
DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH 

SAAD DAHLEB UNIVERSITY BLIDA1 

 

      Institute of Aeronautics and Space Studies 

   LABORATORY OF AERONAUTICAL SCIENCE 

 

DOCTORAL THESIS 
 

A thesis submitted in fulfillment of requirements 

 for the degree of doctor in Aeronautics 

DESIGN OF AN INTELLIGENT MULTI-     

SENSOR DRONE DETECTION SYSTEM 

 

 

 

BOUKRAA Salah Professor  University of Blida 1                    President 

CHEGGAGA Nawal Professor  University of Blida 1            Supervisor 

KOUZOU Abdellah Professor University of Djelfa                    Examiner 

ALLAOUI Tayeb Professor University of Tiaret                    Examiner 

CHOUTRI Kheireddine MCA    University of Blida 1                    Examiner 

 

                By : 

SAADAOUI Fatima Zohra 

 Dissertation Committee : 

 

 

 

 

 

 



Dedication
With a deep affection I would like to dedicate this humble
work to my family, my source of success and happiness.
To the one who enlighten my darkness.
My mother " Khaldia"
To the one who gave me strength and hope.
My father " Lakhdar"
My sisters Keltoum, Chahrazed, Chaimaa and my
Brothers Abdelkader, Mohamed
My Dearest friends Sabra, Amina, Sara, Lylia for their
endless support and positive effort.
To all those who believe in me
My teachers, colleagues, friends and those who helped me
to achieve this work. . .



Acknowledgment

In the Name of Allah, the Most Merciful, the Most Compassionate all praise
be to Allah, the Lord of the worlds; and prayers and peace be upon Mohammed
His servant and messenger. We would like to express our sincere gratitude
to our thesis supervisor Professor CHEGGAGA Nawal, for her patience,
motivation, enthusiasm, and immense knowledge, without her guidance this
thesis would not have been accomplished. we appreciate her time and efforts
throughout the duration of our work. Our deepest thanks also go to all the
members of the jury for their acceptance to review and to enrich our work.
Last but not least,our thanks to every one who,in one way or another, has
helped and supported us to complete our thesis.



Abstract

The technologies of unmanned aerial vehicles (UAVs) especially small low-altitude drone,
have emerged as the preferred tool for terrorist and criminal activities, involving both
civilian and military applications. Consequently, it has posed a significant challenge for
researchers to ensure the safety and security of individuals, public spaces, and government
institutions. Various detection technologies have been developed and enhanced, such as
radar, optical, acoustic detectors, and radio frequency analyzers. However, each detector
comes with its limitations, for instance, the ability of producing a low signal in low
light or foggy environments, and noisy. Our thesis work focuses on the hybridization of
multi-sensors for drone detection, including optic, acoustic, and magnetic field detectors,
using artificial intelligence. We have developed optic and acoustic detectors based on
Convolutional Neural Networks CNNs, as well as the magnetic field detector using the
BBC card. Each detector autonomously makes decisions, which may align or conflict with
those of other detectors. By applying a Bayesian inference (BI) approach, we enhance the
decision-making process in cases of conflict among decisions made by multiple sensors.
Indicators such as the ephemeris indicator (EI) and the acoustic environment indicator
(AI) have been used to resolve disagreement situations. The hybrid drone detector was
fully automated, with optimized conflict resolution, achieving the best performance to
prevent unwanted drone interventions.

Keywords: Unmanned Aerial Vehicles (UAVs), Safety and Security, Artificial Intelli-
gence, Bayesian Inference (BI), Multi-sensors, Optic detector, Acoustic detector, Magnetic
field detector, Hybrid Drone Detector.



Résumé

Les technologies des drones sans pilote (UAVs) en particulier petit drone de basse alti-
tude, se sont imposées comme l’outil privilégié pour les activités terroristes et criminelles,
couvrant à la fois les applications civiles et militaires. En conséquence, cela a ouvert un
important défi pour les chercheurs afin de garantir la sécurité et la sûreté des indivi-
dus, des espaces publics et des institutions gouvernementales. Diverses technologies de
détection ont été développées et améliorées, telles que le radar, les détecteurs optiques,
acoustiques et les analyseurs de fréquences radio. Cependant, chaque détecteur présente
des limitations distinctes, telles qu’une efficacité réduite dans des conditions de faible lu-
minosité, de brouillard ou de bruit. Notre travail de thèse se concentre sur l’hybridation de
multi-capteurs pour la détection des drones, notamment le détecteurs optique, acoustique
et du champ magnétique, en utilisant l’intelligence artificielle. Nous avons développé le
détecteur optique et le détecteur acoustique à base des réseaux de neurones convolutifs
CNNs, ainsi que le détecteur du champ magnétique à l’aide de la carte BBC. Chaque
détecteur prend des décisions de manière autonome, qui peuvent être conformes ou en
conflit avec celles des autres détecteurs. En appliquant une approche d’inférence bayé-
sienne (IB), nous améliorons le processus de prise de décision dans les cas de conflit entre
les décisions prises par les multiples capteurs. Des indicateurs tels que l’indicateur d’éphé-
méride (IE) et l’indicateur d’ambiance acoustique (IA) ont été utilisés pour résoudre les
situations de désaccord. Le détecteur hybride de drones était entièrement automatisé, avec
une résolution optimisée des conflits atteignant la meilleure performance pour prévenir
les interventions non désirées des drones.

Mots Clée : Véhicules aériens sans pilote UAVs, la sécurité et la sûreté, Intelligence arti-
ficielle, Inférence bayésienne BI, Multi-capteurs, Détecteur optique , Détecteur acoustique
, Détecteur du champs magnétique, Détecteur hybride de drones.
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GENERAL INTRODUCTION



General Introduction

Unmanned Aerial Vehicles (UAVs) or Unmanned Aerial Systems (UAS) (The terms
UAVs, UAS, and drones, are increasingly becoming integrated into citizens’ daily lives [1–
4]. UAVs have demonstrated their autonomy and adaptability across various environments
and tasks, contributing to a sustained market growth in an increasing array of practical
activities. Research studies validate the global proliferation of UAV manufacturing [5].
Today, UAVs are utilized by government authorities for a multitude of tasks, including
border security, search and rescue, planetary exploration, and firefighting. Simultaneously,
civilians employ UAVs for various commercial purposes such as construction, photography,
videography, agriculture [6, 7].

However, the rapid proliferation of UAVs is giving rise to significant security concerns.
These flying robots can be exploited for nefarious and criminal purposes, including piracy,
hacking personal data, invasion of privacy, and monitoring the safety of public officials
such as politicians and celebrities. Furthermore, flying UAVs over facilities deemed to
be of National Security interest, including military installations and state boundaries, is
prohibited as these areas fall under ’no-fly zones’ [8]. One notable incident took place in
January 2015 when a drone crashed on the lawn in front of the White House in Washington
[9]. On December 2018, a UAV was observed flying near Gatwick airport, leading to the
closure of Britain’s second-largest airport for 36 hours and disrupting 1000 flights and
affecting approximately 140,000 passengers [10].

Facilities such as prisons, airports, sporting venues, public buildings, and other sensi-
tive sites are under significant threat [11]. It is crucial to accurately understand the variety
of challenges presented by UAVs to ensure the effective protection of critical infrastruc-
tures and citizens. In recent years, various solutions have been proposed to tackle these
challenges, including Radiofrequency (RF) scanners applying passive detection technolo-
gies [12]. These scanners are designed to detect, track, and identify UAVs based on their
communication characteristics. Commercial off-the-shelf FPGA-based software-defined
radio systems [13] can also serve as viable solutions. Some commercial off-the-shelf radar-
based drone detection devices include Kaspersky radar [14]. Acoustic detection presents
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another method that utilizes audio patterns emitted by drone propellers for drone local-
ization and categorization through acoustic signature recognition [15].

The last method is Optic or Visual Detection, which uses image devices and cameras
to detect and classify drones across both visible and infrared spectra [16, 17]. Electro-
optical sensors can identify UAS based on their visual signature, although this detection
source may not always be reliable. To detect small objects at a distance, these sensors
often incorporate high zoom capabilities. However, it is important to point out that every
method used has its own limitations [18]. Sensor fusion is also mentioned as an open
research topic for improving detection outcomes over a single sensor, while study in this
area is still limited. Surveillance radar, combining radar and audio sensors with single or
multiple antennas, has the capability to simultaneously identify and track various objects,
including unmanned aerial vehicles [19].

Besides, another interesting study involves multiple sensors, investing to an annotated
multi-sensor database for drone detection consisting of both infrared and nominal videos
as well as audio files. where the acquisition sensors are set up on a pan-tilt platform that
directs the cameras to the objects of interest [20].

Artificial neural networks ANNs, or neural networks (NNs), are computing systems
inspired by biological neural networks and the human brain. Deep learning, a subset
of ANNs, has become increasingly prominent for its efficacy in classification, pattern
recognition, and object detection. By integrating expert systems with certainty factors,
artificial intelligence techniques can be utilized to create fully intelligent sensors. Multi-
layer neural networks have proved success as intelligent sensors for process modeling and
control in real-world scenarios. These sensors serve various purposes, including control
and surveillance, automated object recognition, remote sensing, and guidance [17].

The sensors are all available for use, with priority given to the one considered most
suitable. Our primary focus in the thesis is the hybridization of multiple detectors using
the Bayesian inference approach for drone detection, which may include the probabilistic
model. This model is founded on a combination of hardware architecture and control
software, using a variety of sensors including Optical, Acoustic, magnetic field sensors,
and existing measurement devices. These devices serve as indicators of ephemeris and
acoustic atmosphere, enabling us to provide information skills related to drone detec-
tion model. We launch by outlining the theories, techniques, and databases associated
with each detector used in our approach. The experimental work will showcase the ef-
fectiveness of combining multiple detectors, each providing a decision on the presence or
absence of a drone. To overcome individual detector limitations, we’ve integrated three
detectors: optical, acoustic, and magnetic field. Along hardware indicators for ephemeris
and acoustic ambiance, Bayesian inference serves as our control software. Evaluating de-
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tector limitations with these indicators allows more accurate decisions on drone presence
or absence.

We outline the thesis to underscore the principal objectives of our study that allows us
to detect drones using the intelligent multi-sensory system based on the Bayesian inference
approach:

1. Develop methodologies for the effective integration of data from multiple sensors,
including optic, acoustic, and magnetic field detectors, enhancing the accuracy and
reliability of drone detection.

2. Incorporate Indicators as ephemeris and acoustic atmosphere to overcome distinctive
detector limitations, considering factors such as sensor noise and varying environ-
mental conditions.

3. Design Bayesian inference approach that enables real-time decision-making based
on probabilistic model and muti-sensor outputs allowing the system to effectively
detect UAVs.

4. Conduct thorough performance evaluations and validation experiments in diverse
environmental conditions to assess the effectiveness and robustness of the proposed
multi-sensor drone detection system, comparing it with existing methods.

This work is divided into six chapters, an overview of each is provided below:

• Chapter 01 presents the background and fundamental concepts related to Unmanned
Aerial Vehicles (UAVs), including their classification into various types, diverse ap-
plications across civilian and military purposes, and an analysis of sophisticated
techniques used for UAV detection including their advantages and limitations.

• Chapter 02 offers a comprehensive overview of the state-of-the-art in machine learning-
based drone detection methods, as well as a discussion on the synopsis of the
Bayesian inference approach, accompanied by detailed explanation.

• Chapter 03 provides optical UAV detection using transfer learning with the pre-
trained VGG-16 model, underlying principles of the selected optical detection ap-
proach, presenting experimental findings, demonstrating its effectiveness in com-
puter vision tasks.

• Chapter 04 focuses on exploring of acoustic drone detection using sound recordings,
employing techniques like FFT, TFCT, wave decomposition, spectrogram, and peri-
odogram, involving filtering and correlation methods for signal decomposition, with
preliminary results assessing accuracy, overall system performance.
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• Chapter 05 showcases a modern approach of UAVs detection using magnetic field
sensor with the Micro-bit Card, providing a detailed exploration of the adopted ap-
proach, covering the functionality of magnetic field sensors, integration processes,
and data collection techniques, including findings related to overall system, high-
lighting the crucial role of these sensor in enhancing drone surveillance.

• Chapter 06 explores a novel approach for drone detection utilizing the integration of
visual, acoustic, and magnetic field sensors based on Bayesian inference to address
their limitations. Indicators such as the Ephemeris Indicator (EI) and the Acoustic
Ambiance Indicator (AI) provided valuable support for decision-making, as well as
evaluation experiments, improving accuracy in drone detection through multi-sensor
integration.

Finally, this work concludes with a general conclusion, which summarizes the various
studies conducted in our thesis, while highlighting the main results obtained and future
perspectives.
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Chapter 1

Advanced Techniques in UAV
Detection and Classification

1.1 Introduction

As the skies become increasingly populated with unmanned aerial vehicles (UAVs) due
to their versatility and capabilities, they undertake a wide range of tasks, including those
traditionally associated with civilian and military operations such as search and rescue, as
well as personal and business applications. Chapter I delves into the fundamental context
of UAV technologies, focusing on their classification and applications in both civilian and
military operations. This exploration is followed by a discussion of safety concerns, chal-
lenges, and threats associated with UAV technology, as well as the cutting-edge methods
employed for their detection. As we delve into the realm of UAVs, our exploration be-
gins with a meticulous examination of their classifications based on factors such as mass,
operational altitude, propulsion/wings, and autonomy, alongside their diverse applica-
tions across civilian and military sectors. From the peaceful skies of civilian applications
to the strategic landscapes of military operations, the chapter navigates the breadth of
UAV utility and addresses safety issues and challenges related to this technology. Fur-
thermore, attention is given to the advancement of sensing technologies used for drone
detection. Here, we unravel the types and characteristics that empower UAVs with the
ability to perceive and interact with their surroundings, presenting both their advantages
and limitations.
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1.2 Definitions

UAV (Unmanned Aerial Vehicle): An unmanned aircraft operated remotely or au-
tonomously, often referred to as a drone, used for various purposes including surveillance,
data collection, and transportation.

Artificial Intelligence: Artificial Intelligence, often termed AI, is the quest to bestow
machines with intellectual capabilities, enabling them to mimic human-like thinking,
problem-solving, and adaptation. It represents the culmination of computer science’s
aspiration to create systems that can comprehend, reason, learn, and adapt within a myr-
iad of contexts. AI leverages a spectrum of methods, including neural networks, to decode
data, make informed judgments, and interact with the world, promising innovation, and
automation across diverse domains, from smart systems to personalized healthcare.

Machine Learning: An approach to data analysis that involves training algorithms
to recognize patterns and make decisions based on input data, potentially enhancing the
capabilities of a multi-sensory UAV detection system.

Neural Networks: Neural networks are computational structures that emulate the in-
tricate network of neurons in the human brain. They exhibit the remarkable ability
to autonomously learn and make decisions by processing complex, interconnected data.
These networks are integral to the realm of machine learning, facilitating the discovery
of patterns and insights from data, with applications spanning from computer vision to
natural language understanding.

Detection: The process of identifying and locating the presence of an object or phe-
nomenon within a given environment or dataset.

UAV Detection: The act of identifying and locating the presence of unmanned aerial
vehicles within a specified airspace or geographical area.

Sensor Fusion: The process of integrating data from multiple sensors into a single and
more accurate modelling of the monitored environment or the target object.

Radar: A technology that uses radio waves to detect, locate, and track objects, often
employed for long-range surveillance and tracking.

LiDAR (Light Detection and Ranging): A remote sensing technology that uses
laser pulses to measure distances and create detailed 3D representations of the environ-
ment.
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RF (Radio Frequency) Sensors: Sensors that monitor electromagnetic signals and
radio waves, including those used for communication between UAVs and their operators.

Optical Sensors: Devices that capture visual information in the form of images, mak-
ing use of visible light or infrared radiation to detect objects and features.

Acoustic Sensors: Sensors that detect sound waves and vibrations in the environment,
suitable for acoustic signature analysis and auditory surveillance.

Multi-sensory System: A system that integrates data from multiple sensors to im-
prove the accuracy, reliability, and robustness of information collection and decision-
making.

Bayesian Inference: A probabilistic framework for updating beliefs or making predic-
tions based on new evidence, combining prior knowledge with observed data using Bayes’
theorem.

Decision Threshold: The value or condition used to determine whether a sensor
reading indicates the presence of a UAV, affecting the sensitivity and specificity of the
detection system.

Feature Extraction: The process of identifying and extracting relevant information
or features from sensor data, such as the shape, speed, or behavior of detected objects
(UAVs).

Safety and security: Safety involves the prevention of accidents and protection from
unintentional harm, emphasizing risk management and hazard mitigation. Security, on
the other hand, focuses on safeguarding assets and information from deliberate threats,
unauthorized access, and damage to maintain their integrity and confidentiality. Both
safety and security measures are crucial for ensuring well-being and asset protection in
various contexts, addressing different types of risks.

8



Chapter1 Advanced Techniques in UAV Detection and Classification

1.3 UAVs: Classification and Applications

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have witnessed a rapid
evolution over the past few decades. To understand the context of this research, it is
essential to explore the various classifications and applications of UAVs.

1.3.1 Classification of UAVs

UAVs can be classified into several categories based on their characteristics and intended
use. We can further classify drones based on their mass (weight), operational altitude, type
of propulsion (such as rotary-wing or fixed-wing), and autonomy (level of automation) as
shown in Figure 1.1. Here’s a breakdown of drones using these categories:
A/ Based on Mass:

• Nano Drones: These are the smallest and lightest drones, typically weighing less
than 250 grams. They are often used for indoor and close quarters flying.

• Micro Drones: Slightly larger than nano drones, micro drones typically weigh
between 250 grams and 2 kilograms. They are commonly used for recreational and
educational purposes.

• Mini Drones: These drones have a weight range between 2 kilograms and 25
kilograms. They are popular for photography, videography, and recreational flying.

• Small Drones: Small drones weigh between 25 kilograms and 150 kilograms. They
are commonly used for commercial and industrial applications.

• Medium Drones: Medium-sized drones have a mass ranging from 150 kilograms
to 600 kilograms. They find applications in various industries, including agriculture
and surveillance.

• Large Drones: Large drones weigh between 600 kilograms and several tons. They
are typically used for military, cargo, or long-endurance missions.
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Figure 1.1: Classification of drone based on mass [21].

B/ Based on Operational Altitude:

• Low-Altitude Drones: These drones operate at altitudes of up to 150 meters
above the ground and are often used for close-range applications like photography,
surveillance, and agricultural tasks.

• Medium-Altitude Drones: These drones operate at altitudes between 150 me-
ters and 10,000 meters. They are suitable for various surveillance and reconnaissance
missions.

• High-Altitude Drones: High-altitude drones can operate at altitudes above
10,000 meters and are used for long-range surveillance and atmospheric research as
presented in Figure 1.2.
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Figure 1.2: Classification of drone based on operational altitude [22].

C/ Based on Propulsion and wings:

• Rotary-Wing Drones: These drones use rotor blades for lift and propulsion,
making them highly maneuverable. Examples include quadcopters, hexacopters,
and octocopters.

• Fixed-Wing Drones: Fixed-wing drones have a traditional airplane-like design,
using wings for lift and propulsion. They are recognized for their long-range capa-
bilities.

• Hybrid Drones: Hybrid drones combine both fixed-wing and rotary-wing capa-
bilities for vertical takeoff and landing (VTOL) and efficient, long-range flight as
indicated in Figure 1.3.
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Figure 1.3: Classification of drone based on wings [23].

D/ Based on Autonomy:

• Manual Control Drones: These drones require human operators to control their
flight and make decisions.

• Semi-Autonomous Drones: Semi-autonomous drones can perform certain tasks
independently, such as maintaining a stable hover, following GPS waypoints, or
avoiding obstacles.

• Autonomous Drones: Autonomous drones can operate with minimal human in-
tervention. They can perform complex tasks like mapping, surveying, and following
dynamic objects.

• Swarm Drones: These drones operate in coordinated groups, communicating with
each other to perform tasks collectively. They may be either semi-autonomous or
fully autonomous as described in Figure 1.4.
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Figure 1.4: Classification of drone based on autonomy [24].

1.3.2 Applications of UAVs

UAVs have a very vast range of applications among different industries and fields.. Drone
applications encompass a wide range of uses in both civilian and military activities. These
unmanned aerial vehicles serve diverse purposes, from enhancing efficiency and safety in
civilian sectors to providing strategic advantages in military operations:
A/ Civilian applications:

• Agriculture: Agricultural drones are used for crop monitoring, precision agricul-
ture, and the application of fertilizers and pesticides. They help farmers optimize
crop yields and reduce costs.

• Infrastructure Inspection: Drones can inspect critical infrastructure, such as
bridges, pipelines, power lines, and cell towers. They reduce the need for manual
inspections in dangerous or hard-to-reach locations.

• Search and Rescue: Drones can quickly survey disaster-stricken areas, locate
missing persons, and assess the extent of damage. They provide critical data to first
responders during search and rescue missions.

• Environmental monitoring and Firefighting: They are utilized to monitor
environmental changes, track wildlife, and assess the impact of climate change on
ecosystems. They can aid firefighters by providing real-time information on the
fire’s location and temperature, helping them plan their response.
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• Aerial Photography and Videography: Drones equipped with high-quality
cameras are used for capturing stunning aerial photos and videos for various pur-
poses, including filmmaking, real estate marketing, tourism, and event coverage.

• Delivery and Logistics: Companies like Amazon and UPS are experimenting with
drone delivery services to transport small packages quickly to customers, especially
in remote or hard-to-reach areas.

• Mapping and surveying: Drones are valuable for creating detailed maps, con-
ducting surveys, and monitoring construction sites, saving time and resources com-
pared to traditional methods.

B/ Military applications:

• Surveillance and reconnaissance: Drones play a crucial role in military intel-
ligence, providing real-time surveillance and reconnaissance without risking human
lives.

• Defense and Military: Military drones are used for reconnaissance, surveillance,
intelligence gathering, and, in some cases, combat missions. They are capable of
performing in hazardous environments exposing no risk to human lives.

• Border security: Drones are employed for border surveillance, helping monitor
and secure national borders against illegal activities.

• Combat support: Drones can provide support during combat situations by deliv-
ering supplies, conducting electronic warfare, and assisting communication.

• Target identification: UAVs are used to identify and track potential targets,
enhancing the precision and accuracy of military operations.

• Anti-Submarine warfare: In maritime operations, drones are used for anti-
submarine warfare, detecting, and tracking underwater threats.

• Strategic strikes: Armed drones are capable of carrying out precision strikes on
enemy targets, reducing the risk to human personnel.
All these applications are shown in Figure 1.5.
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Figure 1.5: Drone applications [25].

1.4 Emerging Challenges and Threats in Drone Tech-

nology

As drones become more prevalent and their capabilities advance, several challenges and
threats have emerged that need to be addressed to ensure their safe and responsible use
as shown in Figure 1.6. These challenges include:

• Privacy Concerns: Drones equipped with cameras and other sensors can poten-
tially invade individuals’ privacy. Unauthorized surveillance or data collection can
be a significant concern, raising questions about the boundaries between public and
private spaces.

• Safety Risks: Drones can pose safety risks to people, property, and other aircraft.
Collisions with manned aircraft, birds, or even other drones can lead to accidents.
This is a particularly important concern as more drones share the airspace.

• Regulatory Compliance: Many regions have established regulations and airspace
restrictions for drone use. Ensuring compliance with these rules, particularly for
commercial operators and hobbyists, can be challenging and requires a good under-
standing of local laws.

• Cybersecurity Vulnerabilities: Drones are becoming increasingly connected and
reliant on digital systems. As a result, they are vulnerable to cyberattacks, which
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can lead to unauthorized access, data breaches, and potential control of drones by
malicious actors.

• Technological Advancements: Rapid advances in drone technology can outpace
the development of regulations, making it challenging for authorities to keep up
with emerging capabilities and potential threats.

• Cross-Border Drone Operations: Drones do not respect international borders,
making it challenging for governments to regulate and manage drone operations
that cross into neighboring territories.

• Resource and Infrastructure Protection: Drones can be used to conduct
surveillance of critical infrastructure, posing risks to national security. This includes
power plants, communication networks, and transportation systems.

• Emerging Applications: As drones find new applications in fields such as ur-
ban air mobility, delivery services, and surveillance, they bring with them specific
challenges related to infrastructure, safety, and public acceptance.

• Ethical Dilemmas: The use of drones for surveillance, decision-making, and mili-
tary purposes raises ethical questions about privacy, accountability, and the poten-
tial for autonomous action.

• Airspace Integration: Integrating drones into existing air traffic control systems
is a complex challenge. Ensuring that drones can share the airspace safely with
manned aircraft requires significant technological and regulatory efforts.

• Espionage and Surveillance: Drones can be used for espionage, intelligence gath-
ering, or corporate espionage. The discreet and airborne nature of drones makes
them attractive to intelligence agencies, researchers, or competitors looking to gain
a competitive edge.

• Smuggling: Criminal organizations and individuals may find drones attractive for
smuggling illegal goods, such as drugs, weapons, or contraband, over border fences
or prison walls.
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Figure 1.6: Drone threats and risks [26].

1.5 Sensing Technologies: Types and Characteristics

The ability to detect and track UAVs relies heavily on sensor technologies. A variety of
sensors can be employed for this purpose, each with its own advantages and limitations.
In this section, we explore some common sensor types and their characteristics.

1.5.1 Diverse Sensor Types in Drone Detection

1. Radar Sensors: Radar (Radio Detection and Ranging) is a well-established tech-
nology for detecting and tracking objects in the air. Radar sensors emit radio waves
and measure the time it takes for the waves to bounce back after hitting an ob-
ject. Radar is known for its long-range capabilities and all-weather operation. It
can detect UAVs, even those with low radar cross-sections, making it suitable for
surveillance and defense applications.

2. Optical and Infrared Sensors: Optical and infrared sensors rely on visible light
and heat signatures to detect objects. Cameras, whether visible light or infrared,
provide high-resolution images and are useful for identifying and tracking UAVs
during daylight hours. However, they may be limited in low-light or adverse weather
conditions.

3. Acoustic sensors: 2Acoustic sensors detect sound waves generated by UAVs. They
are useful for detecting UAVs in scenarios where sound is a distinguishing factor.
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Acoustic sensors can be effective in urban environments or during night operations
when visual or radar detection may be challenging.

4. RF Sensors: Radio Frequency (RF) sensors monitor electromagnetic signals emit-
ted by UAVs. RF sensors can detect the communications signals between the UAV
and its operator, aiding in the identification of the UAV’s location and type.

5. multi-Sensors: Multisensors refers to the use of multiple sensors or sensing modal-
ities to collect information from various sources or perspectives. In the context of
drone detection, multisensors integration involves combining data from different
types of sensors, such as optical, acoustic detectors, to enhance the overall accuracy
and reliability of the detection system. This approach leverages the strengths of
each sensor while compensating for their individual limitations, resulting in a more
comprehensive and robust detection capability.

1.5.2 Advantages and Limitations of Different Sensors

All the sensor types currently employed in drone detection exhibit specific advantages
and limitations. Consequently, a system of this nature must integrate a diverse array of
sensors to enhance the overall detection rate. A brief overview of each sensor category is
provided below, and the distinct pros and cons for each category are summarized in Table
1.1
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Type Pros CONS
Acoustic
Sensor

• Covers the spectrum of 20Hz-20kHz.
• Acoustic signature library could be
updates easily from flight to flight.
• Lightweight and can be easily associ-
ated with other types of sensors.

• Limited range.
• Vulnerable to ambient noise.
• Susceptible to decoys.

Optic sensor • Covers all of the visible and IR spec-
trum (3MHz-300GHz).
• IR cameras could operate in cloudy
weather and in day or night.
• Could be assisted by computer-vision
technologies.

• Provides 2D images.
• Limited performances by weather
conditions and background tempera-
ture.
• Dependent of georeferenced data.
• LoS is required

Radar • Bandwidth used: 3MHz-30GHz.
• Could operate in all weather and
day/night conditions.
• Offers information regarding the ve-
locity of the target.
• Can recognize micro-Doppler signa-
tures (MDS).
• Offers high coverage .
• Good accuracy.
• Compact and high mobile, required
for tactical applications.
• High reliability.

• Large radar across-section is desired.
• Difficult to differentiate UAVs from
birds.
• Limited performance for low altitudes
and speeds (death cone).
• Could interfere easily with small ob-
jects, especially birds.
• LoS is required.
• High cost.

RF Analyser • Captured the communication spec-
trum and signals UAV and operators.
• Low complexity and easy to imple-
ment.
• Could operate in all weather and
day/night conditionst.
• Easier to improve due to modular
implementation of receivers and digital
signal processing units used in imple-
mentation.
• Possibility to localize the pilot.

• Knowledge regarding UAV commu-
nication specification (e.g. frequency
bands,modulations,etc.)is required.
• Difficult to accurately determine
AoA.
• Vulnerable to malicious or illegal
modified RF that will exceed receiver
capabilities.
• Difficult to use in urban areas due to
fading and multipath phenomena.

Multi-
sensors

• Integrating the advantages of mul-
tiple methods, demonstrating superior
performance.
• Higher accuracy.
• Long-range detection capabilities.
• Robust under different scenarios and
environmental conditions.

• Involving higher costs and computa-
tional complexity compared to single-
sensor systems.

Table 1.1: Pros and Cons of different sensors used in drone detection
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1.6 Conclusion

This chapter highlights the significant role of Unmanned Aerial Vehicles (UAVs), delv-
ing into their classification based on various factors such as mass, operational altitude,
propulsion/wings, and autonomy. This exploration emphasizes the extensive applications
of UAVs across both civilian and military sectors. Subsequently, attention is drawn to
safety concerns and challenges associated with this technology, acknowledging the im-
portance of addressing these issues for widespread approval and integration into various
industries. Furthermore, the chapter proceeds to analyze diverse sensor types used in the
detection of UAVs, uncovering their relevant advantages and limitations. This comprehen-
sive review provides insights into the capabilities and constraints of sensor technologies,
underscoring the complexity and adaptability of UAV detection systems. In essence, while
UAVs offer exceptional opportunities and advantages in modern society, it is crucial to
address safety concerns and optimize sensor technology to enhance their abilities across
diverse objectives. Careful consideration of these factors is necessary for harnessing the
potential of UAVs and ensuring their safe and effective integration into the technological
realm.
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Chapter 2

State of Art drone detection methods

2.1 Introduction

From the foundational backgrounds of UAVs to the sophisticated sensing technologies
employing Machine Learning, this chapter offers a comprehensive exploration of state-of-
the-art drone detection methods. It delves into the cutting-edge advancements in Machine
Learning (ML)-based drone detection, detailing ML-based drone classification method-
ologies using radars, visual data, acoustic signals, and radio frequency analysis. These
techniques represent the forefront of technology, showcasing the adaptability of ML algo-
rithms in addressing the challenges posed by the dynamic nature of UAVs. The chapter
provides a comprehensive overview of available approaches for detecting drones. The pri-
mary objective is to gain insight into the design landscape of drone detection techniques
and highlight any inherent or situational limitations associated with each approach. Ad-
ditionally, it explores various factors crucial for selecting a drone detection method, such
as cost, power consumption, accuracy, and environmental variables that may impact the
system’s performance. In the pursuit of enhancing UAV detection capabilities, this sec-
tion introduces a cutting-edge approach multi-sensory integration. Drawing inspiration
from Bayesian inference, it explores how combining information from multiple sensing
modalities can lead to a more robust and accurate detection system. By providing a
comprehensive perspective, the aim is to enhance the efficiency and reliability of UAV
detection in complex and dynamic environments.

2.2 State of art of ML based drone detection

In our survey, we initially focus on different radar-based approaches, as they stand out
as one of the most promising methods in terms of accuracy. However, it’s crucial to note
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that their cost and deployment requirements may render radars unsuitable for certain use
cases. Continuing our exploration of drone detection techniques, we turn our attention
to off-the-shelf acoustic sensors, offering a cost-effective albeit less precise alternative to
radars in specific deployment scenarios. Subsequently, we investigate methods reliant on
the RF transmission of the drone, followed by visual and optical sensor detection tech-
niques. Concluding our survey, we engage in a discussion of multi-modal and sensor-fusion
approaches. These innovative methods harness multiple sensors in tandem or sequence
to enhance detection accuracy. By doing so, we aim to provide a comprehensive and
insightful overview of the diverse landscape of drone detection methods.

2.2.1 Ml-Based Drone Classification By Radars

Researchers who utilized machine learning techniques on radar signals pursued one of
the following aims:

1. Detecting Drones: This takes place when texts are manually tagged with two classes:
drone and no-drone.

2. Drone vs. Bird Classification with Radar: The classification in this case is very
basic since it employs only two labels, robot or drone as against bird or avian.

3. Drone vs. Drone Classification with Radar: This is so where the number of labels
applied correlates with the diversity of the studied drones’ types.

4. Drone Characterization and Classification : The data is labelled depending on the
unique characteristics of drones such as the payload or number of rotors.

5. Detecting Multiple Drones: Data has been grouped by the researchers according to
the number of drones in the operation.

2.2.1.1 Detecting Drones

Jahangir and Baker highlighted the significance of machine learning in radar detection,
employing a high-end 3-D holographic radar for drone detection at a 1km range [27].
By adjusting amplitude thresholds and considering lower Dopplers, they enhanced drone
detection but observed more false positives due to heightened radar sensitivity. Through
training a binary decision tree model, they improved drone prediction probability and
reduced false alarm rates, showcasing the efficacy of machine learning in radar-based
drone detection [28,29].
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2.2.1.2 Drone vs. Bird Classification with Radar

Torvik et al. addressed the challenge of distinguishing between drones and birds, es-
pecially considering the low Radar Cross Section of both [30]. They identified common
features like insignificant Micro Doppler Signature (MDS) and low RCS modulation in
gliding birds and plastic-rotor UAVs. They proposed the utilization of polarimetric fea-
tures as a solution for more accurate drone detection [31]. The study demonstrated
significant success, achieving nearly 100% classification accuracy. The results were ob-
tained using real data collected from BirdRAD, a specialized radar system designed for
avian monitoring and drone detection.

Fuhrmann et al. focused on distinguishing drones from birds by analyzing three Micro
Doppler Signature (MDS) characteristics: mean spectrogram, the first left singular vector
of Singular Value Decomposition (SVD), and mean Cadence Velocity Diagram (CVD) [32].
Experimental setups involved six drones placed two meters from the radar, following varied
paths in outdoor and controlled lab settings. The optical range of the drones was not
specified. Using the same Continuous-Wave (CW) radar setup employed for drone data
collection, they simulated bird sight data. Post-training, the Support Vector Machine
(SVM) classifier achieved an exceptional 100% classification accuracy.

Mohajerin et al. utilized radar tracks for the differentiation of manned aircraft, birds,
and Unmanned Aerial Vehicles (UAVs) [33]. Their thirty-layered artificial neural network
achieved a remarkable 100% accuracy in classifying UAV tracks. However, concerns were
raised regarding the assumption of long-range drone tracks and the impracticality of the
20-kilometer range, which deviates from published figures.

2.2.1.3 Drone vs. Drone Classification with Radar

Molchanov et al. conducted feature extraction using Eigenvectors and Eigenvalues of
the Micro Doppler Signature (MDS) [34]. They employed Naive Bayes, non-linear SVM,
and linear SVM classifiers for training, flying eleven items for 30 seconds each, including
fixed-wing, helicopters, quad-rotor, artificial bird, and stationary rotors. Data collected
through Continuous Wave (CW) radar achieved a 95% average classification accuracy in
10-fold cross-validation. In subsequent tests, the classifier accurately categorized drones
into fixed-wing, stationary rotor, or helicopter groups with an accuracy range of 87% to
100%, even after excluding specific models from training.

Mendis et al. extracted the Spectral Correlation Function (SCF) extracted from the
Micro Doppler Signature (MDS) [35,36] to train a deep belief network for accurate drone
classification. The study involved generating 70 SCF images representing four distinct
drone classes, and to enhance data diversity, Gaussian noise was introduced. The resulting
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classification accuracy of the system surpassed an impressive 90%
Zhang et al. suggested the use of a dual-band Continuous Wave (CW) radar, operating

in the K-band and X-band, for the classification of three drones (helicopter, hexa-copter,
and quadcopter) [37]. Using the Short-Time Fourier Transform (STFT), time-frequency
spectrograms and Principal Component Analysis (PCA), their approach demonstrated
superiority over a single radar setup, with a marginal 1.2% average reduction in clas-
sification accuracy compared to using the K-band radar alone. The experiments were
conducted in a controlled lab setting, featuring stationary drones.

Kim et al. applied a pre-trained Convolutional Neural Network (CNN) for the clas-
sification of two drones, utilizing a Ku-band Frequency Modulated Continuous Wave
(FMCW) radar [38]. The CNN demonstrated exceptional accuracy of 100% in outdoor
measurements. However, its performance was comparatively lower in anechoic chambers,
indicating potential environmental influence on the classification outcomes.

Brooks et al. developed a comprehensive two-dimensional drone model involving scat-
tering points and ground clutter simulation [39]. They conducted experiments on three
distinct drone types and utilized three classifiers: Fully Convolutional Networks (FCNs),
Recurrent Neural Networks (RNNs), and Multilayer Perceptron (MLP). The MLP clas-
sifier demonstrated an accuracy range of 70%-85%, while the RNN and FCN classifiers
achieved a remarkable 100% accuracy in their assessments. These findings provide in-
sights into the effectiveness of different classifiers for drone detection within the simulated
environment.

2.2.1.4 Drone Characterization and Classification

Fioranelli et al. employed machine learning techniques to distinguish between three
drone payloads (zero, 200, and 500 grams) [40] using the NetRAD multi-static radar
system [41]. They extracted centroid and bandwidth features from the radar data recorded
by three receivers while a drone hovered at a 60-meter distance for 30 seconds. Training
and testing were conducted using Naive Bayes and discriminant analysis. The authors
extended their approach by extracting the Singular Value Decomposition (SVD) and
centroid of the Minimum Detectable Signal (MDS). Additionally, they introduced the
random forest classifier to the set of experimented classifiers [42]. The majority voting
model demonstrated the highest accuracy, with discriminant analysis proving superior to
Naive Bayes. The study revealed that increasing drone payload led to a more uniform
and straighter Minimum Detectable Signal (MDS), contributing to improved classification
results.
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2.2.1.5 Detecting Multiple Drones

Zhang et al. explored the feasibility of employing a K-band Continuous Wave (CW)
radar for the simultaneous detection of drones [43]. They focused on the cadence frequency
spectrum (CFS) and converted it into a Cadence Vector Diagram (CVD), which served as
training data for a K-means classifier. Lab tests involved using a helicopter, hexacopter,
and quadcopter to collect data for scenarios involving one, two, and all three UAVs. The
study revealed classification accuracy results of 96.64% for a single drone, 90.49% for two
drones, and 97.8% for three drones, highlighting the radar’s effectiveness in multiple drone
detection scenarios as demonstrated in Table 2.1.
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Work Radar
system

Classes Data Features Classifier Results

[27] L-band
Holo-
graphic
radar

2 classes:
Drone( hex-
acopter),
Non-drone

5-min flight Height,
max-height,
Doppler, ac-
celeration,
jerk

Decision
tree

Detection
probability:
88%

[30] S-band Bir-
dRad

4 classes: two
birds and two
drones (3D
solo and DJI
Phantom II)

8000 trail
samples

9 polarimetric
features

Nearest-
neighbor
classifier

Classification
accu-
racy:100%
accuracy

[32] Ka-band
CW radar

2 classes:
UAVs vs sim-
ulated bird
data

30 10-
second
trials per
drone, sim-
ulated bird
MDS

Mean spectro-
gram, SVD,
CVD

SVM Classification
accu-
racy:96%
to 100%.

[33] S-band
pulsed
radar

2 classes: UAV
tracks vs bird
track

Bird tracks
real. UAV
tracks by
simulation

20 features
extracted from
track

ANN with
30 hidden
layers

Classification
accuracy: up
to 100%.

[34] X-band CW
radar

11 classes: 11
drones

30 seconds
recording
for each
drone

Eigenvector
and eigenvalue
of MDS

Naïve
Bayes, lin-
ear and
Non-linear
SVM

Classification
accuracy:
approx. 95%

[35,36] S-band CW 4 classes:
3drones and
non-drone
classes

280 images Spectral corre-
lation function
(SCF) of MDS

Deep belief
Network
(DBN)

Classification
accuracy:
above
90% when
SNR>=0

[37] K-band and
X-band CW
radar

3 classes:
Quad-
copter,Heli-
copter,Hexa-
copter.

720 sam-
ples each
radar/drone

PCA based
features

SVM Classification
accuracy: up
to 94.7%

[38] Ku-band
FMCW
radar

2 classes: in-
spire 1 and
F820

50000/10000
images in-
door/outdoor

Contatendated
MDS and
CVD

CNN Classification
accuracy:
94.7%
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[39] Pulsed 2 classes:
Phantom 2
and S1000+

Own
database

Virtual scat-
tering point’s
images

MLP, RNN,
FCN

Classification
accuracy:
from 70% to
100%

[40] S-band
pulsed
radar (Ne-
tRaAD)

3 classes: no
payload, 200 g
payload, 500g
payload

45 samples
per class

Centroid and
band width of
MDS

Naïve
Bayes
and Dis-
criminant
analysis

Classification
accuracy:
90-100%

[42] S-band
pulsed
radar (Ne-
tRaAD)

5 classes:
no payload,
200g,300g,400g,
500g

45 samples
per class

SVD and cen-
troid of MDS

Naïve
Bayes
and Dis-
criminant
analysis
and random
forest

Classification
accuracy:
95-96%

[43] CW K-
band radar

Quad-
copter,Heli-
copter,Hexa-
copter

140segments
with 0.375s
for each
segment

Cadence fre-
quency spec-
trum (CFS)
features

k-means
classifier

Classification
accuracy: up
to 96.64%,
90.49%
and 97.8%
for single,
two and
three drones
respectively.

Table 2.1: Summary of related works on radar methods based on machine learning for drone
detection and tracking

2.2.2 Ml-Based Drone Classification By Visual Data

Although radar technology has proven effective in target identification and tracking, it
relies on trained personnel for decision-making. Recognizing this limitation, researchers
are now turning to advancements in computer vision to explore drone detection and
classification using visual data. This shift towards leveraging computer vision indicates a
growing interest in developing automated systems that can enhance the efficiency of drone
monitoring and recognition without the dependency on specialized human expertise.

Rozantsev et al. introduced two techniques for identifying airborne drones by em-
ploying 3-dimensional Histograms of Gradients (HoG3D) and a Convolutional Neural
Network (CNN) model [44]. The approach involves segmenting video frames into over-
lapping temporal slices, creating spatiotemporal cubes (st-cubes), and implementing a
motion compensation algorithm through regression. Two boosted tree regressors predict
translation, while two distinct CNNs handle regression tasks. The system’s effectiveness
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was assessed using publicly accessible datasets featuring UAVs and aircraft. Notably, the
regressors are trained to adapt to various image scales.

Yoshihashi et al. applied a deep learning methodology named Recurrent Correlational
Networks (RCN) designed for the detection and tracking of small Unmanned Aerial Vehi-
cles (UAVs) [45]. The architecture comprises four key networks, including convolutional,
ConvLSTM, cross-correlation, and fully connected layers. The authors employed a tun-
ing approach and assessed the system’s performance on two datasets, one featuring UAVs
and the other birds. The evaluation demonstrated superior results, particularly evident
in Receiver Operating Characteristic (ROC) curves.

Aker et al. created YOLOv2, a single-shot object detector, through fine-tuning for
Unmanned Aerial Vehicle (UAV) detection [46]. Their approach resulted in equal precision
and recall values of 0.9 on an artificial dataset.

Saqib et al. conducted a study focusing on pre-trained Convolutional Neural Network
(CNN) models [47], specifically examining Zeiler and Fergus, as well as VGG16 in con-
junction with Faster R-CNN, for the purpose of drone detection from video data. They
applied transfer learning using VGG16 and ZF, training the models on a Bird-Vs-Drone
dataset. The training process involved a learning rate of 0.0001 and batch sizes of 64.

Peng et al. applied the Physically Based Rendering Toolkit to produce photorealistic
images of Unmanned Aerial Vehicles (UAVs) [48]. These images were subsequently utilized
to enhance the performance of a Faster R-CNN network designed for UAV detection. The
refined model demonstrated a notable performance, achieving an average precision of
80.69%.

Lee et al. designed a system for drone detection utilizing a camera mounted on a
separate drone [49]. The system integrated a Haar feature cascade classifier along with
a Convolutional Neural Network (CNN) network. Training was conducted using the
Adam optimizer and a dataset consisting of 7000 drone images. The model demonstrated
robust performance with an 89% detection accuracy and an impressive 91.6% identification
accuracy as described in Table 2.2.
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Work Drone Dataset Features Detection
method

Results

[44] UAVs and
Aircraft

UAV database
and Aircraft
database

HoG3D,
Learned
features

Boosted trees,
CNN

Average preci-
sion is 0.849,
0.864 for the
UAV and Air-
craft databases
respectively

[45] Small UAVs UAV database
and video-
based bird
database

Ilearned
features

Recurrent cor-
relational Net-
works (RCN)

ROC curves
demonstrate the
superiority of the
system

[46] NS Artificial
dataset

Learned
features

Fine tun-
ing CNN
(YOLOv2)

Precision and re-
call values of ap-
proximately 0.9

[47] NS Drone VS Bird
database

Learned
features

Fine tuning
CNN (VGG
and ZF)

Mean average
precision 0.66

[48] NS Synthetic
database for
drone detec-
tion

Learned
features

Fine tuning
Faster R-CNN
with ResNet
101

Mean average
precision 80.69%

[49] NS 10013 images
collected from
google

Haar and
learned
features

Haar cascaded
classifier, CNN

Detection and
Identification
accuracies are
89% and 91.6%
respectively

[50] NS NS Geographical
distributed
data points

Intelligent
Probabilistic
Model

Results show
good perfor-
mance but needs
more inves-
tigation and
improvements

[51] NS 1340 images
for drones
and birds

Generic
Fourier
Descriptor
(GFD)

Neural Net-
work

Classification ac-
curacy is: 85.3%

Table 2.2: Summary of related work on visual methods for drone detection
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2.2.3 Ml-Based Drone Classification By Acoustic Data

Acoustic drone detection captures humming sounds with sensors, employing correlation
methods or machine learning for accurate identification based on unique audio fingerprints.
This technology enhances adaptability and precision in recognizing drones.

Nijim and Mantrawadi conducted a feasibility study on drone detection, employing the
Hidden Markov Model specifically for DJI Phantom 3 and FPV 250 drones [50] . Jeon
et al. used Gaussian Mixture Model (GMM), CNN, and RNN classification to detect
drone presence in 150 meters [51]. They built datasets by augmented drone sounds and
found RNN classifiers performed best, followed by GMM and Performance decreases with
unseen data as indicated in Table 2.3.

Bernardini et al [52] proposed a multi-class Support Vector Machine (SVM) classifier
to distinguish drone sounds from ambient noises in crowds and daytime nature. They
gathered 70 minutes of web audio data containing drone sounds, segmented it into 5-
second and 20-millisecond sub-frames, and trained the classifier on features extracted
from the pre-processed signals. The classifier achieved an impressive accuracy of 96.4%.

Kim et al. employed spectrum images, correlations, and KNN classifier methods for
DJI Phantom 1 and 2 detections [53], achieving 83% accuracy with image correlation and
61% with the KNN classifier. They achieved an 83% accuracy using image correlation and
61% with the KNN classifier, analyzing various sound sources such as indoor, outdoor,
and YouTube videos.

Yue et al. created a distributed system [54] for detecting and approximating drone
presence, utilizing an acoustic wireless sensor network (WSN) coupled with machine learn-
ing. The study revealed distinctions in the power spectrum density (PSD) of drone sounds
compared to natural sounds. The system utilized Fast Fourier Transform (FFT) and a
low-pass filter to eliminate noise, training a Support Vector Machine (SVM) classifier to
identify drone sounds amidst rain and natural background.

Seo et al. used normalized Short-Time Fourier Transform (STFT) [55] to generate
2D images from acoustic signals of DJI Phantom 3 and Phantom 4 drones. The dataset
comprised 68,931 sound frames, achieving a high detection rate of 98.97% and a low false
alarm rate of 1.28% when training a Convolutional Neural Network (CNN) with 100-
epoch low Signal-to-Noise Ratio (SNR). Matson et al. adressed Mel-Frequency Cepstral
Coefficients (MFCCs) and Short-Time Fourier Transform (STFT) features [56] extracted
from an optimized multiple acoustic nodes system. These features were employed to train
Support Vector Machine (SVM) and Convolutional Neural Network (CNN) supervised
classifiers. the audio signal was represented as 2D images, and the dataset included two
cases: drone flying and environmental noise recording, outperforming of STFT and SVM.

31



Chapter2 State of Art drone detection methods

Work Drone Dataset Features Detection
method

Results

[50] DJI Phan-
tom 3 and
FPV 250

NS NS HMM Very prelim-
inary results
that show the
feasibility of
detection

[51] DJI Phan-
tom 3 and
4, DJI In-
spire, 3RD
Solo

9556-sec
augmented
sound (train-
ing), 151
sec (test-
ing), 1557
sec (unseen
data)

MFCCs Binary clas-
sification:
GMM,
CNN, RNN

Best accuracy
with RNN
(80%) fol-
lowed by GMM
(68%) followed
by CNN (58%).
Low perfor-
mance with
unseen data.

[52] NS Five 70-min
sounds from
the classes

Short-time en-
ergy, temporal
centroid, ZCR,
spectral cen-
troid, roll-off,
MFCCs

Multi-class
SVM

Classification
accuracy of
96.4%.

[53] DJI Phan-
tom 1 and
Phantom 2

NS Spectrum image
and FFT ampli-
tude spectrum

Correlation
and KNN
classifier

83% accu-
racy in image
correlation
61% in KNN
classification.

[54] / 2000 tuples
sampled for
drone and
non-drone
sounds di-
vided 50%,
30% and
20%

PSD SVM classi-
fier

Best TPR and
FNR when SIR
is greater than
10dB.

[55] DJI Phan-
tom 3 and
Phantom 4

68931 sound
frames for
drones and
41958 sound
frames for
non-drone’s
others

Normalized
STFT

CNN DR is 98.97%
and FAR is 1.28
with 100-epoch
and low SNR
environment.

[56] Parrot AR
Drone 2.0

Drone and
environment
noise audio
signals

MFCCs, STFT SVM clas-
sifier, CNN
model

BSTFT-SVM
show best
detection accu-
racy in terms
of color map.

Table 2.3: Summary of related work on acoustic methods for drone detection
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2.2.4 Ml-Based Drone Classification By Radio Frequency

Unmanned Aerial Vehicles (UAVs) are equipped with onboard transmitters that uti-
lize Radio Frequency (RF) signals for control and operation. This characteristic enables
the detection and localization of UAVs from a considerable distance, offering the added
capability of identifying the controller responsible for sending the RF signal.

Shi et al. designed a system utilizing Hash Fingerprint features for the detection of
slow, small unmanned aerial vehicles (LSSUAVs) operating at a frequency of 2.4 GHz [57] .
While effective in detecting and recognizing signals in an indoor environment, the system’s
performance diminishes when subjected to the addition of white Gaussian noise.

Nguyen et al. developed a system using algorithms to detect drones by analyzing
their physical attributes [58], including body shifting, vibration from spinning propellers,
and navigation patterns. Tested on Parrot Bebop and DJI Phantom drones, the system
demonstrated an accuracy of 84.9%, precision of 81.5%, and recall of 90.3%

Ezuma et al. designed a system converting raw RF signals into wavelet domain frames
for preprocessing, employing a Markov model for UAV presence description and a naive
Bayes classifier for detection [59]. Classification involved the energy transient signal, with
extracted statistical features such as skewness, variance, entropy, and kurtosis. Robust
feature selection was performed using Neighborhood Component Analysis (NCA). The
system achieved an average detection accuracy of 96.3%, with performance varying based
on the signal-to-noise ratio (SNR) as outlined in Table 2.4.

Work Drone Dataset Features Detection
method

Results

[57] LSSUAVs NS Hash finger-
print

SVDD Successful detec-
tion in indoor en-
vironment in 2.4
Ghz band with-
out noise

[58] Parrot
Bebop,
and DJI
Phan-
tom

NS Body shifting,
body vibration

Wavelet
analysis
and maxi-
mum PSD

Accuracy of
96.5%, precision
of 95.9% and
recall of 97% for
10m distance

[59] Controller
for dif-
ferent
UAVs

100 RF signals
from 14 UAV
controllers

Skewness, vari-
ance, entropy
and kurtosis
with NCA

SVM,
DA, ANN
and KNN
classifiers

96.3% detection
accuracy with
KNN classifier
and good SNR
value.

Table 2.4: Summary of related work on RF methods for drone detection
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2.3 Multisensory Integration for Drone Detection: A

Bayesian Inference Approach

Figure 2.1: Synoptic of Intelligent Multi-Detectors using Bayesian Inference BI model where OD
is Optical Detector, AD is Acoustic Detector, MFD is Magnetic Field Detector, EI is Ephemeris
Indicator, and AI is Acoustic Ambiance Indicator

• Explication
The Probabilistic model presented in this paper leverages Bayesian inference, utilizing

a combination of imagery, acoustic ambiance, and magnetic field detectors to capture
the high temporal variability of drone detection. This approach is chosen for its ability
to analyze multiple variables and address challenges in designing patterns and detecting
behaviors. For anomaly detection and correct identification of the root causes meaning-
ful, optical, acoustic and magnetic field detectors, perceptual data ephemeris, acoustic
ambiance indicators and accurate modeling must be selected and used. The Bayesian
network model in Figure 2.1 demonstrates the integration of these components in our
proposed approach. Locating a drone based on a combination of sight, sound, and mag-
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netic field signals falls under the general class of multisensory integration problems, where
perceptual systems triangulate different sensory signals to determine the drone’s location.
Each detector processes signals separately but combining them yields a more accurate re-
sult. Utilizing Bayesian inference in our proposed approach allows effective integration of
signals from different detectors, resulting in a more accurate and reliable drone detection
system [60].

The Bayesian model of multisensory integration assumes that perceptual systems com-
bine different signals based on their reliability or uncertainty. Our approach considers sig-
nals from visual, acoustic, and magnetic field detectors, along with ephemeris and acoustic
ambiance indicators providing information about the environment. Environmental con-
ditions impact detector reliability, and our approach evaluates ephemeris and acoustic
ambiance indicators to eliminate the final decision of one detector. For instance, optic
detector may not function very well during low light conditions while, acoustic detector
may not function very well during noisy conditions. Considering these factors promotes a
detector relative to others, ensuring accuracy and reliability under varying environmental
conditions. Experimental work demonstrates that when agents share beliefs and confi-
dence, collective decisions become more reliable. Integrating this confidence information
suits indicators used for greater precision in multisensory combination, enhancing the final
decision-making process [60].

2.4 Conclusion

The anticipated growth in the drone market and the subsequent rise in drone num-
bers present a challenge to traditional methods, raising questions about the efficiency of
human-centered solutions. This review underscores the pivotal role that machine learn-
ing can play in addressing this challenge. The digital processing of various modalities
has rendered machine learning applicable in nearly every detection system, contingent
upon the system operator’s willingness to attend to data. While challenges related to the
quantity and quality of data in machine learning are widely acknowledged, they become
particularly urgent in the context of drone detection and classification. Collaborative
efforts to construct publicly available datasets are essential to assist researchers and de-
velopers in creating robust classification models for drones around all modalities. The
risk associated with drone operations significantly depends on the drone’s location and its
distance from critical areas during flight, making ranging a crucial objective. However,
the reviewed literature mostly emphasizes detection performance, with limited informa-
tion on the drone’s detected distance. As highlighted in this chapter, no single modality
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is optimal for both drone detection and classification. Addressing this limitation, various
authors have proposed bi-modal and multi-modal systems, showing promising outcomes.
Nevertheless, current solutions often assume a statically located detection system, which
proves restrictive in modern cities where obstacles, such as buildings, can hinder detection
by obstructing views, RF, and radar signals. Additionally, elevated noise levels pose chal-
lenges for acoustic detection. Recognizing these issues, the implementation of distributed
and collaborative detection systems, utilizing wide-area solutions or city-wide surveillance
sensors, could present an effective strategy to navigate the complexities of drone detec-
tion and classification. Moreover, we launch a pioneering technique called multi-sensory
integration. Inspired by Bayesian inference, it delves into the final decision-making from
diverse sensing modalities to enhance the robustness and accuracy of the detection system.
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Chapter 3

Optic Detection with Convolutional
Neural Networks (CNNs)

3.1 Introduction

A new contender takes flight—the Unmanned Aerial Vehicle (UAV), whether facilitat-
ing package deliveries, capturing mesmerizing aerial footage, or conducting surveillance
missions, have become an integral part of our modern world. But how do we keep track of
these elusive aviators? Detecting drones poses a substantial challenge due to limitations
in existing radar systems designed for larger aircraft, which depend on the object’s di-
mensions surpassing the emitted radio signal’s wavelength. However, the similarity in size
between drones and birds complicates matters, requiring solutions that can distinguish
between aircraft and wildlife. Moreover, the lower flight altitudes of UAVs contribute to
radar clutter as signals bounce off the ground and surrounding obstacles. Addressing these
complexities is essential for effective drone detection [61]. In recent years, Deep Convo-
lutional Neural Networks (DCNNs) have emerged as a pivotal technology for advancing
visual systems dedicated to object detection and tracking. These methods harness learn-
ing principles to extract feature maps from input images, facilitating the development of
probabilistic distributions for different categories or variables [62,63].

Recent advancements in neural networks and deep learning algorithms have highlighted
the value of optical data for UAV detection systems. Research in this area has been influ-
enced by the success of deep learning in image classification tasks, notably demonstrated
in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) contest in 2012 [64].
Numerous studies employing deep neural networks (DNNs) for UAV detection adopt a
generic object detection architecture, integrating a robust DNN as a classification model
customized for UAV identification [65,66].
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The ImageNet project aims to build a vast database of annotated images, includ-
ing pretrained models like VGG-16 and VGG-19, which are developed from scratch and
trained on millions of images spanning numerous categories. Due to its extensive train-
ing, the model has acquired a good representation of low-level features like spatial, edges,
rotation, lighting, shapes. These features can be shared across different computer vision
tasks, enabling knowledge transfer, and serving as effective feature extractors for new
images [67]. In this chapter, we explore the potential of transfer learning by using the
pretrained VGG-16 model to classify drone vs non-drone (such as birds. . . etc.). This
study includes interpreting the underlying principles of the chosen optical detection ap-
proach, presenting experimental results, aiming to contribute valuable insights to the field
of optical detection, demonstrating its effectiveness in tackling diverse computer vision
challenges.

3.2 Exploring Deep Learning Mechanisms: A Compre-

hensive Overview

Deep learning is a branch of artificial intelligence that stems from machine learning,
enabling machines to learn autonomously. This stands in contrast to traditional program-
ming, where machines strictly follow predetermined rules. Its operation entails computers
employing artificial neural networks that emulate the structure of the human brain to han-
dle vast volumes of data. Whenever new information is encountered, existing connections
between neurons undergo alteration and expansion. Its objective is to empower the sys-
tem to learn autonomously without manual intervention, while enhancing its performance,
decision-making capabilities, and predictive accuracy.

3.2.1 Fundamentals of Convolutional Neural Networks (CNNs)

An artificial neural network, known as a multilayer perceptron (MLP), comprises an
input neural layer, one or more hidden layers, and an output layer, all utilized for in-
formation processing Incoming data, or the input vector, is received by the input layer.
Subsequently, it is transmitted to the hidden layer through artificial neurons, where they
are assigned "weights". Eventually, a specific pattern is adopted upon reaching the output
layer. The greater the number of layers within an artificial neural network, the greater the
complexity of tasks artificial intelligence can address. One of the most effective algorithms
in deep learning is Convolutional Neural Networks (CNNs). The program is constructed
on the foundation of deep learning convolutional neural networks (CNNs) and transfer
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learning. Nonetheless, to boost CNN performance, it’s imperative to integrate specific
methods, including dropout regularization and data augmentation. Convolutional Neu-
ral Networks (CNNs) are a specialized type of multilayer neural networks, with a design
inspired by the architecture of the visual cortex in mammals. These neural networks can
classify information ranging from simple to complex. They comprise multiple layers of
neurons and employ various mathematical functions with adjustable parameters, enabling
them to preprocess a limited amount of information. CNNs are distinguished by their ini-
tial convolutional layer, typically consisting of one to three layers. As the name implies,
the convolutional layer operates based on the mathematical concept of convolution, aim-
ing to detect patterns within data, such as signals or images. In the case of images, the
initial convolutional layer is adept at identifying object contours, like circles. Following
this, the second convolutional layer can translate these contours into recognizable objects,
such as wheels. Subsequent layers, while not strictly convolutions, leverage these features
to discern between details pertaining to cars and motorcycles [68]. The process of teaching
the network to recognize known objects entails optimizing parameters through exposure
to vast datasets, including thousands of images depicting dogs, cars, or sports. A key
challenge lies in efficiently and swiftly adjusting these parameters. Convolutional neural
networks find extensive applications in image recognition, video processing, and natural
language processing [69].

3.2.1.1 The layers of a Convolutional Neural Network

To execute a convolutional neural network, we require four types of layers: convolu-
tional layer, pooling layer, ReLU activation layer, and fully connected layer.

• Convolutional Layer: Convolution is the fundamental operation in convolutional
neural networks (CNNs), initiated as a mathematical formula commonly used for image
manipulation. It allows the extraction of features such as vertical, horizontal, and diag-
onal lines, as well as image blur, texture smoothing, and color inversion. These features
are achieved through the application of filters to images. In essence, convolution takes
an image and a filter as input, performs calculations, and produces a new image, typ-
ically smaller in size. There are several types of convolutions, although the basic one
is commonly used. It can be useful to be aware of the tools at our disposal. Types of
convolutions include:
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1. Classic convolution: The standard convolution operation involves applying a
filter to an input image to extract features. It contains three parameters: the kernel,
or filter, is applied to the input data to extract features, with the stride determining
the spatial movement of the kernel. Padding, which involves adding additional pixels
around the input data, ensures that the spatial dimensions of the output feature
map match the input dimensions, helping to preserve spatial information.

2. Dilated convolution: Dilated convolution involves introducing gaps or dilations
between filter elements to increase the receptive field without increasing the number
of parameters.

3. Transposed convolution: Also known as deconvolution, it is used for up sampling
or increasing the spatial resolution of feature maps.

4. Separable Convolution: Separable convolution decomposes the standard convo-
lution operation into depthwise and pointwise convolutions, reducing computational
cost while preserving accuracy. Depthwise convolution applies a separate filter for
each input channel, followed by a pointwise convolution to combine the results. It
is commonly used in lightweight neural network architectures like MobileNet.

Figure 3.1: Different Types of convolutions [70]
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Figure 3.2: Two Techniques of Separable Convolution [71]

• The Rectified Linear Unit Layer: The Rectified Linear Unit (ReLU) activation
function, widely used in Deep Learning, particularly after convolutional layers in convo-
lutional neural networks, is preferred for several reasons: it accelerates computations by
eliminating negative values, enhances important features in images by widening the gap
between features, and preserves positive values without altering the traits highlighted by
convolution. A popular variant of ReLU is the Leaky ReLU, which retains data non-
linearity to a lesser extent.

• The Pooling Layer: Pooling is an operation that simplifies an image by replacing
a square of pixels with a single value (typically 2 × 2 or 3 × 3), reducing the size and
complexity of the image. To apply pooling, a square of pixels of size 2×2 (for example) is
first selected, and then the value to replace this square is calculated. The square is then
shifted to the right (or downwards) based on the stride (step). There are several types of
pooling, including "max pooling" which takes the maximum value of the selection, "mean
pooling" which takes the average of the pixels, and "sum pooling" which calculates the
sum of the values.

• the fully connected layer: The fully connected layer (FC) applies to inputs that
have been previously flattened, where each input is connected to all neurons. These
layers typically appear at the end of the CNN architecture and are used to optimize
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specific objectives, such as course grades.
Flattening: Or flattening out, is the final step in the "information extraction" phase,

involving concatenating all the images (matrices) to form a long vector. This entails
retrieving pixels row by row and adding them to the final vector, thereby converting the
images into arrays of numbers.

3.2.1.2 VGG-16 Model

The VGG-16 model is a convolutional neural network architecture proposed by the
Visual Geometry Group at the University of Oxford. This is made up of 16 layers such
as 13 convolutional and 3 fully connected. The network is known for its simplicity and
uniform architecture, where the convolutional layers primarily use 3 × 3 filters with a
stride of 1 and padding to maintain spatial dimensions. VGG-16 achieves high accuracy
on image classification tasks by stacking multiple convolutional layers followed by max-
pooling layers to gradually reduce spatial dimensions while increasing the number of filters.
The final layers are fully connected layers followed by a SoftMax layer for classification
[72,73].

Figure 3.3: The architecture of VGG-16 model [72]
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3.3 Optic detection methodology

In this section, we describe a framework of the recent technology of Deep Convolutional
Neural Networks CNNs. It was to provide a system that integrates tracking algorithms
with deep learning classification structures and protocols and evaluate its effectiveness.
It is dedicated to collecting data, then pre-processing images. The current approach
technique used imaging systems and cameras with visual spectrum to detect and classify
drones. Not typically a primary detection source, electrooptical sensors use a visual
signature to detect UAS. Typically, they come with a high zoom capability for viewing
small objects far away.

3.3.1 dataset collection

Aiming to select and analyze the datasets, the data images of the UAVs were randomly
taken from a website selected for all forms of drones Mini/Micro which have been divided
into three main sets assigned to the training, testing, and validation. Next, we create
two files for each sampling unit, one for drones and the other for non-drones: Selecting
non-drone images as flying objects, raptor birds, UFOs, flying plastic bags, as well as
balloons, kites, and parachutes distant. Further, we should avoid duplicate images using
Duplicate Media Finder to enhance the desired number of images and modify the images
by removing all handwriting and faces, and even objects similar to drones so that our
program could easily distinguish the UAVs. This study emphasizes the critical role of
dataset analysis in developing a precise and robust object detection model.

The COCO (Common Objects in Context) dataset was chosen for training and eval-
uation due to its comprehensive representation of diverse object classes in real-world
scenarios. Through meticulous analysis, key dataset attributes such as object distribu-
tion, image quality, and annotation accuracy were examined. The insights gained from
this analysis informed decisions related to model architecture selection, hyperparameter
tuning, and evaluation metric design. By tailoring the object detection approach to the in-
tricacies of real-world scenes uncovered in the dataset, the study aims to create a versatile
model capable of accurately detecting objects across various contexts [73].

The main idea behind the machine learning algorithm is that we first need to learn
our algorithm using some RGB images called training data. After that, to calculate the
performance of our model, we need to use some new RGB images called test data that
have not been used for training. So, we can assess the effectiveness of the selected model
using the testing data. We splitted 1767 images into training testing and validation sets.
We used 20% images for testing, 70% images for training, 10% images for validation.
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Table 3.1 shows our data splitting.

Classes Training Test Validation
DRONE (0) 1002 286 143

NON-DRONE (1) 235 67 34
TOTAL 1237 353 177

Table 3.1: Database Collection and Utilization for Model Processing

According to the drone’s identification, we needed to do image pre-processing which
is a crucial task for achieving a better result. Alternative techniques had been evolved
so far for enhancing UAV images in which they were not cleared. For this reason, we
utilized LabelImg for its enhancement. Primarily, Since the images in the dataset have
different resolutions, all of them were resized to (224 × 224 × 3). Finally, for each im-
age, we performed normalization. The databases must undertake a pre-processing to be
adapted to the inputs and the outputs of the neuronal network which consists of carrying
out appropriate standardization, accounting for the amplitude of values accepted by the
neuronal network.

Technically, we prepared CNNs input data and created a new drone database by la-
beling data for detection and identification activities for distinct CNN models wherever
it utilizes a data label for drone detection. This label denotes the dataset specifications.
Furthermore, the CNNs model has learned in the earlier layers more generic features, that
could be useful in other tasks. After the pre-processing and labeling of datasets, the next
step sheds light on the overall methodology to assess the algorithm’s capability in extract-
ing drone images, including pre-processing, feature extraction, and object classification,
as described.

The UAV images were analyzed on a personal computer with a MacOs Catalina i7
CPU 2.8 GHz, 16 GB RAM, Intel HD Graphics 6301536 MB, and Python 3.7 TensorFlow
2.3 Keras 2.3.1. To detect, categorize, and estimate drones, computational analysis for
the overall program execution from image processing is used.

3.3.2 Description of neuronal network and its training

After performing image pre-processing, a novel deep Convolutional Neural Network
(CNN) model was created to extract the most discriminant features from the photos.
Following feature extraction, the extracted features were pre-processed before being fed
into various well-known machine learning algorithms. The choice of neural networks
depends on the specific task and the characteristics of the data. In this case, a fully
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convolutional neural model was trained. This model consists of an input layer, hidden
layers, and an output layer as depicted in Figure 3.4. The input layer receives the
preprocessed image data, and the hidden layers perform intricate computations to learn
relevant patterns and features. Finally, the output layer provides the classification or
prediction results based on the trained model.

Figure 3.4: Artificial neural network

The proposed CNN technique focused on the VGG 16 model: Visual Geometry Group
that contains thirteen learned convolutional Layers using 3× 3 kernel filters. Except for
the final convolutional layer, each convolutional layer is followed by a parametric Rec-
tified Linear Unit (ReLU) activation layer that learns the parameters of the rectifiers.
RGB photos of size 128 × 128 × 3 are accepted by the network. The output of the final
convolutional layer is sent into a Softmax layer, which generates a distribution over the
drone and non-drone classes. Since it has been shown to improve classification results,
Maxpooling layers are used after the second, fourth, seventh, tenth, and thirteenth con-
volutional layers, with the goal of reducing the spatial size of their input and the number
of parameters contributing to overfitting control, while a response normalization layer is
used after the first pooling layer to aid generalization like Figure 3.5.
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Figure 3.5: Convolutional Neural Network

Max-pooling layers follow the convolutional layers, while the ReLU non-linearity for-
mula is (f(x) = max(0;x) except for the two last fully connected layers (denoted as FC).
The two classes of ImageNet are represented by the output of the FC layer as a proba-
bilistic distribution. The softmax loss is used during the training. Specifically, we launch
the parameters by sampling weights from the pre-trained VGG-16 network on ImageNet.
Despite having three branches, the implemented network has around 75% of the VGG-16
network. VGGNet adds 3× 3 convolutions to form a deeper architecture. Most of the re-
search propositions use VGG as a structure and create a better component at each phase
(split by stride) [73]. Eventually, we used this ensemble method to improve the overall
performance of these algorithms.

We crafted a CNN model using the Python programming language. The selected
choice of framework was TensorFlow, a popular open-source software library renowned
for its application in machine learning, particularly neural networks. To streamline the
model development, we harnessed Keras as a high-level neural network library, leverag-
ing its capabilities as a TensorFlow wrapper. The entire development process took place
within the Jupyter notebook environment. In the initial stages, we are adopting a Convo-
lutional Neural Network (CNN) approach. This involves forwarding input images through
a sequence of distinct layers: starting with convolutional and pooling layers, followed by
flattening and fully connected layers. This sequential processing culminates in the gener-
ation of CNN outputs, which play a pivotal role in image classification. The procedure
of progression begins with the creation of CNN models from scratch. Subsequently, we
embark on enhancing these models by integrating image augmentation techniques. This
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strategic augmentation seeks to diversify the dataset and augment its robustness.
In general, a classification task in computer science and related fields applies a com-

putational model inspired by the central nervous system to tackle non-linear issues cor-
responding to noisy or complex data, such as image analysis. We handle a pre-trained
CNN model, trained on large datasets referred to the two classes, Drone and Non-Drone,
such as ImageNet.

3.3.3 Object classification with machine learning

Classification task imposes a computational model inspired by the central nervous
system in computer science and related fields to solve non-linear problems corresponding
to noisy or complex data, including image analysis. We pre-trained CNN model on large
datasets referred to the two classes, Drone and Non- Drone, such as ImageNet, then
replace the classification layer with a new one that represents the labels of a specific
dataset and is initialized indiscriminately and retrain the network on the specific dataset.
This approach serves as baseline against the proposed model. The classification algorithm
using machine learning is needed to remove the true positive detection of the drone to
identify it as a non-drone. Therefore, by using classification algorithm, this indirectly
enhances the performance of algorithm to correctly discriminate the drone’s images and
hence makes it useful during counting process. Specific architecture of hidden layers
depends on the proposed classifiers architecture [72].

3.3.4 Feature extraction and Performance evaluation

Feature extraction using image processing techniques can be error-prone and time-
consuming. The adopted CNN architecture consisted of thirteen convolutional layers,
followed by batch normalization and max-pooling layers. Through training, the model
learned the parameters necessary for drone classification. The performance of the model
was evaluated based on its separation capacity, detection rate, and learning time. We
compared the performance of drone image classification with manual and machine classi-
fiers. In the realm of machine learning model development, feature extraction stands as
a pivotal step to distill essential information from raw data. We highlight the application
of Principal Component Analysis (PCA) and convolutional neural networks (CNNs) for
effective feature extraction.

The interplay between feature extraction and accuracy-based performance evaluation
is explored within the context of a meticulously partitioned dataset, separating training
and testing subsets. The significance of precision, and recall in supplementing accuracy is
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emphasized, particularly in addressing imbalanced datasets. Through this comprehensive
evaluation approach, a balanced view of model capabilities is attained. The incorporation
of feature extraction and performance evaluation, with accuracy at its core, culminates in
an iterative model refinement process, enhancing real-world applicability and robustness
[73].

3.4 Results And Discussion Of Optical Detection model

The evaluation of model performance is crucial to validate its efficacy. The accuracy is a
key metric that quantifies the correctness of predictions relative to the total instances. The
performances of the drone’s images were compared with manual and machine classifier
count. Evaluation regarding classification accuracy, loss and precision was assessed as
in Eqs. 3.1, 3.2, 3.3, 3.4.. The terms are defined as True Positive (TP) is correctly
classified positive cases of true drone’s detection, True Negative (TN) is correctly classified
negative cases of incorrect drone’s detection, False Positive (FP) is incorrectly classified
negative cases and False Negative (FN) is incorrectly classified the drones as the positive
cases. Accuracy and precision describe how many classified drones are relevant, and the
probability of the classification is correctly performed. Loss is defined as a quantitative
measure of how well a model’s predictions match the true values in the dataset. It is
typically calculated using a loss function, which quantifies the discrepancy between the
predicted values and the actual values.

Sensitivity =
TP

TP + FN
(3.1)

Specificity =
TN

TN + FN
(3.2)

Specificity =
TP

TP + FP
(3.3)

Specificity =
TP + TN

TP + TN + FP + FN
(3.4)

Inspired by the provided results, we can notice a performance decrease with a capacity
increase but also a similar case of over-adjustment occurring more and more early in the
race. Thus, we have explored three different progresses of the basic model as VGG3 with
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DROPOUT, VGG3 with progress of data and Transfer Learning VGG16. The results of
progressing were considered as follows in the Table 3.2:

Different Progress Accuracy%

VGG3 + DROPOUT 77.143%

PROGRESS OF DATA + VGG3 78.286%

Transfer Learning VGG16 97.600%

Table 3.2: The Results Of Progressing Of Model CNN

Considering these findings, as depicted in Figure 3.6, a curve illustrating a linear graph
for loss and another for model accuracy has been generated. The ’blue curve’ represents
the performance on the learning first database, while the ’orange curve’ represents the
results on the test database. By examining the transfer learning VGG16 curves, we find
that the model quickly adapts to all the data, it does not show significant over-adjustment
although the results suggest that additional capacity of the classifier and/or the use of
the regularization could be useful. Therefore, we finalize that configuration and save the
transfer learning VGG16 approach as a final model.

Figure 3.6: Convolutional Neural Network

For the execution of the last architecture of transfer learning VGG16, we need more
data as it shows very good results. In the report of the Robustness Test of our final
model, we have used three different quantities of databases. First database is shown in
Table 3.1. Table 3.3 and Table 3.4 show the data splitting 2, 3 respectively:
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Classes Training Test Validation
DRONE (0) 3327 449 1003

NON-DRONE (1) 1149 162 351
TOTAL 4476 611 1354

Table 3.3: 2nd Datasets Splitting Into Training, Testing And Validation

Classes Training Test Validation
DRONE (0) 7000 1000 2000

NON-DRONE (1) 2338 333 666
TOTAL 9338 1333 2666

Table 3.4: 3rd Datasets Splitting Into Training, Testing And Validation

In Table 3.5, we present the experimental results obtained from Transfer Learning
based on VGG16 using different quantities of data. We observe that the model adapts
quickly to all the data without significant over-adjustment, confirming the previous find-
ings. To improve the final detection, we employed a soft ensemble-based approach. The
robustness of the proposed model was evaluated using a confusion matrix, which allowed
us to assess accuracy, precision, and loss, shows validation accuracy for different databases
with the pretrained model (VGG-16) trained on huge dataset of images.

1st test 2nd test 3rd test
97.6 % 94.205 % 94.570 %

Table 3.5: Robustness and Test Results

Considering these findings, as depicted in Figure 3.7 and Figure 3.8, a curve illus-
trating a linear graph for loss and another for model accuracy has been generated where
They represent the performance on the learning and testing of second and third database
respectively.
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Figure 3.7: Linear Plots Of Learn Curves For Loss And Accuracy For Basic Model, Transfer
Learning VGG16 On The 2 Nd Drone And Non-Drone Database

Figure 3.8: Linear plots of learn curves for loss and accuracy for basic model, transfer learning
VGG16 on the 3 rd drone and non-drone database

We have tried static and dynamic images that we did not use during the robustness
test. The results for detection are displayed below. According to the detection, we find
that the program has revealed very good performance in terms of precision and loss
presented a detection of drones about 96 %, 100 %, no detection for a flying plastic
bag, detection of drone with a bird around 99 % as shown in Figure ??. The model
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performance is considered the separation capacity, detection rate and progress time in
the learning case. The model’s training process included a learning rate of 0.001, along
with dropout regularization with a probability of 0.50, to ensure more generalized results.
These findings demonstrate the effectiveness of this approach in accurately detecting
drones and differentiating them from other objects in various scenarios.

Figure 3.9: Some examples for execution of our optic detection model

For object detection tasks, Convolutional Neural Networks (CNNs) are the preferred
choice over conventional neural networks. This preference arises from CNNs’ intrinsic
ability to extract hierarchical features from images, leading to higher accuracy, efficiency,
and adaptability. The key distinction lies in their architecture and capability. CNNs, with
convolutional and pooling layers, excel at capturing spatial patterns, making them supe-
rior for image-related tasks like object detection. They autonomously learn features from
data, reducing the need for extensive manual feature engineering. In contrast, conven-
tional neural networks struggle in this context as they cannot effectively capture spatial
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relationships and patterns, requiring more manual feature engineering efforts.

3.5 Conclusion

This chapter provides a preliminary investigation of drone detection algorithms utiliz-
ing fully deep CNNs. Firstly, we enhance the data images constructed database for the
specific task, to improve the quality and detect the drone images. Secondly, to address the
application’s computational and memory limitations, a completely convolutional architec-
ture was presented. Thirdly, the extracted features have been preprocessed as input in a
machine learning classifier to classify the drone and non-drone images. Lastly, we have
designed and validated the proposed model with three databases to detect the existence
of a drone and classify it in which this tool progressively converges to the best detection
and identification system with testing of unseen images. Experimental evaluation of the
drone’s database indicates the effectiveness and outperforming of the VGG 16. In the
future, it is expected that the proposed detection tool will play a key role in object de-
tection and classification field integrated with other detectors as well as it is one of the
most successful techniques.
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Chapter 4

Acoustic Detection Technique for
Drone Detection

4.1 Introduction

The advancement of Artificial Intelligence, data-driven decision techniques, and the
deployment of drones in swarm technology has raised significant concerns about their po-
tential as tools for mass destruction. Their small size and autonomous flight capabilities
enable them to evade detection by traditional methods such as Radar, Radio Frequency,
and Vision-based techniques, thereby increasing the threat they present to sensitive mili-
tary zones. However, despite these challenges, Acoustic Based Drone Detection has proven
to be effective by leveraging drones’ unique acoustic signatures for detection, offering a
reliable means of countering their covert operations [74, 75]. Acoustic detection of UAVs
holds promise among various detection methods, as recent publications showcase inter-
esting results achieved through the application of machine and deep learning techniques.
However, challenges arise in adverse conditions, like heavy wind or construction noise.
Researchers mitigate this issue by expanding the feature set to better distinguish between
background noise and UAV signatures. They utilize a support vector machine (SVM) clas-
sification algorithm, leveraging an augmented training dataset tailored for binary classi-
fication [76]. Recognizing acoustic signatures presents notable challenges, including tasks
such as identifying isolated characteristic frequencies and distinguishing unmanned aerial
vehicles based on their acoustic profiles. Neural networks have proven their effectiveness
in various applications, including automated speech recognition, establishing them as a
valuable tool for addressing these complexities [77, 78]. This chapter presents a detailed
exploration of the acoustic detection approach, incorporating analysis performed on sound
recordings obtained from the acoustic atmosphere of the CLA. Several analytical tech-
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niques, including FFT, TFCT, wave decomposition, spectrogram, and periodogram, have
been applied to these recordings. The drone detection methodology outlined in this study
is based on decomposing the received signal into two distinct components: the engine
sound and propeller noise. This decomposition is achieved through filtering techniques
and correlation/autocorrelation methods. The preliminary results are obtained in the
experiments regarding accuracy, efficiency, and overall system performance following the
implementation of this method. Subsequently, a comprehensive discussion addresses the
implications of these findings and potential challenges.

4.2 Acoustic detection methodology

An acoustic object detection device is designed for capturing digital sound, aiming to
enhance the accuracy of UAV (Unmanned Aerial Vehicle) detection by mitigating the
identification of erroneous combinations. Sound detection and probability assessment
are contingent on the object category. The audio sensor, integrated with the processing
device and/or hearing aids, utilizes multiple strategically positioned microphones in the
listening environment. These microphones receive audio signals from directions ensuring
optimal coverage within the associated field of view. Optionally, the audio sensor can dis-
cern sounds associated with infants or objects near them. The audio detection subsystem
consists of an audio collecting module, an audio training, a video service module and iden-
tification module, a storage module, and a primary communication module. Additionally,
each sensor device may include an audio sensor device, a radio frequency sensor device, or
an auxiliary device, potentially leading to enhanced audio detection capabilities. Python
is what is referred to as an interpreted programming language in this work. The reason
for selecting Python is the fact that it has a huge range of libraries which are suitable
for aspirational and open-source projects. It has a very simple learning curve and is easy
to maintain, and its code is very easy to read. Every effective sound detection system
requires its audio fingerprint, which is the first step in the creative process. It captures
the unique characteristics of the recording and all the accompanying metadata, which
makes it easy to index and search in a database. Basically, an audio fingerprint is a kind
of signature which is represented as a vector. A successful acoustic footprint takes into
account both physical factors like minimizing sound waves, and it is a requirement that
the information be encoded in a way that preserves the summary of the information as
well as be insensitive to certain types of interference like ambient noise and signal com-
pression. This allows the system to identify a particular audio segment even from a very
short extract [79].
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4.2.1 Data collection

The data storage device could be equipped with an audio sensor and programmed to
recognize voice commands that are captured by the sensor. Moreover, an extra audio
detector can be utilized to distinguish the sounds that are related to drones or nearby
objects. To assess the gathered data, different sound categories are included such as the
noise of the drone, engine, propeller, industrial, nature and animal sounds, and automation
sounds. The aggregation process contains several activities like data duplicate sensor
removing, uploaded records categorization, sensor data metadata generation, collected
data validation through backup and validation procedures. The audio data backup is
done using a Python program that imports two modules, tkinter and pygame, to facilitate
the reading of the collected sounds, as shown in Figure 4.1. An arrangement is applied to
the audio input to enhance the accuracy of object recognition. It secures object detection
capability by identifying an object that is coming towards it and one that is moving away.

Figure 4.1: The interface created by tkinter to play sounds

4.2.2 Acoustic analysis model

A sound anomaly detection system designed for a power supply device comprises an
audio detection subsystem and a wireless computer subsystem that communicates with
the audio detection subsystem. An active audio detection circuit is employed to identify
the activation of one or more audio sources. Upon confirmation of a non-voice audio
detection signal, the computer system executes an indication command or action. The
Doppler effect becomes evident in the perception of drone sound waves, influencing the
pitch based on the movement of the drone. The sound varies depending on whether the
drone approaches the source, resulting in a higher pitch, or moves away, producing a
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lower pitch. To characterize the biological sounds or other sounds spectrum by means of
their strength or other parameters various graphical representations are the most common
ones such as time and frequency representation, spectrogram, and wavelet transform. The
temporal representation allows visualization of the maximum amplitude of the signal as
well as the duration, shape, and periodicity of the sound, as shown in Figure 4.2. The
frequency representation can provide the visualization of the sound sample spectrum
by enabling interpretation of the contribution of each frequency component. For model
analysis, we have selected a time interval of 50 seconds, as illustrated in Figure 4.3.

Figure 4.2: Temporal representation of the drone’s sounds

Figure 4.3: Time/Frequency Resolution of drone signals
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We employed a TFD (Time-Frequency Distribution) discrete Fourier transform cal-
culation algorithm, utilizing the thinkx and librosa modules in Python3. This algorithm
converts a time-dependent function into a frequency-dependent function, providing sam-
pled complex values for harmonic analysis on discrete signals. By doing so, we were able
to analyze the harmonic composition of a sound signal, distinguishing between pure and
complex sounds and facilitating the identification of sound sources. Each sound source
generates a distinct timbre characterized by its harmonic frequencies.

In addition to the harmonic analysis, we utilized three-dimensional representations
and spectrograms using the librosa module in Python3. These visualizations enable us
to comprehend the time/frequency composition of a signal. The two-dimensional spec-
trogram, or sonogram, represents sound based on its frequency, amplitude, measurement
of sound intensity, or duration. It offers a clear depiction of the variation in frequency
over time. Furthermore, we conducted measurements of signal-to-noise ratios to evaluate
the impact of factors such as distance, orientation, and amplification on both the visual
detection of edges and the signal-to-noise ratio of recordings. This analysis provided in-
sights into the effects of these factors on the overall quality and clarity of the recorded
signals.

After all, this new gadget offers a more unbiased way to detect the presence of an-
alyzed spectrograms than humans and it takes much less time to process recordings to
detect bird species in a follow-up season. The spectrograms illustrate the number of True
Positives, which are known as syllables, and also, it shows the value in the low frequen-
cies indicating the source of noise pollution in the recording which might have affected
the sensitivity. The recordings were analyzed via visualization of spectrograms which
allowed us to opportunistically detect several other bird species. To process the audio
signal, we employed the TFCT method with a Hamming window using advanced Python
techniques. The drone signal’s TFCT was then decoded into two parts: the engine and
propeller parts, which give key data on drone sound characteristics for acoustic design
and detection. We then depicted the spectrum of each component visually. To study the
spectrum of specific sound signal components, we attenuated and modified them using
a low-pass filter to separate the motor sound and a high pass filter to recover the pro-
peller sound. A high-pass filter, commonly referred to as a low-cut filter, reduces the bass
frequencies below a certain frequency (fc), while a low-pass filter, also called a high-cut
filter, eliminates sharpness in the audio signals and only passes the frequencies that are
below a certain frequency (fc) [79].

Besides, there are two classifications of filters: finite impulse response (FIR) filters and
infinite impulse response (IIR) filters. FIR filters are digital ones designed to achieve a
specific spectrum that cannot be generated with an analog filter. The filter selection was
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made according to the execution time measured by the “time” module. The filter was first
applied to the signal, which was then passed to a SVM (Support Vector Machine) classifier.
This is a machine learning algorithm that is used to generalize linear classifiers. Its aim
was to classify the sound signal into one of the four classes: engine, propeller, engine
and propeller, or neither engine nor propeller. This data analysis method integrates
both machine learning and classification algorithms, while SVMs can approximate any
continuous function given sufficient data for the algorithm to come up with the best
possible optimal hyperplane to separate the four classes. Moreover, we also set out to
develop a program that computes the desired TFCT using SciPy on a windowed frame
based on audio samples, and then subsequently derives the magnitude spectrum.

Figure 4.4 and Figure 4.5 below illustrate stereo sounds with varying amplitude over
time.

Figure 4.4: The TFCT with the Hemming window of animals

Figure 4.5: The TFCT with the Hemming window of drones

The second situation arises when the audio recording has long stretches of silence,
which results in the program being unable to carry out TFCT. Figure 4.6 provides a
visual representation of this example.
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Figure 4.6: The signal with the silent areas

As a result of such spectrum visualizations, we got free motor, and propeller sounds
from website. Engine frequency occupies the whole frequency spectrum, while the pro-
peller part takes only a section from 1500 Hz. Figure 4.7 and Figure 4.8 illustrate the
two sound signal components:

Figure 4.7: Illustration of the motor spectrum

Figure 4.8: Illustration of the propeller spectrum
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We chose our filter according to the execution time so we imported the import timeit
module that will calculate the execution time of each filter, we tested with a simple
mathematical function named in our program x for the filter FIR print (”FIRtime =

”.format(timeit.timeit(lambda : sig.lfilter(t, a, x, axis = 1), number = 1))) and the
RII filter print (”RIItime = ”.format(timeit.timeit(lambda : sig.lfilter(b, a, x, axis =

1), number = 1)))). The results are displayed in Figure 4.9.
As can be seen in this figure, we have noticed that the RII filter has a shorter response

time. The comparison program showed that the RII filter took 0.39 seconds to execute,
while the other filter took 0.53 seconds. Therefore, we decided to use the RII filter to
filter that TS.

Figure 4.9: The execution time of each filter for a simple mathematical function

4.2.3 Low pass filter

This filter design has the aim of studying the engine spectrum alone. We used the
butterworth filter of order 5 on a frequency axis of 3000 HZ which is part of the filter RII.
We chose the cut-off frequency 1500 HZ and of normalized frequency. w_c = 2 ∗ fc/fs.
[b, a] = sig.butter(n,wc, btype = lowpass)

[w, h] = sig.freqz(b, a, worN = 3000). To filter our audio signal we worked with the
module scipy.signal.lfilter audio-filter=sig.lfilter(b,a,audio).
Then we passed our output signal which is audio filtered in the program of TFCT mags =

abs(rfft(audio − filter)), the results are presented in Figure Figure 4.10. We also
visualized the TFCT of the audio before filtering and after filtering the drone signal in
Figure Figure 4.11.
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Figure 4.10: The TFCT of filtered audio signal and Filtered audio signal

Figure 4.11: The TFCT of filtered signal and unfiltered audio signal

4.2.4 High pass filter

The purpose of the filter design is to study the helix spectrum only. We used the butter-
worth filter of order 5 on a frequency axis of 3000 HZ. We have chosen the cut-off frequency
1500 HZ and the normalized frequency wc = 2 ∗ fc/fs [b, a] = sig.butter(n,wc, btype =′

highpass′). [w, h] = sig.freqz(b, a, worN = 3000), After we have used the same path as
the low pass filter, filtering with the module scipy.signal.lfilteraudiof ilter = sig.lfilter

(b, a, audio) and pass our output signal which is audio filtered in the program of TFCT
mags = abs(rfft(audiof ilter)), the results are presented in Figure Figure 4.12 and Vi-
sualizing the TFCT of sounds with filtering and without filtering gives the results shown
in Figure Figure 4.13.

Based on that program, we can conclude that the cutoff frequency remains the same
irrespective of the Butterworth filter order. While the slope of the cutoff is relatively low,
it can be increased with a higher filter order.
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Figure 4.12: Filtered audio signal and its TFCT

Figure 4.13: The TFCT of filtered signal and unfiltered audio signal

The Butterworth filter moreover has a very flat response in the bandwidth; thus the
fast signals pass easily through it. The time/frequency representation is not reduced in
the TFCT, which has the advantage of simplicity for presenting this approach. Yet, the
TFCT can decompose Fourier series on a limited time horizon imposed by an analysis
window centered on a moment (t).

4.2.5 Acoustic stamp

The quality of sound is what distinguishes the tone of different instruments and voices,
even if the sounds have the same pitch and volume. The signature design of the classic
sound has to do with frequency spectrum, and it consists of four stages: ”attack” sound
accumulate, ”decreases” sound stabilizes and reaches a regular periodic scheme, ”sustain”
energy remains quite constant, ”release” sound fades . ADSR ”Attack Decrease Sustain
Release” is a simplified model that does not necessarily model the amplitude envelopes of
all sounds, as shown in Figure 4.14. Acoustic stamp, also known as spectral indicator,
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which is a method of providing information about the frequency spectrum and the acoustic
stamp level. To better visualize the resemblance, we shaped a histogram, as shown in
Figure 4.15.

Figure 4.14: ADSR method of the acoustic stamp

Figure 4.15: Histogram of acoustic stamp for sounds with ADSR
method

4.3 Results and Discussion

We have developed an acoustic detection method using correlation that can be inte-
grated into this sensor using Python and Audacity software. Python is a programming
language, whereas Audacity is a tool for audio processing. Initially, we cut the signals
through high and low-passed filters and approximately made a correlation between the
time-frequency complex transform (TFCT) of the filtered signals. Subsequently, we tab-
ulated the correlation coefficients of these filtered signals. By checking the TFCT of the
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filtered received signal (high pass and low pass) and the filtered drone signal with the
filtered received signal, we could say that these two signals are similar. This resulted in
auto-correlation results of 1 for both the high pass and low pass filtered sounds. The
correlation results of this method can be seen in Figure 4.16,Figure 4.17.

Figure 4.16: The TFCT correlation coefficient of signals filtered by low pass

Figure 4.17: TFCT correlation coefficient of signals filtered by high pass

Autocorrelation of 1 for both high pass and low pass filtered sounds indicates a strong
correlation between the drone sounds, which can be further utilized for detection. To
clarify, the drone’s view was converted into a cloud of related points which helped the
detection study to be more accurate. Moreover, we employed the correlated between the
filtered torque reference (motor/propeller) of the drone and the acoustic ambiance chosen
based on the sensor environment of the drone to enhance the type of detection. The
results obtained from this method may not be considered entirely professional since the
detection test of some non-drone sounds, such as those of CLA, may also yield positive
results as seen in Figure 4.18.
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Figure 4.18: Drone’s fitting type 01

4.4 Conclusion

In conclusion, this chapter has provided a thorough investigation into the acoustic
detection approach, leveraging various analytical techniques applied to sound recordings
gathered from the CLA’s acoustic environment. By employing FFT, TFCT, wave decom-
position, spectrogram, and periodogram analyses, we’ve explored the feasibility of detect-
ing drones based on their acoustic signatures. The methodology proposed in this study
involves decomposing the received signal into engine sound and propeller noise compo-
nents, achieved through sophisticated filtering techniques and correlation/autocorrelation
methods. Preliminary results from experiments assessing accuracy, efficiency, and overall
system performance following the implementation of this method are promising. Nev-
ertheless, it’s crucial to consider the possible hindrances and restrictions. Further re-
finement and validation of the detection methodology are necessary to ensure robustness
across various environmental conditions and drone types. The findings presented in this
section contribute valuable insights to the evolving landscape of decentralized surveil-
lance systems, further emphasizing the relevance and potential advancements in audio
detection and analysis technologies. Future work should focus on refining algorithms, in-
tegrating complementary detection technologies, and addressing practical implementation
challenges to enhance the efficacy of acoustic-based drone detection systems.
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Chapter 5

Drone Detection Using Magnetic Field
Sensors

5.1 Introduction

As the world becomes increasingly electrified, the demand for improved positional and
current sensing has correspondingly increased. That’s why researchers are exploring mag-
netic field detectors as a potential solution to significant security and safety risks posed
by drones. Magnetic field sensors play a pivotal role across diverse industries, facilitat-
ing early fault detection, refining control systems for Unmanned Aerial Vehicles (UAVs),
and supporting advancements in medical diagnostics. This development is propelled by
emerging use cases and demands, such as those driven by the Internet of Things (IoT),
as well as advancements in technologies like flexible and stretchable devices. These sen-
sors operate on different physical principles, leading to variations in specifications such
as sensitivity, linearity, field range, power consumption, and cost. Moreover, the primary
sensor types include Hall Effect, Giant Magnetoresistance, Tunnel Magnetoresistance,
Anisotropic Magnetoresistance, and Giant Magnetoimpedance [80, 81]. Their applica-
tions extend to human-machine interaction, search and rescue operations, and impact
various domains, including magnetic storage, automotive sensors, navigation systems,
non-destructive material testing, security systems, structural stability, medical sensors,
and military instruments [82, 84]. Object detection systems, utilized in various applica-
tions like drones, can be controlled using a Micro-bit board and sensors such as ultrasonic,
infrared, or lidar. These sensors, connected to the Micro-bit card, enable the detection
of obstacles [85]. This chapter presents a modern approach for automating the monitor-
ing and control of drones using magnetic field sensors with the Micro-bit Card. It offers
a detailed exploration of the adopted approach, including the functionality of magnetic
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field sensors, integration processes, and data collection techniques, emphasizing their crit-
ical role in improving drone surveillance and control. Furthermore, the chapter provides
insights into the results obtained from implementing this approach, including findings
related to accuracy and the overall system performance. A thorough discussion follows,
addressing potential challenges associated with this magnetic field sensor-based monitor-
ing system.

5.2 Exploring Magnetic Field Sensor Types: A Com-

prehensive Overview

Magnetic Field Sensors are designed to identify and quantify magnetic fields around
magnets, current conductors, and electrical devices. With the world experiencing a surge
in electrification, there is a rising need for enhanced positional and current sensing ca-
pabilities. Different sensing principles can be applied to cater to various detection tasks.
The selection of the most suitable sensing principle for a specific application depends on
factors such as the material of the object to be detected, the environmental conditions of
the application, and the required detection distance. In comparison to the near-field sen-
sors discussed earlier, magnetic field sensors provide increased operating distances while
maintaining a compact housing design. These sensors are employed to gauge magnetic
flux and/or ascertain the strength and direction of a magnetic field. Primarily utilized in
scientific measurements, navigation systems, and industrial applications, magnetic field
sensors necessitate a thorough examination of their performance specifications for effec-
tive selection. Performance considerations involve the analysis of parameters such as flux
density, denoted by the total measurement range in gauss (G), which often corresponds to
the linear output region of the sensing technology. Instruments designed for magnetic field
measurements encompass meters, gauges, recorders, and other specialized tools. These
devices play a crucial role in measuring magnetic fields and/or magnetic flux. Resolution,
defined as the smallest measurable increment, and bandwidth, representing the frequency
range within which magnetic field sensors maintain their accuracy specifications, are crit-
ical factors to evaluate when selecting these sensors.
• Some Applications: By means of magnetic field sensor which detects electromagnetic
disturbances, it is possible to classify on-road vehicles. Magnetic field sensors that have
been integrated with MEMS technology generate new capabilities that are applicable in
industries such as automotive, navy, health, oceanographic, space exploration, and en-
vironmental science. Figure 5.1 illustrates a magnetic signal from several sources and
applications falling in the range specified.
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Figure 5.1: Typical magnetic signals range of several sources and applications [86]

Magnetic field sensors are organized by type, this section explains the typical sensor
types and their features:

5.2.1 Hall Effect Sensor

It is based on the phenomene that the electromotive force appears in the direction
orthogonal to both the current and the magnetic field when applying a magnetic field
perpendicular to the current to the object through which current is following. They
convert the energy stored in a magnetic field to an electrical signal by developing a voltage
between the two edges of a current- carrying conductor whose faces are perpendicular to
a magnetic field. It measures the hall voltage generated by Lorentz force [82, 83]. When
a direct current is passed through a thin film semiconductor, the Hall Effect phenomenon
produces a voltage output that depends on the magnetic flux density and its direction.
The hall effect is used to detect a magnetic field, shown in Figure 5.2. Hall elements
can sense the magnetic field, even when it is static and there is no change in magnetic
flux density. Hall elements are therefore applied in different areas such as non-contact
switches that work with magnets, angle sensors, and current sensors.

72



Chapter5 Drone Detection Using Magnetic Field Sensors

Figure 5.2: Principal diagram of hall element [87]

5.2.2 Magneto-Resistive Sensor

They measure electrical resistance as a function of the applied or ambient magnetic
field. That detect a magnetic field using a material, that resistance changes when magnetic
force is applied, is called a Magneto-resistive (MR) element. There are three kinds of
sensors as representative examples of Magneto resistive element using a ferromagnetic
thin film material such as anisotropic Magneto-resistive element (AMR), giant Magneto-
resistive element (GMR), and tunnel Magneto-resistive element (TMR). It is a sensor that
utilizes the change in the resistance value caused by the Lorentz force [88].

5.2.3 Anisotropic Magneto-Resistive Element (AMR)

This type of sensor is based on the transverse measurement of the anisotropic Mag-
netoresistance effect in a ferromagnetic thin film. Compared to the classical longitudinal
measurement, this geometry makes principal diagram of AMR as shown in Figure 5.3.
The scattering degree of electro could vary greatly in the two cases, (a) when the direc-
tion of magnetization of the ferromagnetic film is parallel to the current and (b) when the
direction of magnetization is vertical to the current direction. Therefore, the resistance
value also changes.
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Figure 5.3: Anisotropic Magneto-Resistive Element [89]

5.2.4 Giant Magneto Resistive Element (GMR)

In the situation of a laminated film of ferromagnetic material, (pinned layer), nonmag-
netic metal and ferromagnetic material, (free layer), the electron scattering degree changes
as the direction of Magnetization of the pinned layer and the free layer are antiparallel
(a) or parallel (b). therefore, the resistance value changes like in Figure 5.4.

Figure 5.4: Giant Magneto Resistive Element [89]

5.2.5 Tunnel Magneto Resistive Element (TMR)

Dealing with a laminate of a ferromagnetic material, (pinned layer), insulator and
ferromagnetic material, (free layer), one of the effects is the varying proportion of electrons

74



Chapter5 Drone Detection Using Magnetic Field Sensors

passing through the insulator due to the tunnel effect and the resistance value varying
depending on if the magnetization of the pinned layer and the free layer are antiparallel
(a) or parallel (b) as in Figure 5.5.

Figure 5.5: Tunnel Magneto Resistive Element [89]

5.2.6 Magneto Inductive Sensors

They consist of a coil that surrounds a ferromagnetic core whose permeability changes
within the earth’s magnetic field. For a L/R relaxation oscillator, the sense coil is the
inductance element. An electronic oscillator’s frequency is determined by the strength
of the magnetic field being measured. They have been designed for the sole purpose of
detecting only metallic objects. The relationship can be established by connecting the
oscillator frequency output to the microprocessor’s capture/compare port to monitor field
values. These magnetometers have a very low, efficient power design, and are of low cost
as shown in Figure 5.6. They are available from Precision Navigation, Inc. and used in
compass applications [82].

Figure 5.6: magneto-inductive (MI) sensor circuit [82]
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5.2.7 Fluxgate or Coiled Sensors

Fluxgate magnetometers, which are the most common sensors for compass navigation
systems. Coils are the simplest magnetic sensors that can detect changes of magnetic
flux density. According to Figure 5.7, bringing the magnet near the coil increases the
magnetic flux density by ∆B in the coil.

Figure 5.7: Principal diagram of Fluxgate [90]

Then, an induced electromotive force which appears in the coil due to a related physical
principle and an induced current creates a magnetic flux which counteracts the magnetic
flux density increase is produced. By contrast, if the magnet moves away from the coil, the
flux density in the coil will decrease thus the electromotive force is induced and current is
produced in the coil to increase the magnetic flux density. This core’s magnetic induction
is subjected to change with the application of an outer magnetic field. Through the use
of a phase sensitive detector, the sense signal is demodulated, and low pass filtered to get
the value of the magnetic field. Its structure being straightforward, a coil does not become
damaged easily. Fluxgate signal processing is generally done by phase-sensitive detection
of the second harmonic component of the output voltage. The precise magnetometers,
made at the Danish Technical University, use short-circuited current output and feature a
Reset function [91]. Despite the higher noise, the Acquirer-type fluxgate has the following
important advantages: first, due to very low demagnetization, the sensor is insensitive to
perpendicular fields. Then, unlike ring-core sensors, the sensing direction is well defined
by the direction of the core. This device is the one that is used in gradiometers which are
known to need very high precision and stability in a specific direction.
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5.2.8 Microelectromechanical System (MEMS) Sensor

One of its features is a combination of magnetic field sensory devices with electronic
elements, which utilize the Lorentz force to detect the external magnetic fields through
the dislocation of the resonant structures which are measured with optical, capacitive,
and piezoresistive sensing techniques. Integrated with several devices such as gyroscopes,
accelerometers on the same chip for their Global Positioning System (GPS) have a look at
the devices that have products for example car safety airbags, visual devices, and inkjet
printers. And integrates the mechanical and electronic components on a single chip.
In order to reduce the device dimensions. MEMS magnetic field sensors based on the
operating principles and detection techniques of resonant structures are explained. Most
resonant magnetic field sensors utilize the Lorentz force principle, where the Lorentz
force pushes a resonant structure, which can be measured using optical, piezoresistive,
or capacitive sensing techniques. These sensors rely on structures that are excited at
their resonant frequencies by either electrostatic or Lorentz forces. The application of
external magnetic fields causes variations in the deflections of the resonant structure,
which can be detected through optical, capacitive, or piezoresistive sensing techniques.
For instance, a resonant structure based on a clamped-clamped beam has its first resonant
frequency associated to its first flexural vibration mode, as shown in Figure 5.8. MEMS
technology-based resonant magnetic field sensors have simple operating principles that
make it possible to create compact and lightweight structures with the integration of a few
elements (e.g., clamped free microbeams, aluminum loop, piezo resistors, and electrodes).
They can measure low magnetic fields around nanoteslas; although, the reduction of
this level (to magnetic fields on the order of pico teslas) could be achieved with future
optimized designs of the resonant structures and electronic circuits [86].

Figure 5.8: (a)clamped-clamped beam and (b) its associated first vibration mode [86]
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•Comparison of Magnetic Field Sensors:
Typically, the sensitivity range of this type of sensor is altered due to the change of
excitation current of the aluminum loop, which allows for the measurement of either
lower or higher field of the magnetic field. These magnetic sensors of relatively small
size are very close to magnetic field sources and have a very low power consumption of
only a few milliwatts. A summary of the main characteristics of these sensors are shown
in Figure 5.9. Moreover, the particularities of resolution, noise, power, and minimum
size of these sensors are outlined. Figure 5.10 reveals the approximate sensitivity range
of the most common magnetic field sensors, including the MEMS technology. As can be
inferred from these findings, MEMS sensors can be a substitute for conventional sensors in
many applications for measuring magnetic fields higher than 1 nT. The MEMS technology
implements low-cost sensors via batch fabrication techniques and their possible integration
with ICs (integrated circuits) on a common substrate. This is a feature of the MEMS
sensors that is attractive to future markets, hence, it is an appealing factor.

Figure 5.9: Characteristics of some magnetic field sensors [92]
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Figure 5.10: Approximate sensitivity range of different magnetic field sensors [86]

5.3 Magnetic Field Detection Methodology for Drone

Surveillance

Introducing this approach, we’ve integrated the Micro-bit as a key element. Renowned
for its educational utility, the Micro-bit offers diverse sensors, an LED display, and seam-
less connectivity. the drone detection methodology strategically leverages these features
to achieve our objectives:

5.3.1 The BBC micro-bit

The BBC micro-bit card is a popular magnetic field sensor that uses a built-in mag-
netometer. It is a small, low-cost microcontroller board that can be programmed using a
variety of programming languages, including Python and JavaScript. A Hall effect sensor
is the basis of the micro-bit card’s magnetometer, which senses variations in the magnetic
field perpendicular to the sensor. The micro-bit card has a resolution of up to 0.1 mi-
crotesla (µT) and a magnetic field measurement range of ± 4912 µT. The provided device
can detect the low-frequency magnetic field because it has a bandwidth of 600 Hz.

The micro-bit card also has a built-in accelerometer and compass, which can be used
in combination with the magnetometer for more accurate positioning and orientation
sensing. In addition to its small size and low cost, the micro-bit card has other features
that make it suitable for a wide range of applications, including a 5 × 5 LED matrix,
two programmable buttons that come with the functions of motion, gesture, magnetic
field, temperature and light detection, and Bluetooth connectivity. For a multitude of
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purposes ranging from robotics through IoT and even education, it can be employed. A
programmable device in 2016 the UK, introduced a programmable device that can be used
for teaching computer science in a supplementary way. The device can be programmed
through a desktop PC, laptop, or tablet using various operating system agnostic-web-
based programming environments, including a block editor like Scratch, Microsoft’s Touch
Develop, Micro Python, or JavaScript. Research has demonstrated that physical comput-
ing, which combines software and hardware to create interactive physical systems that
can sense and react to the real world [86], is highly effective. Here’s a visual representa-
tion of the BBC micro-bit card which is the central part of this device in Figure 5.11.
The micro-bit is not just a playful design, as it is an exposed printed circuit board that
displays all its components. Despite its playful appearance, it is incredibly capable. The
board is built around a modern 32-bit ARM Cortex- M processor with 16Kb RAM and
256Kb non-volatile flash memory. In addition, the device contains a USB interface and
edge connector with touch-sensitive, digital/analog pins that allow external sensors and
actuators to be connected [86].

Figure 5.11: The BBC micro-bit card components [93]

•Key of Micro-bit Card: The micro-bit is an exposed printed circuit board with all
components visible. This playful design should not be mistake for a lack of capability. The
board is based around a modern 32-bit ARM Cortex-M processor (16Kb RAM; 256Kb
non-volatile flash) and hosts an array 0f input/output capabilities including a 5*5 LED
matrix, two programmable buttons, the ability to sense motion, gestures, magnetic fields,
temperature, and light. the device also includes a USB interface and edge connector
with touch sensitive, digital/analog pins that allow external sensors and actuators to be
connected [85].
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Number Element Function
1 Radio Antenna and Bluetooth Communication with other

micro-bits by radio and other
devices by Bluetooth.

2 Processor and temperature sensor search, decoding and execution of
the instructions given and mea-
sures the heat of the environment.

3 Compass Determination magnetic North or
the force measurement of the
magnetic field.

4 Accelerometer Mesure gestures and forces wit 3
dimensions.

5 Pins Mesure gestures and forces with 3
dimensions

6 Micro USB outlet Supply and download programs.
7 Single LED Flashes when the USB plug and

download programs.
8 Reset Button Resurgence of programs
9 Battery socket Feeding
10 USB Interface chip Manage USB connexion, flashes

the new code, sending and re-
ceives the data in series from the
front of the computer.

Table 5.1: Key of Micro-bit Card components

5.3.2 MFD Dataset

For the MFD datasets, we developed a software in the micro-bit map that estimates
the Earth’s magnetic field at the sensor position based on information collected about
the field. We made use of the calibrate compass tool to bring the magnetic field lines
to magnetic north and thus created the magnetic force calculation graph with the help
of the serial tool. The obtained results serve as a reference for sensor detection and are
measured in µT as indicated in Figure 5.12. We plan to enhance our sensor’s performance
by including details on the magnetic field and its direction with a compass. In order to
establish the validity of our reasoning, we made use of a micro-bit card to carry out
the experiments. Initially, we conceived an application for our card that entailed coding
a compass that can detect all four cardinal directions and display them on the screen.
The outcome of our compass was really good, being reminiscent of cell phone models.
Using data obtained on the Earth’s magnetic field, we were able to generate a program
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on our micro-bit card that calculates the magnetic field at the location of the sensor. The
magnetic field lines on Earth are oriented towards the magnetic north, which we used as
a reference point for the sensor’s detection capabilities. To program the magnetic field
calculator, we utilized the magnetic force tool on the micro-bit card, which includes a
magnetometer. This program quickly calculates the magnetic force and displays it as
a graph on the computer screen. All values detected by the sensor are saved as either
an Excel file or a notebook. Although many low-cost electronic compasses are available
on the market, this technology stands out due to its competitive pricing. The cost of
manufacturing the card is directly related to the technology used, which we believe makes
the product a great value for the customers. A magnetic sensor choosing process includes
performance and argument consideration of the sensor, environmental conditions, and the
applicable limits. Based on the tests using the micro-bit card, we have determined that
adding a magnetic field detector to the sensor requires a compass and magnetometers.
Other similar detectors have exposed this limitation to the magnetic field detector MFD as
well. This constraint makes it more appropriate for use in confined spaces, such as indoors.
In situations where the MFD fails, other sensors like luminous or acoustic will be used
instead. By carefully considering the specific needs and constraints of each situation, we
can choose the appropriate sensors to achieve the desired results [94].

Figure 5.12: The BBC micro-bit card components.

5.4 Results and Discussion

The MFD method is about implementing a robot-like device called compass compatible
with all four sides and making it possible for it to show the existing direction on the screen.
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To do this, we connect the micro-bit card to a computer via USB cable and access the
website that allows us to program our compass using the compass element. Once we
have programmed the compass, we can test its functionality by sliding the program into
the map and verifying that it is working properly. Using information obtained on the
Earth’s magnetic field, we have developed a program on the micro-bit card that can
calculate the magnetic field of the sensor’s location. The Earth’s magnetic field lines are
oriented towards magnetic north, which is calibrated using the compass tool. We apply
the serial tool to depict the magnetic force calculations graphically, showing the change
of the magnetic field over time in our tests. Figure 5.13 shows two curves: an empty
curve representing the Earth’s magnetic field used as a reference, and another curve that
traces the external magnetic field variations observed during our tests.

Figure 5.13: Calculated values of detected magnetic field

For each detection event, a separate Excel file is created to store the detected values.
The Excel file can include columns for the timestamp, location, magnetic field strength,
and any other relevant parameters as shown in Figure 5.14, the values calculated of
quadcopter and hexacopter drones. This allows for easy organization and retrieval of
the detected drone data. Further analysis can be conducted on the stored values, such
as generating statistical summaries, visualizing trends, or comparing multiple detection
events. Recording the values discovered in Excel files, it aids in the management and
analysis of data, which in turn allows the researchers and the security personnel to get
the knowledge of drone activities, we have plotted these detected values as presented in
Figure 5.15. The data acquired from the simulation showed that a magnetometer and
compass can be used to easily sense and measure the magnetic field and its direction.

To illustrate this idea, a 3Dmodel was created using the Tinker cad online simula-
tor, which accurately depicts the position of each detection component. Figure 5.16
demonstrates that the compass (grey object) and magnetometer (black object) must be
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positioned in opposition to one another. Furthermore, each card must have its own power
system to facilitate magnetic field detection and direction indication.

Figure 5.14: The detected values which are saved in Excel file for
quadcopter and hexacopter drones

Figure 5.15: Detected Magnetic Field Disturbances of quadcopter
and hexacopter drones
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Figure 5.16: 3D modeling of magnetic field detection and direction

5.5 Conclusion

In brief, this chapter has provided a novel methodology for enhancing drone monitor-
ing and control through the integration of magnetic field sensors with the BBC Micro-bit
Card. We delved into the functionality of magnetic field sensors, the integration process,
and the data collection techniques utilized. The results obtained from implementing this
approach were thoroughly examined, shedding light on accuracy, efficiency, and overall
system performance. This presented solution offers several notable advantages, includ-
ing enhanced situational awareness and operational flexibility. The ability to accurately
track drones using magnetic field sensors holds significant promise for various applications,
from security and surveillance to environmental monitoring and infrastructure manage-
ment. Through a comprehensive discussion, we explored the implications of the results
and the potential challenges linked to the magnetic field sensor-based monitoring system.
As we navigate the complexities of modern technological advancements, this chapter un-
derscores the crucial intersection of magnetic field sensors and drone technology. Due to its
exceptional adaptability, the BBC Micro-bit Card surpasses traditional detection meth-
ods, offering unparalleled utility in spacecraft tracking and anomaly detection, paving the
way for continued advancements in automated monitoring and control mechanisms.
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Chapter 6

Bayesian Inference Approach for Drone
Detection

6.1 Introduction

As UAVs continue to proliferate and serve diverse purposes across various sectors,
researchers are intensively investigating several methods for detecting and identifying
drones in order to enhance security measures against drone threats. Despite the avail-
ability of numerous drone detection techniques, each faces limitations due to the specific
environmental conditions. Hence, it’s crucial to implement a robust system that inte-
grates different sensors to overcome these limitations and improve detection capabilities.
Indeed, a critical question arises: How can these sensors be effectively correlated to opti-
mize detection capabilities?

Current research is focused on utilizing a Bayesian version of the network to enable
the classifier to offer confidence levels in its decisions and to identify novel drones, which
are instances where a detected craft is not included in the training data [95,96]. Bayesian
inference provides a robust approach to system detection and recognition. The applica-
tion of Bayesian method is motivated by the fact that conflict decision problems in object
detection, including drone monitoring, are often ill-conditioned and ill-posed when deal-
ing with noisy incomplete data owing to various sources of modeling uncertainties [97].
Inference consists of determining the probabilistic query according to the model and a set
of evidence. This process is fundamental for computing the posterior probability distri-
bution of a set of query nodes, given values for some evidence nodes which is called belief
updating or probabilistic inference [98,99].

Bayesian probability offers a method for quantifying plausible knowledge about phe-
nomena, considering limitations in assuming or estimation relevant information, rather
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than attributing randomness only to nature. Probability axioms serve as a multi-valued
logic for quantitative plausible reasoning under uncertainty, forming a strong foundation
for Bayesian inference. This approach refers to both parametric and non-parametric un-
certainty, with a model’s probability reflecting its plausibility compared to others. In
Bayesian inference, updates are made through Bayes’ theorem as new data emerges,
making it preferable in object detection and identification over the Frequentist approach
[100,101].

This chapter presents a novel drone detection technique leveraging multiple detectors,
including visual, acoustic, and magnetic field sensors by employing Bayesian inference
to address their inherent limitations. The Bayesian Inference technique is employed to
optimize decision-making particularly in scenarios where conflicts arise among the deci-
sions made by the multi-sensors. To facilitate this optimization, indicators such as the
Ephemeris indicator (EI) and the Acoustic Ambiance indicator (AI) are utilized to gen-
erate settings that determine the degree of conflict, aiding the detection process. We pre-
sented our results, showcasing the effectiveness of Bayesian inference technique. Through
the integration of multiple detectors, this approach demonstrates improved decision-
making capabilities, ensuring accurate and reliable identification of drone presence.

6.2 The Brain Bayesian

The scientific landscape of understanding the human mind has undergone a paradigm
shift with the recognition that the brain operates on Bayesian principles. This transforma-
tive insight has driven our development of a decision-making and action selection model
grounded in Bayesian inference, incorporating beliefs about various alternative policies.
This involves the utilization, integration, and firing of diverse neuron types, encompassing
sensory, motor, and relay neurons [102].

These neurons collaborate in reflex actions, characterized by automatic and swift re-
sponses to stimuli. These responses involve an afferent nerve and result in a stereotyped,
immediate reaction of muscle or gland. The anatomical pathway of a reflex is termed the
reflex arc, representing an inherent central nervous system activity that operates inde-
pendently of consciousness. The primary purpose of the reflex arc is to mitigate potential
harm to the body in response to adverse conditions. For instance, if there is accidental
contact with something hot, a basic reflex arc triggers an immediate withdrawal of the
hand. In cases where a stimulus is consistently repeated, two notable changes manifest
in the reflex response: sensitization and habituation. Sensitization involves an amplifi-
cation of the response, typically observed in the initial 10 to 20 responses. Through a
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comprehension of these fundamental principles of neural functioning, we can advance the
development of more efficient models and techniques for decision-making, action selection,
and detection [102,103].

Habituation, contrary to sensitization, involves a gradual decrease in response until the
response is eventually extinguished. This decline occurs when the stimulus is consistently
repeated. However, when the stimulus repetition is irregular, habituation either does
not occur or is minimal. Reflexes are comprised of an afferent (sensory) nerve, one or
more inter-neurons within the central nervous system, and an efferent (motor) nerve.
Reflex actions can be modified through impulses from higher levels of the central nervous
system, indicating a learned response. This adaptation involves the engagement of the
sensory and motor cortex, responsible for sensitization and reflex actions. The process
entails the transmission of a nerve impulse to the motor neuron, disrupting the usual
reflex action, for instance, preventing the automatic dropping of an object. The sensory
cortex is a component of the brain responsible for processing and interpreting sensory
stimuli. It encompasses the analysis of information received from various sensory inputs,
such as visual and auditory sensors, which are crucial elements in our application [104].
The cortex comprises multiple areas dedicated to processing information from each of our
sensors, as illustrated in Figure 6.1.

Figure 6.1: Combining information (across the senses) [105]

The motor cortex stands as a pivotal brain region engaged in the planning, control,
and execution of voluntary movements. It holds a crucial role in motor learning and
memory, facilitating the acquisition of new skills. Certain cells within the motor cortex
exert direct control over movement by transmitting outputs to the brain stem and spinal
cord, including direct projections to motor neurons [106].
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6.3 Bayesian Inference Approach

Bayesian networks represent a category of probabilistic graphical models employing
Bayesian inference for probability computations. Their objective is to model conditional
dependence and causation by delineating conditional dependence through edges in di-
rected graphs. These relationships enable efficient inference on random variables within
the graph through the utilization of factors [106]. The primary goal of Bayesian infer-
ence is to determine the posterior distribution of latent variables given the observed data,
denoted as P (x/e). In the context of Bayesian networks, inference takes two forms: eval-
uating the joint probability of a specific assignment of values for each variable (subset)
in the network and finding P (x/e) or determining the likelihood of some configuration
of a subset of the variables (x) under the condition that the remaining variables (our
evidence) are fixed. The Bayesian approach contributes to understanding the brain on
various levels, offering normative predictions on how an ideal sensory system should in-
tegrate prior knowledge and observation, providing a mechanistic interpretation of the
dynamic functioning of the brain circuit, and suggesting optimal ways for interpreting
experimental data, as illustrated in Figure 6.2.

Figure 6.2: Bayesian inference on the brain [107]

The Bayesian brain framework integrates insights from both experimental and the-
oretical neuroscientists, focusing on the examination of brain mechanisms involved in
perception, decision-making, and motor control according to the concepts of Bayesian es-
timation. Contributors delve into the exploration of dynamic processes underlying appro-
priate behaviors, encompassing aspects such as the accuracy of perceptual decisions and
neural models of belief propagation [108]. Bayesian inference encompasses both approxi-
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mate and exact methods. Exact inference becomes manageable by assuming a plausible
form of probabilistic representation, enabling predictions of responses to alterations in
the sensorium. The concept of active inference posits that behavior can be comprehended
through inference, highlighting the interconnected nature of action and perception within
the same inferential process. This perspective becomes particularly crucial for optimiz-
ing expected precision, essential for optimal inference about hidden states (perception)
and control states (action selection). These beliefs must be associated with a confidence
or precision that is itself optimized. Our approach incorporates three beliefs through
Bayesian inference [60,108]:

• Perception Ŝt : is a belief system that updates beliefs about the state of the world
by incorporating observations along with beliefs about the preceding state and action.
This belief encompasses optic and acoustic sensors defined as hidden states.

•Action Selection π̂: employs a SoftMax function to ascertain the expected value of
competing choices given the current state. This SoftMax choice rule, frequently employed
in normative models like Quantal Response Equilibrium (QRE), is crucial in decision-
making processes. It is noteworthy that utilitarian theories frequently disregard the sym-
metry between the expected value over states, indicating the value of a choice, and the
expected value over choices, signifying the value of a state. This step is defined as control
states.

•Precision γ̂: is the third belief in our approach, that considers both the content (ex-
pectations) and confidence (precision) of the beliefs. Optimizing both the expectations
about behavior and the precision of these beliefs is crucial for offering a comprehensive ac-
count of bounded rationality, incorporating approximate Bayesian inference. The sensory
information undergoes several levels of processing, as shown in Figure 6.3.

91



Chapter6 Bayesian Inference Approach for Drone Detection

Figure 6.3: The levels of processing model from sensory action to making-decision [105]

The environment is defined by a distribution R over observations, true states, and
actions, while the agent is characterized by two distributions: a generative model P
connecting observations to hidden states and posterior beliefs Q parametrized by its ex-
pectations. Notably, the agent organizes hidden states based on its observations, with
these hidden states encompassing control states that prescribe action. The agent and the
environment collaborate in cycles, where, in each cycle, the agent determines the most
probable hidden states by optimizing its expectations concerning the free energy of obser-
vations. Following the optimization of its posterior beliefs, the agent evaluates an action
from the posterior marginal over control states. The environment subsequently executes
this action, generating a new observation, and initiating a new cycle. The optimization
process primarily revolves around perception (inference about hidden states) and action
(a choice model where action is a function of inferred states).

In summary, the active inference framework entails an agent interacting with its en-
vironment, described by a distribution over observations, true states, and actions. The
agent is equipped with a generative model that establishes connections between obser-
vations and hidden states, along with posterior beliefs regarding those states, including
beliefs about control states dictating action. The agent optimizes its expectations with
respect to the free energy of observations and selects actions from the ensuing posterior
beliefs about control states [108, 109]. The generative model features policies being en-
coded in terms of prior beliefs regarding control states, which decide, next, the chosen
action. These beliefs take the form of a Boltzmann distribution, and the precision of
beliefs about policies is determined by a hidden variable γ ∈ R+ [110,111].
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The intelligent aspect of our approach lies in its ability to accurate and optimized
decisions when faced with conflicts arising from multiple sensor inputs. To illustrate this
point, let’s consider a scenario where the optic detector’s decision is compromised by fog,
and the acoustic detector’s decision is muddled by the noise of a passing motorcycle. In
the absence of Bayesian Inference, there would be two decisions in favor of "Non-Drone"
and one for "Drone". However, our approach leverages Bayesian Inference, supported by
indicators, to resolve such conflicts. Hence, in the absence of Bayesian Inference, there
would be two conflicting decisions for "Non-Drone" and only one decision for "Drone"
[60]. Bayesian Inference relies on indicators to effectively resolve conflicts and make
optimal decisions. We illustrate this by presenting another example that demonstrates
the application of our dataset, employing the methodology outlined in Figure 6.4.

Notably, influential Bayesian models of perception propose that our understanding of
the surrounding world is formed through the integration of bottom-up sensory signals with
top-down expectations regarding the world’s content. In our specific case, the conclusive
determination of "Drone or Non-Drone" is rooted in perception. The indicators providing
data about acoustic and luminous ambiance play a crucial role in informing this decision,
drawing from our accumulated experience of the surrounding environment.

Figure 6.4: The application of datasets using the Bayesian inference approach
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6.4 The Mathematical Model of BI

The Bayesian Network (BN) is grounded in the mathematical model of Bayes’ theorem,
as expressed in equations 6.1, 6.2, 6.3. Bayes’ theorem establishes a relationship between
conditional and marginal probabilities, providing the conditional probability distribution
of a random variable A. This is contingent upon our knowledge of information regarding
another variable B, expressed through the conditional probability distribution of B given
A, as well as the marginal probability distribution of A alone. Equation 6.1 articulates
that the probability of A given B is equal to the probability of B given A multiplied by
the probability of A, divided by the probability of B [110].

P (A/B) =
P (B/A)P (A)

P (B)
(6.1)

P (A/B,C) =
P (B,C/A)P (A/C)

P (B/C)
(6.2)

Where,

P (B/C) =

∫
P (B/A,C)P (A/C)dA (6.3)

The discussion before this one also illustrates the significance of either uncertainty
or precision in the interaction of processes regarded as low-level ones such as perception
and reward. In this context, these beliefs are parameterized using a SoftMax function
σ(.) [108].

Perception −→ Ŝt = γ̂(ln(AT ).ot + ln(B(at−1)). ˆSt−1 + γ̂.QT .π̂ (6.4)

Actionselection −→ π̂ = σ(γ̂.Q.Ŝt) (6.5)

Precision −→ γ̂ =
α

β − (π̂.T.Q.Ŝt)
(6.6)

Perception Ŝt refers to our audio and visual detectors. Precision γ̂ is used to define
the indicators we employ, while Action selection π̂ is related to our Bayesian Inference
approach for decision-making. The decision itself is represented by a, while Ot is used
to aid in making the final decision as demonstrated in the Eq. 6.4, 6.5, 6.6. The factor
Ŝt will low the weight. the weight of the optical sensor decision. the factor π̂ will lessen
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the weight of the acoustic sensor decision. The factor Ot will rise the effectiveness of
the final decision of the Bayesian Inference approach. Ŝt, ˆSt−1 are the factors to weaken.
The final decision will be "Drone" because our approach involved developing debilitation
detectors [60]. These functions are described in Figure 6.5 of automatic CNS model
below:

Figure 6.5: Scheme of automatic CNS model where Ŝt is Perception, π̂ is Action selection, γ̂
is Precision

6.5 Tools developed for applying Bayesian inference

Researchers have developed Sensor Fusion or hybrid systems that utilize a range of
sensors to overcome some of these limitations. Such systems mostly use deep learning
techniques to analyze information obtained from these sensors. In the current study, the
objective is to use multiple sensors to attain improved identity in the identification of
drones together with reliability. Late fusion is the key concept of the Bayesian inference
approach. The last type of fusion, known also as ”late fusion” or ”decision-level fusion”
is based on the integration of decisions or confidence scores of single sensors concerning
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the presence of a drone at a later stage of signal processing Figure 6.6. The individual
decision or confidence scores are then summed in order to get a final decision. Aggregation
is important for the late fusion since the detection of events feeds on data from diverse
sensors to improve on the overall dependability of the detection procedure. Some of the
voting systems applied in late fusion of drone detection are unanimity, majority, and
plausibility. Other methods are weighted votes, Bayesian formulas, and Best machine
learning algorithms.

Figure 6.6: Late sensor fusion in drone detection

The Bayesian inference model developed for unmanned aerial systems (UAS) detection,
employing a combination of visual and auditory cues, falls within the broader category of
multisensory integration problems. This methodology involves the consideration of both
sight and sound signals from sensors, merging them to reach a decision. While a simplistic
approach might involve averaging these signals, our method employs a more sophisticated
Bayesian approach to effectively combine information from both sources.

The experimental dataset used in our study encompasses images captured by a surveil-
lance camera and audio recordings. Deep learning algorithms were applied to extract var-
ious features from the images, including pixel colors, contours, and shapes. For efficient
data management and user interaction, we implemented a Python program utilizing the
Pygame module for audio handling and the tkinter module to create a window interface.
This interface allows users to listen or play the recordings, providing control options such
as ’stop’ and ’play’. This integrated approach enhances the accuracy and robustness of
UAS detection by leveraging information from multiple sensory modalities.

In this case, the data is represented by numerical binary values, with each data point
being treated independently. Decision-making is based on the outcome of individual data
processing, categorizing each point as either belonging to a drone or not. The key factors
considered in this process are ambient luminous and auditory indicators. The approach
involves probabilistic management and Bayesian inference to derive a conclusive decision.
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To achieve a community decision, the outcomes from each detector are manipulated and
integrated. Recent research has emphasized the use of multisensors and Bayesian func-
tions, such as belief, commulatality, plausibility, and implacability, emphasizing similarity.
This is aimed at addressing the limitations of individual drone detectors and improving
overall performance. To apply our approach, we examine different sources of information
from the sensors.

In this specific example, the detection system considers both luminous and acoustic
signals to discern between light and obscurity, effectively determining whether it is day or
night. The Ephemeris indicator EI reflects the status of both sight and sound signals, with
0 indicating optimal conditions (optimal=0 and acoustic=0). In such instances, where
there is good visibility during the day, the system relies on optimal detection. Conversely,
during poor visibility at night, the sight signal registers as 0, and the sound signal as
1 (optimal=0 and acoustic=1), as indicated by the acoustic ambiance indicator AI. In
this scenario, the system places reliance on acoustic detection to identify the presence of
Unmanned Aerial Systems (UAS).

Based on the sensory information, the type of detection employed can be categorized
into either optimal or acoustic, resulting in two distinct states: the control state and
the stable state. Decision-making and action selection are approached as a pure infer-
ence problem, aiming to optimize beliefs regarding behavior and its consequences. For
instance, optical detectors may exhibit inefficiency in detecting drones at night or in fog,
while acoustic detectors might be susceptible to a noisy environment. To overcome these
limitations, our proposed solution involves the utilization of three different drone detec-
tors, each contributing a decision. In cases where the decisions from these detectors are
unanimous, the decision-making process is straightforward, and a conclusive determina-
tion can be reached.

When conflicts arise among the decisions provided by different drone detectors, it be-
comes essential to assess the degree of conflict. Various factors may contribute to conflicts,
such as inaccurately evaluated masses, diverse objects identified by different sources, and
the possibility of a non-exhaustive frame of discernment (open world hypothesis). To
tackle these challenges, we incorporate two indicators: the acoustic ambiance indicator
and the ephemeris indicator. These indicators serve as tools to gauge the level of conflict
and provide insights into the potential reasons behind conflicting decisions. The acous-
tic ambiance indicator focuses on auditory information, while the ephemeris indicator
considers both sight and sound signals, offering a comprehensive assessment [60].
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6.5.1 Ephemeris Indicator EI

The TEMT6000 which is a very cheap and easy ambient light sensor. It translates the
amount of light it gets into a change in its resistance. The sensor uses an illuminance
measure which gives a concrete way to classify brightness. The current intensity is higher
for brighter light and lower for darker light. The breakout board for the TEMT6000
sensor is simple yet effective consisting of only three labeled pins on the top of board [18].
Additional information about the function of each pin can be found in shot Figure 6.7,
Figure 6.8.

Figure 6.7: Spark-Fun ambient light sensor
breakout TEMT6000 [112]

Figure 6.8: Ambient light sensor TEMT6000
and pins function

6.5.2 Acoustic Ambiance Indicator AI

The PCE-322A sound level meter is a professional acoustic device that has been created
especially for industry, safety, and environmental control as shown in Figure 6.9. It can
store data of up to a maximum of 262,000 values, thus allowing the user to make long-term
recordings of the sound level meter with the help of windows sound meter software that
offers visualization of tables and graphics data. The device is unique among all sound level
meters because it has a mini tripod and an integrated analog output. The PCE-322A may
be used for quick measurements or the recording of extensive data for a long time, and
the values sent through the analog interface or output can be assessed in many ways. The
sound level meter has automatic and manual measurement ranges [113], with a resolution
0.1dB and an accuracy of ± 1.4dB. The representation that it performs gets altered every
0.5s, and its frequency range is 31.5 Hz to 8kHz. The PCE-322A’s dimensions are 2526633
mm, and it is compliant with IEC 651 TIPO ll (clause ll) regulation and IEC 61672-2
(clame ll).
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Figure 6.9: PCE-322A professional acoustic indicator [114]

6.6 Results and Discussion of Bayesian Inference

Our methodology revolves around leveraging cutting-edge technology to enhance the
decision-making capacity of automated machines. The Bayesian model of multisensory
integration is a cornerstone, positing that perceptual systems amalgamate diverse signals
based on their reliability or uncertainty. Notably, visual estimates of Unmanned Aerial
Systems (UAS) exhibit significantly greater precision than auditory counterparts, leading
to decisions grounded in beliefs about policies. This approach ensures a distinctive and
Bayes-optimal sensitivity.

Our perceptual systems rely on a spectrum of signals from visual, auditory, and mag-
netic field detectors, their reliability or uncertainty governed by the Bayesian model of
multisensory integration. Indicators, serving as agents monitoring noise or variation across
multiple sensory modalities, are anticipated to utilize this information for decision-making,
where lower noise levels signify higher accuracy, leading to a greater emphasis on more
precise channels. Our objective is to investigate the effective weighting of multiple sources
of incoming data within a system. To emulate the amalgamation of information across
scenes in our detectors, we advocate the development of three distinct detectors, each
with its own designated focus.

In the Figure 6.10, Figure 6.11, Figure 6.12, we have three detectors: OD for optical,
AD for acoustic, and MFD for magnetic field. A green arrow indicates the presence of a
drone, while a red arrow indicates its absence. In the first case, the three detectors which
include the optical detector (OD), the acoustic detector (AD), and the magnetic field
detector (MFD) all three were able to detect the drone with no conflict, and their decisions
agreed. Hence, the last resolution was that a drone was present. In the second case, the
optical detector (OD) failed to detect the presence of a drone due to the insufficiency of the
luminous ambiance. Nevertheless, a drone was eventually confirmed. The detection was
most likely the result of the two detectors, the acoustic detector (AD) and the magnetic
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field detector (MFD) which compensated for the weak signal from the optical detector and
provided sufficient evidence for the decision. Therefore, the Bayesian Inference approach
was able to integrate and weigh the different sources of data effectively to make a more
accurate decision. The third case shows that both OD and AD detectors cannot sense
the drone because of the inappropriate luminous and acoustic conditions. However, the
final decision indicates the presence of a drone.

Figure 6.10: The final decision using Bayesian Inference in the case of agreed judgment

Figure 6.11: The final decision using Bayesian Inference in the case of luminous conflict
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Figure 6.12: The final decision using Bayesian Inference in the case of luminous and acoustic
conflict

We have prepared a summary table that effectively presents the findings from various
detectors for the detection of some of the cases. The summary Table 6.1 allows us
to clearly compare the performance of our approach with the state-of-the-art methods.
By combining the optic, acoustic, and magnetic field detection methods, our approach
offers a comprehensive detection capability that surpasses the limitations of individual
methods. The detection system harnesses the wholesale of the individual methods in
order to form a more complete and reliable system. This allows for cross-validation and
increased accuracy in detecting and identifying objects or events.

By integrating complementary information from various sensing modalities, our ap-
proach effectively reduces false positives and false negatives, thereby bolstering overall
detection reliability and enhancing the system’s resilience to noise and interference. The
synergy of these methods not only improves the system’s performance and reliability but
also enhances its adaptability, presenting a superior solution compared to individual de-
tection methods. This comprehensive approach finds application across diverse fields,
including surveillance, environmental monitoring, industrial automation, robotics, and
more. The versatility of our methodology allows for broad applicability, opening the door
to potential advancements in multiple areas simultaneously.
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Table 6.1: Comprehensive Assessment of Detection Methods: Final Verdict and Performance
Comparison with State-of-the-Art Approaches Across Different Cases

Detectors
Cases

Several
drones

Drone
with Long
range

Drone in
the Night

Drone in
a Noisy
environ-
ment

Electric
motor
and no
drone

Optic OD Doesn’t de-
tect

Doesn’t de-
tect

Doesn’t de-
tect

Detect Doesn’t de-
tect

Acoustic AD Detect Doesn’t de-
tect

Detect Doesn’t de-
tect

Doesn’t de-
tect

Magnetic field
MFD

Detect Doesn’t de-
tect

Detect Detect Detect

BI Approach Detect Doesn’t de-
tect

Detect Detect Doesn’t de-
tect

As referenced in [111, 115], it became clear no modality can be perfect for drone
detection and classification. To address this limitation, our approach combines multiple
modalities, including optic sensory detection [116,117], acoustic detection [118,119], and
magnetic fields detection [120]. Through the synthesis of different sensing methods, our
strategy can perform better and withstand various situations and challenges than when
only one modality is used. For suggested bimodal [121] and multi modal systems [20],
a comparative evaluation of different contributions poses challenges due to variations in
drone types, detection ranges, sensors, features, classification/correlation methods, and
performance metrics used by different authors. In the case of multi-modal detection, every
detector compensates for the deficiencies of the others, but the problem is how to deal
with the possible inconsistent choices. In our approach, the use of a Bayesian Inference
(BI) serves as a robust solution for effectively integrating different sensors, addressing
their limitations, and mitigating conflicting decisions.

6.7 Conclusion

In brief, the new perspective addresses the challenge of drone detection and classifica-
tion through the integration of multiple detectors within a Bayesian inference framework.
We have engineered optic, acoustic, and magnetic field detectors, each with inherent
limitations, and harnessed Bayesian inference to integrate their outputs. Our model is
designed to be robust, selective, and reliable, and has been evaluated using gathered data.
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The presented findings demonstrate high precision in identifying observed flying objects.
This proposed method is a synthesis of physics and neural networks and incorporates

indicators to aid in optimal or acoustic detection. This insight will inform future enhance-
ments to our Bayesian inference model, promising superior performance in drone detection
systems. As a final point, the integration of Bayesian inference methodology with multi-
sensory detectors presents a robust and innovative approach to automated drone moni-
toring in structured environments. As the Technological scenery continues to evolve, the
insights acquired from this exploration contribute not only to the field of automated drone
monitoring but also underscore the broader applicability of Bayesian inference method-
ology in enhancing recognition systems across various domains. Through the application
of Bayesian inference, we reveal a powerful tool for robust decision-making and pattern
recognition, thereby laying the groundwork for more sophisticated and effective detection
solutions in the future.
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To ensure the safety of people, assets, and critical infrastructure from potential threats
posed by the unauthorized use of civilian drones, a robust and reliable drone detection
method is crucially needed. However, this study has provided valuable insights into multi-
sensors approach for UAV detection based on a Bayesian inference framework. Although
there are several detectors currently used for drone detection, such as optic, acoustic, and
magnetic field detectors, it’s important to acknowledge that each detector comes with its
own set of limitations. This novel methodology involves these three detectors, commonly
applied in classification and pattern recognition. These detectors are integrated and
correlated through a Bayesian inference model, enabling each sensor to make an informed
decision.

Initially, we began by highlighting the pivotal role of Unmanned Aerial Vehicles
(UAVs), including their classification based on factors such as mass, operational alti-
tude, propulsion/wings, and autonomy, exploring their wide-ranging applications across
civilian and military sectors, followed by a discussion of the safety issues, and challenges
related to this technology. Afterward, we conducted an examination of diverse detector
types, revealing both their advantages and limitations. By delving into the state of art
ML based drone detection, we have gained valuable insights and its impact into further
explorations and studies on drone detection.

Moving forward, we constructed an optic detector utilizing conventional neural net-
works (CNN) and deep learning (DL) techniques to optimize its performance, but it en-
countered limitations due to luminous ambiance. To address this issue, we incorporated
an ephemeris indicator to accurately detect these constraints. Then, we also engineered
an acoustic detector using support vector machines (SVMs) and machine learning (ML)
to enhance its performance, yet it faced constraints related to acoustic ambiance. By
incorporating acoustic ambiance indicator, we can effectively check and account for these
environmental factors. For the magnetic field detector (MFD), we have not found any
previous study that addresses the drone detection task using magnetic field detector. We
were the first to use the magnetic field detector with the assistance of the BBC card’ for
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drone detection whereas its functionality is based on compass and magnetometer, com-
monly integrated within BBC card, being able to detect drones by adjusting the floating
fields.

For the purpose of overcoming the inherent limitations of each detector while raising
their quality, we proposed a Bayesian inference concept. It adopts decision-making of
drone or non-drone and action selection as variational Bayesian inference to make a more
confident and accurate final decision. This model represents a fusion of physics and neural
networks, with the integration of indicators that we are pioneering in their use of advanced
detection technology, to adjust the model process by tuning necessary parameters during
execution and boost both optic and acoustic detection.

The drone detection process was fully automated, and the conflict decision was op-
timized, as the model is designed to be robust, selective, and reliable. It was evaluated
using collected data. Our findings demonstrate that the novel approach enables us to
determine the observed flying object with high precision. Additionally, they indicate
that automatic drone detection with Bayesian inference showcased optimal performance
for drone identification, excelling in accuracy, specificity, and sensitivity in preventing
unwanted drone interventions. This perspective will drive enhancements to Bayesian in-
ference model, paving the way for a more robust performance in future drone detection
systems particularly in the realm of security and safety.

• FUTURE PERSPECTIVES

We provide insights on future drone detection systems, deeming that such perspec-
tives will prove invaluable for novice researchers and practitioners to build more efficient
solutions addressing privacy and security concerns:

First, there is still opportunity for research into developing a more accurate detecting
method. While the general pattern is to rely on sensor fusion, sensor selection and system
configuration remain an open research area. For Example: Fusion of visual and thermal
data, for instance, can improve accuracy by capturing both visual appearance and heat
signatures.

Moreover, many recently developed methods depend on deep learning and data col-
lection to enhance detection accuracy. So, it is relevant to the advancements in computa-
tional techniques to handle increasingly complex models and datasets that will not only
reinforce the existing methods but also surmounted their limitations successfully.

Furthermore, another interesting avenue for future research involves the application of
Bayesian inference in other categories, not limited to detection but also in interdisciplinary
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fields such as healthcare, finance, and climate science. This approach is potentially more
effective and reliable to address real-world challenges in making reliable decisions and
solutions. Lastly, Advanced deep-learning algorithms have the aptitude to address certain
challenges in drone detection systems by enhancing accuracy and robustness. Therefore,
it is beneficial to explore other AI algorithms such as decision trees.
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