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Abstract 

We have performed a systematic study based on density functional theory (DFT) using 

linearized augmented plane wave method (FP-LAPW) for the calculation of the electronic and 

optical properties of silicon nitride (Si3N4) in both α and β crystallographic phases. But before 

we do that, structural optimization has been treated calling the Birch-Murnaghan equation of 

state and the Hellmann-Feynman forces minimization has been done calling the Perdew-

Burke-Ernzerhof potential within the generalized gradient approximation (PBE-GGA). The 

results have shown that electronic behavior can be affected by the variation in lattice 

parameters, which is viewing in bands structure and density of states spectra, knowing that all 

electronic properties have been evaluated using the modified Tran-Blaha potential with the 

local density approximation (LDA). The optimization of electronic properties has indicated 

that in pure silicon nitride the orbital hybridization can give the appropriate optical properties 

for photovoltaic application. 

So, in pure silicon nitride, the strong orbital hybridization leads to the large bandgap and 

weedy optical properties in the visible range. But after doping with Al or P as required, the 

calculation exhibits hoping results leading to the increase of the absorption coefficient and, in 

general, the optical properties. 

Keywords: silicon nitride, ab-initio calculation, band gap, and dielectric tensor 
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 ملخص

( باستخدام طريقة الموجة المستوية المتزايدة DFTلقد أجرينا دراسة منهجية تستند إلى نظرية الكثافة الوظيفية )

 شبكتين( في كل من ال4N3Siلحساب الخصائص الإلكترونية والبصرية لنيتريد السيليكون )( LAPW-FP)خطيا 

مورناغان وتم إجراء -. ولكن قبل القيام بذلك، تمت معالجة التحسين الهيكلي باستدعاء معادلة الحالة لبيرشβو αالبلوريتين 

ايرنزروهف المدمج مع تقريب التدرج المعمم -بيرك-فاينمان إلى أدنى حد ممكن باستدعاء كمون بيردو-قوات هيلمان تقليل

(PBE-GGAأظهرت النتائج أن ال .)لشبكة، والذي يتم عرضه في الإلكتروني يمكن أن يتأثر بالتغير في معلمات ا تحرك

بلاها -نه تم تقييم جميع الخصائص الإلكترونية باستخدام كمون ترانوأطياف كثافة الحالات، مع العلم أ شريط الطاقةبنية 

(. وقد أشار تحسين الخصائص الإلكترونية إلى أنه في نيتريد السيليكون النقي، LDAالمعدل مع تقريب الكثافة المحلية )

 خصائص بصرية مفيدة للتطبيق الكهروضوئي. عطييمكن للتهجين المداري أن ي

وخصائص بصرية سيئة رجة نطاقي الطاقة سيليكون النقي، يؤدي التهجين المداري القوي إلى ف  لذلك، في نيتريد ال

حسب الحاجة، تظهر الحسابات أملاً في  (P)الفوسفور  أو Al)) الألومنيوم المرئي. ولكن بعد الإشابة باستخدام مدىفي ال

 الحصول على نتائج تؤدي إلى زيادة معامل الامتصاص والخصائص البصرية بشكل عام.

 ، فجوة النطاق، وموتر العزلab-initioنيتريد السيليكون، حساب  كلمات مفتاحية:
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Introduction 

The energy supply and environmental protection has increased the need of alternative 

energy sources, which is why the research and development of photovoltaic solar cells have 

increased around the world. The performance of photovoltaic solar cells is closely linked to 

materials properties from which have been manufactured and many material science problems 

have arisen concerning the development of efficiency coefficient and less expensive solar 

cells. 

 Any semiconductor material in a suitable electronic environment can exhibit properties 

that could be called "photovoltaic", i.e. the generation of electrical current and a difference in 

potential under illumination. However so few materials are known to form photovoltaic 

devices with sufficient efficiency to make them potentially interesting for practical 

applications [1]. Semiconductors are a group of materials with conductivities between those of 

metals and insulators. Two general classifications of semiconductors are elementary 

semiconductor materials, which are found in Group IV of the periodic table (Si, Ge, Sn...), 

and compound materials, most of which are made up of special combinations of elements 

from Group III (Ga, In, B) and Group V (As, Sb, P) [2]. Among the semiconductor 

combinations, we have the silicon nitride (Si3N4), which can be found in two stable crystal 

structures; α and β. The local bond is similar in both cases, differing by the number of atoms 

in the primitive cell. 

 Silicon nitride is a material of great technological interest due to its mechanical and 

electronic properties that make it suitable for several applications. Silicon nitride has a high 

density, high melting temperature, low mechanical stress, and strong resistance against 

thermal shock. It has high dielectric constant, large electronic gap, high-energy barrier for 

impurity diffusion, and high resistance against radiation. These properties led to applications 

in microelectronic devices as a gate dielectric in thin-film transistors, as a charge storage 

medium in nonvolatile memories, and in solar cells [3]. As for our interest, we will study the 

electronic and optical properties of silicon nitride in both crystallographic phases α and β, 

using them as anti-reflective layers on mono- or multi-crystalline silicon-based solar cells. 

The present memory is divided into three chapters. In chapter 1, we will outline the 

bases on which DFT is based, by discussing the different approximations, while chapter 2 is 

dedicated to the description of the electronic and optical properties of a semiconductor 
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through the presentation of the different theoretical framework necessary for the results 

understanding and interpreting. In chapter 3, we will present the results of our calculation and 

we will discuss electronic properties such as the band structures and the density of state and 

optical properties such as the absorption coefficient and refractive indices. The thesis ends up 

by drawing the main conclusion and providing a perspective concerning the two main subjects 

discussed. 
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I.1. Introduction 

The fundamental basis of understanding the different properties of materials and 

phenomena relies upon understanding their electronic structure. Indeed, developing 

theoretical approaches that can accurately describe a system of interacting particles, electrons 

and nuclei, emerged as a serious challenge encountering theoretical physics. An exact theory 

for a system of ions and interacting electrons is intimately based on quantum mechanical 

theory for solving a many-body Schrödinger equation itself is complex. The density-

functional theory is one of the most popular and successful quantum mechanical approaches 

to the matter. It is nowadays routinely applied for calculating, e.g., the binding energy of 

molecules in chemistry, the band structure of solids, superconductivity, atoms in the focus of 

strong laser pulses, relativistic effects in heavy elements and atomic nuclei, classical liquids, 

and magnetic properties of alloys have all been studied with DFT. 

In this chapter, we will outline the bases on which DFT is founded, by discussing the 

different approximations needed to solve the Schrödinger equation. Next, two types of 

approximations are used for the evaluation of the exchange-correlation potential and for the 

definition of the wave functions, being solutions of the Schrödinger equation will be 

presented. Finally, we introduce the linearized augmented plane wave method, which is the 

most accurate method for calculating the electronic structure of solids in density functional 

theory. 

I.2. Density functional theory (DFT) 

Density functional theory provides a powerful tool for computations of the quantum 

state of atoms, molecules and solids [1]. Calculations of material properties using density 

functional theory (DFT) have become a very active field of research in recent years. The basic 

idea of DFT is to use the electron charge density n(r) as the basic variable instead of the 

many-electron wave function used in Hartree-Fock theory [2]. The electron density is quite 

attractive to work with because it contains only three variables, no matter how many electrons 

are being considered [3]. 

I.2.1. A problem with N-body 

The basic problem in condensed matter theory, which DFT attempts to solve, is how to 

deal mathematically with the interactions of a large number of particles. If the system we are 

interested in is an atom or a small molecule, the number of particles is still rather small, but if 

we are dealing with larger systems, describing the wave function of the system explicitly 
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becomes infeasible. The solid is a strongly coupled system consisting of two species, 

electrons and nuclei with Coulomb interaction both between themselves and each other. The 

Hamiltonian will, therefore, consist of the following terms: 

�̂� = −
ħ2

2
∑

∇𝐼
2

𝑀𝐼
𝐼

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒
2

4𝜋𝜖0|�⃗� 𝐼 − �⃗� 𝐽|𝐼≠𝐽

 −
ħ2

2𝑚
∑∇𝑖

2

𝑖

+
1

2
∑

𝑒2

4𝜋𝜖0|𝑟 𝑖 − 𝑟 𝑗|𝑖≠𝑗

−∑
𝑍𝐼𝑒

2

4𝜋𝜖0|𝑟 𝑖 − �⃗� 𝐼|𝑖,𝐼

                                                                                               (I. 1) 

Where the indices i, j are used for electrons and I, J are for atomic nuclei, MI denotes nuclear 

masses, m is the electron mass, �⃗� 𝐼 and 𝑟 𝑖 stand for nuclear and electron coordinates, 

respectively, and ZI denotes atomic number [2]. In these systems, one has to deal with the 

coupled dynamics of electrons and nuclei, i.e. with the Schrödinger equation: 

�̂�𝜓𝑎(𝑅1, … , 𝑅𝐾; 𝑟1, … , 𝑟𝑁) = 𝐸𝑎𝜓𝑎(𝑅1, … , 𝑅𝐾; 𝑟1, … , 𝑟𝑁)                           (I. 2) 

The size of the systems of interest ranges from atoms to solids so that the particle number in 

(I.2) varies over many orders of magnitudes. At the same time, a quantum mechanical 

treatment of the electrons is usually unavoidable, even if only the most elementary features of 

these systems are to be studied. The standard first step towards a solution of (I.2) is a partial 

decoupling of the electron from the nuclear motion, which relies on the different time scales 

of the two types of motion. This is achieved by the Born-Oppenheimer approximation [4]. 

I.2.2. Born-Oppenheimer approximation  

The Schrödinger equation can be further simplified if we take advantage of the 

significant differences between the masses of nuclei and electrons. Even the lightest of all 

nuclei, the proton (1H), weighs roughly 1800 times more than an electron. Thus, the nuclei 

move much slower than the electrons. The practical consequence is that we can take the 

extreme point of view and consider the electrons as moving in the field of fixed nuclei. This is 

the famous Born-Oppenheimer or clamped-nuclei approximation [5]. The Born-Oppenheimer 

approximation amounts to a factorization of the total wave function 𝜓𝑎 into a nuclear wave 

function 𝜓𝑖𝑘
𝑛  and an electron wave function 𝜓𝑘

𝑒 ,  

𝜓𝑎≡𝑖,𝑘(𝑅1, … , 𝑅𝐾; 𝑟1, … , 𝑟𝑁) = 𝜓𝑖𝑘
𝑛 (𝑅1, … , 𝑅𝐾)𝜓𝑘

𝑒(𝑅1, … , 𝑅𝐾; 𝑟1, … , 𝑟𝑁)                (I. 3) 

The electron wave function depends parametrically on the position of the nuclei. It 

satisfies the Schrödinger equation, [4] 

�̂�𝑒𝜓𝑘
𝑒(𝑅1, … , 𝑅𝐾; 𝑟1, … , 𝑟𝑁) = 𝐸𝑘(𝑅1, … , 𝑅𝐾)𝜓𝑘

𝑒(𝑅1, … , 𝑅𝐾; 𝑟1, … , 𝑟𝑁)               (I. 4) 
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Where �̂�𝑒 the Hamiltonian acting on the electrons can be written as: 

�̂�𝑒 = −
1

2
∑∇𝑖

2

𝑖

+
1

2
∑

𝑒2

|𝑟 𝑖 − 𝑟 𝑗|𝑖≠𝑗

−∑
𝑍𝐼𝑒

2

|𝑟 𝑖 − �⃗� 𝐼|𝑖,𝐼

= 𝑇 +𝑊 + 𝑉𝑒𝑥𝑡                   (I. 5)  

The first term,𝑇 is the kinetic energy operator of the electrons. The second 𝑊 is the Coulomb 

potential from electron–electron interaction, and the third term,𝑉𝑒𝑥𝑡 is the external potential, 

i.e., the Coulomb potential from the interactions between the electrons and the nuclei. The 

corresponding total energy 𝐸 is the expectation value of �̂�𝑒  in (I.5), i.e., [2] 

𝐸 =  ⟨𝜓|�̂�|𝜓⟩  = 𝑇 +𝑊 +∫𝑑3𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)                                 (I. 6) 

The solution of (I.4) is an arduous computational task, even for fixed positions of the 

nuclei. Not only the large number and the quantum nature of the electrons represent a 

challenge, but also the complicated geometry of many systems. It is also possible that several 

meta-stable arrangements of the nuclei (isomers, conformers) exist so that the solution of (I.4) 

for each of these arrangements is required to determine the ground state configuration. For 

these reasons, extremely efficient handling of the electron problem is necessary, even if the 

possible motion of the nuclei is ignored. A variety of approaches have been developed to 

obtain approximate solutions of Eq. (I.4). The oldest and simplest is the Hartree-Fock (HF) 

(or Self-Consistent-Field) approximation, in which the ground state wave function 𝜓𝑘=0
𝑒  is 

assumed to be a determinant of single-particle states, a so-called Slater determinant [4]. While 

that the entire field of DFT rests on two fundamental mathematical theorems proved by Kohn 

and Hohenberg and the derivation of a set of equations by Kohn and Sham in the mid-1960s. 

The first theorem, proved by Hohenberg and Kohn, is: The ground-state energy from 

Schrödinger’s equation is a unique functional of the electron density [6]. 

I.2.3. Hohenberg-Kohn theorems 

The theorems initially formulated by Hohenberg and Kohn constitute the theoretical 

basis of DFT. It can be summarized in three statements. 

Statement 1 (Uniqueness): The ground-state expectation value of any observable is a unique 

functional of the exact ground state density 𝑛(𝑟).Thus, for example, the ground-state total 

energy 𝐸 of a system can always and unambiguously be written as 𝐸[𝑛]. 

Statement 2 (Variational Principle): The exact ground-state density minimizes the total 

energy functional 𝐸[𝑛]. This statement provides us, at least in principle, with a scheme how to 
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find the ground-state charge density. Simply try all possible densities and choose the one that 

gives the lowest energy. 

Statement 3 (Universality): For the third statement, we need to rewrite our total energy 

expression (I.6) slightly. The part of the energy functional associated with the external 

potential can be singled out the remaining terms are summarized in a new functional 𝐹[𝑛] 

containing the kinetic energy and the electron-electron interaction energy. The total energy 

functional can then be written as: 

𝐸[𝑛] = 𝐹[𝑛] + ∫𝑑3𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)                                           (I. 7) 

The functional 𝐹[𝑛] is universal in the sense that it does not depend on 𝑉𝑒𝑥𝑡(𝑟). Thus, the 

mathematical form of 𝐹[𝑛] will be the same irrespective of system. To proceed further, we 

follow the path of Kohn and Sham and rewrite the universal functional 𝐹[𝑛] =  T[n]  +W[n]  

as 

𝐹[𝑛] = 𝑇𝑆[n] +
1

2
∫𝑑3𝑟𝑑3𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟 ′|
+ 𝐸𝑥𝑐[𝑛]                           (I. 8) 

The first term,𝑇𝑆[n], is the kinetic energy of a hypothetical non-interacting electron gas with 

the same density, and the second term is easily recognized as the classical Coulomb 

interaction. The functional 𝐸𝑥𝑐[𝑛] is called the exchange and correlation energy. All many-

particle effects are contained in 𝐸𝑥𝑐[𝑛] 
[2]. 

I.2.4. Kohn-Sham equations  

The equations of Kohn and Sham, published in 1965, turn DFT into a practical tool. 

They are a practical procedure to obtain the ground state density [7]. The basic idea of the 

Kohn–Sham scheme is to map the many-particle problem onto a system of non-interacting 

particles with the same ground state density 𝑛(𝑟) as the original many-particle system. To this 

end, they perform the variation of the energy functional (I.7) of the many-particle system, 

with 𝐹[𝑛] defined by (I.8):  

𝛿𝐸[𝑛] = 0                                                                 (I. 9) 

and it gives 

µ =
𝛿𝐸[𝑛]

𝛿𝑛(𝑟)
= 𝑉𝑒𝑥𝑡 +∫𝑑

3𝑟′
𝑛(𝑟′)

|𝑟 − 𝑟 ′|
+
𝛿𝑇𝑆[n]

𝛿𝑛(𝑟)
+
𝛿𝐸𝑥𝑐[n]

𝛿𝑛(𝑟)
                     (I. 10) 
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Where µ is the Lagrange multiplier corresponding to the requirement of integer particle 

number. And they perform the same exercise on the energy functional of a system of non-

interacting particles moving in some external potential, say Veff. This energy functional is: 

𝐸[𝑛] = 𝑇𝑆[𝑛] + ∫𝑑
3𝑟𝑉𝑒𝑓𝑓(𝑟)𝑛(𝑟)                                       (I. 11) 

And variation gives, expressed in the standard way of writing functional derivatives, 

µ =
𝛿𝐸[𝑛]

𝛿𝑛(𝑟)
=
𝛿𝑇𝑆[n]

𝛿𝑛(𝑟)
+ 𝑉𝑒𝑓𝑓                                             (I. 12) 

Where  

𝑉𝑒𝑓𝑓 = 𝑉𝑒𝑥𝑡 +∫𝑑
3𝑟′

𝑛(𝑟′)

|𝑟 − 𝑟 ′|
+
𝛿𝐸𝑥𝑐[n]

𝛿𝑛(𝑟)
                                  (I. 13) 

𝑉𝑒𝑓𝑓 can be looked upon as an effective external potential in which the non-interacting 

electrons are moving. The last term in (I.13) is called the exchange-correlation potential, i.e., 

𝑉𝑥𝑐 =
𝛿𝐸𝑥𝑐[n]

𝛿𝑛(𝑟)
                                                             (I. 14) 

The effective potential 𝑉𝑒𝑓𝑓 transforms the many-particle problem to a single particle 

formulation, and the Hamiltonian 𝐻𝑒𝑓𝑓 corresponding to (I.11) is: 

𝐻𝑒𝑓𝑓 = −
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟)                                                 (I. 15) 

Which gives a set of coupled Schrödinger-like equations, also called the Kohn–Sham (KS) 

equations 

𝐻𝑒𝑓𝑓(𝑟)𝜓𝑖(𝑟) = [−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟)]𝜓𝑖(𝑟) = 𝜖𝑖𝜓𝑖(𝑟), 𝑖 = 1,… ,𝑁           (I. 16) 

The ground state density is given by: 

𝑛(𝑟) =∑|𝜓𝑖(𝑟)|
2

𝑁

𝑖=1

                                                       (I. 17) 

Where the sum is over the N lowest eigenstates of 𝐻𝑒𝑓𝑓, and since 𝐻𝑒𝑓𝑓 directly depends 

on 𝑛(𝑟), (I.17) constitutes the coupling between the N one-electron equations in (I.16). With 
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knowledge of the solution to (I.16), the kinetic energy 𝑇𝑆 can be exactly calculated, is given 

by: 

𝑇𝑆 =∑⟨𝜓𝑖|−
1
2∇

2|𝜓𝑖⟩ =∑𝜖𝑖

𝑁

𝑖=1

−∫𝑑3𝑟𝑉𝑒𝑓𝑓(𝑟)𝑛(𝑟)

𝑁

𝑖=1

                      (I. 18) 

Finally, by combining (I.11), (I.13), (I.14), and (I.18), we obtain the following expression for 

the total energy [2]: 

𝐸 =∑𝜖𝑖 −
1

2
∫𝑑3𝑟𝑑3𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟 ′|
− ∫𝑑3𝑟

𝑁

𝑖=1

𝑉𝑥𝑐[𝑛]𝑛(𝑟) + 𝐸𝑥𝑐[𝑛]        (I. 19) 

To find the ground-state density, we don’t need to use the second Hohenberg-Kohn theorem 

any more, but we can rely on solving (self-consistent solution) familiar Schrödinger-like non-

interacting single-particle equations so called Kohn-Sham equations [7]. However, for the 

practical calculation, the exchange-correlation energy, which is a functional of the density, 

requires the introduction of certain approximations. 

I.2.5. Exchange-correlation functional  

The Kohn-Sham formalism introduced above, allows an exact treatment of most of the 

contributions to the electronic energy of an atomic or molecular system, including the major 

fraction of the kinetic energy. All remaining unknown parts are collectively folded into the 

exchange-correlation functional 𝐸𝑥𝑐[𝑛]. These include the non-classical portion of the 

electron-electron interaction along with the correction for the self-interaction and the 

component of the kinetic energy not covered by the non-interacting reference system. 

Obviously, the whole endeavor of applying the Kohn-Sham scheme as a tool to get a grip on 

the Schrödinger equation makes sense only if explicit approximations to this functional are 

available. The quality of the density functional approach hinges solely on the accuracy of the 

chosen approximation to 𝐸𝑥𝑐. Hence, the quest of finding better functionals is at the very heart 

of density functional theory. In the following, we will review the current state of the art 

regarding approximate functionals for 𝐸𝑥𝑐 
[5]. 

I.2.5.1. Local density approximation (LDA) 

In this section, we introduce the model system on which virtually all approximate 

exchange-correlation functionals are based. At the center of this model is the idea of a 

hypothetical uniform electron gas. Physically, such a situation resembles the model of an 
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idealized metal consisting of a perfect crystal of valence electrons and positive cores where 

the cores are smeared out to arrive at a uniform positive background charge [5]. Since the local 

density approximation (LDA) is derived from the homogeneous electron gas, one expects that 

it should work well only for systems with slowly varying densities. The LDA consists of the 

replacement of the exact 𝐸𝑋𝐶[𝑛] by the LDA functional [2] 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛] = ∫𝑑3𝑟 𝑛(𝑟 )휀𝑥𝑐(𝑛)                                         (I. 20) 

Here, 휀𝑥𝑐(𝑛) is the exchange-correlation energy per particle of a uniform electron gas of 

density 𝑛(𝑟 ). This energy per particle is weighted with the probability 𝑛(𝑟 ) that there is in 

fact an electron at this position in space. Writing 𝐸𝑋𝐶 in this way defines the local density 

approximation. The quantity 휀𝑥𝑐(𝑛) can be further split into exchange and correlation 

contributions, 

휀𝑥𝑐(𝑛) = 휀𝑥(𝑛) + 휀𝑐(𝑛)                                                     (I. 21) 

The exchange part, 휀𝑥, which represents the exchange energy of an electron in a uniform 

electron gas of a particular density is, apart from the pre-factor, equal to the form found by 

Slater in his approximation of the Hartree-Fock exchange [5] and was originally derived by 

Bloch and Dirac in the late 1920’s: 

휀𝑥 = −
3

4
√
3𝑛(𝑟 )

𝜋

3

                                                         (I. 22) 

No such explicit expression is known for the correlation part, 휀𝑐. However, highly accurate 

numerical quantum Monte-Carlo simulations of the homogeneous electron gas are available 

from the work of Ceperly and Alder, (1980).On the basis of these results various authors have 

presented analytical expressions of  휀𝑐 based on sophisticated interpolation schemes. The most 

widely used representations of  휀𝑐 are the ones developed by Vosko, Wilk, and Nusair, (1980), 

while the most recent and probably also most accurate one has been given by Perdew and 

Wang, (1992). 

I.2.5.2. Generalized gradient approximations (GGA) 

A general approach in which  𝐸𝑥𝑐 is assumed to depend in some general way on the 

charge density and its gradients gives rise to a family of approximations called the generalized 

gradient approximations (GGA). In many cases these functionals are superior to LDA and 

have therefore become the most commonly used ones in modern DFT calculations. If we let 
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the magnitude of the first-order gradient of the density enter the expression, the exchange 

correlation energy can be written as 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛] = ∫𝑑3𝑟 𝑛(𝑟 )𝑓(𝑛, |∇𝑛| )                                         (I. 23) 

Where  𝑓(𝑛, |∇𝑛| ) is some function, which is to be modeled so that the resulting functional 

behaves well according to various criteria. There is some freedom to incorporate the density 

gradient, and therefore several versions of GGA exist [2]. Two of the most widely used 

functionals in calculations involving solids are the Perdew–Wang functional (PW91) and the 

Perdew–Burke–Ernzerhof functional (PBE) [6]. 

I.2.6. Solving the Kohn-Sham equations 

The resolution of the Kohn-Sham equations requires the choice of a basis for the wave 

functions that can be taken as a linear combination of orbitals called Kohn-Sham orbitals 

written in the following form: 

𝜑𝑖(𝑟 ) =∑𝐶𝑖𝑗∅𝑗(𝑟 )                                                            (I. 24) 

Where 𝜑𝑖(𝑟 ) are the basic functions and the 𝐶𝑖𝑗 are development coefficients. 

The resolution of Kohn-Sham equations comes down to the determination of the 

𝐶𝑖𝑗coefficients for occupied orbitals that minimize the total energy. The resolution of the KS 

equations for the points of symmetry in the first Brillouin zone makes it possible to simplify 

the calculations. This resolution is done iteratively using a self-consistent iteration cycle. 

I.3. Linearized augmented plane wave (LAPW) 

The Linearized Augmented Plane Wave (LAPW) method has proven to be one of the 

most accurate methods for the computation of the electronic structure of solids within density 

functional theory. In the following, we will see the basic concepts of the LAPW  

I.3.1. Augmented plane wave (APW) 

The augmented plane wave (APW) method is exposed by Slater in his article [9]. He 

assumed that in the region far away from the nuclei, the electrons are more or less ‘free’. Free 

electrons are described by plane waves. Close to the nuclei, the electrons behave quite as they 

were in a free atom, and they could be described more efficiently by atomic like functions. 

Space is therefore divided now in two regions: around each atom, a sphere with radius Rα is 

drawn (call it Sα). Such a sphere is often called a muffin tin sphere, the part of space occupied 

by the spheres is the muffin tin region. The remaining space outside the spheres is called the 

interstitial region (call it I). 
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Figure I.1: Division of a unit cell in muffin tin regions and the interstitial region, for a case   

with two atoms. The black dot is the origin of the axis system (which may but need not to 

coincide with the nucleus of an atom) [7]. 

 

One augmented plane wave (APW) used in the expansion of 𝜓
𝑘
→
𝑛  is defined as: 

𝜙
𝐾
→
�⃗� (𝑟 , 𝐸) =

{
 

 
1

√𝑉
𝑒𝑖(�⃗� +�⃗⃗� ).𝑟                                                 𝑟 ∈ 𝐼

∑ 𝐴𝑙𝑚
𝛼,�⃗� +�⃗⃗� 𝑢𝑙

𝛼(𝑟′, 𝐸)𝑌𝑚
𝑙 (�̂�′)                𝑟 ∈ 𝑆𝛼

𝑙,𝑚

                           (I. 25) 

 𝜙
𝐾
→
�⃗� (𝑟 , 𝐸) : The wave function 

 𝐴𝑙𝑚
𝛼,�⃗� +�⃗⃗� 

: Coefficient of development in plane waves and spherical harmonic. 

 �⃗� : The wave vector in the irreducible Brillouin zone (IBZ). 

 �⃗⃗� : Reciprocal lattice vector. 

 𝑟 ′ = 𝑟 − 𝑟 𝛼: The position inside the spheres. 

 𝑉: The volume of the unit cell. 

 𝑌𝑚
𝑙 : Spherical harmonics. 

 𝑢𝑙
𝛼: The 𝑢𝑙

𝛼 are solutions to the radial part of the Schrödinger equation for a free atom 

α, and this at the energy 𝐸 [7]. 



Chapter I:                                                          Density Functional Theory and LAPW Methods 

12 
 

The coefficients 𝐴𝑙𝑚
𝛼,�⃗� +�⃗⃗� 

 are chosen such that the atomic functions for all 𝑙𝑚 components 

match (in value) the PW with 𝐾 at the MT sphere boundary. The KS orbitals 𝜓𝑖(𝑟) are 

expressed as a linear combination of APWs 𝜙
𝐾
→
�⃗� (𝑟 , 𝐸). Inside the MT sphere a KS orbital can 

only be accurately described if 𝐸 in the APW basis functions is equal to the eigen-energy, 𝐸𝑖. 

Therefore, a different energy-dependent set of APW basis functions must be found for each 

eigenenergy. This leads to a non-linear eigenvalue problem that is computationally very 

demanding. One had to choose an energy, solve the radial Schrödinger equation to obtain the 

APW basis and set up the matrix elements. Then the determinant |𝐻 − 𝐸𝑆| had to be 

computed, that should vanish according to the secular equation but did not. So one had to vary 

the trial energy to numerically find the zeros of this determinant, a procedure complicated by 

the presence of asymptotes. This was the main drawback of the APW scheme which at best 

works for simple systems with few eigenvalues only [10]. 

I.3.2. Linearized augmented plane wave (LAPW) 

The problem with the APW method was that the 𝑢𝑙
𝛼(𝑟′, 𝐸) have to be constructed at the 

– yet unknown – eigenenergy𝐸 = 𝜖
�⃗� 
𝑛 of the searched eigenstate. It would be helpful if we 

were able to recover 𝑢𝑙
𝛼(𝑟′, 𝜖

�⃗� 
𝑛) on the fly from known quantities. That is exactly what the 

Linearized Augmented Plane Wave method enables us to do. If we have calculated 𝑢𝑙
𝛼 at 

some energy 𝐸0, we could make a Taylor expansion to find it at energies not far away from it: 

 𝑢𝑙
𝛼(𝑟′, 𝜖

�⃗� 
𝑛) =  𝑢𝑙

𝛼(𝑟′, 𝐸0) + (𝐸0 − 𝜖�⃗� 
𝑛) �̇�𝑙

𝛼(𝑟′, 𝐸0) + 𝑂(𝐸0 − 𝜖�⃗� 
𝑛)
2
           (I. 26) 

Substituting the first two terms of the expansion in the APW for a fixed  𝐸0 gives the 

definition of an LAPW. This has a price: the energy difference (𝐸0 − 𝜖�⃗� 
𝑛) is unknown, and 

hence a yet undetermined 𝐵𝑙𝑚
𝛼,�⃗� +�⃗⃗� 

 has to be introduced: 

𝜙
𝐾
→
�⃗� (𝑟 ) =

{
 

 
1

√𝑉
𝑒𝑖(�⃗� +�⃗⃗� ).𝑟                                                                                          𝑟 ∈ 𝐼

∑ (𝐴𝑙𝑚
𝛼,�⃗� +�⃗⃗� 𝑢𝑙

𝛼(𝑟′, 𝐸0) + 𝐵𝑙𝑚
𝛼,�⃗� +�⃗⃗� �̇�𝑙

𝛼(𝑟′, 𝐸0))𝑌𝑚
𝑙 (�̂�′)               𝑟 ∈ 𝑆𝛼

𝑙,𝑚

          (I. 27) 

In order to determine both 𝐴𝑙𝑚
𝛼,�⃗� +�⃗⃗� 

 and 𝐵𝑙𝑚
𝛼,�⃗� +�⃗⃗� 

 , we will require that the function in the sphere 

matches the plane wave both in value and in slope at the sphere boundary. Equation (I.27) is 

not the final definition of an LAPW yet. Imagine we want to describe an eigenstate 𝜓
𝑘
→
𝑛  that 

has predominantly p-character (𝑙 = 1) for atom α. This means that in its expansion in 
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LAPW’s, the 𝐴(𝑙=1)𝑚
𝛼,�⃗� +�⃗⃗� 

 are large. It is therefore advantageous to choose 𝐸0 near the centre of 

the p-band. In this way, the 𝑂(𝐸0 − 𝜖�⃗� 
𝑛)
2
 term in equation (I.26) will remain small, and 

cutting after the linear term is certainly allowed. We can repeat this argument for every 

physically important 𝑙 (s-, p-, d- and f-states, i.e. up to 𝑙=3) and for every atom. As a result, 

we should not choose one universal 𝐸0, but a set of well chosen 𝐸1,𝑙
𝛼  up to 𝑙=3. The final 

definition of an LAPW is then: 

𝜙
𝐾
→
�⃗� (𝑟 ) =

{
 

 
1

√𝑉
𝑒𝑖(�⃗� +�⃗⃗� ).𝑟                                                                                          𝑟 ∈ 𝐼

∑ (𝐴𝑙𝑚
𝛼,�⃗� +�⃗⃗� 𝑢𝑙

𝛼(𝑟′, 𝐸1,𝑙
𝛼 ) + 𝐵𝑙𝑚

𝛼,�⃗� +�⃗⃗� �̇�𝑙
𝛼(𝑟′, 𝐸1,𝑙

𝛼 )) 𝑌𝑚
𝑙 (�̂�′)           𝑟 ∈ 𝑆𝛼

𝑙,𝑚

          (I. 28) 

With the 𝐸1,𝑙
𝛼  being fixed, the basis functions can be calculated once and for all. The same 

procedure as used for the plane wave basis set can now be applied. One diagonalization will 

yield P different band energies for this 𝑘⃗⃗⃗   [7]. 

I.3.3. Full potential linearized augmented plane wave (FP-LAPW) 

In the Full Potential Linearized Augmented Plane Waves (FP-LAPW) method [11], no 

approximation is made for the form of the potential or the charge density. These are rather 

developed into lattice harmonics inside each atomic sphere, and in Fourier series in the 

interstitial regions; which is at the origin of the name Full-Potential. This method thus ensures 

the continuity of the potential at the surface of the sphere MT and develops it in the following 

form: 

𝑉(𝑟 ) = {

∑ 𝑉𝐾𝑒
𝑖�⃗⃗� 𝑟                      𝑟 ∈ 𝐼 

𝐾

∑ 𝑉𝑙𝑚(𝑟 )𝑌𝑙𝑚(𝑟 )      𝑟 ∈ 𝑆𝛼
𝑙𝑚

                                           (I. 29) 

In the same way, the charge density is developed in the form: 

𝜌(𝑟 ) = {

∑ 𝜌𝐾𝑒
−�⃗⃗� 𝑟                      𝑟 ∈ 𝐼 

𝐾

∑ 𝜌𝑙𝑚(𝑟 )𝑌𝑙𝑚(𝑟 )      𝑟 ∈ 𝑆𝛼
𝑙𝑚

                                           (I. 30) 

This method is very accurate, widely used, with a reasonable computing efficiency to simulate 

the properties of materials based on Density Functional Theory (DFT). 
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I.4. Wien2k simulation package 

All theoretical work done or in progress has a goal, that of predicting new materials or 

systems that meet current technological needs. Thus, several calculation programs are 

developed, such as CRYSTAL, Wien2k, VASP, ABINIT, etc. The point of difference 

between these programs lies in the choice of the basis of development.  

The Wien2k code is an implementation of the FP-LAPW method. This program was created 

by Blaha and his collaborators [8]. It is consists of several independent programs linked by the 

c-shell scripts. The calculation is done in three steps: 

1- Initialization: 

To determine the properties of a given material, it is necessary to generate the starting data 

found in the file “case.struct”. This latter contains the lattice parameter, the crystalline 

structure, the muffin-tin radius, the symmetry operations…etc. This step is done for the 

preparation of the SCF cycle. These elements are generated by a series of small programs: 

 NN: This program calculates the nearest neighbor distances of all atoms, and checks 

that the corresponding atomic spheres (radii) are not overlapping. 

 SGROUP: This program uses information from “case.struct” (lattice type, lattice 

constants, and atomic positions) and determines the space-group as well as all point-

groups of non-equivalent sites. 

 SYMMETRY: This program uses information (lattice type, atomic positions) to 

generates the space group symmetry operations, determines the point group of the 

individual atomic sites, generates the LM expansion for the lattice harmonics and local 

rotation matrices 

 LSTART: generates atomic densities and determines how the orbitals are treated in 

the band structure calculations (i.e. as core or band states, with or without local 

orbitals). 

 KGEN: generates a k-mesh in the Brillouin zone (BZ). 

 DSTART: generates a starting density for the SCF cycle by superposition of atomic 

densities generated in lstart. 

2- SCF calculation: 

 LAPW0: computes the total potential Vtot as the sum of the Coulomb Vc and the 

exchange-correlation potential Vxc using the total electron density as input. 
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 LAPW1: sets up the Hamiltonian and the overlap matrix and finds by diagonalization 

eigenvalues and eigenvectors. 

 LAPW2: computes valence densities from eigenvectors 

 LCORE: computes core states and densities 

 MIXER: mixing the output density with the input density (the electron densities of 

core, semi-core, and valence states) to obtain the new density to be used in the next 

iteration. 

3- Calculating properties: 

Once the SCF cycle has converged one can calculate various properties like Density of 

States (DOS), band structure or Optical properties. The calculation of the physical properties 

is done by means of the programs: 

 OPTIMIZE: determines the total energy as a function of the volume used to calculate 

the lattice parameter, the compressibility module and its derivative. 

 TETRA: This program calculates total and partial density of states (DOS). 

 SPAGHETTI: calculates the band structure using the eigenvalues generated by 

LAPW1. 

 OPTIC: calculates the optical properties. 

 XSPEC: This program calculates near edge structure of x-ray absorption or emission 

spectra [8]. 
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II.1. Introduction 

 This chapter is dedicated to the description of the electronic and optical properties of a 

semiconductor, we will present the different theoretical notions necessary for understanding 

and interpreting. At first, we will discuss the electronic properties (the band structures, the 

density of state, the electrical conductivity…), next, the optical properties such as absorption 

coefficient, refractive indices, etc. 

II.2. Electronic properties 

II.2.1. Band structure 

The band structure of semiconductors emerges as a solution of Schrodinger’s equation for no 

interacting electrons in the periodic potential of the crystal lattice: 

[−
ħ2

2me
∆ + U(r )]  ψ(r ) =  E ψ(r )                                              (II. 1) 

Where the potential has the property  

𝑈(𝑟 ) =  𝑈(𝑟  +  �⃗� )                                                            (II. 2) 

The vector R is an arbitrary translation vector that moves the lattice onto itself [1]. For all 

vectors R of the direct lattice, the potential is due to the effect of the ion cores and all other 

electrons. Thus a serious many-body problem is present. In principle, the band structure can 

be calculated from the periodic arrangements of the atoms and their atomic order number. We 

note that for some problems, e.g. the design of optimal solar cells, a certain band structure is 

known to be ideal and a periodic atomic arrangement, i.e. a material, needed to be found that 

generates the optimal band structure. This problem is called the inverse band structure 

problem [2].  

The problem of band structure becomes greatly simplified if we are dealing with 

crystalline materials. An electron in a rigid crystal structure sees a periodic background 

potential. As a result, the wave function for electron satisfies Bloch’s theorem discussed in the 

next section [3]. 
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II.2.2. Bloch theorem 

We will deduce some general conclusions about the structure of the solution as a 

consequence of the periodicity of the potential. We first investigate the solution of a 

Schrodinger equation of the type 

𝐻𝛹(𝑟 ) = [−
ћ2

2𝑚
𝛻2 + 𝑈(𝑟 )]   𝜓(𝑟 ) =  𝐸 𝜓 (𝑟 )                              (II. 3) 

  For an electron, 𝑈(𝑟 ) will be periodic with the lattice. 

Bloch’s theorem says that the eigenstates Ψ of a one-particle Hamiltonian as in (II.3) can be 

written as the product of plane waves and a lattice-periodic function, i.e. 

𝛹𝑛𝑘  (𝑟 ) = 𝐴𝑒𝑖�⃗� 𝑟 𝑢𝑛𝑘(𝑟 )                                                      (II. 4) 

The normalization constant A is often omitted. If is normalized, A = 1/√𝑉 where V is the 

integration volume. The wave function is indexed with a quantum number n and the wave 

vector 𝑘⃗⃗⃗  . The key is that the function the so-called Bloch function, is periodic with the lattice, 

i.e. 

𝑢𝑛𝑘(𝑟 ) = 𝑢𝑛𝑘(𝑟 + �⃗� )                                                     (II. 5) 

For all vectors �⃗�  of the direct lattice, the proof is simple in one dimension and more involved 

in three dimensions with possibly degenerate wave functions. If 𝐸𝑛𝐾 is an energy eigenvalue, 

then 𝐸𝑛𝐾+𝐺  is also an eigenvalue for all vectors G of the reciprocal lattice, i.e. 

𝐸𝑛(�⃗⃗� ) = 𝐸𝑛(�⃗⃗� + 𝐺 )                                                    (II. 6) 

Thus the energy values are periodic in reciprocal space. The proof is simple, since the wave 

function (for �⃗⃗� + 𝐺 ) 𝑒𝑥𝑝(𝑖(�⃗⃗� + 𝐺 )𝑟 )𝑢𝑛(�⃗⃗� +𝐺 )(𝑟) is for un(K⃗⃗ +G⃗⃗ )(r) = exp(−𝑖𝐺 𝑟 )unk(r ) 

obviously an eigenfunction to k [2]. 

II.2.3. Free-electron dispersion 

If the entire wave function (from (II.4)) obeys the Schrödinger equation (II.3), the Bloch 

function 𝑢𝑛𝑘fulfills the equation: 

[−
1

2𝑚
(𝑃 + 𝐾)2 + 𝑈(𝑟 )] 𝑢𝑛𝐾(𝑟 ) =  𝐸𝑛𝐾𝑢𝑛𝐾(𝑟 )                           (II. 7) 
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Which is easy to see from p⃗ = −iћ∇⃗⃗   periodic potential, U ≡ 0 (this calculation is also called 

the empty lattice calculation) the solution of (II.7) is then just constant, i.e. �⃗� 𝑘 = 𝑐 and 

𝜓𝐾  (𝑟 ) =  𝑐 𝑒𝑥𝑝(𝑖�⃗� 𝑟 ) dispersion of the free electron is then given by 

𝐸(�⃗⃗� ) =
ћ2

2𝑚
𝐾2                                                           (II. 8) 

Where 𝐾 ⃗⃗  ⃗is an arbitrary vector in the reciprocal space, �⃗⃗� ’ is a vector from the Brillouin zone 

such that 𝐾 = 𝐾’ + 𝐺 with a suitable reciprocal lattice vector G. Because of (II.6) the 

dispersion relation can be written also as 

𝐸(�⃗⃗� ) =  
ћ2

2𝑚
(𝐾’ + 𝐺)2                                                         (II. 9) 

Where 𝐾 ⃗⃗  ⃗ denotes a vector from the Brillouin zone. Thus, many branches of the dispersion 

relation arise from using various reciprocal lattice vectors in (II.9) [2]. 

II.2.4. Methods of band structure calculation  

 There are two main categories of realistic band structure calculation for semiconductors. 

- Methods which describe the entire valence and conduction bands (techniques such as the, 

the pseudopotential method and the orthogonalized plan wave methods). 

- Methods which describe near band-edge band structure. (Perturbative technique K.P method 

is simple and considerably more accurate if one is interested only in phenomena near the 

band-edges.) [3]. 

II.2.4.1. The pseudopotential method 

The pseudopotential method  for calculating the energy structure in crystals is based on 

the fact that conduction and valence states must be orthogonal to the core states. The effect of 

orthogonality however is used to further the development of approximation or interpolation 

procedures. A conduction or valence state satisfies the Schrödinger equation [4]: 

[−
ћ2

2𝑚
𝛻2  + 𝑉(𝑟 )]  𝜓𝑛(𝑟 ) =  𝐸𝑛(�⃗� )𝜓𝑛 (𝑟 )                               (II. 10) 

However, it is possible only when we know the crystal potential 𝑉(𝑟 ). In the following we 

will show how the Schrödinger equation is solved to a good approximation by using empirical 

parameters, known as pseudopotentials, and the orthogonality of the wave functions. 

First, we assume the electron wave functions of the core states and their energies are given by 

𝛷𝑗 and 𝐸𝑗 respectively. We then have 
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𝐻|𝛷𝑗⟩  = [ 𝐻0 + 𝑉(𝑟 )] |𝛷𝑗⟩  = 𝐸𝑛|𝛷𝑗⟩                           (II. 11) 

Where:  𝐻0 = −
ћ2

2𝑚
∇2 

The Bloch functions |𝜓⟩ of the electrons in the valence and conduction band are 

orthogonal with the above wave functions |𝛷𝑗⟩; in other words, we have the following relation 

⟨𝛷𝑗|𝜓⟩ = 0 

The above orthogonality is satisfied when we choose the wave functions given by 

|𝜓(�⃗� . 𝑟 )⟩ = |ᵡ𝑛(�⃗� . 𝑟 )⟩ −∑ ⟨𝛷𝑗|ᵡ𝑛⟩
𝑗

|𝛷𝑗⟩                                    (II. 12) 

This is evident from the relation 

⟨𝛷𝑗′|𝜓⟩ =  ⟨𝛷𝑗′|ᵡ𝑛⟩ −∑ ⟨𝛷𝑗|ᵡ𝑛⟩⟨𝛷𝑗′|𝛷𝑗⟩
𝑗

 

= ⟨𝛷𝑗′|ᵡ𝑛⟩ −∑ ⟨𝛷𝑗|ᵡ𝑛⟩𝛿𝑗′𝑗
𝑗

≡ 0                                   (II. 13) 

Substituting (II.12) into (II.10) we find 

𝐻|ᵡ𝑛⟩ −∑ ⟨𝛷𝑗|ᵡ𝑛⟩𝐻
𝑗

|𝛷𝑗⟩ =  𝐸𝑛(𝑘) {|ᵡ𝑛⟩ −∑ ⟨𝛷𝑗|ᵡ𝑛⟩
𝑗

|𝛷𝑗⟩}              (II. 14) 

And then we obtain the following relation 

𝐻|ᵡ𝑛⟩ +∑ [ 𝐸𝑛(𝑘) −  𝐸𝑗]|𝛷𝑗⟩⟨𝛷𝑗|ᵡ𝑛⟩
𝑗

=  𝐸𝑛(𝑘)|ᵡ𝑛⟩ 

New parameter:   𝑉𝑝 = ∑ [ 𝐸𝑛(𝑘) −  𝐸𝑗]|𝛷𝑗⟩⟨𝛷𝑗|𝑗  

Will lead to   [𝐻 +  𝑉𝑝]|ᵡ𝑛⟩  =   𝐸𝑛(𝑘)|ᵡ𝑛⟩ 

Or                        

[ 𝐻0 + 𝑉(𝑟 ) +  𝑉𝑝(𝑟 )]|ᵡ𝑛⟩  =  𝐸𝑛(𝑘)|ᵡ𝑛⟩                                    (II. 15) 

Where,  𝐸𝑛(𝑘) is the band energy, which we are interested in. There exists the following 

inequality between the energies of the core states, 𝐸𝑗, and the energies of the valance and 

conduction bands, 𝐸𝑛(𝑘):   𝐸𝑛(𝑘) >  𝐸𝑗  

And thus we find that:  𝑉𝑝 > 0  

we may rewrite (II.15) as  
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[ 𝐻0 +  𝑉𝑝𝑠]|ᵡ𝑛⟩ =   𝐸𝑛(𝑘)|ᵡ𝑛⟩                                           (II. 16) 

 𝑉𝑝𝑠 = 𝑉(𝑟 ) +  𝑉𝑝(𝑟 )                                                   (II. 17) 

And it may be possible to make 𝑉𝑝𝑠 small enough, since 𝑉 (𝑟 )  <  0. The new potential 𝑉𝑝𝑠(𝑟 ), 

called the pseudopotential, is also periodic, and we can expand it as the Fourier series [4]: 

 𝑉𝑝𝑠(𝑟 ) =∑  𝑉𝑝𝑠( 𝐺 𝑗)𝑒
−𝑖 𝐺 𝑗.𝑟 

𝑗
                                      (II. 18) 

II.2.4.2. The K.P method 

If we substitute a Bloch function into the Schrödinger equation: 

−
ћ2

2𝑚
𝛻2𝜓(𝑟)  + 𝑉(𝑟) 𝜓(𝑟)  =  𝐸 𝜓 (𝑟)                                (II. 19) 

We obtain the equation for the periodic part 

[
𝑃2

2𝑚
+
ћ

𝑚
 �⃗� . 𝑝  +

ћ2𝑘2

2𝑚
 +  𝑉(𝑟 )] 𝑢𝑛𝑘(𝑟 ) = 𝐸𝑛(�⃗� )𝑢𝑛𝑘(𝑟 )              (II. 20) 

Where the band index n has been added at �⃗�  = 0, the above equation becomes the same 

equation satisfied by the total wave-function: 

(
𝑃2

2𝑚
 +  𝑉(𝑟 )) 𝑢𝑛0(𝑟 ) = 𝐸𝑛(�⃗� )𝑢𝑛0(𝑟 )                              (II. 21) 

If we are interested in the electronic states near �⃗�  = 0 (point Γ), the two terms containing �⃗�  in 

(II.20) can be treated as a perturbation. For this, however, we need the eigenfunctions at Γ. On 

the other hand, (II.21) for such functions is much easier to solve than the general Schrödinger 

equation. As expected, the states obtained with this method are rather good for small �⃗� , 

although the method can be extended to expand the band structure around any given value k. 

In particular, the effective masses (i.e., the curvatures of the bands around their minima), 

obtained with this method, with simple approximations for the wave functions at Γ, are in 

good agreement with the experimental values [5]. 

II.2.5. Density of states 

The dispersion relation yields how the energy of a (quasi-) particle depends on the 

𝑘 ⃗⃗⃗  vector. Now we want to know how many states are at a given energy. This quantity is called 
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the density of states (DOS) and is written as 𝐷(𝐸). It is defined in an infinitesimal sense such 

that the number of states between E and 𝐸 +  𝛿𝐸 𝑖𝑠 𝐷(𝐸)𝛿𝐸. In the vicinity of the extrema of 

the band structure many states are at the same energy such that the density of states is high. 

The dispersion relation of a band will be given as 𝐸 =  𝐸(�⃗� ). If several bands overlap, the 

densities of state of all bands need to be summed up. The density of states at the energy 𝐸′ for 

the given band is 

(𝐸′)𝑑𝐸 =  2∫
𝑑3𝑘

(
2𝜋
𝐿 )

3 𝛿 (𝐸
′ − 𝐸(�⃗� ))                                      (II. 22) 

Where (2𝜋 𝐿⁄ )3 is the k-space volume for one state. The factor 2 is for spin degeneracy. The 

integral runs over the entire k-space and selects only those states that are at 𝐸′. The volume 

integral can be converted to a surface integral over the isoenergy surface 𝑆(𝐸′) with 𝐸(k⃗ ) =

𝐸′  the volume element d3k is written as d2S𝑑𝑘⊥. The vector 𝑘⊥is perpendicular to 𝑆(𝐸′) and 

proportional to ∇𝐾𝐸(�⃗� ), i.e. dE = |∇𝐾𝐸(�⃗� )|𝑑�⃗� ⊥ 

𝐷(𝐸′) = 2∫
𝑑2𝑆

(
2𝜋
𝐿 )

3
𝑆(𝐸′)

1

|𝛻𝐾𝐸(𝑘)|
                                               (II. 23) 

In this equation, the dispersion relation is explicitly contained. At band extrema, the 

gradient diverges in three dimensions in which singularities are integrable and the densities of 

states take finite values. The corresponding peak is named a Van Hove singularity. The 

concept of the density of states is valid for all possible dispersion relations, e.g. for electrons, 

phonons or photons [2]. 

II.2.6. Transport electron phenomena 

II.2.6.1. Electron and hole in semiconductors 

In a semiconductor containing no impurities or defects, i.e., an intrinsic semiconductor, 

at temperatures above 0 K some thermally excited electrons are promoted from the valence 

band to the conduction band. An unoccupied state in the valence band is called a hole, which 

may be regarded as a positive charge carrier that can contribute to the conduction process. 

Electronic transitions across the energy gap to the conduction band result in a spontaneous 

generation of holes in the valence band, and the generated carriers are described as electron–

hole pairs. After a random motion through the lattice, the electron in the conduction band 
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encounters a hole and undergoes a recombination transition. The generation of electron–hole 

pairs and their subsequent recombination is a continuous process, and the average time that 

carriers exist between generation and recombination is called the lifetime of the carrier. 

During this process of generation of electron–hole pairs, the concentration of electrons 

(denoted as n) in the conduction band is equal to the concentration of holes (denoted as p) in 

the valence band. This can be expressed as 𝑛 = 𝑝 = 𝑛𝑖 where, 𝑛𝑖  is the intrinsic carrier 

concentration. 

Electrons and holes in the conduction and valence bands, respectively (carrying negative and 

positive electronic charges, respectively), are referred to as free charge carriers. In the 

presence of an electric field the free charge carriers attain the drift velocity 𝑣, and a net 

current density 𝑗 [6]. 

II.2.6.2. Current density 

The equation of motion for the electron in the band structure is no longer given by 

Newton’s law 𝐹 = 𝑑(𝑚𝑣)/𝑑𝑡 as in vacuum. Instead, the propagation of quantum-mechanical 

electron wave packets has to be considered. Their group velocity is given by 

𝜗𝑔 =
𝑑𝑤

𝑑𝑘
=
1

ħ

𝑑𝐸

𝑑𝑘
                                                             (II. 24) 

Through the dispersion relation the influence of the crystal and its periodic potential on the 

motion enters the equation. An electric field 휀 acts on an electron during the time 𝛿𝑡  the 

work 𝛿𝐸 = −𝑒휀𝑣𝑔𝛿𝑡. This change in energy is related to a change in k via 𝛿𝐸 =

𝑑𝐸/𝑑𝑘. 𝛿𝑘 = ħ𝑣𝑔𝛿𝑘 . Thus, we arrive at ħ𝑑𝑘/𝑑𝑡 = −𝑒휀 . For an external force we thus have 

ħ
𝑑𝑘

𝑑𝑡
= −𝑒𝐸                                                                (II. 25) 

Under the influence of an electric field the electrons accelerate according to (II.25) 

𝐹 = 𝑚∗
𝑑𝑣

𝑑𝑡
=
ħ𝑑𝑘

𝑑𝑡
= 𝑞𝐸 = −𝑒𝐸                                                (II. 26) 

In the following, q denotes a general charge, while e is the (positive) elementary charge. After 

the time δt the k vector of all conduction electrons (and the center of the Fermi sphere) has 

been shifted by δk 

𝛿𝑘 = −𝑒
𝛿𝑡

ħ
                                                                  (II. 27) 
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In a real semiconductor, at finite temperatures, impurities, phonons and defects (also the 

surface) will contribute to scattering. In the relaxation-time approximation it is assumed that 

the probability for a scattering event, similar to friction, is proportional to the (average) carrier 

velocity. The average relaxation time τ is introduced via an additional term  �̇� =  −𝑣/𝜏 that 

sums up all scattering events. Thus, the maximum velocity that can be reached in a static 

electric field is given by (steady-state velocity) 

𝑉 = −
𝑒𝐸𝜏

𝑚∗
                                                                 (II. 28) 

The current density per unit area is then linear in the field, i.e. fulfills Ohm’s law 

𝑗 = 𝑛𝑞𝑣 =
𝑛𝑒2𝐸𝜏

𝑚∗
= 𝜎𝐸                                                          (II. 29) 

Where n is the electron density, q the electronic charge, σ the electrical conductivity [2]. 

II.2.6.3. Electrical conductivity 

It is the ratio between the density of current and the intensity of the electric field, 

according to the equation (II.29), the electrical conductivity define as 

σ =
ne2τ

m∗
                                                                  (II. 30) 

II.2.6.4. Conductivity tensor  

The electrical mobility 𝜇 is: 

  𝜇 =
𝑒𝜏

𝑚∗
                                                                   (II. 31) 

Substituting (II.31) in (II.29) we find 

𝑗 = 𝑛𝑒𝜇𝐸 = 𝜎𝐸                                                          (II. 32) 

With components (𝑗𝑥, 𝑗𝑦, 𝑗𝑧) where 

{

𝑗𝑥 = 𝑛𝑒𝜇1𝐸𝑥                                                                               
𝑗𝑦 = 𝑛𝑒𝜇2𝐸𝑦                                                                 (II. 33)

𝑗𝑧 = 𝑛𝑒𝜇3𝐸𝑧                                                                                
 

The electrical conductivity is thus a tensor, in this case a diagonal one through special choice 

of axes. If we write [7]: 

𝑗𝑟 =∑𝜎𝑟𝑠𝐸𝑆
𝑠

                                                                 (II. 34) 

With 𝑟, 𝑠 = 𝑥, 𝑦, 𝑧 we have: 

𝜎𝑥𝑥 = 𝑛𝑒𝜇1
𝜎𝑦𝑦 = 𝑛𝑒𝜇2
𝜎𝑧𝑧 = 𝑛𝑒𝜇3

} 𝜎𝑥𝑦 = 𝜎𝑦𝑧 = 𝜎𝑧𝑥 = 0                                       (II. 35) 
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II.3. Optical properties 

II.3.1. Kramers-Kronig relation 

The Kramers–Kronig relations (KKR) are relations between the real and imaginary part 

of the dielectric function. They are of a general nature and are based on the properties of a 

complex, analytical response function 𝑓(𝜔)  =  𝑓1(𝜔) +  𝑖𝑓2(𝜔) fulfilling the following 

conditions: 

 The poles of 𝑓(𝜔) are below the real axis. 

 The integral of 𝑓(𝜔)/𝜔 along a semicircle with infinite radius in the upper half of the 

complex plane vanishes. 

 The function 𝑓1(𝜔)is even and the function 𝑓2(𝜔) is odd for real values of the 

argument. 

The integral of 𝑓(𝑠)/(𝑠 − 𝜔)𝑑𝑠 along the real axis and an infinite semicircle in the upper half 

of the complex plane is zero because then path is a closed line. The integral along a semicircle 

above the pole at 𝑠 =  𝜔 yields −𝜋𝑖𝑓(𝜔), the integral over the infinite semicircle is zero. 

Therefore, the value of f (ω) is given by 

𝑓(𝜔) =
1

𝜋𝑖
𝑃𝑟 ∫

𝑓(𝑠)

𝑠 − 𝜔

+∞

−∞

𝑑𝑠                                               (II. 36) 

Equating the real and imaginary parts of (II.36) yields for the real part 

𝑓1(𝜔) =
1

𝜋
𝑃𝑟 ∫

𝑓2(𝑠)

𝑠 − 𝜔

+∞

−∞

𝑑𝑠                                             (II. 37) 

Splitting the integral into two parts ∫
0

∞
 and ∫

−∞

0
 going from s to −s in the latter and using 

𝑓2(−𝜔) = −𝑓2(𝜔) and  
1

𝑠−𝜔
+

1

𝑠+𝜔
=

2

𝑠2−𝜔2
  yields (II.38.a) 

𝑓1(𝜔) =
2

𝜋
𝑃𝑟∫

𝑠𝑓2(𝑠)

𝑠2 −𝜔2

+∞

0

𝑑𝑠                                                (II. 38. a) 

𝑓2(𝜔) = −
2

𝜋
𝑃𝑟∫

𝑓1(𝑠)

𝑠2 − 𝜔2

+∞

0

𝑑𝑠                                            (II. 38. b) 
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In a similar way, (II.38.b) is obtained. These two relations are the Kramers–Kronig relations. 

They are most often applied to the dielectric function 휀. In this case, they apply to the 

susceptibility, i.e. 𝑓(𝜔) = 𝑥(𝜔) = 휀(𝜔)/휀0 − 1. The susceptibility can be interpreted as the 

Fourier transform of the time-dependent polarization in the semiconductor after an infinitely 

short pulsed electric field, i.e. the impulse response of the polarization. For the dielectric 

function ε = ε1 + iε2 , the following KK relations hold [2]: 

휀1(𝜔) = 휀0 +
2

𝜋
𝑃𝑟∫

𝑠휀2(𝑠)

𝑠2 − 𝜔2

+∞

0

𝑑𝑠                                   (II. 39. a) 

휀2(𝜔) = −
2𝜔

𝜋
𝑃𝑟∫

휀1(𝑠) − 휀0
𝑠2 − 𝜔2

+∞

0

𝑑𝑠                                   (II. 39. b) 

II.3.2. Fundamental absorption process 

The fundamental absorption process takes place when photons with energies greater 

than the band gap energy of the semiconductor (i.e., hν ≥ Eg) are absorbed in a semiconductor. 

This process usually results in the generation of electron–hole pairs in the semiconductor. For 

most semiconductors, the fundamental absorption process may occur in the UV, visible, and 

IR wavelength regimes. It is the most important optical absorption process because important 

photoelectric effects for generating excess electron–hole pairs in a semiconductor are based 

on such absorption processes. There are two types of optical transition associated with the 

fundamental absorption process, namely, direct and indirect band-to-band transitions, as 

shown in Figures II.1 a and b. 

Figure II.1: Direct and indirect transitions associated with the fundamental absorption                                                                                                     

processing in a semiconductor [8]. 
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II.3.2.1. Direct transition process 

The direct (or vertical) transition shown in Figure II.1a is the dominant absorption 

process taking place in a direct band gap semiconductor when the conduction band minimum 

and the valence band maximum are located at the same k-value in the reciprocal space(i.e., 

typically at the Γ-point of the Brillouin zone center). 

II.3.2.2. Indirect transition process 

For an indirect band gap semiconductor, the conduction band minimum and the valence 

band maximum are not located at the same k-value in the reciprocal space. Therefore, the 

indirect optical transition induced by photon absorption is usually accompanied by the 

simultaneous absorption or emission of a phonon. As illustrated in Figure II.1b, conservation 

of momentum in this case is given by 

�⃗� 𝑓 = �⃗� 𝑖 ± 𝑞                                                                  (II. 40) 

Where �⃗� 𝑓and �⃗� 𝑖 denote the wave vectors of the final and initial states of electrons, 

respectively, and 𝑞  is the phonon wave vector. The plus sign in (II.40) corresponds to phonon 

emission, and the minus sign is for phonon absorption [8]. 

II.3.3. The absorption coefficient 

The optical absorption coefficient is related to the Pointing vector of the 

electromagnetic (EM) wave energy flow by 

𝑆(𝑧) = 𝑆0𝑒
−𝛼𝑧                                                              (II. 41) 

Where 𝑆(𝑧) is the Poynting vector, which is proportional to the square of the amplitude of the 

electric waves, 𝑆0 is the intensity of the incident beam, 𝑧 is the length, and 𝛼 is the optical 

absorption coefficient. 

II.3.3.1. Absorption coefficient for direct transition 

The absorption coefficient for a direct allowed transition can be expressed by: 

𝛼𝑑𝑎 = 𝐾𝑑𝑎(ℎ𝜈 − 𝐸𝑔)
1
2⁄                                                       (II. 42) 

Where, 𝐾𝑑𝑎 is a constant. 
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II.3.3.2. Absorption coefficient for indirect transition 

The optical absorption coefficient due to the indirect transitions with phonon absorption is 

given by: 

𝛼𝑖𝑎(ℎ𝜈) = 𝐾𝑖𝑎
(ℎ𝜈 − 𝐸𝑔 + ħ𝜔𝑞)

2

(𝑒ħ𝜔𝑞 𝑘𝐵𝑇⁄ − 1)
                                      (II. 43) 

Similarly, for transitions involving phonon emission, the optical absorption coefficient can be 

expressed by: 

𝛼𝑖𝑒(ℎ𝜈) = 𝐾𝑖𝑒
(ℎ𝜈 − 𝐸𝑔 − ħ𝜔𝑞)

2

(1 − 𝑒−ħ𝜔𝑞 𝑘𝐵𝑇⁄ )
                                      (II. 44) 

Where ħ𝜔𝑞 is the phonon energy [8]. 

II.3.4. Refractive index 

Many attempts have been made to correlate the energy bandgap to the optical refractive 

index of semiconductors. Estimation of this parameter is important for optical waveguide in 

optoelectronic structures like heterojunction laser diodes, optical amplifiers or optical fibers, 

etc [9]. 

Moss was the first to find a relation between the refractive index n and the energy bandgap Eg 

based on the atomic model. 

𝐸𝑔𝑛
2 = 𝑘                                                            (II. 45) 

Where, 𝑘 is a constant equal to 108 eV, 𝐸𝑔 is the bandgap energy [10]. 

Ravindra et al proposed a linear relation governing the variation of refractive index with 

energy gap in semiconductors. The relation is given by [11]: 

𝑛 = 4.084 − 0.62𝐸𝑔                                                 (II. 46) 

Herve and Vandamme proposed a model based on the oscillatory theory 𝜔 ≪ 𝜔0  

𝑛 = √1 + (
𝐴

𝐸𝑔 + 𝐵
)

2

                                               (II. 47) 

Where: A = 13.6 eV, B = 3.4 eV and 𝜔0: is the UV resonance frequency [9]. 
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III.1. Introduction 

 In this chapter, we have used the Wien2k code within GGA, LDA, WC, and TB-mBJ-

LDA approximations to study the optical and electronic properties of the Si3N4 in both 

crystallographic phases, α and β. In this end, the obtained results from both phases lead to 

distinguish which phase has better properties to our needs, such as the optical absorption 

under visible range. Besides, we are going to dope with P or Al the structure that has the best 

properties for more optimization.  

III.2. Presentation of silicon nitride (Si3N4) 

Silicon nitride is a non-oxide ceramic material with many applications because of its 

outstanding high temperature and oxidation-resistant properties. It has been extensively 

applied to micro-electronics, photo-electronics, mechanics, automobile, solar cells and tools 

for ceramic cutting and processing [1]. As is known, two stable phases of Si3N4, α and β, have 

been synthesized, both of which have a hexagonal crystal structure [2] in which all Si atoms 

have tetrahedral bonds to N atoms with a strong covalent character [1]. The lattice parameters 

of each unit cell are presented in the Tab III.1. 

Taking the electronic configuration of atoms: Si: 1s22s22p63s23p2 N: 1s22s22p3 

α-Si3N4                                                                      β-Si3N4 

Figure III.1: Schematic illustration of Alpha (α-Si3N4) and Beta (β-Si3N4) structures. 
 

 

   Parameters 

phase 

a (Å) x 2 b (Å) x 2 c (Å) x 2 α (°) β (°) γ (°) Space 

Group 

α-Si3N4 14.279308 14.279308 10.245155 90 90 120 P31c 

β-Si3N4 14.374963 14.374963 5.494003 90 90 120 P63/m 

Table III.1: The parameters of the unit cell for alpha and beta phases. 
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The both phases alpha and beta of the silicon nitride have a hexagonal crystal structure, Fig 

III.2 show the first Brillouin zone of the reciprocal lattice for the hexagonal unit cell. 

 

 

 

 

 

 

 

Figure III.2: The first Brillouin zone of the reciprocal lattice for the hexagonal unit cell. 

III.3. Convergence parameters 

We have performed a series of convergence tests within product parameter Rmt×Kmax to 

determine a proper cutoff energy value which to be used. Where Rmt is the smallest atomic 

sphere radius in the unit cell and Kmax is the maximum module for the reciprocal lattice vector 

quantified by k special points in FP-LAPW method. In this study, we have chosen muffin-tin 

radiuses so that there will be no overlap in muffin-tin spheres. The energy, charge and 

Hellmann-Feynman forces convergence criterions are fixed to 10-6 Ry, 10-4 C and 0.5 

mRy/a.u, respectively. Thus, the Rmt was determined as function of energy as it is shown in 

Fig III.3: 

        α-Si3N4                                                                β- Si3N4 

    Figure III.3: Rmt variation as function of total energy for alpha and beta phases. 
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Hence, we have fixed the Rmt to 9 for both alpha and beta phases with, respectively, 6×6×8 

and 4×4×10 of Kmax. 

III.4. Electronic properties 

The current step is with great interest to study the electronic behavior of a Si3N4 

material. But, the use of standard GGA, LDA or WC approximations underestimate the bands 

structure and, consequently, the density of states. However, a better evaluation of electrical 

properties can only be achieved through the use of the TB-mBJ-LDA potential, because it 

yields in most cases results that are in agreement with experiment leading to typical errors of 

less than 10%.  

III.4.1. Band structures 

 We studied the electronic band structures for the two crystallographic phases, α-Si3N4 

and β-Si3N4. In the following figures, we presented the calculation results starting by: 

1.  The alpha phase 
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Figure III.4: Band structures and total DOS for α-Si3N4 obtained by (a) PBE-GGA (b) 

LDA (c) TB-mBJ-LDA. 

Fig III.4 shows the band structures and the corresponding total DOS for α-Si3N4 

according to PBE-GGA, LDA and TB-mBJ-LDA approximations. In each of these three 

approximations, we can see that the maximum of valence band is at Γ point and the minimum 

of the conduction band is also at the Γ point, so the phase α-Si3N4 is a semiconductor with 

direct bandgap. In the Tab III.2, we present the values of band gap for each approach and 

experimental value of other work. 

 PBE-GGA LDA TB-mBJ-LDA Experimental [3] 

α-Si3N4 

Bandgap (eV) 

4.57 4.38 6.09 5.0 

Table III.2: Energy values of α-Si3N4 Bandgap. 

2. The beta phase 

Now, we show the band structures and the DOS of beta phase. The results are obtained 

by the use of WC, PBE-GGA, LDA and TB-mBJ-LDA approximations. 
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Figure III.5: Band structures and total DOS for β-Si3N4 obtained by (a) PBE-GGA (b) 

LDA (c) TB-mBJ-LDA (d) WC. 

For the beta phase, we see that the maximum of the valence band is between Γ and A 

high-symmetry points while the maximum of the conduction band is at Γ point, so the β-Si3N4 

phase has indirect bandgap. In Tab III.3, we present the values obtained of the beta bandgap.  

 PBE-GGA LDA TB-mBJ-LDA WC Experimental [3] 

β-Si3N4 

Bandgap (eV) 

4.13 4.0 5.65 4.05 4.6-5.5 

Table III.3: Energy values of β-Si3N4 Bandgap. 

From the Tab III.2 and Tab III.3 we observe that the β phase has the lowest bandgap 

compared with α phase. 
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III.4.2. Density of states 

To understand the electronic properties, one must calculate the density of states, so in the 

following, we show the total and partial density of states of silicon nitride in their 

crystallographic phases α and β. 

1. The alpha phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.6: Total and partial density of states of alpha phase.  
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2. The beta phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.7: Total and partial density of states of beta phase. 

Fig III.6 shows the total DOS of α-Si3N4 phase and density of states of the atoms N1, N2, 

Si1 and Si2, the other atoms, by symmetry will be at the same state. In Fig III.7 we present the 

total DOS of β-Si3N4 phase and the DOS of N1, N2, and Si atoms. In both phases, the bottom 

of conduction bands is mainly constituted of Si 3s 3p states, and the top of valence bands is 

occupied by N 2p states [9]. 
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Before the finish with the electronic properties part, we present in a comparative table the 

deduced properties for the two phases. 

 PBE-GGA LDA TB-mBJ-LDA WC 

α 

gap (eV) 4.57 4.38 6.09 - 

gap type direct direct direct - 

VB width (eV) 9.83 9.88 9.51 - 

CB width (eV) 5.34 5.52 3.82 - 

β 

gap (eV) 4.13 4.0 5.65 4.05 

gap type indirect indirect indirect indirect 

VB width (eV) 9.85 9.91 9.46 9.88 

CB width (eV) 5.76 5.91 4.26 5.84 

Table III.4: Electronic properties of Alpha and Beta phases. 

III.5. Optical properties 

 DFT makes it possible to calculate all the optical properties, namely the refractive 

index, the extinction coefficient, the absorption coefficient…, which are deduced from the 

complex dielectric function ε (ω).  

III.5.1. Dielectric function 

 The optical properties of matter can be described by the complex dielectric function 

ε(ω), which represents the linear response of the system to an external electromagnetic field 

with a small wave vector. To calculate the direct inter-band contribution to the imaginary part 

of the dielectric function ε2 (ω), one must sum all possible transitions from occupied to 

unoccupied states. The imaginary part ε2 (ω) can be calculated by the following formula.  

휀2(𝜔) =
4𝜋𝑒2

𝑚2𝜔
∫𝑑3𝑘∑|⟨𝐾𝑛|𝑃|𝐾𝑛′⟩|2

𝑛,𝑛′

𝑓𝐾𝑛(1 − 𝑓𝐾𝑛′)𝛿(𝐸𝐾𝑛 − 𝐸𝐾𝑛′ − ħ𝜔)       (III. 1) 

Where e is the electron charge, m is the mass, ω is the frequency of the incident radiation, ħ is 

the reduced Planck constant, P the momentum operator, 𝑓𝐾𝑛 the Fermi distribution and |𝐾𝑛′⟩ 

the crystal wave function [4]. 

 We present by Fig III.8 and Fig III.9 the curves of the real part (ε1) and the imaginary 

part (ε2) of the dielectric function as a function of the photon energy. 
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Figure III.8: Variation of real part of the dielectric function for (a) α and (b) β phases. 

 

 

 

 

 

 

 

 

Figure III.9: Variation of imaginary part of the dielectric function for (a) α and (b) β. 

The main feature of the real part (ε1) in alpha phase is that the main peak appear 

approximately at the energy range [6, 7.5eV] obtained by PBE-GGA and LDA, and at [8, 

9eV] for TB-mBJ-LDA approximation. For the beta phase, the peaks appeared at the energy 

range [5.8, 8eV] which obtained by the use of WC, PBE-GGA and LDA approximations, and 

at the range [7.3, 9eV] in the curve obtained by the TB-mBJ-LDA. These peaks are 

originating from the interband transition. In the Tab III.5 we present the static dielectric 

constants ε1 (0) for both α and β phases. 

 PBE-GGA LDA TB-mBJ-LDA WC 

α ε1 (0) 3.53 3.65 2.56 - 

β ε1 (0) 3.90 3.82 2.70 3.79 

Table III.5: Calculated static dielectric constant ε1 (0) for α and β phases. 

E22 

E1 

(a) (b) 

(a) (b) 
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The Fig III.9 show the imaginary part (ε2) of the dielectric function for alpha and beta phases. 

We observe two peaks E1 and E2, appeared in the beta phase correspond to the interband 

transitions. The positions of the two peaks are summarized in Tab III.6.  

 PBE-GGA LDA WC TB-mBJ-LDA 

E1 (eV) 7.76 7.63 7.68 9.12 

E2 (eV) 9.07 8.93 8.99 - 

Table III.6: Inter-band transition energies for β phase. 

III.5.2. Refractive index and extinction coefficient 

The refractive index n (ω) and the extinction coefficient k (ω), are calculated in terms 

of the real and the imaginary parts of the complex dielectric function as follows [4]: 

𝑛 =
(휀1 + (휀1

2 + 휀2
2)1 2⁄ )

1 2⁄

√2
                                                      (III. 2) 

𝑘 =
(−휀1 + (휀1

2 + 휀2
2)1 2⁄ )

1 2⁄

√2
                                                  (III. 3) 

The refractive index n (ω) and the extinction coefficient k (ω) of α and β phases are shown in 

Fig III.10 and Fig III.11 respectively.  

 

  

 

 

 

 

Figure III.10: Variation of the refractive index for (a) α and (b) β phases. 

The spectra of refractive indices n (ω) of the two phases have similar frequency dependent 

features like ε1 (ω) spectra. The Tab III.7 shows the static and maximum values of refractive 

index for α and β phases, obtained by each approximation. 

 

(a) (b) 
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 PBE-GGA LDA TB-mBJ-LDA WC 

α 
n(0) 1.87 1.91 1.60 - 

n max at 

E(eV) 

n = 2.68           

E = 7.03 

n = 2.71            

E = 6.87 

n = 2.35            

E = 8.53 

- 

β 
n(0) 1.97 1.95 1.64 1.94 

n max at 

E(eV) 

n = 2.72            

E = 7.44 

n = 2.72            

E = 7.27 

n = 2.40            

E = 8.91 

n = 2.71            

E = 7.36 

Table III.7: Static and maximum values of refractive index for α and β phases. 

Figure III.11: Variation of the extinction coefficient k (ω) for (a) α and (b) β phases. 

The imaginary part of the complex refractive index, namely extinction coefficient is known to 

be associated with ε2 (ω). Therefore, change in photon frequency dependent ε2 (ω) and change 

in photon frequency dependent extinction coefficient are shown similar behaviors. The 

extinction coefficient k (ω) vanishes for energies lower than 5 eV for both alpha and beta 

phases, and shows peaks in the beta phase due to the interband transitions in the energy ranges 

[7.5, 8eV] for PBE-GGA, LDA and WC approximations and [9, 10eV] for TB-mBJ-LDA. At 

values where extinction coefficient is high, it can be expected absorption coefficient to be 

high also, thus in this energy ranges the photons are absorbed rapidly. 

 

III.5.3. Absorption coefficient and reflectivity 

The absorption coefficient α (ω) can be written in the following form: 

𝛼(𝜔) =
2𝑘𝜔

𝑐
                                                                 (III. 4) 

And the reflectivity R (ω) is written in the form: 

(a) (b) 
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𝑅(𝜔) =
(𝑛 − 1)2 + 𝑘²

(𝑛 + 1)2 + 𝑘²
                                                     (III. 5) 

Where k is the extinction coefficient, ω is the frequency of the incident radiation, n is the 

index of refraction and c is the speed of light [5].  

Fig III.12 shows the absorption coefficient α (ω) as a function of the energy of the incident 

photons. 

Figure III.12: Variation of absorption coefficient α (ω) for (a) α and (b) β phases. 

By considering that the range of visible domain start from 380 nm to 740 nm, so the 

correspond photons energy range is from 1.67 eV to 3.26 eV, in this range, the absorption 

coefficient is almost zero in the two phases. But we see that the absorption coefficient of the 

two crystallographic phases of silicon nitride is highly in the ultraviolet range. As it appears in 

the graphs, the max of absorption coefficient is at E = 10 eV for both α and β phases, for the 

visible range, the maximum value is in the limit of range (3.25eV). In Tab III.8, the maximum 

values are summarized. 

Table III.8: Maximum values of absorption coefficient for α and β phases. 

 PBE-GGA LDA TB-mBJ-LDA WC 

α α (ω) (104.cm-1) at E = 10 eV 161.08 166.07 105.36 - 

α (ω) (104.cm-1) at E = 3.25 eV 0.291 0.312 0.157 - 

β α (ω) (104.cm-1) at E = 10 eV 164.59 170.27 103.94 170.18 

α (ω) (104.cm-1) at E = 3.25 eV 0.335 0.358 0.177 0.351 

(b) (a) 
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Figure III.13: Variation of reflectivity R (ω) for (a) α and (b) β phases. 

The Fig III.13 shows that the maximum of reflectivity is at the energy E = 10 eV for the alpha 

phase and in the energy range [9.42, 10eV] for the beta phase. For the visible range, the 

maximum is at E = 3.25 eV for the both phases. In the Tab III.9, we summarize the maximum 

of reflectivity in the total energy range and in the visible range. 

 PBE-GGA LDA TB-mBJ-LDA WC 

α R(ω) (%) at E = 3.25 eV 10.78 11.36 6.05 - 

R(ω) max (%) 30.96 31.73 21.47 - 

β R(ω) (%) at E = 3.25 eV 12.41 12.24 6.78 12.08 

R(ω) max (%) 32.06 32.81 22.99 32.90 

Table III.9: Maximum values of reflectivity for α and β phases. 

 

III.5.4. Optical conductivity 

The term of “optical conductivity” means the electrical conductivity in the presence of 

an alternating electric field [6]. The real part of optical conductivity is given by [7]: 

𝑅𝑒[𝜎(𝜔)] =
𝜔

4𝜋
휀2(𝜔)                                                   (III. 6) 

The calculated optical conductivity is plotted in Fig III.14 for real part σ1 (ω) and III.15 for 

imaginary part σ2 (ω). 

 

(a) (b) 
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Figure III.14: Real part of optical conductivity (1015/sec) for (a) α and (b) β phases. 

Figure III.15: Imaginary part of optical conductivity (1015/sec) for (a) α and (b) β phases.  

For the real part of optical conductivity, only in beta phase, peaks are appeared. This 

can be explained by the occupied states close to the conduction band minimum. Energies that 

correspond to these appeared peaks are summarized in Tab III.10. Also σ1 (ω) have similar 

frequency dependent features like ε2 (ω) spectra.  

 PBE-GGA LDA WC TB-mBJ-LDA 

E1 (eV) 7.79 7.63 7.68 9.15 

E2 (eV) 9.1 8.96 8.99 - 

Table III.10: Energies that correspond to optical conductivity peaks in the β phase. 

 

E1 

E2 (b) (a) 

(a) (b) 
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III.5.5. Energy loss function 

 

Figure III.16: The energy loss function versus photon energy for (a) α and (b) β phases. 

 

Fig III.16 shows the energy loss function for the two phases, it is given by [8]: 

𝐿(𝜔) = 𝐼𝑚 (
−1

휀(𝜔)
)                                                          (III. 7) 

The energy loss function is important for investigating the optical properties of materials; it covers 

the complete energy range, consisting of non-scattered and elastically scattered electrons, which 

are responsible for the interband transitions. When electrons of sufficient energy pass through the 

solid, the amount of energy lost when an electron jumps in the material is described by the loss 

function. The peaks in the energy loss function are related to interband transitions. As shown in 

Fig III.16, the energy loss function is negligible in both alpha and beta phases for the energies 

lower than 5 eV, and after this energy the energy loss function increase with the increase of the 

incident photon energy, until reaching their maximum in the energy range [9.5-10eV] for the both 

phases. 

 

Through the analysis of the results obtained in each phase, we find that the properties of 

beta phase is relatively better than the properties of alpha phase, such as the absorption 

coefficient which is relatively higher (in the visible range) in beta phase compared to alpha 

phase. 

 

 

(a) (b) 
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III.6. Optimization of beta phase properties 

As we mentioned before, we are studying the electronic and optical properties of silicon 

nitride in the crystallographic phases α and β, to use them as anti-reflective layers on mono- 

or multi-crystalline silicon-based solar cells. For this, one must choose the crystallographic 

phase, which has characteristics more suitable for this type of applications. So after we 

studied the properties of both phases, we find that the beta structure is suitable film 

crystallization. However, their properties in the visible range remain very weak, so we will 

resort to improve it by doping with aluminum (Al) for obtaining the p-type conductivity, and 

with phosphorus (P) for obtaining n-type conductivity. The results allow us to conclude with 

respect to the study need to separate between both elements. 

The unit cell of the beta phase contains 6 atoms of (Si), and the doping is done by the 

use of one atom of (P) instead of the atom of (Si) in the first case, so we have 16.66% of (P) 

and 83.33% of (Si), and the same for the doping with atom of (Al), so we obtain the 

compounds P-doped β-(Si0.83P0.16)3N4 and Al-doped β-(Si0.83Al0.16)3N4. 

Taking the electronic configuration of atoms: P: 1s22s22p63s23p3  Al: 1s22s22p63s23p1 

III.6.1. Novel electronic properties of β-Si3N4 with Al and P dopants 

A better evaluation of the electronic properties is made by using the TB-mBJ-LDA, so 

we've used it in the remaining calculation. 

III.6.1.1. Band structures 

Figure III.17: Band structures and total DOS of (a) Al and (b) P doped β-Si3N4. 
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In the Tab III.11, we present the values obtained for the two elements compared with the 

undoped beta structure. 

 Gap (eV) Gap type VB width (eV) CB width (eV) 

P-doped β-Si3N4 4.02 direct 6.03 9.93 

Al-doped β-Si3N4 5.46 indirect 9.63 4.46 

Undoped β-Si3N4 5.65 indirect 9.46 4.26 

Table III.11: Band gap comparison between doped and undoped β phase. 

We see that the gap has become direct and decreases from 5.65 eV to 4.02 eV in P-doped, it's 

a remarkable improvement compared with the obtained in Al-doped where the gap decreases 

from 5.65 eV to 5.46 eV and remain indirect gap. On the other hand, the width of the VB and 

the CB of Al-doped β-Si3N4 not much different from the width of VB and CB of the undoped 

beta phase compared with the VB and the CB of P-doped β-Si3N4, where the width of VB 

decreases from 9.46 eV to 6.03 eV and the width of CB increases from 4.26 eV to 9.93eV. 

This is because the P atom has one more conduction electron than Si atom which acts as a 

donor when it replaces the Si atom. 

III.6.1.2. Density of states 

 Figure III.18: Total density of states for (a) Al and (b) P atoms. 

 One can observe that the Al atom has more states in the valence band and less states in 

the conduction band, and the inverse for the P atom. This is because the Al atom has a vacant 

position and acts as an acceptor when it replaces the Si atom, and the P atom has one more 

conduction electron than Si atom which acts as a donor. So, Al (3p) and N (2p) states occupy 

the top of valence band of Al-doped β-Si3N4. The bottom of conduction bands is mainly 

constituted of Si (3s; 3p). The top of valence band of P-doped β-Si3N4 is occupied by N (2p) 

(a) (b) 
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states, and the conduction band consists mainly by the contribution of P (3s; 3p) and Si (3s; 

3p) states [9]. 

 While the Al-doped β-Si3N4 is a p-type semiconductor, so there are more holes in the 

valence band than there are electrons in the conduction band i.e. n < p. This implies that the 

probability of finding an electron near the conduction band edge is smaller than the 

probability of finding a hole at the valence band edge. Therefore, the Fermi level is closer to 

the valence band. On the other hand, the P-doped β-Si3N4 is an n-type semiconductor thus the 

Fermi level will shift towards conduction band. 

III.6.2. Novel optical properties of β-Si3N4 with Al and P dopants 

III.6.2.1. Dielectric function 

Figure III.19: Variation of (a) real and (b) imaginary parts of the dielectric function for Al 

and P doped β-Si3N4. 

 Fig III.19 shows the changes in photon energy dependent real and imaginary parts of 

dielectric functions after adding Al and P impurities to β-Si3N4 structure. When we see the 

imaginary part of the dielectric function in the two compounds, we find that there are values 

in the range [0, 6eV] compared with the undoped β structure, which is negligible in this energy 

range. Also, peaks are appeared at the energy range [0, 1eV] in the two compounds with the 

value of 6.76 for the max peak of P-doped β-Si3N4, and 17.75 for Al-doped β-Si3N4, it mean 

that the interband transition occur in low energy. On the other hand, we observe a decrease in 

ε2 at the range [6, 10 eV] for both compounds compared with the undoped β structure. For the 

real part ε1, the maximum is the static value ε1 (0), it is 9.97 for P-doped β-Si3N4, and 22.36 

for Al-doped β-Si3N4. 

(a) (b) 
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III.6.2.2. Refractive index and extinction coefficient  

Figure III.20: Variation of (a) extinction coefficient k (ω) and (b) refractive index for Al and 

P doped β-Si3N4. 

The change in the refractive index is proportion to the change in ε1 (ω) .We see that the 

maximum of refractive index had become the static value n (0), it is 3.11 for P-doped β-Si3N4 

and 4.61 for Al-doped β-Si3N4, where the static value of the undoped β structure was 1.64 and 

the maximum value is 2.40 at the energy E = 8.91eV (obtained by TB-mBJ-LDA).  

Since the extinction coefficient is associated with ε2 (ω), so its change have similar behaviors 

of the change in the ε2 (ω). For that, we see that the extinction coefficient have values for the 

energies lower than 5 eV, and the maximum of k (ω) take place in the range [0, 1eV] for both 

Al and P doped β-Si3N4 and the max value is for Al-doped β-Si3N4, but in the visible range 

the values of P-doped β-Si3N4 is the highest. 

 III.6.2.3. Absorption coefficient and reflectivity 

Figure III.21: Variation of (a) absorption coefficient α (ω) and (b) reflectivity R (ω) for Al 

and P doped β-Si3N4. 

(a) (b) 

(a) (b) 
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 Compared with the undoped β-Si3N4 where the absorption coefficient almost zero in the 

visible range, the Al-doped β-Si3N4, and the P-doped β-Si3N4 showed a consider absorption 

coefficient in the visible range. In the following table, we present values and positions of the 

maximum absorption coefficient in the visible range [1.67, 3.26eV] for the two compounds 

compared with the undoped β-Si3N4. We see that the P-doped β-Si3N4 is better light absorber 

than the Al-doped β-Si3N4. 

 α (ω) (104.cm-1) at E (eV) 

P-doped β-Si3N4 6.06 2.81 

Al-doped β-Si3N4 5.80 1.67 

Undoped β-Si3N4 0.177 3.25 

Table III.12: Maximum values of absorption coefficient in the visible range for Al and P 

doped β-Si3N4. 

 For the reflectivity, we see that the maximum has become in the range [0, 1eV] instead 

of 10 eV, also we see peaks in this range, one peak in Al-doped β-Si3N4 and two peaks in P-

doped β-Si3N4. The max of reflectivity is presented in the following table. 

 R (ω) max (%) R (ω) max (%) (visible range) 

P-doped β-Si3N4 27.98 7.38 

Al-doped β-Si3N4 43.16 4.57 

Undoped β-Si3N4 22.99 6.78 

Table III.13: Maximum values of reflectivity for Al and P doped β-Si3N4. 

III.6.2.4. Optical conductivity 

Figure III.22: Variation of (a) Real and (b) imaginary parts of optical conductivity for Al and 

P doped β-Si3N4. 

(a) (b) 



Chapter III:                                                                                             Results and Discussions 

48 
 

Before doping the beta phase, the real part of optical conductivity was null in the range [0, 

6eV], now there are values and it higher in the P-doped β-Si3N4 compared with Al-doped β-

Si3N4. 

III.6.2.5. Energy loss function 

Figure III.23: Variation of the energy loss function for Al and P doped β-Si3N4. 

 Before doping the beta phase, the energy loss function was negligible in the range [0, 

5eV]. Now, the highest loss in energy is in this range for the two compounds, where peaks are 

appeared at the range [0, 2eV], this means that an interband transition occurred in this energy 

range, also we see that the higher peak is for the Al-doped β-Si3N4 compound.  

 After seeing the novel electronic and optical properties of β-Si3N4 with Al and P 

dopants, we found that the P atom improved the properties more than the Al atom, especially 

the increase of the absorption coefficient in the visible range and the decrease of the bandgap. 

So we'll do another simulation for the P-doped β-Si3N4 with a change in the concentration of 

P, to see if we'll get more optimization by increasing the concentration. We will use 2 atoms 

of P beside 4 atoms of Si per unit cell, thus the concentration will be 33.33% of P and 66.66% 

of Si and so our compound becomes β-(Si0.66P0.33)3N4. 
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III.6.3. Novel electronic properties of β-Si3N4 with P dopant 

III.6.3.1. Band structure 

 

Figure III.24: Band structure and total DOS for P-doped β-Si3N4 with new concentration. 

We see that the band gap decreases with the increase in the concentration of P. Tab III.14 

below shows the change in the band structure of P-doped β-Si3N4 with the new concentration. 

 Gap (eV) Gap type VB width (eV) CB width (eV) 

β-(Si0.66P0.33)3N4 3.01 indirect 7.02 9.96 

β-(Si0.83P0.16)3N4 4.02 direct 6.03 9.93 

Table III.14: Band gap of P-doped β-Si3N4 with the two concentration. 

III.6.3.2. Density of states 

 

Figure III.25: Density of states of phosphorus atoms, (a) P1 and (b) P2. 

(b) (a) 
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Fig III.25 shows the density of states for the phosphorus atoms P1 and P2 of the β-

(Si0.66P0.33)3N4 compound. The contribution of two atoms of P in the total DOS leads to an 

increase in states of the whole structure. 

III.6.4. Novel optical properties of β-Si3N4 with P dopant 

III.6.4.1. Dielectric function 

Figure III.26: Variation of (a) real and (b) imaginary parts of the dielectric function for P 

doped β-Si3N4 with the two concentrations. 

From the Fig III.26, we can see that the increase in concentration of P leads to increase in the 

values of the dielectric function. For the real part (ε1), the maximum value stay the static value 

ε1 (0) but increase from 9.97 to 33.97, and for the imaginary part (ε2), the value of the main 

peak increase from 6.76 to 20.13. 

III.6.4.2. Refractive index and extinction coefficient 

Figure III.27: Variation of (a) extinction coefficient k (ω) and (b) refractive index for P 

doped β-Si3N4 with the two concentrations. 

(a) (b) 

(a) (b) 
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 We have noticed an increase in the refractive index value with the new concentration 

of P, the maximum become 5.81 instead of 3.11. Also, we have observed an increase in the 

extinction coefficient on all the range with the new concentration. 

III.6.4.3. Absorption coefficient and reflectivity 

 

Figure III.28: Variation of (a) absorption coefficient α (ω) and (b) reflectivity R (ω) for P 

doped β-Si3N4 with the two concentrations. 

Through the Fig III.28, we see that the increase in the concentration of P leads to a significant 

increment in the absorption coefficient and the reflectivity. The maximum of absorption 

coefficient in the visible range become 13.42 (104.cm-1) instead of 6.06 (104.cm-1). For the 

reflectivity, the maximum in the visible range become 16.89% instead of 7.38% and the 

maximum in the whole range become 51.02% instead of 27.98%. 

III.6.4.4. Optical conductivity 

Figure III.29: Variation of (a) Real and (b) imaginary parts of optical conductivity for P 

doped β-Si3N4 with the two concentrations. 

(b) (a) 

(b) (a) 
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From Fig III.29, we can see that the optical conductivity increase with the increase in the P 

concentration especially in the visible range. 

III.6.4.5. Energy loss function 

 

 

 

 

 

 

Figure III.30: Variation of the energy loss function for P doped β-Si3N4 with the two 

concentrations. 

With the new concentration of P, the main peak of the energy loss function becomes in 

the visible range (at the energy 1.97eV instead of 1.18eV) because the interband transition 

occurred in this energy range, and from the energy (1.4eV) the energy loss function become 

higher compared with the first concentration. 

 In summary, the results have shown that the phosphorus atom gave more optimization 

to the properties of beta phase compared with the aluminum atom. In addition, we note that 

the increase in the phosphorus concentration leads to an increase in the absorption coefficient 

and in general, the optical properties. 
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Conclusion 

In this work, we have done a systematic study based on density functional theory 

(DFT). We used the linearized augmented plane wave method (FP-LAPW) to calculate the 

electronic and optical properties of silicon nitride (Si3N4) in the crystallographic phases α and 

β. Besides, we have employed the PBE-GGA, LDA, WC and TB-mBJ-LDA approximations. 

We have shown the electronic behavior of silicon nitride in both phases calculating for 

this issue the band structure and the density of states. The optical properties were calculated 

using the Kramers-Kronig dispersion relationship and we have determined all optical 

properties needed in an energy range extended to 10 eV, so that the dielectric tensor, the 

absorption coefficients, the refractive indices, and the conductivity, spectra are well presented. 

The results of study showed that properties of beta phase are the suitable for the 

photovoltaic application and as an anti-reflective layer than the alpha phase, which present a 

higher absorption coefficient, as well as the others optical properties are also relatively better. 

However, their properties remain very weak in the visible range for what we have resorted to 

dope it with a point of view to improve its physical properties and making it more suitable for 

the photovoltaic application. We have used the aluminum (Al) and the phosphorus (P) as 

dopants. So, the calculation exhibits interested result with P-doped Si3N4 leading to the 

increase of the absorption coefficient and, in general, the optical properties more than with 

Al-doped Si3N4. Therefore, we increased the concentration of P to 33% in view to see the 

optical behavior, the calculation shown an optimization in the electronic properties, an 

increase in the absorption coefficient and the others optical properties yielding to get an 

important spectral response in visible range, which is the needed subject. 

Finally, this study led to the understanding of the electronic and optical properties of 

the two phases of the silicon nitride, so this enables us to exploit it in several domains of 

applications such as anti-reflective layers, optoelectronic, photovoltaic and many other 

applications. 
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