
Abdelhamid LAYADI

INTRODUCTION AU AU MAGNÉTISME

Office des Publications Universitaires

Abdelha 2-538-14-1

Maître de Comercina Université Ferhat ABBAS, Sétif

INTRODUCTION AU MAGNÉTISME

OFFICE DES PUBLICATIONS UNIVERSITAIRES

1, Place centrale de Ben-Aknoun (Alger)

TABLES DES MATIERES

CHAPITOD	
1 : RAPPELS DE MAGNETOSTATIO	ME
DANS LE VIDE	
1. Introduction Process applicance Japanes	1
2. Les champs B et H	1
3. La Loi de Biot et c	5
3. La Loi de Biot et Savart	7
4. La Loi d'Ampère	10
5. Le potentiel vecteur A	10
101 de Faraday	
magnetique nordenial ab	4.00
7.1 Force sur une particule chargée	17
Force sur un conducteur	
8. Le dipole magnétique production 8 1 poéticies	17
8.1 Définition	19
	19
8.2 Moment magnétique m d'un dipole 8.3 Potentiel et	20
8.3 Potentiel et champ créés	
par un dipole	21

8.4 Dipole dans un champ	
magnétique uniforme H	was trife
PROBLEMES	22
The same of the same of the same	24
CHAPITRE 2 : ORIGINES DU MAGNETISME	
DANS LA MATIERE	29
1. Moment magnétique de l'atome	30
1.1 Moment magnétique associé au	
mouvement orbital de l'électron	30
1.2 Relation entre le moment cinétique	
orbital L et le moment magnétique	
m de l'électron	32
1.3 Moment magnétique associé au spin	
de l'électron	34
1.4 Quantification des moments	
magnétiques	35
1.5 Moment magnétique total de l'atome	38
2. L'aimantation M	
3. La susceptibilité magnétique X	5.3
4. L'induction magnétique B	53
5. Champs à la surface de séparation	
entre deux milieux	55
	22

Tables des Matières

6 Chama - //	
6. Champ créé par la matière aimantée	57
6.1 Calcul de H par la méthode	
des courants équivalents	57
6.2 Méthode des charges magnétiques	-
(ou potentiel scalaire)	
6.3 Le champ démagnétisant	70
7. Classification des matériaux	7.3
PROBLEMES	78
CHAPITRE 3 : DIAMAGNETISME	85
1. Introduction The moldsubortal	86
2. Interaction du moment magnétique de	
l'électron avec un champ magnétique	
uniforme Wild Kland to the total	87
	91
4. Propriétés magnétiques des	1100
supraconducteurs TEMPAHORSE BUST	96
PROBLEMES	105
	100
CHAPITRE 4 : PARAMAGNETISME	109
1. Introduction The malanamin's	110
2. Théorie de Brillouin	112
	112

2.1 L'aimantation	112
2.2 L'aimantation à saturation	117
2.3 La loi de Curie	119
2.4 La loi de Curie-Weiss	
3. La résonance paramagnétique	126
4. L'effet magnétocalorique	135
4.1 Introduction	
4.2 La réfrigération par	
désaimantation adiabatique	137
5. Magnétisme dans les métaux	140
5.1 Introduction	140
5.2 Paramagnétisme de Pauli	143
5.3 Diamagnétisme de Landau	145
5.4 L'effet de Haas Van Alphen	146
PROBLEMES	147
CHAPITRE 5 : FERROMAGNETISME	157
1. Introduction	158
2. Théorie du champ moléculaire	161
2.1 Introduction	161
2.2 L'aimantation M(T)	
dans la région ferromagnétique	166

2.3 Température de Curie dans le	modèle
du champ moléculaire	160
2.4 La susceptibilité dans la	100
région paramagnétique ozna	
3. L'énergie d'éabass	
3.1 Introduction	1300033173
3.2 Modèle dite	
	1177
3.3 Variation de l'intégrale d'éc	hange
de la distance	
interatomique example election	179
4. La courbe d'hystérésis de plante	191
PROBLEMES ob supregosastora and	
test copic manufactualiline 248	103
CHAPITRE 6 : ANTIFERROMAGNETISME ET	niana a
FERRIMAGNETISME	100
1. Antiferromagnétisme materiale signal	109
1-1 Introduction	190
1.2 Suggestibilities	190
1.2 Susceptibilité d'un corps	
antiferromagnétique	194
2. Ferrimagnétisme	209
2.1 Introduction	203
2.2 Les corne ferries	
	210

2.3 Température de compensation	216
PROBLEMES	
CHAPITRE 7 : ANISOTROPIE MAGNETIQUE	22:
1. Introduction	
2. Anisotropie de forme	227
2.1 Introduction	227
2.2 L'énergie d'anisotropie de forme	234
3. Anisotropie magnétocristalline	236
3.1 Anisotropie uniaxe	236
3.2 Anisotropie cubique	240
3.3 Origine microscopique de	
l'anisotropie magnétocristalline	248
4. Magnétostriction	250
4.1 Introduction	250
4.2 L'énergie d'anisotropie	
due à une contrainte	
4.3 Origine microscopique de la	
magnétostriction	255
5. L'anisotropie de surface	257
6. L'anisotropie d'échange	
PROBLEMES	

Tables des Matieres

Appendice A : Les systèmes d'unités	275
Appendice B : Structure des atomes	285
Références	291

Le Docteur Abdelhamid LAYADI est professeur au Département de Physique de l'Université Ferhat ABBAS, à Sétif. Il a obtenu un Master et un PHD (en 1989) en Physique à Carnegie-Mellon University aux Etats-Unis et a travaillé au Centre de recherches en Magnétisme à CMU, Pittsburgh, USA. Il est auteur de plusieurs dizaines de publications récentes en magnétisme dans Phys. Rev. B, J. of Applied Physics et J. of Magnetism and Magnetic Materials.

Le magnétisme est un phénomène physique qui a fasciné et occupé les chercheurs pendant des siècles. Beaucoup d'applications technologiques sont basées sur le magnétisme: les moteurs, générateurs....Mais c'est surtout l'enregisterment magnétique (cassettes audio et vidéo, disquette et CD dans les ordinateurs...) qui suscite, en ce moment, un intérêt particulier dans les centres de recherches et les universités.

Ce livre contient les notions fondamentales de Magnétisme.

On y trouvera les différentes lois qui lient le champ magnétique au courant électrique, l'origine du magnétisme dans la matière, les propriétés magnétiques des matériaux (diamagnétisme, paramagnétisme, ferromagnétisme, antiferromagnétisme et ferrimagnétisme), l'anisotropis magnétique...D'autres phénomènes magnétiques (la résonance magnétique le magnétisme dans les métaux et les supraconducteurs...) sont auss décrits.

Cet ouvrage peut être utilisé comme manuel pour le module 'Magnétisme prévu, dans les nouveaux programmes, en 4 ème année de la filière 'DES et Physique' et pour les Ingénieurs. Il est également recommandé dans le cours cassiques de 'Pysique du Solide' pour les étudiants préparant un DES ou un Ingénierat. Certains points ont été développés (comme l'anisotropis magnétique...) et seraient, plutôt, destinés aux étudiants en Post-graduation voulant se spécialiser en magnétisme. Finalement, l'ouvrage pourrait auss servir de base et de référence aux chercheurs dans ce domaine.

