Pierre Agati Frédéric Lerouge Marc Rossetto

IUT · LICENCE · CLASSES PRÉPAS

Liaisons, mécanismes et assemblages

Cours, exercices et applications industrielles avec MECA3D sous SOLIDWORKS

2° édition

DUNOD

Table des matières

Avant-propos	
Chapitre 1. Étude cinématique des liaisons élémentaires	1
1. Liaisons entre solides	1
2. Étude des liaisons élémentaires normalisées	3
3. Forme particulière des torseurs cinématiques	15
4. Torseur des petits déplacements	16
Exercices avec réponses	25
Chapitre 2. Action mécanique transmissible par une liaison	29
1. Liaison parfaite	29
2. Exemples de liaisons parfaites	34
3. Liaisons parfaites avec plan de symétrie	36
4. Contact réel entre deux solides	39
Pression de contact entre solides déformables	53
6. Applications de l'adhérence et du frottement	61
Exercices avec réponses	67
Chapitre 3. Étude des liaisons réelles	75
1. Liaison pivot avec jeu et sans frottement	75
2. Liaison pivot réelle	86
3. Application industrielle	95
Exercices avec réponses	103
Chapitre 4. Analyse des systèmes mécaniques	109
1. Première classification des systèmes mécaniques	109
2. Système mécanique	110
3. Méthode d'analyse cinématique	114
Exercices avec réponses	118
Chapitre 5. Liaison en parallèle	131
1. Exemple	131
2. Étude générale des liaisons en parallèle	139
3. Exemple d'une liaison mobile	143
4. Exemple de positionnement par appuis simples	149
Evarcicas avac ránonsas	150

LIAISONS ET MÉCANISMES

Chapitre 6. Liaison en série	163
1. Chaîne continue ouverte	163
2. Exemple	166
3. Étude générale des chaînes continues ouvertes	173
Exercices avec réponses	181
Chapitre 7. Réalisation d'une liaison dont les torseurs	
cinématique et statique sont donnés	185
1. Composition de liaisons en parallèle	185
2. Composition de liaisons en série	191
Exercices avec réponses	197
Chapitre 8. Étude des mécanismes à chaîne ouverte. Robots	201
1. Définition de la chaîne ouverte constituant un robot	201
2. Exemple de mécanisme à chaîne ouverte	203
3. Étude d'un robot dit «4 axes»	211
Exercices avec réponses	221
Chapitre 9. Étude des mécanismes à chaîne fermée	233
1. Chaîne fermée	234
2. Exemple	236
3. Résumé des notions principales	246
Exercices avec réponses	250
Chapitre 10. Étude des mécanismes à chaîne complexe	261
1. Définitions	261
2. Exemple	264
Exercices avec réponses	274
Chapitre 11. Utilisation de logiciels de calcul	
des mécanismes et conséquences	
sur les démarches de conception	279
1. Présentation de MECAD3D sous SOLIDWORKS	280
2. Processus de résolution et application	281
3. Présentation de MECAmaster	291
4. Compléments sur les calculs réalisés	293
5. Application à la pince de grue-flèche – Hyperstatismes	297
6. De l'analyse de l'hyperstatisme vers le tolérancement 3D	301
7. Exemples industriels d'assemblage traités	301
par MECAmaster	307
Annexes	
A1. Les torseurs	317
1. Rappel de définitions	317
2. Torseur	318
3. Torseur cinématique T_C	325
4. Torseur statique T_S	330
Exercices avec réponses	334

Systèmes linéaires	33'
1. Déterminants	337
2. Matrices	339
3. Changements de base	345
4. Systèmes linéaires	350
Exercices avec réponses	357
A3. Tableau des liaisons normalisées	359