 0.0$		1,00 > 0,00	vérifié	
$F_{b,Rd1z} = 2$	18,70	[kN] Résistance d'un boulon en pression dia	amétrale	$F_{b,Rd1z}=k_{1z}^*\alpha_{bz}^*f_u^*d^*t_i/\gamma_{M2}$

Pression du boulon sur la platine

Direction	х				
k _{1x} =	2,50	Coefficient pour le calcul de l	b,Rd	k1=m	nin[2.8*(e ₂ /d ₀)-1.7, 2.5]
$k_{1x} > 0.0$		2,50 > 0,00	vérifié		
$\alpha_{\rm bx} = 0$, 9	2 Coefficie	nt dépendant de l'espacement des	boulons α_{bx} =	=min[e ₁ /(3*d ₀),	p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0		0,92 > 0,00	vérifié		
F _{b,Rd2x}	120,4[kN 5]	Résistance de calcul à l'état limite trou	de plastification de	e la paroi du	$F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_M$
Direction	z				
k _{1z} =	2,50	Coefficient pour le calcul de	F _{b,Rd} k _{1z} =m	in[2.8*(e1/d0)-1	.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0		2,50 > 0,00	vérifié		
$\alpha_{bz} =$	1,00	Coefficient pour le calcul de l	F _{b,Rd}	α _{bz} =	=min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]

Calcul des assemblages

α _{bz} > 0	.0		1,00 > 0,00 vérifié		
F _{b,Rd2z}	=131,4	0 [kN	 Résistance d'un boulon en pression diamétrale 	F	$b_{b,Rd2z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$
VERIF	ICATIO	N DE I	L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR	LES B	OULONS
cisaille	ement d	es bo	ulons		
e =	33	[mm]	Excentricité de l'effort axial par rapport à l'axe des boulons	6	
M0 =	4,87	[kN*m]	Moment fléchissant réel		$M_0=N_{b4,Ed}*e$
F _{NSd} =	49 , 95	[kN]	Force résultante dans le boulon due à l'influence de l'effor	t axial	$F_{\text{NSd}} = N_{\text{b4,Ed}}/n$
F _{MSd} =	34,82	[kN]	Effort composant dans le boulon dû à l'influence du mome	ent	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$
F _{x,Ed}	49,95	[kN]	Effort de calcul total dans le boulon sur la direction x		$F_{x,Ed}=F_{NSd}$
F _{z,Ed}	34,82	[kN]	Effort de calcul total dans le boulon sur la direction z		$F_{z,Ed} = F_{MSd}$
F _{Ed} =	60,89	[kN]	Effort tranchant résultant dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	120,4 5	[kN]	Résistance résultante de calcul du boulon sur la direction	x	F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	131,4 0	[kN]	Résistance résultante de calcul du boulon sur la direction	Z	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
F _{x,Ed} ≤	≤ F _{Rdx}		49,95 < 120,45	vérifi é	(0,41)
F _{z,Ed} ≤	≤ F _{Rdz}		34,82 < 131,40	vérifi é	(0,26)
F _{Ed} ≤ F	vRd		60,89 < 73,73	vérifi	(0,83)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β ₃ =	0,58	Coefficient de réduction			[Tableau 3.8]
A _{net} =	40,02 [cm ²]	Aire de la section nette			$A_{net} = A - d_0^* t_{f4}$
$N_{u,Rd} =$	752,06 [kN]	Résistance de calcul de la se	ction nette		$N_{u,Rd} = (\beta_3 * A_{net} * f_{u4}) / \gamma_{M2}$
$N_{pl,Rd} = 1$	064,75 [kN]	Résistance de calcul plastiqu	e de la section bru	te	$N_{pl,Rd} = (0.9^*A^*f_{y4})/\gamma_{M2}$
$ N_{b4,Ed} \leq$	N _{u,Rd}	149,86	< 752,06	vérifié	(0,20)
$ N_{b4,Ed} \leq$	N _{pl,Rd}	149,86	< 1064,75	vérifié	(0,14)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	9, 75 [cm²]	Aire nette de la zone de la section en traction		
A _{nv} =	19,50 [cm ²]	Aire de la zone de la section en traction		
V _{effRd} =	⁴⁶⁷ ′ ⁵ ₅ [kN]	Résistance de calcul de la section affaiblie par les trous		V _{effRd} =0.5*f _u *A _{nt} / _{γм2} + (1/√3)*f _y *A _{nv} / _{γм0}
Nb4,Ed	≤ V _{effRd}	149,86 < 467,55	vérifié	(0,32)

VII.2.2. Assemblage traverse -traverse :

VII.2.2.1.Calcul avec robot :

Figure VII 6 : assemblage traverse-traverse.

GAUCHE

POUTRE

Profilé:			IPE 550
α =	-172,0	[Deg]	Angle d'inclinaison
h _{bl} =	550	[mm]	Hauteur de la section de la poutre
b _{fbl} =	210	[mm]	Largeur de la section de la poutre
t _{wbl} =	11	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fbl} =	17	[mm]	Epaisseur de l'aile de la section de la poutre
r _{bl} =	24	[mm]	Rayon de congé de la section de la poutre
$A_{bl} =$	134,42	[cm ²]	Aire de la section de la poutre

α =	-172,(Deg] Angle d'inclinaison
$I_{xbl} =$	67116,50) [cm ⁴]	Moment d'inertie de la poutre
Matéria	u: ACIE	R E28	
$f_{yb} =$	275,00	[MPa]	Résistance

DROITE

POUTRE

Profilé:			IPE 550
α =	-8,0	[Deg]	Angle d'inclinaison
h _{br} =	550	[mm]	Hauteur de la section de la poutre
b _{fbr} =	210	[mm]	Largeur de la section de la poutre
t _{wbr} =	11	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fbr} =	17	[mm]	Epaisseur de l'aile de la section de la poutre
r _{br} =	24	[mm]	Rayon de congé de la section de la poutre
A _{br} =	134,42	[cm ²]	Aire de la section de la poutre
I _{xbr} =	67116 , 50	[cm4]	Moment d'inertie de la poutre
Matéria	u: ACIER 1	E28	
f _{yb} =	275,00 [N	IPa] Ré	sistance

BOULONS

Le plan de cisaillement passe par la partie FILETÉE du boulon

d =	20	[mm]	Diamètre du boulon
Classe =	HR 10.9		Classe du boulon
FtRd =	211,68	[kN]	Résistance du boulon à la traction
n _h =	2		Nombre de colonnes des boulons
n _v =	8		Nombre de rangéss des boulons
h1 =	85	[mm]	Pince premier boulon-extrémité supérieure de la platine d'about
Ecartement	te _i = 100 [1	mm]	
Entraxe pi =	= 100;1	00;100;1	00;140;100;100 [mm]

PLATINE

h _{pr} =	915	[mm]	Hauteur de la platine
b _{pr} =	210	[mm]	Largeur de la platine
t _{pr} =	20	[mm]	Epaisseur de la platine
Matériau:	ACI	er e24	L
f _{ypr} =		235,00	[MPa] Résistance

JARRET INFERIEUR

W _{rd} =	210	[mm]	Largeur de la platine
t _{frd} =	18	[mm]	Epaisseur de l'aile
h _{rd} =	340	[mm]	Hauteur de la platine
t _{wrd} =	12	[mm]	Epaisseur de l'âme
$I_{rd} =$	1000	[mm]	Longueur de la platine
$\alpha_d =$	11,5	[Deg]	Angle d'inclinaison
Matériau:	AC	IER E2	8
f _{ybu} =		275 , 0	0 [MPa] Résistance

SOUDURES D'ANGLE

a _w =	5	[mm]	Soudure âme
a _f =	8	[mm]	Soudure semelle
a _{fd} =	5	[mm]	Soudure horizontale

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel	[2.2]
γм1 =	1,00	Coefficient de sécurité partiel	[2.2]
γм2 =	1,25	Coefficient de sécurité partiel	[2.2]
үмз =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: Calculs manuels

$M_{b1,Ed} =$	321,38	[kN*m]	Moment fléchissant dans la poutre droite
$V_{b1,Ed} =$	5,34	[kN]	Effort tranchant dans la poutre droite
$N_{b1,Ed} =$	37,23	[kN]	Effort axial dans la poutre droite

RESULTATS

RESISTANCES DE LA POUTRE

TRACTION

A _b =	134,42	[cm ²]	Aire de la section		EN1993-1-1:[6.2.3]
$N_{tb,Rd} = A$	A _b f _{yb} / γ _{M0}				
$N_{tb,Rd} = 3$	3696,55	[kN]	Résistance de calcul de la secti	on à la traction	EN1993-1-1:[6.2.3]
CISAILL	EMENT				
A _{vb} =	113,15	[cm ²]	Aire de la section au cisailleme	ent	EN1993-1-1:[6.2.6.(3)]
$V_{cb,Rd} =$	A _{vb} (f _{yb} / √3)) / үмо			
$V_{cb,Rd} = 1$	1796,42 [k	N] Rési	stance de calcul de la section au	cisaillement	EN1993-1-1:[6.2.6.(2)]
$V_{b1,Ed} / N$	/ _{cb,Rd} ≤ 1,0		0,00 < 1,00	vérifié	(0,00)
FLEXIO	N - MOMEI	NT PLA	STIQUE (SANS RENFORTS)		
$W_{plb} =$	2787,01	[cm ³]	Facteur plastique de la section	n	EN1993-1-1:[6.2.5.(2)]
$M_{b,pl,Rd} =$	= W _{plb} f _{yb} / γι	MO			
M _{b,pl,Rd} =	=766,43 [kN*m] I	Résistance plastique de la sectio	n à la flexion (sans renfo	rts) EN1993-1-1:[6.2.5.(2)]
FLEXIO	N AU CON	TACT	DE LA PLAQUE AVEC L'ELEMI	ENT ASSEMBLE	
W _{pl} =	4603,31	[cm ³]	Facteur plastique de la section	n	EN1993-1-1:[6.2.5]
$M_{\text{cb,Rd}} =$	$W_{pl}~f_{yb}$ / γ_{M0})			
$M_{cb,Rd}$ =	1265,91	[kN*m]	Résistance de calcul de la sect	ion à la flexion	EN1993-1-1:[6.2.5]
AILE ET	F AME EN O	COMPR	ESSION		
$M_{cb,Rd}$ =	1265,91	[kN*m]	Résistance de calcul de la secti	on à la flexion	EN1993-1-1:[6.2.5]
h _f =	878	[mm]	Distance entre les centres de gi	avité des ailes	[6.2.6.7.(1)]
$F_{c,fb,Rd} =$	$M_{cb,Rd}$ / h_f				
$F_{c,fb,Rd} =$	1442,57	[kN]	Résistance de l'aile et de l'âme	e comprimées	[6.2.6.7.(1)]

AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale:

β = 8	,0 [Deg]	Angle entre la platine d'about et la poutre	
γ = 11	,5 [Deg]	Angle d'inclinaison du renfort	
$b_{eff,c,wb} = 2$	83 [mm]	Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vb} = 72$,	35 [cm ²]	Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
ω = 0,	90	Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 109$,	18 [MPa]	Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
kwc = 1,	00	Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$F_{c,wb,Rd1} = [\omega k]$	wc b _{eff,c,wb} t	t _{wb} f _{yb} / γ _{M0}] cos(γ) / sin(γ - β)	
$F_{c,wb,Rd1} = 227$	4,70 [N] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Flambement:			
$d_{wb} = 468$	[mm] Ha	uteur de l'âme comprimée	[6.2.6.2.(1)]
$\lambda_{p} = 1, 10$	Ela	ancement de plaque	[6.2.6.2.(1)]
$\rho = 0,74$	Co	efficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$F_{c,wb,Rd2} = [\omega k]$	twc ρ b _{eff,c,w}	_b t _{wb} f _{yb} / γ _{M1}] cos(γ) / sin(γ - β)	
$F_{c,wb,Rd2} = 168$	6,43 [k	KN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Résistance de	e l'aile du r	enfort	
$F_{c,wb,Rd3} = b_b t_b$	o f _{yb} / (0.8* [,]	үмо)	
$F_{c,wb,Rd3} = 129$	9,38 [k	N] Résistance de l'aile du renfort	[6.2.6.7.(1)]
Résistance fir	ale:		
$F_{c,wb,Rd,low} = M$	in (F _{c,wb,Rd}	1,Fc,wb,Rd2,Fc,wb,Rd3)	
$F_{c,wb,Rd,low} = 12$	299,38	[kN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]

VII.2.3. Assemblage contreventement :

VII.2.3.1.Calcul avec robot :

Figure VII 7: assemblage contreventement.

BOULONS

Barre 1-3

Le plan de cisaillement passe par la partie FILETÉE du boulon								
Classe =	8.8		Classe du boulon					
A _v =	2,54	[cm ²]	Aire de la section du boulon					
f _{yb} =	550,00	[MPa]	Limite de plasticité					
f _{ub} =	800,00	[MPa]	Résistance du boulon à la traction					
n =	4		Nombre de colonnes des boulons					
Espacem	nent des	boulons	70;70;70 [mm]					
e ₂ =	75 [I	mm] D	Distance de l'axe des boulons du bord de la barre					

Barre 2

Le plan de	e cisailleme	ent passe p	par la partie FILETÉE du boulon
Classe =	8.8		Classe du boulon
d =	18	[mm]	Diamètre du boulon
d0 =	20	[mm]	Diamètre du trou de boulon
As =	1,92	[cm ²]	Aire de la section efficace du boulon
A _v =	2,54	[cm ²]	Aire de la section du boulon
$f_{yb} =$	550 , 00	[MPa]	Limite de plasticité
$f_{ub} =$	800,00	[MPa]	Résistance du boulon à la traction
n =	3		Nombre de colonnes des boulons
Espaceme	ent des bou	ulons 70;	70 [mm]
e ₁ = 4	0 [mm] E	Distance d	u centre de gravité du premier boulon de l'extrémité de la barre
e ₂ = 75	5 [mm] E	Distance d	e l'axe des boulons du bord de la barre
e _c = 10	0 [mm] E	Distance d	e l'extrémité de la barre du point d'intersection des axes des barres

Barre 4

Le plan de cisaillement passe par la partie FILETÉE du boulon

Classe	=	8.8		Classe du boulon					
d =		18	[mm]	Diamètre du boulon					
$d_0 =$		20	[mm]	Diamètre du trou de boulon					
A _s =		1,92	[cm ²]	Aire de la section efficace du boulon					
A _v =		2,54	[cm ²]	Aire de la section du boulon					
f _{yb} =	55	0 , 00	[MPa]	Limite de plasticité					
f _{ub} =	80	0,00	[MPa]	Résistance du boulon à la traction					
n =		3		Nombre de colonnes des boulons					
Espace	emer	nt des b	ooulons	70;70 [mm]					
e ₁ =	40	[mm]	Distar	nce du centre de gravité du premier boulon de l'extrémité de la barre					
e ₂ =	75	[mm]	Distar	Distance de l'axe des boulons du bord de la barre					
e _c =	150	[mm]	Dista	nce de l'extrémité de la barre du point d'intersection des axes des barres					

GOUSSET

I _p =	660	[mm]	Longueur de la platine
h _p =	660	[mm]	Hauteur de la platine
t _p =	10	[mm]	Epaisseur de la platine

Paramètres

h1 =	0	[mm]	Grugeage
V1 =	0	[mm]	Grugeage
h ₂ =	0	[mm]	Grugeage
V2 =	0	[mm]	Grugeage
h ₃ =	0	[mm]	Grugeage
V ₃ =	0	[mm]	Grugeage

h1 =	0	[mm]	Grugeage
h4 =	0	[mm]	Grugeage
V4 =	0	[mm]	Grugeage

Centre de gravité de la tôle par rapport au centre de gravité des barres (0;0)

 $e_V = 330$ [mm] Distance verticale de l'extrémité du gousset du point d'intersection des axes des barres $e_H = 330$ [mm] Distance horizontale de l'extrémité du gousset du point d'intersection des axes des barres Matériau: ACIER E24 $f_Y = 235,00$ [MPa] Résistance

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel	[2.2]
γм2 =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas:		С	alculs	manuels
$N_{b1,Ed} =$	149,97	[kN]	Effort a	axial
$N_{b2,Ed} =$	149,86	[kN]	Effort a	axial
$N_{b3,Ed} =$	0,00	[kN]	Effort a	axial
$N_{b4,Ed} =$	149,86	[kN]	Effort a	axial

RESULTATS

BARRE 1-3

RESISTANCE DES BOULONS

$F_{v,Rd} = $	73,73	[kN]	Résistance	e de la tige	d'un boul	on au ci	sailleme	ent		$F_{v,Rd} = 0.6^*$	f _{ub} *A _s *m	I/үм2
Pressio	n du bou	lon su	r la barre									
Directior	ıх											
K _{1x} =	2,50		Coefficien	t pour le c	alcul de Fi	o,Rd			k _{1x} =r	nin[2.8*(e ₂ /	′d₀)-1.7,	2.5]
k _{1x} > 0.0)			2,50	> 0,00		vérifié					
$\alpha_{bx} = 0$,	67 Coeffi	cient de	épendant d	e l'espace	ment des	boulons	α_{t}	_{ox} =min[e ₁ /((3*d ₀),	p ₁ /(3*d ₀)-0	.25, f _{ub} /f	u, 1]
abx > 0.0)		0,67	> 0,00			vérifié					
F _{b,Rd1x}	145,8[0	kN Rés] trou	istance de	calcul à l'é	etat limite o	le plasti	fication	de la paro	i du	F _{b,Rd1x} =k _{1x}	*α _{bx} *f _u *c	d*ti/γ M2

Direction z

k _{1z} =	2,50	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e	e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0		2,50 > 0,00	vérifié	
$\alpha_{bz} =$	1,00	Coefficient pour le calcul de F _{b,Rd}		α _{bz} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
$\alpha_{bz} > 0.0$		1,00 > 0,00	vérifié	
$F_{b,Rd1z} = 2$	218,70	[kN] Résistance d'un boulon en pression dia	métrale	$F_{b,Rd1z} = k_{1z} \alpha_{bz} f_u d^* t_i / \gamma_{M2}$

Pression du boulon sur la platine

Direction x

Directio	ЛТХ					
k _{1x} =	2,50)	Coefficient pour le calcul de F _{b,Rd}		k₁=r	nin[2.8*(e ₂ /d ₀)-1.7, 2.5]
$k_{1x} > 0.$	0		2,50 > 0,00	vérifié		
$\alpha_{bx} = 0$, 92 Co e	efficie	nt dépendant de l'espacement des boulons	s α _{bx} =min[e ₁ /	(3*d ₀),	p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
$\alpha_{bx} > 0$.0		0,92 > 0,00	vérifié		
F _{b,Rd2x}	120,	4 [kN 5]	Résistance de calcul à l'état limite de plas trou	ification de la pare	oi du	$F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_M$
Directio	on z	2				
$K_{1z} =$	2,50	J	Coefficient pour le calcul de F _{b,Rd}	K _{1z} =min[2.8 [*] (e	€ ₁ /d ₀)-1	.7, 1.4 [^] (p ₁ /d ₀)-1.7, 2.5]
$K_{1z} > 0.$	1 00	`	2,50 > 0,00	verme		
$\alpha_{bz} =$	1,00)			α _{bz}	=min[e ₂ /(3 ^d ₀), f _{ub} /f _u , 1]
$\alpha_{bz} > 0$.0		1,00 > 0,00	Verifie	_	1
►b,Rd2z	=131,4	0 [k N	B Résistance d'un boulon en pression dia	métrale	F	b,Rd2z= $\mathbf{k}_{1z}^{*}\alpha_{bz}^{*}\mathbf{f}_{u}^{*}\mathbf{d}^{*}\mathbf{t}_{i}^{\prime}\gamma_{M2}$
VERIF		N DE	L'ASSEMBLAGE POUR LES EFFORTS	AGISSANT SUR	LES B	OULONS
cisaille	ment d	es bo	ulons			
e =	33	[mm]	Excentricité de l'effort axial par rapport à	l'axe des boulons		
	1 0 0	[kN*m				N4 N1 +
$M_0 =$	4,88	`]	Moment flechissant reel			M0=Nb1,Ed [*] e
F _{NSd} =	37,49	[kN]	Force résultante dans le boulon due à l'in	fluence de l'effort	axial	$F_{\text{NSd}} = N_{\text{b1,Ed}}/n$
F _{MSd} =	20,91	[kN]	Effort composant dans le boulon dû à l'inf	luence du momen	ıt	$F_{\text{MSd}} = M_0 * x_{\text{max}} / \Sigma x_i^2$
F _{x,Ed}	37 , 49	[kN]	Effort de calcul total dans le boulon sur la	direction x		$F_{x,Ed}=F_{NSd}$
F _{z,Ed}	20,91	[kN]	Effort de calcul total dans le boulon sur la	direction z		$F_{z,Ed} = F_{MSd}$
F _{Ed} =	42,93	[kN]	Effort tranchant résultant dans le boulon			$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	120,4 5	[kN]	Résistance résultante de calcul du boulor	n sur la direction x		F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	131,4 0	[kN]	Résistance résultante de calcul du boulor	n sur la direction z		F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})
F _{x,Ed} ≤	F _{Rdx}		37,49 < 120,4	15	vérifi é	(0,31)
F _{z,Ed} ≤	F _{Rdz}		20,91 < 131,4	10	vérifi é	(0,16)
F _{Ed} ≤ F	vRd		42,93 < 73,73		vérifi é	(0,58)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β ₃ =	0,58	Coefficient de réduction			[Tableau 3.8]
A _{net} =	40,02 [cm ²]	Aire de la section nette			$A_{net} = A - d_0^* t_{f1}$
$N_{u,Rd} =$	752,06 [kN]	Résistance de calcul de la se	ection nette		$N_{u,Rd} = (\beta_3 * A_{net} * f_{u1}) / \gamma_{M2}$
$N_{pl,Rd} = 1$	064,75 [kN]	Résistance de calcul plastiqu	ue de la section bru	ute	$N_{pl,Rd} = (0.9^*A^*f_{y1})/\gamma_{M2}$
$ N_{b1,Ed} \leq$	N _{u,Rd}	149,97	< 752,06	vérifié	(0,20)
$ N_{b1,Ed} \leq$	N _{pl,Rd}	149,97	< 1064,75	vérifié	(0,14)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	9,75 [cm ²]	Aire nette de la zone de la section en traction		
V _{effRd} =	⁵⁸⁶ , ⁶ ₃ [kN]	Résistance de calcul de la section affaiblie par les trous		V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/√3)*f _y *A _{nv} /γ _{M0}
N _{b1,Ed}	≤ V _{effRd}	149,97 < 586,63	vérifié	(0,26)
RADE	⊳ ⊏ 2			

BARRE 2

RESISTANCE DES BOULONS

 $F_{v,Rd} = 73,73$ [kN] Résistance de la tige d'un boulon au cisaillement $F_{v,Rd} = 0.6^{*}f_{ub}^{*}A_{s}^{*}m/\gamma_{M2}$

Pression du boulon sur la barre

Direction x								
k _{1x} =	2,50	Coefficient	pour le calc	ul de F _{b,Rd}		k _{1x} =n	nin[2.8*(e ₂ /d ₀)	-1.7, 2.5]
k _{1x} > 0.0		2,50 >	0,00		vérifié			
$\alpha_{\rm bx} = 0, 67$	Coefficient dépe	ndant de l'e	spacement	des boulons	α _{bx} =min	[e ₁ /(3*d ₀),	p ₁ /(3*d ₀)-0.25	5, f _{ub} /f _u , 1]
α _{bx} > 0.0			0,67 >	0,00		vérifi é		
F _{b,Rd1x} 14 =	5,8 [kN Résistai 0] trou	nce de calci	ul à l'état limi	ite de plastif	ication de la pa	aroi du	F _{b,Rd1x} =k _{1x} *α	_{ox} *fu*d*ti/γ M2

Direction z

$k_{1z} = 2,50$	Co	pefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₁	/d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0		2,50 > 0,00 vérif	ié	
$\alpha_{bz} = 1,00$		Coefficient pour le calcul de F _{b,Rd}		α _{bz} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{bz} > 0.0		1,00 > 0,00	vérifié	
$F_{b,Rd1z} = 218,70$	[kN]	Résistance d'un boulon en pressio	n diamétrale	F _{b,Rd1z} =k _{1z} *α _{bz} *f _u *d*t _i /γ _{M2}

Pression du boulon sur la platine

Direction x				
k _{1x} =	2,50	Coefficient pour le calcul de F _{b,F}	₹d	k1=min[2.8*(e2/d0)-1.7, 2.5]
k _{1x} > 0.0		2,50 > 0,00	vérifié	
$\alpha_{bx} = 0$, 92	Coefficient dépe	endant de l'espacement des bould	ons α _{bx} =min[e ₁ /((3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0		0,92 > 0,00		vérifi é
F _{b,Rd2x} 12	20 , 4 [kN Résista 5] trou	nce de calcul à l'état limite de pla	stification de la paroi	i du $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma$

Direction z

$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bz} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
α _{bz} > 0.0	1,00 > 0,00 v	érifié
$F_{b,Rd2z} = 131, 40$	[kN] Résistance d'un boulon en pression dia	métrale $F_{b,Rd2z}=k_{1z}\alpha_{bz}f_{u}dt_{i}/\gamma_{M2}$

VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

e =	33	[mm]	Excentricité de l'effort axial par rapport à l'axe des boulons	
M0 =	4,87[[kN*m]	Moment fléchissant réel	$M_0=N_{b2,Ed}*e$
F _{NSd} =	49,95	[kN]	Force résultante dans le boulon due à l'influence de l'effort axial	$F_{NSd} = N_{b2,Ed}/n$
F _{MSd} =	34,82	[kN]	Effort composant dans le boulon dû à l'influence du moment	$F_{MSd}=M_0 x_{max}/\Sigma x_i^2$
$F_{x,Ed} =$	49,95	[kN]	Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{NSd}$
$F_{z,Ed} =$	34,82	[kN]	Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{MSd}$

cisaillement des boulons

e = 33	[mm]	Excentricité de l'effort axial par rapport à l'axe des b	oulons	
F _{Ed} = 60,89	[kN]	Effort tranchant résultant dans le boulon	F	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
$F_{Rdx} = 120, 45$	[kN]	Résistance résultante de calcul du boulon sur la dire	ection x F	Rdx=min(F _{bRd1x} , F _{bRd2x})
$F_{Rdz} = 131, 40$	[kN]	Résistance résultante de calcul du boulon sur la dire	ection z F	Rdz=min(FbRd1z, FbRd2z)
$ F_{x,Ed} \leq F_{Rdx}$		49,95 < 120,45 vé	rifié	(0,41)
$ F_{z,Ed} \leq F_{Rdz}$		34,82 < 131,40 vé	rifié	(0,26)
$F_{Ed} \leq F_{vRd}$		60,89 < 73,73 vé	rifié	(0,83)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β ₃ =	0,58		Coefficient de réduction		[Tableau 3.8]
A _{net} =	40,02	[cm ²]	Aire de la section nette		$A_{net} = A - d_0^* t_{f2}$
$N_{u,Rd} =$	752 , 06	[kN]	Résistance de calcul de la section nette		$N_{u,Rd} = (\beta_3 * A_{net} * f_{u2}) / \gamma_{M2}$
$N_{pl,Rd} = 1$.064,75	[kN]	Résistance de calcul plastique de la section b	rute	N _{pl,Rd} = (0.9*A*f _{y2})/γ _{M2}
$ N_{b2,Ed} \leq$	N _{u,Rd}		149,86 < 752,06	vérifié	(0,20)
$ N_{b2,Ed} \leq$	N _{pl,Rd}		149,86 < 1064,75	vérifié	(0,14)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	9,75 [cm² 9,75]	Aire nette de la zone de la section en traction	
A _{nv} =	19,50 [cm ²]	Aire de la zone de la section en traction	
V _{effRd} =	⁴⁶⁷ ′ ⁵ ₅ [kN]	Résistance de calcul de la section affaiblie par les trous	V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/√3)*f _v *A _{nv} /γ _{M0}
Nb2,Ed	≤ V _{effRd}	149,86 < 467,55 vé	érifié (0,32)

BARRE 4

RESISTANCE DES BOULONS

$F_{v,Rd} = /3, /3$ [KN]	$v_{Rd} = 73,73$ [kN] Résistance de la tige d'un boulon au cisaillement							
Pression du boulon su	r la barre							
Direction x								
k _{1x} = 2,50	Coefficient pour le calcul de F _{b,Rd}	k _{1x} =	=min[2.8*(e ₂ /d ₀)-1.7, 2.5]					
k _{1x} > 0.0	2,50 > 0,00	vérifié						
$\alpha_{bx} = 0$, 67 Coefficient d	épendant de l'espacement des boulon	s $\alpha_{bx}=min[e_1/(3^*d_0)]$), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]					
α _{bx} > 0.0	0,67 > 0,00	vérifié						
F _{b,Rd1x} 145,8 [kN Rés = 0] trou	istance de calcul à l'état limite de plas	tification de la paroi du	$F_{b,Rd1x}=k_{1x}^*\alpha_{bx}^*f_u^*d^*t_i/\gamma$ M2					
Direction z								
k _{1z} = 2,50	Coefficient pour le calcul de F _{b,Rd}	k1z=min[2.8*(e1/d0)	-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]					
k _{1z} > 0.0	2,50 > 0,00	vérifié						
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α	bz=min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]					
α _{bz} > 0.0	1,00 > 0,00	vérifié						
F _{b,Rd1z} = 218,70 [kN] R	Résistance d'un boulon en pression dia	métrale	$F_{b,Rd1z} = k_{1z}^* \alpha_{bz}^* f_u^* d^* t_i / \gamma_{M2}$					

Pression du boulon sur la platine

Direction	Х			
k _{1x} =	2,50	Coefficient pour le calcul de F _{b,Rd}		k ₁ =min[2.8*(e ₂ /d ₀)-1.7, 2.5]
k _{1x} > 0.0		2,50 > 0,00	vérifié	

Calcul des assemblages

$\alpha_{\rm bx} = 0$,	92 Coefficie	nt dépendant de l'espacement de	es boulons $\alpha_{bx}=min[e]$	e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0)	0,92 > 0,00	vérifié	
F _{b,Rd2x}	120,4[kN 5]	Résistance de calcul à l'état limi trou	te de plastification de la pa	aroi du $F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma_M$ ²
Directior	١Z			
k _{1z} =	2,50	Coefficient pour le calcul d	e F _{b,Rd} k _{1z} =min[2.8]	*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]

 $\begin{array}{c} \alpha_{bz} > 0.0 & 1,00 > 0,00 & v\acute{e}rifi\acute{e} \\ \hline F_{b,Rd2z} = 131,40 \ [kN] \ R\acute{e}sistance d'un boulon en pression diamétrale & F_{b,Rd2z} = k_{1z} * \alpha_{bz} * f_{u} * d^* t_i / \gamma_{M2} \end{array}$

VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

e =		33	[mm]	Excentricité de l'effort axial par rapport à l'axe des boulons		
$M_0 =$	4,	87	[kN*m]	Moment fléchissant réel		$M_0 \!\!=\!\! N_{b4,Ed} ^* \! e$
F _{NSd}	49,	95	[kN]	Force résultante dans le boulon due à l'influence de l'effort	axial	$F_{NSd} = N_{b4,Ed}/n$
F _{MSd} =	34,	82	[kN]	Effort composant dans le boulon dû à l'influence du momen	t	$F_{\text{MSd}} = M_0 * x_{\text{max}} / \Sigma x_i^2$
F _{x,Ed}	49,	95	[kN]	Effort de calcul total dans le boulon sur la direction x		$F_{x,\text{Ed}} = F_{\text{NSd}}$
F _{z,Ed}	34,	82	[kN]	Effort de calcul total dans le boulon sur la direction z		$F_{z,Ed} = F_{MSd}$
F _{Ed} =	60,	89	[kN]	Effort tranchant résultant dans le boulon		$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rdx} =	120	, 4 5	[kN]	Résistance résultante de calcul du boulon sur la direction x		F _{Rdx} =min(F _{bRd1x} , F _{bRd2x})
F _{Rdz} =	131	, 4 0	[kN]	Résistance résultante de calcul du boulon sur la direction z		F _{Rdz} =min(F _{bRd1z} , F _{bRd2z})
F _{x,Ed} ≤	≤ F _{Rd}	x		49 , 95 < 120 , 45	vérifi é	(0,41)
F _{z,Ed} ≤	≤ F _{Rd}	z		34,82 < 131,40	vérifi é	(0,26)
F _{Ed} ≤ F	vRd			60,89 < 73,73	vérifi é	(0,83)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

β3 =	0,58	Coefficient de réduction			[Tableau 3.8]
A _{net} =	40,02 [cm ²]	Aire de la section nette			$A_{net} = A - d_0^* t_{f4}$
$N_{u,Rd} =$	752,06 [kN]	Résistance de calcul de la sec	tion nette		$N_{u,Rd} = (\beta_3 * A_{net} * f_{u4}) / \gamma_{M2}$
$N_{pl,Rd} = 1$	064,75 [kN]	Résistance de calcul plastique	de la section bru	te	N _{pl,Rd} = (0.9*A*f _{y4})/γ _{M2}
$ N_{b4,Ed} \leq$	N _{u,Rd}	149,86 <	< 752 , 06	vérifié	(0,20)
$ N_{b4,Ed} \leq$	N _{pl,Rd}	149,86 <	< 1064,75	vérifié	(0,14)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

A _{nt} =	9,75 [cm² 9,75]	Aire nette de la zone de la section en traction		
A _{nv} =	19,50 [cm ²]	Aire de la zone de la section en traction		
V _{effRd}	⁴⁶⁷ , ⁵ ₅ [kN]	Résistance de calcul de la section affaiblie par les trous		V _{effRd} =0.5*f _u *A _{nt} /γ _{M2} + (1/√3)*f _y *A _{nv} /γ _{M0}
Nb4,Ed	≤ V _{effRd}	149,86 < 467,55	vérifié	(0,32)

VII.2.4.Calcul du pied poteau

VII.2.4.1.Calcul avec robot :

Figure VII 8: dimensionnement des pieds de poteaux.

VII.2.4.1.1.Cas1 : à la compression :

GEOMETRIE

POTEAU

Profilé:			IPE 600
Lc =	5,00	[m]	Longueur du poteau
α =	0,0	[Deg]	Angle d'inclinaison
hc =	600	[mm]	Hauteur de la section du poteau
b _{fc} =	220	[mm]	Largeur de la section du poteau
t _{wc} =	12	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc} =	19	[mm]	Epaisseur de l'aile de la section du poteau
r _c =	24	[mm]	Rayon de congé de la section du poteau
A _c =	155,98	[cm ²]	Aire de la section du poteau
I _{yc} =	92083,50	[cm4]	Moment d'inertie de la section du poteau
Matéria	U: ACIER	E28	

f _{yc} =	275,00	[MPa]	Résistance
f _{uc} =	405,00	[MPa]	Résistance ultime du matériau

PLATINE DE PRESCELLEMENT

I _{pd} =	650	[mm]	Longueur
b _{pd} =	300	[mm]	Largeur
t _{pd} =	25	[mm]	Epaisseur
Matériau:	AC	IER E24	L.
f _{ypd} =		235,00	[MPa] Résistance
f _{upd} =		365,00	[MPa] Résistance ultime du matériau

ANCRAGE

Le plan de cisaillement passe par la partie FILETÉE du boulon

Classe =	4.6		Classe de tiges d'ancrage
f _{yb} =	240,00	[MPa]	Limite de plasticité du matériau du boulon
f _{ub} =	400,00	[MPa]	Résistance du matériau du boulon à la traction
d =	20	[mm]	Diamètre du boulon
As =	2,45	[cm ²]	Aire de la section efficace du boulon
A _v =	3,14	[cm ²]	Aire de la section du boulon
n =	2		Nombre de rangéss des boulons
e∨=	150	[mm]	Entraxe

Dimensions des tiges d'ancrage

[mm]	70	L1 =
[mm]	370	L2 =
[mm]	120	L3 =
[mm]	100	L4 =

Platine

I _{wd} =	50	[mm]	Longueur
b _{wd} =	60	[mm]	Largeur
t _{wd} =	10	[mm]	Epaisseur

BECHE

Profilé:				IPE	100
$I_w =$	150	[mm]	Longueur		
Matériau	: ACIER	E28			
f _{yw} =	275,00	[MPa]	Résistance		

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel
γ _{M2} =	1,25	Coefficient de sécurité partiel
γc =	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	800	[mm]	Longueur de la semelle
B =	500	[mm]	Largeur de la semelle
H =	1200	[mm]	Hauteur de la semelle

Béton

Classe	BETON25		
$f_{ck} =$	25,00	[MPa]	Résistance caractéristique à la compression

Mortier de calage

t _g =	10	[mm]	Epaisseur du mortier de calage
$f_{ck,g} =$	12,00	[MPa]	Résistance caractéristique à la compression
$C_{f,d} =$	0,30		Coef. de frottement entre la plaque d'assise et le béton

SOUDURES

a _p =	5	[mm]	Plaque principale du pied de poteau
a _w =	5	[mm]	Bêche

EFFORTS

Cool				
		١.	`	r
Ud5.	15.	i	,	ι

Calculs manuels

N _{j,Ed} =	-218,28	[kN]	Effort axial
$V_{j,Ed,y} =$	28,80	[kN]	Effort tranchant
$V_{j,\text{Ed},z} =$	56,08	[kN]	Effort tranchant

RESULTATS

ZONE COMPRIMEE

COMPRESSION DU BETON

$f_{cd} =$	16,67 [MF	Pa] Rés	istance de calcul à la compression	EN 1992-1:[3.1.6.(1)]
$f_j =$	15,91 [MF	Pa] Rés	istance de calcul du matériau du joint sous la plaque d'assise	[6.2.5.(7)]
$c = t_p$	√(f _{yp} /(3*f _j *γ _{M0}	o))		
C =	55 [mm] L	argeur de l'appui additionnelle	[6.2.5.(4)]
b _{eff} =	99 [mm] L	argeur efficace de la semelle de tronçon T	[6.2.5.(3)]
l _{eff} =	300 [mm] L	ongueur efficace de la semelle de tronçon en T	[6.2.5.(3)]
$A_{c0} =$	298,40 [cm ²] Z	one de contact de la plaque d'assise avec la fondation	EN 1992-1:[6.7.(3)]
$A_{c1} =$	1247,33 [cm ²] A	ire de calcul maximale de la répartition de la charge	EN 1992-1:[6.7.(3)]
$F_{rdu} =$	$A_{c0}*f_{cd}*\sqrt{A_{c1}}$	$(A_{c0}) \leq 3$	3*A _{c0} *f _{cd}	
Frdu =	1016,81	[kN]	Résistance du béton à l'appui rigide	EN 1992-1:[6.7.(3)]
βj =	0,67		Coefficient réducteur pour la compression	[6.2.5.(7)]
$f_{jd} = \beta$	j*F _{rdu} /(b _{eff} *I _{eff}))		
f _{jd} =	22,72	[MPa]	Résistance de calcul du matériau du joint	[6.2.5.(7)]
A _{c,n} =	1151 , 31	[cm ²] Aire de compression efficace	[6.2.8.2.(1)]
F _{c,Rd,i}	= A _{C,i} *f _{jd}			
F _{c,Rd,n}	= 2615,41	[kN]	Résistance du béton à la compression	[6.2.8.2.(1)]
RESI	STANCE DE	LASE	MELLE DANS LA ZONE COMPRIMEE	
N _{j,Rd} =	= F _{c,Rd,n}			
N _{j,Rd} =	= 2615,41	[kN]	Résistance de la semelle à l'effort axial	[6.2.8.2.(1)]

CONTROLE DE LA RESISTANCE DE L'ASSEMBLAGE

 $N_{j,Ed} / N_{j,Rd} \le 1,0 \ (6.24)$ 0,08 < 1,00 vérifié (0,08)

CISAILLEMENT

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE	
Cisaillement par l'effort V _{j,Ed,y}	
$\alpha_{d,y} = 1, 14$ Coef. d'emplacement des boulons en direction du cisaillement	[Tableau 3.4]
$\alpha_{b,y} = 1,00$ Coef. pour les calculs de la résistance $F_{1,vb,Rd}$	[Tableau 3.4]
k _{1,y} = 2, 50 Coef. d'emplacement des boulons perpendiculairement à la direction du cisaillemen	t [Tableau 3.4]
$F_{1,vb,Rd,y} = k_{1,y}^* \alpha_{b,y}^* f_{up}^* d^* t_p / \gamma_{M2}$	
$F_{1,vb,Rd,y} = 365,00$ [kN] Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
Cisaillement par l'effort V _{j,Ed,z}	
$\alpha_{d,z} = 4$, 92 Coef. d'emplacement des boulons en direction du cisaillement	[Tableau 3.4]
$\alpha_{b,z} = 1$, 00 Coef. pour les calculs de la résistance $F_{1,vb,Rd}$	[Tableau 3.4]
k _{1,z} = 2, 50 Coef. d'emplacement des boulons perpendiculairement à la direction du cisaillemen	t [Tableau 3.4]
$F_{1,vb,Rd,z} = k_{1,z}^* \alpha_{b,z}^* f_{up}^* d^* t_p / \gamma_{M2}$	
F _{1,vb,Rd,z} = 365,00 [kN] Résistance du boulon d'ancrage à la pression sur la plaque d'assise	[6.2.2.(7)]
CISAILLEMENT DU BOULON D'ANCRAGE	
$\alpha_{b} = 0, 37$ Coef. pour les calculs de la résistance F _{2,vb,Rd}	[6.2.2.(7)]
$A_{sb} = 2,45$ [cm ²] Aire de la section efficace du boulon	[6.2.2.(7)]
$f_{ub} = 400,00$ [MPa] Résistance du matériau du boulon à la traction	[6.2.2.(7)]
YM2 = 1,25 Coefficient de sécurité partiel	[6.2.2.(7)]
$F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{sb} / \gamma_{M2}$	
F _{2,vb,Rd} = 28,85 [kN] Résistance du boulon au cisaillement - sans bras de levier	[6.2.2.(7)]
GLISSEMENT DE LA SEMELLE	
$C_{fd} = 0.30$ Coef, de frottement entre la plaque d'assise et le béton	[6.2.2.(6)]
$N_{cEd} = 218, 28$ [kN] Effort de compression	[6.2.2.(6)]
$F_{FRd} = C_{fd}^* N_{c} F_{d}$	[0:=:=:(0)]
F _{f,Rd} = 65,48 [kN] Résistance au glissement	[6.2.2.(6)]
CONTACT DE LA CALE D'ARRET AVEC BETON	
$E_{\text{L}} = 1.4 \text{ m/s} + \frac{1}{4} \text{ m/s} + 1$	
$F_{v,Rd,wg,y} = 350,00$ [kN] Résistance au contact de la cale d'arrêt avec béton	
$F_{v,Rd,wg,z} = 1.4^{*}I_{w}^{*}b_{wz}^{*}f_{ck}/\gamma_{c}$	
F _{v,Rd,wg,z} = 192, 50 [kN] Résistance au contact de la cale d'arrêt avec béton	
CONTROLE DU CISAILLEMENT	
$V_{i,p,q,n} = n_{i} * \min(F_{q,q,p,q,q,n}, F_{q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,q,$	
$V_{i,Rd,y} = 473.19$ [kN] Résistance de l'assemblage au cisaillement	
$V_{i,rd,y} = 1,0,125$ [Kt] Residence de la deciminação da obtamentar	(0, 06)
	,,
$V_{i,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_{2,vb,Rd}) + F_{v,Rd,wg,z} + F_{f,Rd}$	
V _{j,Rd,z} = 315,69 [kN] Résistance de l'assemblage au cisaillement	
$V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$ 0,18 < 1,00 vérifié	(0,18)
$V_{j,Ed,y} / V_{j,Rd,y} + V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$ 0,24 < 1,00 vérifié	(0,24)
SOUDURES ENTRE LE POTEAU ET LA PLAQUE D'ASSISE

σ⊥ =	11,69	[MPa]	Contrainte normale dans la se	oudure	[4.5.3.(7)]
τ _⊥ =	11,69	[MPa]	Contrainte tengentielle perpe	ndiculaire	[4.5.3.(7)]
τ _{yll} =	6,73	[MPa]	Contrainte tengentielle paralle	èle à V _{j,Ed,y}	[4.5.3.(7)]
$\tau_{zII} =$	9,98	[MPa]	Contrainte tengentielle paralle	èle à V _{j,Ed,z}	[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la r	ésistance	[4.5.3.(7)]
σ⊥ / (0.9 [°]	*fu/γ _{M2})) ≤ 1.	0 (4.1)	0,04 < 1,	00 vérifi	é (0,04)
$\sqrt{(\sigma_{\perp}^2 + 3)}$	3.0 (τ _{yll} ² + τ _⊥	²)) / (f _u /(β	$N^* \gamma_{M2})) \le 1.0 (4.1) 0,08 < 1,$	00 vérifi	é (0,08)
$\sqrt{(\sigma_{\perp}^2 + 3)}$	3.0 (τ _{zll} ² + τ⊥	²)) / (f _u /(β	$(N^* \gamma_{M2})) \le 1.0 (4.1) 0,08 < 1,$	00 vérifi	é (0,08)

VII.2.4.1.2.<u>Cas2 : à la traction :</u>

GEOMETRIE

POTEAU

Profilé:			IPE 600
$L_c =$	5,00	[m]	Longueur du poteau
α =	0,0	[Deg]	Angle d'inclinaison
hc =	600	[mm]	Hauteur de la section du poteau
b _{fc} =	220	[mm]	Largeur de la section du poteau
t _{wc} =	12	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc} =	19	[mm]	Epaisseur de l'aile de la section du poteau
r _c =	24	[mm]	Rayon de congé de la section du poteau
A _c =	155 , 98	[cm ²]	Aire de la section du poteau
I _{yc} =	92083,50	[cm4]	Moment d'inertie de la section du poteau
Matéria	U: ACIER	E28	
f _{yc} =	275,00	[MPa]	Résistance
f _{uc} =	405,00	[MPa]	Résistance ultime du matériau

PLATINE DE PRESCELLEMENT

I _{pd} =	650	[mm]	Longueur
b _{pd} =	300	[mm]	Largeur
t _{pd} =	25	[mm]	Epaisseur
Matériau:	AC	IER E24	
f _{ypd} =		235,00	[MPa] Résistance
$f_{upd} =$		365,00	[MPa] Résistance ultime du matériau

ANCRAGE

Le plan de cisaillement passe par la partie FILETÉE du boulon			
Classe =	4.6		Classe de tiges d'ancrage
$f_{yb} =$	240,00	[MPa]	Limite de plasticité du matériau du boulon
$f_{ub} =$	400,00	[MPa]	Résistance du matériau du boulon à la traction
d =	20	[mm]	Diamètre du boulon
A _s =	2,45	[cm ²]	Aire de la section efficace du boulon
A _v =	3,14	[cm ²]	Aire de la section du boulon
n =	2		Nombre de rangéss des boulons

Chapitre VII

Le plan de cisaillement passe par la partie FILETÉE du boulon

e_V = 150 [mm] Entraxe

Dimensions des tiges d'ancrage

L1 =	70	[mm]
L ₂ =	370	[mm]
L3 =	120	[mm]
L4 =	100	[mm]

Platine

$I_{wd} =$	50	[mm]	Longueur
b _{wd} =	60	[mm]	Largeur
t _{wd} =	10	[mm]	Epaisseur

BECHE

Profilé:				IPE	100
$I_w =$	150	[mm]	Longueur		
Matériau	: ACIER	E28			
f _{yw} =	275,00	[MPa]	Résistance		

COEFFICIENTS DE MATERIAU

үмо =	1,00	Coefficient de sécurité partiel
γм2 =	1,25	Coefficient de sécurité partiel
γc =	1,50	Coefficient de sécurité partiel

SEMELLE ISOLEE

L =	800	[mm]	Longueur de la semelle
B =	500	[mm]	Largeur de la semelle
H =	1200	[mm]	Hauteur de la semelle

Béton

Classe	BETON25		
f _{ck} =	25,00	[MPa]	Résistance caractéristique à la compression

Mortier de calage

t _g =	10	[mm]	Epaisseur du mortier de calage
$f_{ck,g} =$	12,00	[MPa]	Résistance caractéristique à la compression
$C_{f,d} =$	0,30		Coef. de frottement entre la plaque d'assise et le béton

SOUDURES

a _p =	5	[mm]	Plaque principale du pied de poteau
a _w =	5	[mm]	Bêche

EFFORTS

$N_{j,Ed} =$	97,28	[kN]	Effort axial
$V_{j,Ed,y} =$	35,88	[kN]	Effort tranchant

Chapitre **VI**

N _{j,Ed} =	97,28	[kN]	Effort axial
V _{i,Ed,z} =	7,28	[kN]	Effort tranchant

RESULTATS

ZONE TENDUE

RUPTURE DU BOULON D'ANCRAGE	
$A_b = 2,45$ [cm ²] Aire de section efficace du boulon	[Tableau 3.4]
fub = 400,00 [MPa] Résistance du matériau du boulon à la traction	[Tableau 3.4]
Beta = 0,85 Coefficient de réduction de la résistance du boulon	[3.6.1.(3)]
$F_{t,Rd,s1} = beta*0.9*f_{ub}*A_b/\gamma_{M2}$	
F _{t,Rd,s1} = 59,98 [kN] Résistance du boulon à la rupture	[Tableau 3.4]
$F_{t,Rd,s} = F_{t,Rd,s1}$	
$F_{t,Rd,s} = 59,98$ [kN] Résistance du boulon à la rupture	
ARRACHEMENT DU BOULON D'ANCRAGE DU BETON	
f _{ck} = 25,00 [MPa] Résistance caractéristique du béton à la compression	EN 1992-1:[3.1.2]
$f_{ctd} = 0.7^* 0.3^* f_{ck}^{2/3} / \gamma_C$	
f _{ctd} = 1,20 [MPa] Résistance de calcul à la traction	EN 1992-1:[8.4.2.(2)]
$\eta_1 = 1,00$ Coef. dépendant des conditions du bétonnage et de l'adhérence	EN 1992-1:[8.4.2.(2)]
$\eta_2 = 1,00$ Coef. dépendant du diamètre du boulon d'ancrage	EN 1992-1:[8.4.2.(2)]
$f_{bd} = 2.25^* \eta_1^* \eta_2^* f_{ctd}$	
f _{bd} = 2,69 [MPa] Adhérence de calcul admissible	EN 1992-1:[8.4.2.(2)]
h _{ef} = 370 [mm] Longueur efficace du boulon d'ancrage	EN 1992-1:[8.4.2.(2)]
$F_{t,Rd,p} = \pi^* d^* h_{ef} f_{bd}$	
$F_{t,Rd,p} = 62, 61$ [kN] Résistance de calc. pour le soulèvement	EN 1992-1:[8.4.2.(2)]
RESISTANCE DU BOULON D'ANCRAGE A LA TRACTION	
$F_{t,Rd} = min(F_{t,Rd,s}, F_{t,Rd,p})$	
$F_{t,Rd} = 59,98$ [kN] Résistance du boulon d'ancrage à traction	
FLEXION DE LA PLAQUE DE BASE	
leff,1 = 297 [mm] Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]
l _{eff,2} = 297 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 63 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
M _{pl,1,Rd} = 10,91 [kN*m] Résistance plastique de la dalle pour le mode 1	[6.2.4]
$M_{pl,2,Rd} = 10,91 [kN^*m]$ Résistance plastique de la dalle pour le mode 2	[6.2.4]
F _{T,1,Rd} = 688,81 [kN] Résistance de la dalle pour le mode 1	[6.2.4]
FT,2,Rd = 222,72 [kN] Résistance de la dalle pour le mode 2	[6.2.4]
F _{T,3,Rd} = 119,95 [kN] Résistance de la dalle pour le mode 3	[6.2.4]
$F_{t,pl,Rd} = min(F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd})$	
$F_{t,pl,Rd} = 119,95$ [kN] Résistance de la dalle pour le mode à la traction	[6.2.4]
RESISTANCE DE L'AME DU POTEAU A LA TRACTION	
twc = 12 [mm] Epaisseur efficace de l'âme du poteau	[6.2.6.3.(8)]
b _{eff,t,wc} = 297 [mm] Largeur efficace de l'âme à la traction	[6.2.6.3.(2)]
Avc = 83,78 [cm ²] Aire de la section au cisaillement	EN1993-1-1:[6.2.6.(3)]
$\omega = 0,90$ Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.3.(4)]
$F_{t,wc,Rd} = \omega \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ \gamma_{M0}$ $F_{t,wc,Rd} = 882, 00 $ [kN] Résistance de l'âme du poteau	[6.2.6.3.(1)]
	[(-)]

RESISTANCES DE SEME $N_{j,Rd} = 119,95$ [kN]	LLE DANS LA ZONE TENDUE Résistance de la semelle à la traction axiale	[6.2.8.3]
CONTROLE DE LA R	ESISTANCE DE L'ASSEMBLAGE	
$N_{12} < 10.624$	0.81 < 1.00 várif	iá (0.81)
$N_{j,Ed} / N_{j,Rd} = 1,0 (0.24)$	0,01 < 1,00	
CISAILLEMENT		
PRESSION DU BOULON	D'ANCRAGE SUR LA PLAQUE D'ASSISE	
$\alpha_{d,y} = 1, 14$ Coef. d'empla	sement des boulons en direction du cisaillement	[Tableau 3.4]
$\alpha_{b,y} = 1,00$ Coef. pour les	calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
$k_{1,y} = 2,50$ Coef. d'empla	ement des boulons perpendiculairement à la dire	ction du cisaillement [Tableau 3.4]
$F_{1,vb,Rd,y} = K_{1,y} \alpha_{b,y} T_{up} \alpha_{tp}$ $F_{1,vb,Rd,y} = 365,00 $ [kN]	γ_{M2} Résistance du boulon d'ancrage à la pression sur	la plaque d'assise [6.2.2.(7)]
Cisaillement par l'effort	, j,Ed,z	
$\alpha_{d,z}$ = 4, 92 Coef. d'empla	ement des boulons en direction du cisaillement	[Tableau 3.4]
$\alpha_{b,z} = 1,00$ Coef. pour les	calculs de la résistance F _{1,vb,Rd}	[Tableau 3.4]
$k_{1,z} = 2,50$ Coef. d'empla	ement des boulons perpendiculairement à la dire	ction du cisaillement [Tableau 3.4]
$F_{1,vb,Rd,z} = k_{1,z} \alpha_{b,z} * f_{up} * d^{t}t_{p}$ $F_{1,vb,Rd,z} = 365,00 $ [kN]	_{γм2} Résistance du boulon d'ancrage à la pression sur	la plaque d'assise [6.2.2.(7)]
CISAILLEMENT DU BOU	-ON D'ANCRAGE	
$\alpha_{\rm b} = 0,37$	Coef. pour les calculs de la résistance F _{2,vb,Rd}	[6.2.2.(7)]
$A_{sb} = 2,45$ [cm ²]	Aire de la section efficace du boulon	[6.2.2.(7)]
f _{ub} = 400,00 [MPa]	Résistance du matériau du boulon à la traction	[6.2.2.(7)]
γ _{M2} = 1,25	Coefficient de sécurité partiel	[6.2.2.(7)]
$F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{sb} / \gamma_{M2}$		
$F_{2,vb,Rd} = 28,85$ [kN] Ré	istance du boulon au cisaillement - sans bras de	levier [6.2.2.(7)]
GLISSEMENT DE LA SEI		
$C_{f,d} = 0,30$ Coet.	de frottement entre la plaque d'assise et le béton	[6.2.2.(6)]
$N_{c,Ed} = 0,00$ [KN] Effort	de compression	[6.2.2.(6)]
$F_{f,Rd} = O_{f,d} N_{c,Ed}$ $F_{f,Rd} = 0,00 [kN]$	Résistance au glissement	[6.2.2.(6)]
CONTACT DE LA CALE	PARRET AVEC BETON	
$F_{v,Rd,wg,y} = 1.4^* I_w^* b_{wy}^* f_{ck} / \gamma_c$		
$F_{v,Rd,wg,y} = 350,00 $ [kN]	résistance au contact de la cale d'arrêt avec bétor	ก
$F_{v,Rd,wg,z} = 1.4*I_w*b_{wz}*f_{ck}/\gamma_c$		
$F_{v,Rd,wg,z} = 192,50$ [kN]	Résistance au contact de la cale d'arrêt avec bétor	n
CONTROLE DU CISAILL	MENT	
$V_{j,Rd,y} = n_b^*min(F_{1,vb,Rd,y}, F_2)$	$v_{b,Rd}$) + $F_{v,Rd,wg,y}$ + $F_{f,Rd}$	
$V_{j,Rd,y} = 407,70$ [kN]	Résistance de l'assemblage au cisaillement	
V _{j,Ed,y} / V _{j,Rd,y} ≤ 1,0	0,09 < 1,00 vérif	ie (0,09)

Chapitre **VI**

$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_2)$,vb,Rd) + Fv,Rd,wg,z	+ F _{f,Rd}		
$V_{j,Rd,z} = 250, 20$ [kN]	Résistance de	l'assemblage au	u cisaillement	
$V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$		0,03 < 1,00	vérifié	(0,03)
$V_{j,Ed,y} / V_{j,Rd,y} + V_{j,Ed,z} / V_{j,Rd}$	_{,z} ≤ 1,0	0,12 < 1,00	vérifié	(0,12)

SOUDURES ENTRE LE POTEAU ET LA PLAQUE D'ASSISE

σ ⊥ =	6,95	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	6,95	[MPa]	Contrainte tengentielle perpendiculaire	[4.5.3.(7)]	
$\tau_{yII} =$	8,38	[MPa]	Contrainte tengentielle parallèle à V _{j,Ed,y}		[4.5.3.(7)]
$\tau_{zII} =$	1,30	[MPa]	Contrainte tengentielle parallèle à V _{j,Ed,z}		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
σ⊥ / (0.9*fu	/γ _{M2})) ≤ '	1.0 (4.1)	0,03 < 1,00	vérifié	(0,03)
$\sqrt{(\sigma_{\perp}^2 + 3.0)}$) (τ _{yll} ² +	τ _⊥ ²)) / (f _u /	(βw [*] γ _{M2}))) ≤ 1.0 (4.1)0,06 < 1,00	vérifié	(0,06)
$\sqrt{(\sigma_{\perp}^2 + 3.0)}$	$(\tau_{zII}^2 + \tau_{zII}^2)$	$(\tau_{\perp}^2)) / (f_u/($	$(\beta_W^*\gamma_{M2})) \le 1.0 (4.1) 0,04 < 1,00$	vérifié	(0,04)

CHAPITRE VII :

Vérification et calcul de ferraillage des éléments en béton armé

VIII.1. Vérifications des éléments en béton armé selon le RPA99v2003 :

VIII.1.1.<u>Bloc A :</u>

VIII.1.1.1.Les poutres principales (25×35) :

Nous avons introduit la poutre (25×35) calculée manuellement dans le chapitre IV et vérifiée.

VIII.1.1.2. Les poutres secondaires (25×30) :

Nous avons introduit la poutre (25×30) calculée manuellement dans le chapitre IV et vérifiée.

VIII.1.1.3. Les poteaux carrés (40×40) :

VIII.1.1.3.1. Vérification de la l'effort normal réduit :

$$\nu = \frac{N_d}{B_c \times f_{cj}} \le 0.30$$

 $N_d = 273,41 \text{ kN}$ (Obtenue par le logicielSap2000V14)

 $\nu = \frac{N_d}{B_c \times f_{cj}} = \frac{273,41}{(40 \times 40) \times 25} \times 10 = 0,07 < 0,30 \implies Vérifiée$

VIII.1.1.4.<u>Les poteaux circulaires (D = 45 cm) :</u>

VIII.1.1.4.1. Vérification de la l'effort normal réduit :

$$\nu = \frac{N_d}{B_c \times f_{cj}} \le 0.30$$

 $N_d = 364,67 \text{ kN}$ (Obtenue par le logicielSap2000V14)

$$v = \frac{N_d}{B_c \times f_{cj}} = \frac{364,67}{(\frac{\pi \times 45^2}{4}) \times 25} \times 10 = 0,09 < 0,30 \implies Vérifiée$$

VIII.1.2.<u>Bloc B :</u>

VIII.1.2.1.Les poutres principales (25×35) :

Nous avons introduit la poutre (25 × 35) calculée manuellement dans le chapitre IV et vérifiée.

VIII.1.2.2. Les poutres secondaires (25×30) :

Nous avons introduit la poutre (25 × 30) calculée manuellement dans le chapitre IVet vérifiée.

VIII.1.2.3. Les poteaux carrés (40×40) :

VIII.1.2.3.1. Vérification de la l'effort normal réduit :

$$\nu = \frac{N_d}{B_c \times f_{cj}} \le 0.30$$

 $N_d = 253,10 \text{ kN}$ (Obtenue par le logicielSap2000V14)

 $v = \frac{N_{d}}{B_{c} \times f_{cj}} = \frac{253,10}{(40 \times 40) \times 25} \times 10 = 0,06 < 0,30 \implies Vérifiée$

VIII.1.3.<u>Bloc C :</u>

VIII.1.3.1.Les poutres principales (25×35) :

Nous avons introduit la poutre (25×35) calculée manuellement dans le chapitre IV et vérifiée.

VIII.1.3.2. Les poutres secondaires (25×30) :

Nous avons introduit la poutre (25 × 30) calculée manuellement dans le chapitre IVet vérifiée.

VIII.1.3.3. Les poteaux carrés (40×40) :

VIII.1.3.3.1. Vérification de la l'effort normal réduit :

$$\nu = \frac{N_d}{B_c \times f_{cj}} \le 0.30$$

 $N_d = 216,21 \text{ kN}$ (Obtenue par le logicielSap2000V14)

 $\nu = \frac{N_{d}}{B_{c} \times f_{cj}} = \frac{216,21}{(40 \times 40) \times 25} \times 10 = 0,05 < 0,30 \implies Vérifiée$

VIII.2. Ferraillages des éléments structuraux

On distingue par éléments structuraux les éléments qui contribuent dans la stabilité et la résistance de la structure vis-à-vis des diverses sollicitations d'une manière générales et ceux du séisme en particulier, tels que les poteaux, les voiles et les poutres. En ce qui suit nous présentons les résultats de calcul et vérification de ces éléments sous les efforts donnés par les modèles numériques de calcul établis par le logiciel SAP2000 et dont les calculs sont faits par deux types de sollicitations :

Flexion simple pour les poutres.

Flexion composée pour les poteaux et les voiles

Le ferraillage des éléments résistant doit être conforme aux règlements en vigueur en l'occurrence du BAEL91 et desRPA99 version 2003

NB : nous avons choisi le bloc A pour le ferraillage

VIII.2.1. Ferraillages des poteaux :

Les poteaux sont des éléments structuraux assurant la transmission des efforts des poutres vers les fondations, ils sont soumis à un effort normal « N » et à un moment de flexion « M » dans les deux sens : longitudinal et transversal. Donc ils sont calculés en flexion composée.

Les armatures seront calculées sous l'effet des sollicitations les plus défavorables et dans les situations suivantes :

		Béton			Acier	
Situation	γ_b	<i>f</i> _{c28}	σ_{bc} (MPa)	γ_s	Fe (MPa)	σ _s (MPa)
Durable	1,5	25	14,167	1,15	400	348
Accidentelle	1,15	25	18,478	1	400	400

Tableau Ⅷ1: Caractéristiques mécaniques des matériaux.

VIII.2.1.1.Combinaisons de charge :

Les combinaisons d'actions à prendre en compte lors du calcul des poteaux sont :

Selon le règlement BAEL 91 (situation durable) :

- ► ELU..... 1,35 G + 1,5 Q
- \blacktriangleright **•** E L S G + Q

Selon le RPA 99 (situation accidentelle) :

- \blacktriangleright G + Q + EX
- \blacktriangleright **• G** + **Q** + **EY**
- ▶ 0,8G ± EX
- ▶ 0,8G ± EY
- → G+Q+1.2Ex (pour les poteaux structure auto-stable)
- \blacktriangleright G+Q+1.2Ey (pour les poteaux structure auto-stable)

La section d'acier sera calculée pour différentes combinaisons d'efforts internes, à savoir :

- 1- Effort normal maximal et le moment correspondant (P^{max}, M^{corr})
- 2- Le moment maximum et l'effort correspondant (M^{max}, P^{corr})
- 3- Effort normal minimal et le moment correspondant (P^{min}, M^{corr})

VIII.2.1.2. Recommandations du BAEL 91 :

- > Ferraillages calculer avec le logiciel SOCOTEC2 ce logiciel permet de :
- Calculer les sections d'aciers selon les règles BAEL91 à l'état limite ultime (ELU)
- Calculer et vérifier les contraintes acier et béton selon les règles BAEL91 à l'état limite service (ELS)

VIII.2.1.3. Recommandations de l'RPA99 :

Pour les armatures longitudinales ; on doit respecter les conditions de l'RPA99v2003 ; Les armatures longitudinales doivent être à haute adhérence droites et sans crochets :

- ▶ Leur pourcentage minimal sera de 0,8% en zone IIa

- Le diamètre min est de 12 mm.
- \blacktriangleright La larguer minimal de recouvrement en zone IIa est 40 \emptyset
- > La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 25 cm
- > Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales

VIII.2.1.4.Poteau carré :

➤ Cas01 : (P^{max}, M^{corr}) :

Tableau VIII2: Ferraillage de poteau carré (P^{max} , M^{corr}).

Situation	Section (cm ²)	P ^{max} (kN)	M ^{corr} (kN.m)	As (cm²)	As' (cm²)	As min (cm²) RPA
Durable (1,35G+1,5Q)		-33,68	18,31	0	1,9	
Accidentelle (G+Q+E)	(40 × 40)	-24,73	13,43	0	1,21	12,8
Accidentelle (0,8G+E)		-18,27	9,81	0	0,89	

≻ Cas02 : (M^{max}, P^{corr}) :

Tableau VIII3: Ferraillage de poteau carré (M^{max} , P^{corr}).

Situation	Section (cm ²)	M ^{max} (kN.m)	P ^{corr} (kN)	As (cm²)	As' (cm²)	As min (cm²) RPA
Durable		27.9	-109 87	0	3 78	
(1,35G+1,5Q)		27,9	109,07	0	5,70	
Accidentelle	(40×40)	20.44	-80 55	0	2 41	12.8
(G+Q+E)	(10 × 10)	20,77	-00,55	0	2,71	12,0
Accidentelle		14 70	-58/11	0	1 74	
(0,8G+E)		14,70	-50,41	0	1,74	

➤ Cas03 : (P^{min}, M^{corr}) :

		U	1			,
Situation	Section (cm ²)	P ^{min} (KN)	M ^{corr} (KN.m)	As (cm²)	As' (cm²)	As min (cm²) RPA
Durable		-241 57	-2 37	3 66	3.28	
(1,35G+1,5Q)		-2-1,57	-2,37	5,00	5,20	
Accidentelle	(40×40)	-177 33	-1 72	2 34	2.1	12.8
(G+Q+E)	(10 × 10)	177,55	1,72	2,34	2,1	12,0
Accidentelle		-130 30	-1 15	1 71	1 55	
(0,8G+E)		150,50	1,15	1,71	1,55	

Tableau VIII 4: Ferraillage de poteau carré (P^{min} , M^{corr}).

VIII.2.1.5. Poteau circulaire :

➤ Cas01 : (P^{max}, M^{corr}) :

Tableau VIII5: Ferraillage de poteau circulaire (P^{max} , M^{corr}).

Situation	Section	P ^{max}	M ^{corr}	As	As min (cm ²)
Situation	(cm)	(kN)	(kN.m)	(cm²)	RPA
Durable		60.18	10.58	16	
(1,35G+1,5Q)		-00,18	17,50	4,0	
Accidentelle	(45)	44.11	14.24	2.0	10.70
(G+Q+E)		-44,11	-14,34	2,9	12,72
Accidentelle		21.04	10.27	2.07	
(0,8G+E)		-51,94	-10,27	2,07	

➤ Cas02 : (M^{max}, P^{corr}) :

Tableau VII6: Ferraillage de poteau circulaire (M^{max}, P^{corr}) .

Situation	Section	M ^{max}	P ^{corr}	As	As min (cm ²)
Situation	(cm)	(kN.m)	(kN)	(cm²)	RPA
Durable		32.66	01.67	7 50	
(1,35G+1,5Q)		32,00	-91,07	1,52	
Accidentelle	(45)	22.80	67 27	1.24	12.72
(G+Q+E)	(45)	25,69	07,57	1,34	12,72
Accidentelle	1	16.02	50.05	2 20	
(0,8G+E)		10,95	-30,03	3,38	

≻ Cas03 : (P^{min}, M^{corr}) :

Tableau VII 7: Ferraillage de poteau circulaire (P^{min}, M^{corr}) .

Situation	Section	P ^{min}	M ^{corr}	As	As ^{min} (cm ²)
Situation	(cm²)	(kN)	(kN.m)	(cm²)	RPA
Durable		360.21	4.00	10.36	
(1,35G+1,5Q)		-300,21	-4,07	10,50	
Accidentelle	(45)	264 51	2.00	6.61	12 72
(G+Q+E)	(45)	-204,31	-2,99	0,01	12,72
Accidentelle	1	104.00	2 1 2	1 97	
(0,8G+E)		-174,99	-2,12	4,07	

VIII.2.1.5.1. Choix des armatures :

Tableau VIII 8: Choix des armatures des poteaux.

Eléments	Section	As ^{cal} (cm ²)	As ^{min} (cm ²)	As ^{max} ZC (cm ²)	As ^{max} ZR (cm ²)	Choix des armatures	As ^{adopté} (cm ²)
Poteau carré	(40×40) cm ²	6,94	12,8	64	96	4T14 + 4T16	14,2
Poteau circulaire	(45) cm	10,36	12,8	63,62	95,43	9T14	13,85

VIII.2.1.6. Vérification vis-à-vis de l'état limite de service :

Les contraintes sont calculées à l'état limite de service puis elles sont comparées aux contraintes admissible données par :

➢ Béton :

$$\sigma_{bc} = \frac{M_{ser}}{I} \cdot y \le \bar{\sigma}_{bc}$$

Et

$$\bar{\sigma}_{bc} = 0.6 \times f_{c28} = 0.6 \times 25 = 15 MPa$$

> Acier :

$$\sigma_s = \frac{N_{ser}}{A} \le \bar{\sigma_s}$$

Dans notre cas la fissuration est considérée préjudiciable ; Donc :

$$\overline{\sigma_s} = \min\left\{\frac{2}{3}fe; max\left(0.5 fe, 110\sqrt{\eta f_{tj}}\right)\right\}$$

Avec :

 $\eta = 1.6$ (Pour les aciers HA)

 $\succ Cas01: (P_{ser}^{max}, M_{ser}^{corr}):$

Tableau VIII9 : Vérification des contraintes pour Poteaux (P_{ser}^{max} , M_{ser}^{corr}).

Eléments	Section	Pser (KN)	M ^{corr} (KN.m)	As ^{adopté} (cm ²)	σ _s (MPa)	$\overline{\sigma_s}$ (MPa)	σ _{bc} (MPa)	σ _{bc} (MPa)	Vérification
Poteau carré	(40 ²) cm ²	- 24,73	13,43	14,2	17,42	201,63	1,26	15	Vérifier
Poteau Circulaire	(45) cm	- 44,11	-14,34	13,85	31,85	201,63	1,60	15	Vérifier

 \succ Cas02: (M^{max}_{ser}, P^{corr}_{ser}):

Tableau Ⅷ 10: Vérification des contraintes pour Poteaux (*M*^{max}_{ser}, *P*^{corr}_{ser}).

Eléments	Section	M ^{max} (KN.m)	Pser (KN)	As ^{adopté} (cm ²)	σ _s (MPa)	$\overline{\sigma_s}$ (MPa)	σ _{bc} (MPa)	σ _{bc} (MPa)	Vérification
Poteau carré	(40 ²) cm ²	20,44	- 80,55	14,2	56,73	201,63	1,92	15	Vérifier
Poteau Circulaire	(45) cm	23,89	- 67,37	13,85	48,64	201,63	1,57	15	Vérifier

> Cas03 : $(P_{ser}^{min}, M_{ser}^{corr})$:

Tableau Ⅷ 11: Vérification des contraintes pour Poteaux (*P*^{min}_{ser}, *M*^{corr}_{ser}).

Eléments	Section	P_{ser}^{min}	M ^{corr} (KN m)	As ^{adopté}	σ_{s}	$\overline{\sigma_s}$	σ _{bc} (MPa)	$\overline{\sigma_{bc}}$	Vérification
		$(\mathbf{K}\mathbf{N})$	(IXIN.III)	(cm)	$(\mathbf{W}\mathbf{II} \ a)$	(IVII a)	(1/11 4)	(IVII a)	
Poteau carré	(40 ²) cm ²	- 177,33	-1,72	14,2	124,88	201,63	0,16	15	Vérifier
Poteau Circulaire	(45) cm	- 264,51	-2,99	13,85	190,98	201,63	0,02	15	Vérifier

VIII.2.1.7. Vérification de l'effort Tranchant :

VIII.2.1.7.1. Vérification de la contrainte de cisaillement :

$$\tau_u = \frac{T_u}{bd} \le \overline{\tau_u}$$

 τ_u : Contrainte de cisaillement

Tu : effort tranchant à l'état limite ultime de la section étudiée

b : la largeur de la section étudiée

d : la hauteur utile

La contrainte de cisaillement est limitée par une contrainte admissible $\overline{\tau_u}$ égale à :

Selon le BAEL 91 :

 $\bar{\tau}_u = min \ (0,10 \ f_{c28}, 4 \ MPa) \dots$ Fissuration préjudiciable et très préjudiciable.

Selon RPA99 ver2003 :

$$\bar{\tau}_u = \rho_d \times f_{c28}$$

 $\rho_d=0,075$ Si $\lambda\geq 5$

 $\rho_d = 0,040 \dots \mathrm{Si} \ \lambda < 5$

 λ : L'élancement géométrique du poteau

$$\lambda = \frac{L_f}{a}$$

a : Dimension de la section droite du poteau.

 L_f : Longueur du flambement du poteau

Tableau VII 12 : Vérification de la contrainte de cisaillement pour les poteaux.

Eléments	Section	Tu (KN)	τ _u (MPa)	λ	ρ _d	τ _u (MPa) RPA	$\overline{\tau}_u(MPa)$ BAEL	Vérification
Poteau carré	(40 ²) cm ²	13,07	0,09	6,3	0,075	1,88	2,5	Vérifier
Poteau circulaire	(45) cm	28,96	0,16	5,6	0,075	1,88	2,5	Vérifier

VIII.2.1.8. Ferraillage transversale :

Les armatures transversales sont déterminées selon :

▶ BAEL91 :

- $t = \min(0,9d; 40 \ cm)$
- $\phi_t \leq min\left(\frac{h}{35}; \frac{b}{10}; \phi_l\right)$

 $\frac{A_t f_e}{b.t} \ge \max(\frac{\tau_u}{2}; 0, 4) MPa$

 A_t : Section d'armatures transversales.

b: Largeur de la section droite.

h: Hauteur de la section droite.

t : Espacement des armatures transversales.

 $Ø_t$: Diamètre des armatures transversales.

 ϕ_l : Diamètre des armatures longitudinales.

➢ Selon RPA99v2003 :

 $\frac{A_t}{t} = \frac{\rho_a \cdot T_u}{h \cdot f_e}$

Avec :

Tu : Effort tranchant à l'ELU.

fe : Contrainte limite élastique de l'acier d'armatures transversales.

 ρ_a : Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort Tranchant.

 $\rho_a = 2,5 \dots \mathrm{si} \ \lambda \geq 5$

 $\rho_a = 3,75 \dots si \ \lambda < 5$

L'espacement des armatures transversales :

Zone IIa : $\begin{cases} t \le \min(10\emptyset ; 15 \text{ cm}) \dots \text{ zone nodale} \\ t' \le 15\emptyset_l \end{cases}$

 Tableau ₩ 13: Espacement maximales selon RPA99 des poteaux.

Eléments				t (cm)		
	Section	Barres	Ø _l (mm)	Zone nodale	Zone courante	
Poteau carré	$(40^2) \text{ cm}^2$	4T14 + 4T16	14 +16	14+15	21+24	
Poteau circulaire	(45) cm	9T14	14	14	21	

								r r		
Eléments	Section	$L_f(\mathbf{m})$	λ(%)	$ ho_a$	Tu ^{max} (KN)	Zone	t (cm)	A_t^{cal}	Choix	As ^{adopté} (cm ²)
Poteau	Poteau carré (40^2) cm² $2,52$	6.2	2.5	12.07	Ν	14	0,29	4T6	1,13	
carré		2,32	0,5	2,3	15,07	С	21	0,43	4T6	1,13
Poteau	(45)	2.52	56	2.5	28.06	Ν	14	0,56	4T6	1,13
circulaire	cm 2,52		5,0	2,3	28,90	С	21	0,84	4T6	1,13

Tableau Ⅷ 14: Choix des armatures transversales des poteaux.

VIII.2.1.9. Longueur de recouvrement :

La longueur minimale de recouvrement est de : $Lr = 40\emptyset_l$ en zone IIa.

Pour :

Ø=14mm.....Lr=56cm

Ø=16mm.....Lr=64cm

Figure VIII : Schéma de ferraillage de poteau (circulaire& carré).

VIII.2.2. Ferraillage des poutres :

Le calcul des poutres se fait en flexion simple en considérant les combinaisons d'action suivantes :

VIII.2.2.1. Combinaisons de charge :

Les combinaisons d'actions à prendre en compte lors du calcul des poteaux sont :

Selon le règlement BAEL 91 (situation durable) :

- ► E L U 1,35 G + 1,5 Q
- \succ E L S G + Q

Selon le RPA 99 (situation accidentelle) :

- \blacktriangleright G + O + EX
- \blacktriangleright G + Q + EY
- \blacktriangleright 0,8G ± EX
- \blacktriangleright 0.8G ± EY

VIII.2.2.2.Recommandations du BAEL 91 :

Ferraillages calculer avec le logiciel SOCOTEC2 ce logiciel permet de :

Calculer les sections d'aciers selon les règles BAEL91 à l'état limite ultime (ELU)

Calculer et vérifier les contraintes acier et béton selon les règles BAEL91 à l'état limite service (ELS)

VIII.2.2.3. Recommandations de l'RPA99 :

Pour les armatures longitudinales ; on doit respecter les conditions de l'RPA99v2003 ;

Les armatures longitudinales doivent être à haute adhérence droites et sans crochets :

- > Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section
- > Leur pourcentage maximal sera de : $\begin{cases} 4\% en zone courante (ZC) \\ 6\% en zone de recouvrement (ZR) \end{cases}$

- ▶ La larguer minimal de recouvrement en zone IIa est 40∅
- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.

VIII.2.2.4. Poutre principale :

➤ Cas 01 : M^{appuis}

Tableau ₩ 15 : Ferraillage de poutre principale en appuis.

Situation	Section (cm ²)	M ^{appuis} (KN.m)	As(cm ²)	As'(cm ²)	As ^{min} (cm ²) RPA
Durable (1,35G+1,5Q)	(25 × 35)	-23,04	2,22	0	
Accidentelle (G+Q+E)		-16,88	1,39	0	4,38
Accidentelle (0,8G+E)		-12,17	1	0	

➢ Cas 02 : M^{travée}

Tableau W16: Ferraillage de poutre principale en travée.

Situation	Section (cm ²)	M ^{travée} (KN.m)	As(cm ²)	As'(cm ²)	As ^{min} (cm ²) RPA
Durable (1,35G+1,5Q)	(25 × 35)	15,82	0	1,41	
Accidentelle (G+Q+E)		11,59	0	0,89	1 39
Accidentelle (0,8G+E)		8,32	0	0,64	4,30

VIII.2.2.5. Poutre secondaire :

➢ Cas 01 : M^{appuis}

Tableau W17: Ferraillage de poutre secondaire en appuis.

Situation	Section (cm ²)	M ^{appuis} (KN.m)	As(cm ²)	As'(cm ²)	As ^{min} (cm ²) RPA
Durable (1,35G+1,5Q)	(25 × 30)	-14,24		1,56 0	
Accidentelle (G+Q+E)		-10,44	0,98	0	3,75
Accidentelle (0,8G+E)		-7,56	0,71	0	

➤ Cas 02 : M^{travée}

Tableau 💵	18:	Ferraillage	de	poutre	secondaire	en	travée.
-----------	-----	-------------	----	--------	------------	----	---------

Situation	Section (cm ²)	M ^{travée} (KN.m)	As(cm ²)	As'(cm ²)	As ^{min} (cm ²) RPA	
Durable (1,35G+1,5Q)		7,76	0	0,81		
Accidentelle (G+Q+E)	(25 × 30)	5,69	0	0,51	3,75	
Accidentelle (0,8G+E)		4,10	0	0,37		

VIII.2.2.6. Choix des armatures :

Tableau ₩ 19: Choix des armatures des poutres.

Eléments	Section (cm ²)	Position	M _{max} (KN.m)	As ^{cal} (cm ²)	As ^{min} (cm ²) RPA	As ^{max} ZC (cm ²)	As ^{max} ZR (cm ²)	Choix des armatures	As ^{adopté} (cm ²)
Poutre	(25	Appuis	-23,04	2,22		25			
principale	× 35)	Travée	15,82	1,41	4,38	33	52,5	4T12	4,52
Poutre	(25 ×	Appuis	-14,24	1,56					4.50
secondaire	30)	Travée	7,76	0,81	3,75	30	45	4T12	4,52

VIII.2.2.7. Condition de non fragilité :

$$A_s^{min} \ge 0,23bd \, \frac{f_{t28}}{fe}$$

Avec :

 $f_{t28} = 2,1 MPa$

Fe=400 MPa

Tableau VIII 20: Vérification de Condition de non fragilité.

Eléments	As ^{choisi} (cm ²)	As ^{min} (cm ²)	Vérification
Poutre principale	4,52	0,89	Vérifier
Poutre secondaire	4,52	0,72	Vérifier

VIII.2.2.8. Vérification des poutres à l'ELS :

➢ Béton :

$$\sigma_{bc} = \frac{M_{ser}}{l} \cdot y \le \bar{\sigma}_{bc}$$

Et

$$\bar{\sigma}_{bc} = 0.6 \times f_{c28} = 0.6 \times 25 = 15 MPa$$

> Acier :

$$\sigma_{s} = \frac{n.M_{ser} \times (d-y)}{I} \le \overline{\sigma_{s}}$$

Tableau ⁄ 21:	Vérification de	es poutres à l'ELS.
---------------	-----------------	---------------------

Eléments	Section (cm ²)	Position	M ^{max} (KN.m)	σ _s (MPa)	$\overline{\sigma_s}$ (MPa)	σ _{bc} (MPa)	$\overline{\sigma_{bc}}$ (MPa)	Vérification
Poutre	(25×35)	Travée	11,59	5,96	201,63	2,27	15	Vérifier
principale		Appuis	-16,88	8,69	201,63	3,31	15	Vérifier
Poutre secondaire	(25 × 30)	Appuis	5,69	3,64	201,63	1,11	15	Vérifier
		Appuis	-10,44	6,68	201,63	2,05	15	Vérifier

VIII.2.2.9. Vérification de l'effort tranchant :

Vérification de la contrainte de cisaillement :

$$\tau_u = \frac{T_u}{bd} \le \overline{\tau_u}$$

 τ_u : Contrainte de cisaillement

Tu : effort tranchant à l'état limite ultime de la section étudiée

b: la largeur de la section étudiée

d : la hauteur utile

 $\bar{\tau}_u = min \ (0,10 \ f_{c28}, 4 \ MPa) \ \dots$ Fissuration préjudiciable et très préjudiciable.

Chapitre **W**

Vérification et calcul de ferraillage

Eléments	Section (cm ²)	Tu^{max} (KN)	τ_u (MPa)	$\bar{\tau}_u$ (MPa)	Vérification
Poutre principale	(25 × 35)	5,18	0,071	2,5	Vérifier
Poutre secondaire	(25×30)	5,18	0,086	2,5	Vérifier

Tableau VII 22: Vérification de la contrainte de cisaillement des poutres.

VIII.2.2.10.<u>Calcul des armatures transversales :</u>

Les armatures transversales sont déterminées selon :

$$\begin{array}{l} & > \quad \text{BAEL91}: \\ t = \min(0,9d ; 40 \ cm \) \\ \\ & \emptyset_t \leq \min\left(\frac{h}{35}; \frac{b}{10}; \emptyset_l\right) \\ & > \quad \text{RPA99v2003}: \\ & A_t = 0,003 \times t \times b \\ \\ & t: \begin{cases} t \leq \min\left(\frac{h}{4}; 12\emptyset_l\right) \dots \text{Zone nodale} \\ & t \leq \frac{h}{2} \dots \text{Zone courante} \end{cases}$$

Tableau VII 23: Choix des armatures transversales des poutres.

Elémente	Section Tu ^{max}			BAEL91	RPA		t ^{adopté} (cm)			
Elements	(cm²)	(KN)	1 _и (<i>МР</i> и)	t(om)	t(cm)	t(cm)	70	ZN	At	Choix
	t(cm)	(CIII)	ZC	ZN						
Poutre principale	(25 × 35)	5,18	0,071	26,1	17,2	8,75	20	10	1,5	4T8
Poutre secondaire	(25 × 30)	5,18	0,086	21,6	15	7,5	20	10	1,5	4T8

VIII.2.2.11. Recouvrement des armatures longitudinales :

 $Lr = 40 \emptyset_l$ (zone IIa).

Lr : Longueur de recouvrement.

On a :

Ø=12mm.....Lr=48cm

Figure VIII 2 : Schéma de ferraillage de poutres (principale & secondaire).

CHAPITRE IX :

Etude des fondations

IX.1.Introduction :

Les fondations d'une structure constituent une partie essentielle de l'ouvrage puisque de leurs bonnes conception et réalisation découle la bonne tenue de l'ensemble ainsi que la transmission des charges vers le sol.

Il existe généralement deux grands modes de transmission des charges aux couches de sols sous-jacentes : par fondation superficielle et par fondation profonde. Les fondations superficielles (semelle, radier, etc.) sont, par définition, des fondations qui reposent sur le sol ou qui n'y sont que faiblement encastrées. Les charges qu'elles transmettent ne sollicitent que les couches superficielles. Les fondations profondes (pieux et barrettes) reportent, elles, les charges tant dans les couches profondes que dans les couches superficielles qu'elles traversent.

IX.2. Critères de choix du type des fondations :

Le choix du type des fondations dépend essentiellement des facteurs suivants :

- -La capacité portante du sol.
- -Les charges transmises au sol.
- -La distance entre axes des poteaux.
- -La profondeur du bon sol.
- -Le coût. (Raisons économiques)

Le choix final du système de fondation le plus adéquat à notre type de structures dépend de l'ensemble de ces paramètres.

Selon le rapport de sol, la contrainte admissible est de 1.5 Bars pour une profondeur de 2.0m.

IX.3. Etude de sol :

Le dimensionnement de la section des fondations est principalement effectué en utilisant le formule de base suivant :

$$\frac{N_{ser}}{S} \le \overline{\sigma_{sol}}$$

Avec :

N_{ser} : L'effort normal à l'état limite de service sous un poteau.

S: surface d'appui de la semelle.

Chapitre **IX**

 $\overline{\sigma_{sol}}$: contrainte admissible du sol.

Figure IX 1: Schéma d'une semelle isolée.

IX.4.Calcul des fondations :

IX.4.1.<u>Prédimensionnement de la semelle « Poteau IPE600 » :</u> a = 50 cmb = 80 cm

L'effort de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

 $\begin{cases} \text{ELU: } N_{u} = 217,37 \text{ kN} & ; M_{u} = 0,00 \text{ kN. M} \\ \text{ELS: } N_{ser} = 168,14 \text{ kN} & ; M_{ser} = 0,00 \text{ kN. m} \end{cases}$

IX.4.1.1. Détermination de A et B :

 $\frac{N_{ser}}{S} \le \overline{\sigma_{sol}} \implies S \ge \frac{N_{ser}}{\overline{\sigma_{sol}}} = \frac{168,14}{1,50\times10^2} = 1,12 \text{ m}^2$ $\frac{A}{B} = \frac{a}{b} = \frac{50}{80} = 0,625 \implies A = 0,625B$ $S = A \times B = 0,625B^2 \implies B \ge \sqrt{\frac{S}{0,625}} = \sqrt{\frac{1,12}{0,625}} = 1,34 \text{ m}$ $A \ge 0,625 \times 1,34 = 0,84 \text{ m}$ Le choix : $\begin{cases} A = 85 \text{ cm} \\ B = 135 \text{ cm} \end{cases}$ IX.4.1.2.Détermination de d et h : $\frac{B-b}{4} \le d \le A - a \implies 13,75 \le d \le 35 \end{cases}$

 $d = 15 \text{ cm} \implies h = d + 5 = 20 \text{ cm}$

IX.4.1.3. Vérification de la stabilité au renversement :

$\int \frac{A}{4} = \frac{0.85}{4} = 0.21 \text{ m}$ sens A
$e_0 \le \begin{cases} \frac{B}{4} = \frac{1,35}{4} = 0,34 \text{ m} \\ \end{cases}$ sens B
$e_0 = \frac{M_{ser}}{N_{ser}} = 0 \le \begin{cases} 0,21 \text{ m} & \text{sens A} \\ 0,34 \text{ m} & \text{sens B} \end{cases} \implies \text{Vérifie}$
$e_0 = \frac{M_u}{N_u} = 0 \le \begin{cases} 0.21 \text{ m} & \text{sens A} \\ 0.34 \text{ m} & \text{sens B} \end{cases} \implies \text{Vérifie}$
IX.4.1.4. <u>Calcul du ferraillage :</u>
➢ À ELU :
$\sigma_{\rm st} = \frac{f_{\rm e}}{\gamma_{\rm s}} = \frac{400}{1,15} = 347,83 \text{ MPa}$
Sens A : A _S = $\frac{N_u(A-a)}{8 \times d \times \sigma_{st}} = \frac{217,37(85-50)}{8 \times 15 \times 347,83} \times 10 = 1,82 \text{ cm}^2$
Sens B : A _S = $\frac{N_u(B-b)}{8 \times d \times \sigma_{st}} = \frac{217,37(135-80)}{8 \times 15 \times 347,83} \times 10 = 2,86 \text{ cm}^2$
\succ À ELS :
$\sigma_{st} = \min\left\{\frac{2}{3} f_{e}; \max\left(0.5 f_{e}, 110\sqrt{\eta f_{tj}}\right)\right\}$ Fissuration préjudiciable
$\eta = 1,6$ Pour les aciers HA
$f_{\rm tj} = 0.06 f_{\rm c28} + 0.6 = 0.06 \times 25 + 0.6 = 2.1 \mathrm{MPa}$
$\sigma_{\rm st} = \min\left\{\frac{2}{3} \times 400; \max(0.5 \times 400, 110\sqrt{1.6 \times 2.1})\right\} = 201.63$
Sens A : A _S = $\frac{N_{ser}(A-a)}{8 \times d \times \sigma_{st}} = \frac{168,14(85-50)}{8 \times 15 \times 201,63} \times 10 = 2,43 \text{ cm}^2$
Sens B : A _S = $\frac{N_{ser}(B-b)}{8 \times d \times \sigma_{st}} = \frac{168,14(135-80)}{8 \times 15 \times 201,63} \times 10 = 3,82 \text{ cm}^2$
$A_{S}(ELS) > A_{S}(ELU)$, Donc :
Sens A : $A_S = 2,43 \text{ cm}^2$, on choisit : $4T10 \implies A_S = 3,14 \text{ cm}^2$
Sens B : $A_S = 3,82 \text{ cm}^2$, on choisit : 5T10 $\implies A_S = 3,93 \text{ cm}^2$
IX.4.1.5. Détermination de la hauteur du patin (e) :
$e \ge max(6\phi + 6cm; 15cm) = max(6 \times 1, 0 + 6; 15) = 15 cm$
Donc : on prend $e = 15 cm$
$d \ge e \implies d = 15$ cm $= e = 15$ cm C'est vérifié

IX.4.1.6. Calcul de l'espacement :

Sens A : $S_t = \frac{A-2enrobage}{n-1} = \frac{85-20}{3} = 21,17 \text{ cm}$, on choisit : $S_t = 25 \text{ cm}$ Sens A : $S_t = \frac{B-2enrobage}{n-1} = \frac{135-20}{4} = 28,75 \text{ cm}$, on choisit : $S_t = 30 \text{ cm}$

Figure IX 2: Schéma d'un ferraillage de semelle 1.

IX.4.2.Prédimensionne	ement de la semelle « Poteaux 50×80-40×40 » :
$(a_1 = 40 \text{ cm})$	$a_2 = 50 \text{ cm}$
$b_1 = 40 \text{ cm}$	$(b_2 = 80 \text{ cm})$

L'effort de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont :

	; M _{u1} = 2,37 kN. M ; M _{ser1} = 1,72 kN. m	Bloc A
$\begin{cases} ELU: N_{u2} = 366,32 \text{ kN} \\ ELS: N_{ser2} = 271,03 \text{ kN} \end{cases}$; M _{u2} = 6,14 kN. M ; M _{ser2} = 19,59 kN. m	Bloc CM

IX.4.2.1. Détermination de A₁ et B₁ :

 $\frac{N_{ser1}}{S_1} \le \overline{\sigma_{sol}} \implies S_1 \ge \frac{N_{ser1}}{\overline{\sigma_{sol}}} = \frac{177,33}{1,50 \times 10^2} = 1,18 \text{ m}^2$

Chapitre **IX**

 $\frac{A_1}{B_1} = \frac{A_1}{b_1} = \frac{40}{40} = 1 \implies A_1 = B_1$ $S_1 = A_1 \times B_1 = B_1^2 \implies A_1 = B_1 \ge \sqrt{S_1} = \sqrt{1.18} = 1.09 \text{ m}$ Le choix : $\begin{cases} A_1 = 110 \text{ cm} \\ B_1 = 110 \text{ cm} \end{cases}$ IX.4.2.2. Détermination de d_1 et h_1 : $\frac{B_1 - b_1}{4} \le d_1 \le A_1 - a_1 \implies 17,5 \le d_1 \le 70$ $d_1 = 25 \text{ cm} \implies h_1 = d_1 + 5 = 30 \text{ cm}$ IX.4.2.3. Vérification de la stabilité au renversement : $e_0 \le \begin{cases} \frac{A_1}{4} = \frac{1,10}{4} = 0,28 \text{ m} & \text{sens } A_1 \\ \frac{B_1}{4} = \frac{1,10}{4} = 0,28 \text{ m} & \text{sens } B_1 \end{cases}$ $e_0 = \frac{M_{ser1}}{N_{ser1}} = \frac{1.72}{177.33} = 0.01 \text{ m} \le \begin{cases} 0.28 \text{ m} & \text{sens } A_1 \\ 0.28 \text{ m} & \text{sens } B_1 \end{cases} \implies \text{Vérifie}$ $e_0 = \frac{M_{u1}}{N_{u1}} = \frac{2.37}{241.57} = 0.01 \text{m} \le \begin{cases} 0.28 \text{ m} & \text{sens } A_1 \\ 0.28 \text{ m} & \text{sens } B_1 \end{cases} \implies \text{Vérifie}$ IX.4.2.4.Détermination de A₂ et B₂ : $\frac{N_{ser2}}{S_{o}} \leq \overline{\sigma_{sol}} \implies S_2 \geq \frac{N_{ser2}}{\overline{\sigma_{sol}}} = \frac{271,03}{1.50\times10^2} = 1,81 \text{ m}^2$ $\frac{A_2}{B_2} = \frac{a_2}{b_2} = \frac{50}{80} = 0,625 \implies A_2 = 0,625 B_2$ $S_2 = A_2 \times B_2 = 0.625 B_2^2 \implies B_2 \ge \sqrt{\frac{S_2}{0.625}} = \sqrt{\frac{1.81}{0.625}} = 1.70 \text{ m}$ $A_2 = 0,625 \times 1,70 = 1,06$ Le choix : $\begin{cases} A_2 = 110 \text{ cm} \\ B_2 = 175 \text{ cm} \end{cases}$ IX.4.2.5. Détermination de d_2 et h_2 : $\frac{B_2 - b_2}{4} \le d_2 \le A_2 - a_2 \quad \Longrightarrow \ 23,75 \le d_1 \le 60$ $d_2 = 25 \text{ cm} \implies h_2 = d_2 + 5 = 30 \text{ cm}$ IX.4.2.6. Vérification de la stabilité au renversement : *.* . 1 1 0

$$e_0 \le \begin{cases} \frac{A_2}{4} = \frac{1,10}{4} = 0,28 \text{ m} & \text{sens } A_2 \\ \frac{B_2}{4} = \frac{1,75}{4} = 0,44 \text{ m} & \text{sens } B_2 \end{cases}$$

Chapitre **IX**

$e_0 = \frac{M_{ser2}}{N_{ser2}} = \frac{19,59}{271,03} = 0,07 \text{ m} \le \begin{cases} 0,28 \text{ m} & \text{sens } A_2 \\ 0,44 \text{ m} & \text{sens } B_2 \end{cases} \implies \text{Vérifie}$		
$e_0 = \frac{M_{u2}}{N_{u2}} = \frac{6,14}{366,32} = 0,02 \text{ m} \le \begin{cases} 0,28 \text{ m} & \text{sens } A_2 \\ 0,44 \text{ m} & \text{sens } B_2 \end{cases} \implies \text{Vérifie}$		
$d_{\min} = 10 \text{ cm} \implies e_x = 10 + \frac{50}{2} + \frac{40}{2} = 55 \text{ cm}$		
Donc :		
Le choix : $\begin{cases} A = 165 \text{ cm} \\ B = 175 \text{ cm} \end{cases}$		
$d = 25 \text{ cm} \implies h = 30 \text{ cm}$		
IX.4.2.7. <u>Calcul du ferraillage :</u>		
➢ À ELU :		
Sens A : A _S = $\frac{N_u(A-a)}{8 \times d \times \sigma_{st}} = \frac{241,57(110-40)+366,32(110-50)}{8 \times 25 \times 347,83} \times 10 = 5,59 \text{ cm}^2$		
Sens B : A _S = $\frac{N_u(B-b)}{8 \times d \times \sigma_{st}} = \frac{241,57(110-40)+366,32(175-80)}{8 \times 25 \times 347,83} \times 10 = 7,43 \text{ cm}^2$		
\blacktriangleright À ELS :		
Sens A : A _S = $\frac{N_{ser}(A-a)}{8 \times d \times \sigma_{st}} = \frac{177,33(110-40)+271,03(110-50)}{8 \times 25 \times 201,63} \times 10 = 7,11 \text{ cm}^2$		
Sens B : A _S = $\frac{N_{ser}(B-b)}{8 \times d \times \sigma_{st}} = \frac{177,33(110-40)+271,03(175-80)}{8 \times 25 \times 201,63} \times 10 = 9,46 \text{ cm}^2$		
$A_{S}(ELS) > A_{S}(ELU)$, Donc :		
Sens A : $A_S = 7,11 \text{ cm}^2$, on choisit : 7T12 $\implies A_S = 7,92 \text{ cm}^2$		
Sens B : $A_S = 9,46 \text{ cm}^2$, on choisit : 9T12 $\implies A_S = 10,18 \text{ cm}^2$		
IX.4.2.8. Détermination de la hauteur du patin (e) :		
$e \ge max(6\phi + 6cm; 15cm) = max(6 \times 1, 2 + 6; 15) = 15 cm$		
Donc : on prend $e = 20 \text{ cm}$		
$d \ge e \implies d = 25 \text{ cm} > e = 20 \text{ cm}$ C'est vérifié		
IX.4.2.9. <u>Calcul de l'espacement :</u>		
Sens A : $S_t = \frac{A - 2enrobage}{n-1} = \frac{165 - 20}{6} = 24,17 \text{ cm}$, on choisit : $S_t = 25 \text{ cm}$		
Sens A : $S_t = \frac{B-2enrobage}{n-1} = \frac{175-20}{8} = 19,38 \text{ cm}$, on choisit : $S_t = 20 \text{ cm}$		

Figure IX 3: Schéma d'un ferraillage de semelle 2.

IX.4.3. Prédimensionnement de la semelle « Poteau 40×40 » :

a = 40 cmb = 40 cm

L'effort de sollicitations les plus défavorables calculées par le logiciel Sap2000V14 sont : $ELU: N_u = 614,10 \text{ kN}$; $M_u = 18,96 \text{ kN}$. M $ELS: N_{ser} = 439,78 \text{ kN}$; $M_{ser} = 13,53 \text{ kN}$. m

IX.4.3.1. Détermination de A et B :

 $\frac{N_{ser}}{S} \le \overline{\sigma_{sol}} \implies S \ge \frac{N_{ser}}{\overline{\sigma_{sol}}} = \frac{439,78}{1,50 \times 10^2} = 2,93 \text{ m}^2$ $\frac{A}{B} = \frac{a}{b} = \frac{40}{40} = 1 \implies A = B$ $S = A \times B = B^2 \implies A = B \ge \sqrt{S} = \sqrt{2,93} = 1,71 \text{ m}$ $Le \text{ choix} : \begin{cases} A = 175 \text{ cm} \\ B = 175 \text{ cm} \end{cases}$ $IX.4.3.2.\underline{Détermination \ de \ d \ et \ h :}$ $\frac{B-b}{4} \le d \le A - a \implies 33,75 \le d \le 135$

$$d = 35 \text{ cm} \implies h = d + 5 = 40 \text{ cm}$$

IX.4.3.3. Vérification de la stabilité au renversement :

$\int \frac{A}{4} = \frac{1,75}{4} = 0,44$ sens A		
$e_0 \le \begin{cases} \frac{B}{4} = \frac{1,75}{4} = 0,44 & \text{sens B} \end{cases}$		
$e_0 = \frac{M_{ser}}{N_{ser}} = \frac{13,53}{439,78} = 0,03 \text{ m} \le \begin{cases} 0,44 \text{ m} \\ 0,44 \text{ m} \end{cases}$	$\begin{array}{ll} \text{sens A} \\ \text{sens B} \end{array} \implies \text{Vérifie} \end{array}$	
$e_0 = \frac{M_u}{N_u} = \frac{18,96}{614,10} = 0,03 \text{ m} \le \begin{cases} 0,44 \text{ m} \\ 0,44 \text{ m} \end{cases}$ so	ens A \implies Vérifie	
IX.4.3.4. <u>Calcul du ferraillage :</u>		
➢ À ELU :		
Sens A : A _S = $\frac{N_u(A-a)}{8 \times d \times \sigma_{st}} = \frac{614,10(175-40)}{8 \times 35 \times 347,83} \times 10 = 8,51 \text{ cm}^2$		
Sens B : A _S = $\frac{N_u(B-b)}{8 \times d \times \sigma_{st}} = \frac{614,10(175-40)}{8 \times 35 \times 347,83} \times 10 = 8,51 \text{ cm}^2$		
\blacktriangleright À ELS :		
Sens A : A _S = $\frac{N_{ser}(A-a)}{8 \times d \times \sigma_{st}} = \frac{439,78(175-40)}{8 \times 35 \times 201,63} \times 10 =$	$= 10,52 \text{ cm}^2$	
Sens B : A _S = $\frac{N_{ser}(B-b)}{8 \times d \times \sigma_{st}} = \frac{439,78(175-40)}{8 \times 35 \times 201,63} \times 10 = 10,52 \text{ cm}^2$		
$A_{S}(ELS) > A_{S}(ELU)$, Donc :		
Sens A : $A_S = 10,52 \text{ cm}^2$, on choisit : $10T12 \implies A_S = 11,31 \text{ cm}^2$		
Sens B : $A_s = 10,52 \text{ cm}^2$, on choisit : 10T12	$\Rightarrow A_{\rm S} = 11,31 {\rm cm}^2$	
IX.4.3.5. Détermination de la hauteur du patin (e) :		
$e \ge max(6\phi + 6cm; 15cm) = max(6 \times 1, 2 + 6; 15) = 15 cm$		
Donc : on prend $e = 20 \text{ cm}$		
$d \ge e \implies d = 35 \text{ cm} > e = 20 \text{ cm}$ C'est véri	fié	
IX.4.3.6. <u>Calcul de l'espacement :</u>		
Sens A : $S_t = \frac{A - 2enrobage}{n-1} = \frac{175 - 20}{9} = 17,22 \text{ cm}$	h, on choisit : $S_t = 20 \text{ cm}$	
Sens A : $S_t = \frac{B-2enrobage}{n-1} = \frac{175-20}{9} = 17,22 \text{ cm}$, on choisit : $S_t = 20 \text{ cm}$		

Figure IX 4: Schéma d'un ferraillage de semelle 3.

IX.5. Etudes des longrines :

Les longrines sont des éléments infrastructure qui ont pour rôle de relier les semelles. Elles sont sollicitées par un effort normal de traction.

IX.5.1.Dimensionnement des longrines :

Selon le RPA version 2003 les dimensionnements minimaux sont de (25×30) cm² (Catégorie S₃).

On prend des longrines de dimensions (30×35) cm².

IX.5.2.Calcul du ferraillage :

Les longrines doivent être calculées pour résister à la traction sous l'action sous l'action d'une force égale à :

 $F = \frac{N}{\alpha} \ge 20 \text{ kN}$

Avec :

N : égale à la valeur maximale des charges verticales de gravité apportées par les points d'appui solidarisés.

 α : coefficient fonction de la zone sismique et de la catégorie de site considérée.

 $\alpha = 12 \begin{cases} \text{zone sismique: } \Box a \\ \text{site } S_3 \end{cases}$

> ELU:

$$N_u = 614,10 \text{ kN}$$

 $F = \frac{N}{\alpha} = \frac{614,10}{12} = 51,18 \text{ kN} > 20 \text{ kN}$
 $A_S = \frac{F}{\sigma_{st}} = \frac{51,18}{345,83} \times 10 = 1,48 \text{ cm}^2$
> ELS:
 $N_{ser} = 439,78 \text{ kN}$
 $F = \frac{N}{\alpha} = \frac{439,78}{12} = 36,65 \text{ kN} > 20 \text{ kN}$
 $A_S = \frac{F}{\sigma_{st}} = \frac{36,65}{201,63} \times 10 = 1,82 \text{ cm}^2$

Le RPA 99 version 2003 exige un ferraillage minimum 0,6% de la section avec des cadres dont l'espacement est inférieur au min (20 cm ; 15ϕ)

 $A_{\min} = 0.6\%(30 \times 35) = 6.30 \text{ cm}^2$

On prend :6T12 ; $A_{S} = 6,79 \text{ cm}^{2}$

IX.5.3.<u>Calcul des armatures transversales :</u>

$$\phi_{t} \le \min\left(\frac{h}{35}; \phi_{\min}; \frac{b}{10}\right) = \min\left(\frac{35}{35}; 12mm; \frac{30}{10}\right) = 10 \text{ mm}$$

On prend : $\phi_t = 8 \text{ mm}$

IX.5.4. Calcul d'espacement des cadres :

Le RPA99 exige des cadres dont l'espacement ne doit pas dépasser :

 $S_t \le (20 \text{ cm}; 15\phi_{\min}) = (20 \text{ cm}; 15 \times 1,2)$

On prend : $S_t = 10 \text{ cm}$

Figure IX 5 : Schéma d'un ferraillage de longrine.

IX.6.<u>Calcul du ferraillage des futs :</u>

Nous avons pris le ferraillage minimal du RPA99V2003 qui exige un pourcentage de 0,8% B utilisé comme des aciers longitudinaux.

IX.6.1.Fut de (40×40) cm² :

 $A_{\min} = 0.8\%(40 \times 40) = 12.8 \text{ cm}^2$

On prend :4T14 + 4T16 ; $A_S = 6,16 + 8,04 = 14,2 \text{ cm}^2$

Avec des cadres $\phi 10$ et S_t = 10 cm

Figure IX 6 : Schéma d'un ferraillage de fut $(40 \times 40)cm^2$.

IX.6.2.Fut de (50×80) cm² : $A_{min} = 0.8\%(50 \times 80) = 32 \text{ cm}^2$ On prend :8T20 + 4T16 ; $A_s = 25.13 + 8.04 = 33.17 \text{ cm}^2$ Avec des cadres $\phi 10$ et $S_t = 10$ cm

Figure IX 7 : Schéma d'un ferraillage de fut $(50 \times 80)cm^2$.

CHAPITRE X :

Etude et vérification des

bassins des piscines

X.1.Introduction :

Notre projet comporte deux bassins de forme rectangulaire en plan ; un bassin semiolympique à une profondeur qui varie entre 1,8m et 1,6 m et un bassin d'apprentissage de profondeur qui varie entre 0,5m et 0,7m

Le radier repose sur une couche de gros béton, laquelle est fondée directement sur le bon sol

X.2. Modélisation :

La modélisation des bassins a été faite en considérant les aspects suivants :

- La structure est modélisée par un modèle détaillé en élément plaque (Shells) liés par des nœuds (joint).
- Modélisation du sol avec les éléments ressort (spring éléments) pour assurer une interaction sol-structure
- La pression de l'eau est introduite totalement sur le radier comme pression uniforme dont la valeur est selon la profondeur de la piscine
- > La pression du sol est introduite comme pression triangulaire sur les voiles.
- Les valeurs des pressions sont données en ce qui suit.

X.3. Détermination du coefficient de réaction de sol :

L'estimation de la rigidité du sol K est calculée sur la base de la formule de hook :

$$\sigma = K \times \varepsilon$$

Pour : $\bar{\sigma} adm = 150 \text{ KN/m}^2$

Et un tassement de 1.0cm nous avons une rigidité de sol de : K=15000 KN/m³

X.4. Calcul du poids de l'eau :

Pour bassin semi-olympique :

$$P = \rho \times h = 10 \times 1.8 = 18 \, kN/m^2$$

Pour bassin d'apprentissage :

$$P = \rho \times h = 10 \times 0.7 = 7 \ kN/m^2$$

X.5. Combinaison d'action :

ELU : 1.35 (G +sol) + 1.5 (poids de l'eau)
➢ ELS : (G+sol) + (poids de l'eau)

Figure X. 1: la pression de l'eau sur les radiers.

Figure X. 2: la charge de sol sur les voiles.

X.6.Dimensionnement des éléments :

X.6.1.<u>Coffrage des voiles :</u> la modélisation des bassins (SAP2000) avec des épaisseurs estimées

- > Bassin semi-olympique = 0,3 m
- > Bassin d'apprentissage = 0,2 m

Chapitre X

Figure X. 3: Déformation de la structure à l'ELS.

X.6.2.<u>Coffrage du radier :</u> la modélisation des bassins (SAP2000) avec des épaisseurs estimées

- ➢ Bassin semi-olympique =0,4 m
- ➢ Bassin d'apprentissage= 0,25 m

X.7. Vérification de la contrainte au sol à l'ELS :

$$\sigma_{cal} \leq \sigma_{adm}$$

Avec :

$$\sigma_{cal} = \frac{poids \ totale}{surface}$$

Poids total = poids propre du bassin + poids de l'eau

Avec :

La masse volumique du béton égale à $25 \ KN/m^3$

La masse volumique de l'eau égale à $10 \ KN/m^3$

Poids propre du bassin = la masse volumique x le volume (radier + 4 voiles) ; dans chaque bassin :

Poids propre du bassin semi-olympique = $25 \times [(21 \times 25 \times 0, 4) + (2 \times 25 \times 1, 8 \times 0, 3) + (2 \times 25 \times 1, 8 \times 1,$

(2x21x1,8x0.3)] = 6492 KN

Poids propre du bassin d'apprentissage = 25 x [(15x10x0, 25) + (2x10x0, 7x0,2) + (2x15x0,7x0.2)] = 1112,5 KN

Le poids de l'eau = la masse volumique x le volume :

Poids propre du bassin semi-olympique = 10 x (25x21x1,8) =9450 KN

Poids propre du bassin d'apprentissage =10 x (15x10x0,7) =1050 KN

➢ Le poids total :

Bassin semi-olympique=6492+9450=15942 KN

Bassin d'apprentissage= 1112,5+1050 = 2162,5 KN

Donc :

X.7.1. Bassin semi-olympique :

 $\sigma_{cal} = \frac{15942}{525} = 30,37 \text{KN/m}^2 < \sigma_{adm} = 150 \text{ KN/m}^2 \dots \text{condition vérifier}$

X.7.2. Bassin d'apprentissage :

$$\sigma_{cal} = \frac{9450}{150} = 63$$
KN/m² < $\sigma_{adm} = 150$ KN/m²condition vérifier

X.8. Calcul de ferraillage :

Figure X. 4: Diagramme de moment M11 à ELU.

Figure X. 5: diagramme de moment M22 à ELU.

X.8.1.Piscine semi-olympique :

A partir de logiciel SAP2000

X.8.1.1.Ferraillage de radier :

➢ La nappe inférieure : le ferraillage est pour une section de 1m par l'épaisseur M_{appuis} = −24,22 KN. m

 \Rightarrow A_s= 1,89 cm²

La nappe inférieure : le ferraillage est pour une section de 1m
 M_{travée} = 6,33 KN. m

 $\Rightarrow A_s = 0,49 \text{ cm}^2$

Ferraillage adopté : Les armatures longitudinales et transversales sont en 2 nappes de T12 avec un espacement de 15 cm

Figure X. 6: disposition des armatures de radier.

Chapitre X Etude et vérification des bassins des piscines

X.8.1.2. Ferraillage des voiles :

Le calcul des armatures dans le voile se fait à la flexion composée, pour une section de 1ml par l'épaisseur.

 $M_{max} = 21,18$ KN. m (À partir du logiciel SAP 2000)

 $P_{corr} = -76,26$ KN. m

 \Rightarrow A_s = 3,36 cm²

Ferraillage adopté : Les armatures longitudinales et transversales sont en 2 nappes de T12 avec un espacement de 15 cm.

Figure X. 7 : disposition des armatures des voiles (Suivant l'axe xx et y-y). X.8.2.<u>Piscine d'apprentissage :</u>

A partir de logiciel SAP2000

X.8.2.1. Ferraillage de radier :

→ La nappe inférieure : le ferraillage est pour une section de 1m par l'épaisseur $M_{appuis} = -12,40$ KN. m

 \Rightarrow A_s= 1,56 cm²

La nappe inférieure : le ferraillage est pour une section de 1m
M_{travée} = 4,58 KN. m

 \Rightarrow A_s= 0,57 cm²

Ferraillage adopté : Les armatures longitudinales et transversales sont en 2 nappes de

T12 avec un espacement de 15 cm

Figure X. 8: disposition des armatures de radier.

X.8.2.2. Ferraillage des voiles :

À partir du logiciel SAP 2000 :

 $M_{max} = 22,08 \text{ KN. m}$

 $P_{corr} = 25,93 \text{ KN. m}$

$$\Rightarrow$$
 A_s = 3,22 cm²

Ferraillage adopté : Les armatures longitudinales et transversales sont en 2 nappes de

T12 avec un espacement de 15 cm.

Figure X.9: disposition des armatures des voiles.

Conclusion Générale

Ce projet de fin d'étude nous a permis d'élargir d'avantage notre formation universitaire dans le domaine de conception et calcul des structures en béton armé et en charpente, en commençant par la lecture et la compréhension des plans d'architecture, l'exploitation des données géotechnique du sol d'assise, suivi par l'utilisation des diverses logiciels de modélisation numérique et de calcul de ferraillage, tout en respectant les dispositions constructives réglementaires régissant des principes de conception et de calcul des ouvrages dans le domaine de construction en génie civil.

Le projet est composé de plusieurs blocs de forme géométriques diverses, avec des systèmes constructifs et des ossatures distinctes, dont certains sont en structure autostable en béton armé. Le bloc central abritant les bassins des piscines est en structure mixte avec des poteaux en béton armé sur le côté supportant les gradins et des poteaux libres en charpente métallique, la toiture quant à elle est en charpente métallique. L'analyse dynamique et statique des différentes structures ont donné des résultats très satisfaisant en termes de stabilité et de résistance globale de la structure.

Cette étude nous a permet également de conclure les points suivants :

- Le prédimensionnement des éléments structuraux dépend principalement de leur emplacement dans le bâtiment ;
- Un modèle numérique efficace est un modèle qui considère à la fois la modélisation de l'ensemble des éléments structuraux intervenant dans la stabilité et la résistance de la structure, ainsi que les éléments secondaires qui sont inclus dans les calculs charges additionnelles. Un tel modèle permet d'avoir un comportement dynamique meilleure et proche de la réalité ;
- Vu l'implantation de la structure dans une zone de moyenne sismicité, et vu le poids important des planchers des différents étages, il a été constaté que l'action sismique est plus défavorable que celle du vent pour notre cas d'étude ;
- L'ossature structurale choisie pour les différents blocs est un système autostable (poteaux – poutres) en béton armé pour les blocs en rez-de-chaussée et Rdc avec un étage. Concernant le bloc central, des stabilités en X et en V sont utilisées pour le contreventement de la structure ;
- Pour l'ensemble des éléments structuraux, la résistance et la stabilité ont été calculées et vérifiées vis-à-vis des différents phénomènes d'instabilités conformément aux règlements en vigueur (RPA99v2003, CBA93/BAEL, CCM97);
- Ce projet nous a permet de calculer différents types d'assemblages ;

- Concernant le système de fondation choisi, vu la bonne capacité portante du sol et le nombre faible du nombre d'étages de l'ensemble des blocs, il s'est avéré qu'un système de fondation en semelles isolées est largement suffisant ;
- Ce travail nous a donné également l'opportunité d'utiliser un certain nombre de logiciels de calcul et modélisation numérique, tels que le SAP 2000, Robot, socotec2, Autocade, Excel, etc...;

Enfin, cette expérience nous a permet d'acquérir des informations complémentaires essentielles par rapport à ce que nous avons déjà appris lors de notre formation universitaire, ce qui est une base très importante à l'avenir dans notre vie professionnelle.

RÉFÉRENCES BIBLIOGRAPHIQUES

[1] CHARGES ET SURCHARGES (DTR B.C 2.2) ministère de l'habitat et de l'urbanisme (ALGERIE).

[2] REGLES DE CONCEPTION ET DE CALCUL DES STRUCTURES EN ACIER « CCM97 » ministère de l'habitat et de l'urbanisme, (ALGERIE).

[3] **REGLES NEIGE ET VENT « RNV99 » (DTR .C2-4.7**) ministère de l'habitat et de l'urbanisme.

[4] REGLES PARASISMIQUES ALGERIENNES « RPA99 VERSION 2003 » ministère de l'habitat et de l'urbanisme.

[5] REGLES TECHNIQUES DE CONCEPTION ET DE CALCUL DES OUVRAGES ET DES CONSTRUCTIONS EN BETON ARME suivant la méthode des états limitent « BAEL91 » ministère de l'habitat et de l'urbanisme.

[6] CALCUL DES ELEMENTS DE CONSTRUCTION METALIQUE selon l'Eurocode3/Dahmani Lahlou.

[7] CALCUL DES STRUCTURE M2TALLIQUE l'Eurocode3/jean morel.

[8] https://bouassidageotechnics.files.wordpress.com/2016/03/livre-calcul-dynamique-des-structures-en-zone-sismique.pdf

[9] https://www.youtube.com/results?search_query=Messaoud+hamla

[10] https://www.youtube.com/channel/UCvMZL-WKd6aOh2s0BuYCaxw/featured

ANNEXES

<u>Annexes A : les efforts</u>

Bases de calculs du nouveau règlement Eurocode 3

Bases de calculs du nouveau règlement Eurocode 3

Type	Béférence	Classes de sections				
le laminé	du profil	Compression seule	Flexion seule			
	80	1	1			
	100	1	1			
PA	120	1	1			
	140	1	1			
	160	2	1			
	180	2	1			
	200	3	1			
	220	3	1			
	240	3	1			
	270	4	1			
	300	4	1			
IPEA	330	4	া ।			
	360	4	1			
	400	4	1			
	450	4	1			
	500	4	1			
	550	4	1			
	600	4	1			
	80 à 220	1	1			
	240	2	1			
	270	2	1			
	300	2	1			
	330	3	1			
IPE	360	3	1			
	400	3	1			
	450	4	1			
	500	4	1			
	550	4	1			
	600	4	1			

Bases de calculs du nouveau règlement Eurocode 3

Annexe B : Coefficient de réduction

	Coe	fficients de rédu	ction					
λ	Valeurs de χ pour la courbe de flambement							
	а	b	C	d				
0,2	1,0000	1,0000	1,0000	1,0000				
0,3	0,9775	0,9641	0,9491	0,9235				
0,4	0,9528	0,9261	0,8973	0,8504				
0,5	0,9243	0,8842	0,8430	0,7793				
0,6	0,8900	0,8371	0,7854	0,7100				
0,7	0,8477	0,7837	0,7247	0,6431				
0,8	0,7957	0,7245	0,6622	0,5797				
0,9	0,7339	0,6612	0,5998	0,5208				
1,0	0,6656	0,5970	0,5399	0,4671				
1,1	0,5960	0,5352	0,4842	0,4189				
1,2	0,5300	0,4781	0,4338	0,3762				
1,3	0,4703	0,4269	0,3888	0,3385				
1,4	0,4179	0,3817	0,3492	0,3055				
1,5	0,3724	0,3422	0,3145	0,2766				
1,6	0,3332	0,3079	0,2842	0,2512				
1,7	0,2994	0,2781	0,2577	0,2289				
1,8	0,2702	0,2521	0,2345	0,2093				
1,9	0,2449	0,2294	0,2141	0,1920				
2,0	0,2229	0,2095	0,1962	0,1766				
2,1	0,2036	0,1920	0,1803	0,1630				
2,2	0,1867	0,1765	0,1662	0,1508				
2,3	0,1717	0,1628	0,1537	0,1399				
2,4	0,1585	0,1506	0,1425	0,1302				
2,5	0,1467	0,1397	0,1325	0,1214				
2,6	0,1362	0,1299	0,1234	0,1134				
2,7	0,1267	0,1211	0,1153	0,1062				
2,8	0,1182	0,1132	0,1079	0,0997				
2,9	0,1105	0,1060	0,1012	0,0937				
3,0	0,1036	0.0994	0.0951	0.0882				

Les phénomènes d'instabilité élastique

Type de Section	Residen	ave de fambement	courbe de fambement	
Sections en I laminées				
	h/b>1,2:	222	1 (22))	
· ·	ty ≤ 40 mm	¥ - ¥		
		6.56	9	
1 +	40 mm < 1 < 100 mm	¥-¥	b	
» ,,	to non e que noo non	z - z	C	
•	h/bs1,2:			
	4 3 100 mm	3.3	0	
- · ·		2.2		
	1r > 100 mm	202	d	
		1.1	d	
Sections en I souciées				
· · ·		0.000	1.000	
	ty ≤ 40 mm	¥-¥	D	
	Y	2-2	C	
	t > 40 mm	¥-¥	C	
		Z - Z	d	
ections creuses	laminées à chaud	quel qu'il soit		
	formées à froid - en utilisant f _{yb} *)	divel qu'il soit	b	
	formées à froid - en utilisant f _{va} *)	quel qu'il soit	C	
Calssone soudés	d'une manière générale (sauf ci-dessous)	five I'up laup	b	
	Soudures épaisses et			
14.	h (h + 70)	272	1020	
•	0/4 - 30			
┶┣┷┿┻┫	h / t _w < 30			
lections en U, L, T et sections pleine				
	and and such	100		
	III (A)	Ques qu's son		

E. VALEUR DE LA SECTION RÉSISTANTE A_S des boulons à la traction

Diamètre nominal du boulon d (mm)	14	16	18	20	22	24	27	30
Section résistante A_s (mm ²)	115	157	192	245	303	353	459	561

CARACTÉRISTIQUES MÉCANIQUES DES BOULONS SELON LEUR CLASSE D'ACIER

et de la	Valeurs de a résistanc	e la limi ce à la i	te d'éla traction	sticité i f _{ub} des	f _{yb} s boulor	าร	
Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{yb} (N/mm2) f _{ub} (N/mm2)	240 400	320 400	300 500	400 500	480 600	640 800	900 1 000

C. CARACTÉRISTIQUES MÉCANIQUES DES BOULONS

Il existe deux classes de boulons HR, définies en fonction de leur contrainte limite d'élasticité f_{yb} et de leur contrainte de rupture f_{ub} :

- les boulons HR 1 ou HR 10.9,

- les boulons HR 2 ou HR 8.8.

Le premier chiffre correspond à f_{ub} / 100.

Le second chiffre correspond à $10 f_{yb} / f_{ub}$.

Soit :

Repère	Appellation	f _{ub} (MPa)	f _{yb} (MPa)	ΔL / L (%)
HR 1	HR 10.9	1 000	900	≥ 8
HR 2	HR 8.8	800	640	≥ 12