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ABSTRACT

This thesis undertook three main studies to detect and diagnose faults in photovoltaic
systems. The first study involved simulating solar panels using a single-diode electrical
circuit model and deriving the mathematical formula that characterizes the circuit’s
behavior.The GPC and EPC algorithms were used to determine the values of the five
parameters in this model, and a database consisting of practical measurements was
employed to assess the effectiveness of these algorithms. In the context of the second
study, a novel method for fault detection and diagnosis in PV systems, based on the
well-known GPC algorithm, was developed. This approach entails partitioning the
training dataset into two hyper spheres, each representing a class, and only calculates
the distances between a new data point and the center of each sphere. This eliminates
the need to calculate distances across the entire dataset, as is required in classical KNN.
In the last achievement of this thesis, another statistical algorithm for the detection
and diagnosis of faults in photovoltaic systems was investigated. In contrast to the
decision tree based on the Gini index, this algorithm computes Euclidean distances
between a chosen point and the entire dataset. It extracts the minimum and maximum
distances for each class, and arranging these distances in ascending order identifies one
particular case among five. The faults are classified based on this identified case. To
ensure the effective operation of both algorithms, four essential features are necessary:
cell temperature, irradiance, as well as current and voltage at the maximum power
point. Three distinct faults were taken into account: short circuit, open circuit, and
partial shading. Finally, these methods were evaluated against a range of machine
learning algorithms, such as SVM, DT, KNN, and RF. The obtained results using the
developed algorithms demonstrated significant enhancements in accuracy, precision,
and recall.

Keywords: single diode model, metaheuristic, GPC, EPC, fault detection and
diagnosis, FDD, machine learning algorithms, statistical approaches.
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RESUME

Dans le cadre de la réalisation de cette thèse, nous avons développé trois algorithmes
principaux. Le premier algorithme concerne l’identification des paramètres du modèle
à une seule diode d’un panneau solaire en utilisant les algorithmes GPC et EPC.
Nous avons utilisé une base de données pratique pour évaluer les performances du
modèle obtenu. Ce modèle est utilisé dans la génération des données d’un système
photovoltaïque en fonctionnement. Dans le cadre du second travail, nous avons
développé une nouvelle méthode de détection et de diagnostic des défauts dans les
systèmes photovoltaïques, basée sur l’algorithme GPC. Dans cette méthode, l’ensemble
de données d’apprentissage est divisé en deux hypersphères, chacune représentant une
classe. Ensuite, seules les distances entre le point de données choisi et le centre de
chaque sphère sont calculées. Cela élimine le besoin de calculer toutes les distances
entre les points de l’ensemble de données, comme cela est requis dans l’algorithme
KNN classique. Quant à la dernière contribution, nous avons développé un autre
algorithme statistique pour la détection et le diagnostic de défauts dans les systèmes
photovoltaïques. Contrairement à l’arbre de décision basé sur l’indice de Gini, cet
algorithme, utilise le calcul des distances euclidiennes entre un point choisi et les autres
points de l’ensemble de données. Ensuite, en se basant sur les distances minimales et
maximales pour chaque classe, un cas particulier parmi cinq est identifié, et les défauts
sont classés en fonction de ce cas identifié. Les algorithmes de détection et diagnostic
que nous avons développé utilisent quatre attribues essentielles: la température des
cellules, l’irradiance, ainsi que le courant et la tension au point de puissance maximale.
Nous avons considéré trois défauts distincts: court-circuit, circuit ouvert et ombrage
partiel. Enfin, nous avons évalué l’efficacité des méthodes que nous avons développées
en considérant une gamme d’algorithmes d’apprentissage automatique, tels que SVM,
DT, KNN et RF. Les résultats obtenus à l’aide des algorithmes développés ont démontré
des améliorations significatives en termes d’exactitude, de précision et de rappel.

Mots clés : détection et diagnostic des défauts, modèle à une seule diode, GPC,
EPC, algorithmes d’apprentissage automatique.
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 الملخص
في هذه  ثلاثة أعمال رئيسيةبغية الكشف عن الأعطال وتشخيصها في الأنظمة الكهروضوئيّة، تمّ إنجاز 

لواح الشمسية بدارة كهربائية أحادية الصمام واستخراج للأنمذجة عبارة عن بالنسبة للإنجاز الأول فهو  الأطروحة.

المعادلة الرياضيّة بوجود خمسة معلَّمات تكشف حالة اشتغال الألواح المعادلة الرياضية التي تصف سلوك الداّرة. تتميزّ 

و   GPCتحديد قيم هذه المعلّمات مهم جداًّ، لذلك تمّ الاستعانة بخوارزميتي ال الشمسية فيما إذا كانت طبيعية أو لا.

 قاعدة بيانات حقيقية.استعمال ب الخوارزميتانلهذا الغرض. تمّ تقييم   EPCال

في الأنظمة  وتشخيصها الأخطاء يتمثلّ في تطوير خوارزمية لاكتشاف الثاني، بالإنجاز يتعلق فيما

تقوم هذه الطريقة، جنبًا إلى . الكهروضوئية، بحيث تقوم بتقسيم مجموعة بيانات التدريب إلى كرتين، كل كرة تمثلّ قسم

جديدة ومركز كل كرة، مما يلغي المعروفة، بحساب المسافات حصريًا بين نقطة بيانات  GPCجنب مع خوارزمية 

 .الكلاسيكية KNNالحاجة إلى حسابات المسافة عبر مجموعة البيانات بأكملها كما هو الحال في خوارزمية ال

أما بالنسبة للمساهمة الأخيرة، فهي عبارة عن خوارزمية أخرى تمّ تطويرها لاكتشاف الأخطاء وتشخيصها 

رزمية المطورة شجرة القرار القائمة على حساب المسافات الإقليدية لتصنيف في الأنظمة الكهروضوئية. تستخدم الخوا

على النقيض من شجرة القرار المعتمدة على مؤشر جيني، تحسب هذه الخوارزمية المسافات بين . الأخطاء المختلفة

ترتيب هذه  .سافات لكل قسموبعد ذلك يتمّ استخراج القيمة الأدنى والقيمة العليا للم. نقطة و مجموعة البيانات بأكملها

 المسافات تصاعدياّ ينتج عنه ظهور حالة واحدة من جملة خمس حالات. بناء على الحالة الظاهرة، يتم تقسيم البيانات.

درجةحرارة الخلية، والإشعاع، أربعة مداخل ضرورية لضمان تشغيل الخوارزميتين بصورة فعّالة هي: 

الماس الكهربائى، والداّرة المفتوحة، : تمّ أخذ ثلاثة أخطاء بعين الاعتبار .اقةوكذلك التيار والجهد عند أقصى نقطة ط

 ,DTفي الأخير، الخوارزميات المطوّرة تمّ مقارنتها مع مجموعة من خوارزميات تعلم الآلة هي:  .والتظليل الجزئي

KNN, RF, and SVM  ّات على مستوى وقد أظهرت الخوارزميات المطوّرة أداءً أفضل عن باقي الخوارزمي

 .accuracy, precision, recallال
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NOMENCLATURE

A The total surface area of the penguin.
Cg The ECM value of a single PVM.
A The total surface area of the penguin
Cx The ECM value from the starting point to the cut-off.
D The length of transmission line.
d The block displacement.
disti The distance between the datapoint and the entire dataset.
dist0i The distance between the 1st hypersphere center and the entire dataset.
dist1i he distance between the second hypersphere center and the entire dataset.
distnew0i The new distances for the 1st hypersphere.
distnew1i The new distances for the second hypersphere.
dist0

i The distances between the chosen point and all points of class 0.
dist1

i The distances between the chosen point and all points of class 1.
Ec The effictive irradiance.
Edc The energy produced by the PVA.
E0 The nominal irradiance.
FA(X) The probability density function.
factor0 The minimization factor of the 1st hypersphere.
factor1 The minimization factor of the second hypersphere.
G The irradiance.
g The gravity.
Gref The reference irradiance.
Hi The total in-plan irradiance of the PVA.
I The current.
Iin The output current of the inverter.
Imeas The measured current.
Impp The maximum power point of current.
Imp−ST C The maximum current at STC.
Iph The light generated current.
Ipmax0 The nominal current at the MPP.
Ipv The output current of PVM, PVA, or PV cell.
Isc The current of short circuit .
Ish The current passes through Rsh .
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Isim The simulated current.
I0 The diode initial current.
K Boltzman coefficient.
Lcm The miscellaneous capture losses.
Lct The thermal capture losses.
M The number of PVMs in a serie.
max0 The maximum distance for class 0.
max1 The maximum distance for class 1.
min0 The minimum distance for class 0.
min1 The minimum distance for class 1.
n The ideality factor of diode.
nc The number of classifiers.
nm The number of classes in the dataset.
Np The number of PVMs in parallel.
Ns The number of PVMs in series.
P The power.
Pdc The maximum power obtained from the PVA.
Pi The current position.
Pmp The anticipated sandia model.
Ppmax0 The nominal power at the MPP.
Pref The MPP generated by the PVA.
q The electric charge.
Qpenguin The heat transmission from the penguin to the environement.
Rs The series resistance.
Rsh The shunt (paralell) resistance.
R0 The radius of the first hypersphere.
R1 The radius of the second hypersphere.
T The temerature.
Tamb The ambiant temerature.
Tc The cell temerature.
Tstc The temerature at STC.
Ts The absolute temerature.
V The voltage.
Vin The output voltage of the inverter.
Vmeas The measured voltage.
Vmpp The maximum power point of voltage.
Vmp−ST C The maximum voltage at STC.
Voc The voltage of open circuit .
Vpmax0 The nominal voltage at the MPP.
Vpv The output voltage of PVM, PVA, or PV cell.
Vsim The simulated voltage.
v0 The initial velocity.
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x The distance.
xk The x coordinate for each penguin.
(x0,y0, z0, t0) The center coordinate of the first hypersphere.
(x1,y1, z1, t1) The center coordinate of the second hypersphere.
(x1,x2, ...xN ) The coordinate of the chosen point.
Yr The measure reference yield.
Ya The array energy.
yk The y coordinate for each penguin.
Yreal The real class labels.
Ylabel The predicted labels.
δ(Tc) The thermal voltage.
αmp The temperature coefficient for Imp.
βmp The temperature coefficient for Vmp.
θ The ramp angle with the horizon.
ϵ The emissivity of bird’s plumage.
µk The kinetic coefficient of friction.
µkmax The maximum value of friction.
µkmin The minimum value of friction.
φ The mutation factor.
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LIST OF ABBREVIATIONS

AC Alternative Current
AIT Artificial Intelligence Techniques
ANN Artificial Neural Network
CNN Convolution Neural Network
DT Decision Tree
DC Direct Current
ECM Earth Capacitance Measurement
ELI Electroluminescence Imagining
EPC Emperor Penguins Colony
FDD Fault Detection and Diagnostics
FN False Negative
FP False Positive
GCPV Grid Connected Photovoltaic
GPC Giza Pyramids Construction
IMI Infrared/Thermal Imagining
IR Infrared
KNN K-Nearest Neighbor
LCR Inductance Capacitance and Resistance meter
LIT Lock-In Thermography
MPP Maximum Power Point
MPPT Maximum Power Point Tracker
NB Naive Bayes
PCA Principal Component Analysis
PELA Power and Energy Losses Analysis
PNN Probabilistic Neural Network
PV Photovoltaic
PVM Photovoltaic Module
PVA Photovoltaic Array
PVS Photovoltaic System
RF Random Forest
RMSE Root Mean Square Error
SAPV Stand Alone Photovoltaic
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SDM Single Diode Model
SML Supervised Machine Learning
SVM Support Vector Machine
SSPA Statistical and Signal Processing Approaches
TDR Time Domain Reflectometry
TN True Negative
TP True Positive
VCM Voltage and Current Measurement
VI Visual Inspectation
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INTRODUCTION

Context:
The importance of photovoltaic systems (PVS) is to effectively respond to the

greatest challenges currently facing the world. Providing energy to a growing world
population is the first challenge [5–7]. The second challenge is to produce this energy
without harming the environment or contributing to climate problems such as global
warming [8–10]. The sun is in fact the main source of energy on our planet. Photovoltaic
energy sources are also sustainable and renewable.
Problem statement:

Photovoltaic systems are valuable and important because they produce clean,
sustainable electricity, but they are also prone to various faults. These faults would
have a negative impact on photovoltaic systems because they would reduce the amount
of electrical energy produced, deteriorate the performance of the systems and shorten
their life cycle [11–15].

Various elements can influence the performance of PVS, including tilt angle [16–20],
dust accumulation, humidity, air speed [21], and other types of faults [22, 23]. It is
therefore crucial to focus on real-time detection and diagnosis of faults to minimize
their impact. Dangerous faults such as open circuit, short circuit and partial shading
on the DC side can have significant consequences.

The increasing emphasis on fault detection and safety in photovoltaic systems has
stimulated the development of many fault detection and diagnosis (FDD) methods.
Key attributes that can define these methods include their ability to quickly identify
malfunctions, necessary input data (including climate and electrical data), and selectivity,
which refers to their ability to differentiate between different types of faults. Fault
detection and classification techniques can be classified into two main groups: visual
and thermal methods (VTM) and electrical based methods (EBM)[24].

visual and thermal methods are employed for detecting a range of faults, including
hot spots, browning, discoloration, surface soiling, and more [25, 26]. On the other
hand, electrical based methods are utilized in various components of a PVS, whether
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on the DC or AC side, to identify faults like grounding faults, arc faults, diodes faults,
inverter faults, and so forth.

The implementation of visual and thermal methods is considered expensive compared
to electrical based methods due to the need for additional expensive devices such as
LCR meters, thermal cameras, etc., for fault detection and diagnosis [27, 28]. visual
and thermal methods and electrical based methods can be subdivided into more specific
categories. Subcategories of visual and thermal methods include infrared/thermal
imaging (IMI), visual inspection (VI), electroluminescence imaging (EI), locked-in
thermography (LIT), and hybrid methods. Concerning electrical based methods, there
are five subcategories including statistical and signal processing approaches (SSPA), IV
characteristics analysis, power and energy loss analysis (PELA), voltage and current
measurement (VCM) and artificial intelligence techniques (AIT) [29].
Objectives:

Considering the previous discussion, this thesis will present two innovative
algorithms for detecting and diagnosing faults in photovoltaic systems based on K-
nearest neighbor (KNN) and decision tree (DT) methods.

KNN and DT algorithms are known for their simplicity, ease of understanding and
interpretation, and easy implementation in real-world applications, as well as their
commendable performance in many cases. The algorithms developed in this work aim
to maintain these advantages and further improve their performance.

The modifications introduced to the used algorithms could contribute to a significant
improvement in the efficiency of detecting and diagnosing faults on the direct current
(DC) side of photovoltaic systems. Additionally, these modifications could expedite
the fault diagnosis process, enabling real-time fault detection and diagnosis.

To conclude on the efficiency of the developed algorithms, a comparative study,
considering other machine learning algorithms such as support vector machine (SVM),
KNN, DT, and random forest (RF), must be carried out.
Thesis organization:

The overall thesis is divided into four distinct chapters:
The first chapter explores the topic by conducting a comprehensive examination of
PVSs and their various fault types. Subsequently, a review of existing literature is
undertaken to assess the methods that have previously been suggested for detecting
and diagnosing faults in these systems. Finally, an overview of data acquisition and
monitoring systems for PVS is provided.

The succeeding chapter exclusively focuses on the one-diode model of a solar cell and
its parameter identification. Following this, the procedure to identify the five electrical
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parameters of this model using two metaheuristic optimization algorithms, namely giza
pyramid construction (GPC) and emperor penguins colony (EPC), is provided.

Chapter three is dedicated to presenting the first algorithm developed in this work
for detecting and diagnosing faults in the DC side of photovoltaic systems. It presents
and discusses the obtained results using this algorithm and several other machine
learning algorithms considered for the sake of comparison.

Chapter four introduces the second algorithm developed in this study for detecting
and diagnosing faults in the DC side of photovoltaic systems. This algorithm relies on
the Decision Tree algorithm. It presents the main steps of the detection and diagnosis
procedure design, along with the results of the carried-out comparative study, which
are given and discussed.

In the conclusion chapter, some findings and future outlooks are pointed out.
List of publications :

• Y. Mouleloued, K. Kara, and A. Chouder, “A developed algorithm inspired from
the classical knn for fault detection and diagnosis pv systems,” Journal of Control,
Automation and Electrical Systems, vol. 34, no. 5, pp. 1013–1027, 2023.

• Y. Mouleloued, K. Kara, and A. Chouder, “Parameters extraction of photovoltaic
module using Giza pyramid construction optimization algorithm,” in 2022 2nd
International Conference on Advanced Electrical Engineering (ICAEE), pp. 1–6,
IEEE, 2022.
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CHAPTER 1

STATE OF THE ART IN FAULT
DETECTION AND DIAGNOSIS
IN PHOTOVOLTAIC SYSTEMS

1.1 Introduction

Detecting and diagnosing faults in photovoltaic systems are critical for delivering
sustainable and efficient power. The efficiency of photovoltaic installations depends on
the early detection and diagnosis of faults, as even a simple fault can significantly reduce
the production of electrical power. The recent advancements in artificial intelligence
techniques have enabled the development of high-quality fault detection and diagnosis
algorithms, resulting in improved performance and the realization of the full potential
of photovoltaic systems.

The aim of this chapter is to provide a review of significant methods for fault
detection and diagnosis in photovoltaic systems available in the literature. To achieve
this, the chapter begins by introducing the main components of photovoltaic systems
and outlining the most common faults associated with these systems.
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1.2 Fundamentals of photovoltaic systems

1.2.1 Photovoltaic system component

1.2.1.1 Photovoltaic generators

A photovoltaic generator is composed of interconnected photovoltaic modules (PVM),
forming a unit that produces a given electrical power.

A PVM in figure 1.1 is a collection of photovoltaic cells connected both in parallel and
series configurations to produce higher voltages, currents and power levels. Grouping
cells in parallel increases output current, while grouping them in series increases output
voltage. A PVM is the fundamental component of any PVS, converting sunlight directly
into direct current through the photovoltaic effect.

Figure. 1.1: Photovoltaic module of eight cells
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We refer to a collection of PVM connected in series as a photovoltaic (PV) string. The
desired output voltage that the user/customer wants to achieve determines the number
of modules that should be used in series. A solar or photovoltaic panel comprises
one or more pre-wired PVMs, ready for installation. Depending on the specific usage
requirements, these modules/panels are arranged in a series-parallel configuration to
form a photovoltaic array (PVA), ensuring the attainment of the desired voltage and
current.

1.2.1.2 Solar charge controller

The solar charge controller or regulator serves two main purposes. Firstly, it prevents
solar energy from overcharging and discharging batteries. During hot sunny days, when
the PV generator produces more power than the batteries can store, overcharging
issues may occur. In such cases, the solar charge controller is necessary to interrupt
the power flow from the PV generator to the batteries. Conversely, at night when the
PV generator cannot power appliances, discharge problems may arise. In this scenario,
all loads draw their energy from batteries, potentially causing discharge if demand
exceeds supply. A solar charge regulator is essential to disconnect the batteries from
the appliances to prevent this problem[30, 31] .Another function, provided by certain
charge controllers, incorporates a maximum power point tracker (MPPT) capable of
swiftly and accurately tracking maximum power point (MPP), thus ensuring that the
operating point of the PV panels remains at the MPP for the majority of the time[31].

1.2.1.3 Converters

DC-AC converter

The DC-AC power converter, also known as an inverter, plays a crucial role in
converting DC power into alternating current (AC) power. This conversion is essential
for two main purposes: firstly, to supply power to AC appliances, and secondly, to
synchronize the AC signal generated by the inverter with the AC signal from the grid.

In the grid-connected photovoltaic (GCPV) system, inverters typically incorporate
the MPP tracker. However, this feature is not present in the stand-alone photovoltaic
(SAPV) system.

Four different topologies can be used to implement inverters in PVSs.

• Central inverter
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Figure. 1.2: Central inverter configuration

The central inverter configuration is the most commonly used topology in
modern PVSs. As shown in figure 1.2, only one inverter is employed for multiple
PVM. This makes it straightforward to design and deploy. Nonetheless, the
central inverter topology has several drawbacks: As the system grows in size,
more DC wires are required to reach the inverter, increasing the wiring cost while
diminishing safety. Not to mention the inverter’s inability to track the MPP in
the case of shadowing.
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• Module inverter

Figure. 1.3: Module inverter configuration

As is clear in figure 1.3, each module has its own dedicated inverter to efficiently
invert the DC power and track the MPP. It is significantly easy to expand the
system size while using this topology. However, as the system size grows, so does
the implementation cost.

• String inverter

Figure. 1.4: String inverter configuration

The topology of figure 1.4 seeks to strike a balance between the two previously
stated topologies. Because each PVS operates independently at its MPP, it
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ensures higher energy yields. This means that the string inverters run at their
MPP more precisely than the central inverter, but less precisely than the module
inverter. The implementation is more difficult than that of the module inverter.

• Multi-string inverter

Figure. 1.5: Multi-string inverter configuration

This topology accomplishes two objectives:

1- Produce more energy as the same as string inverter topology.

2- Lower implementation cost when compared to the central inverter topology.

Each PV string pre-power is processed utilizing low DC-DC converters, as shown
in figure 1.5. MPPTs are also deployed in conjunction with each converter.

DC-DC converter

A DC-DC converter, also known as a chopper, is a power electronic device linked to
the MPP tracker [32]. It incorporates inverters and, in certain instances, a solar charge
controller. A DC-DC converter accepts a variable DC signal as input and outputs a
fixed DC signal.
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1.2.1.4 Batteries

The most expensive part of the PVS is the battery. Particularly in the grid-off
system, they are essential. In order to increase the total capacitance of PVSs, engineers
typically use multiple batteries. It is known as a "bank of batteries". They serve as a
form of energy storage, supplying electricity to loads at night or inclement weather.

1.2.1.5 Distribution panel

The distribution panel (distribution board)is a part of a grid-connected system that
is used to determine whether the power coming from the inverter is enough to run
the appliances or whether it is too much. In other words, the inverter’s output is
directed to power the devices by the distribution board, and the remaining energy is
sent straight to the grid.

1.2.2 Photovoltaic system configuration

The photovoltaic system has three main configurations:

1.2.2.1 Grid connected photovoltaic system

This configuration allows the integration of a PVS with the electrical grid. It is
commonly employed in regions where grid connectivity is available. Figure 1.6 provides
a more detailed comprehensive illustration of the GCPV system. As observed, the
balance of system plays a crucial role in regulating the energy flow

Figure. 1.6: Grid connected photovoltaic system configuration
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1.2.2.2 Stand-alone photovoltaic system

A Stand-alone photovoltaic system operates independently of grid connection and is
commonly utilized in areas lacking grid infrastructure, including remote villages, rural
regions, and urban areas. This configuration is illustrated in figure 1.7.

Figure. 1.7: Stand alone photovoltaic system configuration

1.2.2.3 The hybrid photovoltaic system

This configuration combines elements from the previous setups, incorporating both
the SAPV system and the GCPV system, as depicted in figure 1.8.

Figure. 1.8: Hybridization photovoltaic system configuration
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1.2.3 Reliability of photovoltaic system

Before investing their money, investors always seek to assess the reliability of new
technology provided by engineers. The field of renewable energy in general, and
specifically solar energy, has seen massive investments in recent years as a result of
growing confidence in these technologies and their consideration as a promising option
for meeting sustainable energy needs.

The reliability of photovoltaic systems is primarily connected to the system’s ability
to generate electrical power permanently and continuously over its expected lifespan
of 25 to 30 years. Among the factors that contribute to the long-term reliability of
solar systems are the quality of the system components, as well as simple periodic
maintenance, such as cleaning the solar panels and checking the electrical cable
connection [33].

1.3 Common faults in photovoltaic systems

Similar to any other system, the performance of a photovoltaic system will degrade
over time due to potential operational faults. Figure 1.9 illustrates the common faults
in PVSs. These faults are classified into two main categories: DC side and AC side, as
depicted in the figure. Faults colored by blue are extensively discussed.
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Figure. 1.9: DC and AC side faults in PV systems.
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1.3.1 Faults in DC side

The common faults on the DC side include the missing maximum power tracking
fault and a collection of faults at the PV generator level.

1.3.1.1 MPPT fault

Due to the ongoing changes in weather (temperature and radiation), PV generators
provide variable DC power. However, appliances typically require a continuous power
supply over time. In this case, a DC-DC converter comes in handy. The converter can
deliver a constant amount of power at the highest level it can ever produce, thanks
to an algorithm integrated into its operation. Every time the weather changes, this
algorithm seeks to find the maximum power that a PV generator can deliver. There is
an MPPT fault if the algorithm cannot accurately determine the maximum power.

1.3.1.2 photovoltaic generator faults

Figure 1.10 illustrates four distinct fault types that can occur at the PV generator
level: mismatch fault, short circuit fault, open circuit fault, and ground fault.

Figure. 1.10: PV generator faults
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Mismatch fault

Two examples of the mismatch fault exist:

• When a PV generator comprises multiple cells or modules with varying electrical
properties (Isc, Voc, ...etc).

• When a PV generator is made up of multiple cells or modules working in various
conditions (temperature and radiation).

This type of fault is divided into two classes based on the varying weather conditions
on the PV generator:

1- Temporary mismatch: When snow covers the PV generator, the temperature
across its surface is not uniform. Additionally, a PV generator may occasionally
be partially shaded by clouds, desert dust, bird droppings, tree leaves, etc.

2- Permanent mismatch: This type of fault includes soldering, hotspot, and
degradation faults:

a. Soldering fault: This kind of fault happens when assembling a PVM by
soldering a collection of solar cells. Unprofessional soldering of solar cells
may result in them becoming disconnected from each other.

b. Hotspot fault: This type of fault is caused by the PVM’s operation under
partial shade. The solar cell generates power when it is in its normal state
of operation, making it an active component. The solar cell turns into a
passive component in cases of partial shading, absorbing and dissipating
energy from other solar cells (in series). The result is that the shaded solar
cell will heat up to the point of collapse. A parallel diode referred to as a
"bypass diode" is needed to solve this problem.

c. Degradation faults: PVM performance can degrade for two main reasons:
when the PVM reaches the end of its life cycle, which can occur at 20, 25,
30 years, etc., and when some of the solar cells malfunction. the gradual
reduction in output power brought on by raising or lowering the shunt
resistor Rsh.

Short circuit fault

Figure 1.10 provides an illustration of a short circuit fault, also known as a line-line
fault. It is essentially an accidental low-resistance connection occurring within a PVS
between two points with differing potentials (excluding the ground point) [34].
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Open circuit fault

The open circuit fault at the module level is shown in figure 1.10. It happens
whenever a connection between two modules connected in series is harmed or broken.
This error can also happen at the solar cell level if the connection holding two solar
cells in series together is compromised.

Ground fault

In PVA , a ground fault is an unintentional electrical short circuit involving ground
and one or more typically designated current-carrying conductors. It could be caused
by a cable in a PV junction box accidentally contacting a grounded circuit [35].

Bridging fault

Bridging fault occurs when the connection between two PVMs obtain more resistivity
[36].

1.3.2 Faults in AC side

As shown in figure 1.9, AC side faults can be classified as total blackouts or grid
outages.

1.3.2.1 Total blackout

Total blackout fault in PVSs is the condition in which the system completely fails to
produce electrical power due to natural disasters such as storms and lightning [37].

1.3.2.2 Inverter fault

One of the major problems that arises on the AC side level is improper inversion
from DC to AC. There are several factors that can cause an inverter to fail, including
insufficient heat dissipation in switch components and failure of capacitors [36].

1.3.2.3 Grid fault

A grid fault causes a loss of electrical power because the PVS is unable to draw
power from the grid. This occurs when solar panels are unable to supply the necessary
electricity to the devices. This type of fault also arises when extra energy is generated
by the PVS but cannot be returned to the grid.
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1.3.3 Impact of some faults on photovoltaic performance

The negative impact on the PVS performance under various fault conditions, such
as short circuit, open circuit, and shading, has been demonstrated in [1].

1.3.3.1 Impact of short circuit fault on photovoltaic performance

Figure. 1.11: I-V characteristic of PV generator under normal operation and short
circuit of PVM and a group of PV cells [1]

Figure 1.11 depicts the I-V characteristics of solar panels in the absence of faults as
well as in the presence of short circuit faults in cell and module levels.

The voltage of the solar panels is decreasing, yet the current remains steady. This is
due to the fact that when solar panels are shortened, this leads to a lack of voltage
across these panels, which explains the reduction in voltage. The more solar panels
that are shorted out, the lower the voltage becomes.
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1.3.3.2 Impact of open circuit fault on photovoltaic performance

Figure. 1.12: I-V characteristic of PV generator under normal operation and open
circuit of PVM with and without bypass diode [1].

Figure 1.12 displays the I-V characteristics of solar panels under normal conditions,
as well as when an open circuit fault is present, both with and without the inclusion
of a bypass diode. No current circulates through the circuit, regardless of the tension
applied across the solar panels, because current cannot pass through an open circuit.
Bypass diode has no role in the operation, unless the PV generator functions under
shading issue.
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1.3.3.3 Impact of shading fault on photovoltaic performance

Figure. 1.13: I-V characteristic of PV generator under normal operation and partial
shading of one module [1].

When PVMs are exposed to sunlight, they produce electrical power. PVM shading
limits the amount of sunlight reaching the panels. The effect of shading on the
performance of PVMs is manifested by a deterioration of the electrical power produced,
resulting in a decrease in system efficiency and the possibility of hot spot damage. A
parallel bypass diode is utilized with each PVM to mitigate the influence of shade on
PVM performance.

Figure 1.13 depicts the evolution of the I-V characteristic of a shaded PVM. When
a PVM is shaded, the bypass diode activates and creates a small resistive path for
electrical current to pass through, causing the PVM to become short-circuited, resulting
in an inflection point in the I-V characteristic [1].

The electrical power of a PVA is essentially the sum of the electrical power generated
by each PVM. Typically, a PVA provides electrical power that closely aligns with the
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desired electrical power. Any deviation from this expected power output is considered
a ’fault,’ signifying a reduction in the generated electrical power value. Identifying the
source of this deterioration is crucial for enhancing the long-term reliability of the PVS
and maximizing electrical power generation. Consequently, numerous techniques and
algorithms have been developed to detect and diagnose faults early in the maintenance
process. The upcoming section will explore many of these techniques, along with their
respective benefits and drawbacks [37].

1.4 IV. Detection and diagnosis methods of faults
in photovoltaic systems

A wide range of methods and algorithms for detecting and diagnosing faults in PVSs
are presented in the literature. To operate effectively and make correct decisions, these
algorithms require several measurements: temperature (T), irradiance (G), current
and voltage at the MPP (Impp, Vmpp), output current and voltage of the PVM (Ipv,
Vpv), inverter current and voltage (Iin, Vin), and the I-V characteristic. To compare
and distinguish between these methods, several criteria are used such as:

To compare and distinguish between these methods, several criteria are used such as:

• The method ability in detecting faults and abnormal states during the system
functionality.

• The method ability in accurately identifying faults.

• The robustness of the algorithm against noisy data.

• The number of faults can be detected and identified.

Detection and diagnosis methods for faults in PVSs can be categorized into two
main global categories: electrical methods and visual & thermal methods [16, 17].
Each of these categories can be further subdivided. Figure 1.14 represents a summary
classification of the most discussed detection and diagnosis methods in the literature.
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Figure. 1.14: categories of diagnosis methods

1.4.1 Visual & thermal methods (Non-electrical methods)

1.4.1.1 Infrared/ thermal Imaging

Infrared/thermal imaging is employed to detect and localize various faults in PVMs,
including junction boxes, connectors, etc [18]. IMI utilizes an infrared (IR) camera
to detect the heat generated by the PV generator during both normal and abnormal
operations, such as shunted cells and short circuits[19].The advantage of IMI lies in its
avoidance of sensor installation, making its implementation as a diagnostic method
more cost-effective compared to other approaches[18].IMI can be applied, from small
to large PVMs [18, 20].However, this method has not been adapted to detect all types
of faults, or at least most of them, including open circuit faults.

1.4.1.2 Visual Inspectation

Visual Inspectation is conducted through human intervention to monitor the
performance of PVMs. In this process, various symptoms that may occur in PVMs are
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monitored, allowing the detection and diagnosis of certain faults such as bird droppings,
degradation, cell cracking, etc[21].

1.4.1.3 Electroluminescence Imaging

Electroluminescence Imaging (ELI) is an effective method for detecting faults,
especially micro cracks that are challenging to notice with the naked eye. This process
involves capturing high-resolution images of PVMs, revealing faults through lines or
black spots [22], such as cell cracks and poor connections. In the study referenced in
[23], the authors used a drone for fault detection. ELI excels in detecting micro faults;
however, it is not suitable for identifying other faults like shading and short-circuit
faults.

1.4.1.4 Lock-in Thermography

Lock-in Thermography is commonly used in the failure analysis of integrated circuits
[24]. A lower value of the shunt resistor in the solar cell can create an alternative current
path for the photovoltaic current, allowing it to pass through as a leakage current.
This leakage current produces an amount of heat that can be thermo-graphically
monitored [25]. LIT can be used to detect small changes that occur in the PV
generator parameters, such as ideality factors and series resistance of the solar cell,
using an infrared camera[25].

1.4.1.5 Hybridization methods between visual & thermal methods and
artificial intelligence techniques

Many techniques have been presented in the literature that rely on the combination
of AIT and visual/thermal methods. For example, in [26], the authors proposed a
technique that combines a parameter-based model with LIT for fault detection purposes.
They successfully detected and diagnosed faults such as hot spots and cracking. In [27],
a technique that combines convolution neural network (CNN) with LTI was proposed.
Another hybrid approach, integrating IMI with intelligent edge detection, is presented
in [28]. Additionally, [29] introduced a combination of Canny edge detection with
image processing for detecting and diagnosing faults such as cracks in PVMs.
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1.4.2 Electrical methods

1.4.2.1 Power and energy losses analysis

To facilitate the control of small GCPV system up to 5 KW, a procedure for the early
detection of partial energy losses and system abnormal functions has been proposed in
[2]. This procedure initially involves detecting failures in the photovoltaic system by
comparing the measured energy with the simulated energy. To yield actual energy, a
satellite is used to drive irradiance values (figure 1.15).

Figure. 1.15: Structure of the proposed procedure [2]

After detecting a fault in the system, the next obvious step is to identify the type of
this fault. Table 1 presents faults along with their sources.

Climate data were collected every 5 minutes over two years to develop a model
for monitoring energy losses (due to faults) in 27 domestic PVSs located in two
different areas [38]. The model monitors the energy losses of the PVSs during normal
operation and also when a number of faults occur. The authors developed data analysis
techniques that enabled them to detect seven types of faults, including: shading,
inverter shutdown, system isolation, inverter MPPT failure, and others. An intelligent
model for fault detection in photovoltaic fields was presented in [39]. In this work,
fuzzy logic was employed to compute the estimated power output from PV fields,
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General failure type Failure

Constant energy loss Degradation, Soiling, Module defect,
String defect

Changing energy loss
Shading, Grid outage, High losses at low
power, Power limitation, MPP tracking,
Hot inverter, High temperature

Snow cover Snow cover
Total blackout Defect inverter, Defect control devices

Table 1.1: Faults with their sources

and these estimates were compared to the measured power values. If the difference
exceeded a predetermined threshold, it indicated a fault in the PV field. The authors
utilized this intelligent model for both detecting and diagnosing faults. However, it’s
important to note that the scope of this work was limited to explaining the method of
fault detection.

In [40], an algorithm is proposed for detecting and diagnosing faults in GCPV
systems. The algorithm consists of two fundamental steps. The first step involves
continuous tracking of energy losses at the solar module level. If the measured values
exceed predefined threshold values, it indicates a malfunction in the photovoltaic
system. In the second step, faults are diagnosed using voltage and current ratios
Thermal capture losses (Lct) and miscellaneous capture losses (Lcm) are two novel
indicators of power losses defined for the detection phase. Thermal capture losses occur
when solar panels operate at temperatures exceeding 25°C. The remaining capture
losses manifest in various forms, including solar panel failures, MPP tracking failures,
etc.

The following equations represent the basis for calculating losses in thermal capture
and losses in other types of capture:

Lc = Yr (G,Tc)−Ya (G,Tc) = Hi (G,Tc)
Gref

− Edc

Pref
(1.1)

Lct = Ya (G,25◦C)−Ya (G,Tc) (1.2)

Lcm = Lc −Lct (1.3)

where:
Lc is the capture losses, Lct is the thermal capture losses, Lcmis the miscellaneous
capture losses, Yr is the measured energy reference yield, Ya is the array energy, G is
the irradiance, Tc is the cell temperature, Hi is the total in-plan irradiance of the PVA,
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Edc is the energy produced by the PVA, Pref is the maximum power output generated
by the PVA and Gref = 100W/m2.

Figure 1.16 represents the flowchart of the fault detection procedure, while figure
1.17 shows the flowchart of the diagnosis model.

Figure. 1.16: Flowchart of fault detection procedure

Rc and Rv are current and voltage ratios respectively, where:

Rc = Isim
P V

Imeas
P V

(1.4)

Rv = V sim
P V

V meas
P V

(1.5)
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Figure. 1.17: Flowchart of the diagnose method

1.4.2.2 Statistical and signal processing approaches

A method for fault detection based on the Time Domain Reflectometry (TDR)
technique was proposed by Takashima et al [41]. The implementation of this method
in a PVS is illustrated in (figure 1.18).
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Figure. 1.18: Concept of TDR measurement in PVS

The main principle of this method involves sending an electrical signal (a step or
pulse) and comparing it to the signal that is reflected back. The location and type of
fault, such as open circuit and short circuit, are identified based on the signal’s delay
and shape. A number of solar panels were used in series to test the effectiveness of
this method.

The disconnection between two PVMs in a PVS can be determined using a method
based on the Earth Capacitance Measurement (ECM) technique [42].This method is
primarily used to identify power line disconnections, as depicted in (figure 1.19).

Figure. 1.19: Transmission line model.

The following equation is used by the ECM technique to calculate the distance
between the starting point and the cut-off location:

x = Cx

Cp
D (1.6)

where: x is the distance from the starting point to the disconnecting point (m),Cx is
the ECM value from the starting point to the cut-off site, Cp is the ECM value for the
entire power line and D is the transmission line’s length (m). The values of Cx and Cp
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are determined using the LCR meter. In their work, the authors have considered the
PV string like a transmission line figure 1.20.

Figure. 1.20: Model of a PV string

When generating energy, the capacitor Cd can be neglected, and accordingly, the
PVS can be considered as a transmission line, and therefore the ECM technique can be
applied to determine the disconnection between the PVMs according to the following
equations:

n = Ctrouble
Cgood

M (1.7)

Ctrouble = Cx = n ·Cg (1.8)

Cgood = Cp = M ·Cg (1.9)

where:
Cg is the EMC value of a single PVM, M is the number of PVMs in a given series and
n is the number of PVMs between the start and the end of the PVM at which the
disconnect occurs.

Two PV string sets have been used to evaluate the performance of this technique.
The first set consists of ten PVMs, each with a 130 W power output, connected in series.
The second set is made up of ten PVMs, each with a power of 80 W, connected in
series. In [43], authors propose a method which integrates a single diode model (SDM)
with the expanded capability of an exponentially weighted moving average (EWMA)
control chart for early detection of changes in a PVS. The SDM, characterized by its
few calibration parameters, is utilized for forecasting the optimal power coordinates
of current, voltage, and power based on recorded temperatures and irradiances of the
healthy PVA. Residuals, representing the disparities between measurements and SDM
predictions, are computed and utilized as fault indicators. Subsequently, the EWMA
monitoring chart is employed on the uncorrelated residuals derived from the SDM to
detect and classify faults. Performance evaluation of this approach is conducted using
real data from a GCPV system situated at the Renewable Energy Development Center
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in Algeria. The findings demonstrate the successful monitoring of the DC side of PVSs
and the detection of partial shading faults.

1.4.2.3 I-V characteristic analysis

In addition to detecting partial shade, the dI
dV −V characteristic was used by Miwa

et al to estimate how many PVMs would be exposed to partial shade [44]. The dI
dV −V

property is extracted from PVA after the I −V characteristic has been taken out of it.
In the dI

dV −V characteristic, partial shading arises as a simple convexity.
The number of solar panels exposed to partial shade can be partly determined by

the convexity’s location on the dI
dV −V characteristic. Fewer solar panels exposed to

partial shade result in higher convexity tension, while more solar panels exposed to
partial shade lead to lower convexity tension.

To identify and locate faults in a PV generator, the authors of [45] utilized three
parameters from the I-V characteristic:

• Maximum power: A decrease in this parameter indicates a fault occurrence. To
identify this reduction, a straightforward procedure has been employed: measuring
the I −V characteristic under any conditions, translating the result to standard
circumstances, and then comparing it with the characteristic provided by the
manufacturer in the data sheet.

• Series resistance: Based on the slope of the I-V characteristic measured close to
the open circuit voltage, its value can be estimated. Poor contact between cells
and modules is indicated by an increase in this parameter.

• Temperature: The open circuit voltage is the parameter most impacted by module
temperature. The rise in module temperature indicates an insufficient connection
between the modules.

1.4.2.4 Voltage and current measurement

A fault detection method for solar arrays based on VCM has been proposed in [46].
In this method, the Hall sensor collects the electric current and voltage signals of each
series branch using microcomputer techniques. The difference between the maximum
current value and the other values is used to determine the fault. The incorrect solar
series branch can then be determined by calculating the deviation of each branch. It
can determine the fault section in the branch based on the voltage signal. Finally, a
fault notification will be generated for the immediate attention of the maintainer.
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1.4.3 Artificial intelligence technique

Many research works have explored the use of Artificial Neural Networks (ANN)
to develop efficient algorithms for fault detection and diagnosis in PVSs. In [47], a
comparative study between two neural network approaches has been conducted. The
two methods require four attributes (T,G,Impp,Vmpp) to make five different decisions
(normal operation, short circuit of three modules fault, short circuit of ten modules
fault, open circuit fault). The first approach employs a feed forward neural network for
fault detection (healthy or faulty state), and a second feed forward neural network for
diagnosing the occurred fault. The probabilistic neural network (PNN)-based approach
is similar to the first, except it employs a PNN architecture instead of a feed forward
ANN. According to the results of this study, the PNN-based method outperforms
the ANN-based approach in both fault detection and diagnosis phases, regardless of
the presence of noise in the data. Another research work utilizing ANN to propose a
method for fault detection and diagnosis in PVSs is presented in [48]. In this work,
a simulation model has been used to detect the occurrence of faults, and then two
algorithms have been employed to diagnose eight different faults. The first algorithm
identifies five faults using different attributes, while the second algorithm, based on
ANN, identifies the remaining faults using the same attributes.

The principal component analysis (PCA) algorithm has been employed to extract
suitable features for the purpose of fault detection and diagnosis in GCPV systems
[49]. Then, various supervised algorithms, such as DT, RF, SVM, naive bayes (NB),
and KNN, were utilized to detect and diagnose various faults (inverter fault and grid
connection fault on the grid side, PV panel fault, sensor fault, and PV panel connection
fault on the PV side).All the algorithms under consideration achieved an accuracy
greater than 96%. The diagram below illustrates how the PCA and supervised machine
learning (SML) algorithms collaborate to discover and diagnose faults in GCPV system.
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Figure. 1.21: GCPV fault detection and diagnose using PCA and SML

Recent research often combines the KNN method with other machine learning
techniques or preprocessing methods to enhance fault detection accuracy. For instance,
in [50], a modified version of the KNN algorithm based on the Ada-boost algorithm and
the Markov chain has been introduced and employed to classify historical samples into
four categories: sunny, cloudy, overcast, and rainy. Hybrid methods, incorporating KNN
alongside algorithms such as decision trees, neural networks, or ensemble methods, aim
to leverage the strengths of different approaches [51–53]. The RF algorithm exhibits
several merits for fault detection and diagnosis in PVSs. It is known for its high
accuracy, robustness, and ability to handle large datasets with numerous features. An
example of RF-based approaches for fault detection and diagnosis in PVSs is illustrated
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in [3]. The simplified flowchart of the algorithm developed in this work is given by
(figure 1.22). This algorithm uses the current from each string in the PVA, along with
the PVA voltage, to identify and diagnose four types of faults: degradation, partial
shading, line-to-line faults, and open circuit faults.

Figure. 1.22: Flowchart of the method used to diagnose faults in PVS based on RF[3].
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DT, popular machine learning algorithms used for classification, model decisions
based on a tree-like graph of decisions and their possible consequences. They have
been successfully employed, along with their combinations with other techniques, in
various recent research works to develop efficient algorithms for fault detection and
diagnosis in PVSs [54, 55]. A distinctive technique based on the C4.5 DT algorithm
has been introduced in [12].The method presented in this work utilizes one model,
based on the Sandia model, for fault detection and another, consisting of two C4.5 DT,
for diagnosing three types of faults: short circuit, line-line, and string or free faults.

1.5 Data acquisition and monitoring photovoltaic
systems

To monitor the performance of PVSs in real-time, a so-called data acquisition system
using sensors must be employed [56]. Temperature and sun irradiances are examples
of what can be gathered. Voltage and current data can also be obtained from both the
PV generator and the inverter. The data acquisition system is an electronic card that
is connected to a group of sensors on one hand and to a computer on the other, where
the latter interacts with the data by sketching the electrical characteristics I-V and
P-V of the PVS in real-time.

The data acquisition and monitoring of the performance of PVSs can be facilitated
through the use of a data logger, which collects and stores data in a format such as an
Excel spreadsheet, for example. The data logger plays a crucial role in establishing a
comprehensive database that can be utilized in various ways, including the development
of algorithms for fault detection and diagnosis.

1.6 Cases studies

In this work, two algorithms have been developed for the detection and diagnosis of
faults on the DC side of PVSs. The first algorithm employs the KNN method, while
the second algorithm is based on the decision tree algorithm. The primary goal of
these algorithms is to classify various faults selected for their significant impact on
PVSs reliability, energy loss, and the potential for complete PVM corruption. Notably,
the first algorithm is designed to categorize four classes, whereas the second algorithm
extends its classification to seven classes.
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The performance of these algorithms is assessed using precision, recall, and accuracy
metrics, which are selected for their ability to evaluate the effectiveness of a given
classification algorithm. The chosen fault types are: partial shading fault, short circuit
fault, and open circuit fault.

In this thesis, the proposed algorithms are designed to detect and diagnose faults in
a PVA consisting of two parallel PV strings. Each string comprises fifteen Isofoton
106/12 W modules figure 1.23.

Figure. 1.23: PVA used in this work
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1.7 Conclusion

This chapter has addressed three major points. Firstly, it presented a comprehensive
examination of PVSs, exploring their possible configurations, and providing a brief
discussion of their common faults. Secondly, the chapter reviewed prominent fault
detection and diagnosis approaches proposed in the literature. The narrative primarily
focused on the detection and diagnosis of faults in PV panels, categorizing them into
electrical and non-electrical approaches. By analyzing these algorithms, we gained
insights into the advantages, drawbacks, and limitations of each, paving the way for
the development of specific algorithms that will be detailed in the coming chapters.
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CHAPTER 2

PHOTOVOLTAIC ARRAY
MODELING AND VALIDATION

2.1 Introduction

This chapter focuses on two key aspects: the modeling of photovoltaic systems and
determining the parameters of their models. It begins by exploring the fundamental
physical principles governing the operation of photocells and their electrical properties.
Detailed procedures for establishing parameters of photovoltaic modules, using EPC
and giza pyramid construction algorithms, are then outlined. Additionally, an effective
approach for estimating the MPP based on these identified parameters is discussed.

The accuracy of the identified parameters is assessed using real static (I-V) curves,
while the effectiveness of the MPP estimation strategy is validated through experimental
measurements.

2.2 Photovoltaic modeling

An electronic component that is designed to convert photons (light particles) into
direct current is called a photovoltaic cell or a solar cell. The term "photovoltaic effect"
refers to this conversion as it shown in figure 2.1.
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Figure. 2.1: Photovoltaic

As depicted in figure 2.2, the photovoltaic effect takes place in semiconductor
materials when the energy absorbed from an outside source, such as photons from
sunlight, is greater than the energy gap between the valence and conduction bands.

Figure. 2.2: Energy levels.
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One of the characteristics of semiconductor materials like silicon (Si) is that when
they take in an external energy that is greater than the energy gap (in our case, sunlight
or photons), the energized electrons in the valence layer become free to move, leaving
holes behind (electron vacant). These free electrons move irregularly in all directions.
These electrons must move in one direction to generate an electric current, which can
be achieved by combining two types of semiconductors, P-type and N-type, as shown
in figure 2.3.

In order to create the N-type, atoms like phosphorus that have more electrons than
silicon are added, whereas boron that has one fewer electrons than silicon is added to
create the P-type. Doping is the term used to describe the process of producing N-
and P-types.

Figure. 2.3: PN junction diode.

When the N-type side is exposed to sunlight, the excited and energized electrons
diffuse (move) to the P-type through the PN junction, while the excited and energized
holes diffuse from the P-type to the N-type. In order to allow external electrons to
pass in one direction and block them from doing so in the other, an electric field is
created by the movement of electrons from N-type to P-type and holes from P-type to
N-type [57–61]. The functioning of PV cells closely resembles that of semiconductor
diodes. While the current in a diode is generated by applying an external voltage, in
a PV cell, the current is induced by exposing it to light, as depicted in figure 2.4(a),
while figure 2.4(b) shows solar cell components [4].
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Figure. 2.4: PV cell [4]

The cell is symbolized by a diode, as illustrated in figure 2.5a. The current of the
cell, denoted as Ic and corresponding to the reverse-biased current of the diode, is
minimal. The cell’s representation can be simplified as a reverse-biased diode alongside
a current source, as depicted in figure 2.5b.

Figure. 2.5: Ideal PV cell
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2.2.1 Effect of electrical losses

The most commonly used PVM equivalent circuit models are the single, double, and
triple diode models [17–20]. The model that is used in this work is the SDM as it
appears in figure 2.6.

Figure. 2.6: Equivalent circuit of a practical SDM

The single diode model, given in figure 2.6, incorporates electrical losses that are
attributed to collector traces and external wires, they are represented by a series
resistance Rs. The value of Rs typically falls within the range of a few milliohms.
Additionally, the internal resistance of the crystal is denoted by a parallel resistance
Rsh, with a value typically falling within the range of a few kilohms.

From the circuit of figure 2.6 we have:

Ipv = Iph − Id − Ish (2.1)

Ish = VRsh

Rsh
(2.2)

Ish = Vpv +RsIpv

Rsh
(2.3)

The diode current is given as follow [4]:

ID = I0

[
exp

(
q (Vpv +RSIpv)

nkT

)
−1

]
(2.4)

By substituting the aforementioned equations 2.2 to 2.4 into equation 2.1, we get
the I-V characteristic of a solar cell as given by equation 2.5.
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Ipv = Iph − I0

[
exp

(
q (Vpv +RsIpv)

nkT

)
−1

]
− Vpv +RsIpv

Rsh
(2.5)

The equation representing the P-V characteristics of a solar cell is provided as follows:

Ppv = IpvVpv (2.6)

Where: Ipv, Vpv and Ppv are the generated output current, voltage and power from
the PV cell, Iph is the light-generated current, I0 is the diode initial current, Rs and
Rsh are series and shunt resistors respectively, q is the electron charge (1.60×10−19C),
k is the Boltzmann constant (1.38×10−23J/K), n is the ideality factor of diode, and
T is the cell temperature.

2.2.2 Effects of Irradiance and Temperature

Figure 2.7 depicts the influence of temperature on the I-V and P-V characteristics when
the irradiance is 1KW/m2, whereas figure 2.8 depicts the impact of solar irradiance
on the I-V and P-V characteristics when the temperature is 25C0.

Figure. 2.7: Effect of temperature on the I-V and P-V characteristics
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Figure. 2.8: Effect of irradiance on the I-V and P-V characteristics

2.3 Identification of the single diode model parameters

Iph, Id,Rs,Rsh,and n are the five parameters that should be found. identifying these
parameters is considered an optimization problem for which a given cost function
must be minimized using an appropriate optimization algorithm. In this work, two
metaheuristic optimization algorithms, namely the EPC and the GPC algorithms, are
used to minimize the cost function given by:

RMSE =

√√√√√ 1
N

 N∑
i=1

f(V,I,θ)2

 (2.7)

Where:

f(V,I,θ) = Imeas −
(

Iph − I0

[
exp

(
q (V +RsI)

nkT

)
−1

]
− V +RsI

Rsh

)
(2.8)
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θ = [Iph, I0,Rs,Rsh,n] is the vector of parameters to be estimated and N is the data
size. the parameters identification procedure is highlighted in figure 2.9.

Figure. 2.9: Parameters identification procedure

2.3.1 Emperor Penguins Colony

The EPC algorithm [62–65] was inspired by the Emperor penguin’s behavior.
Penguins attempt to reach the right heat inside the colony based on their position in the
colony, which causes them to strive against the extreme coldness in their environment
and control their heat body temperature. To do this, penguins must cluster and
maneuver in a spiral-like motion.

Huddling together allows penguins to produce a warm environment. The heat
concentrates in the huddle’s center. Penguins travel in a spiral-like motion to spread
out the heat, giving each of them the opportunity to reach the core. The heat inside the
huddle can reach any amount as much as penguins require due to the spiral movement.
Penguins reduce their body temperature as they come closer to the center of the huddle.

Heat radiation emitted (heat transfer) from each penguin is defined as follow:

Qpengui = AεσT 4
s (2.9)

Where:
Qpengui : is the rate of heat transmission from the penguin to the environment in
units of time (W). A: is the total surface area of the penguin which is calculated
and is 0.56m2. ε: According to [66], is the emissivity of bird’s plumage which is
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considered 0.98. σ: is the Stefan-Boltzmann constant (5.6703Ö10−8W/m2K4). Ts : is
the absolute temperature in Kelvin (K) which is considered 350C equal to 308.15 K.

2.3.1.1 Heat attractiveness

• Each penguin is considered a linear source of heat.

• It’s well known that the heat transfer from the warm source to the cold one.
Which means that the cold penguin is attracted to the warm one.

Q = Qpenguin e−µx (2.10)

Where:
µ: is an attenuation coefficient (its role is to ensure that heat emitted by the
penguin body is reduced). x: is the distance between two linear heat sources
(two penguins).

2.3.1.2 Coordinate spiral-like movement

To compute new positions for each penguin, the following equations are used:


xk = ae

b 1
b ln
{

(1−Q)ebtan−1 yi
xi +Qe

btan−1 yi
xi

}
cos

{
1
b ln

{
(1−Q)ebtan−1 yi

xi +Qe
btan−1 yi

xi

}}

yk = ae
b 1

b ln
{

(1−Q)ebtan−1 yi
xi +Qe

btan−1 yi
xi

}
sin
{

1
b ln

{
(1−Q)ebtan−1 yi

xi +Qe
btan−1 yi

xi

}}
(2.11)

The spiral-like movement may become a spiral monotonous due to the predetermined
angle. To increase diversity and avoid being limited to a monotonous spiral path, a
new coefficient is introduced, called the mutation factor φ, which is multiplied with
a random vector ϵ. Then it’s added with the equation 2.10. The equation can be
considered as follow:

Eq · (10)+φϵi (2.12)

this algorithm is controlled by the body heat radiation of penguins and their spiral-like
movement in their colony.

The basic steps of the EPC algorithm are summarized as follows:

A. Generate the initial population array (colony size).
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B. Compute the initial cost function for each penguin in the colony.

C. Compare between a single penguin cost function with the entire colony and do
the following:

– Compute heat radiation using equation 2.9.

– Compute attractiveness using equation 2.10.

– Compute coordinate spiral movement using equation 2.11.

– Determine new position using equation 2.12.

D. Sort and find the best solution.

E. Decrease heat radiation, mutation coefficient, and increase heat absorption
coefficient.

F. Go back to step C and do the same process until reach the maximum iteration
value.

2.3.2 Giza Pyramids Construction

According to [67], workers such as slaves, masons, carpenters, etc are supervised
by a pharaoh’s special agent. Workers bring stone blocks from different places to the
construction site then, the pharaoh’s agent specify the exact location for each stone
where should be. If a worker gets exhausted or injured, he will be substituted by
another energetic worker. The pyramid was built using sloping roads. Workers must
push stone blocks from its initial position to the location installation in the pyramid.
Notice that the movement of the stone block is influenced by three factors which are
friction force, ramp gradient, and initial velocity. Some rules are considered for this
algorithm:

• Straight-on ramp is used to build the pyramids.

• Only one ramp is used.

• Ramp gradient (angle with the horizon) is less than 15.

• The solutions are extracted by combining between the position of the worker and
the stone block.

• Friction of stone block is considered, while the worker’s friction is ignored.
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• Some workers are substituted and put them into new positions due to fatigueness.

The basic steps of the GPC algorithm are summarized as follows:

A. Randomly generate the initial population array of stone blocks (workers).

B. For each stone block, compute the amount of stone block displacement d as
follows:

d = v2
0

2g (sinθ +µk cosθ) (2.13)

Where:
g : is the gravity, g = 9.8. θ : is the ramp angle with the horizon θ < 150..
v0 : is the initial velocity of the stone block and is determined by a uniformly
distributed random number in each iteration.

v0 = rand(0,1) (2.14)

µk : is the kinetic coefficient of friction between the stone block and the ramp.
µk = rand(µkmin,µkmax). µkmin and µkmax are randomly predetermined.

C. Calculate the new position for workers (the movement of workers).

x = v2
0

2g sinθ
(2.15)

The worker friction is ignored as it mentioned earlier in rule number five.

D. Estimate the new position (solution). The new position (solution) is obtained
from the resultant of stone blocks and workers as follows:

P = (Pi +d)×xεi (2.16)

Where:
Pi: is the current position.
d : is the displacement value of the stone.
x : is the movement of workers value.
εi : is a random vector that follow the uniform distribution.
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E. Investigating possibility of substituting workers for the next iteration.
Each worker has a possibility of 50% to lose his power. Thus, 50% to substitute
each worker.

F. Return to step B and repeat the same process to reach the maximum iteration.

The flowchart of the GPC algorithm is given in figure 2.10.

Figure. 2.10: Flowchart of GPC algorithm
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2.4 MAXIMUM POWER POINT EXTRACTION

According to [68], the following equations can be used to estimate Vmpp, Impp, and
Pmpp values.

Vpmax0 = Vpmax
1+CT (TJ −TJ0) +VT

TJ0
TJ

ln
(

E0
Eeff

)
− IpmaxRS

(
E0

Eeff
−1

)
(2.17)

Ipmax0 = Ipmax
E0

Eeff
(2.18)

Ppmax = Ipmax ×Vpmax (2.19)

Where:
E0 = 100w/m2 is the nominal irradiance, TJ0 = 250 is the nominal temperature, Rs

: is the series resistance, Eeff : is the effective irradiance, CT : is the temperature
coefficient of the power. CT = −0.0044K−1, and TJ : is the cell temperature and its
given by:

TJ

(
Eeff ,Tamb

)
= Tamb +(NOCT −Tambn) Eeff

EN
(2.20)

Where:
Tambn : is the nominal ambient temperature, it’s given in the datasheet, Tambn = 200,
EN = 800w/m2, and VT : is the thermal voltage where :

VT = nkT

q
(2.21)

k = 1.38.10−23m2kgK−1s−2 : is the constant of the Boltzmann, q = 1.60Ö10−19C

: is the electric charge value, Ipmax0: is the nominal current at the maximum power
point, and Vpmax0 is the nominal voltage at the maximum power point. Ipmax0 and
Vpmax0 are both given in the datasheet.

2.5 Simulation results

To evaluate the EPC and the GPC optimizers performance, a Matlab environment
with experimental measures of current I and voltage V of ISOFOTON106/12W
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Electrical characteristic ISOFOTON 106/12W
Pmp(W ) 106
Vmp(V ) 17.4
Imp(A) 6.10
Voc(V ) 21.6
Isc(A) 6.54

βVoc

(
%/0C

)
-0.36

αIsc

(
%/0C

)
0.06

Table 2.1: Electrical characteristic of ISOFOTON106/12W .

Parameters Iph Id RS Rsh n

range [0−10]
[
10−7 −10−4

]
[0−1] [0−400] [0−75]

Table 2.2: Interval values of the five parameters.

module is used. Table 1 shows the characteristic of the used module, while table 2
gives the upper and the lower values of the parameters (Iph, I0,Rs,Rsh,n).

Tables 3 and 4 show the algorithm specific parameters for the EPC and the GPC
algorithms respectively.

Using the EPC and the GPC algorithms, the module parameters are extracted and
gathered in table 5. We note that the two algorithms are executed 30 times. The root
mean square error (RMSE) value given in table 5 is the mean of 30 times execution.

Due to its higher convergence to the global minimum, the next set of figures will
only include the GPC algorithm.

The EPC parameters Values
Colony size 150
Heat radiation damping ratio 0.95
Attenuation coefficient 1
Attenuation coefficient damping ratio 0.98
Mutation coefficient 0.2
Mutation coefficient damping ratio 0.8
Selected arbitrary for a 0.2
Selected arbitrary for b 0.5

Table 2.3: Specific parameters for the EPC algorithm.
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The GPC parameters Values
Population size 150
Gravity 9.80
Angle ramp 8
Initial velocity rand(0,1)
Minimum friction 5
Maximum friction 10
Substitution probability 0.5

Table 2.4: Specific parameters for the GPC algorithm.

Module’s parameters EPC GPC
Iph(A) 4.94 4.99
Id(A) 1.39×10−6 4.73×10−5

Rs(Ω) 0.15 0.086
Rsh(Ω) 275.02 380

n 53.07 69.32
RMSE 0.088 0.033

Table 2.5: Identified parameters values.

Figure 2.11 depicts the estimated I-V characteristic using the obtained parameters’
values and the measured I-V characteristic, while figure 2.12 shows the estimated P-V
characteristic using the obtained parameters values and the measured P-V characteristic.
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Figure. 2.11: Measured and estimated I-V characteristics

Figure. 2.12: Measured and estimated P-V characteristic
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Figure 2.13 represents a comparison between Imeasure
mpp and Iestimate

mpp , figure 2.14
represents a comparison between V measure

mpp and V estimate
mpp , and figure 2.15 represents a

comparison between P measure
mpp and P estimate

mpp .

Figure. 2.13: measured and estimated Impp
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Figure. 2.14: measured and estimated Vmpp

Figure. 2.15: measured and estimated Pmpp
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It is clear how the two curves in figures 2.11 - 2.15 coincide, which indicate the
accuracy of the obtained values and the effectiveness of the used algorithm.

Figures 2.16 and 2.17 show the evolution of the cost function value and the values of
the different parameters during the optimization process, respectively.

Figure. 2.16: Evolution of the value of the cost function during the optimization
process

Figure. 2.17: Evolution of the values of the different parameters during the
optimization process
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2.6 Conclusion

This chapter is principally focused on elucidating the modeling of photovoltaic
systems and the determination of their parameters. It provides an overview of the
physical principles of solar cells and describes the single diode model. The chapter
further discusses the identification of PVM parameters through the utilization of EPC
and GPC algorithms. Finally, it presents a proposed approach for estimating the
coordinates of the maximum power point.

The effectiveness of the proposed parameters identification algorithms was validated
using the Isofoton 106/12W PVM. The parameters identified for the PVM were
incorporated into the characteristic equation, and the model was then compared with
actual measurements of I-V curves. The obtained results clearly indicate the success of
the proposed algorithms in accurately extracting the PVM parameters. Additionally,
an efficient approach for MPP estimation, based on the identified parameters, was
developed and tested. The outcomes of the MPP estimation demonstrate the effectiveness
of these algorithms.
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CHAPTER 3

FAULTS DETECTION AND
DIAGNOSIS OF

PHOTOVOLTAIC SYSTEMS
USING MODIFIED K-NEAREST

NEIGHBORS ALGORITHM

3.1 Introduction

During the operation of photovoltaic systems, various faults can occur and result
in serious problems, such as energy loss or system shutdown. Therefore, it is crucial
to identify and diagnose these faults in order to improve system performance. The
purpose of this work is to propose an efficient and simple procedure for the early
detection and diagnosis of faults on the direct current side of photovoltaic systems
using a modified version of the KNN algorithm and the metaheuristic GPC algorithm.
These faults include the short circuit of three modules, short circuit of ten modules,
and string disconnection.

3.2 Dataset description

The considered faults include the short circuit of three modules, short circuit of ten
modules, and string disconnection.
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The PVA used to generate dataset for both healthy and faulty states is composed of
two parallel strings as it seen in figure 3.1. Each string comprises fifteen Isofoton PVMs
(106W/12V ) connected in series. This PVA is simulated using the Simulink/Matlab
environment under both healthy conditions and the considered faults. The simulation is
carried out for different values of the temperature and the irradiance. Each sample of the
generated dataset is composed of four physical quantities: cell temperature, irradiance,
current at the maximum power point, and voltage at the MPP (T,G,Impp,Vmpp).

Figure. 3.1: Studied PVS with different considered faults.
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Figures 3.2 and 3.3 depict the current Impp and voltage Vmpp for the considered four
classes (healthy state and faulty states), respectively. It is clear from figure 3.2 that
the fault of string disconnection affects the current Impp, while the fault of short circuit
of modules affects the voltage Vmpp. The more modules that are short-circuited, the
greater the impact on the current Impp. The class labels and the number of samples
per class are given in table 1. The generated dataset is divided into a training set and
a testing set.

Figure. 3.2: Impp of the healthy state system and faulty states
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Class name Data length Label
Class 0 Normal operation 840 0

Class 1 Short circuit of 3
modules 840 1

Class 2 Short circuit of 10
modules 840 2

Class 3 Disconnect a string
of 15 modules 840 3

Data samples - 3360 -

Table 3.1: Dataset with its classes name, data length, and labels.

Figure. 3.3: Vmpp of the healthy state system and faulty states

The generated dataset has four classes with four attributes which are: cell temperature
T , solar irradiance G, and MPP coordinates Impp and Vmpp. The detail of each class is
given by table 1.

In order to train and evaluate the proposed algorithm, the dataset was divided into
a training set and a testing set.
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3.3 Faults detection and diagnosis strategy

3.3.1 Faults detection and diagnosis principle

The developed procedure must distinguish between four classes: the healthy class and
three classes representing different types of considered faults. The idea of the proposed
approach is to transform the multi-classification problem into a binary classification
problem and utilize a modified version of the well-known KNN classifier. The training
dataset is divided into two hyper-spheres, each representing a distinct class, then the giza
pyramid construction algorithm is utilized to determine the optimal center coordinates
of these hyper-spheres. To classify a new data-point using the proposed classifier, which
combines the KNN classifier and the giza pyramid construction algorithm, distances
are computed only between the new data point and the center of each sphere. Unlike
the classical version of the KNN classifier, which involves computing distances between
the new data point and the entire dataset.

In the proposed strategy, the number nc of required classifiers to classify nm classes
is given by:

nc = nm −1 (3.1)

In this work, since there are four classes, it is necessary to design three classifiers,
as is shown by the flowchart of figure 3.4. The first classifier separates class 3 (string
disconnection fault) from the rest of the classes, the second classifier separates class
0 (normal operating) from classes 1 and 2, while the last classifier separates classes 1
(short circuit of three modules) and 2 (short circuit of ten modules).
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Figure. 3.4: Classification strategy

3.3.1.1 Classification algorithm

For each classifier of the flowchart of figure 3.4, a classification algorithm is required.
The developed algorithm is inspired from the classical KNN algorithm. Two hyper-
spheres representing two different classes are used, and their optimal center coordinates
are obtained using the GPC metaheuristic algorithm. In the proposed classification
algorithm, only the distances between each new data and the center of each hyper-
sphere computed. In the following, the coordinates (xi,yi, zi, ti) correspond to the used
attributes (Ti,Gi, Imppi ,Vmppi), respectively, and n is the number of samples in the
used dataset.
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3.3.1.2 KNN algorithm

The main steps of the KNN algorithm in binary classification are given below:

• Randomly initialize the neighbors’ number K.

• For each data-point (xi,yi, zi, ti), compute the distance between the data-point
and the entire dataset using the Euclidean distance.

dist i =
√

(x1 −xi)2 +(y1 −yi)2 +(z1 − zi)2 +(t1 − ti)2 (3.2)

Where:
i = 1,2, . . . ,n and n is the dataset length.
(x1,y1, z1, t1) : are the first data coordinates in the dataset.

• Sort the computed distances in an ascending order.

• Pick the first K data-points corresponding to the first distances and get their
labels.

• Return the mode of the obtained labels.

3.3.1.3 Modified KNN algorithm

Unlike the classical version of the KNN classifier, which involves computing distances
between the new data point and the entire dataset,the proposed modified version
consists of five steps:

• Select the initial values for the centers of the two hyper-spheres (x0,y0, z0, t0) and
(x1,y1, z1, t1).
These values can be chosen from the dataset of class 0 and class 1, respectively.
Randomly initialize two values for radius R0 and R1. For simplification reason,
R0 is set to be equal to R1. Next, use the GPC algorithm to obtain the optimal
value of the center of each hyper-sphere by minimizing a given cost function.

• Compute distances between each center and the entire data using:

dist0i =
√

(x0 −xi)2 +(y0 −yi)2 +(z0 − zi)2 +(t0 − ti)2 (3.3)

dist1i =
√

(x1 −xi)2 +(y1 −yi)2 +(z1 − zi)2 +(t1 − ti)2 (3.4)
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Where: i = 1,2, . . . ,n.

• Select the longest distance from dist0 and dist1, then compute the factors using:

factor0 = R0
max(dist0) (3.5)

factor1 = R1
max(dist1) (3.6)

• Calculate the new distances distnew0 and distnew1 using the following equations:

distnew0i = factor0∗disti (3.7)

distnew1i = factor1∗disti (3.8)

Where: i = 1,2, . . . ,n. By doing this, all data-points are located inside the
hyper-sphere.

• if distnew0i < distnew1i , then the point belongs to class A. Otherwise, it belongs
to class B.

The aforementioned steps are summarized by the flowchart of figure 3.5.
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Figure. 3.5: Flowchart of the proposed algorithm.

3.4 Results and discussion

To assess the efficiency of the proposed approach, a comparative study is conducted,
including the classical version of the KNN, support vector machine, decision tree, and
random forest algorithms. The evaluation criteria considered are accuracy, precision,
recall, and execution time.

3.4.1 Training and testing the proposed classifier

For each of the three classifiers in the flowchart of figure 3.4, the training stage aims
to search for the appropriate values of the center coordinates of the first hyper-sphere
(class A) and the center of the second hyper-sphere (class B) that minimize the following
cost function:
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cost function = 1
n

n∑
i=1

(Yreal −Ylabel )2 (3.9)

where Yreal are real class labels and Ylabel are predicted labels. The testing stage aims
to evaluate the classifier’s performance with testing data. To do this, a mathematical
tool called confusion matrix is used. As is shown in table 2, this matrix is composed of
two rows and two columns.

Real class labels Predicted label: A Predicted label: B

Class A True Positive
(TP)

False Negative
(FN)

Class B False Positive
(FP)

True Negative
(TN)

Table 3.2: Confusion matrix.

TP: denotes data that are in class A, and they are classified in class A by the
classifier.
FN: denotes data that in class A, and the classifier classifies them in class B.
FP: denotes data that in class B, and the classifier classifies them in class A.
TN: denotes data that are in class B, and they are classified in class B by the classifier.

In addition to the confusion matrix, the following metrics concepts are usually used
to evaluate the classification performance of a given classifier:

• The accuracy: this metric, given by equation 3.10, aims to answer the following
question:
Among the entire test data, what proportion of the data which the classifier
correctly classified them?

Accuracy = TP +TN

TP +FN +FP +TN
×100 (3.10)

• The precision (positive predictivity): this metric, given by equation 3.11, aims to
answer the following question:
Among the data classified as positive (in class1), what proportion of the data
which the classifier correctly classified them?

Precision = TP

TP +FP
×100 (3.11)
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• The recall (sensitivity): this metric aims, given by equation 3.12, to answer the
following question:
Among the data which is actually positive (class 1 in the data set), what proportion
of the data the classifier correctly classified them?

Recall = TP

TP +FN
×100 (3.12)

As is shown by figure 3.4, three classifiers are required to detect and diagnosis the
considered faults (healthy operating, short circuit of three modules, short circuit of ten
modules and string disconnection). Hence, to evaluate the performance of the proposed
strategy of faults detection and diagnosis, the analysis of each of the three classifiers,
using the average values of the aforementioned metrics and the average value of the
execution time is necessary. The higher the values of accuracy, precision, and recall,
the better the performance of the proposed strategy. All simulation are carried out
using personnel computer with Intel(R)Core(TM )i3 processor (2.5 GHz).

3.4.2 Obtained results using the modified KNN algorithm

The first step, as shown in the flowchart of figure 3.5, is to use the GPC algorithm
to find the centers of the first hyper-sphere (class A) and the second hypersphere (class
B) for classifiers 1, 2 and 3. The parameters values of the GPC algorithm are listed in
table 3. Following the completion of the remaining steps as shown in figure 3.5, the
confusion matrix is extracted to determine the accuracy, precision, and recall for the
first classifier (table 7), the second classifier (table 11), and the third classifier (table
15).

Population
size

Gravity Angle of
Ramp

Minimum
friction

Maximum
friction

Substitution
probability

60 9.8 10 5 105 0.5

Table 3.3: Parameters values of the GPC algorithm.

3.4.2.1 Classifier 1

Tables 4 and 5 give the number of samples in training and testing data for each class
respectively. While table 6 represents the center coordinates for the first classifier.
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Class 0 Class 1 Class 2 Class 3 Total
706 705 722 723 2856

Table 3.4: Training dataset for the first classifier.

Class 0 Class 1 Class 2 Class 3 Total
134 135 118 117 504

Table 3.5: Testing dataset for the first classifier.

T (◦C) G
(
W/m2

)
Impp(A) Vmpp(V )

Center (x0,y0, z0, t0) 2.08e−6 0.003 5.71e−5 4.77e−5
Center (x1,y1, z1, t1) 0.0011 1.757e−5 0.72 8.857e−4

Table 3.6: Center coordinates found using the GPC algorithm for the first classifier.

The confusion matrix of the first classifier is given below:

Confusionmatrix1 =
 372 15

14 103


Based on the obtained values of the Confusionmatrix1, classifier 1 successfully

identified 475 of the 504 data points. 372 (TP) and 103 (TN) data points are successfully
classified into classes 0 and 1, respectively. 29 data points are incorrectly classified by
classifier 1, of which 15 (FN) data points should belong to Class 1 but are classified as
Class 0, and 14 (FP) data points should belong to Class 0 but are classified as Class 1.

The corresponding values of the accuracy, the precision, and the recall are gathered
in table 7. Figure 3.6 depicts the evolution of the cost and accuracy functions over
iterations. It can be observed that accuracy and the cost function rapidly converge
toward their higher and smallest values respectively.

Accuracy Precision Recall Execution time
(100)

94.24% 96.37% 96.12% 0.042( s)

Table 3.7: Metrics values of the first classifier.
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Figure. 3.6: Accuracy and the cost function of the first classifier in terms of iteration.

3.4.2.2 Classifier 2

Tables 8 and 9 give the number of samples in training and testing data for each class
respectively, while table 10 represents the center coordinates for the second classifier.

Class 0 Class 1 Class 2 Class 3 Total
706 705 722 84 2217

Table 3.8: Training dataset for the second classifier.
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Class 0 Class 1 Class 2 Class 3 Total
125 129 118 14 386

Table 3.9: Testing dataset for the second classifier.

T (◦C) G
(
W/m2

)
Impp(A) Vmpp(V )

Center (x0,y0, z0, t0) 400 400 6.52369e+3 1.33088e

+3

Center (x1,y1, z1, t1) 400 400 400 2.73569e

+2

Table 3.10: Center coordinates found using the GPC algorithm for the second
classifier.

Based on the confusion matrix of the second classifier given below, the accuracy, the
precision,and the recall are computed and given in table 11.

Confusionmatrix2 =
 259 2

29 96


Table 11 presents the second classifier performance and figure 3.7 represents the

evolution of the accuracy and the cost function over iterations.

Accuracy Precision Recall Execution time
(100)

92% 90% 99.23% 0.041( s)

Table 3.11: Metrics values of the second classifier.
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Figure. 3.7: Accuracy and the cost function of the second classifier in terms of
iteration.

3.4.2.3 Classifier 3

Table 12 and 13 give the number of samples in training and testing data for each class
respectively, while table 14 represents the center coordinates for the third classifier.

Class 0 Class 1 Class 2 Class 3 Total
195 705 722 84 1706

Table 3.12: Training dataset for the third classifier.
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Class 0 Class 1 Class 2 Class 3 Total
29 127 118 14 288

Table 3.13: Testing dataset for the third classifier.

T (◦C) G
(
W/m2

)
Impp(A) Vmpp(V )

Center (x0,y0, z0, t0) 400 74.075 400 400
Center (x1,y1, z1, t1) 77.155 400 7.72656e+3 5.70441e+3

Table 3.14: Center coordinates found using the GPC algorithm for the third classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 15.

Confusionmatrix3 =
 107 0

63 118



Accuracy Precision Recall Execution time
(100)

78.13% 63% 100% 0.040( s)

Table 3.15: Metrics values of the third classifier.

Figure 3.8 represents the evolution of the accuracy and cost function over iterations.

71



FAULTS DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC SYSTEMS USING
MODIFIED K-NEAREST NEIGHBORS ALGORITHM

Figure. 3.8: Accuracy and the cost function of the third classifier in terms of iteration.

3.4.3 Obtained results using the classical KNN algorithm

3.4.3.1 Classifier 1 (for K = 6)

From figure 3.9, it can easily seen that the best result is obtained when k = 6.
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Figure. 3.9: Error in terms of K values for the first KNN classifier.

The number of samples of the testing dataset, given in table 16, is used to evaluate
the performance of the first KNN classifier.

Class 0 Class 1 Class 2 Class 3 Total
134 135 118 117 504

Table 3.16: Testing dataset for the first KNN classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 17.

Confusionmatrix1 =
 318 69

28 89



K Accuracy Precision Recall Execution
time (100)

6 81% 82% 92% 0.072( s)

Table 3.17: Metrics values of the first KNN classifier.
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3.4.3.2 Classifier 2 (for K = 5)

Figure 3.10 shows that the best result is obtained when K = 5,K = 7, or K = 8.

Figure. 3.10: Error in terms of K values for the second KNN classifier.

The number of samples of the testing dataset, given in table 18, is used to evaluate
the performance of the second KNN classifier.

Class 0 Class 1 Class 2 Class 3 Total
67 134 117 28 346

Table 3.18: Testing dataset for the second KNN classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and computed and given in table 19.

Confusionmatrix2 =
 265 14

13 54



74



FAULTS DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC SYSTEMS USING
MODIFIED K-NEAREST NEIGHBORS ALGORITHM

K Accuracy Precision Recall Execution
time (100)

5 92% 95% 95% 0.046( s)

Table 3.19: Metrics values of the second KNN classifier.

3.4.3.3 Classifier 3 (for K = 8)

Figure 3.11 depicts the evolution of the error rate versus the value of K. It can
easily seen, from this figure, that the best result is obtained when k = 8.

Figure. 3.11: Error in terms of K values for the third KNN classifier.

The number of samples of the testing dataset, given in table 20, is used to evaluate
the performance of the third KNN classifier.

Class 0 Class 1 Class 2 Class 3 Total
13 265 0 0 278

Table 3.20: Testing dataset for the third KNN classifier.
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Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and computed and given in table 21.

Confusion matrix 3 =
 171 107

0 0



K Accuracy Precision Recall Execution
time (100)

8 62% 62% 100% 0.037( s)

Table 3.21: Metrics values of the third KNN classifier.

3.4.4 Obtained results using support vector machine

The second machine learning algorithm used is the SVM. The SVM hyper-parameters
(C and gamma) are tuned using the grid search method.

3.4.4.1 Classifier 1

The tuned values of the first classifier are: C = 1000 and gamma = 0.001. The
number of samples of the testing dataset, given in table 22, is used to evaluate the
performance of the first SVM classifier.

Class 0 Class 1 Class 2 Class 3 Total
134 135 118 115 504

Table 3.22: Testing dataset for the first SVM classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 23.

Confusionmatrix1 =
 21 28

96 359
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Accuracy Precision Recall Execution
time (100)

75% 18% 43% 0.083(s)

Table 3.23: Metrics values of the first SVM classifier.

3.4.4.2 Classifier 2

The tuned values of the second classifier are: C = 1000 and gamma = 0.001. The
number of samples of the testing dataset, given in table 24, is used to evaluate the
performance of the second SVM classifier.

Class 0 Class 1 Class 2 Class 3 Total
106 135 118 96 455

Table 3.24: Testing dataset for the second SVM classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 25.

Confusionmatrix2 =
 48 38

58 311



Accuracy Precision Recall Execution
time (100)

79% 45% 56% 0.11( s)

Table 3.25: Metrics values of the second SVM classifier.

3.4.4.3 Classifier 3

The tuned values of the third classifier are: C = 0.1 and gamma = 0.0001. The
number of samples of the testing dataset, given in table 26, is used to evaluate the
performance of the third SVM classifier.
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Class 0 Class 1 Class 2 Class 3 Total
58 135 118 58 369

Table 3.26: Testing dataset for the third SVM classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 27.

Confusionmatrix3 =
 67 04

28 247



Accuracy Precision Recall Execution
time (100)

91% 76% 96% 0.048(s)

Table 3.27: Metrics values of the third SVM classifier.

3.4.5 Obtained results using decision tree

In this sub-section, the decision tree algorithm is used to design the three classifiers
required to detect and diagnose the considered faults.

3.4.5.1 Classifier 1

The number of samples of the testing dataset, given in table 28, is used to evaluate
the performance of the first DT classifier.

Class 0 Class 1 Class 2 Class 3 Total
134 135 118 117 504

Table 3.28: Testing dataset for the first DT classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 29.

Confusionmatrix1 =
 103 08

14 379
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Accuracy Precision Recall Execution
time (100)

96% 92% 88% 0.0027( s)

Table 3.29: Metrics values of the first DT classifier.

3.4.5.2 Classifier 2

The number of samples of the testing dataset, given in table 30, is used to evaluate
the performance of the second DT classifier.

Class 0 Class 1 Class 2 Class 3 Total
129 134 116 14 393

Table 3.30: Testing dataset for the second DT classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 31.

Confusionmatrix2 =
 118 20

11 244



Accuracy Precision Recall Execution
time (100)

92% 91% 86% 0.0029( s)

Table 3.31: Metrics values of the second DT classifier.

3.4.5.3 Classifier 3

The number of samples of the testing dataset, given in table 32, is used to evaluate
the performance of the third DT classifier.

Class 0 Class 1 Class 2 Class 3 Total
1 126 110 8 255

Table 3.32: Testing dataset for the third DT classifier.
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Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 33.

Confusionmatrix3 =
 0 0

125 130



Accuracy Precision Recall Execution
time (100)

51% 0% 0% 0.0028( s)

Table 3.33: Metrics values of the third DT classifier.

3.4.6 Obtained results using random forest

The random forest algorithm is used to design the three classifiers required to detect
and diagnose the considered faults.

3.4.6.1 Classifier 1

The number of samples of the testing dataset, given in table 34, is used to evaluate
the performance of the first RF classifier.

Class 0 Class 1 Class 2 Class 3 Total
134 135 118 117 504

Table 3.34: Testing dataset for the first RF classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 35.

Confusionmatrix1 =
 103 01

14 386
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Accuracy Precision Recall Execution
time (100)

97% 88% 99% 0.08(s)

Table 3.35: Metrics values of the first RF classifier.

3.4.6.2 Classifier 2

The number of samples of the testing dataset, given in table 36, is used to evaluate
the performance of the second RF classifier.

Class 0 Class 1 Class 2 Class 3 Total
132 135 118 15 400

Table 3.36: Testing dataset for the second RF classifier.

Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 37.

Confusionmatrix2 =
 118 11

14 257



Accuracy Precision Recall Execution
time (100)

94% 89% 91% 0.073( s)

Table 3.37: Metrics values of the second RF classifier.

3.4.6.3 Classifier 3

The number of samples of the testing dataset, given in table 38, is used to evaluate
the performance of the third RF classifier.

Class 0 Class 1 Class 2 Class 3 Total
14 131 117 9 271

Table 3.38: Testing dataset for the third RF classifier.
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Based on the confusion matrix given below, the accuracy, the precision, and the
recall values are computed and given in table 39.

Confusionmatrix3 =
 0 117

0 154



Accuracy Precision Recall Execution
time (100)

57% 0% 0% 0.059( s)

Table 3.39: Metrics values of the third RF classifier.

3.4.7 Comparison between the hyper-sphere algorithm, the
KNN, the SVM, the DT, and the RF algorithms

The results of the proposed strategy for detecting and diagnosing the considered
faults using the modified KNN algorithm are compared with those obtained using the
same strategy for fault detection and diagnosis, but based on the KNN, SVM, DT, and
RF algorithms. This comparison is based on the average values of accuracy, precision,
and recall metrics, as well as the average execution time. The results obtained in the
preceding sections are summarized in table 40.
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Accuracy Precision Recall Time (s)
Hyper-sphere 1 94.24 96.37 96.12 0.042
Hyper-sphere 2 92 90 99.23 0.041
Hyper-sphere 3 78.13 63 100 0.040
Average 88.12 83.12 98.45 0.041
KNN 1 81 82 92 0.072
KNN 2 92 95 95 0.046
KNN 3 62 62 100 0.037
Average 78.33 79.66 95.66 0.051
SVM 1 75 18 43 0.083
SVM 2 79 45 56 0.068
SVM 3 91 76 96 0.048
Average 81.66 46.33 65 0.067
DT 1 96 92 88 0.0027
DT 2 92 91 86 0.0029
DT 3 51 0 0 0.0028
Average 76.66 61 58 0.0028
RF 1 97 88 99 0.083
RF 2 94 89 91 0.073
RF 3 57 0 0 0.059
Average 82.66 59 63.33 0.071

Table 3.40: Comparison between the proposed classifier and the KNN, SVM, DT, and
RF based classifier.

From table 40, it can be observed that the modified KNN algorithm achieves the
highest values for all three metrics, indicating its superior performance compared to
the other algorithms. In terms of execution time, the DT-based classifier is the fastest,
while the proposed algorithm has a shorter execution time compared to the RF-based
classifier, the SVM-based classifier and the KNN-based classifier.
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Figure. 3.12: Fault detection diagnosis results using the modified KNN algorithm

Figure 3.12 gives the obtained classification results using the modified KNN-based
classifier. The proposed algorithm can classify most of the presented data into their
corresponding classes. There are a few cases where it is failed to correctly classify them
because of two reasons: The first reason is that this data is located within the bounds
of classes, which makes it relatively difficult for the algorithm to classify. As for the
second reason, it is that some of this data are considered as outliers.

3.5 Conclusion

This chapter has proposed an algorithm that is inspired from the classical KNN to
detect and diagnose faults in PVSs. The proposed algorithm consists of two steps:
1) Generate a dataset for healthy state and three faulty operations using Matlab, 2)
Identify and recognize data and its corresponding classes.

For the KNN-based classifier, it mainly depends on calculating all the distances
between any new data and all the data in the dataset. In the proposed algorithm, the
computing time is reduced, so that the distance between any new data and the center
of each hyper-sphere is computed. This development, in addition to the use of the giza
pyramids construction algorithm, significantly contribute to improve the accuracy, the
precision, the recall, as well as the time of fault detection and diagnosis. In addition to
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this, the proposed algorithm was compared with three other algorithms: the SVM, the
DT, and the RF based classifiers.

The developed algorithm was tested and evaluated to detect and diagnose three
different faults that are: short circuit of three modules, short circuit of ten modules,
and a specific string disconnection. The proposed strategy can be easily extended to
include other faults by increasing the number of classifiers.
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CHAPTER 4

EUCLIDEAN DISTANCE-BASED
TREE ALGORITHM FOR FAULT
DETECTION AND DIAGNOSIS
IN PHOTOVOLTAIC SYSTEMS

4.1 Introduction

This chapter presents a new methodology for fault detection and diagnosis in
photovoltaic systems using a novel Euclidean distance-based tree algorithm.

Firstly, the proposed Euclidean-based decision tree classification algorithm is introduced.
Then, the utilized database and the considered faults are described. The fault detection
and diagnosis procedure, as well as the obtained results, are presented and discussed
in this chapter.

4.2 Euclidean-based decision tree classification algorithm

Despite the similarities between the proposed algorithm and the decision trees in
their data splitting approach, the key distinction lies in using the Euclidean distance
for partitioning data instead of the Gini index. Unlike the decision tree, which requires
the use of the Gini index to split the data, this algorithm mainly relies on computing
distances between an arbitrary point in the space and the entire data set. Then, the
minimum and the maximum distances of each class are extracted and used to split the
data into different classes.
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Initially, a training dataset, comprising values for N features for each of the two
classes (class 0 and class 1), is created. Then, the following steps are performed:

a) Choose an arbitrary point (x1,x2, ...,xN ) in an N-dimensional space.

b) Using equations 4.1 and 4.2, compute the Euclidean distances between the chosen
point and all samples within the training dataset for each respective class:

dist0
i =

√(
x1 −x0

i1
)2

+
(
x2 −x0

i2
)2

+ . . .+
(
xN −x0

iN

)2
i = 1,2, . . . ,n (4.1)

dist1
i =

√(
x1 −x1

i1
)2

+
(
x2 −x1

i2
)2

+ . . .+
(
xN −x1

iN

)2
i = 1,2, . . . ,m (4.2)

where:
(x0

i1,x0
i2, ...,x0

in) and (x1
i1,x1

i2, ...,x1
im) represent the ith samples of class 0 and class

1, respectively. n denotes the number of samples in class 0, while m denotes the
number of samples in class 1.

c) Determine the minimum and maximum distances for each class:

min0 = min
i=1,2,...,n

(
dist0

i

)
(4.3)

max0 = max
i=1,2,...,n

(
dist0

i

)
(4.4)

min1 = min
i=1,2,...,m

(
dist1

i

)
(4.5)

max1 = max
i=1,2,...,m

(
dist1

i

)
(4.6)

d) Among the following five cases, one may arise:

■ case 1: min0 < min1 < max0 < max1

∗ Training samples having distances within the interval [min0,min1[
belong to class 0 (pure data in class 0).

∗ Training samples having distances within the interval ]max0,max1]
belong to class 1 (pure data in class 1).
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∗ Training samples having distances within the interval [min1,max0] can
not be classified, therefore another random point must be chosen for
their classification.

■ case 2: min1 < min0 < max1 < max0

∗ Training samples having distances within the interval [min1,min0[
belong to class 1 (pure data in class 1).

∗ Training samples having distances within the interval ]max1,max0]
belong to class 0 (pure data in class 0).

∗ Training samples having distances within the interval [min0,max1] can
not be classified, therefore another random point must be chosen for
their classification.

■ case 3: min0 < min1 < max1 < max0

∗ Training samples having distances within the interval [min0,min1[ or
]max1,max0] belong to class 0.

∗ Training samples having distances within the interval [min1,max1] can
not be classified, therefore another random point must be chosen for
their classification.

■ case 4: min1 < min0 < max0 < max1

∗ Training samples having distances within the interval [min1,min0[ or
]max0,max1] belong to class 1.

∗ Training samples having distances within the interval [min0,max0] can
not be classified, therefore another random point must be chosen for
their classification.

■ case 5: min0 < max0 < min1 < max1 or min1 < max1 < min0 < max0

∗ Training samples having distances within the interval [min0,max0]
belong to class 0.

∗ Training samples having distances within the interval [min1,max1]
belong to class 1.

e) If the case that occurred in the previous step is case 1, 2, 3, or 4:

– Choose another random point (x1,x2, . . . ,xN ).

– Using equations 4.1 and 4.2, compute the Euclidean distances between the
chosen point and the unclassified samples within the training dataset for
each respective class.

88



EUCLIDEAN DISTANCE-BASED TREE ALGORITHM FOR FAULT DETECTION
AND DIAGNOSIS IN PHOTOVOLTAIC SYSTEMS

– Go to step c).

f) The algorithm iterates through steps (c) to (e) until all data is classified (case
5) or the stopping criterion is met. It employs early stopping as its stopping
criterion to effectively mitigate overfitting without compromising the accuracy of
the algorithm [69–71].

Figure 4.1 provides a graphical illustration of the proposed algorithm depicting a
given possible situation.

Figure. 4.1: Graphical illustration of the proposed algorithm

The flowchart of the algorithm is given in figure 4.2.
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Figure. 4.2: Flowchart of the proposed algorithm

The pseudo code of the proposed algorithm is given below:
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Algorithm 1 Pseudo code of the Euclidean Distance-Based Tree Algorithm
1: STEP (a): Generate a random point.
2: STEP (b): Using (eq.1) and (eq.2), calculate the distances dist0

i and dist1
j

,(i = 1,2, ...,n.j = 1,2, ...,m).
3: STEP (c): Find min0,max0,min1,max1, the minimal and maximal distances of

each class.
4: STEP (d): Store the computed distances into a vector named dist and organize

it in ascending order.
5: STEP (e):
6: c = 1 (the counter for unclassified data).
7: if min0 < min1 < max0 < max1 (case 1) then
8: for i = 1 to k (k = n+m) do
9: if min0 ≤ dist(i) < min1 then

10: The point associated to dist(i) belongs to class 0.
11: else if max0 < dist(i) ≤ max1 then
12: The point associated to dist(i) belongs to class 1.
13: else if (min1 ≤ dist(i) ≤ max0) then
14: Unclassified(c :) = trainingset(i :)
15: Increment c
16: end if
17: end for
18: trainingset = Unclassified.
19: if the stopping criteria is not verified then
20: Choose a new arbitrary point.
21: Calculate the distances dist0

i and dist1
j for unclassified data.

22: Go to step (c).
23: else
24: Go to step (f).
25: end if
26: end if
27: if min1 < min0 < max1 < max0 (case 2) then
28: for i = 1 to k do
29: if min1 ≤ dist(i) < min0 then
30: The point associated to dist(i) belongs to class 1.
31: else if max1 < dist(i) ≤ max0 then
32: The point associated to dist(i) belongs to class 0.
33: else if (min0 ≤ dist(i) ≤ max1) then
34: Unclassified(c :) = trainingset(i :)
35: Increment c
36: end if
37: end for
38: trainingset = Unclassified.
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39: if the stopping criteria is not verified then
40: Choose a new arbitrary point.
41: Calculate the distances dist0

i and dist1
j for unclassified data.

42: Go to step (c).
43: else
44: Go to step (f).
45: end if
46: end if
47: if min0 < min1 < max1 < max0 (case 3) then
48: for i = 1 to k do
49: if min0 ≤ dist(i) < min1 or max1 < dist(i) ≤ max0 then
50: The point associated to dist(i) belongs to class 0.
51: else if (min1 ≤ dist(i) ≤ max1) then
52: Unclassified(c :) = trainingset(i :)
53: Increment c
54: end if
55: end for
56: trainingset = Unclassified.
57: if the stopping criteria is not verified then
58: Choose a new arbitrary point.
59: Calculate the distances dist0

i and dist1
j for unclassified data.

60: Go to step (c).
61: else
62: Go to step (f).
63: end if
64: end if
65: if min1 < min0 < max0 < max1 (case 4) then
66: for doi = 1 to k.
67: if min1 ≤ dist(i) < min0 or max0 < dist(i) ≤ max1 then
68: The point associated to dist(i) belongs to class 1.
69: else if (min0 ≤ dist(i) ≤ max0) then
70: Unclassified(c :) = trainingset(i :)
71: Increment c
72: end if
73: end for
74: trainingset = Unclassified.
75: if the stopping criteria is not verified then
76: Choose a new arbitrary point.
77: Calculate the distances dist0

i and dist1
j for unclassified data.

78: Go to step (c).
79: else
80: Go to step (f).
81: end if
82: end if
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83: if min0 < max0 < min1 < max1 or min1 < max1 < min0 < max0 (case 5) then
84: for doi = 1 to k.
85: if min0 ≤ dist(i) ≤ max0 then
86: The point associated to dist(i) belongs to class 0.
87: end if
88: if min1 ≤ dist(i) ≤ max1 then
89: The point associated to dist(i) belongs to class 1.
90: end if
91: end for
92: Go to step (f).
93: end if
94: Step (f): End (all data is classified or the stopping criterion is met).

4.3 Dataset description

The developed methodology requires four attributes, namely: solar irradiance,
temperature, and coordinates of MPP (Impp, Vmpp). The PVA used to generate
the dataset, for both healthy and faulty states, consists of two parallel strings.
Each string comprises fifteen series-connected Isofoton PVM (106W/12V ). The
Simulink/MATLAB platform is utilized to simulate the current (Impp) and voltage
(Vmpp) at the MPP of this PVA under both healthy and faulty states, considering
various values of cell temperature (T ) and irradiance (G). Through this simulation,
753 samples are generated for each of the considered classes, consisting of the four
physical quantities (T , G, Impp, Vmpp). In this study, besides the normal operating
state, six faulty states are considered. These states and their corresponding labels are
given in table 1.
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Table 4.1: Operating states and their labels.

Class name Label
Normal operation Class 0
Short circuit of three modules Class 1
Short circuit of ten modules Class 2
String disconnection Class 3
String with 25% of partial shading Class 4
String with 50% of partial shading Class 5
String with 75% of partial shading Class 6

As shown in figure 4.3, utilizing the Impp as a feature makes it possible to distinguish
between three faults: string disconnection, string disconnection with 50% shading,
and string disconnection with 75% shading. Meanwhile, in figure 4.4, it appears that
the Vmpp feature can be used to classify faults such as string disconnection with 25%
shading, short circuits of three modules, and short circuits of ten modules. To detect
the healthy state class, both Impp and Vmpp features must be used simultaneously.

Figure. 4.3: Impp for various operating states of the PVA
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Figure. 4.4: Vmpp for various operating states of the PVA

4.4 Fault detection and diagnosis methodology

The developed procedure for fault detection and diagnosis employs the Euclidean
distance-based tree algorithm, given above, to classify the considered faults. Figure 4.5
presents the flowchart of the classification strategy employed in this study. As depicted,
the algorithm transforms the multi-classification problem into a binary one by isolating
a single class at a time, starting from class 0 and ending with class 6. Therefore, six
classifiers must be designed for the seven considered classes.

The first classifier separates class 0 from the remaining classes, while the second
classifier separates class 1 from the others. The third classifier isolates class 2 from
classes 3, 4, 5, and 6. Subsequently, the fourth classifier distinguishes class 4 from
classes 3, 5, and 6. The fifth classifier separates class 3 from classes 5 and 6, and the
final classifier distinguishes between classes 5 and 6.

Each classifier is designed based on the previously described classification algorithm
and utilizes the four specified features (T , G, Impp, Vmpp).
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Figure. 4.5: Fault detection and diagnosis flowchart
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4.5 Results and discussion

The developed procedure for fault detection and diagnosis is implemented and applied
to classify a dataset comprising seven distinct classes (healthy state and six faulty
states. A comparison study between the developed procedure and the faults detection
and diagnosis methodologies based on Support Vector Machine, Decision Tree, Random
Forest, and K-Nearest Neighbors algorithms is conducted.

To evaluate the performance of the different algorithms considered in this study, a
mathematical tool called confusion matrix is used. The elements of this matrix are
used to compute the accuracy, the precision, and the recall metrics. This matrix is
well explained in chapter 03.

4.5.1 Training the fault detection and diagnosis model using
the proposed algorithm

Like any other statistical learning algorithm, the proposed algorithm firstly needs to
be trained using a training dataset. Following training, its performance is evaluated
using a separate testing set. The dataset is partitioned into two subsets: the training
set comprises 87% of the global dataset, while the testing set encompasses 13% of
the global dataset. As mentioned earlier, six classifiers are necessary to detect and
diagnose the specified faults. To mitigate overfitting effectively without compromising
the algorithm’s accuracy, the early stopping criterion is employed to stop the training
process of each classifier.

The accuracy metric for each classifier is calculated at every iteration and illustrated
in figures 4.6 through 4.11. As can be seen, for all classifiers the accuracy value increases
over iterations. Classifiers 1 to 6 of the trained model require 23, 9, 4, 6, 16, and 17
steps, respectively, to separate a class from the other classes.
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Figure. 4.6: Evolution of accuracy for the first classifier

Figure. 4.7: Evolution of accuracy for the second classifier
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Figure. 4.8: Evolution of accuracy for the third classifier

Figure. 4.9: Evolution of accuracy for the forth classifier
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Figure. 4.10: Evolution of accuracy for the fifth classifier

Figure. 4.11: Evolution of accuracy for the sixth classifier
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4.5.2 Evaluating the performance of the obtained model using
the proposed algorithm

To assess the effectiveness of the proposed approach, the obtained model is evaluated
using the average values of the aforementioned metrics. Higher values of accuracy,
precision, and recall indicate better performance of the proposed methodology. These
metric values are computed from the test dataset and gathered in tables 3 and 4.

Table 3 displays the confusion matrix values corresponding to each classifier within
the obtained model. Based on these values, the accuracy, precision, and recall metrics
are computed for each classifier and presented in table 4. Additionally, the last row
of table 4 gives the average values for accuracy, precision, and recall metrics of the
obtained model.

Table 4.2: Confusion matrices for the obtained model.

TP FN FP TN
Classifier 1 1107 19 29 168
Classifier 2 947 3 4 178
Classifier 3 762 1 3 183
Classifier 4 570 3 1 190
Classifier 5 354 13 10 179
Classifier 6 177 20 5 155

Table 4.3: Metrics values for the obtained model.

Accuracy (%) Precision (%) Recall (%)
Classifier 1 97 97 98
Classifier 2 99 100 100
Classifier 3 100 100 100
Classifier 4 99 100 99
Classifier 5 96 97 99
Classifier 6 93 97 90
Average values 97.33 99 97
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4.5.3 Comparative study using various machine learning algorithms

In this comparative study, the fault detection and diagnosis model depicted in the
flowchart of figure 4.5 is constructed using various statistical methods, namely the
SVM algorithm [23], the DT algorithm [12, 27], the RF algorithm [28, 29, 2], and the
KNN algorithm [38–40].

The confusion matrices for the obtained model using the aforementioned algorithms
are provided in table 5, while table 6 presents the values for accuracy, precision, and
recall, along with the average values of these metrics.
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Table 4.4: Confusion matrices for the obtained model using the four algorithms.
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Table 4.5: Metrics values for the obtained model using the four algorithms.
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To compare the performance of the proposed algorithm for fault detection and
diagnosis with the performance of the models based on the SVM, DT, RF, and KNN
algorithms, a summary of the average values of the different metrics is provided in
table 7. It can be observed from this table that the proposed method achieves the
highest values for the three metrics, indicating its superior performance compared to
the other techniques.

Table 4.6: Metrics average values.

Accuracy
(%)

Precision
(%)

Recall
(%)

The proposed
algorithm 97.33 98.66 97.5
SVM 85.33 88.65 96
DT 93 97.16 91.50
RF 93.50 97.16 92
KNN 87 90.50 93.16

Figures 4.12 to 4.16 display the fault detection and diagnosis results using the
proposed algorithm-based model and those based on the SVM, DT, RF, and KNN
algorithms, respectively. It can be seen from these figures that the smallest number
of incorrectly classified data is obtained in the case of both the RF algorithm-based
model and the proposed algorithm-based model. The models fail to correctly classify
all data due to data overlap and overfitting issues.
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Figure. 4.12: Fault detection and diagnosis results using the proposed algorithm-based
model

Figure. 4.13: Fault detection and diagnosis results using the SVM algorithm-based
model
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Figure. 4.14: Fault detection and diagnosis results using the DT algorithm-based
model

Figure. 4.15: Fault detection and diagnosis results using the RF algorithm-based model
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Figure. 4.16: Fault detection and diagnosis results using the KNN algorithm-based
model

4.6 Conclusion

In this chapter, an enhanced approach was proposed for identifying and diagnosing
PVA faults. A comparative study was conducted between the proposed algorithm-based
model and models based on four statistical learning algorithms: SVM, DT, RF, and
KNN algorithms. Unlike the decision tree algorithm, which uses the Gini index to
split the data onto two classes, the proposed algorithm calculates Euclidean distances
between an arbitrary point and the dataset samples. It then utilizes the minimal and
maximal distances to separate the samples belonging to each class.

In this study, four features, namely: cell temperature, irradiance, current and voltage
of the maximum power point were utilized. The proposed methodology effectively
distinguishes the normal operating condition from other abnormal states, achieving a
classification accuracy of 97%. The comparative investigation demonstrated that the
proposed approach outperformed the other methods considered in this work in terms
of accuracy, precision, and recall.

By increasing the number of classifiers, the proposed technique can be easily extended
to encompass additional faults.
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The main objective of this thesis was to develop effective methods, based on meta-
heuristic optimization algorithms and machine learning algorithms, for the detection
and diagnosis of faults in a photovoltaic system. Several types of faults on the DC side
of PV system, including short circuits of several PV modules, PV string disconnections,
and PV string disconnections with varying degrees of partial shading, had to be
considered.

The initial task involves deriving the five electrical parameters of the ODM. To
accomplish this, an effective procedure based on the EPC and GPC algorithms has been
developed for identifying the optimal values of these parameters. These algorithms were
chosen for their adeptness in addressing optimization problems, their swift convergence
rates, and their ease of implementation in real-time scenarios. The effectiveness of
the developed procedure for parameters identification has been confirmed through
experimental validation.

Subsequently, the ODM with the obtained values of parameters was employed to
formulate a proficient strategy for maximum power point estimation. This strategy
underwent experimental validation using experimental measurements. The efficiency
evaluation was specifically conducted under clear sky conditions.The comparison
between the two meta heuristic algorithms indicates the superiority of the identification
procedure based on the GPC algorithm over that based on the EPC algorithm in terms
of accuracy. Consequently, the GPC algorithm was employed in conjunction with the
first FDD approach developed in this thesis.

In the first developed faults detection and diagnosis strategy, a straightforward
modification was introduced to the conventional KNN algorithm. This modification
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involves computing the distance between any new data point and the center of each
hyper sphere. The modified KNN algorithm with conjunction of the GPC algorithm
have been used to build an efficient for faults detection and diagnosis in the DC side of
PV systems. To assess the efficiency of the proposed approach, a comparative study
was conducted, including the classical version of the KNN, support vector machine,
decision tree, and random forest algorithms. The results of the carried-out study have
demonstrated the remarkable superiority of the proposed strategy over that based on
these algorithms.

A second strategy, based on a novel Euclidean distance-based tree algorithm, for faults
detection and diagnosis in the DC side of PV systems has been developed in this thesis.
A comparison study between the developed faults detection and diagnosis methodology
and the methodology based on support vector machine, decision tree, random forest,
and KNN algorithms has been carried out.The obtained results demonstrate the high
efficiency and effectiveness of the proposed methodology, with a classification accuracy
reaching 97.33%.The comparative analysis has revealed that the faults detection and
diagnosis approach that uses the Euclidean distance-based tree algorithm outperforms
the approaches that use the other mentioned algorithms in terms of accuracy, precision,
and recall.

Although the fault detection and diagnosis strategies implemented in this thesis have
yielded promising results, they also prompt several questions and suggest avenues for
future research. Specifically, the following aspects warrant thorough consideration:

• Extending the applicability of the two algorithms to identify diverse sets of faults,
whether occurring on the DC or AC side.

• Exploring alternative classification strategies to assess the performance of the
two algorithms.

• The PCA algorithm can also be integrated with both algorithms to assist in
identifying relevant features.
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