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َّصَّالملخ َّ
 

أ ُقد ُ ت ُ الد ُمُ الت ُطروحةُ الذ ُحكُ كتوراهُهذهُدراسةُشاملةُحولُ الرُ الكيُفيُُمُ مُاستخداُُتمُ ُُة.ُحيثبتلاعُ مُ وبوتاتُ

مُ ت ُ الشُ تقد ُ قنياتُ الت ُوخوارزمي ُُُ،ةبكاتُالعصبي ُمةُمثلُ ُمحكُ ت ُاتُُبابيُلتطويرُاستراتيجي ُنطقُالضُ والمُ ُُ،حسيناتُ

مُأداءهاُمنُيقيتُُكماُتمُ ُُ ا،الموجودةُحالي ُمُُحكُ الت ُقارنهاُبطرقُُوت ُمُُحكُ ت ُقنياتُُت ُُُةطروحةُعد ُهذهُال ُُُحقترُ ة.ُت ُي ُكذ

جريبيُباستعمالُنماذجُُقُالت ُحق ُحاكاةُوالت ُةُورفضُالاضطراباتُمنُخلالُالمُ عُالمساراتُالمرجعيُ ةُتتب ُحيثُدق ُ

بوبوتاتُالرُ المختلفةُمنُ تلاع   ُ.ةم 

ةُاعتماداًُعلىُُبكةُالعصبي ُبنموذجُالشُ ُؤينبُ تُمُحكُ ت ُةُلُالمساهمةُالولىُلهذاُالبحثُفيُتطويرُخوارزمي ُتمث ُت ُ

بقاتُُدةُالطُ ةُمتعد ُ عصبي ُحةُعلىُشبكةُُقترُ المُ مُُحكُ الت ُُُةخوارزمي ُ.ُتعتمدAOAُُحسينُُأرخميدسُللت ُُُةخوارزمي ُ

قُيمُمُ لتوق ُ اُلن  ُخرُ ع اُلمستقبلي ُجات بُدق ُظام ى.ُثل ُالمُ مُُحكُ الت ُتُُامل ُلحسابُمعحسينُُللت ُأرخميدسُُُُةخوارزمي ُةُوتستخدمُُة

عُالمسارُورفضُالاضطراباتُمنُخلالُالمحاكاةُعلىُحةُفيُتتب ُقترُ المُ مُُحكُ الت ُُُةخوارزمي ُدراسةُأداءُُُُكماُتمُ 

الحري ُُُبتلاعُ مُ روبوتُُ ُُُُمت ُي ُة.ُحيثُُذوُدرجتينُمنُ مُحكُ الت ُةُُخوارزمي ُمعُُحةُُقترُ المُ مُُحكُ الت ُةُُخوارزمي ُمقارنة

PIDالد ُمُُحكُ الت ُُُةخوارزمي ُ،ُو المُ فيُعزمُ الشُ ُُؤينب ُت ُالمُُحكُ الت ُُُةخوارزمي ُحسوب،ُوورانُ العصبي ُبنموذجُ ةُبكةُ

اُلت ُحسينُُلت ُاةُُخوارزمي ُاعتماداًُعلىُُ اُلت ُحكُ الت ُُةُخوارزمي ُ،ُوTLBOعلمُُالقائمةُعلى اُلشُ ُُنب ؤيم اُلعصبي ُبنموذج ةُبكة

ُُ على ُُخوارزمي ُاعتماداًُ الجُ سُ ة تمُ PSOُُحسينللت ُسيماتُُربُ ذلك،ُ إلىُ بالإضافةُ ُ.ُُُُ ُُخوارزمي ُبرمجة مُحكُ الت ُة

ذوُثلاثُدرجاتSCARAُُُُُبتلاعُ المُ وبوتُُرُ الفيُُمُُحكُ الت ُوذلكُمنُأجلDSPُُُُجُُعالُ باستعمالُالمُ حةُُقترُ المُ 

ُةخوارزمي ُاعتماداًُعلىُُةُُبكةُالعصبي ُبنموذجُالشُ ُُنب ؤيمُالت ُحكُ الت ُةُُخوارزمي ُة،ُمعُإجراءُمقارنةُمعُُمنُالحري ُ

TLBOُُُةخوارزمي ُاعتماداًُعلىُةُبكةُالعصبي ُبنموذجُالشُ ُنب ؤيمُالت ُحكُ الت ُوخوارزميةPSO.ُ 

اُلث ُت ُ اُلمساهمة ثُباتُُساعد تُعزيز اُلت ُحكُ الت ُةُُخوارزمي ُانيةُفي اُلشُ ُُنب ؤيم اُلعصبي ُبنموذج الاضطراباتُُُضد ُةُُبكة

والد ُ الخارجي ُ المُ يناميكي ُةُ غيرُ ونمذجُ اتُ إدراجُُُُمصادرةُ خلالُ منُ اليقينُ رفضُُالفع ُمُُحكُ الت ُعدمُ فيُ الُ

حدةُ،ُبينماُتستخدمُوُ محكُ الت ُةُلضمانُثباتُهائي ُكلفةُالن  ُشرطُالت ُُنب ؤيمُالت ُحكُ الت ُةُخوارزمي ُنُتضمُ الاضطرابات.ُت ُ

ُُحكُ الت ُ المُ الفع ُم الحالةُ لتقديرُومُ وسُ الُفيُرفضُالاضطراباتُمراقبُ الكلي ُعةُ تمُ وازنةُالاضطراباتُ إثباتُُُُة.ُ

ُُ طريقة ُُحكُ الت ُكفاءةُ ُُقترُ المُ م الت ُحة خلالُ الت ُحق ُمنُ ُُحكُ لت ُلجريبيُُقُ تلاع بوبوتُُرُ الُُفيُم أربعMICOُُُُُُالم  ذوُ

 ةُ.درجاتُمنُالحري ُ

الت ُحكُ الت ُةُُخوارزمي ُُُوبيندُُذوُالداءُالمحد ُمُُحكُ الت ُناُنجمعُبينُُالثة،ُفإن ُاُفيُالمساهمةُالث ُأمُ  بنموذجُُُُنب ؤيمُ

ةُُنُبشكلُكبيرُمنُالاستجابةُالانتقالي ُحس ُ اُي ُسبقا،ُممُ دةُمُ عُضمنُقيمُمحد ُتب ُةُالت ُق ُللحفاظُعلىُدُ ةُُبكةُالعصبي ُالشُ 

ةُبكةُالعصبي ُبنموذجُالشُ ُُنب ؤيالت ُمُُحكُ الت ُةُُخوارزمي ُمعُُحةُُقترُ المُ مُُحكُ الت ُةُُخوارزمي ُقارنةُأداءُُمُ ُُظام.ُكماُتمُ للن  ُ

تلاع بوبوتُرُ الُُفيمُحكُ لت ُلعنُطريقُالمحاكاةُ  ةُ.ذوُأربعُدرجاتُمنُالحري MICOُُُالم 

حدةُورانُالمحسوبُعنُطريقُإضافةُوُ فيُعزمُالد ُمُُحكُ الت ُةُُخوارزمي ُتعزيزُُُُفيابعةُُزُالمساهمةُالرُ رك ُ ت ُ

تقييمُُُُتمُ ُُكما.ُُمحكُ الت ُاتُُمل ُلحسابُمعحسينُُللت ُأرخميدسُُةُُخوارزمي ُيُوتستخدمُُبابيُكعنصرُغيرُخط ُ ضُ مُُحكُ ت ُ

وبوتُرُ الفيُُمُُحكُ لت ُلعنُطريقُالمحاكاةُُحةُُقترُ المُ ورانُالمحسوبُُبابيُفيُعزمُالد ُالضُ مُُحكُ الت ُةُُخوارزمي ُأداءُُ

تلاع ب ُ ذوُسُ PUMA 560ُُُُالم  مُُحكُ الت ُُُةخوارزمي ُوPIDُُُُمحكُ الت ُُُةخوارزمي ُهاُبمقارنت ُُُةُوتمُ درجاتُمنُالحري ُُُت 

ُورانُالمحسوب.فيُعزمُالد ُ



Abstract

This doctoral thesis presents a comprehensive study of the intelligent control

of robot manipulators. It employs advanced techniques such as neural networks,

optimization algorithms, and fuzzy logic to develop intelligent control strategies.

This thesis proposes several control techniques, compares them to existing methods,

and evaluates their performances in terms of tracking accuracy of reference trajec-

tories and disturbance rejection through simulations and experimental validations

on di�erent models of robot manipulators.

The �rst contribution of this work is the development of a neural network model

predictive controller based on Archimedes Optimization Algorithm (AOA). This

proposed controller relies on a feed-forward multi-layer neural network to accurately

predict the system's future outputs and employs the Archimedes optimization al-

gorithm to compute optimal control actions. The proposed controller's trajectory

tracking and disturbance rejection performances are investigated through simulation

on a two degrees of freedom robot manipulator. A comparative study between the

proposed control technique, the PID controller, the computed torque controller, the

neural network model predictive controller based on the Teaching-Learning-Based

Optimization (TLBO), and the neural network model predictive controller based on

the Particle Swarm Optimization (PSO) is carried out. Additionally, the proposed

control algorithm is implemented on a DSP board to control a three degrees of

freedom SCARA robot manipulator and compared to the neural network model

predictive control based on the TLBO algorithm and the neural network model

predictive control based on the PSO algorithm.

The second contribution enhances the neural network model predictive con-

troller's robustness against external disturbances, unmodeled dynamics, and un-

certainties by integrating active disturbance rejection control. The predictive con-

troller incorporates a terminal cost constraint to ensure stability, while the active

disturbance rejection controller uses an extended state observer to estimate and

compensate for the total disturbances. The e�ciency of the suggested control

approach is demonstrated through experimental validation to control a four degrees

of freedom MICO robot manipulator.

In the third contribution, we combine the prescribed performance control with

the neural network model predictive controller to maintain tracking errors within

prede�ned bounds, which signi�cantly improves the system's transient response.

The performances of the proposed controller are compared against the neural net-



work model predictive controller in simulation to control a four degrees of freedom

MICO robot manipulator.

The fourth contribution focuses on enhancing the computed torque controller by

adding a fuzzy controller as a nonlinear element and employs the Archimedes opti-

mization algorithm for the controller's parameters optimization. The performances

of the proposed fuzzy computed torque controller are evaluated in simulation, con-

sidering the control of a six degrees of freedom PUMA 560 robot manipulator and

comparing to the PID and the computed torque controllers.



Résumé

Cette thèse de doctorat présente une étude compréhensive de la commande

intelligente des robots manipulateurs. Elle utilise des techniques avancées telles

que les réseaux de neurones, les algorithmes d'optimisation et la logique �oue pour

développer des stratégies de commande intelligentes. Cette thèse propose plusieurs

techniques de commande, les compare aux méthodes existantes, et évalue leurs

performances en termes de précision de suivi des trajectoires de références et de

rejet des perturbations à travers des simulations et des validations expérimentales

sur di�érents modèles de robots manipulateurs.

La première contribution de ce travail est le développement d'une commande pré-

dictive à modèle neuronal basée sur l'algorithme d'optimisation d'Archimède (AOA).

Cette commande proposée s'appuie sur un réseau de neurones multicouches pour pré-

dire avec précision les sorties futures du système et utilise l'algorithme d'optimisation

d'Archimède pour calculer les actions de commande optimales. Les performances de

l'algorithme de commande développé en termes de suivi de trajectoire et de rejet

des perturbations sont étudiées en simulation sur un robot manipulateur à deux

degrés de liberté. Une étude comparative entre la technique de commande proposée,

la commande PID, la commande de couple calculée, la commande prédictive à

modèle neuronal en utilisant l'optimisation basée sur l'apprentissage (TLBO) et

la commande prédictive à modèle neuronal en utilisant l'optimisation par essaims

de particules (PSO) est réalisée. En outre, l'algorithme de commande proposé est

implémenté sur une carte DSP pour commander un robot manipulateur SCARA

à trois degrés de liberté et comparé à la commande prédictive à modèle neuronal

en utilisant l'algorithme TLBO et à la commande prédictive à modèle neuronal en

utilisant l'algorithme PSO.

La deuxième contribution permet d'améliorer la robustesse de la commande

prédictive modèle neuronal vis-à-vis les perturbations externes, les dynamiques non

modélisées et les incertitudes en intégrant une commande active de rejet de per-

turbation. La commande prédictive utilise une contrainte de coût terminal pour

assurer la stabilité, tandis que la commande active de rejet de perturbation utilise

un observateur d'état étendu pour estimer et compenser les perturbations totales.

L'e�cacité de l'approche de commande proposée est démontrée par une validation

expérimentale pour commander un robot manipulateur MICO à quatre degrés de

liberté.

Dans la troisième contribution, nous combinons la commande de performance

prescrite avec la commande prédictive à modèle neuronal pour maintenir les erreurs



de poursuite dans des limites prédé�nies, ce qui améliore considérablement la réponse

transitoire du système. Les performances de la commande proposée sont comparées à

celles de la commande prédictive à modèle neuronal en simulation pour commander

un robot manipulateur MICO à quatre degrés de liberté.

La quatrième contribution concerne l'amélioration de la commande de couple

calculée en ajoutant une commande �oue comme élément non linéaire et utili-

sant l'algorithme d'optimisation d'Archimède pour l'optimisation des paramètres

de commande. Les performances de la commande de couple calculée �oue proposée

sont évaluées par simulation en considérant la commande d'un robot manipulateur

PUMA 560 à six degrés de liberté et en faisant une comparaison avec la commande

PID et la commande de couple calculée.
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ŷ(k + i | k) predicted outputs k + i at time k

∆u control increment

∆umax, ∆u∗ limit of the control increment, sub-optimal control increment

e(.) output error
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Introduction

Control theory, a fundamental discipline in modern engineering, provides designs and

analyses of controllers that regulate processes or devices. As a multidisciplinary �eld,

it has applications in various areas, from electrical engineering to economic systems.

In robotics, control theory takes on a critical role, ensuring that robotic systems

perform their tasks accurately and e�ciently. The increasing complexity of modern

robotic systems necessitates more sophisticated control strategies, leading to the

emergence of intelligent control. This new approach integrates arti�cial intelligence

techniques with traditional control theory, opening up new possibilities for enhancing

the performance and capabilities of robotic systems.

Robots have become increasingly important and valuable across various �elds of

science, engineering, and society. They are often employed to perform tasks that are

di�cult, dangerous, or tedious for humans. For instance, robots have been utilized in

space exploration, underwater surveys, industrial manufacturing, medical surgeries,

and military operations [1�5]. Moreover, robots have the potential to enhance human

capabilities in areas such as rehabilitation, education, and social interaction [6�8].

As such, they have the potential to improve the quality of life, productivity, and

e�ciency of many activities and processes.

Technological advancements and the emergence of new needs and challenges

have driven the evolution of robotics. The history of robotics can be traced back to

ancient times when humans invented mechanical devices to mimic living creatures

or perform simple tasks. The modern era of robotics began in the 20th century

with the development of the �rst programmable and electrically powered robots.

The industrial revolution of the early 1960s saw the introduction of industrial

robots into factories, freeing human operators from risky and harmful tasks [5]. As

industrial robots were later incorporated into other types of production processes,

new requirements emerged that called for greater �exibility and intelligence in these

machines. Since then, robotics has progressed rapidly with the development of sen-

sors, actuators, computers, communication technologies, and arti�cial intelligence.

These innovations have enabled robots to become more �exible, intelligent, and

adaptable, capable of performing complex and diverse tasks in various environments.

Current trends and requirements in robotics include the development of robots that
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can cooperate and collaborate with humans and other robots, learn from data and

experience, and exhibit ethical and social behaviors.

Robot manipulators have attracted signi�cant interest due to their wide range

of applications, such as manufacturing, healthcare, and space applications. Their

adaptability and versatility make them a subject of intense study, and with their abil-

ity to perform complex tasks with high precision, they have become indispensable.

However, controlling robot manipulators poses certain challenges, such as complex

nonlinear dynamics that can be di�cult to model or predict accurately, constraints

that arise from joint limits or the robot's geometry, external disturbances, and

the need for high precision. These challenges necessitate the implementation of

innovative advanced control strategies.

Intelligent control represents a signi�cant part of modern control theory, lever-

aging arti�cial intelligence techniques to enhance system performance. It com-

bines traditional control theory's strengths with arti�cial intelligence's �exibility

and adaptability. This thesis aims to explore the application of intelligent control

techniques to robot manipulators, with a focus on improving their precision and

robustness.

� Motivations and control objectives:

The motivation for this work is driven by the need for control strategies that can

e�ectively address the challenges in robot manipulator control, such as non-linearity,

uncertainty, and disturbances. Therefore, the objective of this doctoral thesis is to

develop control algorithms for robot manipulators using arti�cial intelligence tools,

such as neural networks and meta-heuristic optimization algorithms. Furthermore,

the experimental validation of the developed control techniques is necessary to

demonstrate their e�ectiveness.

� Contributions:

The contribution of this thesis is the development of several intelligent con-

trol techniques. Firstly, Neural Network Model Predictive Control based on the

Archimedes Optimization Algorithm (NNMPC-AOA) introduces a novel approach

by using the Archimedes optimization algorithm to solve the neural network model

predictive control optimization problem. Secondly, NNMPC with Active Distur-

bance Rejection Control (NNMPC-ADRC) combines neural network model predic-

tive control with active disturbance rejection control to improve robustness against

disturbances and uncertainties. Thirdly, Prescribed Performance NNMPC (PP-

NNMPC) ensures prede�ned performance bounds to enhance tracking accuracy and

response time. Finally, Fuzzy Computed Torque Control (FCTC) enhances control

precision by combining fuzzy logic control with computed torque control.
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The thesis is structured into four chapters. Chapter 1 provides a comprehensive

overview of robot manipulators, including their de�nitions, classi�cations, modeling,

and control techniques. It emphasizes the development of control techniques and the

importance of novel approaches to intelligent control that can handle robot systems'

complexity, uncertainty, and nonlinearity. Chapter 2 introduces NNMPC based on

the Archimedes optimization algorithm with simulation on a two Degrees of Freedom

(DoF) robot manipulator and experimental validation on a three DoF SCARA robot.

Chapter 3 explores the combination of NNMPC with active disturbance rejection

control, o�ering a stability analysis and experimental validation of the proposed

controller on a four DoF MICO robot. Chapter 4 introduces two control techniques:

the prescribed performance NNMPC with simulation on a four DoF MICO robot

and the FCTC with simulation on a six DoF PUMA manipulator.

3



Chapter 1

State of the Art in Robot

Manipulator Control

1.1 Introduction

This chapter provides a comprehensive overview of robot manipulators, including

de�nitions, classi�cations, modeling, and control techniques. It focuses on the

development of control techniques for robot manipulators, showcasing the limitations

and the proposed solutions to overcome the challenges in robotic control. The

chapter emphasizes the importance of novel and innovative approaches to intelligent

control of robot manipulators. Additionally, it serves as a thorough literature review,

setting in perspective developed work in the following chapters.

1.2 Generalities on Robots

1.2.1 De�nition

Robots are machines that can perform tasks autonomously or semi-autonomously,

often by manipulating objects or interacting with their environment. The design

and structure of these machines can vary signi�cantly, re�ecting their intended

application and functionality. According to the Robot Institute of America (RIA),

a robot is:

�A reprogrammable, multi-functional manipulator designed to move

material, parts, tools or specialized devices through variable programmed

motions for the performance of a variety of tasks.�
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1.2.2 Classi�cations of robots

Depending on the criteria used, robots can be classi�ed into di�erent types. Some

common criteria are the domain of operation, the degree of autonomy, the kinematic

structure, the intended application area, and the method of control [9]. In this

subsection, we will focus on three main types of robots: robot manipulators, mobile

robots, and biologically inspired robots. Figure 1.1 depicts a general classi�cation

of robots.

Figure 1.1: Classi�cation of robots

A) Robot manipulators:

Robot manipulators, also known as robot arms, emulate the functions of a human

arm, typically consisting of a series of links connected by rotary or linear joints.

They can perform tasks such as welding, painting, assembly, and material handling.

The evolution of the technical necessities of society and the technological advances

achieved have helped the strong growth of new applications in recent years, such as

surgery assistance, rehabilitation, and automatic refueling.

Robot manipulators are often �xed to a base or a mobile platform and can have

di�erent geometries, such as spherical, cylindrical, Cartesian, articulated, SCARA,

or parallel. Some of these types are shown in Figure 1.2.

B) Mobile robots:

Mobile robots are robots that can move in their environment using locomotive

elements such as wheels, tracks, legs, propellers, or screws. They can be categorized

as terrestrial, aquatic, or aerial robots.

Mobile robots can be classi�ed by their degree of autonomy, such as autonomous

mobile robots, automated guided vehicles, or teleoperated robots. They can also
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Figure 1.2: Robot manipulators

be classi�ed by their application area, such as service robots, exploration robots, or

military robots.

C) Bio-inspired robots:

Biologically inspired robots mimic the structures, behaviors, or functions of living

organisms, such as animals, plants, or humans. They can provide novel solutions to

complex problems and enhance the performance and adaptability of robotic systems.

Bio-inspired robots can be classi�ed by their biological models, such as insect

robots, snake robots, �sh robots, bird robots, or humanoid robots. They can also be

classi�ed by their research goals, such as understanding biological systems, creating

arti�cial life, or solving engineering challenges.

Robot manipulators are the most common and versatile among these three types

of robots, as they can perform a wide range of tasks with high precision and speed.

Robot manipulators are also the focus of this thesis, as we will discuss their modeling

and control in the following chapters.

1.3 Modeling of Robots

Robot modeling is a crucial process that involves creating a mathematical represen-

tation of a robot's structure, kinematics, and dynamics. This process is fundamental

for designing, simulating, analyzing, and controlling robotic systems [9]. A well-

constructed model can capture the primary features and behaviors of the robot

6
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while abstracting away unnecessary details and complexities. Moreover, modeling

can aid in understanding the physical principles and limitations of the robot, thereby

optimizing its performance and e�ciency.

One of the foundational concepts in robot modeling is the con�guration space,

which encompasses all possible con�gurations of the robot. A con�guration is a

comprehensive speci�cation of the location and orientation of every point on the

robot. For instance, a con�guration for a robot arm with revolute joints can be

described by the joint angles. The con�guration space can be represented as a high-

dimensional space, where each dimension corresponds to a degree of freedom of the

robot.

A related concept is the workspace, which comprises all reachable con�gurations

by the robot's end-e�ector. The end-e�ector is the part of the robot that interacts

with the environment; it could be a gripper, a tool, or a sensor. The workspace is a

subset of the con�guration space and depends on the robot's geometry, kinematics,

and constraints. It is constrained by the geometry of the manipulator and mechan-

ical constraints on the joints. The workspace can be used to evaluate the robot's

reachability, dexterity, and manipulability.

Another signi�cant concept is the task space, which includes all possible positions

and orientations of the robot's end-e�ector relevant to a speci�c task. For example,

for a pick-and-place task, the task space may be de�ned by the locations of the

objects to be picked and placed. The task space, usually a lower-dimensional space

than the con�guration space, can be mapped to the con�guration space using inverse

kinematics.

Based on the concepts mentioned above, the following models represent the

robot's kinematics and dynamics:

A) Forward Kinematic Model:

The Forward Kinematic Model (FKM) involves using the kinematic equations

of a robot to compute the end-e�ector's position from speci�ed values of the joint

angles [10]. It's a crucial aspect of robot motion planning and control.

One of the most widely used methods for kinematic modeling is the Denavit-

Hartenberg (DH) method. This method is a systematic way to de�ne reference

frames and homogeneous transformation matrices for each link and joint of the

robot. The DH method simpli�es the computation of the forward kinematic model,

which describes the relationship between the joint variables and the end-e�ector

pose.

B) Inverse Kinematic Model:

The inverse Kinematic Model (IKM) is the mathematical process of calculating
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the joint angles needed to place the end-e�ector at a speci�c position and orientation

[11]. This process is essential for programming a robot to perform tasks.

The inverse kinematic model maps the end-e�ector pose to the joint variables

and is usually more challenging to obtain than the forward kinematic model. This

di�culty is especially pronounced for complex and redundant robots. Di�erent

methods, including analytical, numerical, and algebraic methods, can be used to

solve the inverse kinematics problem.

C) Dynamic Model:

A dynamic model of a robot provides a compact representation of the physical

features that in�uence its dynamics. When modeling a robot as a rigid-body

system, its dynamic model is comprised of components that separately describe

link connectivity, connecting joints, and link masses and inertias. The dynamic

model of the robot represents the robot's behavior in response to external forces,

torques, and accelerations [12].

There are various methods of modeling of robots, depending on the required level

of detail and accuracy [13]. Some of these methods include:

� Euler-Bernoulli Modeling [14]: it is used in soft robotics, and it helps in

characterizing nonlinear deformations.

� Cosserat Modeling [15]: this method is useful for modeling self-controllable

variable curvature soft continuum robots.

� Jacobian Modeling [15]: it is essential in controlling the velocity of the end

e�ector of a robotic arm.

� Gibbs-Appel Modeling [16]: it is applied in the dynamic modeling of snake-like

robots.

Other models can be derived from the principles of Newtonian mechanics, La-

grangian mechanics, or Hamiltonian mechanics. The common forms of the dynamic

model are [17]:

� Newton-Euler equations: These equations are based on Newton's second law

of motion and Euler's equation of motion. They are applied to each link of the robot

and then solved recursively from the base to the end-e�ector. The Newton-Euler

equations are simple and easy to implement but may be di�cult for multi-objective

optimization and constraint handling.
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� Lagrange equations: These equations are based on the principle of least action

and the Lagrangian function, which is the di�erence between the kinetic and po-

tential energies of the robot. They are applied to the whole robot system and

then solved simultaneously for all the joint variables. The Lagrange equations

are constraint-free and suitable for multi-objective optimization, but they may be

complex and computationally intensive.

With the emergence of arti�cial intelligence methods, new techniques have been

used to model robot dynamics. Arti�cial neural networks rely on a learning-based

approach that is used to approximate the robot's kinematics or dynamics [18�21].

Fuzzy logic has also been used to develop �exible models [22]. However, they may

require a large amount of data and training and may lack comprehension and gen-

eralization. A detailed discussion of kinematic and dynamic modeling fundamentals

can be found in the literature [23, 24].

1.4 Control of Robots Manipulators

One of the primary challenges in robotics is designing e�ective controllers that can

achieve the desired performance and robustness in the presence of uncertainties,

disturbances, nonlinearities, and coupling e�ects. Robot manipulators are complex,

multi-input multi-output, and highly nonlinear systems that necessitate sophisti-

cated control techniques to accomplish various tasks.

Depending on the control objective, di�erent schemes can be adopted, such

as position control, force control, hybrid position/force control, and impedance

control [25]. Position control, the most frequently used control scheme in robotics,

aims to track a motion trajectory as closely as possible. While this scheme gen-

erally works well, it may encounter di�culties when the robot interacts with the

environment. Force control, on the other hand, aims to regulate the contact force

between the robot and the environment but may compromise position accuracy.

Hybrid position/force control combines the bene�ts of both position control and

force control but requires precise knowledge of the environment geometry and the

switching conditions. Impedance control is a more general and �exible scheme that

modulates the dynamic relationship between the motion and the force of the robot,

allowing it to adapt to various environments and tasks.

The position control usually generates reference trajectories in task space, and

then, using the IKM, it is transformed into the joint space. Figure 1.3 shows the

general control diagram for robots.

The design of controllers for robot manipulators can be based on linear or

nonlinear models of the system [13]. Linear controllers are simpler and easier to
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Figure 1.3: Robot general control diagram

implement, but they may not capture the full dynamics of the robot and may

su�er from model uncertainties and parameter variations. Nonlinear controllers

can account for the nonlinearities and coupling e�ects of the robot, achieving better

performance and robustness, but they may require more computational resources

and more accurate models.

The following subsections will review some of the classical and advanced control

techniques for robot manipulators, as well as some intelligent control methods that

use machine learning and optimization tools to enhance the control capabilities.

1.4.1 Classical control techniques

Some of the most common classical control techniques for robot manipulators are:

� Proportional-Integral-Derivative:

Proportional-Integral-Derivative (PID) and Proportional-Derivative (PD) con-

trollers are the simplest and most widely used control schemes in many applications,

including in robotics [26�28]. They adjust the control input based on the propor-

tional, derivative, and integral terms of the error signal. These controllers can

achieve satisfactory performance for linear and low-order systems, but they may

su�er from steady-state errors, parameter tuning di�culties, and poor robustness to

uncertainties and disturbances. Moreover, these controllers have a linear form, which

may not be suitable for the nonlinear and coupled dynamics of robot manipulators

[29, 30]. Despite these limitations, the PID controller is broadly implemented and

still in use in industrial robots due to its simple structure, which is easy to implement.

With �ne-tuning, it can provide acceptable performances. Di�erent techniques to

tune the parameters of the PID controller can be found in [27,31].

� Computed Torque Control:

Computed Torque Control (CTC) is a control technique that decouples the robot

dynamics by using the dynamical models to stabilize the system [28]. CTC can

achieve asymptotic trajectory tracking and robustness to bounded disturbances, but

it requires the exact knowledge of the robot parameters and the desired trajectory.

This controller has been widely used and was applied for the PUMA robot in [32,

33]. Furthermore, a combination of PID and CTC was used [34]. Nonetheless, the
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CTC still has some limitations since it applies linearization to compute the control

input, and it may not be suitable for types of robots with complex and unmodeled

dynamics.

� Sliding Mode Control:

Sliding Mode Control (SMC) is a robust control technique that forces the system

states to converge to a prede�ned sliding surface and stay on it, regardless of the

uncertainties and disturbances. This control technique has been explored in various

studies [35]. SMC can achieve �nite-time convergence and high accuracy. Still, it

may generate chattering phenomena, which are high-frequency oscillations in the

control input that may damage the actuators and sensors [36]. To reduce the

chattering, various modi�cations of SMC have been proposed, such as boundary

layer SMC, higher-order SMC, and terminal SMC [37�43].

1.4.2 Advanced control techniques

Besides the classical control techniques, such as PID and CTC, there are some

advanced control techniques that can deal with the nonlinearities, uncertainties,

and disturbances in robotic systems more e�ectively. These techniques are based

on fuzzy logic, neural networks, adaptive control, robust control, model predictive

control, optimization techniques, active disturbance rejection control, and prescribed

performance control. This subsection provides a brief introduction to these tech-

niques and their applications to robot control.

� Fuzzy Logic Control:

Fuzzy logic control is a type of approach that seeks to mimic the way humans

think and make decisions by creating a set of rules that are utilized by the controller

to analyze the input and determine the appropriate output. It can handle the

imprecision of the system parameters and the environment and does not require a

precise mathematical model of the system [44].

The primary steps of designing a fuzzy logic controller are as follows: First, the

inputs and outputs of the controller are de�ned. While there are no universal rules

for selecting the controller inputs, it's common to use the states of the system, the

errors, and the variation of errors. Second, the fuzzi�cation step is initiated. This

involves the use of rules expressed in linguistic terms to map the precise values of

inputs to appropriate linguistic values. These rules are then evaluated to obtain

fuzzy control action. Third, a defuzzi�cation step is necessary to derive a crisp

value for the control action. This step ensures that the output of the controller is a

de�nite value that can be applied to the system. Figure 1.4 shows the main steps

of the design of fuzzy logic controllers.
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Figure 1.4: Standard fuzzy logic controller structure

Fuzzy control has been combined with other control strategies to enhance the

performance and robustness of the controller [45�49]. For example, a supervisory

fuzzy controller was employed to �nd the parameters of the PID controller for a

two link planar robot [50]. Moreover, in [51], the CTC was combined with Fuzzy

Inference Systems to compensate for the system's nonlinearities. Furthermore, fuzzy

SMC can reduce the chattering phenomenon and improve the tracking accuracy

[44,52].

� Neural Network Control:

Neural network control is a technique that uses Arti�cial Neural Networks (ANNs)

to model, identify, and control the nonlinear and uncertain systems [53�55]. ANNs

are composed of interconnected processing units that can learn from data and

approximate any nonlinear function. Neural network control can be classi�ed into

di�erent types according to the structure (such as feedforward and recurrent) and the

learning algorithm of the network (such as supervised, unsupervised, and reinforce-

ment). Neural network control can also be combined with other control techniques

to improve the performance and robustness of the controller. For example, neural

PID control can use Neural Networks (NN) to estimate the system dynamics and

compensate for the uncertainties and disturbances [56]. Neural SMC can use NN

to approximate the unknown nonlinear functions and reduce the chattering and the

control e�ort [57, 58]. Furthermore, neural fuzzy control can use NN to learn the

fuzzy rules and membership functions and enhance the adaptability and accuracy

of the controller [59,60].

� Adaptive Control:

Adaptive control is an approach that can adjust the controller parameters ac-

cording to the variations of the system dynamics and the environment. Adaptive

control can cope with the uncertainties and disturbances of the system and achieve

the desired performance and stability [61]. Adaptive control can be classi�ed into

di�erent types according to the adaptation mechanism and the control objective.

Adaptive control can also be integrated with other control techniques to enhance

the performance and robustness of the controller. For example, improvements have

been made to the traditional controllers in order to overcome their limitations, such
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in [62�64], where the PID and CTC were used with adaptive strategies. Adaptive

NN control can use NN to approximate the unknown system dynamics and update

the weights online [65]. Adaptive fuzzy control can use fuzzy logic to represent the

nonlinear functions and update the fuzzy rules and membership functions online [66].

� Robust Control:

Robust control is a control technique that can guarantee the performance and

stability of the system in the presence of uncertainties and disturbances. Robust con-

trol can cope with the bounded variations of the system parameters and the external

perturbations and does not require precise knowledge of the system dynamics [67].

Robust control can also be combined with other control techniques to enhance

the performance and robustness of the controller, such as in [68], where a robust

SMC is proposed. Robust NN control can use NN to estimate the uncertainties

and disturbances and compensate for them [69, 70]. Additionally, robust fuzzy

control can use fuzzy logic to represent the nonlinear functions and attenuate the

uncertainties and disturbances [71,72].

� Model Predictive Control:

Model Predictive Control (MPC) is considered one of the most advanced and

successful control strategies that have been developed both within the research

control community and in the industry. This success is attributed to the fact

that MPC can control a wide range of relatively simple to complex multi-variable

processes, such as micro-grids [73], power management of electric vehicles [74],

quadrupeds [75], agriculture [76], and HVAC systems [77]. This control strategy

solves an optimization problem at each time step to compute the optimal control

input. The foundational framework of MPC, also known as Receding Horizon

Control (RHC) [78, 79], was laid in the 1970s by [80, 81] with the introduction of

Model Predictive Heuristic Control (MPHC) and Dynamic Matrix Control (DMC).

It is characterized by the explicit use of a model to predict the process's future

outputs over a prediction horizon and then calculate the control sequence that

minimizes an objective function. This function takes the form of a constrained

nonlinear quadratic function of the error between the model output and the reference

trajectory and, in most cases, includes the control e�ort [82, 83].

MPC can handle the system's constraints, nonlinearities, and uncertainties and

achieve the desired performance and stability. MPC can be classi�ed into di�erent

types according to the model and the optimization method [84]. It provides better

performance and robustness compared to traditional controllers. The Generalized

Predictive Control (GPC), built on a linearized state-space model, was used for

trajectory tracking of a parallel robot in [85]. Other linearization techniques were
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explored in [86,87]. However, the linearized model does not fully represent the real

system dynamics. As a result, Nonlinear MPC (NMPC) techniques were adopted in

robotics [88, 89], but its complex model increases the computational cost of MPC.

Neural network models, which are e�ective at capturing the system's nonlinear

dynamics, have been used in neural network MPC [90, 91]. The second part of

MPC, following the prediction model, is optimization. This research area has seen

the development of various techniques. For instance, explicit MPC that employs

a pre-computed optimal solution to address the problem was presented in [92].

Dynamic programming has been suggested in [93]. Numerous numerical optimiza-

tion methods have been utilized to solve the optimization problem of MPC. These

include the Particle Swarm Optimization (PSO) and the Teaching-Learning-Based

Optimization (TLBO), among others [94�98]. Further improvements of MPC have

seen its integration with other control strategies. For example, MPC was combined

with H-in�nity control in [99], and in [100], the authors proposed MPC with integral

compensation (MPC-I) to o�set matched uncertainties from the robot's unmodeled

dynamics. Moreover, an integral sliding mode compensator was used in [101�103]

for robot manipulator control to achieve optimal tracking and robustness.

Various methods have been proposed to prove the stability of model predictive

control. The Lyapunov method that uses a proposed Lyapunov function has been

employed in several works to demonstrate the stability of MPC [104, 105]. In

addition, terminal constraints have been introduced to the optimization problem of

MPC in [102, 106]. This approach guarantees the convergence of error and thereby

proves the stability of MPC. The input-to-state stability method has also been used

to ensure the stability of MPC [107�110]. Furthermore, a Lyapunov-based MPC

(LMPC) was proposed in other studies [108, 111] where the Lyapunov function is

incorporated as a constraint in the objective function.

� Optimization techniques in control:

Optimization is a powerful approach that can �nd the optimal solution to a

problem by minimizing or maximizing a speci�c objective function subject to some

constraints. It can be used to design the optimal controller parameters, trajectory,

state feedback, and observer. For instance, PID control can use optimization meth-

ods to tune the gains and achieve optimal performance. Boundjou et al. used an

adaptive particle swarm optimizer with PID to control a two degrees of freedom arm

manipulator [112]. Furthermore, the PID controller parameters were optimized using

the genetic algorithm and the PSO to control the PUMA 560 manipulator [113,114].

Similarly, optimization algorithms have been used to design the SMC sliding surface

and the reaching law [115,116]. In the case of MPC, meta-heuristic optimization has

been used to solve the problem and achieve optimal performance. Although these
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methods cannot guarantee global optimality, good solutions can be obtained in a

reasonable computational time. Several meta-heuristic algorithms such as Genetic

Algorithms (GA) [117,118] and Evolutionary Algorithms (EA) [119] have been used

to solve the optimization problem of MPC. Furthermore, Arti�cial Bee Colony

(ABC) has been used to solve the MPC optimization problem [120,121].

� Active Disturbance Rejection Control:

Active Disturbance Rejection Control (ADRC), initially proposed by Han [122,

123], emerged as a new robust control method that has gained signi�cant attention

due to its innovative concepts, simplicity in implementation, and remarkable perfor-

mance [124�126]. The strength of ADRC comes from its ability to handle a broad

range of uncertainties and disturbances, making it a powerful tool applicable to vari-

ous practical systems, including robotics [127,128]. Further works that addressed the

application of ADRC in robotics could be found in [129]. The key concept of ADRC

resides in approaching all external disturbances along with internal uncertainties as

a generalized disturbance that is estimated through an Extended State Observer

(ESO) and subsequently compensated for in the control input in real-time. This

approach enables ADRC to deal with external disturbances, uncertainties arising

from unmodeled dynamics, and parameter uncertainties, enhancing the robustness

of the controller.

However, ADRC faces challenges such as the limitation of the ESO bandwidth

[130]. This limitation can a�ect the accuracy of the disturbance estimation and,

consequently, the performance of the controller. To address this issue, advanced

controllers have been proposed to replace the feedback controller in ADRC, such as

the combination of ADRC with joint torque control [131], SMC [132], and fractional

order controller [133]. More applications of ADRC in conjunction with predictive

control could be found in [134�137]. However, only a few studies have explored the

integration of ADRC and MPC within robotic systems, and these have been limited

to simulations. For example, in [138], ADRC is paired with MPC for controlling

the motion of wheeled mobile robots. The combination of ADRC and MPC has

been utilized to control quadrotor systems, as documented in [139, 140]. Moreover,

[141,142] have discussed its application for underwater vehicles.

� Prescribed Performance Control:

Prescribed Performance Control (PPC) has been proven to be a powerful tool

that ensures control system outputs/errors with desired transient performance as

well as steady-state performance. It was �rst proposed by Bechlioulis in 2008

[143, 144]. PPC denotes that the tracking error should converge to an arbitrarily

prede�ned small value.
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PPC has been integrated with di�erent control schemes, such as adaptive slid-

ing mode prescribed performance control that was introduced in [131]. Various

propositions of the recently developed Funnel Model Predictive Control (FMPC)

that ensure tracking with a predetermined tracking error performance have been

discussed in [145]. In [146], an Adaptive Prescribed Performance Model Predictive

Control (APPMPC) approach was presented. Furthermore, another work proposed

a noncomplex model predictive control optimization by converting constrained sys-

tems into unconstrained ones using the Prescribed Performance Function (PPF)

[147]. A prescribed performance-based MPC has been proposed in [148] with an

application to a 4 DoF robot manipulator. More applications of PPF in robotics

can be found in [149�151].

1.5 Studied Cases

This thesis is dedicated to the exploration of intelligent control for robot manip-

ulators. Various controllers have been developed and implemented on a range of

robots. The speci�c robots considered in this work are the following:

� Two DoF planar robot:

This is a simple robot with two revolute joints and a prismatic end-e�ector.

It can be used for tasks such as drawing, picking and placing, and welding. The

control challenges for this robot include achieving accurate and fast tracking,

dealing with nonlinearities and uncertainties, and avoiding model singularities.

� Three DoF SCARA robot:

This is a widely used industrial robot with three revolute joints and a

vertical prismatic joint. It can perform tasks such as assembly, inspection,

and packaging. The control challenges for this robot include achieving high

precision and repeatability and handling payload variations.

� Four DoF Kinova MICO robot:

This lightweight and modular robot has four revolute joints and a two-

�ngered gripper. It can be used for manipulation, rehabilitation, and human-

robot interaction. The control challenges for this robot include ensuring

stability, achieving high precision, and handling disturbances.

� Six DoF PUMA robot:

This is a classic robot with six revolute joints and a spherical wrist. It

can perform tasks such as machining, painting, and medical surgery. The

control challenges for this robot include achieving high precision and �exibility,
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coping with complex dynamics and kinematics, and avoiding joint limits and

collisions.

1.6 Conclusion

This chapter provided a comprehensive overview of robot manipulator control, in-

cluding de�nitions, classi�cations, modeling, and control techniques. It also show-

cased the various types of robot manipulators that have been considered in this work.

The chapter underscored the challenges and limitations of classical and advanced

control methods, thereby highlighting the need for intelligent control techniques

capable of handling the complexity, uncertainty, and nonlinearities inherent in robot

systems. The chapter emphasizes the importance of novel and innovative approaches

to intelligent control of robot manipulators. Additionally, it served as a thorough

literature review, o�ering readers a broad understanding of the �eld's current state.
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Chapter 2

Constrained Neural Network Model

Predictive Control Based on

Archimedes Optimization Algorithm

2.1 Introduction

In this chapter, a novel neural network model predictive controller based on Archime-

des optimization algorithm is introduced. This controller integrates neural networks

with model predictive control to accurately predict the system's future outputs; then,

it uses the Archimedes optimization algorithm to solve the optimization problem

and compute the optimal control action. The performances of the suggested control

algorithm are investigated by simulating a two degrees of freedom robot manipulator.

The obtained results are compared with those of various techniques, namely the

PID controller, the computed torque controller, and the neural network model

predictive control using the teaching-learning-based optimization and the particle

swarm optimization. To complete the study, the developed controller is implemented

on a DSP board and used to control a three degrees of freedom robot manipulator;

its results are compared to those of the neural network model predictive control using

the teaching-learning-based optimization and the neural network model predictive

control based on the particle swarm optimization.

2.2 System Description

Robot kinematics studies the relation between the robot's rigid bodies. The forward

kinematics allows us to calculate the position of the end of each joint and ultimately

�nd the position of the end e�ector. In contrast, inverse kinematics are used to

obtain the joints' angles for a speci�c end-e�ector position. This conversion can be
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solved by obtaining the transformations connecting Cartesian and angular positions.

a) Forward kinematics: Consider an n DoF robot manipulator. The end-e�ector

position in Cartesian coordinates can be denoted by the vector X = [x, y, z]T ∈ ℜ3×1

and the joint angles are q = [q1, . . . , qn]
T ∈ ℜn×1. The Jacobian Jm ∈ ℜm×n matrix

is a mathematical representation that transforms joint velocities into end-e�ector

velocities. This relation is written as:

ẋ

ẏ

ż

wx

wy

wz


= Jm(q, P )q̇ (2.1)

where wx, wy, and wz are the angular velocities, P represents constant parameters,

and m equals 3 in two dimensional space and 6 in three dimensional space. The

con�guration of the robot is assumed to be far from singularities.

To obtain the Jacobian matrix, rotation matrices between the frame and the ho-

mogeneous transformation matrices are utilized. The latter de�nes the relationship

between each frame of reference in the robotic arm.

First, the Denavit-Hartenberg table is obtained by de�ning these parameters for

each joint:

� qi the joint angle between xi−1 and xi, rotating around zi.

� αi the link twist between zi and zi+1, rotating around xi.

� ai the link length between zi and zi+1, measured along xi.

� di the link o�set between xi−1 and xi, taken along zi.

Then, the homogeneous transformation matrix
[
i−1
i T

]
for a particular link, using

the rotation matrices, can be given as:

[
i−1
i T

]
=


ci −si 0 αi−1

sicαi−1
cicαi−1

−sαi−1
−disαi−1

sisαi−1
cisαi−1

cαi−1
dicαi−1

0 0 0 1

 (2.2)

where ci and si is a shorthand for cos(qi) and sin(qi), respectively.
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The complete 4×4 transformation from the base frame to the end-e�ector frame

is obtained by multiplying the individual transformation matrices:[
0
nT
]
=
[
0
1T
] [

1
2T
]
. . .
[
n−1
n T

]

=


ax bx ox x

ay by oy y

az bz oz z

0 0 0 1


(2.3)

This matrix transforms the angular position at each joint (q1, q2, q3, q4, q5, and

q6) and gives the position (x, y, and z) and the orientation matrix of the end e�ector.

b) Inverse kinematics: The inverse kinematics is solved by multiplying the inverse

of each transformation on both sides of Equation (2.3):

[
4
5T
]−1 [3

4T
]−1 [2

3T
]−1 [1

2T
]−1 [0

1T
]−1 [0

6T
]
=
[
5
6T
]

(2.4)

By solving Equation (2.4), all the unknown variables could be obtained [152].

c) Dynamic model:

The dynamic model, a nonlinear di�erential equation derived using the La-

grangian approach, describes the motion of the joints in relation to their velocities,

accelerations, and the di�erent forces. The standard equation of motion for an n

DoF robot manipulator is given by the following equation [9, 32,153]:

M(q)q̈ + V (q, q̇)q̇ +G(q) + F (q̇) + τd +∆h = τ (2.5)

where M(q) ∈ ℜn×n denotes the mass and inertia matrix, V (q, q̇) ∈ ℜn×n represents

the centrifugal and Coriolis matrix, G(q) ∈ ℜn×1 denotes the gravity vector, F (q̇) ∈
ℜn×1 is the friction vector, τd ∈ ℜn×1 are the external disturbances, ∆h ∈ ℜn×1 are

system uncertainties, and τ ∈ ℜn×1 represents the input vector of torques at each

joint. All with regard to joint angles q ∈ ℜn×1 and their acceleration and velocity

components q̈ and q̇, respectively.

At a given instant k, where t = kTs with k ∈ ℵ and Ts is the sampling time, the

output of the system denoted as y(k) = q(k), and the control input is u(k) = τ(k).

20



Chapter 2. Constrained Neural Network Model Predictive Control Based on AOA

2.3 Neural Network Model Predictive Control

2.3.1 Predictive control formulation

Predictive control is a closed-loop control strategy that forecasts the future outputs

of the system based on a prediction model over a receding horizon, denoted as

[N1 N2], also known as the prediction horizon. At each instant k, an optimal control

sequence referred to as κ(k) = [u(k), . . . , u (k +Nu − 1)] is obtained by solving an

optimization problem online, with the control horizon Nu < N2.

This optimization problem aims to minimize a quadratic cost function J to keep

the system as close as possible to a given reference trajectory. The cost function J is

usually represented as the squared tracking error between the reference trajectories

and the predicted outputs, subject to a set of constraints. In most cases, the control

e�ort is incorporated in J . It can be written as follows:

J(k) =

N2∑
i=N1

[
(ref(k + i)− ŷ(k + i | k))TQ(ref(k + i)− ŷ(k + i | k))

]
+

Nu∑
i=1

[
(∆u(k + i− 1))TR(∆u(k + i− 1))

] (2.6)

with ref(k + i) ∈ ℜn×1 representing the reference trajectory, ŷ(k + i | k) is the

predicted output at time k+ i using the information up to time k, and ∆u(k+ i) =

u(k + i)− u(k + i− 1) is the control increment. The matrices Q and R are positive

semi-de�nite and positive de�nite, respectively.

The predictive control can be described in the following steps:

1. First, the system output is measured at instant k.

2. The prediction model of the system is then used to predict the future values

of the system outputs over the prediction horizon [N1, N2].

3. The optimal control sequence κ(k), solution of the following minimization

problem, is computed:

κ(k) = argmin
κ
J

= argmin
κ

N2∑
i=N1

[
(e(k + i | k))TQ(e(k + i | k))

]
+

Nu∑
i=1

[
(∆u(k + i− 1))TR(∆u(k + i− 1))

]
(2.7)
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Subject to
y ≤ ŷ(k + i) ≤ ȳ, ∀ i = N1, . . . , N2

u ≤ u(k + i) ≤ ū, ∀ i = 0, 1, . . . , Nu − 1

|∆u(k + i)| ≤ ∆umax, ∀ i = 0, 1, . . . , Nu − 1

∆u(k + i) = 0, ∀ i > Nu − 1

where e(k+ i | k) = ref(k+ i)− ŷ(k+ i | k), y and ȳ are the lower and upper

limits of the output, and u and ū are the lower and upper limits of the control

input u.

4. Apply only the �rst element u(k) of κ(k) and repeat the procedure at the next

sampling time.

This approach, known as receding horizon optimization, may cause an increase in

computation time, especially for nonlinear optimization problems with constraints.

Therefore, it is essential to reduce computation time per iteration by using a simple

model and fast optimization techniques.

2.3.2 Constrained neural network model predictive control

Neural networks have demonstrated their e�ectiveness in modeling nonlinear dy-

namic processes, providing a powerful tool for system representation and control

[20, 53]. Speci�cally, feed-forward neural networks with just a single hidden layer

have been shown to approximate any continuous function with arbitrary precision,

given an adequate number of neurons [154].

In the context of model predictive control, neural networks have found signi�cant

application [155, 156]. The ability to accurately model complex systems allows

for more precise control and prediction and also reduces the computation time

associated with complex derivative-based models.

Consider the vector:

χ(k) = [u(k), . . . , u (k − nu) , y(k), . . . , y (k − ny)]
T (2.8)

where nu and ny denote the number of past control inputs and outputs.

The prediction model of a given system can be written as:

ŷ(k + 1) = fNN(χ(k)) (2.9)

where fNN is the neural network mathematical function.

A simple and e�ective solution is to use a feed-forward neural network with a
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single hidden layer that can be represented by:

fNN(χ(k)) = σ2 (W2σ1 (W1χ(k) + b1) + b2) (2.10)

where σ1 and σ2 represent the hidden and the output layers' activation functions,

W1 and W2 denote the weight matrices, and b1 and b2 refer to the bias vectors.

Having established the prediction model of MPC, it's important to discuss how

MPC handles the various constraints of the system. Depending on their nature,

constraints can be mainly grouped into three categories: input constraints caused by

the actuators' capabilities, state constraints due to the sensors' limitations or safety

reasons, and output constraints to keep the system in the acceptable operating

range. Several methods were proposed to handle the constraints [157�159]. One

particular technique is to soften the constraints using slack variables [160]; it is

used to treat output constraints by adding a penalty to the optimization problem

in Equation (2.7) as follows [161]:

κ(k) = argmin
κ
J

= argmin
κ

N2∑
i=N1

[
(e(k + i | k))TΓy(e(k + i | k))

]
+

Nu∑
i=1

[
(∆u(k + i− 1))TR(∆u(k + i− 1))

]
(2.11)

Subject to
u ≤ u(k + i) ≤ ū, ∀ i = 0, 1, . . . , Nu − 1

|∆u(k + i)| ≤ ∆umax, ∀ i = 0, 1, . . . , Nu − 1

∆u(k + i) = 0, ∀ i > Nu − 1

The output-dependent weight Γy is given as:

Γy(y) =


Γy1 (y1) 0 · · · 0

0 Γy2 (y2)
. . . ...

... . . . . . . 0

0 · · · 0 Γyn (yn)

 (2.12)

And:

Γŷi (ŷi) =


Γŷi(0)

[
1 + ϵi

(
ŷi − y

)2] if ŷi < y

Γŷi(0) if y ≤ ŷi ≤ ȳ

Γŷi(0)
[
1 + ϵi (ŷi − ȳ)2

]
if ŷi < ȳ

(2.13)

where i = 1, . . . , n, n is the number of outputs in the system, ϵi is a constant used to
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change the value of penalization. Γŷi(0) is a constant minimum value of the weight

function at which the output is not penalized.

Input constraints can be handled by limiting the search space of the optimization

problem to the given lower and upper limits u ≤ u(k) ≤ ū.

2.3.3 Archimedes optimization algorithm

The Archimedes Optimization Algorithm (AOA) is a meta-heuristic optimization

method, developed by Hashim et al. [162], that draws its inspiration from the

principle of buoyancy, a concept attributed to Archimedes. This principle states

that an object, whether partially or entirely immersed in a �uid, experiences an

upward force equal to the weight of the �uid displaced by the object.

In the context of AOA, objects of varied volumes and densities submerged in a

�uid are represented as the population. These objects, when immersed in the same

�uid, will accelerate di�erently in order to reach equilibrium. This phenomenon

forms the basis of the population-based AOA.

The position of each object of the AOA population is randomly initialized, and

the corresponding objective function J is evaluated. Subsequently, the densities, ac-

celerations, and volumes of these objects are updated in each iteration to determine

new positions until the criteria for termination are satis�ed. The steps of AOA are

described as follows:

a) Initialization

Prior to running the algorithm, the afterward parameters are initialized:

� The population size Ps (number of objects).

� The dimension of the optimization D (number of variables associated

with every object).

� The search space limits ū and u.

� The maximum number of iterations smax.

� The AOA constants C1, C2, C3, and C4.

The initial objects' attributes positions p, densities ρ, volumes υ, and

accelerations α for each object j = 1, 2, . . . , Ps are randomly set using the

equations: 
pj = u+ rand× (ū− u)
ρj = rand

υj = rand

αj = u+ rand× (ū− u)

(2.14)
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where rand is a random vector between 0 and 1 of dimension D.

The objective function is evaluated, and the object having the best cost

value is chosen with the associated best position pbest, density ρbest, volume

υbest, and acceleration αbest.

b) Update densities and volumes

Each object's density and volume are adjusted at every iteration s with:{
ρs+1
j = ρsj + rand×

(
ρbest − ρsj

)
υs+1
j = υsj + rand×

(
υbest − υsj

) (2.15)

where ρsj and υ
s
j are the density and the volume of the j th object at iteration

s.

c) Transfer operator and density factor

The transfer operator TF progressively increases using the following equa-

tion to shift the search from a phase of exploration to exploitation.

TF = exp

(
s− smax

smax

)
(2.16)

The density factor switches the search from global to local; it decreases

gradually as follows:

ds+1 = exp

(
smax − s
smax

)
−
(

s

smax

)
(2.17)

i. Exploration phase (collision between objects)

In this phase, TF ≤ 0.5 and the objects are in collision. The

acceleration is modi�ed utilizing a random object mr:

αs+1
j =

ρmr + υmr × αmr

ρs+1
j ×υs+1

j

(2.18)

ii. Exploitation phase (no collision between objects)

No collision takes place between objects when TF > 0.5. The object's

acceleration can be expressed as:

αs+1
j =

ρbest + υbest × αbest

ρs+1
j ×υs+1

j

(2.19)
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The exploration-exploitation ratio could be changed by choosing a

di�erent value than 0.5.

iii. Normalize acceleration

It is essential to normalize the acceleration to determine the step

percentage that each object will change; this allows the solutions to

approach the global best and also avoid trapping in the local minima.

The acceleration is normalized between ub and lb as:

αs+1
j−norm = ub×

αs+1
j −min(α)

max(α)−min(α)
+ lb (2.20)

d) Update the position

For TF ≤ 0.5 (phase of exploitation), the position of the object is updated

as follows:

ps+1
j = psj + C1 × rand× αs+1

j−norm × ds+1 ×
(
prand − psj

)
(2.21)

where prand is a chosen random position.

For TF > 0.5 (phase of exploitation), the position of the object is adjusted

using:

ps+1
j = psbest + F × C2 × rand× αs+1

j−norm

× ds+1 ×
(
C3 × TF × pbest − psj

) (2.22)

where F is a �ag that allows to change the direction of motion of the object:

F =

{
+1 if 2× r − C4 < 0.5

−1 if 2× r − C4 > 0.5
(2.23)

e) Evaluation

Finally, the objective function of each object is evaluated, and the optimal

solution is modi�ed (i.e., pbest, ρbest, υbest, and αbest).

The �owchart of the AOA is given by Figure 2.1.
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Figure 2.1: Flowchart of AOA

2.3.4 NNMPC-AOA control algorithm

Based on the general formulation of the MPC and the AOA, the proposed neural

network model predictive control based on Archimedes optimization algorithm can

be described by the following steps of Algorithm 1.
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Algorithm 1 NNMPC-AOA algorithm
1: De�ne the MPC parameters N1, N2, Nu, and ϵi.
2: De�ne the AOA parameters Ps, D, smax, u, ū, C1, C2, C3, C4, lb, and ub.
3: At each sampling time k, let the initial step of the optimization be s = 1.
4: for j = 1 to Ps do

5: Generate initial solution positions, densities, volumes, and accelerations using
Equation (2.14).

6: end for

7: Select reference trajectories between k +N1 and k +N2.
8: for j = 1 to Ps do

9: Calculate the system's predicted outputs using the neural network.
10: Evaluate the objective function J .
11: end for

12: Select the best object (pbest, ρbest , υbest, and αbest) with the best objective
function Jbest.

13: Calculate TF and ds+1 using Equations (2.16) and (2.17).
14: for j = 1 to Ps do

15: Use Equation (2.15) to update densities and volumes.
16: if TF ≤ 0.5 then
17: Update accelerations using Equation (2.18).
18: else

19: Update accelerations using Equation (2.19).
20: end if

21: end for

22: Normalize the acceleration using Equation (2.20).
23: for j = 1 to Ps do

24: Use Equation (2.15) to update densities and volumes.
25: if TF ≤ 0.5 then
26: Find the new positions using Equation (2.21).
27: else

28: Update direction �ag F by Equation (2.23).
29: Find the new positions using Equation (2.22).
30: end if

31: end for

32: for j = 1 to Ps do

33: Calculate the system's predicted outputs using the neural network.
34: Evaluate the objective function J .
35: end for

36: Select the best object (pbest, ρbest, υbest, and αbest) with the best objective function
Jbest.

37: if s ≥ smax then

38: Go to 40.
39: end if

40: Set s← s+ 1 and repeat 12.
41: Apply the obtained control action (the �rst element of pbest).
42: Wait for the next sampling time k ← k + 1 then go to 3.
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2.4 Control of Two DoF Robot Manipulator

2.4.1 Two DoF robot description

The planar robot shown in Figure 2.2 has the following dynamic model based on

Equation (2.5) [163].[
M11 M12

M21 M22

][
q̈1

q̈2

]
+

[
V1

V2

]
+

[
F1

F2

]
+

[
G1

G2

]
=

[
τ1

τ2

]
(2.24)

where:
M11 =I1 + I2 +m1r

2
1 + (m2 +mL) l

2
1 +m2r

2
2

+ (2m2l1r2 + 2mLl1l2) cos(q2) +mLl
2
2

M12 = I2 +m2r
2
2 + (m2l1r2 +mLl1l2) cos(q2) +mLl

2
2

M21 =M12

M22 = I2 +m2r
2
2 +mLl

2
2

V1 = − (m2l1r2 +mLl1l2) (2q̇1 + q̇2) q̇2 sin(q2)

V2 = (m2l1r2 +mLl1l2) q̇
2
1 sin(q2)

F1 = µ1q̇1

F2 = µ2q̇2

G1 =(m1r1 +m2l1 +mLl1) g cos(q1)

+ (m2r2 +mLl2) g cos (q1 + q2)

G2 = (m2 +mL) g r2 cos (q1 + q2)

Figure 2.2: Two degrees of freedom robot manipulator

The input variables are the torques at each joint τ1 and τ2, and the outputs are the

angular positions q1 and q2. Table 2.1 gives the system's physical parameters [163].
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Table 2.1: Parameters values of the robot manipulator

Parameter Value Parameter Value
m1 0.3929243 kg mL 0.2 kg

m2 0.0944039 kg I1 0.00114111 m2 kg

l1 0.2032 m I2 0.00202470 m2 kg

l2 0.1524 m µ1 0.141231 N m

r1 0.104648 m µ2 0.353078 N m

r2 0.081788 m g 9.81 m/s2

2.4.2 Neural network identi�cation of two DoF robot

Since the robot manipulator has two outputs, two separate neural networks are used,

one to predict each output with a sampling time Ts = 10 ms. This approach yielded

better results than using only one network with two outputs.

Both neural networks have a similar structure: an input layer containing 8

neurons, one hidden layer containing 20 neurons with a sigmoid activation function,

and an output layer with one neuron and having a linear activation function. The

input vector of each neural network is given by:

χ(k) = [τ1(k), τ1(k − 1), τ2(k), τ2(k − 1), q1(k), q1(k − 1), q2(k), q2(k − 1)]T (2.25)

The output of each neural network is the predicted angular position at each joint

q̂1(k + 1) and q̂2(k + 1), respectively. Training and test datasets are generated by

solving Equation (2.24) for random inputs within the operating range of the system.

Levenberg-Marquardt algorithm is used to train each neural network.

Figures 2.3 and 2.4 give the test results for each neural network, and they show

good accuracy of the obtained models.

The performances of the trained networks are evaluated based on the coe�cient

of determination R2 and the Root Mean Squared Error (RMSE) of the one-step-

ahead predictions. Table 2.2 gives the RMSE and R2 values of the h-step-ahead

predictions of the obtained models. The predictions are computed by considering

the model to be in a closed loop, where the predicted output at step h > 2 is

computed using the output of step h− 1 as input.

2.4.3 Controller implementation

In this section, the control performances of the proposed NNMPC-AOA are evalu-

ated using a robot manipulator with two degrees of freedom. The proposed controller

is compared to the Neural Network Model Predictive Control based on TLBO
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Figure 2.3: Response of the neural network model of the �rst angle for the test data

Figure 2.4: Response of the neural network model of the second angle for the test data
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Table 2.2: RMSE and R2 values of the multi-step-ahead predictions of q1 and q2 using

the obtained models

h
q1 neural network q2 neural network
RMSE R2 RMSE R2

1 0.0009728 0.9999998 0.0007442 0.9999997
2 0.0025035 0.9999989 0.0016849 0.9999984
3 0.0043639 0.9999966 0.0028137 0.9999955
4 0.0063865 0.9999926 0.0041306 0.9999904
6 0.0106713 0.9999794 0.0071915 0.9999708
8 0.0151694 0.9999584 0.0106399 0.9999361
10 0.0198856 0.9999286 0.0144571 0.9998821
15 0.0324679 0.9998098 0.0239938 0.9996751

(NNMPC-TLBO), the Neural Network Model Predictive Control based on PSO

(NNMPC-PSO), the PID, and the computed torque controller. Each simulation is

run in MATLAB using an Intel Core (TM) i7 3.60 GHz machine.

The NNMPC-TLBO and the NNMPC-PSO are designed in a similar way to the

proposed controller, with the only di�erence being the use of a di�erent optimization

algorithm, namely the TLBO and PSO algorithms. For all controllers, τ1 ∈ [−15, 15],
τ2 ∈ [−7, 7], and the sampling time is Ts = 0.01 second.

The predictive controllers have the control block diagram shown in Figure 2.5

with the following parameters: N1 = 1, N2 = 4, Nu = 1, R = 4 × 10−4, smax = 10,

Ps = 8, and D = Nu.

Figure 2.5: Robot manipulator control block diagram

The parameters of the PSO are given in Table 2.3. The values of AOA parameters

that are provided in Table 2.4 are those suggested by [162] for engineering problems.
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Table 2.3: PSO parameters

Parameter Value Parameter Value
c1 2 w 1
c2 2 wd 0.99

Table 2.4: AOA parameters

Parameter Value Parameter Value
C1 2 C4 0.5
C2 6 lb 0.1
C3 2 ub 0.9

The PID parameters are optimized using the PSO algorithm, where the RMSE

is used as a cost function, and the parameters of the controller are the attributes of

each particle. The optimized PID parameters are given in Table 2.5.

Table 2.5: PID controller parameters

Parameter Value Parameter Value
kp1 40 kp2 50
ki1 12 ki2 20
kd1 0.03 kd2 0.01

The CTC uses the control law given by the following equation:

[
τ1

τ2

]
=

[
M11 M12

M21 M22

]([
¨ref 1

¨ref 2

]
+Kv

[
˙ref 1 − q̇1
˙ref 2 − q̇2

]
+Kp

[
ref1 − q1
ref2 − q2

])

+

[
V1

V2

]
+

[
F1

F2

]
+

[
G1

G2

] (2.26)

where ref1 and ref2 are the reference trajectories, Kv = 59.7, and Kp = 651.4 are

obtained using the PSO algorithm.

With no output constraints, Figures 2.6 and 2.7 respectively show the results for

the multi-step and the sinusoidal trajectories.

The average Mean Absolute Error (MAE), Mean Squared Error (MSE), and

RMSE over a thousand runs in both cases are listed in Table 2.6. The average

computing time is presented in Table 2.7.
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Figure 2.6: Control performance of the robot with multi-step trajectories, without

constraints
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Figure 2.7: Control performance of the robot with sinusoidal trajectories, without

constraints
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Table 2.6: MAE, MSE, and RMSE values without constraints

Controller MAE MSE RMSE

M
ul
ti
-s
te
p

tr
aj
ec
to
ry

NNMPC-AOA 8.505e-2 5.647e-2 3.330e-1

NNMPC-TLBO 9.640e-2 7.163e-2 3.748e-1
NNMPC-PSO 1.004e-1 6.461e-2 3.554e-1
PID 2.415e-1 2.698e-1 7.066e-1
CTC 2.418e-1 1.749e-1 5.808e-1

Si
nu
so
id
al

tr
aj
ec
to
ry

NNMPC-AOA 6.680e-3 4.037e-5 8.588e-3

NNMPC-TLBO 6.781e-3 4.041e-5 8.591e-3
NNMPC-PSO 9.496e-3 4.237e-5 8.837e-3
PID 1.436e-2 1.597e-4 1.731e-2
CTC 8.638e-2 1.196e-2 1.467e-1

Table 2.7: NNMPC-AOA, NNMPC-TLBO, and NNMPC-PSO computing time without

constraints

Controller
Computing time (ms)

Multi-step trajectory Sinusoidal trajectory
NNMPC-AOA 2.068 2.073
NNMPC-TLBO 4.038 4.043
NNMPC-PSO 1.925 1.926

It is clear from Figure 2.6 that the NNMPC-AOA, NNMPC-TLBO, and NNMPC-

PSO have faster settling times than the PID and CTC techniques since the predictive

controllers anticipate the changes in reference and proactively change the output.

Tables 2.6 and 2.7 show that the proposed NNMPC-AOA has a better tracking

accuracy than the other controllers and maintains a reasonable computing time,

compared to the NNMPC-PSO that is the fastest in execution, and it remains

within the limit of the sampling time (10 ms).

The NNMPC-AOA is remarkably faster than the NNMPC-TLBO and slightly

slower than the NNMPC-PSO, which was expected since AOA uses more equations

to update the solution compared to only two equations in the case of PSO.

In another simulation, the overshoot is limited to 1% in the case of multi-step

trajectory for the predictive controllers. Equation (2.11) is used with ϵ1 = ϵ2 = 100.

Figure 2.8 shows the simulation results, and Table 2.8 gives the obtained average

values of MAE, MSE, RMSE, and computing time over a thousand runs.

It can be noticed that the NNMPC-PSO exhibits a noticeable degradation in

performance. At the same time, the NNMPC-AOA outperforms the NNMPC-TLBO
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Figure 2.8: Control performance of the robot with constraints

Table 2.8: MAE, MSE, RMSE values, and computing time with constraints

Controller NNMPC-AOA NNMPC-TLBO NNMPC-PSO
MAE 8.902e-2 9.629e-2 1.399e-1
MSE 5.781e-2 7.179e-2 7.387e-2
RMSE 3.372e-1 3.754e-1 3.787e-1
Computing time (ms) 2.078 4.070 1.974

in terms of tracking accuracy with a shorter computing time that is still within the

limit of the sampling time.

2.4.4 Performance analysis of the controller

To evaluate the e�ectiveness of the proposed controller, various scenarios are sim-

ulated to analyze its ability to reject external disturbances and its sensitivity to

measurement noise.

In the �rst scenario, various loads, which are di�erent from those of the nominal

state, are considered to be a disturbance to the system. The respective metrics

across thousand iterations in the case of sinusoidal and multi-step trajectories are

given in Table 2.9.

It could be noticed that the values of errors remain within acceptable limits, as
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Table 2.9: MAE, MSE, and RMSE values for di�erent loads

Weight (kg) MAE MSE RMSE

M
ul
ti
-s
te
p

tr
aj
ec
to
ry

mL= 0.000 8.596e-2 3.064e-2 2.392e-1
mL= 0.150 7.731e-2 4.321e-2 2.896e-1
mL= 0.300 9.382e-2 6.267e-2 3.511e-1
mL= 0.430 1.215e-1 8.299e-2 4.051e-1
mL= 0.567 1.461e-1 9.993e-2 4.455e-1

Si
nu
so
id
al

tr
aj
ec
to
ry

mL= 0.000 1.316e-2 1.434e-4 1.514e-2
mL= 0.150 7.814e-3 5.260e-5 9.624e-3
mL= 0.300 7.528e-3 4.802e-5 9.279e-3
mL= 0.430 1.315e-2 1.369e-4 1.490e-2
mL= 0.567 1.836e-2 2.820e-4 2.092e-2

they do not signi�cantly exceed the values presented in Tables 2.6 and 2.8. The

controller is capable of rejecting disturbances caused by weight-lifting variations

within the considered range in the simulation.

Figures 2.9 and 2.10 shows the system's response when the end e�ector lifts a

mass of mL = 0.567 kg, where the perturbation is more signi�cant.

Figure 2.9: Control performance of the robot with a load mL = 0.567 kg in the case of

multi-step trajectories

In the second simulation, various additive input and output perturbations are

considered. The amplitude of the input signal is limited by adding -20% and -50%

of the maximum value of the control signal within the intervals of [1.5 2.5] seconds
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Figure 2.10: Control performance of the robot with a load mL = 0.567 kg in the case of

sinusoidal trajectories

for the multi-step trajectories and [3.5 6.5] seconds for the sinusoidal trajectories.

Additionally, the output signal is disturbed by adding an increment of 50%

between [1.5 2.5] seconds for the multi-step trajectories and [3.5 6.5] seconds for

the sinusoidal trajectories.

In the last simulation, a measurement noise is added to the outputs throughout

the entire duration of the simulation. Speci�cally, a white noise with an amplitude

of 5 degrees (equivalent to 0.0873 rad), a mean value of 8.93e-4 rad, and a variance

σ2 = 0.0026 rad2.

Table 2.10 gives the values of the di�erent metrics over 1000 runs for both

trajectories in each scenario.

Table 2.10: MAE, MSE, and RMSE values for di�erent perturbations

simulation MAE MSE RMSE

M
ul
ti
-s
te
p

tr
aj
ec
to
ry -20% input disturbance 9.598e-2 6.318e-2 3.529e-1

-50% input disturbance 1.165e-1 7.776e-2 3.925e-1
+50% output disturbance 4.244e-1 9.097e-2 4.244e-1
Measurement noise 1.704e-1 7.247e-2 3.747e-1

Si
nu
so
id
al

tr
aj
ec
to
ry -20% input disturbance 9.126e-3 6.238e-5 1.096e-2

-50% input disturbance 1.796e-2 3.350e-4 2.587e-2
+50% output disturbance 2.648e-2 1.151e-2 1.433e-1
Measurement noise 6.184e-2 2.888e-3 7.583e-2
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Figures 2.11 and 2.12 shows the system's response with measurement noise.

Figure 2.11: Control performance of the robot with measurement noise in the case of

multi-step trajectories

Figure 2.12: Control performance of the robot with measurement noise in the case of

sinusoidal trajectories

Despite the di�erent types of perturbations and noise introduced to the sys-

tem, the proposed controller demonstrated acceptable robustness against external
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disturbances and measurement noise.

2.5 Experimental Study on Three DoF Robot

2.5.1 Three DoF robot description

The three degrees of freedom arm manipulator shown in the experimental setup

in Figure 2.13 is used to demonstrate the control performances of the proposed

NNMPC-AOA controller. To control the position of the electromagnet end e�ector,

two 24V 12RPM DC motors provide the rotational movements in joints 1 and 2, and

a 12V 170RPM DC motor controls the movement along the vertical z-axis. Each

motor is driven using an H-bridge DC motor driver [164]. The arm manipulator has

the structure shown in the diagram in Figure 2.13, and the numerical values of its

parameters are given in Table 2.11.

(a) The experimental setup (b) Robotic arm diagram

Figure 2.13: Three degrees of freedom arm manipulator

Table 2.11: Arm manipulator parameter values

Parameter Value Parameter Value
m1 2.30 kg l2 0.1965 m
m2 0.60 kg l3 0.3400 m
m3 2.36 kg d1 0.1750 m
l1 0.1380 m d2 0.1650 m

The control algorithm is implemented using the TMS320F28335 DSP board,

where q1, q2, and z are measured, and the PWM signals necessary for the motors'

drivers are generated. The control block diagram is illustrated in Figure 2.14.

Three separate neural networks are used to model the behavior of the arm

manipulator, one for each output q1, q2, and z. The motors are driven using the

41



Chapter 2. Constrained Neural Network Model Predictive Control Based on AOA

Figure 2.14: Control block diagram of the arm manipulator

inputs u1, u2, and u3, where the electromagnet is turned on and o� using uem.

The following inverse kinematics model is used to transform the Cartesian coor-

dinates of the end e�ector to angular positions.

q1 = atan2(y, x)− atan2 (l2 sin(q2), l1 + l2 cos(q2))

q2 = acos

(
(x2 + y2)− (l21 + l22)

2l1l2

) (2.27)

2.5.2 Neural network identi�cation of the three DoF robot

Having a separate neural network for each output simpli�es the model's structure

and avoids the complexity of training one network with multiple outputs. To predict

the future angles of joints 1 and 2 (q̂1(k+1) and q̂2(k+1)), the neural networks have

an input layer containing the previous and the current angular positions (q1(k− 1),

q1(k), q2(k − 1), and q2(k)) and inputs (u1(k − 1), u1(k), u2(k − 1), and u2(k)).

Each NN has a hidden layer with 7 neurons and a sigmoid activation function.

The NN used to predict the future vertical position (ẑ(k + 1)) has an input layer

containing the previous and the current vertical position (z(k − 1) and z(k)) and

inputs (u3(k−1) and u3(k)), it includes one hidden layer of 4 neurons with a sigmoid

activation function.

These neural networks are trained and evaluated o�ine using training and test

datasets of 37153 and 9288 samples, respectively. The datasets are generated

by applying random inputs to the arm manipulator with a sample time Ts =

0.02 second. Figure 2.15 gives the validation results of each neural network, and
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Table 2.12 shows the associated RMSE and R2 of the one-step-ahead predictions.

Figure 2.15: Responses of the trained neural network models for the test data

Table 2.12: RMSE and R2 values for the trained models

Neural network RMSE R2

q1 NN model 1.4366e-2 0.99999991106
q2 NN model 1.2291e-2 0.99999993585
z NN model 3.6994e-2 0.99999909945

Table 2.13 gives the RMSE and R2 of the h-step-ahead predictions of the neural

network models.

2.5.3 Controller implementation

The proposed NNMPC-AOA controller is implemented in the DSP board, together

with the NNMPC-TLBO and the NNMPC-PSO, with a sample time of 0.02 second.

A comparative study is carried out using the parameters given in Table 2.14. The

AOA parameters are shown in Table 2.4, and the PSO parameters are gathered in

Table 2.3.

43



Chapter 2. Constrained Neural Network Model Predictive Control Based on AOA

Table 2.13: RMSE and R2 values of the multi-step-ahead predictions of q1 and q2 neural
networks

h
q1 NN q2 NN z NN

RMSE R2 RMSE R2 RMSE R2

1 0.0144 0.9999 0.0123 0.9999 0.0370 0.9999
2 0.0276 0.9999 0.0234 0.9999 0.0354 0.9999
3 0.0439 0.9999 0.0369 0.9999 0.0386 0.9999
4 0.0676 0.9999 0.0557 0.9999 0.0431 0.9999
6 0.2006 0.9999 0.1538 0.9999 0.0535 0.9999
8 0.7863 0.9997 0.5613 0.9999 0.0624 0.9999
10 3.3354 0.9952 2.2398 0.9979 0.0721 0.9999

Table 2.14: Controller parameters

Parameter Value Parameter Value
N1 1 R 0
N2 3 smax 5
Nu 1 Ps 4

2.5.4 Sinusoidal trajectory tracking

In the �rst experiment, each output of the arm manipulator, free of load, is con-

sidered to follow a sinusoidal trajectory. A disturbance is applied in the time

interval [9 29] seconds with an amplitude of −30◦ in joints 1 and 2 and +30

mm in the vertical position. The obtained results are shown in Figure 2.16, and the

corresponding MAE, MSE, RMSE, and the computing time are given in Table 2.15.

Table 2.15: MAE, MSE, RMSE, and computing time values (experimental study)

Controller NNMPC-AOA NNMPC-TLBO NNMPC-PSO
MAE 5.333 5.540 5.639
MSE 106.728 109.328 108.728
RMSE 17.412 17.643 17.546
Computing time (ms) 7.527 13.314 6.549

All controllers have good tracking performances and can reject output distur-

bances. The smallest tracking error is obtained in the case of NNMPC-AOA, which

shows the accuracy of the proposed controller.

The NNMPC-PSO is the fastest controller as it utilizes only two equations to

update the position of the particles. In contrast, the NNMPC-AOA uses several
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Figure 2.16: Tracking of sinusoidal trajectories

equations to update the positions of the objects, resulting in a di�erence of less

than 1 ms in computing time. Nevertheless, the proposed controller o�ers good

tracking accuracy, making it a valuable trade-o�.

2.5.5 Multi-step trajectory tracking

In a second experiment, di�erent weights are picked by the arm manipulator from

an initial position and dropped at a �nal position. These weights are considered as

disturbances since they are not part of the robot's model. The system's outputs are

subjected to constraints limiting the overshoot to 5%, which are implemented via

Equation (2.11) with ϵ1 = ϵ2 = ϵ3 = 100.

The positions with the corresponding weights are given in Table 2.16. Equa-

tion (2.27) is used to calculate the associated references.

The results of this experiment are shown in Figure 2.17, and Table 2.17 gives

the MAE, MSE, RMSE, and the computing time.

From the obtained results, it can be concluded that the proposed NNMPC-AOA

controller has the smallest tracking error compared to the other controllers, can
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Table 2.16: Positions and weights of the used loads

Weight (kg) Initial position (x, y) (m) Final position (x, y) (m)
Load 1 0.3 (0.2,−0.25) (0.2, 0.25)

Load 2 0.4 (0.2,−0.15) (0.2,−0.15)
Load 3 1.4 (0.25,−0.1) (0.25, 0.1)

Figure 2.17: Trajectories of the arm manipulator for picking up loads

Table 2.17: MAE, MSE, RMSE, and computing time values for the case of picking up

loads

Metric NNMPC-AOA NNMPC-TLBO NNMPC-PSO
MAE 11.117 11.442 11.462
MSE 439.834 445.256 441.119
RMSE 33.527 33.744 33.612
Computing time (ms) 7.432 13.172 6.455

reject the considered external disturbances e�ect, and has a reasonable execution

time.
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2.6 Conclusion

A novel predictive control strategy called neural network model predictive control

based on AOA was proposed in this chapter. The model of the MPC was re-

placed with a neural network to predict the system's future behavior; this approach

provided a nonlinear model that can approximate complex systems with a simple

structure. The control actions were computed using the Archimedes optimization

algorithm, an e�cient new algorithm with acceptable computing time. Constraints

were handled during the design process and incorporated into the controller by

means of the objective function and the optimization search space.

It has been shown, both in simulation and experimental studies, that good results

were achieved in terms of robustness and accuracy over conventional controllers and

other optimization-based NNMPC. The controller anticipates the changes in the

reference, and with the help of AOA, it accordingly calculates the appropriate action

while respecting the imposed limits. The proposed NNMPC-AOA controller can be

used to control constrained multi-variable nonlinear systems with fast dynamics.
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Chapter 3

Combination of Neural Network

Model Predictive Controller with

Active Disturbance Rejection

Control

3.1 Introduction

This chapter presents a combination of neural network model predictive controller

with active disturbance rejection control for robot trajectory tracking. This hybrid

strategy showcases the controller's robustness against disturbances and its ability

to reduce tracking errors. A terminal cost stabilizing constraint is introduced to

the optimization problem, which is used to ensure the stability of the controlled

system. The proposed controller enhances the e�ciency and robustness of the model

predictive controller against disturbances. The e�ciency of the suggested control

approach is demonstrated through experimental validation on a 4 DoF MICO robot

manipulator.

3.2 MICO Robot Description

The MICO arm robot model, a lightweight serial link robotic manipulator, is taken

into consideration in this study. Four rotary joints make up the main structure

of the manipulator robot, which is generally controlled in three dimensions. The

concepts related to Denavit-Hartenberg factors, inverse and forward kinematics,

motion control, and trajectory coordination are illustrated in this section. The

construction of the 4 DoF robot is shown in Figure 3.1.
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Figure 3.1: Schematic of the 4 DOF robot manipulator

The robot dynamics from Equation (2.5) can be represented as follows:

q̈ = −M−1(q) (V (q, q̇)q̇ +G(q) + Ω) +M−1(q)τ (3.1)

where Ω = F (q̇)+ τd+∆h are the friction and the external disturbances in addition

to uncertainties of the system.

The state-space model of the robot is easily derived as follows using the state

variables x1 = q and x2 = q̇ :
ẋ1 = x2

ẋ2 = f (x1, x2,Ω) + bu

y = x1

(3.2)

And f = −M−1(q)(C(q, q̇)q̇ + G(q) + Ω) is a time-varying function, with b =

M−1(q) and u = τ .

The model in Equation (3.2) is discretized with the sampling time Ts, where

t = kTs with k ∈ ℵ, and the following model is obtained:
x1(k + 1) = x2(k)

x2(k + 1) = fd (x1(k), x2(k),Ω) + bu(k)

y(k) = x1(k)

(3.3)

where fd is the discrete function of f . The obtained form is used to design the

controllers.

The FKM is used to calculate the position of the robot's end-e�ector X =

[x, y, z]T , with respect to the base coordination. This calculation requires knowledge

of the robot's homogeneous transformation matrix. The FKM is derived as follows

[165]:
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 x

y

z

 =

 (−c1c2s3 − c1c3s2)(l3 + l4) + c1c2l2

(−c2s1s3 − c3s1s2)(l3 + l4) + s1c2l2

(−c2c3 + s2s3)(l3 + l4)− s2l2 + l1

 (3.4)

where si is sin (qi) and ci is cos (qi).

The IKM, on the other hand, is used to determine the joint angles given the

position of the end e�ector. It essentially solves the inverse problem of the FKM.

The IKM uses the end-e�ector position X derived from the FKM and geometric

equations.

A potential solution for the inverse kinematic model is given by:

 q1

q2

q3

 =


tan−1

(
y
x

)
−(ψ + φ)

sin−1
(

l22+(l3+l4)2−(x2+y2+(z−l1)2)

2l2(l3+l4)

)
 (3.5)

where ψ and φ are given by:
ψ = tan−1

(
z−l1√
x2+y2

)
φ = cos−1

(
R2+l22−(l3+l4)2

2l2R

) (3.6)

Here, R =
√
r2 + (z − l1)2, and r = l2 cos(q2) − (l3 + l4) sin(q2 + q3). Note that

the position of the end e�ector is not impacted by the joint angle q4, it only a�ects

the orientation.

3.3 Trajectory Generation

3.3.1 Task space and joint space

� Task space: The task space is the physical environment where the robot. It is

typically de�ned in Cartesian coordinates and includes the position and orientation

of the robot's end e�ector. Trajectories in the task space describe the desired path

for completing speci�c tasks.

� Joint space: The joint space refers to the con�guration of the robot's joints.

Trajectories in the joint space describe the movement of each joint over time to

achieve the end e�ector's path in the task space.
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3.3.2 Types of trajectories

a) Trapezoidal trajectory: A trapezoidal trajectory is characterized by three

velocity phases: acceleration, constant velocity, and deceleration. The velocity

pro�le resembles a trapezoid, starting with acceleration, followed by a period of

constant velocity, and concluding with deceleration.

b) Polynomial trajectories: Polynomial trajectories o�er smooth transitions by

ensuring continuous velocity and acceleration.

The objective is to �nd a trajectory that connects an initial to a �nal con�gu-

ration while satisfying other speci�ed constraints at the endpoints (velocity and/or

acceleration constraints).

Suppose that at time t0 the joint variable satis�es:{
qi(t0) = qi,0

q̇i(t0) = vi,0
(3.7)

and the �nal values at tf are: {
qi(tf ) = qi,f

q̇i(tf ) = vi,f
(3.8)

In addition, constraints on initial and �nal accelerations may be speci�ed by:{
q̈i(t0) = αi,0

q̈i(tf ) = αi,f

(3.9)

� Cubic trajectory: De�ned by a third degree polynomial, cubic trajectory

ensures that initial and �nal positions and velocities are met. Thus, a trajectory of

a cubic form is given by:

qi(t) = a0 + a1t+ a2t
2 + a3t

3 (3.10)

Then, the desired velocity is given as:

q̇i(t) = a1 + 2a2t+ 3a3t
2 (3.11)

Combining Equations (3.10) and (3.11) with the constraints of Equations (3.7)
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and (3.8) yields four equations with four unknowns:
qi,0 = a0 + a1t0 + a2t

2
0 + a3t

3
0

q̇i,0 = a1 + 2a2t0 + 3a3t
2
0

qi,f = a0 + a1tf + a2t
2
f + a3t

3
f

q̇i,f = a1 + 2a2tf + 3a3t
2
f

(3.12)

This equation always has a unique solution, provided a nonzero time interval is

allowed for the execution of the trajectory.

� Quintic trajectory: It is de�ned by a �fth degree polynomial that also

accounts for initial and �nal accelerations, providing even smoother motion. Thus,

a trajectory of a quintic form is given by:

qi(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.13)

Combining Equation (3.13) with the constraints of Equations (3.7) to (3.9) gives:

qi,0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0

q̇i,0 = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0

αi,0 = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0

qi,f = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

q̇i,f = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

αi,f = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f

(3.14)

This equation also has a unique solution.

3.4 Neural Network Model Predictive Control with

Active Disturbance Rejection Control

3.4.1 NNMPC formulation

In this chapter, the objective function is enhanced by incorporating terminal con-

straints. Based on the cost function described in Equation (2.6) and the prediction

model outlined in Equation (2.9), the NNMPC minimization problem is thus for-

mulated as:

κ(k) = argmin
κ
J

= argmin
κ

[
N2∑

i=N1

[e(k + i | k)]2 + λ

Nu∑
i=0

[∆u(k + i− 1)]2

]
(3.15a)
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Subject to:

e (k +N2 + i) = 0 ∀ i ∈ [1, Ns] (3.15b)

u ≤ u(k + i) ≤ ū ∀ i ∈ [0, Nu − 1] (3.15c)

y ≤ ŷ(k + i | k) ≤ ȳ ∀ i ∈ [N1, N2] (3.15d)

∆u (k +Nu + i) = 0 ∀ i ≥ 0 (3.15e)

where Ns is the constraint horizon, the upper and lower control input limitations are

ū and u, the upper and lower system output limitations are ȳ and y, respectively.

3.4.2 ADRC principle

Robotic systems often face disturbances, such as changes in load, which can a�ect

their performance. The ADRC strategy primarily focuses on real-time estimation

and compensation of all external and internal disturbances.

There are three primary components of ADRC. The �rst component is the

Tracking Di�erentiator (TD), which constructs the reference input and e�ectively

manages the transient process. The second component is the ESO, which is utilized

to estimate the system uncertainties and the total disturbances. Lastly, a feedback

control (typically, a PD controller) is employed to track the references and compen-

sate for the total disturbances. Figure 3.2 illustrates the components of ADRC.

Figure 3.2: Active disturbance rejection control topology

Given the state-space model in Equation (3.2), ADRC estimates and compen-

sates for the total disturbance, denoted as f . An extra state x3 = f is included in

the state-space model to obtain a new augmented model:
ẋ1 = x2

ẋ2 = x3 + bu

ẋ3 = ḟ (t, x1, x2,Ω) = Θ

(3.16)

Considering [x̃1, x̃2, x̃3]
T as the estimation of [x1, x2, x3]

T and considering the �rst

estimation error ẽ1 = x1− x̃1, and assuming that the system is observable, the ESO
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is given as: 
˙̃x1 = x̃2 + g1 (ẽ1)

˙̃x2 = x̃3 + g2 (ẽ1) + b0u

˙̃x3 = g3 (ẽ1)

(3.17)

where g1, g2, and g3 are chosen to approximate the states of the system and its

external disturbances and b0 is the input gain.

3.4.3 NNMPC with ADRC formulation

The control block diagram of the proposed NNMPC-ADRC is shown in Figure 3.3.

Figure 3.3: NNMPC-ADRC block diagram

After the observer is properly con�gured and optimized, its outputs will corre-

spondingly approximate [x1, x2, x3]
T of Equation (3.16). The ADRC utilizes x̃3 to

actively cancel the e�ect of f in real time. The control law of ADRC is de�ned

according to [123]:

uc =
u0 − x̃3
b0

(3.18)

where u0 denotes the output signal of a feedback controller.

In our case, u0 = u(k) is the optimal control computed by the NNMPC at time

k. The combination of NNMPC with ADRC ensures that the robot manipulator

e�ectively manages the disturbances.

Algorithm 2 summarizes the implementation process for the proposed NNMPC-

ADRC.
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Algorithm 2 NNMPC-ADRC algorithm.
1: Set the prediction parameters N1, N2, Nu, and Ns.
2: Set the reference trajectory along the interval [k +N1 k +N2].
3: for k = 0, 1, 2, . . . do
4: Measure the current outputs of the system y(k) and predict the future outputs

ŷ(k).
5: Estimate the total disturbance x̃3 using the ESO.
6: Solve the optimization problem Equation (3.15a) with AOA to determine κ(k).

7: Apply u(k), the �rst control element of the control sequence κ(k), as the input
of the MICO robot.

8: Wait for the following sampling instant k + 1.
9: end for

3.5 Stability analysis of NNMPC-ADRC

Control theory places a great deal of emphasis on ensuring system stability. Several

methods exist on the stability of MPC for both linear and nonlinear dynamic systems

[79,101,110,166,167]. This chapter employs a similar methodology to [168] to ensure

the system's stability.

Assumption 1. It is assumed that there exists a set of feasible solutions for the

optimization problem.

Remark 1. While this work does not deal with the feasibility of the MPC prob-

lem, a numerical algorithm for solving the MPC problem has been presented in

Section 2.3.3.

Assumption 2. Let a constant µe > 0. Given that the training data is repre-

sentative of the system behavior, it is assumed that the prediction error is bounded

|y − ŷ| ≤ µe.

Lemma 1. Let κ(k) be the optimal control at time k computed by solving the problem

in Equation (3.15a), and let Assumptions 1 and 2 hold. The system in Equation (3.3)

achieves asymptotic stability under the following conditions:

(a) Ns = max (ny + 1, nu + 1 +Nu −N2)

(b) λ > 0

Proof. Considering the cost function at time k in Equation (2.6). The sub-optimal

control κ∗(k + 1) at time k + 1 is introduced as:

κ∗(k + 1) = [u(k + 1), . . . , u (k +Nu)] (3.19)
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The associated cost function is de�ned as:

J∗(k + 1) =

N2+1∑
i=N1+1

[e(k + i | k)]2 + λ

Nu∑
i=1

[∆u(k + i)]2 (3.20)

The di�erence between the cost functions J∗(k+ 1) and J(k) can be written as:

J∗(k + 1)− J(k) = [e (k +N2 + 1)]2 + λ [∆u (k +Nu)]
2

− [e (k +N1)]
2 − λ[∆u(k)]2

(3.21)

Taking into account Equations (3.15b) and (3.15e) , we get e (k +N2 + 1) = 0

and ∆u (k +Nu) = 0. Equation (3.21) becomes:

J∗(k + 1)− J(k) = − [e (k +N1)]
2 − λ[∆u(k)]2 < 0 (3.22)

The cost function J is decreasing for λ > 0 and i ≤ N2.

Now, the function J is examined beyond the prediction horizon. For i ≥ N2 + j,

with j ≥ 1, the prediction equation is:

ŷ (k + 1 +N2 + j) = fNN (χ (k +N2 + j))

= fNN

(
[u (k +N2 + j) , . . . , u (k +N2 + j − nu) ,

y (k +N2 + j) , . . . , y (k +N2 + j − ny)]
T
) (3.23)

and:

ŷ (k + 1 +N2 +Ns) = fNN (χ (k +N2 +Ns))

= fNN

(
[u (k +N2 +Ns) , . . . , u (k +N2 +Ns − nu) ,

y (k +N2 +Ns) , . . . , y (k +N2 +Ns − ny)]
T
) (3.24)

Considering the constraint in Equation (3.15b), the prediction error becomes

constant beyond the prediction horizon, which implies that the index of the further

past system output of Equation (3.24) is beyond the prediction horizon, i.e.:

k +N2 +Ns − ny ≥ k +N2 + 1 (3.25)

Which gives:

Ns ≥ ny + 1 (3.26)

Similarly, the index of the further past system input of Equation (3.24) is beyond

56



Chapter 3. Combination of NNMPC with Active Disturbance Rejection Control

the control horizon, i.e.:

k +N2 +Ns − nu ≥ k +Nu + 1 (3.27)

Which gives:

Ns ≥ nu + 1 +Nu −N2 (3.28)

Since Ns must verify either one of Equation (3.27) or Equation (3.28), we chose

the biggest value between the two:

Ns = max (ny + 1, nu + 1 +Nu −N2) (3.29)

The cost function J becomes monotone for all i > N2. This ensures that the

tracking error equality constraints are still true for all i ≥ 1.

Equations (3.23) and (3.24) verify the constraint of Equation (3.15d). In addi-

tion, Equation (3.19) verify the constraint of Equation (3.15c), and by consequence

∆u∗(k + 1) verify Equation (3.15e).

Finally, for the optimal control κ(k+1) at time k+1 we have J(k+1) ≤ J∗(k+1) :

J(k + 1)− J(k) ≤ − [e (k +N1)]
2 − λ[∆u(k)]2 < 0 (3.30)

The cost function monotonically decreases if λ > 0; therefore, the control system

is stable.

Assumption 3. It is assumed that Θ is bounded (Θ < µΘ) and µΘ is a positive

constant.

Remark 2. Assumption 3 is not very restrictive as, for most physical systems, the

rate of change is physically limited.

Lemma 2. Considering the system in Equation (3.16), the ESO in Equation (3.17)

is asymptotically stable if the eigenvalues of the ESO error have negative real parts.

Proof. Let the dynamic of the ESO error be:
˙̃e1 = ẽ2 − g1 (ẽ1)
˙̃e2 = ẽ3 − g2 (ẽ1) + (b− b0)u
˙̃e3 = Θ− g3 (ẽ1)

(3.31)

Take the Luenberger observer with gi(ẽ1) = δiẽ1, i = 1, 2, 3, the system in
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Equation (3.31) could be written on the canonical form:
˙̃e1 = ẽ2 − δ1ẽ1
˙̃e2 = ẽ3 − δ2ẽ1 + (b− b0)u
˙̃e3 = Θ− δ3ẽ1

(3.32)

To make the characteristic polynomial Hurwitz, the poles of the observer are

placed at −w0 :

λ0(s) = s3 + δ1s
2 + δ2s+ δ3 = (s+ w0)

3 (3.33)

where w0 is the observer bandwidth and [δ1, δ2, δ3]
T = [3w0, 3w

2
0, w

3
0]

T .

Given that Assumption 3 is veri�ed, and by choosing w0 > 0, the estimation

error of the ESO in Equation (3.32) is asymptotically stable.

3.6 Experimental Study on MICO Robot

3.6.1 Experimental setup description

The experimental validation of the NNMPC and NNMPC-ADRC on the 4 DoF

robot manipulator, shown in Figure 3.4, is conducted using a MATLAB/SIMULINK

environment with QUARC open-source for real-time implementation. The RD

422/RS485 data acquisition card (DAQ) enables the connection between the robot

and the control software.

The manipulator's dynamic model is provided in Equation (3.1), and its state-

space model is represented in Equation (3.2). The goal is to track the speci�ed

joint-space trajectories of the manipulator.

Figure 3.4: The experimental setup

The IKM is calculated using the DH parameters listed in Table 3.1.
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Table 3.1: MICO robot DH parameters

Joint i αi−1 (rad) ai−1 (m) di (m) qi (rad)
1 0 0 l1 q1

2 −π/2 0 0 q2

3 0 l2 0 q3

4 −π/2 0 l3 + l4 q4

where ai−1 is the distance measured along xi−1 from zi−1 to zi, while αi−1 denotes

the angular twist around xi−1 between zi−1 and zi. The term di refers to the o�set

measured along zi from xi−1 to xi, qi is the rotational angle around zi from xi−1 to

xi, and li is the length of link i.

The physical speci�cations of the MICO robot are detailed in Table 3.2.

Table 3.2: MICO robot parameters

Parameter Value (kg) Parameter Value (m)
m1 0.182 l1 0.2755
m2 0.424 l2 0.2900
m3 0.211 l3 0.1233
m4 0.016 l4 0.0160

3.6.2 NNMPC-ADRC experimental implementation

The NNMPC utilizes parameters in Table 3.3, with torque limits referenced from

[169].

Table 3.3: NNMPC parameters

Parameter Value Parameter Value
N1 1 Nu 1
N2 5 λ 0.0018

The neural network model used in this section incorporates a single hidden layer

of �ve neurons. The activation functions used in the hidden and the output layers

are sigmoid functions and a linear function, denoted by σ1 and σ2, respectively. The

input layer has ny = 1 and nu = 1, and the output layer represents the predicted

joint angles. The sampling time is Ts = 0.02 second.

The NN model is �rst trained o�ine with simulation data using the Leven-

berg�Marquardt algorithm, and then its accuracy is re�ned in the experiment. The

data collected from several tests are used as validation data for the obtained model.

The h-step-ahead prediction performance of the NN model is presented in Table 3.4
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with the RMSE and the coe�cient of determination R2. The accuracy of the NN

model for h = 15 can be seen in Figure 3.5.

Table 3.4: Neural network model multi-step-ahead prediction

Metrics Joints
Multi-step prediction

1 2 4 7 10 15

R2

q1 0.999998 0.999983 0.999861 0.999167 0.997368 0.990817
q2 0.999995 0.999959 0.999652 0.998028 0.994064 0.979339
q3 0.999996 0.999966 0.999705 0.998376 0.995398 0.985874

RMSE
q1 0.000632 0.001747 0.004956 0.012057 0.021482 0.040430
q2 0.000520 0.001437 0.004148 0.009651 0.016378 0.029326
q3 0.000620 0.001744 0.005122 0.011968 0.020231 0.036056

Figure 3.5: Neural network model prediction for h = 15

It could be noticed that even for h = 15, the prediction error remains small,

which indicates that the neural network model has good precision. It is worth

mentioning that joint 4 has been excluded from consideration as the experimental

data was obtained with q4 = 0.

One common strategy for addressing constraints involves reformulating the initial

problem into an unconstrained variant by incorporating a penalty function. The new

cost function is modi�ed as follows:
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J̄(k) = J(k) + ν

Ns∑
i=1

[e(k +N2 + i)]2 (3.34)

with ν = 1 being a positive constant and Ns = max(1 + 1, 1 + 1 + 1− 5) = 2.

The optimization algorithm accounts for all equality and inequality constraints.

The goal is now to solve the unconstrained optimization problem:

κ(k) = argmin
κ
J̄ (3.35)

The parameters of the AOA are given in Table 3.5:

Table 3.5: AOA parameters

Parameter Value Parameter Value
C1 2 lb 0.1
C2 6 ub 0.9
C3 2 smax 15
C4 0.5 Ps 40

3.6.3 Circular trajectory tracking with no disturbances

The experiment results include tracking the joint space trajectories and correspond-

ing errors using both NNMPC and NNMPC-ADRC. The observer gains of the

system are set with w0 = [30, 30, 50, 50]T and b0 = [0.4, 0.00002, 0.0001, 0.001]T .

The desired circular trajectory is generated in the workspace using the cubic

polynomial trajectories (Section 3.3.2) to achieve smooth positions and velocities

pro�les. Then, the joint space desired trajectories are subsequently obtained using

the IKM given in Equation (3.5). Figure 3.6 displays the joint space tracking and

errors for both the NNMPC and NNMPC-ADRC with no disturbances. Table 3.6

provides performance metrics, which are: MAE, MSE, and RMSE.

Table 3.6: Joint tracking error with no disturbances

Joint Controller MAE MSE RMSE

q1 error
NNMPC-ADRC 4.1680e-03 2.6423e-05 5.1403e-03

NNMPC 4.3348e-03 2.8495e-05 5.3381e-03

q2 error
NNMPC-ADRC 4.2667e-03 2.7684e-05 5.2616e-03

NNMPC 4.6112e-03 3.3445e-05 5.7832e-03

q3 error
NNMPC-ADRC 4.7174e-03 3.8350e-05 6.1927e-03

NNMPC 4.9855e-03 4.4012e-05 6.6342e-03
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Figure 3.6: Trajectories tracking and tracking errors at each joint without disturbances

(reference , NNMPC-ADRC , NNMPC )

Both controllers o�er good tracking of the desired trajectories. However, the

NNMPC-ADRC is slightly better than the standard NNMPC. Initial spikes in track-

ing errors for joints 1, 2, and 3 are due to the end e�ector's initial position. In the

absence of disturbances, the NNMPC-ADRC still compensates for the uncertainties

of parameters and unmodeled dynamics.

The required torques by both controllers are compared in Figure 3.7.

Moreover, to assess and demonstrate the ESO's e�ectiveness, the robot's esti-

mated states and the estimation errors are depicted in Figure 3.8. The metrics of

the estimation error of the ESO are detailed in Table 3.7.

Table 3.7: ESO estimation error with no disturbances

Estimation Error MAE MSE RMSE
q1 estimation error 2.0598e-04 7.3877e-07 8.5952e-04
q2 estimation error 4.0538e-04 3.0392e-07 5.5129e-04
q3 estimation error 3.3506e-04 2.2472e-07 4.7405e-04

Figure 3.8 and Table 3.7 show that the ESO has an excellent estimation with

errors not exceeding 0.01 rad for joints 2 and 3. Furthermore, the estimation errors

maintain lower values afterward.

The tracking of the circular trajectory in task space is illustrated in Figure 3.9.

This �gure highlights the capability of the proposed NNMPC-ADRC to maintain

accurate tracking.
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Figure 3.7: Torque signals at each joint without disturbances (NNMPC-ADRC ,

NNMPC )

Figure 3.8: ESO estimations and errors at each joint without disturbances (NNMPC-

ADRC , ESO , ESO error )
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Figure 3.9: Trajectory tracking in task space without disturbances (reference ,

NNMPC-ADRC , NNMPC )

3.6.4 Case of step disturbances

An input step disturbance τd with an amplitude of 2 N.m is added to the control

input at each joint during the interval [15 45] second. Figure 3.10 depicts the joint

space tracking and errors with the step disturbances, and Table 3.8 provides the

metric values for both controllers.

Figure 3.10: Trajectories tracking and tracking errors at each joint with step disturbances

(reference , NNMPC-ADRC , NNMPC )

The NNMPC-ADRC outperforms the NNMPC, o�ering more robust disturbance

rejection.

64



Chapter 3. Combination of NNMPC with Active Disturbance Rejection Control

Table 3.8: Joint tracking error with step disturbances

Joint Controller MAE MSE RMSE

q1 error
NNMPC-ADRC 2.5836e-03 2.0424e-05 4.5193e-03

NNMPC 1.0601e-02 1.6466e-04 1.2832e-02

q2 error
NNMPC-ADRC 4.3816e-03 3.2909e-05 5.7367e-03

NNMPC 4.4396e-03 3.4248e-05 5.8522e-03

q3 error
NNMPC-ADRC 5.2646e-03 4.6643e-05 6.8296e-03

NNMPC 5.4468e-03 4.9235e-05 7.0168e-03

Figure 3.11 compares the required torques for disturbance rejection, indicating

that NNMPC-ADRC demands less energy than NNMPC. Table 3.9 presents the

ESO estimation error metrics, showing excellent estimation even in the presence of

disturbances.

Figure 3.11: Torque signals at each joint with step disturbances (NNMPC-ADRC ,

NNMPC )

The task space tracking in the presence of a step disturbance is shown in Fig-

ure 3.12, demonstrating the NNMPC-ADRC's robustness against step disturbances.

The experimental �ndings showcase the success of the suggested NNMPC-ADRC

in the tracking of desired trajectories and disturbance rejection, outperforming

the standard NNMPC and demonstrating its potential for practical applications

in robotic control systems.
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Table 3.9: ESO estimation error with step disturbances

Estimation Error MAE MSE RMSE
q1 estimation error 2.8320e-04 3.6136e-07 6.0114e-04
q2 estimation error 8.8671e-04 1.3803e-06 1.1749e-03
q3 estimation error 3.4019e-04 2.5079e-07 5.0079e-04

Figure 3.12: Trajectory tracking in task space with step disturbances (reference ,

NNMPC-ADRC , NNMPC )

3.6.5 Case of sinusoidal disturbances

The experimental setup also tests the controllers' ability to reject sinusoidal distur-

bances. The disturbance τd is modeled as a sinusoidal function of 2 N.m magnitude

and a frequency of 1 rad/s, and it is added to the control input throughout the

entire duration of the experiment. Figure 3.13 presents the joint space tracking and

errors for NNMPC and NNMPC-ADRC under these sinusoidal disturbances, while

Table 3.10 provides the comparative metrics for their performance.

Table 3.10: Joint tracking error with sinusoidal disturbances

Joint Controller MAE MSE RMSE

q1 error
NNMPC-ADRC 5.8066e-03 5.7841e-05 7.6053e-03

NNMPC 8.3067e-03 9.3175e-05 9.6527e-03

q2 error
NNMPC-ADRC 4.3444e-03 4.7505e-05 6.8924e-03

NNMPC 4.7240e-03 5.8027e-05 7.6176e-03

q3 error
NNMPC-ADRC 6.0805e-03 5.8027e-05 7.6176e-03

NNMPC 6.1981e-03 6.0598e-05 7.7845e-03

The obtained results, as depicted in Figure 3.13 and quanti�ed in Table 3.10,
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Figure 3.13: Trajectories tracking and tracking errors at each joint with sinusoidal

disturbances (reference , NNMPC-ADRC , NNMPC )

demonstrate that NNMPC-ADRC signi�cantly outperforms NNMPC in terms of

disturbance rejection. Figure 3.14 compares the torques that both controllers re-

quire, illustrating that NNMPC-ADRC operates with greater energy e�ciency.

Figure 3.14: Torque signals at each joint with sinusoidal disturbances (NNMPC-ADRC

, NNMPC )
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Table 3.11 details the metrics of the estimation error of the ESO, con�rming

that despite the presence of external sinusoidal disturbances, the estimation remains

precise.

Table 3.11: ESO estimation error with sinusoidal disturbances

Estimation Error MAE MSE RMSE
q1 estimation error 3.1710e-04 4.9185e-07 7.0132e-04
q2 estimation error 9.2547e-04 1.3921e-06 1.1799e-03
q3 estimation error 3.4193e-04 2.2862e-07 4.7814e-04

Task space tracking of the circular trajectory under the sinusoidal disturbances

is shown in Figure 3.15. The experimental outcomes validate that NNMPC-ADRC

maintains good tracking performance.

Figure 3.15: Trajectory tracking in task space with sinusoidal disturbances (reference

, NNMPC-ADRC , NNMPC )

3.7 Conclusion

This study has demonstrated the capabilities of neural network model predictive

control with active disturbance rejection control in trajectory tracking of a four

DoF robot manipulator. The stability of the proposed NNMPC-ADRC strategy

is guaranteed by integrating a terminal cost stabilizing constraint to the optimiza-

tion problem. Compared to NNMPC, the proposed NNMPC-ADRC has shown

signi�cant improvements in tracking performance and disturbance rejection. The

deployment of a neural network as the prediction model of the robot dynamics

has reduced the computation time and improved the model accuracy. Additionally,

68



Chapter 3. Combination of NNMPC with Active Disturbance Rejection Control

the ADRC's extended state observer has e�ectively estimated and compensated for

total disturbances, enhancing the system's robustness against external disturbances.

Experimental validation on the 4 DoF MICO robot manipulator has con�rmed the

practical applicability of the proposed control strategy.
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Chapter 4

Advanced Control Techniques:

Prescribed Performance NNMPC

and Fuzzy CTC

4.1 Introduction

This chapter discusses two advanced control techniques for robot manipulators: pre-

scribed performance NNMPC and fuzzy CTC. The �rst technique incorporates the

prescribed performance function into the control law by integrating the transformed

error in the optimization problem of the NNMPC. This combination maintains the

tracking error within prede�ned limits, enhancing the system's transient response.

Simulation on a four DoF MICO robot emphasizes the superior e�ciency of the

proposed controller, demonstrating reduced overshoot, small settling time, and an

improved tracking of desired set-points. The second technique improves the com-

puted torque controller through the addition of a nonlinear element, that is, the fuzzy

controller, which compensates for the limitation of the CTC control action. The

Archimedes optimization algorithm is utilized to optimize the FCTC parameters.

The performances of the proposed controller are compared to those of the optimized

CTC and PID controllers for di�erent trajectories of a six DoF PUMA robot.

4.2 Prescribed Performance Neural Network Model

Predictive Control

The �rst part of this chapter presents the simulation of the prescribed performance

neural network model predictive control to control the 4 DoF MICO robot presented

in Section 3.2 that has the model in Equation (3.1).
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4.2.1 Prescribed performance function

In the literature, the theory of prescribed performance control has been utilized ex-

tensively [170] and is notably recognized for its e�cacy in ensuring a system's steady-

state and transient performance. The prescribed performance function should be a

decreasing positive function [151], and it is usually an exponential function that has

the following expression:

η(t) = (η0 − η∞)e−γt + η∞ (4.1)

The di�erence vector between the desired and actual values of the robot positions

at time t is called the error e(t). The minimal speed of convergence is de�ned by

γ > 0, the initial value of the PPF for t = 0 is η0, and the maximum permitted

steady-state error, which cannot be zero η0 > η∞ > 0, is the maximum value of

PPF de�ned by η∞ for t → ∞. Figure 4.1 shows the recommended exponential

performance function graphically. where the error's absolute value is | e(t) |, and
the error's initial value is e(0).

Figure 4.1: Graphical presentation of the prescribed performance function η(t)

The goal of the control law is to keep the error e(t) in the limits of the PPF, so

the following condition needs to be satis�ed:

−η(t) < e(t) < η(t) (4.2)

Since η(t) is all the time greater than zero, Equation (4.2) can be divided by η(t)

and give the following expression:

−1 < e(t)

η(t)
< 1 (4.3)

Two techniques can be used to apply the PPF in the control law and to modify

the constrained control law in Equation (4.2) to the unconstrained one. These

techniques are the Barrier Lyapunov function and the transformed error. In this

71



Chapter 4. Advanced Control Techniques: PP-NNMPC and FCTC

chapter, the transformed error ε(t) is adopted with ε(t) ∈ ℜ, and it is de�ned as:

ε(t) = S−1

(
e(t)

η(t)

)
(4.4)

While the error-transformed function S(ε) has been chosen as follows:

S(ε) =
e(t)

η(t)
(4.5)

Equation (4.2) should be satis�ed by S(ε), meaning that: −1 < S(ε) < 1.

An alternative function satisfying the characteristics of S(ε) is chosen as [143,

144]:

S(ε) =
eε − e−ε

eε + e−ε
(4.6)

Upon computing the function S(ε) inverse, the transformed error is expressed as

follows:

ε(t) =
1

2
ln

( e(t)
η(t)

+ 1

1− e(t)
η(t)

)
(4.7)

To ensure the tracking control with the PPF, the transformed error dynamic

must be stabilized.

4.2.2 PP-NNMPC formulation

Using the mentioned transformed error in Equation (4.7) to update the minimization

problem of NNMPC in Equation (3.15a), we get:

κ(k) = argmin
κ
Jε

= argmin
κ

[
N2∑

i=N1

[ε(k + i | k)]2 + λ

Nu∑
i=0

[∆u(k + i− 1)]2

]
(4.8)

Subject to:
ε (k +N2 + i) = 0 ∀ i ∈ [1, Ns]

u ≤ u(k + i) ≤ ū ∀ i ∈ [0, Nu − 1]

y ≤ ŷ(k + i | k) ≤ ȳ ∀ i ∈ [N1, N2]

∆u (k +Nu + i) = 0 ∀ i ≥ 0

Figure 4.2 represents the control block diagram of the proposed PP-NNMPC.

4.2.3 Simulation on MICO robot

The design of NNMPC for the 4 DoF robot relies on two essential components:

the �rst one is the neural network employed as a predictive model, and the second
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Figure 4.2: PP-NNMPC block diagram

one is the optimization algorithm that computes the control signal. The neural

network architecture comprises one hidden layer of �ve neurons and outputs the

robot's predicted joint angles. Table 4.1 gives the coe�cient of determination R2

and the root mean squared error of the multi-step prediction of the trained model.

The sampling time of the system is set to Ts = 0.02 second. Moreover, The NNMPC

and AOA parameters are given in Tables 3.3 and 3.5.

Table 4.1: Evaluation of the neural network prediction model

Metrics Joints
Multi-step prediction

1 2 3 5 10

R2

q1 0.999992 0.999942 0.999808 0.999155 0.994567
q2 0.999970 0.999815 0.999453 0.997912 0.989117
q3 0.999968 0.999805 0.999432 0.997865 0.989202
q4 0.999990 0.999930 0.999761 0.998873 0.991643

RMSE

q1 0.003969 0.010584 0.019198 0.040291 0.102209
q2 0.007263 0.018086 0.031088 0.060710 0.138269
q3 0.007529 0.018503 0.031590 0.061246 0.137568
q4 0.005794 0.015580 0.028721 0.062343 0.168985

The NNMPC de�ned in Equation (3.15a) and the PP-NNMPC de�ned in Equa-

tion (4.8) are designed using the same parameters and λ = 2 e− 6. Both controllers

use the same neural network as a prediction model and solve the optimization

problem using the Archimedes optimization algorithm. The transformed error in

Equation (4.7) used for the PP-NNMPC for each joint is:

εi(k) =
1

2
ln

( ei(k)
ηi(k)

+ 1

1− ei(k)
ηi(k)

)
∀i = 1, . . . , n (4.9)
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where: 

η1(k) = exp(−kTs/5) + 0.1

η2(k) = exp(−kTs/4) + 0.15

η3(k) = 1.2 exp(−kTs/5) + 0.2

η4(k) = exp(−kTs/6) + 0.15

(4.10)

The trajectory tracking performances of both controllers are evaluated through

simulation on the four DoF robot. Figure 4.3 presents the tracking in joint space with

the initial joints position [-0.53 -0.46 -0.26 -0.5]T (deg), and the applied torques are

shown in Figure 4.4. Both controllers provide good tracking performances. However,

the proposed PP-NNMPC showcases a faster and better transient response than the

NNMPC.

Figure 4.3: Tracking performances in joint space (reference , PP-NNMPC ,

NNMPC )

Table 4.2 gives the values of overshoot, the 2% settling time, the mean absolute

error for each joint, and the mean square error. From Figure 4.3 and Table 4.2, it

is clear that the PP-NNMPC assures a faster response than NNMPC with minimal

overshoot and error.
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Figure 4.4: Torque signals at each joint (PP-NNMPC , NNMPC )

Table 4.2: Performance metrics of the PP-NNMPC and NNMPC

Performance Joint PP-NNMPC NNMPC

Overshoot (%)

1 01.66% 25.56%
2 01.93% 03.08%
3 00.10% 00.96%
4 34.49% 80.36%

2% settling time (s)

1 0.64 1.02
2 0.70 1.06
3 0.78 0.98
4 0.80 1.00

MSE

1 9.7724e-04 1.0164e-03
2 1.6587e-03 3.5506e-03
3 2.6061e-03 3.0035e-03
4 6.5515e-04 1.2608e-03

MAE

1 3.7700e-03 4.0825e-03
2 4.7369e-03 7.6247e-03
3 5.6273e-03 6.7197e-03
4 2.6421e-03 4.3635e-03
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Figure 4.5 shows the tracking of a circular reference trajectory in the workspace

for both controllers.

Figure 4.5: 3D representation of the tracking performances

Figure 4.6 shows the trajectories tracking of both controllers in the workspace.

It is clear that the convergence of the proposed PP-NNMPC is faster with minimal

overshoot, which demonstrates that it outperforms the NNMPC.

Figure 4.6: Tracking performances in workspace (reference , PP-NNMPC ,

NNMPC )
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4.3 Fuzzy Computed Torque Control

The second part of this chapter presents the simulation of the fuzzy computed torque

control on the 6 DoF PUMA robot.

4.3.1 PUMA robot description

The considered PUMA 560 robot has the con�guration shown in Figure 4.7.

Figure 4.7: PUMA 560 with the attached coordinate frames

The Denavit-Hartenberg parameters of the PUMA manipulator shown in Ta-

ble 4.3 are given in [171].

Table 4.3: DH values for PUMA 560

Link qi (rad) αi (rad) ai (m) di (m)
1 q1 −π/2 0 0
2 q2 0 0.4318 0.2435
3 q3 π/2 −0.0203 −0.0934
4 q4 −π/2 0 0.4331
5 q5 π/2 0 0
6 q6 0 0 0
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The following dynamic model of the six degrees of freedom PUMA robot can be

found in [171]:

M(q)



q̈1

q̈2

q̈3

q̈4

q̈5

q̈6


+B(q)[q̇q̇] +D(q)



q̇21

q̇22

q̇23

q̇24

q̇25

q̇26


+G(q) =



τ1

τ2

τ3

τ4

τ5

τ6


(4.11)

The vector of velocity products is:

[q̇q̇] = [q̇1q̇2, q̇1q̇3, . . . , q̇1q̇6, q̇2q̇3, q̇2q̇4, . . . , q̇4q̇6, q̇5q̇6]
T (4.12)

where B(q) is the Coriolis matrix of 6×15 dimension and D(q) is for the centrifugal

forces of 6× 6 dimension.

The input variables of the dynamic model are the torques applied at each joint

(τ1, τ2, τ3, τ4, τ5, and τ6, respectively). This section addresses the control of the end

e�ector position; thus, only the �rst three joints are considered, and the orientation

of the end e�ector is �xed.

4.3.2 Computed torque controller

The CTC is an e�cient controller that has been applied in robotics. Although

it requires a knowledge of the system parameters, many researchers have proven

that the parameters of robots can be measured and calculated, where a model with

satisfactory �delity could be obtained [171�173]. The control law of the CTC is

given by the following equation:

τ =M(q)
(

¨ref +Kvė+Kpe
)
+B(q)[q̇q̇] +D(q)

[
q̇2
]
+G(q) (4.13)

The parameters of CTC are optimized using the AOA.

4.3.3 Fuzzy CTC formulation

The proposed fuzzy computed torque controller uses the same law as the CTC

and adds a fuzzy controller to the output of the CTC. The motivation for this

modi�cation is to enhance the control performance of the CTC.

The fuzzy controller is designed according to the standard design of fuzzy con-

trollers, which consists of fuzzi�cation, fuzzy inference, and defuzzi�cation. The

inputs of this controller are the error e and the change rate of the error ∆e. The
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fuzzy system output is then added to the CTC to form the control action u of FCTC.

Figure 4.8 gives the control diagram of the proposed controller.

Figure 4.8: PUMA 560 manipulator control block diagram using the FCTC

a) Fuzzi�cation:

The linguistic variables (the inputs e and ∆e) can get values as Negative (N),

Zero (Z), or Positive (P). The membership functions of each input are shown in

Figure 4.9.

Figure 4.9: Membership functions of the inputs

b) Fuzzy inference:

The fuzzy rules used for this controller are shown in Table 4.4. The output

linguistic values are: negative big, negative small, zero, positive small, and positive

big (NB, NS, Z, PS, and PB, respectively).

79



Chapter 4. Advanced Control Techniques: PP-NNMPC and FCTC

Table 4.4: Fuzzy rules

aaaaaaa
e ∆e N Z P

N NS NS NB
Z Z Z Z
P PB PS PS

c) Defuzzi�cation:

This fuzzy controller uses the center of gravity defuzzi�cation method to compute

its output. The membership functions of the output are shown in Figure 4.10.

Figure 4.10: Membership functions of the output

4.3.4 Simulation on PUMA robot

The fuzzy CTC is evaluated in this section through simulation using the dynamic

model of the robot manipulator PUMA 560. A spiral and square trajectories are

considered for the end e�ector, where the desired trajectories for each joint are

obtained using the inverse kinematic model. The performances of the proposed

controller are evaluated against the optimized CTC and PID controllers.

The Archimedes optimization algorithm is used to tune the parameters of each

controller by minimizing the RMSE between the desired reference trajectory and the

obtained angle at each joint. The parameters of AOA used to tune all the controllers

are summarized in Table 4.5. The optimized parameters of the controllers are: PID:

kp = 1000, ki = 1000 and kd = 37.5; CTC: Kv = 112.5 and Kp = 1000; FCTC:

Kv = 107 and Kp = 1000.

In the �rst simulation, a spiral trajectory that ends with a circle is considered.

Figure 4.11 shows the obtained joint angles' results for the PID, the CTC, and
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Table 4.5: RMSE values for a spiral trajectory

parameter value parameter value
C1 2 C4 0.5
C2 6 Ps 20
C3 2 smax 15

the FCTC. The end e�ector's trajectory in the Cartesian coordinates is shown in

Figure 4.12.

Figure 4.11: Robot angles in the case of the spiral trajectory

Figure 4.12: Tracking of the spiral trajectory
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Table 4.6 gives the mean values calculated over 100 runs of the RMSE between

the reference and the obtained angles and between the reference and the obtained

space position.

Table 4.6: RMSE values for the spiral trajectory

Metrics PID CTC FCTC
RMSE of angles 3.0669e-2 1.1734e-2 1.0473e-2

RMSE of positions 1.6341e-2 4.9660e-3 4.5806e-3

In a second simulation, a square trajectory is used. The obtained joint angles

are shown in Figure 4.13.

Figure 4.13: Robot angles in the case of the square trajectory

Figure 4.14 shows the corresponding tracking error in Cartesian space. For each

controller, the RMSE values between the desired and obtained angles and between

the desired and obtained positions in the operational space for 100 runs of the control

algorithm are given in Table 4.7.

Table 4.7: RMSE values for the square trajectory

Metrics PID CTC FCTC
RMSE of angles 1.9824e-2 5.5832e-3 3.8070e-3

RMSE of positions 1.1762e-2 2.3542e-3 1.8035e-3

It could be noticed from Figures 4.11 and 4.13 that the tracking error of the PID

is signi�cant. In contrast, the error of the proposed FCTC is smaller than the CTC
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Figure 4.14: Tracking of the square trajectory

and PID controllers. Both CTC and FCTC maintain a near-zero error. Figures 4.12

and 4.14 show the tracking performances in Cartesian space; it could be noticed that

the PID controller is less accurate than the CTC and FCTC in the case of a spiral

trajectory. The FCTC has a minor tracking error, whereas the CTC maintains good

performances in both cases. Tables 4.6 and 4.7 show that the proposed controller

o�ers better tracking over the PID controller and the CTC for both trajectories.

4.4 Conclusion

In this chapter, the prescribed performance neural network model predictive control

was designed for the four DoF robot manipulator control. The proposed approach

ensures that the error stays within prede�ned limits, which enhances the transient

response of the system. Moreover, with the use of neural networks and optimization

techniques in the MPC formulation, the optimization problem is simpli�ed, and the

computational burden is reduced. The control performance of the proposed PP-

NNMPC was compared to that of NNMPC. Simulation results have shown that the

proposed controller ensures faster transient response with a small overshoot and

error, both in joint space and workspace. Implementing the PP-NNMPC controller

through experimentation on a real four DoF arm robot will be the primary goal of

future research.

A fuzzy computed torque controller was also introduced in this chapter to control

the robot manipulator PUMA 560, where a fuzzy controller was used in parallel to

the computed torque controller. The Mamdani-type fuzzy inference system with

two inputs and one output was used to enhance the performance of the CTC.
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The parameters of the suggested controller were optimized using the Archimedes

optimization algorithm; this optimizer was chosen since it has been proven that it

provides superior results over multiple other optimization algorithms. The FCTC

was then used to control the position of the end e�ector of the PUMA 560 robot ma-

nipulator. Comparisons between the optimized CTC, the optimized PID controller,

and the FCTC were conducted for di�erent trajectories. The obtained results have

shown that the proposed controller provided better tracking performances than the

other controllers.
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Directions

The main objective of this thesis was to develop and implement intelligent control

techniques for robot manipulators, using advanced control methods such as neural

network model predictive control, active disturbance rejection control, prescribed

performance control, and fuzzy logic control. The thesis presented four novel ap-

proaches to enhance the performance, robustness, and adaptability of robot manip-

ulators control, and validated them through simulation and experimental studies.

The �rst controller integrated the Archimedes optimization algorithm with a

neural network model predictive controller, forming a novel method called NNMPC-

AOA. This method leveraged the meta-heuristic capabilities of AOA to optimize

the control actions and improve the precision and e�ciency of robot control. The

method was simulated on a two DoF robot manipulator and implemented on a

three DoF SCARA robot. The obtained results demonstrated the superiority of

NNMPC-AOA over traditional methods, such as PID controller and CTC, and over

similar approaches such as NNMPC-PSO and NNMPC-TLBO, in terms of tracking

accuracy, computational time, and constraint handling.

The second control technique combined a neural network model predictive con-

troller with active disturbance rejection control, forming a hybrid strategy called

NNMPC-ADRC. This strategy showcased the controller's robustness against dis-

turbances and its ability to maintain precise trajectory tracking. Furthermore, the

stability of the proposed controller was ensured using terminal constraints. The

strategy was applied on a four DoF MICO robot and compared with NNMPC. The

obtained results showed that NNMPC-ADRC outperforms the other controllers in

terms of disturbance rejection and tracking error.

The third approach applied prescribed performance control to the neural network

model predictive controller, forming a method called PP-NNMPC. This method

ensured prede�ned performance bounds, contributing to the controller's reliability

and accuracy. The method was applied in simulation on a four DoF MICO robot

and compared with NNMPC. The obtained results indicated that PP-NNMPC

achieved better tracking performance and smaller tracking errors than NNMPC
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while satisfying the prescribed performance function.

The fourth technique combined fuzzy logic with a computed torque controller,

forming a method called FCTC. This method integrated fuzzy logic to adaptively

adjust the control parameters, resulting in enhanced control precision. The method

was applied in simulation on a six DoF PUMA robot and compared with PID and

CTC controllers. The obtained results revealed that FCTC achieved better tracking

performance and smaller tracking errors than the other controllers while handling

the nonlinearities and uncertainties of the robot dynamics.

The main directions for future works are:

� Development of new techniques to apply MPC in experimental setups with

reduced computation time and improved robustness: This involves exploring

more e�cient algorithms and computational methods to speed up the solution

of the MPC problem, as well as implementing robust control into the MPC

formulation.

� Integration of ADRC with other control techniques such as adaptive control

and fractional order-based controllers: This involves developing hybrid control

strategies that combine the robustness and disturbance rejection capabilities of

ADRC with the adaptability and precision of other advanced control methods.

� Exploitation of nonlinear ADRC techniques: This involves extending the ADRC

framework to nonlinear formulation with nonlinear ESO, and investigating the

performance and robustness of the resulting nonlinear ADRC methods.

� Investigation of machine learning techniques for intelligent control: This in-

volves exploring the use of machine learning methods, such as reinforcement

learning and deep learning, to enhance the learning and adaptation capabilities

of the intelligent control techniques. This could potentially lead to more

autonomous and intelligent robot manipulators that can learn from and adapt

to their environment and tasks.
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