UNIVERSITE SAAD DAHLAB DE BLIDA-1

Faculté des Sciences

Département de physique

Laboratoire de Physique Théorique et Interaction Rayonnement Matière

THÈSE DE DOCTORAT

Spécialité : Physique fondamentale et appliquée

MESURES DE DOSE EN MILIEUX HÉTÉROGÈNES

POUR LES FAISCEAUX DE HAUTES ÉNERGIES EN RADIOTHÉRAPIE 3D :

CAS DE LA RÉGION THORACIQUE

Par

Yasmina **BERKANI**

Devant le jury composé de :

M.Derbal	Pr.	U. de Blida-1
B.Rekik	Pr.	U. de Blida-1
C.Tayeb	Pr.	H.C.A
A.Dib	Pr.	U. d'Oran
R.Khelifi	Pr.	U. de Blida-1

Président Examinateur Examinateur Examinateur Directeur de thèse

Blida, Juin 2023

DÉDICACE

« L'absence nous enseigne la douleur de la perte », À la mémoire de ma MAMAN et de mon PAPA, Que vos âmes reposent en paíx et que le Bon Dieux vous accorde le paradis éternel

الملخص

يندرج الهدف من هذا العمل في مجال ضمان جودة العلاج في العلاج الإشعاعي الخارجي وبشكل أكثر تحديدًا علاج السرطانات الموجودة في القفص الصدري التي تنطوي على تعقيد القفص وإبراز صعوبة قياس الجرعات في تقديم العلاج مما يدعم جانب من جوانب العلاج. عدم تجانس وحركة هذه المنطقة التشريحية.

تمت مقارنة القياسات في الأشباح غير المتجانسة من خلال أجهزة الكشف المخصصة لقياس الجرعات في الجسم الحي مع حساب خوارزمية حساب جرعة TPS Eclipse AAA لحزم الفوتون عالية الطاقة (MV6 و MV18) التي تشير في الغالب إلى الانحرافات حوالي 2 ٪ و 1 ٪ مع استثناءات من الانحرافات التي وصلت إلى القيم من أكثر من 5٪. أشارت جميع القياسات إلى التقليل من جرعة AAA في مثل هذه الوسائط غير المتجانسة.

الحساب في Eclipse ، لطاقات MV6 و MV18 ، وباستخدام خوارزميات AAA و Acuros XB ، في الأشباح غير المتجانسة التي تحاكي منطقة الصدر وفي لقطات المريض الحقيقية التي تحاكي حركة الجهاز التنفسي التي تنطوي على إزاحة المنطقة الصدرية والتغيير في الرئة الكثافة ، أشارت إلى اختلافات كبيرة في معاملات قياس الجرعات. تؤثر هذه الاختلافات على تغطية الحجم المستهدف والأعضاء المجاورة المعرضة للخطر بطريقة كبيرة من إزاحة القفص الصدري بمقدار 5 مم.

الكلمات المفتاحية: عدم التجانس - الصدر - الخوارزمية - التنفس - العلاج الإشعاعي - سرطان الصدر - TPS.

RÉSUMÉ

L'objectif de ce travail s'inscrit dans le domaine de l'assurance qualité de traitement en radiothérapie externe et plus précisément le traitement des cancers localisés dans la cage thoracique impliquant la complexité du thorax et mettant en évidence la difficulté dosimétrique à délivrer un traitement qui prend en charge l'aspect de l'hétérogénéité et du mouvement de cette région anatomique.

Des mesures dans des fantômes hétérogènes par le biais de détecteurs dédiés à la dosimétrie in vivo ont été comparées au calcul de l'algorithme de calcul de dose AAA du TPS Eclipse pour des faisceaux de photons de haute énergie (6MV et 18MV) ont indiqué majoritairement des déviations autour de 2% et 1% avec des exceptions d'écarts ayant atteint des valeurs de plus de 5%. L'ensemble des mesures a indiqué une sous estimation de la dose du AAA dans de tels milieux hétérogènes.

Le calcul dans Eclipse, pour les énergies du 6MV et 18MV, et avec les algorithmes AAA et Acuros XB, dans des fantômes hétérogènes simulant la région thoracique et dans des plans réels de patients simulant le mouvement respiratoire impliquant le déplacement de la région thoracique et le changement de la densité pulmonaire, a indiqué des variations importantes des paramètres dosimétriques. Ces variations impactent la couverture du volume cible et les organes à risques avoisinants d'une manière significative à partir d'un déplacement de la cage thoracique de 5 mm.

<u>Mots clés</u>: Hétérogénéité – Thorax – Algorithme – Dosimétrie – Respiration – Radiothérapie – Cancer thoracique – TPS.

ABSTRACT

The objective of this work falls within the field of quality assurance of treatment in external radiotherapy and more precisely the treatment of cancers located in the rib cage involving the complexity of the thorax and highlighting the dosimetric difficulty in delivering a treatment which supports the aspect of heterogeneity and movement of this anatomical region.

Measurements in heterogeneous phantoms through dedicated detectors for in vivo dosimetry were compared to the calculation of the TPS Eclipse AAA dose calculation algorithm for high energy photon beams (6MV and 18MV) indicated predominantly deviations around 2% and 1% with exceptions of deviations having reached values of more than 5%. All the measurements indicated an underestimation of the AAA dose in such heterogeneous medium.

The calculation in Eclipse, for the energies of 6MV and 18MV, and with the AAA and Acuros XB algorithms, in heterogeneous phantoms simulating the thoracic region and in real patient plans simulating the respiratory motion involving the displacement of the thoracic region and the change in lung density, indicated significant variations in dosimetric parameters. These variations impact the coverage of the target volume and the neighboring organs at risk in a significant way from a displacement of the thoracic cage of 5 mm.

<u>*Keywords:*</u> Heterogeneity – Thorax – Algorithm – Respiration – Radiotherapy – Thoracic cancer – TPS.

REMERCIEMENTS

Louange à ALLAH le tout miséricordieux le très miséricordieux de nous avoir procuré la chance de mener ce travail de recherche et qui a permis sa réalisation et sa finalisation.

Je tiens à remercier vivement mon Directeur de thèse, Monsieur R.Khelifi, Professeur à l'Université Saad Dahlab de Blida 1 et Doyen de la faculté des Sciences, qui m'a fait l'honneur d'accepter de m'encadrer tout au long de ce travail, qui a su associer intelligence et savoir dans le développement des idées, merci aussi pour sa patience et la confiance qu'il m'a accordée.

Je remercie le président du jury Pr. M.Derbal ainsi que les examinateurs ; Pr. B.Rekik, Pr. C.Tayeb et Pr. A.Dib qui m'ont fait l'honneur d'accepter l'analyse et l'évaluation de ce travail, merci pour leur patience et disponibilité.

Enfin, je remercie toute personne ayant contribué de loin ou de près à l'achèvement de notre travail. Que ce travail puisse être une source d'inspiration pour le développement de la recherche dans notre pays.

TABLE DES MATIERES

DÉDICACE	2
RESUMÉ	4
REMERCIEMENTS	6
TABLE DES MATIERES	7
LISTE DES DES FIGURES	10
LISTE DES TABLEAUX	14
LISTE DES ABRÉVIATIONS	16
INTRODUCTION	18
CHAPITRE I : LA RADIOTHÉRAPIE DES TUMEURS THORACIQUES	21
1.1. Notions anatomiques du thorax	21
1.1.1. Localisation et anatomie de surface	21
1.1.2. Ostéologie de surface	21
1.1.3. Les muscles du thorax	22
1.1.4. Viscères et organes thoraciques	22
1.1.5. L'appareil respiratoire	23
1151 La trachée	23
1157 Les bronches	23
1 1 5 3 L'arbre bronchique	23
1 1 5 4 Les polimons	23
1.1.5.4. Les pour noire	23
1.2. Ventration pumonane	24
1.2.1. L'inspiration : un phénomène passif	24
1.2.2. L'expiration : un phenomene passif	24 25
1.2.5. Mobilité du dianhragma	23 26
1.2.4. Mobilité du diaplitagille	20 26
1.2.1. Circonférences et dismètres theresique en phase respiratoire	20
1.2.2. Uttéres sér diametres de la socie theresieue	
1.5.2. Helerogenette lissuraire de la cage utoracique	29
1.4.1 Can and the neuronal	30
1.4.1. Cancer des pournons	30
1.4.2. Cancer de l'œsophage inoracique	30
1.4.5. Les tumeurs du mediastin	30
1.4.4. Les tumeurs de la riècne	31
1.4.5. Les tumeurs de la pievre	
1.4.5. Les tumeurs de la paroi thoracique	31
1.4. /. Les tumeurs des voies nerveuses	31
1.5. La radiotherapie externe	
1.5.1. L'accelerateur lineaire (Linac)	52
1.5.2. Parcours du patient et de ses données cliniques dans un service de radiothéra	apie
	34
1.5.2.1. Acquisition des données patient (simulation)	34
1.5.2.2. Le contourage	35

1.5.2.3. La dosimétrie	38
1.5.2.4. Le traitement	39
1.5.2.4.1. La radiothérapie conformationnelle (3DCRT)	39
1.5.2.4.2. La radiothérapie conformationnelle par modulation d'intensité (RCMI)4	10
1.5.2.4.3. Autres techniques	11
1.5.3. La radiothérapie thoracique	13
1.5.3.1. La synchronisation respiratoire en radiothérapie (gating)	14
1.5.3.2. Traitement en blocage en inspiration profonde	14
1.5.3.2. Tracking respiratoire	15

CHAPITRE II : LES ALGORITHMES DE CALCUL DE DOSE

ET SYSTÈMES DE PLANIFICATION DE TRAITEMENT TPS	46
2.1. Les algorithmes de calcul de dose en radiothérapie	46
2.2. Formalisme du calcul de la dose	47
2.2.1. Définition du noyau de dépôt d'énergie pour les photons (kernel)	49
2.2.1.1. Modèle du point kernel	50
2.2.1.2. Modèle du pensil beam	52
2.3. Algorithmes du TPS Eclipse de Varian	53
2.3.1. Alogorithem Analytical Anisotropic Algorithm (AAA)	53
2.3.1.1. Algorithme pensil beam de base	53
2.3.1.2. Mise à l'échelle latérale	55
2.3.1.3. Correction d'hétérogénéités	56
2.3.1.4. Conversion de dose	56
2.3.2. L'algorithme Acuros XB	57
2.3.2.1. Calcul de dose	57
2.3.2.2. Les étapes de calcul	57
2.3.2.3. Sources de photons et d'électrons	58
2.3.2.4. Discrétisation spatiale	58
2.3.2.5. Discrétisation de l'énergie	59
2.3.2.6. Discrétisation angulaire	59
2.3.2.7. Seuil de coupure de transport spatial	60
2.3.2.8. Conversion fluence/dose	60
2.4. Les systèmes de planification de traitement TPS	60
2.5. Rappel théorique des interactions photon/matière	61
2.6. Affaissement (build-down) et rehaussement (build-up)	63
2.7. Mouvement et acquisition tomodensitométrique	64
2.8. Conséquences dosimétriques	65
2.9. TPS Eclipse de Varian	68
2.10. Conclusion	70

CHAPITRE III : ÉVALUATION DU A.A.A

EN PRÉSENCE D'HÉTÉROGÉNÉITÉS7	1
3.1. Introduction	1
3.2. Mesures expérimentales dans des milieux hétérogènes pour des géométries de	е
aisceau simples7	1
3.2.1. Mise en œuvre d'un protocole de calibration de diodes en milieux hétérogènes	•
	2
3.2.1.1. Détermination de profils de dose dans des milieux hétérogènes	4
3.2.1.2. Détermination de courbes d'étalonnage	5

3.2.2. Évaluation du AAA dans des fantômes hétérogènes	80
3.2.2.1. Planification sur TPS Eclipse et irradiation des fantômes hétérogènes	80
3.2.2.2. Résultats et analyse	82
3.3. Mesures expérimentales dans des milieux hétérogènes pour des géométries	s de
faisceaux complexes	88
3.3.1. Les diodes PTW	88
3.3.2. Détermination de profils de dose	89
3.3.3. Détermination de courbes de calibration	89
3.3.4. Evaluation du AAA dans des fantômes hétérogènes	90
3.3.4.1. Planification sur TPS Eclipse et irradiation des fantômes hétérogènes	91
3.3.4.2. Résultats et analyse	92
3.4. Discussion	100

CHAPITRE IV : SIMULATION DU MOUVEMENT RESPIRATOIRE

ET IMPACT DOSIMÉTRIQUE105

 4.1. Introduction 4.2. Simulation du mouvement respiratoire dans des fantômes hétérogènes à géo simples	105 métries 106 107
4.2.2. Resultats et analyse	108 Santôma
thoracique) simulant la cage thoracique	111
4.3.1. Planification et simulation du mouvement respiratoire sur Eclipse	112
4.3.2. Résultats et analyse	113
4.4. Simulation du mouvement respiratoire dans des plans de traitement réels	116
4.4.1. Simulation du mouvement respiratoire dans Eclipse	118
4.4.2. Résultats et analyse	118
4.5. La ventilation pulmonaire et le changement de la densité	122
4.5.1. Planification dans Eclipse et changement de la densité	123
4.5.2. Résultats et analyse	123
4.6. Discussion	127
CONCLUSION GÉNERALE	129
RÉFÉRENCES	132
APPENDICE	140
A. Données relatives au chapitre 3 (partie expérimentale réalisée à Blida)	140
B. Données relatives au chapitre 3 (partie expérimentale réalisée à Sétif)	148
C. Données relatives au chapitre 4 (partie réalisée à Sétif)	149

LISTE DES FIGURES

CHAPITRE I : LA RADIOTHERAPIE DES TUMEURS THORACIQUES

La cage thoracique, ostéologie à droite et viscères à gauche	22
L'arbre bronchique dans le poumon et les cavités pleurales	24
Mouvement respiratoire sur une vue latérale	25
Cycle respiratoire et déplacement du squelette thoracique	25
Mobilité du muscle diaphragmatique	26
Diamètres thoraciques dans les trois plans	27
Représentation schématique de la tête d'un Linac ; 1. Cible, 2	. Coll-
mateur primaire, 3. Cône égalisateur, 4. Chambres moniteurs, 5.	Filtre
en coin motorisé, 6. Mâchoire Y, 7. Mâchoires X, 8. Collimate	eur mu-
lti-lames MLC, 9. S1. Partie fixe, S2. Partie rotative autour of	le l'axe
du collimateur, S3. Patient	33
Collimateur multi-lames MLC et conformation au PTV (en rose)	33
Matelas de contention moulé	35
Définition des volumes en radiothérapie selon l'ICRU n°62	37
Illustration des techniques de traitemen ; la 3DCRT (à gauche) et la	a RCMI
(à droite)	38
Exemple d'un traitement avec quatre incidences ; 0°, 90°, 180°, 270	0°40
Illustration des techniques S&S (en A) et SW (en B) pour la RCMI	41
Illustration de l'arcthérapie à intensité modulée à gauche et la tomo	thérap-
ie à droite	42
Cyberknife(à gauche) et illustration d'un ensemble de nœuds sur la	sphère
enveloppant la tumeur	43
Radiographie du poumon en phase inspiratoire et expiratoire	e (traits
discontinus)	43
	La cage thoracique, ostéologie à droite et viscères à gauche L'arbre bronchique dans le poumon et les cavités pleurales Mouvement respiratoire sur une vue latérale Cycle respiratoire et déplacement du squelette thoracique Mobilité du muscle diaphragmatique Diamètres thoraciques dans les trois plans Représentation schématique de la tête d'un Linac ; 1. Cible, 2 mateur primaire, 3. Cône égalisateur, 4. Chambres moniteurs, 5. en coin motorisé, 6. Mâchoire Y, 7. Mâchoires X, 8. Collimateur ti-lames MLC, 9. S1. Partie fixe, S2. Partie rotative autour of du collimateur, S3. Patient Collimateur multi-lames MLC et conformation au PTV (en rose) Matelas de contention moulé Définition des volumes en radiothérapie selon l'ICRU n°62 Illustration des techniques de traitemen ; la 3DCRT (à gauche) et la (à droite) Exemple d'un traitement avec quatre incidences ; 0°, 90°, 180°, 270 Illustration de techniques S&S (en A) et SW (en B) pour la RCMI Illustration de l'arcthérapie à intensité modulée à gauche et la tomo ie à droite Cyberknife(à gauche) et illustration d'un ensemble de nœuds sur la enveloppant la tumeur Radiographie du poumon en phase inspiratoire et expiratoire discontinus)

CHAPITRE II : LES ALGORITHMES DE CALCUL DE DOSE

ET LES SYSTÈMES DE PLANIFICATION TPS

Figure 2.1	Principe d'un TPS à partir des données de l'appareil et des données anat- miques : Calcul des distributions de dose, les HDV et le nombre d'UM
Figure 2.2	Décomposition de rayonnements d'un faisceau de radiothérapie externe
Figure 2.3	Représentation du point kernel (à gauche) et du pensil kernel (à droite) 50
Figure 2.4	Représentation du calcul de la dose à partir d'un point kernel
Figure 2.5	Schéma représentatif du beamlet ; 1.Foyer du champ, 2.Ligne en éventail centrale β , 3.Système de coordonnées du beamlet, 4.Peau, 5.point de calcul, 6.Système de coordonnées du patient, 7. Beamlet β , 8.Axe - central du champ
Figure 2.6	Rendement en profondeur dans différents matériaux homogènes pour llustrer la mise en équilibre électronique à l'entrée du milieu et - l'atténuation. Dans le tableau, les valeurs de la dose maximale et la profondeur à laquelle la dose est réduite de moitié pour un faisceau de photons de 6MV

Liste des figures

Figure 2.7	Rendement en profondeur en milieu homogène (eau) comparé au rende	em-
	Ent en profondeur d'un milieu hétérogène (eau-acier-eau) où le pic de	ret-
F: 3 9	rodiffusion apparait a l'interface	63
Figure 2.8	remise en équilibre électronique à la sortie d'une zone de faible densite p	uis
Figure 2.0	Définition des différentes régions d'un faisseur selen l'amplitude	05 du
rigure 2.9	l'amplitude du gradient de dese pour lesquelles différents gritères d'a	uu-
	antance de dese & sont valides. Le rendement en profondeur : le dese /	(D
	asa) en fonction de la profondeur (Danth) et le profile de dose : la dos	(D-
	Dose) en fonction de la position (Position) indique la dose mes	C (
	rée (Measured) en pointillées et la dose calculée du TPS (Calculated)	en
	trait nlein	66
Figure 2.10	Espace vectoriel distance-dose représentant la dose mesurée D _m au p	oint
	r_m et la dose calculée D_c au point r _c l'axe des abscisses représente	e la
	position spatiale 3D (<i>spatial position</i> , r) et l'axe des ordonnées la de	ose
	absorbée (<i>absorbed dose</i> , D)	67
	, , , , , , , , , , , , , , , , , , , ,	,
CHAPITRE	III : EVALUATION DU A.A.A EN PRESENCE D'HETEROGENEITH	ES
Figure 3.1	Accélérateur linéaire 2100C à gauche et pupitre de commande à droite	du
0	Centre Anti Cancer de Blida	72
Figure 3.2	Schéma d'une diode QED TM de Sun Nuclear, les valeurs des distances	h -
-	et D valent respectivement pour la gamme d'énergie de 6-12MV 2	mm
	et 7,9 mm et 3,4 mm 7,6 mm pour la gamme d'énergie 15-25 M	MV.
	Le Matériau de build-up pour les deux gammes d'énergie est	en
	cuivre et Mesure (en équivalent eau) respectivement pour les gamm	nes
	d'énergie 6-12 MV et 15-25 MV 1,85 cm et 3,04 cm	73
Figure 3.3	Schéma du fantôme de calibration. A gauche, mesures avec la diode	e et
F * 2 4	a droite, mesures avec la chambre d'ionisation	/4
Figure 3.4	Doses absolues en fonction des profondeurs neterogenes	//
Figure 3.5	Facteurs de calibration des diodes pour l'énergie du 6MV	/8
Figure 3.0	Facteurs de calibration des diodes pour l'energie du 18MV	/9
Figure 3.8	Planification des plans sur Eclinse à gauche et mesures sur ant	00 ôme
Figure 5.0	à droite	81
Figure 3.9	Diagrammes statistiques des résultats obtenus en fonction de l'énergie	
i igui e ois	Diagrammes saustiques des resultais obtenus en renerien de r'energie	
Figure 3.10	Diagrammes statistiques des résultats obtenus en fonction des densités	
		86
Figure 3.11	Diagrammes statistiques des résultats obtenus en fonction des profonde	eurs
	hétérogènes	87
Figure 3.12	Représentation statistique en termes de probabilité (Loi Normale) de
	l'ensemble des résultats obtenus	87
Figure 3.13	Représentation statistique en pourcentage de l'ensemble des résu	ltats
	obtenus. Majoritairement, 19% des déviations obtenues possèdent	des
F : 2 1 4	Valeurs autour de 2%	8/
r igure 3.14	courdes des doses absolues en fonction de la profondeur pour les c	ieux
		89

Liste des figures

Figure 3.15	Fantôme homogène de calibration. À gauche, mesure avec la chambre
D' 31	d ionisation, et a droite, mesure avec les diodes90
Figure 3.16	Courbes des facteurs de calibration des deux diodes90
Figure 3.17	Fantôme hétérogène d'évaluation du AAA91
Figure 3.18	Planification sur Eclipse à droite et irradiation des fantômes à gauche 92
Figure 3.19	Courbes de doses ; calculée (DC) et mesurée (DC) du fantôme $Z_F 8$ cm en fonction des profondeurs hétérogènes pour les deux énergies 6MV et 18MV
Figure 3.20	Courbes de doses ; calculée (DC) et mesurée (DC) du fantôme Z_F 12 cm en fonction des profondeurs hétérogènes pour les deux énergies 6MV et 18MV
Figure 3.21	Courbes de doses ; calculée (DC) et mesurée (DC) du fantôme Z_F 16 cm en fonction des profondeurs hétérogènes pour les deux énergies 6MV et 18MV
Figure 3.22	Diagrammes statistiques des résultats obtenus en fonction de l'énergie
Figure 3.23	Diagrammes statistiques des résultats obtenus en fonction des plans calculés
Figure 3.24	Diagrammes statistiques des résultats obtenus en fonction des profondeurs équivalents à l'eau
Figure 3.25	Représentation statistique en termes de probabilité (Loi Normale) de l'ensemble des résultats obtenus
Figure 3.26	Représentation statistique en pourcentage de l'ensemble des résultats obtenus. Majoritairement, 16% des déviations obtenues possèdent des valeurs autour de 1%

CHAPITRE IV : SIMULATION DU MOUVEMENT RESPIRATOIRE

ET IMPACT DOSIMETRIQUE

Figure 4.1	Dosimétrie 3D conformationnelle dans Eclipse sur un fantôme hétérogène et simulation du mouvement respiratoire
Figure 4.2	Diagramme statistique relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation de la dose maximale du PTV en fonction du déplacement d en mm pour les deux phases d'inhalation et d'exhalation
Figure 4.3	Diagramme statistique relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation du volume du PTV couvert par 95% de la dose de prescription en fonction du déplacement d en mm pour les deux phases d'inhalation et d'exhalation
Figure 4.4	Diagramme statistique relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation la dose maximale des quatre OAR en fonction du déplacement d en mm pour les deux phases d'inhalation et d'exhalation
Figure 4.5	Création du fantôme thoracique dans Eclipse
Figure 4.6	Dosimétrie 3D conformationnelle dans Eclipse sur le fantôme
	thoracique et simulation du mouvement respiratoire

Liste des figures

Figure 4.7	Diagramme statistique de la moyenne des résultats des deux énergies d- es variations de la dose maximale du PTV en fonction de d (en mm) pour les deux phases de respiration
Figure 4.8	Diagramme statistique de la moyenne des résultats des deux énergies des variations de V ₉₅ du PTV en fonction de d (en mm) pour les deux phases de respiration
Figure 4.9	Diagramme statistique de la moyenne des résultats des deux énergies Des variations de la dose maximale des OAR en fonction de d (en mm) pour les deux phases de respiration
Figure 4.10	Diagramme statistique de la moyenne des résultats des deux énergies des variations de $V_{1,2}$ des OAR en fonction de d (en mm) pour les deux phases de respiration
Figure 4.11	Fenêtre Eclipse du patient 4 montrant la balistique de traitement, la couverture du PTV par la 95% de la dose de prescription et l'histogramme HDV
Figure 4.12	Diagramme statistique de la moyenne des variations de la dose maximale du PTV en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration
Figure 4.13	Diagramme statistique de la moyenne des variations de V ₉₅ du PTV en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration
Figure 4.14	Diagramme statistique de la moyenne des variations de V_{30} pour le cœur - et V_{20} pour le poumon en fonction de d (en mm) des résultats obtenus p- our les vingt patients pour les deux phases de respiration
Figure 4.15	Diagramme statistique de la moyenne des variations de la dose maximale pour la moelle et l'œsophage en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration
Figure 4.16	Création du fantôme H dans Eclipse
Figure 4.17 Figure 4.18	Planification VMAT dans Eclipse
Figure 4.19	Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec le AAA et l'énergie 18MV
Figure 4.20	Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec Acuros XB et l'énergie 6MV126
Figure 4.21	Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec Acuros XB et l'énergie 18MV126

LISTE DES TABLEAUX

CHAPITRE I : LA RADIOTHERAPIE DES TUMEURS THORACIQUES

Tableau 1.1	Valeurs des densités de quelques tissus mous et osseux de la région thoracique					
CHAPITRE II : LES ALGORITHMES DE CALCUL DE DOSE						
	ET LES SYSTÈMES DE PLANIFICATION TPS					
Tableau 2.1	Limites des tolérances des déviations en pourcentage et en distance (selon Venseelaar et al, 2001)					
CHAPITRE III : ÉVALUATION DU A.A.A EN PRÉSENCE D'HÉTÉROGÉNÉITÉS						
Tableau 3.1 Tableau 3.2 Tableau 3.3 Tableau 3.4 Tableau 3.5	Résultats obtenus pour le fantôme $Z_F=7 \text{ cm}$					
Tableau 3.6 Tableau 3.7 Tableau 3.8 Tableau 3.9	Résultats obtenus du fantôme hétérogène $Z_F = 8 \text{ cm} \dots 93$ Résultats obtenus du fantôme hétérogène $Z_F = 12 \text{ cm} \dots 94$ Résultats obtenus du fantôme hétérogène $Z_F = 16 \text{ cm} \dots 95$ Données statistiques relatives aux résultats obtenus pour chaque fanôme, et pour l'ensemble de résultats (total). La moyenne (Moy), l'écart moyen (E moy), l'écart type (E type) et l'intervalle de confiance (IC) sont indiqués dans le tableau … 95					

CHAPITRE IV : SIMULATION DU MOUVEMENT RESPIRATOIRE

ET IMPACT DOSIMETRIQUE

Tableau 4.1	Données relatives aux structures composant les fantômes hétérog			
	es, les positions de ces derniers sont données par les coordon-			
	nées X, Y et Z106			
Tableau 4.2	Les variations moyennes des données dosimétriques en termes absolu			
	des trois fantômes hétérogènes, d étant la position de l'isocentre en			
	mm, $\Delta_m V_{95}$ étant en pourcentages et $\Delta_m D_{max}$ en Gy109			
Tableau 4.3	Les variations moyennes des données dosimétriques en pourcentage			
	des trois fantômes hétérogènes, d étant la position de l'isocentre en m-			
	m, 1 fait référence à 100%110			
Tableau 4.4	Caractéristiques physiques des structures composant le fantôme			
	thoracique et leurs positions X, Y et Z112			

Liste des tableaux

Tableau 4.5	Moyennes des variations des données dosimétriques en termes absol-
	us des résultats obtenus pour le fantôme thoracique, $\Delta_m D_{max}$ étant
	en Gy, $\Delta_m V_{95}$ et $\Delta_m V_{1,2}$ sont en pourcentage et d en mm
Tableau 4.6	Moyennes des variations des données dosimétriques en pourcentage
	des résultats obtenus pour le fantôme thoracique, d étant en mm114
Tableau 4.7	Données relatives aux plans de traitement des vingt patients,
	FX fait référence au nombre de faisceaux et ST et DY font référence
	au MLC statique et dynamique117
Tableau 4.8	Moyennes des variations des données dosimétriques des résultats
	obtenus pour les vingt patients, $\Delta_m D_{max}$ étant en Gy, $\Delta_m V_{95}$, $\Delta_m V_{20}$
	et $\Delta_m V_{30}$ sont en pourcentage
Tableau 4.9	Moyennes des variations en pourcentage des données dosimétriques
	des résultats obtenus pour les vingt patients
Tableau 4.10	Valeurs des paramètres dosimétriques obtenues pour les phases
	d'inspiration et d'expiration relatives aux quatre techniques. D ₉₅
	est la dose reçue par 95% du volume du PTV, D _{moyCR} est la dose moy-
	enne du cœur, D_{moyOS} est la dose moyenne de l'os et D_{moyTA} est la dose
	moyenne du tissu adipeux
Tableau 4.11	Valeurs des variations en termes de pourcentage des paramètres
	dosimétriques pour les phases d'inspiration et d'expiration relatives aux
	quatre techniques125

LISTE DES ABRÉVIATIONS

AAA	Anisotropic Analytical Algorithm.		
AAPM :	American Association of Physicists in Medecine.		
BTV :	Biological Target Volume.		
СТ:	Computed Tomography.		
CTV :	Clinical Target Volume.		
DIBH :	Deep Inspiration Breath Hold.		
DICOM :	Digital Imaging and COmmunication in medecine.		
DSP :	Distance Source Peau.		
FFF:	Flatenning Filter Free.		
GTV:	Gross Tumor Volume.		
HDK :	Maladie d'Hodgkin.		
HDV:	Histogramme Dose Volume.		
ICRU :	Commission internationale des unités et mesures radiologiques.		
IM :	Internal margin.		
IRM :	Imagerie par résonnance magnétique.		
IV:	Irradiated Volume.		
LBTE :	Equation de transport linéaire de Boltzmann.		
Linac :	Accélérateur linéaire.		
LNH:	Lymphome Non Hodgkinien.		
MLC:	Collimateur multi-lames.		
OAR :	Organes à risque.		
OMS :	Organisation mondiale de la santé.		
PDD:	Percentage Depth Dose.		
PTV :	Volume cible planifié.		
4D :	Quatre dimensions.		
RCMI ou IMRT :	Radiothérapie conformationnelle par modulation d'intensité.		
RF:	L'onde radiofréquence.		
RPM :	Real Time Position Management.		
RT:	Radiothérapie.		
3DCRT :	Radiothérapie conformationnelle tridimensionnelle.		

SM:	Set-up Margin.
TEP :	Tomographie par émission de positons.
TERMA :	Total Energy Released per unit MAss.
TLD:	Détecteur termoluminescent.
TPS :	Système de planification de traitement.
3D :	Trois dimensions.
TV :	Treated Volume.
UH:	Unité Hounsfield.
UID:	Unique Identifier.
UM :	Unité moniteur.
VMAT :	Volumetric Modulated Arc Therapy.

INTRODUCTION GÉNÉRALE

Le cancer constitue la maladie incontestablement la plus redoutée et elle est assimilée à un véritable fléau moderne. Sa réputation de gravité et d'évolution rapide voire fatale déclenche à son annonce, un sentiment de panique chez le malade et un bouleversement de la vie familiale [1].

Le cancer est un problème majeur de santé publique dans le monde. Selon l'OMS (organisation mondiale de la santé), le nombre de nouveaux cas de cancer en 2012 est estimé à 14,1 millions et le nombre de décès à 8,2 millions. Il a été estimé en 2008 que 70% des décès par cancer dans le monde survenaient dans les pays en développement. La fréquence des cancers pourrait augmenter de 50 % dans le monde, avec 15 millions de nouveaux cas par an en 2020. A l'horizon 2030, il est prévu que le nombre de décès par cancer dans le monde s'élève à 13,1 millions [1].

En Algérie, les formes de cancer les plus fréquentes chez l'homme sont ceux du poumon, du colo-rectum, de la vessie, de la prostate et de l'estomac. Ils constituent 52,5% de tous les cancers masculins. Le cancer du poumon à lui seul représente environ 15% des cancers masculins. Ceci confirme et consolide les tendances depuis 2001 avec la prédominance, chez l'homme, des cancers liés au tabagisme (poumon – vessie). Par ailleurs, les formes de cancer les plus fréquentes chez la femme sont celles du sein, du colo-rectum, de la thyroïde, du col de l'utérus, et de l'ovaire. Ils constituent 68,2% de tous les cancers féminins [1].

L'analyse des cancers par localisation montre la nette progression de cinq cancers qui devront bénéficier d'une attention particulière [1], dont celui du poumon et du sein, deux cancers localisés dans la région thoracique. Avec la chirurgie et la chimiothérapie, la radiothérapie externe par des faisceaux de photons de haute énergie est l'un des moyens thérapeutiques le plus utilisé pour le traitement du cancer.

En radiothérapie, la planification d'un traitement est réalisée à l'aide de systèmes de planification de traitement (TPS) dotés d'algorithmes de calcul de dose dont l'utilisation reste impossible avant leurs évaluations, ceci passe par des mesures réalisées dans des fantômes homogènes mais aussi hétérogènes. Par ailleurs, la détermination de la dose en un point précis et dans des géométries complexes reste un défi pour le physicien médical, il doit faire preuve d'investigations pour essayer au mieux de comprendre la réponse du TPS (et donc des algorithmes) dans différentes situations et dans différents milieux.

La validation d'un algorithme de calcul de dose passe par une comparaison entre la mesure et le calcul, plusieurs études ont été menées dans ce sens afin d'évaluer différents algorithmes de calcul de dose dans différentes situations (techniques de traitement, géométrie des faisceaux, variation des paramètres...), l'utilisation de différents fantômes et différents détecteurs de mesures sont associées à ces évaluations [2-8]. Dans le cadre de ce travail nous avons procédé à une évaluation du AAA (Anisotropic Analytical Algorithm) par le biais de la mesure dans des fantômes hétérogènes au moyen de détecteurs dédiés à la dosimétrie in vivo, la particularité de la mesure a consisté à calibrer les détecteurs dans des milieux hétérogènes et à plusieurs profondeurs.

La radiothérapie thoracique présente deux difficultés majeures. En effet, outre le problème de l'hétérogénéité du thorax, il s'additionne celui de sa mobilité résultant du mouvement respiratoire. Inexorablement, ces deux facteurs influencent la distribution de dose aussi bien au niveau du volume cible à traiter PTV (planning target volume) qu'au niveau des organes à risque (OAR). Les spécialistes en radiothérapie ont toujours porté un intérêt à ces aspects caractérisant la région thoracique [9-17], néanmoins nous avons essayé de quantifier l'impact dosimétrique de ces aspects séparément, sur la couverture du volume cible mais aussi sur les OAR, le changement du volume pulmonaire implique le déplacement des organes mais aussi le changement de densité un aspect rarement abordé.

La dosimétrie d'un plan de traitement sur TPS est basée sur une série de coupes tomodensitométriques (CT) où souvent l'acquisition est réalisée en respiration libre. Le mouvement de la cage thoracique et le changement de la densité pulmonaire induisent, dans ce cas, un déphasage de la distribution de dose entre la simulation (acquisition de coupes CT) et le traitement.

Il convient pour le traitement des cancers localisés dans la région thoracique d'évaluer et de quantifier l'impact dosimétrique sur la qualité de traitement résultant de ces paramètres (hétérogénéité et mobilité) caractérisant cette région anatomique, c'est ce que nous avons tenté de réaliser pour des traitements par des faisceaux de photons de hautes énergies.

Nous avons entamé le manuscrit par un premier chapitre dans lequel nous avons présenté en premier lieu l'anatomie du thorax et les cancers qui peuvent apparaître dans cette région. L'anatomie du thorax passe aussi par une description du mouvement respiratoire dans laquelle nous avons essayé de quantifier l'amplitude du mouvement respiratoire. Nous avons par la suite abordé les techniques d'irradiation qui peuvent être associées aux traitements des cancers thoracique. Le second chapitre est consacré aux TPS et aux algorithmes de calcul de dose, plus précisément aux AAA (Anisotropic Analytical Algorithm) et Acuros XB.

La partie expérimentale est regroupée dans le troisième et quatrième chapitre, dans lesquels nous avons scindé la problématique en deux volets, en premier lieu nous avons abordé le problème de l'hétérogénéité et en second lieu nous avons étudié la mobilité et le changement de densité pulmonaire. La complexité de la région thoracique nous a conduits à confectionner et à créer des fantômes hétérogènes simulant l'architecture tissulaire de cette région, par ailleurs nous avons prolongé notre étude sur des plans de patients réellement traités. Nous avons clôturé le manuscrit par une conclusion générale

CHAPITRE I

LA RADIOTHÉRAPIE DES TUMEURS THORACIQUES

1.1. Notions anatomiques du thorax

1.1.1. Localisation et anatomie de surface

Le thorax implique l'étage supérieur du tronc, il est entouré d'une paroi ostéomusculaire expansive mettant en évidence un mouvement important de cette région anatomique. Il intègre deux régions pleuro-pulmonaires latérales et le médiastin au centre. Il est délimité par le cou en haut et par le diaphragme en bas [18].

On distingue trois parois : La paroi antérieure, la paroi latérale et la paroi postérieure. La paroi antérieure implique les régions pleuro-pulmonaires, le médiastin supérieur et le médiastin antérieur, elle intègre la région présternale en regard du sternum et la région mammaire occupée par les seins [18].

La paroi latérale répond directement aux régions pleuro-pulmonaire relatives à la partie crâniale, au foie à droite, quant à la partie gauche elle fait référence à la rate et à la partie caudale de l'angle colique gauche par l'intermédiaire du diaphragme [18].

La paroi postérieure est en relation avec les régions pleuro-pulmonaires, le médiastin supérieur et le médiastin postérieur. Caudalement elle inclut les reins et les glandes surrénales par l'intermédiaire du diaphragme [18].

1.1.2. Ostéologie du thorax

L'aspect général de la cage thoracique présente une forme conique constituée d'éléments squelettiques et musculaires (Figure 1.1), elle contient les éléments principaux suivants :

- En arrière, douze vertèbres thoraciques (T1-T12) avec leurs disques intervertébraux (fibrocartilage). Dans le canal vertébral circule la moelle épinière [19, 20].
- Latéralement, douze paires de côtes entourées de trois couches de muscles plats qui remplissent les espaces intercostaux [18].
- En avant, le sternum composé du manubrium sternal, du corps sternal et du processus xiphoïde [18].

1.1.3. Les muscles du thorax

La région thoracique implique plusieurs groupes musculaires relatifs à chaque paroi [18]. Les muscles inspiratoires sont ; le diaphragme, les muscles parasternaux (intercostaux), les intercostaux externes, les muscles élévateurs des côtes, les muscles scalènes et le muscle sterno-cléido-mastoïdien [21, 22].

Les muscles expiratoires sont ; les intercostaux internes, le muscle triangulaire du sternum, les intercostaux intimes et les muscles intermédiaires du dos [21, 22].

Les muscles respiratoires sont des éléments essentiels, ils constituent une pompe relativement complexe destinée à augmenter le volume de la cage thoracique et à induire une pression intrathoracique négative, nécessaire à la génération du débit inspiratoire et à la ventilation alvéolaire [21].

1.1.4. Viscères et organes thoraciques

La cage thoracique est complexe de part les éléments qu'elle intègre (Figure 1.1). D'une manière globale elle contient ; le cœur entouré par le péricarde, l'œsophage thoracique, la glande mammaire, les vaisseaux thoraciques (notamment l'aorte thoracique et les veines caves) et l'appareil respiratoire [23].

Figure 1.1 : La cage thoracique, ostéologie à droite et viscères à gauche [24, 25].

1.1.5. L'appareil respiratoire

L'appareil respiratoire est principalement composé de la trachée, des bronches, de l'arbre bronchique et des poumons (Figure 1.2).

<u>1.1.5.1. La trachée</u>

La trachée est le conduit aérifère fibro-cartilaginaux qui unit le larynx aux bronches principales. On la divise virtuellement en deux portions qui se succèdent : la trachée cervicale et la trachée thoracique. Sa bifurcation se fait au niveau de l'angle de Louis [18].

1.1.5.2. Les bronches

Les bronches naissent de la bifurcation trachéale au niveau de T4-T5 et se ramifient dans l'épaisseur du poumon pour constituer le tractus aérifère terminal. La direction des bronches est caractérisée par un écartement entre elles selon un angle de 70° [18].

1.1.5.3. L'arbre bronchique

Chaque bronche souche, issue de la bifurcation trachéale, entre dans la racine du poumon et passe à travers le hile pour pénétrer dans le poumon lui-même. La bronche souche se divise dans le poumon en bronches lobaires, qui aboutisse chacune à un lobe. Les bronches lobaires se divisent en suite en bronches segmentaires. Les bronches segmentaires donnent naissance à de multiples divisions bronchiques aboutissant aux bronchioles, qui se subdivisent à leur tour pour former les alvéoles, qui représentent la surface respiratoire [26].

1.1.5.4. Les poumons

Les poumons sont des organes de l'hématose. Pairs mais asymétriques, ils sont situés dans les loges pulmonaires du thorax et séparés l'un de l'autre par le médiastin auquel ils sont appendus par les pédicules pulmonaires. Le poumon droit possède un volume de 850 mL et un poids de 600g, le poumon gauche quant à lui il possède un volume de 750 mL et un poids de 500g. En inspiration forcée la capacité totale pulmonaire peut atteindre 5 L [18].

Les lobes pulmonaires sont nettement séparés par les scissures pulmonaires, qui seront plus au moins complètes selon l'individu. Chaque lobe est lui-même divisé en segments, ventilé par une bronche segmentaire, de telle façon que la segmentation bronchique se calque sur la segmentation pulmonaire [18].

Figure 1.2 : L'arbre bronchique dans le poumon et les cavités pleurales [26, 27].

1.2. Ventilation pulmonaire

La ventilation est un phénomène périodique qui consiste en une succession de mouvements d'inspiration et d'expiration (Figure 1.3). Ce sont donc des processus qui président à l'entrée et à la sortie d'air des poumons. Les courants gazeux s'établissent toujours d'une zone de haute pression vers une zone de basse pression. Toute variation de volume entraine une variation de pression. Le volume d'un gaz est inversement proportionnel à la pression qu'il subit [28].

1.2.1. L'inspiration : un phénomène actif

L'expansion pulmonaire est caractérisée par une augmentation du volume de la cage thoracique [26]. L'augmentation du volume pulmonaire se produit par la contraction des muscles inspiratoires. Ces muscles sont responsables de l'augmentation des dimensions de la cage thoracique dans les trois plans (frontal, sagittal et transversal). Lors de l'inspiration, dans le plan sagittal, le diaphragme va s'abaisser et pousser le volume de la cage thoracique vers le bas, quand le sternum aura tendance à s'élever vers le haut et vers l'avant dans le plan transversal, un mouvement dû aux muscles intercostaux [28].

1.2.2. L'expiration : un phénomène passif

L'expiration est un phénomène passif qui résulte de la relaxation des muscles inspiratoires et du retour élastique du tissu pulmonaire. Étiré lors de l'inspiration, le poumon revient ensuite à sa position de base [28].

Figure 1.3 : Mouvement respiratoire sur une vue latérale [29].

1.2.3. Mobilité du squelette thoracique

Les modifications des contractions musculaires modifient le volume de la cage thoracique, cela induit d'abord des modifications au niveau du squelette (Figure 1.4) sur lequel les muscles ventilatoires sont attachés [30] :

- De face, et pendant la phase d'inspiration, il y a ouverture de la cage thoracique qui se traduit par un déplacement en dehors de sa partie inférieure.
- Sur la coupe sagittale, et en inspiration, la contraction des muscles induit une verticalisation du rachis (repoussé vers l'arrière). Le sternum est projeté vers l'avant, la cage thoracique est attirée vers le haut.

Figure 1.4 : Cycle respiratoire et déplacement du squelette thoracique [29].

1.2.4. Mobilité du diaphragme

Le diaphragme est le muscle respiratoire principal. C'est un muscle plat animé de contractions rythmiques faisant office de cloison entre le thorax et l'abdomen. Il a la forme d'une double coupole à convexité supérieure (Figure 1.5). En expiration forcée, la coupole droite remonte à hauteur du quatrième espace intercostal tandis que la coupole gauche, plus basse, remonte à hauteur du cinquième espace intercostal. Lors de l'inspiration, les deux coupoles descendent chacune de deux espaces intercostaux [18].

Le diaphragme permet d'alterner inspiration et expiration sans que le sujet ait conscience, c'est un muscle de commande automatique comme le muscle cardiaque, mais c'est également un muscle à contraction volontaire puisqu'un sujet peut augmenter sa fréquence respiratoire. Ce muscle strié se contracte à une fréquence respiratoire de 12 à 14 fois par minute, il entraine une modification du volume dans la partie inférieure du thorax [30].

Figure 1.5 : Mobilité du muscle diaphragmatique [31].

1.3. Hétérogénéité et mobilité de la région thoracique

La région thoracique est hétérogène comme toute autre région du corps humain, mais ce qui la distingue des autres parties du corps c'est la disposition architecturale tissulaire variée des différents éléments qui la composent, ainsi que le grand intervalle des valeurs des densités qu'elle intègre en son sein. Cet intervalle passe de la valeur la plus faible relative à la section aérifère de la trachée ainsi que les poumons jusqu'à la forte densité osseuse. En outre la variation du volume d'air à l'intérieur des poumons induit un déplacement d'organes et un changement de la densité pulmonaire. Ces caractéristiques spécifiques au thorax rendent cette région particulièrement complexe sur le plan dosimétrique en radiothérapie.

La respiration diffère d'un individu à autre ce qui rend encore plus complexe la gestion des traitements en radiothérapie. Lorsque la respiration est normale et calme, les mouvements du diaphragme sont suffisants pour déterminer seuls la ventilation, lorsque la respiration est plus rapide, la phase expiratoire étant plus rapide, d'autres forces sont nécessaires : la contraction des muscles abdominaux et celle des muscles intercostaux internes qui abaissent la cage thoracique [32]. Ainsi, les mouvements spontanés du malade constituent une source d'imprécision et sont plus difficiles à prendre en compte lors d'un traitement en radiothérapie et la respiration est l'un des mouvements les plus notables il peut induire un déplacement du volume cible mais aussi sa déformation [33].

1.3.1. Circonférences et diamètres thoraciques en phase respiratoire

L'amplitude des diamètres thoraciques (Figure 1.6) est un paramètre variable selon le sujet. Globalement la ventilation de repos induit une augmentation de la circonférence au niveau de la xiphoïde de presque 1 cm, et le centre du diaphragme s'abaisse de 1 à 2 cm. En ventilation maximale le diamètre antéro-postérieur approche les 3,5 cm, quant au diamètre latéral il effleure les 3 cm [29].

Figure 1.6 : Diamètres thoraciques dans les trois plans [34].

De nombreuses études ont fait l'objet de mesures de l'augmentation de la circonférence du thorax, ainsi que celle des diamètres thoraciques dans les trois plans lors de la respiration, aussi bien sur des sujets sains que sur des sujets présentant des maladies. Les mesures impliquent plusieurs individus et une valeur moyenne en général est prise, elles consistent à évaluer la différence des dimensions entre l'inspiration et expiration en utilisant un mètre ruban ou un étrier [35-40].

Une étude a montré pour des sujets sains âgés entre 20 et 65 ans, pour une inspiration forcée, au niveau du quatrième espace intercostal ; une augmentation en valeur moyenne de la circonférence de 5,5 cm et une augmentation moyenne du diamètre antéropostérieur de 1,54 cm. Au niveau du processus xiphoïde ; une augmentation de la circonférence en valeur moyenne de 6,5 cm et une augmentation du diamètre antéropostérieur en moyenne de 1,03 cm [35].

Une étude finlandaise a porté sur la mesure de l'augmentation des paramètres thoraciques de plusieurs individus, les mesures ont été effectuées au dessus de l'os scapulaire. Pour la circonférence obtenue les valeurs varient entre 5 et 9,4 cm, le diamètre latéral obtenu varie entre 2,4 et 5,6 cm et le diamètre antéropostérieur obtenu varie entre 2 et 5 cm [36].

Une étude sur une population en Irak, avec des sujets sains, a porté sur la mesure de l'expansion thoracique au niveau du quatrième espace intercostal, a donné des valeurs de circonférence thoracique variant entre 2 et 5,5 cm [37].

Une étude en France a porté sur la mesure de l'ampliation du périmètre thoracique sur des individus jeunes (entre 19 et 26 ans) entre une inspiration et une expiration maximale, la valeur moyenne obtenue à la hauteur du creux axillaire est 6,75 cm et au niveau du processus xiphoïde est de 6,56 cm. Par ailleurs, une comparaison à une autre étude expérimentale sur des individus plus âgés a été exposée. Pour le groupe de personnes âgées entre 75 et 79 ans le périmètre axillaire moyen est de 4,9 cm et le périmètre xiphoïdien moyen est de 4,4 cm. Pour le groupe de personnes âgées entre 80 et 84 ans, le périmètre axillaire moyen est de 1,8 cm. Pour le groupe de personnes âgées entre 80 et 2,1 cm et le périmètre xiphoïdien moyen est de 2,2 cm et le périmètre axillaire moyen est de 2,2 cm et le périmètre axillaire moyen est de 2 cm et le périmètre xiphoïdien moyen est de 2 cm et le périmètre xiphoïdien moyen est de 2 cm et le périmètre xiphoïdien moyen est de 1,6 cm. [38].

Une étude sur trente cinq individus (sujets sains) âgés entre 18 et 39 ans, a montré une variation du périmètre au niveau de la xiphoïde une valeur moyenne maximale de 6,8 cm et au niveau du troisième espace intercostal une valeur moyenne maximale de 5,7 cm [39].

Une étude basée sur la mesure des paramètres thoraciques, au niveau du quatrième espace intercostal, sur des sujets sains et sur plusieurs catégories d'âges, a montré; une différence moyenne du périmètre variant de 2,45 et 7,01 cm, une variation moyenne du diamètre antéropostérieur entre 1,4 et 2,53 cm, et une variation moyenne du diamètre latéral entre 0,96 et 2,98 cm. Les valeurs des paramètres thoraciques ont tendance à décroitre avec les sujets âgés [40].

Une étude, par le biais d'acquisition IRM (Imagerie par Résonance Magnétique), a porté sur la mesure du déplacement du diaphragme sous ventilation assistée au masque nasal. Le déplacement cranio-caudal est de 1,1 cm pour le dôme droit et 1,6 cm pour le dôme gauche [41].

1.3.2. Hétérogénéité tissulaire de la cage thoracique

La cage thoracique intègre une forte hétérogénéité, nous exposons dans cette partie quelques valeurs des densités pour les tissus mous et osseux selon différentes références (Tableau 1.1). Dans un petit espace de la région la densité peut varier considérablement, il est par conséquent assez difficile d'obtenir une couverture optimale du volume cible à traiter pour le calcul dosimétrie en radiothérapie.

Tissus mous	Densité Tiggue occouv		Densité
TISSUS IIIOUS	$(g.cm^{-3})$	Tissus osseux	$(g.cm^{-3})$
Peau	1,09	Os cortical	1,910/1,822/1,920
Tissu conjonctif	1,12	Os trabéculaire	1,200/1,160/
			1,115/1,180
Aorte	1.05	Os dense solide	1,530/1,820/
	7		1,650/1,575
Paroi et contenu du cœur	1,05/1,06	Moelle rouge	1,030
Myocarde	1,05	Moelle jaune	0,980
Œsophage	1,03	Côtes 2 ^{ème} 6 ^{ème}	1,410
Trachée	1,06	Côte 10 ^{ème}	1,520
Doumon inholation	0,21/0,2/0,29/	Disques	1 150
Founion minaration	0,26 /0,217	intervertébraux	1,130
Poumon exhalation	0,5/0,47/0,508	D6 + Cartilage	1,330
Parenchyme	1,05	Sternum	1,250
Muscle	1,06/1,04	Clavicule	1,460
Muscles squelettique	1,05	Omoplate	1,460
Tissu adipeux	0,96/0,943/0,95/ 0,916/0,967/0,93	Côte 2 ^{ème} 6 ^{ème}	1,410
Glande mammaire	0,983/0,99/ 1,02/1,06	Côte 10 ^{ème}	1,520
Sang érythrocyte	1,090		
Sang plasma (lymphe)	1,026/1,030		
Sang complet	1,060		
Globules rouges	1,300		
Moelle épinière	1,070		
Liquide céphalorachidien	1,010		
Cartilage	1,060/1,150/1,100		

Tableau 1.1 : Valeurs des densités de quelques tissus mous et osseux de la région thoracique [42-51].

1.4. Les pathologies cancéreuses thoraciques

Le thorax peut être le siège de plusieurs atteintes tumorales, néanmoins les plus fréquentes sont ; le cancer des poumons, le cancer de l'œsophage thoracique, les tumeurs du médiastin, les tumeurs de la trachée, les tumeurs de la plèvre, les tumeurs de la paroi thoracique et les tumeurs des voies nerveuses (tumeurs neurogènes) [52, 53].

Le cancer secondaire est appelé également tumeur secondaire ou métastase, il s'agit d'une tumeur constituée de cellules cancéreuses qui se sont disséminées vers d'autres parties de l'organisme. Le thorax n'est pas épargné par un cancer secondaire, les plus fréquents concernent le cancer du sein et le cancer du poumon [54]. Par ailleurs une irradiation thérapeutique pour un premier cancer peut avoir pour conséquence de tumeurs radio-induites [55].

1.4.1. Cancer des poumons

Le cancer pulmonaire désigne la présence d'une ou plusieurs tumeurs dans les poumons. Il est souvent appelé cancer bronchique car son origine est généralement située dans la muqueuse bronchique (couche qui tapisse l'intérieur des bronches). Les cancers pulmonaires sont divisés en deux grands types [52] :

- Les cancers pulmonaires non à petites cellules qui englobent les carcinomes épidermoïdes, les adénocarcinomes peu différenciés et les carcinomes indifférenciés à grandes cellules.
- Les cancers pulmonaires à petites cellules.

Les autres tumeurs pulmonaires peuvent être les métastases pulmonaires ou les tumeurs neuroendocrines [52].

1.4.2. Cancer de l'œsophage thoracique

Le cancer de l'œsophage est une maladie qui se développe le plus souvent à partir des cellules de la muqueuse. Les carcinomes épidérmoides affectent les deux premiers tiers de l'œsophage, ils impliquent les cellules de la couche de revêtement [53, 56].

1.4.3. Les tumeurs du médiastin

Différents types de tumeurs peuvent prendre leur origine au niveau du médiastin, le thymus est l'organe le plus souvent atteint. Celui-ci participe à la production des défenses immunitaires. Une tumeur développée à partir du parenchyme thymique s'appelle un thymome [52].

1.4.4. Les tumeurs de la trachée

Les tumeurs malignes de la trachée sont rares. Les lésions primitives sont principalement le carcinome épidermoïde et le carcinome adénoïde kystique [57].

1.4.5. Les tumeurs de la plèvre

Lorsque la plèvre est atteinte d'un cancer, il s'agit le plus souvent d'une tumeur issue d'un autre organe (une métastase). Cependant un cancer naît parfois sur la plèvre elle-même. La principale tumeur primaire pleurale est le mésothéliome pleural malin. Quant aux tumeurs secondaires de la plèvre, elles se manifestent le plus souvent par l'apparition d'un épanchement pleural [52].

1.4.6. Les tumeurs de la paroi thoracique

Les tumeurs de la paroi thoracique sont des tumeurs qui ont pour origine l'os ou les tissus mous (la graisse, les muscles, les tissus fibreux, les vaisseaux sanguins et lymphatiques et les nerfs) qui constituent la paroi thoracique. Les tumeurs peuvent être de type sarcome. La paroi thoracique peut être infiltrée par un cancer du sein ou une récidive locale. Des métastases d'un cancer du sein peuvent aussi s'étendre à la paroi thoracique [52, 58].

1.4.7. Les tumeurs des voies nerveuses

Un ensemble de nerfs traverse la poitrine. Les tumeurs neurogènes sont des tumeurs qui prennent naissance sur les structures nerveuses [52].

1.5. La radiothérapie externe

Le traitement par radiothérapie permet de délivrer des rayonnements ionisants de très hautes énergies de l'ordre du Mégaélectronvolt (MeV) afin de stériliser le lit tumoral en éradiquant les cellules cancéreuses. La balistique de traitement doit être extrêmement précise afin de préserver les cellules saines et les organes à risque (OAR) avoisinant la tumeur. Afin d'éviter une trop forte exposition aux organes sains, le traitement est dit fractionné afin de permettre aux cellules saines de réparer les dommages entre les séances de traitement quotidiennes. Les traitements se font généralement par fraction de 2 Gy par séance, cinq jours par semaine, durant six à huit semaines [59].

Outre que la chirurgie et la chimiothérapie, la radiothérapie est l'une des modalités des traitements des cancers thoraciques, elle peut être associée en concomitance à la chimiothérapie. Elle peut être délivrée selon plusieurs techniques par le biais de différentes

machines ; accélérateur linéaire, hadronthérapie, tomothérapie et cyberknife. Dans le cadre de notre sujet de recherche, nous nous somme intéressés aux photons de hautes énergies produit par les accélérateurs linéaires (Linacs) [59].

1.5.1. L'accélérateur linéaire (Linac)

Un accélérateur linéaire peut produire un faisceau d'électrons ou de photons de haute énergie (de l'ordre du MeV). Les électrons à l'origine du faisceau de photons proviennent d'un canon à électrons, dans la plupart des cas simplement composé d'une cathode et d'une anode. La cathode est portée à très haute température par effet Joule et libère ainsi des électrons par émission thermoïonique, qui seront accéléré vers l'anode sous l'effet d'un champ électrique produit par une différence de potentiel entre ces deux parties, le tout dans le vide. Suite à cette production d'électrons se trouve la section accélératrice, elle aussi conservée dans le vide, qui va conférer plus d'énergie aux électrons. Cette énergie dépend directement de la puissance de l'onde radiofréquence (RF) utilisée dans la section accélératrice, couplée par un guide d'onde à un klystron ou magnétron. Cette onde RF est très puissante (quelques mégawatts) et force le l'utilisation du Linac dans un mode pulsé, et non en mode continu. Le mode pulsé va donc imprimer un rythme particulier au faisceau, qui ne sera délivré qu'en quelques microsecondes (environ 5 μ s) toutes les 5-30 ms. Les électrons ainsi accélérés suivent le guide d'onde jusqu'à l'aimant de courbure, pour être déviés sur la cible en tungstène. Ils interagissent avec cette dernière et produisent des photons par rayonnement de freinage qui vont poursuivre leur chemin dans la partie du Linac appelée tête de l'accélérateur [60].

Le faisceau ainsi produit (Figure 1.7) va tout d'abord passer dans le collimateur primaire, un collimateur en plomb de forme conique, qui va éliminer les photons émis à grand angle depuis la cible, n'apportant rien au traitement. Le faisceau une première fois collimaté passe ensuite dans le cône égalisateur, qui va absorber les photons et rendre le faisceau homogène. Les photons traversent ensuite les chambres moniteurs (des chambres d'ionisation), contrôlant la symétrie et l'homogénéité du faisceau, ainsi que la dose délivrée au patient durant la séance de traitement, avant de rencontrer le miroir de simulation lumineuse [60]. Un Linac peut être doté d'un filtre en coin motorisé permettant d'adapter la distribution de la dose à la morphologie du patient afin d'incliner la courbe isodose (courbe recevant la même dose en chaque point qui la compose) [59].

Figure 1.7 : Représentation schématique de la tête d'un Linac ; 1. Cible, 2. Collimateur primaire, 3. Cône égalisateur, 4. Chambres moniteurs, 5. Filtre en coin motorisé, 6. Mâchoires Y, 7. Mâchoires X, 8. Collimateur multi-lames MLC, S1. Partie fixe, S2. Partie rotative autour de l'axe du collimateur, S3. Patient [59].

Selon les constructeurs, les systèmes de collimation secondaires sont différents. Ces systèmes visent à donner au champ de photons une forme la plus proche possible de la zone à traiter. Concernant Varian (constructeur du Clinac 2100C et Clinac iX utilisés dans notre partie expérimentale), le faisceau est tout d'abord délimité par deux paires de mâchoires selon les axes X et Y, donnant au faisceau une forme rectangulaire limitant la fluence en photon délivrée au patient en dehors de la zone rectangulaire circonscrite au volume cible PTV (*Planning Target Volume*). La forme définitive conforme à la tumeur est conférée au faisceau par un collimateur complexe (Figure 1.8), appelé collimateur multilames MLC (*Multi-Leaf Collimator*). Plus précisément, selon les modèles, le MLC est composé de 80 à 120 lames (soit deux bancs de 40 à 60 lames) contrôlés indépendamment par autant de moteurs, permettant de donner au faisceau des formes plus fines, et même d'en moduler l'intensité. Les modèles les plus récents sont en outre équipés de mâchoires de backup permettant de limiter les fuites inter-lames inhérentes au MLC [60].

Figure 1.8: Collimateur multi-lames MLC et conformation au PTV (en rose) [61].

Dans un traitement exécuté par un Linac, on ne parle plus de temps de traitement mais plutôt d'unités moniteur. Pour un champ de 10×10 cm², une unité moniteur (UM) correspond à une dose de 1 cGy délivrée à la profondeur du maximum de l'énergie impliquée dans une cuve d'eau placée à une distance source surface d'eau (DSS) égale à 1 m. cela défini les conditions de référence de mesure pour la calibration.

1.5.2. Parcours du patient et de ses données cliniques dans un service de radiothérapie

Lorsque la radiothérapie est la modalité de traitement indiquée, le patient est orienté vers un service de radiothérapie où il suit un certain parcours, il est tout d'abord vu en consultation par un radiothérapeute qui détermine, en fonction de la pathologie et des examens cliniques précédemment réalisés, le ou les volumes à traiter accompagnés de leur prescription, à savoir la dose totale, la dose par séance, le nombre de séances et la répartition des séances de traitement [61]. Le patient passe ensuite à l'étape de simulation pour l'acquisition de coupes tomodensitométriques sur lesquelles la délinéation du PTV et des OAR sera effectuée. Une fois la planification de traitement, sur ces mêmes coupes, est réalisée, le patient reçoit ses séances de traitement au niveau de la machine de traitement. Le patient est suivi en consultations hebdomadaires durant le traitement et périodiquement, selon la pathologie, après achèvement des séances de traitement.

1.5.2.1. Acquisition des données patient (la simulation)

La séance de simulation est réalisée à l'aide du scanner dosimétrique, un scanner dédié à la radiothérapie. Un système laser est associé au scanner pour le repérage du volume cible dans un plan tridimensionnel. Le patient est placé dans un plan horizontal dans les conditions du traitement et avec un système de contention adapté à la localisation. Ce positionnement et cette contention seront identiques à chaque séance de traitement, ils sont choisis pour s'assurer de la reproductibilité du traitement tout en veillant à ce que la position soit la plus confortable possible pour le patient [61].

Le système de contention thoracique est complexe car toute immobilisation laisse à la colonne vertébrale un degré de liberté transverse de l'ordre d'un centimètre, toutefois plusieurs auteurs rapportent que la contention doit être faite avec une mousse de polyuréthane (Figure 1.9) et les bras du patient doivent être au dessus de la tête dans le sens longitudinal ce qui permet un grand choix de faisceaux et donc une meilleure couverture du volume cible tout en épargnant les tissus sains avoisinants [62].

Figure 1.9: Matelas de contention moulé [62].

Une reconstruction 3D est réalisée à l'aide des images CT (coupes tomodensitométriques) qui seront transmises au système de planification de traitement (TPS) dans un format de fichier DICOM (*Digitial Imaging and COmmunication in Medicine*). Le format DICOM permet de rendre les images acquises uniques en y associant des informations spécifiques, chaque image possède un numéro d'identification propre appelé UID (*Unique IDentifier*). Les informations concernent [61] :

- o L'appareil : hôpital, identification de la machine, date de l'examen...etc
- o Le patient : nom, prénom, date de naissance, numéro du dossier, sexe...etc
- o L'acquisition : épaisseur de coupe, position du patient, kV...etc
- o Les images acquise : dimensions, compression, taille, taille des pixels...etc

1.5.2.2. Le contourage

Le TPS est doté d'un module de contourage pour la délinéation des PTV et des OAR sur les images CT, ce qui permet leur visualisation en 3D mais aussi la connaissance des doses délivrées en leurs seins. Le contourage est réalisé par le radiothérapeute en charge du patient [61].

L'irradiation conformationnelle vise à délivrer une dose absorbée égale à la dose prescrite et répartie de manière homogène. Du fait des incertitudes liées à l'extension tumorale, aux mouvements du patient, aux mouvements des organes et à la réalisation du traitement, des marges de sécurité sont nécessaires. Ces marges aboutissent à la définition de plusieurs volumes emboités, dépendants soit des critères cliniques (volume tumoral macroscopique, volume cible anatomo-clinique), soit des conditions d'irradiation (volume prévisionnel). On cherche par ailleurs à réduire les dimensions autour du volume à traiter de manière à respecter les tolérances des tissus sains environnants [62].
La commission internationale des unités et mesures radiologiques ICRU a défini des volumes à prendre en considération lors d'une planification 3D et a publié es rapports n°50 et n°62 (Figure 1.10), tous les deux consacrés à la prescription, l'enregistrement et le compte rendu de la radiothérapie externe par faisceaux de photons [62] :

- GTV (*Gross Tumor Volume*) est le volume tumoral macroscopique, il comprend l'ensemble des lésions tumorales mesurable, palpable ou visibles avec les moyens de l'imagerie.
- CTV (*Clinical Target Volume*) est le volume cible anatomo-clinique, il comprend l'ensemble du volume anatomique dans le quel on veut éradiquer la maladie cancéreuse macroscopique et/ou microscopique. Il implique l'évaluation des risques d'envahissement en fonction des connaissances cliniques et la prise en compte des risques encourus éventuellement par les tissus sains inclus. Il est défini selon les mêmes principes que le GTV avec une marge de sécurité autour du volume tumoral macroscopique. En cas de tumorectomie, il ne peut s'agir que du lit tumoral.
- PTV (*Planning Target Volume*) est le volume cible prévisionnel, il s'agit du volume le plus large tenant compte de toutes les incertitudes et sur lequel s'effectue l'étude dosimétrique permettant de définir le plan de traitement. Concept géométrique, il est définit à partir du volume anatomo-clinique et une marge de sécurité prenant en compte toutes les incertitudes liées au patient, aux mouvements physiologiques des organes, à la mise en place du traitement et à l'équipement. Ce volume peut être limité dans certaines directions à cause des tolérances des OAR. Il s'agit par essence d'un volume fixe par rapport au système de coordonnées de l'appareil de traitement et tel que, s'il irradié conformément aux prévisions, le CTV, qui reste en son sein, est correctement irradié. L'ICRU a donc défini deux marges élémentaires répondant à ce besoin, et dont la combinaison doit permettre de mieux évaluer la marge globale permettant de passer du CTV au PTV.
 - IM (*Internal Margin*) est la marge interne ajoutée au CTV pour prendre en compte les mouvements physiologiques des organes dans le patient par rapport au système des coordonnées internes liées au patient. Il s'agit par exemple des variations du CTV (position, forme et taille) résultant des mouvements respiratoires, du remplissage de la vessie ou du rectum, des battements cardiaques ou de la déglutition. Cela conduit à la définition d'un

volume intermédiaire ITV (*Inernal Target Volume*) le volume cible interne situé entre le CTV et le PTV.

- SM (*Set-up Margin*) est la marge de repositionnement, elle correspond au décalage potentiel entre la zone irradiée (coordonnées de l'appareil) et le volume interne (coordonnées du patient) lié aux incertitudes liées à la réalisation du traitement ou à un manque de reproductibilité. Les paramètres concernés peuvent être des variations de mise en place du patient, des défauts de géométrie de l'installation, des incertitudes sur les données dosimétriques, des erreurs de conversion de données géométriques entre la simulation et l'appareil de traitement ou des facteurs humains. Cette marge se calcule par rapport au système de coordonnées externes au patient.
- TV (*Treated Volume*) est le volume traité, il correspond au volume entouré de la surface isodose spécifiée par le radiothérapeute et correspondant à un niveau de dose minimal permettant d'atteindre le but du traitement. Dans l'idéal, ce volume devrait correspondre au PTV.
- IV (Irradiated Volume) est le volume irradié représentant le volume de tissus recevant une dose considérée comme significative vis-à-vis des tolérances des tissus sains.

Figure 1. 10 : Définition des volumes en radiothérapie selon l'ICRU n°62.

Un autre concept, dans la définition des volumes, est celui du BTV (*Biological Target Volume*), le volume cible biologique qui est peu utilisé, il est rendu possible grâce à l'apport de l'imagerie fonctionnelle et métabolique [59]. L'imagerie TEP (Tomographie par Émission de Positons) permet par exemple d'objectiver au sein du GTV des zones biologiquement avides de glucose [63]. Le BTV repose sur l'utilisation des paramètres d'imagerie moléculaire pour guider l'irradiation selon une approche algorithmique de

segmentation. On pourrait envisager, par exemple, de segmenter le volume cible en plusieurs sous-volumes biologiques qui représentent différentes fractions tumorales exprimant différentes caractéristiques qui évoluent avec le temps et ensuite sculpter une distribution de dose en délivrant une dose plus élevée aux sous-volumes qui expriment des facteurs de mauvais pronostic pour le contrôle tumoral [64].

Les organes à risque (OAR) représentent les tissus sains qui doivent être préservés au maximum de l'irradiation dans le but de réduire les probabilités de complications.

1.5.2.3. La dosimétrie

À cette étape, une balistique de traitement est élaborée par l'équipe radiophysique dans laquelle on définit le nombre de faisceaux, leurs angulations, leurs énergies, leurs collimations, l'ajout de filtre et leurs contributions. Tous ces paramètres permettent de calculer la distribution de dose dans le patient, ils sont ajustés pour correspondre à la prescription médicale en respectant les contraintes de doses relatives aux OAR, le résultat est discuté et validé par le médecin référent [61].

Deux techniques de traitement sont utilisées (Figure 1.11) : la radiothérapie conformationnelle (3DCRT) et la radiothérapie conformationnelle par modulation d'intensité (RCMI). Dans la première technique, l'utilisateur détermine la bonne configuration des faisceaux pour obtenir la distribution de dose souhaitée. Pour la deuxième technique, l'utilisateur indique au système des objectifs et des contraintes pour que le système détermine la meilleure configuration [61].

Figure 1. 11 : Illustration des technique de traitement ; la 3DCRT (à gauche) et la RCMI (à droite) [61].

La validation de la planification d'un traitement dépend de plusieurs critères d'évaluation, ils sont différents selon la technique [61] :

• Pour la 3DCRT, les critères sont fournis par le rapport ICRU n°50 :

- La dose est prescrite au point ICRU (généralement au barycentre du PTV).
- L'isodose 95% de la dose doit couvrir le PTV.
- Le maximum de dose accepté est de 107% (point chaud).
- Pour la RCMI, les critères sont définis dans le rapport ICRU n°83 :
 - 95% du PTV doit recevoir au moins 95% de la dose.
 - La dose maximale de 107% ne doit pas être délivrée à plus de 2% du PTV.
 - Il faut qu'au moins 50% du PTV reçoit 100% de la dose.

Le format DICOM RT est le format spécifique dans le domaine de la radiothérapie basé sur la norme DICOM. Il est utilisé par les TPS pour gérer les données relatives au traitement du patient, il se décompose en quatre parties [61] :

- RT image : contient tout les images CT du patient.
- RT structure : regroupe les contours des différents volumes d'intérêt (contour externe, volumes cibles, OAR).
- RT plan : contient toutes les informations sur la balistique (isocentre, nombre de faisceaux, énergies, angulations, dimensions des champs, accessoires, MLC...etc).
- RT dose : contient les matrices de dose des faisceaux.

Toutes ces informations sont transmises via un système *Record and Verify* à l'appareil de traitement pour réaliser les séances de traitement [61].

1.5.2.4. Le traitement

Une fois les données dosimétriques sont transmises à la machine de traitement la réalisation du traitement peut être alors entamée.

Les techniques de traitement tridimensionnelles visent toutes un objectif commun ; épargner au maximum les OAR tout en optimisant la dose délivrée à la tumeur. Cet objectif est rempli avec plus au moins d'efficacité selon la technique. Plus la technique est efficace, plus elle est complexe à mettre en place et donc sujette aux erreurs [60].

Dans ce qui suit, nous exposons les techniques de traitement tridimensionnelles réalisables avec un accélérateur linéaire.

1.5.2.4.1. La radiothérapie conformationnelle (3DCRT)

La radiothérapie 3DCRT consiste à irradier le volume tumoral selon plusieurs incidences (Figure 1.12), avec un champ fixe imprimé par le MLC au faisceau pour chaque incidence. Le nombre d'incidences est tributaire de la localisation de la tumeur, il est choisi

par l'équipe radiophysique et la position de chaque lame est déterminée par le TPS, donnant au faisceau une forme épousant au maximum la forme de la tumeur, aux marges près. En utilisant cette technique, la tête de l'accélérateur reste statique à savoir que l'irradiation est déclenchée puis stoppée puis stoppée une fois le nombre d'UM soit délivré, ensuite le bras tourne jusqu'au prochain angle prévu par le TPS et l'opération est répétée pour chaque incidence de faisceau [60].

Figure 1. 12 : Exemple d'un traitement 3DCRT avec quatre incidences ; 0° , 90° , 180° , 270° [60].

1.5.2.4.2. La radiothérapie conformationnelle par modulation d'intensité (RCMI)

Tout comme la 3DCRT, la RCMI consiste en l'irradiation du volume tumoral selon différentes incidences, la différence majeure entre les deux techniques réside en la façon d'irradier chaque incidence. En RCMI, le champ délivré pour chaque incidence n'est plus fixe mais rendu variable par le mouvement des lames du MLC, permettant de moduler la fluence reçue par le PTV sans pour autant imputer une augmentation de dose aux OAR, grâce à des gradients de dose plus élevés. Dans ce cas encore, le physicien médical choisit le nombre d'incidences et le TPS est chargé de déterminer le mouvement des lames permettant de répondre au mieux aux contraintes de doses fixées par le radiothérapeute [60].

Il existe deux méthodes de la RCMI (Figure 1.13), la méthode *step and shoot* S&S et la méthode *sliding windows* SW [60].

En mode S&S, l'irradiation de chaque incidence se fait au moyen de plusieurs formes de champs fixes ou segments. Les lames vont se déplacer pour le premier segment, l'irradiation est enclenchée et une fois le nombre d'UM délivré les lames se déplacent pour

le segment suivant et ainsi de suite. Une fois les segments planifiés par le TPS délivrés, le bras du Linac tourne pour atteindre l'incidence suivante et l'opération est répétée jusqu'à achèvement de tous les segments. À l'instar de la 3DCRT, aucun élément de la tête ne bouge durant l'irradiation, limitant les difficultés de planification [60].

Le mode SW utilise plus de segment et un mouvement continu des lames tout au long de l'irradiation, modifiant la forme et la taille du champ en temps réel. Au cours de l'irradiation, chaque lame va se déplacer à vitesse constante de sa position de départ jusqu'à sa position d'arrivée. En pratique, un champ RCMI en mode SW se décompose en différents sous-champs, définissant différentes étapes de mouvement de lame, définis de manière semblables aux segments de la méthode S&S. Les lames vont donc se déplacer à vitesse constante entre les positions fixes à chacune de ces étapes, signifiant qu'un grand déplacement (inversement petit) se traduira par une vitesse de lames rapide (inversement lonte) [60].

Figure 1. 13 : Illustration des techniques S&S (en A) et SW (en B) pour la RCMI [65].

1.5.2.4.3. Autres techniques

D'autres techniques encore plus complexes tendent à se développer dans les services de radiothérapie. Les Linacs qui fonctionnent en mode FFF (*Flatenning filter free*), c'est-à-dire opérer sans l'utilisation d'un cône égalisateur, ce qui va permettre grandement augmenter le débit de dose accessible grâce à la machine, et ainsi délivrer plus rapidement les traitements. Cependant, du fait de l'absence de ce cône conçu pour homogénéiser le dépôt de dose dans le champ, la planification de traitement est un peu plus complexe, l'utilisation des conditions de référence habituelles étant impossible [60].

L'arcthérapie à intensité volumétrique modulée (Rapid'Arc chez Varian et VMAT chez Elekta) et la tomothérapie (Tomotherapy développée par Accuray Inc), permettent une couverture de la tumeur encore plus précise (Figure 1.14) [60].

L'arcthérapie à intensité volumétrique modulée utilise des Linacs presque identiques à ceux utilisés en RCMI, le patient ne sera pas irradié selon plusieurs incidences fixes du faisceau, mais plutôt selon un ou plusieurs arcs. Le Linac va se déplacer à partir d'un point de départ, lancer l'irradiation et la modulation du faisceau tout en se déplaçant le long de l'arc prévu jusqu'au point d'arrivé planifié [60].

La tomothérapie est basée sur une architecture proche du scanner tomodensitométrique sur lequel on aura remplacé le tube à rayons X par un Linac. La source à rayons X tourne à grande vitesse autour du patient, le faisceau est modulé par deux bandes de lames, comparables à celles d'un MLC [60].

La rotation de la source de rayons X durant l'irradiation avec ces deux techniques induit une augmentation de la dose reçue par le PTV mais aussi par les OAR [60].

Figure 1. 14 : Illustration de l'arcthérapie à intensité modulée à gauche et la tomothérapie à droite [60].

L'irradiation par Cyberknife (Figure 1.15) utilise un accélérateur linéaire miniaturisé monté sur un bras robotisé piloté par ordinateur qui permet d'orienter les faisceaux avec six degrés de liberté explicités par six axes de mobilité. La trajectoire du bras est définie par un ensemble de nœuds, ces derniers sont distribués sur une sphère enveloppant la tumeur, le centre de la sphère coïncide avec l'isocentre de la tumeur. Pour les tumeurs de forme complexe, le traitement est non isocentrique, plusieurs directions par nœud sont initialisées aléatoirement [65].

Figure 1. 15 : Cyberknife (à gauche) et illustration d'un ensemble de nœuds sur la sphère enveloppant la tumeur [65].

1.5.3. La radiothérapie thoracique

Le poumon étant un organe constamment en mouvement par la succession de phases d'inspiration d'expiration provoquées principalement par le diaphragme (Figure 1.16), cela a pour conséquence de rendre difficile la localisation de la tumeur pendant les séances de traitement en radiothérapie. En outre les mouvements ne sont réguliers et sont tributaires de l'état et de la volonté de chaque patient, il n'est donc pas possible d'établir des marges standards dans l'incertitude du calcul de dose absorbée. Il est donc primordial de mettre en place des moyens qui permettent de pallier ce problème afin de limiter cette source d'incertitude. Le risque principal étant un sous-dosage de la tumeur qui pourra entrainer par la suite une récidive et un surdosage des tissus sains adjacents entrainant des complications aigues ou chroniques. Des études ont montré que plus la tumeur est située proche du lobe inférieur du poumon plus le mouvement de la tumeur est marquée [59].

Figure 1.16: Radiographie du poumon en phase inspiratoire et expiratoire (traits discontinus) [59].

Du fait que les mouvements pulmonaires ne sont pas réguliers, le volume d'air inspiré fluctue et peut ainsi varier pendant et entre les séances de traitement. En effet, l'inspiration permet un remplissage d'air dans les alvéoles pulmonaires, ce qui entraine une diminution de la densité massique pulmonaire. Cette densité peut varier entre la réalisation des images CT et durant les séances de traitement cela a pour conséquence d'induire des erreurs dans le calcul prévisionnel dosimétrique au niveau du TPS, l'efficacité du traitement peut alors être compromise [59].

La prise en compte du rythme respiratoire du patient au cours du traitement en radiothérapie a permis le développement de plusieurs techniques permettant de suivre et de contrôler le déplacement de la tumeur durant l'irradiation.

1.5.3.1. La synchronisation respiratoire en radiothérapie (gating)

Le scanner 4D est un scanner qui permet la localisation de la tumeur dans un plan tridimensionnel mais aussi d'identifier son déplacement selon le cycle respiratoire, ce qui rend possible le traitement du patient en mode *gating*; en synchronisant sa respiration avec l'irradiation. Le patient n'est irradié que pendant une phase particulière du cycle respiratoire. Le patient respire librement ou peut être guidé par des instructions audio ou vidéo. Le tracé du mouvement de la cage thoracique est relevé grâce à un boitier radio-transparent déposé sur le thorax du patient et une caméra infrarouge qui suit ses déplacements. Nous pouvons citer le système RPM (*Real time Position Management*) de Varian [59].

1.5.3.2. Traitement en blocage en inspiration profonde

Cette technique demande la coopération du patient. Le patient est équipé d'un spiromètre et de lunettes qui permettent de visualiser son cycle respiratoire, il lui est demandé de réaliser des apnées en inspiration profonde à un niveau fixé en séance d'apprentissage de la technique. Le patient doit pouvoir bloquer sa respiration pendant une vingtaine de secondes. Les images CT sont réalisées pendant un seul blocage, la dosimétrie est réalisée sur cette acquisition et le patient est traité avec le même appareillage et le même niveau d'apnée (en général par plusieurs apnées) [59].

Cette méthode est appelée *Deep Inspiration Breath Hold (DIBH)*. L'inspiration profonde lors de l'irradiation entraine une augmentation du volume pulmonaire par l'extension du poumon et donc une diminution de la dose relative au poumon sain. Tous les patients ne peuvent pas réaliser ces apnées mais elles sont généralement bien acceptées [59].

1.5.3.3. Tracking respiratoire

Les techniques de tracking consistent à laisser le patient respirer librement tout en l'irradiant de façon continue en suivant le mouvement de la tumeur. Le traitement est réalisé dans les mêmes conditions que la réalisation des images CT qui a permis d'obtenir le plan de traitement. Le *tracking* se caractérise généralement par la mise en place de marqueurs implantés dans la tumeur, ce qui permet de suivre le volume tumoral, de manière précise, en temps réel grâce à un système intégré de synchronisation respiratoire. Ainsi, des marqueurs radio-opaques (clip, grain d'or, ...) implantés dans la tumeur sont suivis pendant la séance d'irradiation. Souvent ces marqueurs internes sont associés à un marqueur externe (type RPM). Les marqueurs externes sont suivis de façon continue tandis qu'un cliché RX réalisé toute les secondes, permet de repérer et de vérifier la position des marqueurs internes. C'est la technique utilisée lors de la stéréotaxie robotisée avec le Cyberknife. Nous pouvons citer l'appareil VERO de Brainlab qui permet de réaliser le tracking [59].

CHAPITRE II

LES ALGORITHMES DE CALCUL DE DOSE ET LES SYSTEMES DE PLANIFICATION DE TRAITEMENT TPS

2.1. Les algorithmes de calcul de dose en radiothérapie

Un traitement de radiothérapie externe nécessite un TPS adapté à la routine clinique. Comme illustré dans la Figure 2.1. Ce système a besoin de la description du patient via les données anatomiques issues des images CT d'une part et une description des faisceaux de l'appareil de traitement via les données de base (mécaniques et dosimétriques) d'autre part. Le TPS est constitué de différents algorithmes destinés à l'optimisation ou au calcul de dose choisi en fonction de la technique de traitement et de la précision souhaitée [61].

Figure 2.1: Principe d'un TPS à partir des données de l'appareil et des données anatomiques : Calcul des distributions de dose, les HDV et le nombre d'UM [61].

Le résultat du calcul de la dose permet de visualiser sur les images du patient la distribution de la dose (courbes isodoses), de construire des histogrammes dos/volume HDV et définir le nombre UM correspondant à délivrer [61].

Les HDV regroupent toutes les informations sur la distribution de la dose en fonction de chaque volume contouré. Ils permettent de vérifier le respect des contraintes et objectifs de dose (aux OAR et au volume cible), et d'extraire par exemple la dose maximale, la dose

moyenne ou la proportion d'un volume d'intérêt recevant la dose d'intérêt (appelée contrainte dose-volume, elle dépend essentiellement de la sensibilité de l'organe) [61].

Actuellement, il existe deux types de planification [61] :

- La planification dite « directe » : à partir des données des faisceaux mesurés, une balistique (nombre de faisceaux, orientation, énergie...) est déterminée pour aboutir à la prescription au volume cible (soit le volume couvert par l'isodose 95 % et 100 % de la dose au point de prescription ICRU, généralement au centre du volume) tout en respectant les limites de doses aux tissus sains.
- La planification dite « inverse » : à partir des données de faisceaux mesurées et en partant d'un nombre de faisceaux d'angulations prédéfinies, on indique au logiciel les objectifs que l'on souhaite atteindre au volume cible et aux tissus sains. En divisant le faisceau original en *beamlet* et par l'intermédiaire d'un algorithme d'optimisation, l'intensité de chaque faisceau élémentaire est modulée. Cela permet d'obtenir une distribution de dose optimale conforme au volume cible.

Le but des algorithmes de calcul de dose utilisés en routine clinique est de modéliser le transport de toutes les particules pour simuler le dépôt d'énergie dans le patient. Pour cela le système doit [61] :

- Contenir une bonne description des processus physiques pour les particules primaires et secondaires ;
- Réaliser un calcul 3D « vrai » ;
- Prendre en compte les hétérogénéités ;
- Avoir un temps de calcul compatible avec la routine clinique ;
- Donner une précision acceptable.

Il existe différents formalismes pour calculer la distribution de la dose, et en particulier la convolution/superposition de kernels décrite pour le TPS utilisé dans le cadre de ce travail ; Eclipse de la société Varian [61].

2.2. Formalisme du calcul de la dose

Les photons sont des particules indirectement ionisantes, ils transfèrent leur énergie aux particules chargées par interaction avec la matière (Compton, photoélectrique, création de paires). Dans ce cas, la probabilité d'interaction est proportionnelle au coefficient d'atténuation μ (en cm⁻¹) qui dépend de l'énergie de la particule incidente E en MeV, de la masse volumique ρ (en g.cm⁻³) et du numéro atomique Z du milieu [61]. Les particules chargées, quant à elles, déposent leur énergie progressivement par succession d'ionisations et d'excitations le long de leur trajectoire (localement ou à distance). Le dépôt de la dose dans le patient est donc lié à quatre composantes principales qu'il sera essentiel de prendre en compte (Figure 2.2) [61]:

- La dose primaire, caractérisée par la dose déposée par les électrons créés par les photons primaires durant leur première interaction après leur entrée dans le patient (70 à 95 %);
- La dose diffusée dans le patient définie par la dose déposée par les électrons créés par les photons primaires ayant interagi plus d'une fois dans le patient (5 à 30 %);
- La dose diffusée par la tête de traitement définie par la dose déposée dans le patient par les photons diffusés par la tête de traitement (<5 %);
- Energie radiant des Tête de traitement photons sortant de la et air cible interactions principalement dans le cône égalisateur Energie des particules chargées de contamination Dose des particules Dépôt d'énergie des Energie des photons ticules chargées de chargées de Patient diffusés de la tête contamination contam ination Energie des photons primaires Energie diffusée des Energie cinétique des particules chargées photons diffusés de la Energie des photons Energie cinétique des diffusées de la tête tête diffusés particules chargées primaires Energie cinétique des Energie cinétique des Energie des photons particules chargées Dépôt particules chargées d'ann hilation et de diffusées Dose d'énergie diffusées freinage primai primaire 1 Energie Energie des photons Energie du diffusé e d'annihilation et de Energie diffusé de la tête diffusee déposée freinage Energie cinétique des déposée déposée particules chargées Energie de d'annihilation et de Energie cinétique des **Fannihilation** freinage particules chargées et de freinage d'annihilation et de déposée Energie de freinage Dose du diffusé Tannihilation dans le fantôme du et de freinage faisceau direct déposée Dose diffusée de la tête
- La dose due aux électrons de contamination (< 5 %).

Figure 2. 2 : Décomposition de rayonnements d'un faisceau de radiothérapie externe [61].

La dose absorbée en un point « P », dont l'unité est le Gray (Gy) correspondant à des joules par kilogrammes (J/kg), est définie par l'énergie déposée E (J) par les particules dans un volume très petit de masse m (kg). Elle s'exprime par la relation suivante [60]:

$$D(P) = E/m Eq 2.1$$

Il existe trois types de formalismes pour calculer la dose [61] :

- Basé sur l'utilisation directe de données mesurées ;
- o Basé sur les méthodes dites de séparation primaire/diffusé ;
- Basé sur les méthodes de convolution/superposition de kernels (seule cette méthode sera détaillée car c'est la méthode implémentée dans Eclipse).

Le kernel est un modèle de dépôt d'énergie des particules secondaires autour d'un site d'interaction qui est dans un milieu homogène indépendant de la localisation. Si l'on considère directement ce kernel, on parle de point kernel. Les points kernels sont générés par méthode Monte-Cacrlo. En intégrant tous les kernels dans une direction on obtient le pencil kernel [61].

Les méthodes de convolution/superposition de kernels fournissent des modèles de calculs de la dose plus précis que la séparation primaire/diffusé répondant à la complexité des traitements de radiothérapie actuels. Les méthodes de convolution/superposition séparent les processus de transport et dépôt d'énergie en deux phases : les photons primaires et les particules secondaires, tous deux traduits par des kernels pour ensuite les convoluer. Le volume irradié est décomposé en petits éléments de volume recevant chacun une partie du modèle de dépôt d'énergie (kernel). Puis chaque contribution de chaque kernel est sommée dans tous les éléments de volume [61].

2.2.1. Définition du noyau de dépôt d'énergie pour les photons (kernel)

Le noyau de dépôt d'énergie, appelé kernel, est défini comme la distribution d'énergie transférée à chaque élément de volume d'un milieu, généralement de l'eau, suite à l'interaction d'un faisceau étroit de photons. Ainsi le point kernel décrit le dépôt d'énergie des particules secondaires dans un milieu infini autour d'un site d'interaction primaire. Il est important de noter que le principe de la méthode basée sur la superposition de kernel repose sur le fait que l'énergie déposée par les particules secondaires autour d'un site d'interaction d'un site d'interaction est indépendante de la position du site [61]. Dans le cadre de ce travail c'est le pensil kernel qui nous intéresse mais il est nécessaire de décrire le point kernel aussi (Figure 2.3).

- Le point kernel : la répartition de la dose résulte de l'interaction photon-matière dans un milieu homogène infini (l'algorithme collapsed cone est basé sur ce principe) [61].
- Le pensil kernel : la répartition de la dose résulte de l'interaction d'un pinceau élémentaire dans un milieu homogène semi-infini (les algorithmes pensil beam et Analytical Anisotropic Algorithm ; AAA sont basés sur ce principe) [61].

Les points kernels sont générés par méthodes Mont-Carlo à partir de spectre de photons primaires. Ce dernier est, soit calculé par ces méthodes, soit approché itérativement par comparaison avec un rendement en profondeur mesuré expérimentalement. Lorsque les kernels sont spatialement invariants, la superposition peut être effectuée après une près-convolution des kernels. Ainsi les pensil kernels sont obtenus par pré-convolution des points kernels selon une direction privilégiée (direction du faisceau) [61].

2.2.1.1. Modèle du point kernel

Le calcul de la dose (en J/kg) à partir de points kernel (Figure 2.4) peut être divisé en deux étapes [61] :

- La première consiste à calculer ce que l'on définit par le TERMA (*Total Energy released per unit MAss*) qui correspond à l'énergie totale par le faisceau primaire par unité de masse dans le patient en tenant compte des variations de la densité électronique, fournie par l'imagerie CT. Ce calcul est réalisé au moyen de la technique dite *ray-tracing* qui consiste à définir le parcours radiologique des particules le long d'une ligne tracée au travers d'une série de voxels.
- La seconde consiste à superposer au TERMA la réponse de chaque kernel. Le point kernel est le calcul de la dose résultante d'un photon ayant interagi en un point

déterminé préalablement par méthode Monte-Carlo pour les photons primaires mono-énergétiques. Les kernels sont ensuite superposés en fonction du spectre de la machine.

Un point kernel est déterminé par énergie, appelé point kernel mono-énergétique, en amont par simulation Monte Carlo. La dose s'exprime en Gray (Gy) et est déterminée par la relation suivante [61] :

$$D(r) = \iiint_V T(S)K(r-s)d^3s \qquad Eq 2.2$$

Avec :

$$T(S) = \frac{\mu}{\rho}(r'). \Psi(r')$$
 Eq 2.3

Où :T(S)est le TERMA du faisceau primaire en (J/kg).
$$\Psi$$
est la fluence en énergie du faisceau primaire en (J/m²). μ/ρ est l'atténuation massique donnée par les images CT en (m²/kg).K(r-s)représente le point kernel pré-calculé correspondant à l'énergie

K(r-s) représente le point kernel pré-calculé correspondant à l'énergie déposée en r dans un milieu semi-infini à partir d'un point d'interaction primaire s (ce terme n'a pas d'unité car il correspond à une distribution de l'énergie c'est-à-dire au transfert d'une fraction de l'énergie dépendant de l'énergie primaire de l'interaction).

d³s est l'élément de volume.

La dose au point r (récepteur) situé dans un fantôme homogène est obtenue en ajoutant les contributions de dose, dans l'ensemble du milieu, de chaque site d'interaction s (source). Le transfert d'énergie du site d'interaction des photons primaires au point de dépôt d'énergie dépend du milieu traversé. Les hétérogénéités sont prises en compte par une mise à l'échelle des kernels par la masse volumique moyenne entre le voxel s (source) et le voxel r (récepteur) selon l'équation suivante [61] :

$$K_{het}(s,r) = \frac{\rho(r)}{\rho hom} c^2 K_{hom}[c(r-s)]$$
 Eq 2.4

Avec	:	$c = c(r - s) = \int_0^1 \rho_{r el}[s - l(s - r)]dl$	Eq 2.5
Où :	$K_{het}(s,r)$	est le kernel corrigé par la densité électronique moyenne.	
	ρ(r)	est la masse volumique au point r (en g/cm ³).	
	ρ_{hom}	est la masse volumique en milieu homogène, c'est-à-dire la	masse
		volumique de l'eau (en g/cm3).	
	c(s,r)	est la densité électronique moyenne entre la source s et le	point de
		réception r.	
	K _{hom} [c(r-s)]	est le kernel pré-calculé dans un milieu homogène de	masse
		volumique ρ_{hom} .	

2.2.1.2. Modèle du pensil beam

Dans le but de simplifier et d'accélérer encore les calculs de distributions de dose, les kernels peuvent être pré-convolués dans une direction. Dans ce cas, le calcul est réalisé à partir de pensil kernels qui définissent l'énergie déposée le long d'un faisceau fin par intégration de plusieurs points kernel le long de ce faisceau. Les variations du spectre du faisceau primaire (hors axe, filtre, modulation...) sont prises en compte en changeant la qualité du pensil beam selon la position d'entrée. Cela se traduit par la relation suivante [61] :

$$D(r) = \int_{E} \iint_{S} \frac{\mu}{\rho} \Psi_{E}(x', y') K_{PK}(E, x - x', y - y', z) dx' dy' dE \qquad Eq 2.6$$

 $O\dot{u}$: D(r)

 μ/ρ est le coefficient d'atténuation massique (en m²/kg).

est la dose au point r (en Gy).

 $\Psi_{E}(x',y')$ est la fluence énergétique des photons primaires au point s de coordonnées (x',y') à l'entrée du fantôme (en J/m²).

K_{PK} correspond au pensil kernel monoénergétique pré-calculé pour un milieu donné.

Cette pré-convolution des kernels selon une direction permet un gain de temps notable pour le calcul des distributions de dose, mais conduit à une dégradation de la répartition latérale de la dose, surtout au niveau des hétérogénéités [61].

Le dépôt d'énergie pour un faisceau de photons se différencie en deux étapes : localement par les électrons secondaires et à distance par les photons diffusés. L'intégration en 2D apporte un net avantage par rapport au point kernel d'un point de vue du temps de calcul tout en étant adapté aux champs irréguliers et à une fluence non uniforme. Le pensil beam reste la méthode de choix pour la modulation d'intensité [61].

La méthode du pensil beam permet la prise en compte de la forme du champ (par intégration de la forme réelle du champ ou par calcul de champ équivalent) [61].

Cet algorithme peut être amélioré par la prise en compte de la contamination électronique, du diffusé du collimateur, de la transmission des caches, de la transmission du collimateur mais également par correction spectrales, corrections d'obliquité de surface et corrections partielles d'hétérogénéité [61].

2.3. Algorithmes du TPS Eclipse de Varian

2.3.1. Algorithme Analytical Anisotropic Algorithm (AAA)

L'algorithme Analytical Anisotropic Algorithm (AAA) implémenté dans Eclipse, utilisé dans le cadre de ce travail, est une version améliorée de l'algorithme Pensil Beam. L'algorithme est décomposé en trois sources. Il est amélioré par la prise en compte des hétérogénéités latéralement dans le voisinage 3D du site d'interaction à l'aide de noyaux de diffusion de photons en multiples directions latérales tout en considérant classiquement les hétérogénéités en profondeur. En plus, la composante du diffusé est modifiée selon la masse volumique de chaque point voisin en 3D par des fonctions mathématiques analytiques qui seraient comparables au point kernel [61].

2.3.1.1. Algorithme pensil beam de base

Eclipse différencie le faisceau en trois sources dont le paramètre principal est la fluence en énergie [61] :

- La source primaire (au niveau de la cible) comprenant les photons primaires créés dans la cible.
- La source dite extra-focale (au niveau du cône égalisateur), de forme gaussienne, contenant les photons diffusés du collimateur primaire et le cône égalisateur. Ce rayonnement est plus divergent que le rayonnement primaire.
- La source des électrons de contamination en profondeur dans un milieu (le patient), décrivant la quantité de dose due à la contamination (électrons et photons) qui est calculée à différentes profondeurs.

Ces trois sources sont modélisées sous la forme de kernels en fonction du spectre d'énergie des photons dépendant du rayon (à cause du cône égalisateur). Le collimateur multilames

(statique ou dynamique) et le filtre dynamique qui modifient la fluence en énergie du faisceau sont pris en compte en corrigeant la source extra-focale [61].

Le calcul de la dose est réalisé dans une matrice de voxels divergents en tenant compte de la densité électronique moyenne des tissus dans chaque voxel selon la courbe de conversion des images CT. Le faisceau ouvert est décomposé en beamlet (faisceau élémentaire) de la dimension d'un voxel (Figure 2.5) [61].

La distribution de dose dans un beamlet β est le résultat de la convolution des trois sources. L'énergie déposée par la source primaire se calcule par l'équation suivante [61] :

$$E_{\beta,ph}(x, y, z) = \Phi_{\beta} \times I_{\beta}(z, \rho) \times K_{\beta}(x_{\beta}, y_{\beta}, z_{\beta})$$
 Eq 2.7

Où : Φ_{β} est la fluence du beamlet supposé uniforme.

 $I_{\beta}(z, \rho)$ est une fonction du dépôt d'énergie tenant compte des hétérogénéités.

 $K_{\beta}(x_{\beta}, y_{\beta}, z_{\beta})$ représente le kernel de diffusion des photons défini par la relation suivante [45] :

$$K_{\beta}(x_{\beta}, y_{\beta}, z_{\beta}) = \sum_{k=0}^{5} c_{k}(z') \cdot \frac{1}{\sqrt{x^{2} + y^{2}}} \cdot e^{-\mu_{k} \cdot \sqrt{x^{2} + y^{2}}}$$
Eq 2.8

Où : $x_{\beta}, y_{\beta}, z_{\beta}$ sont les coordonnées du beamlet (en cm).

- x, y, z sont les coordonnées du point de calcul dans le repère du patient (en cm).
- $c_k(z')$ est le facteur de pondération du kernel pour assurer la normalisation unitaire de l'énergie du kernel total.
- μ_k est la constante d'atténuation (en cm⁻¹).
- *z'* est la profondeur radiologique entre le point d'entrée du beamlet et le point de calcul (en cm).

L'énergie de la source extra-focale se calcule de la même façon avec le kernel correspondant tandis que la source des électrons de contamination est donnée par l'équation suivante [61] :

$$E_{cont,\beta}(x, y, z) = \Phi_{cont,\beta} \times I_{cont,\beta}(z, \rho)$$
 Eq 2.9

Où : $\Phi_{cont,\beta}$ est la fluence du beamlet supposé uniforme liée à la contamination.

Figure 2. 5 : Schéma représentatif du beamlet ; 1.Foyer du champ, 2.Ligne en éventail centrale β , 3.Système de coordonnées du beamlet, 4.Peau, 5.Point de calcul P, 6.Système de coordonnées du patient, 7.Beamlet β , 8.Axe central du champ [66].

2.3.1.2. Mise à l'échelle latérale

L'énergie est mise à l'échelle pour prendre en compte la masse volumique moyenne latéralement. Pour cela, le kernel de diffusion du beamlet $K_{\beta}(x_{\beta},y_{\beta},z_{\beta})$ est remplacé par l'équation suivante [61] :

$$K_{\beta}(x_{\beta}, y_{\beta}, z_{\beta}) = \frac{\rho_{eau}}{\rho_{x,y,z}} \sum_{k=0}^{5} c_{k}(z) \cdot \frac{1}{\sqrt{x^{2} + y^{2}}} \cdot e^{-\mu_{k}(z') \cdot r_{d}(x, y, \rho)}$$
Eq 2.10

Où :	$x_{\beta}, y_{\beta}, z_{\beta}$	sont les coordonnées du beamlet (en cm).		
	x, y, z	sont les coordonnées du point de calcul dans le repère du		
		patient (en cm).		
	$ ho_{eau}$	est la masse volumique de l'eau (en g/cm ³).		
	$ ho_{x,y,z}$	est la masse volumique au point de calcul (en g/cm ³).		
	$c_k(z)$	est le facteur de pondération du kernel pour assurer la		
		normalisation nitaire de l'énergie du kernel total.		

$$\mu_k$$
est la constante d'atténuation (en cm⁻¹). z' est la profondeur radiologique entre le point d'entrée du
beamlet et le point de calcul (en cm). $r_d(x, y, \rho)$ est la distance radiologique à la profondeur z d'origine du
point de kernel juqu'au point (x,y,z) le long d'un rayon R (en
cm).

2.3.1.3. Correction d'hétérogénéités

Les hétérogénéités sont prises en compte par un kernel de diffusion 1D en fonction de la densité électronique locale [61] :

$$k_{z}(z) = \frac{\rho_{z}}{\rho_{eau}} \sum_{i=1}^{2} c_{i} . \mu_{i} . e^{-\mu_{i}(z')}$$
 Eq 2.11

Où : μ_i et c_i sont déterminés par des kernel Monte Carlo pour chaque beamlet. $\frac{\rho_z}{\rho_{eau}}$ est la densité électronique locale.z'est la distance radiologique à partir de l'origine du kernel (en cm).

La distribution en énergie pour le point de coordonnées (x,y,z) est converti par convolution avec ce kernel de diffusion 1D [61]:

$$E'_{\beta,ph}(x, y, z) = E_{\beta,ph} \otimes k_z(z) \qquad \qquad Eq 2.12$$

La densité utilisée est la densité électronique du matériau par rapport à celle de l'eau, la valeur maximale dans l'algorithme AAA est de 15 électrons/cm³. La densité électronique moyenne du voxel est déterminée à partir de la courbe de conversion des nombres Hounsfield du scanner [61].

La mise à l'échelle en présence d'hétérogénéités se fait pour les photons et les électrons de contamination. Cela permet à l'algorithme AAA de prédire précisément l'effet *du build-down* (chute de la dose) et du *buil-up* (rehaussement de la dose) aux interfaces des faibles densités (poumon) [61].

2.3.1.4. Conversion de dose

Tout au long du calcul, Eclipse effectue la convolution des kernels en termes d'énergie déposée E. Ainsi, l'énergie absorbée au niveau du point de calcul est la superposition des trois composantes de dose [61].

La distribution en énergie est ensuite convertie en dose D, grâce à un facteur de correction de la masse volumique et à un facteur c de passage de J/m³ en Gy [61] :

$$D(x_{\beta}, y_{\beta}, z_{\beta}) = c. E(x_{\beta}, y_{\beta}, z_{\beta}) \times \frac{\rho_{eau}}{\rho(x_{\beta}, y_{\beta}, z_{\beta})}$$
Eq 2.13

Où ρ_{eau} et $\rho(x_{\beta}, y_{\beta}, z_{\beta})$ sont les densités électroniques respectivement de l'eau et du matériau du voxel [61].

En présence d'hétérogénéités, le terme $E(x_{\beta}, y_{\beta}, z_{\beta})$ est remplacé par l'équation Eq 2.7 [61].

2.3.2. L'algorithme Acuros XB

L'algorithme de calcul de dose Acuros XB utilisé également dans notre travail a été développé pour fournir des calculs de dose précis et rapides pour les traitements en radiothérapie avec les photons d'énergies de 4MV à 25MV, avec des tailles de voxel de grille de calcul de 1 à 3 mm. La présence d'hétérogénéités telles que les poumons, l'air, les os et les implants peuvent influencer considérablement la distribution de dose en particulier les champs irréguliers et de petites dimensions. Grace à la résolution de l'équation de transport linéaire de Boltzmann (LBTE), Acuros prend directement en compte les effets de ces hétérogénéités [66].

2.3.2.1. Calcul de dose

La LBTE est la principale équation qui décrit le comportement macroscopique des particules de rayonnement (neutrons, rayons Gamma, électrons, etc) en interaction avec la matière. Pour un domaine volumétrique donné, soumis à une source de rayonnement, la solution de la LBTE donne une description « exacte » de la dose au sein de ce domaine. Cependant, comme elles sont analytiques, les solutions de la LBTE ne peuvent être obtenues que pour quelques problèmes simplifiés, et la LBTE doit être résolue sous une forme ouverte, c'est à dire d'une manière non analytique [66].

Il existe deux approches générales permettant d'obtenir des solutions de formes ouvertes pour la LBTE. La première est la méthode Monte Carlo qui prédit de manière stochastique le transport des particules dans un milieu, et la seconde consiste à résoudre explicitement la LBTE à l'aide de méthodes numériques. Dans les deux méthodes, il existe un compromis entre vitesse et précision, un temps de calcul réduit peut être obtenu si des critères de précision moins stricts sont spécifiés, et vice-versa [66].

2.3.2.2. Les étapes de calcul

Le calcul de dose Acuros XB s'effectue selon les étapes suivantes [66] :

- 1) Création de la carte des matières physiques.
- Transport des composants du modèle de source de faisceaux de photons (source primaire, source secondaire et contamination des électrons) dans l'organisme du patient.
- 3) Transport de la fluence des photons diffusés dans l'organisme du patient.
- 4) Transport de la fluence des électrons dans l'organisme du patient.
- 5) Calcul du mode de dose désiré (dose dans le milieu ou dose dans l'eau).

2.3.2.3. Sources de photons et d'électrons

Les sources externes de photons et d'électrons sont modélisées sous forme de sources ponctuelles anisotropes. A chaque espace de phase de faisceau statique, existe une source ponctuelle distincte parmi les trois sources du modèle de source de faisceaux de photons. Pour la source primaire, l'anisotropie est décrite par l'intermédiaire d'une grille de fluence 2D, dans laquelle la fluence des particules et les spectres d'énergie varient dans l'espace. Pour la source secondaire et la source de contamination électronique, l'anisotropie est décrite par l'intermédiaire d'une grille de fluence 3D, et les spectres d'énergie sont constants dans l'espace. Toutes les sources ponctuelles se trouvent au niveau de la cible du faisceau statique. Acuros XB procède à une discrétisation spatiale, angulaire et énergétique pour résoudre les équations décrivant les trois sources ponctuelles [66].

2.3.2.4. Discrétisation spatiale

Pour la discrétisation spatiale, le domaine du volume de calcul est subdivisé en éléments cartésiens de taille variable, où les propriétés des matières sont supposées constantes au sein de chaque élément de calcul. La grille de calcul dans Acuros XB est variable dans l'espace, la taille des éléments locaux est adaptée pour obtenir une résolution spatiale supérieure à l'intérieur du faisceau, avec une résolution spatiale plus faible dans les régions de faibles doses et de faibles gradients de dose hors de la pénombre [66].

En interne, Acuros XB utilise une résolution plus précise (égale à la résolution de la grille de dose h demandé par l'utilisateur) pour calculer la fluence électronique dans le volume d'intérêt principal et une résolution moins précise (égale à 2xh) en dehors de celui-ci. Le volume d'intérêt principal se définit comme étant le volume dans lequel la dose est estimée à 10% ou plus de la dose maximale pour les champs statiques ou les plans contenant des champs statiques, et à 15% ou plus de la dose la dose maximale pour les champs

d'arcthérapie non courts ou les plans contenant des champs d'arcthérapie non courts. Un champ d'arcthérapie non court décrit un arc de plus de 10°, il dispose plus de vingt directions de calcul [66].

2.3.2.5. Discrétisation de l'énergie

La discrétisation de l'énergie est réalisée à l'aide d'une méthode qui a été développée par un groupe scientifique, qui est utilisée aussi bien pour la dépendance énergétique que pour la diffusion de Boltzmann. Dans l'énergie, la dérivée énergétique de l'opérateur de ralentissement continu est discrétisée à l'aide de la méthode des éléments finis discontinue linéaire développée par un autre groupe scientifique. La bibliothèque de sections efficaces d'Acuros XB comprend 25 groupes d'énergie de photons et 49 groupes d'énergie des électrons, bien que tous les groupes ne soient pas utilisés pour des énergies inférieures à 20MV [66].

2.3.2.6. Discrétisation angulaire

Pour transporter le champ de particules diffusées vers le patient, la méthode des ordonnées discrètes est utilisée pour procéder à une discrétisation angulaire, la méthode consiste à obliger les équations relatives aux sources de photons diffusés et des électrons diffusés à se maintenir à un nombre fixe de directions, $\hat{\Omega}_n$. Ces directions discrètes sont choisies à partir d'un groupe de quadrature angulaire qui permet aussi de calculer les intégrales angulaires pour la génération de la source de diffusion [66].

Des ensembles de quadratures de Tchebychev-Legendre sont utilisés et l'ordre des quadratures s'échelonnent entre N=4 (32 angles discrets) à N=16 (512 angles discrets). L'ordre de la quadrature angulaire varie à la fois en fonction du type et de l'énergie des particules. Des particules de plus haute énergie ont des parcours libres moyens ou des plages pour les électrons plus longs, et de ce fait pour chaque type de particule, l'ordre de quadrature angulaire avec l'énergie de la particule [66].

Un mode spécial se déclenche dans les cas où un volume total de matière de faible densité (densité inférieure à 0,12 g/cm³) supérieur à environ 250 cm³ est présent dans le contour externe. Une fois déclenché, ce mode améliore la précision dans les volumes les plus importants de faible densité [66].

2.3.2.7. Seuil de coupure de transport spatial

Acuros XB utilise un seuil de coupure spatial pour les énergies d'électrons inferieures à 200 keV et pour les énergies de photons inférieures à 1 keV. Lorsqu'une particule passe en dessous de l'énergie du seuil de coupure, elle est supposée déposer la totalité de son énergie dans le voxel de grille de dose correspondant [66].

2.3.2.8. Conversion fluence/dose

Une fois la fluence angulaire des électrons résolue pour tous les groupes d'énergie, la dose D_i dans tous les voxels de la grille de sortie i est obtenue à l'aide de l'équation suivante [66] :

$$D_{i} = \int_{0}^{\infty} dE \int_{4\pi} d\widehat{\Omega} \, \frac{\sigma_{ED}^{e}(\vec{r},E)}{\rho(\vec{r})} \Psi^{e}(\vec{r},E,\widehat{\Omega}) \qquad Eq \, 2.14$$

Où :

 σ^{e}_{ED} Les sections efficaces de dépôt d'énergie macroscopique des électrons en unité de MeV/cm.

 ρ Densité du milieu en g/cm³.

 $\Psi^{e}(\vec{r}, E, \widehat{\Omega})$ Fluence angulaire des électrons en fonction de la position, de l'énergie et la direction.

Lorsque la dose est calculée dans un milieu, σ_{ED}^{e} et ρ sont basées sur les propriétés matérielles du voxel de la grille de sortie i dépendamment des propriétés physiques de ce milieu [66].

2.4. Les systèmes de planification de traitement TPS

Un système de planification de traitement TPS est un outil indispensable pour le traitement en radiothérapie, sa mise sous réseau lui permet d'interagir avec d'autres systèmes importants. Le transfert des données se fait en format DICOM dont le fichier peut contenir à la fois les informations personnelles du patient ainsi que toutes les données liées à son traitement (images CT, technique de traitement, contourage...). Un TPS doit être capable de partager toutes les données liées au patient mais aussi d'importer les images à partir du système d'acquisition [67].

En radiothérapie, les images CT ont une importance capitale, elles servent au médecin pour le contourage mais aussi pour la réalisation de la dosimétrie, Il est donc nécessaire de transférer correctement, les données géométriques et les nombres Hounsfield. Durant le commissioning du TPS, toutes les données (avec leurs intervalles de variation) de la machine doivent être introduites et vérifiées, comme il est aussi primordial de vérifier l'exactitude du transfert des données de traitement entre le TPS et la machine de traitement [67].

Après l'installation d'un TPS, des tests d'acceptance et un commissioning sont requis avant la réalisation des traitements, une partie de ces tests sont effectués par l'utilisateur et une partie par le fournisseur [67].

D'une manière générale, l'assurance qualité d'un TPS comprend [67] :

- La déclaration par le fournisseur des performances du système.
- La démonstration du fournisseur aux utilisateurs des caractéristiques personnalisées par le fournisseur pour une installation spécifique du l'utilisateur.
- Des tests de l'utilisateur relatifs aux caractéristiques personnalisées par l'utilisateur du système installé.
- Des investigations de l'utilisateur pour assurer une compréhension suffisante des performances et des limites du système installé.
- Des tests périodiques pour le contrôle qualité du système installé.

2.5. Rappel théorique des interactions photon/matière

Les interactions des photons avec la matière peuvent être décrites à deux échelles : à l'échelle microscopique c'est-à-dire au niveau de l'atome et à l'échelle macroscopique c'est-à-dire dans un milieu homogène ou hétérogène [61].

Au niveau macroscopique, l'interaction d'un faisceau de photons traversant un matériau (homogène ou hétérogène) se traduit par l'apparition de régions. Elles sont observables sur le rendement en profondeur (Figure 2.6) : la mise en équilibre électronique, l'atténuation et la rétrodiffusion [61].

La région d'équilibre électronique correspond à la zone entre la surface d'entrée du milieu et la profondeur du maximum de la dose. Les photons interagissent avec la matière en mettant en mouvement des électrons secondaires. Ainsi la fluence des photons diminue alors que la fluence des électrons (dépôt de dose) augmente. Il se produit à chaque changement de milieu [61].

La région d'atténuation représente la perte d'énergie due à l'absorption du rayonnement dans le milieu. Elle est définie par le coefficient d'atténuation linaire, dépendant de la masse volumique du matériau et de l'énergie des photons. Ainsi, l'atténuation est d'autant plus grande dans un matériau plus dense et d'autant plus faible que l'énergie est élevée. En outre, dans le cas d'une hétérogénéité (Figure 2.7) de masse volumique élevée (os par exemple), la perte d'énergie due à l'atténuation peut en partie être compensée par du rayonnement diffusé si la taille du faisceau de rayonnement est supérieure à la dimension de l'hétérogénéité [61].

Figure 2. 6 : Rendement en profondeur dans différents matériaux homogènes pour illustrer la mise en équilibre électronique à l'entrée du milieu et l'atténuation. Dans le tableau, les valeurs de la dose maximale et la profondeur à laquelle la dose est réduite de moitié pour un faisceau de photons de 6MV [61].

La région de rétrodiffusion est d'autant plus marquée pour des matériaux de masse volumique élevée, et des énergies élevées. En radiothérapie, la propagation des particules secondaires se fait essentiellement vers l'avant mais une faible proportion peut être diffusée en arrière sur quelques millimètres. Cette dose supplémentaire déposée en arrière provient des photons rétrodiffusés par effet Compton, des électrons secondaires rétrodiffusés mis en mouvement dans le tissu, et des électrons secondaires rétrodiffusés mis en mouvement dans le tissu, et des électrons sont prédominants) [61].

Figure 2. 7 : Rendement en profondeur en milieu homogène (eau) comparé au rendement en profondeur d'un milieu hétérogène (eau_acier_eau) où le pic de rétrodiffusion apparait à l'interface [61].

2.6. Affaissement (*build-down*) et rehaussement (*build-up*)

Si l'on considère un faisceau incident qui traverse une zone de faible densité insérée dans un milieu de densité, par exemple, équivalent à l'eau, on observe d'abord un affaissement dans la zone de faible densité puis un rehaussement dans la zone équivalente à l'eau (Figure 2.8). L'affaissement est dû à l'augmentation du parcours des électrons [62].

Dans un rendement en profondeur, la zone de rehaussement est située juste en dessous de la zone de faible densité et correspond à la zone de déséquilibre électronique où la dose absorbée augmente jusqu'à atteindre un maximum local. Cette augmentation de la dose est due à la diminution du parcours des électrons qui sortent de la zone de faible densité [62].

Figure 2.8 : Perte d'équilibre électronique à la sortie d'une zone de faible densité puis remise en équilibre électronique [62].

2.7. Mouvement et acquisition tomodensitométrique

La prise en compte des hétérogénéités durant le calcul dans un TPS passe par l'introduction d'une courbe de calibration reliant le nombre Hounsfield à la densité électronique ou la densité massique.

Pour les énergies et densités utilisées en radiothérapie, la correspondance est quasi linéaire entre les densités physiques et électroniques. En utilisant un fantôme de calibration CT ayant des densités physiques connues, il est possible d'effectuer une courbe de calibration. Au niveau de l'image, ces valeurs sont encodées en nombre Hounsfield (ou nombre CT) [48]:

$$CT = 1000 \cdot \frac{\mu - \mu_{H_2O}}{\mu_{H_2O}}$$
 Eq 2.15

Où μ représente les coefficients d'atténuation empiriques trouvés par le tomodensitomètre et μ_{H_2O} celui de l'eau. Notons qu'en pratique, le nombre CT est encodé en ton de gris sur 16 bits en additionnant 1000 ou 1024,5 [48].

Le mouvement anatomique lors de l'acquisition des images peut occasionner des artéfacts, ce qui complique la délinéation des zones cibles et à risque. Le mouvement peut apparaitre comme un flou (*blur*), mais aussi comme un bris de continuité (images axiles manquantes ou déplacées) selon le moment du cycle respiratoire auquel l'image a été acquise [68].

L'acquisition des coupes CT subséquentes, en mode axial ou hélicoïdal, rend donc la tomodensitométrie standard sujette aux artefacts de mouvement. Le temps d'acquisition d'une coupe (< 1 s) étant beaucoup plus court que la durée typique d'un cycle respiratoire (~ 4-5 s), une coupe alors est acquise durant une phase du cycle respiratoire qui n'est pas nécessairement la même pour la coupe voisine. Il en résulte que chaque coupe est affectée à un moment quelconque du cycle respiratoire. Bien que chaque coupe puisse paraître libre d'artéfact, la mise en commun des différentes coupes pour visualiser l'anatomie fait apparaître les erreurs et discontinuités dans la forme et le volume des différentes structures anatomiques. De plus, la position des structures thoraciques sur un CT en respiration libre ne peut être considérée comme une position à mi-chemin entre l'inspiration et l'expiration [68].

Il existe quelques protocoles ou méthodes d'acquisition d'images CT pour contourner le problème des artéfacts de mouvement, parmi les plus courants on trouve [68] :

- Le CT lent (*slow CT*) dont le principe consiste à allonger le temps d'acquisition ou faire la moyenne de plusieurs examens CT.
- Le CT synchronisé (*gated CT*) qui utilise un système de suivi de la respiration qui permet une acquisition seulement lors de la phase désirée du cycle respiratoire.
- Le CT en respiration bloquée (*breath-hold CT*), où l'acquisition est réalisée lorsque le patient maintient sa respiration en d'inspiration maximale.
- Le CT en quatre dimensions (*4DCT*) qui permet la réalisation d'une représentation de chaque phase du cycle respiratoire par des images CT en suivant la respiration du patient, il possible donc de savoir à quelle phase chaque image a été acquise.

2.8. Conséquences dosimétriques

Il est possible d'intégrer le mouvement dû à la respiration au moment du traitement. Dans un premier temps, il s'agit de déterminer si l'ampleur des mouvements induits par la respiration est suffisamment importante pour justifier leur prise en considération dans le plan de traitement. L'*American Association of Physicists in Medicine* (AAPM) ainsi que Weiss et al recommandent une gestion de la respiration lorsque le déplacement de la tumeur dépasse 0,5 cm. La prise en compte du mouvement respiratoire au niveau du TPS peut simplement être l'adaptation des contours et/ou l'ajout de marges [68].

Pour réaliser un traitement par radiothérapie externe, les TPS permettent de prédire la répartition de la dose dans le patient sur les images CT grâce à des algorithmes de calcul de plus en plus précis. L'incertitude recherchée sur le calcul, pour une précision acceptable sur le traitement de 5%, est de 3% [61].

Une méthode simple qui combine les déviations spatiale et dosimétrique consiste à calculer ces dernières et de sélectionner la plus petite valeur relative aux recommandations données dans le tableau 2.1. Différentes régions (Figure 2.9) sont définies selon l'amplitude du gradient de dose [67].

Figure 2.9 : Définition des différentes régions d'un faisceau selon l'amplitude du gradient de dose pour lesquelles différents critères d'acceptance de calcul de dose δ sont valides. Le rendement en profondeur ; la dose (*Dose*) en fonction de la profondeur (*Depth*) et le profile de dose ; la dose (*Dose*) en fonction de la position (*Position*) indiquent la dose mesurée (*Measured*) en pointillés et la dose calculée du TPS (*Calculated*) en trait plein [67].

Il existe par ailleurs le concept de l'indice gamma (Figure 2.10) qui combine les deux déviations, il a été développé en premier par Low et al en 1998 puis affiné par différents groupes (Depuydt et al en 2002, Low et Dempsey en 2003 et Bakail et al en 2003) pour comparer les distributions de dose calculées par le TPS et celles mesurées. Le concept peut être considéré comme étant une comparaison des points en quatre dimensions dose-vecteur position. Les deux points à comparer sont (r_c , D_c) et (r_m , D_m), où r représente les coordonnées tridimensionnelles et D la coordonnée de la dose absorbée [61, 67].

Figure 2.10 : Espace vectoriel distance-dose représentant la dose mesurée D_m au point r_m et la dose calculée D_c au point r_c , l'axe des abscisses représente la position spatiale 3D (spatial position, r) et l'axe des ordonnées la dose absorbée (absorbed dose, D) [67].

Pour tous les points (r_c , D_c) la déviation entre la mesure et le calcul de la dose d(i) doit être déterminée ainsi que pour la distance r(i), l'indice gamma est alors donné par [67] :

$$\gamma(i) = \sqrt{\left(\frac{d(i)}{\Delta d}\right)^2 + \left(\frac{r(i)}{\Delta r}\right)^2}$$
 Eq 2.16

Avec :

 $\begin{aligned} d(i) &= D_m(i) - D_c \\ r(i) &= r_m(i) - r_c \\ \Delta d &= \Delta r \text{ sont appelés les critères d'acceptabilité respectivement en dose} \\ (en\%) et en distance (en mm) [61]. \end{aligned}$

Si $\gamma < 1$ cela signifie que les critères de dose et de distance sont respectés, dans le cas contraire $\gamma > 1$ aucun des critères n'est satisfait [61].

T 11 11 /			. /0				
de dose							
$\begin{array}{ccc} \delta_2^* & \mbox{Equilibre électronique} \\ & \mbox{et pénombre :} & \mbox{O} \\ & \mbox{Dose élevée et} \\ & \mbox{fort gradient de dose} \end{array}$	2 mm Du 10 %	3 mm Ou 15 %	3 mm Ou 15 %				
δ_3 Hors axe : Dose élevée et faible gradient de dose	3 %	3 %	4 %				
 δ₄** En dehors du champ : Faible dose et faible gradient de dose 	30 %	40 %	50 %				
RW50Distance***radiologique :Dose élevée et fortgradient de dose	2 mm Ou 1 %	2 mm Ou 1 %	2 mm Ou 1 %				
δ50-90Bords du champ :Dose élevée et fort gradient de dose	2 mm	3 mm	3 mm				
 *: une ou deux des valeurs de tolérance doivent être utilisées. **: La normalisation est faite soit selon la dose locale ou par rapport à un point sur l'axe du faisceau ou hors axe. ***: La taille du champ est supérieure à 20x20 cm². ****: Combinaison d'au moins de deux géométries complexes. RW50: Largeur du profile définie à 50% du maximum. àsom: Distance entre 50% et 90% du maximum du profile 							

Tableau 2.1 : Limites des tolérances des déviations en pourcentage et en distance (selon Venseelaar et al, 2001) [67].

2.9. TPS Eclipse de Varian

Le TPS Eclipse intègre plusieurs algorithmes de calcul de dose notamment le AAA et Acuros XB, les données d'images scanner sont traitées différemment dans les différents algorithmes. Selon le type de plan et l'algorithme utilisé, les valeurs de nombre CT sont converties en densités électroniques (cas du AAA) ou densités massiques (cas de Acuros XB) ou en pouvoirs d'arrêt pour les protons, la conversion est réalisée selon les courbes d'étalonnage configurées dans l'espace ; configuration faisceau [66]. La précision des algorithmes de calcul de dose est évaluée en comparant les données mesurées et les résultats de calcul obtenus dans la même géométrie du champ et pour les mêmes valeurs UM. La précision est quantifiée en termes d'indice gamma [66].

Le modèle de source des faisceaux de photons utilisé par le AAA et Acuros XB est configuré dans l'espace ; configuration faisceau. La résolution de la grille de calcul de dose peut être sélectionnée dans une plage de valeurs de 1 à 5 mm pour le AAA et de 1 à 3 mm pour Acuros XB lors de la planification de traitement dans l'espace ; *Eclipse External Beam Planning* [66].

Le calcul de dose à l'aide du AAA et Acuros prend entièrement en charge les modificateurs de faisceaux notamment les caches, les filtres fixes, les filtres dynamiques, les compensateurs et les MLC statiques et dynamiques, mais aussi les techniques d'IMRT et de VMAT. Ils traitent l'ensemble des pixels situés à l'extérieur du corps comme étant de l'air, sauf pour l'ajout d'un bolus ou les accessoires porte-patient [66].

Le calcul d'UM s'appuie sur les mesures de facteur d'ouverture du collimateur réalisées pour différentes tailles de champ dans une géométrie de référence donnée et sur les calculs d'étalonnages effectués pour la taille de champ de référence. Les UM finales sont calculées à partir de la dose prescrite, de la normalisation du plan, de la pondération des champs et d'un facteur de normalisation déterminé par l'algorithme de calcul de dose [66].

Concernant la précision du AAA dans Eclipse pour une dosimétrie de poumon, l'algorithme a tendance à sous-estimer la dose dans le poumon et à la surestimer dans le tissu équivalent-eau après le poumon pour les énergies de 4 à 6 MV et les tailles de champs supérieures ou égales à $5x5 \text{ cm}^2$. Pour les énergies de 6 MV, les erreurs sont inférieures à 3% de la dose maximale du champ sur l'axe central. Cependant, l'erreur de dose locale peut être beaucoup plus importante si cette dernière est faible par rapport à la dose maximale. Pour les énergies de 10 à 20MV et les tailles de champ inférieures ou égales à $5x5 \text{ cm}^2$, le AAA a tendance à surestimer la dose dans le poumon. Les erreurs sont plus importantes lorsque la taille du champ et la densité baissent. Pour l'énergie 18MV et la taille de champ $3x3 \text{ cm}^2$, l'erreur maximale dans le poumon avec une densité de $1,85 \text{ g/cm}^3$ est d'environ 7% de la valeur de la dose maximale [66].

Par rapport à la précision du AAA et d'Acuros XB pour les champs avec MLC statiques, ils ont tendance, pour l'énergie 18MV, à sous-estimer la dose à des profondeurs superficielles pour certaines formes de MLC, l'erreur peut atteindre 3% de la dose locale pour une profondeur de 3 cm. Egalement pour les champs avec MLC et pour l'énergie du 6MV, les deux algorithmes peuvent sous-estimer la dose à des profondeurs importantes (supérieures ou égales à 20 cm) pour certaines formes de MLC statiques, les erreurs sont plus prononcées pour des formes allongées de MLC (en H par exemple), les erreurs peuvent atteindre environ 4% de la dose locale [66].

2.10. Conclusion

Quelque soit la méthode de calcul de la distribution de la dose (TPS ou Monte-Carlo) dans un volume quelconque, le but est de reproduire le plus fidèlement possible le résultat des interactions afin d'obtenir des valeurs de doses absorbées les plus précises [61].

Les méthodes Monte-Carlo sont réputées précises notamment des les hétérogénéités. Le code BEAMnrc/EGSnrc est devenu au fil des années une référence en radiothérapie grâce à la modélisation complète de la tête de l'accélérateur (de la source aux électrons au MLC) puis à l'amélioration de la modélisation du transport des électrons au niveau des interfaces. La création du modèle de l'accélérateur linéaire demande d'ajuster plusieurs paramètres (rayon, dispersion et énergie moyenne) pour correspondre aux mesures selon les critères de l'indice gamma. Cependant, les méthodes Monte-Carlo demandent des temps de calcul très longs (plusieurs jours) non adaptés à une utilisation clinique, c'est pourquoi les TPS sont au cœur de la radiothérapie car ils permettent un calcul de dose suffisamment précis (inférieur à 5%) avec une durée acceptable (inférieure à 30 minutes) en admettons des approximations [61].

Par ailleurs, la mesure reste la donnée de référence, il convient alors de réaliser des études expérimentales sur les machines de traitement afin d'évaluer la précision du calcul du TPS et de valider son utilisation en clinique, en outre des tests de calcul sur TPS visant à étudier le comportement des algorithmes de calcul de dose en variant les situations et les configurations sont nécessaires. Notre travail expérimental vise à répondre à ces objectifs (chapitre III et IV).

La présence d'hétérogénéités de faibles densités dans un traitement de radiothérapie externe présente une difficulté majeure au niveau de la dosimétrie pour évaluer correctement la distribution de dose. La prise en compte de ces variations de densités reste tributaire de l'algorithme de calcul de dose mais aussi de la configuration et de la validation du TPS par le biais de mesures réelles.

CHAPITRE III

ÉVALUATION DU A.A.A EN PRÉSENCE D'HÉTÉROGÉNÉITÉS

3.1. Introduction

Dans le but d'effectuer une étude dosimétrique impliquant la précision d'un algorithme de calcul de dose dans la région thoracique, nous avons évalué la réponse du AAA dans des milieux hétérogènes, et ceci en comparant des mesures expérimentales aux calculs du TPS. A cet effet des fantômes hétérogènes simulant grossièrement la cage thoracique ont été confectionnés.

L'étude consiste à mesurer la dose après la traversée du faisceau, de photons de haute énergie, d'un milieu équivalent poumon de différentes épaisseurs. Partant du principe que le AAA a tendance à sur estimer la dose dans ce cas de figure, et sachant que des études précédentes ont été menées dans ce sens, nous avons tenté de pousser nos investigations plus loin et ceci en mesurant la dose dans un volume de petites dimensions situé dans le milieu équivalent poumon, le choix de cet arrangement géométrique est prémédité car il pourrait simuler grossièrement une tumeur pulmonaire de faibles dimensions.

Deux parties expérimentales ont été réalisées avec des accélérateurs linéaires pour des énergies de photons dans deux centres de radiothérapies différents.

Afin de rendre plus aisé la lecture de ce chapitre, certains tableaux et courbes ont été classés dans l'appendice à la fin de cet ouvrage.

3.2. Mesures expérimentales dans des milieux hétérogènes pour des géométries de faisceaux simples

Cette partie expérimentale a été réalisée au Centre Anti Cancer de Blida au service radiothérapie-oncologie, le service est équipé d'un accélérateur linéaire de la société VARIAN de type 2100C doté de deux énergies photons 6 MV et 18 MV, d'un collimateur MLC de 80 lames, d'un débit de dose maximal de 400 UM/min et d'une ouverture maximale des mâchoires X et Y de 40x40 cm² (Figure 3.1).

Figure 3.1 : Accélérateur linéaire 2100C à gauche et pupitre de commande à droite du Centre Anti Cancer de Blida.

Afin de procéder à une comparaison entre des données mesurées et calculées, il est nécessaire de préparer les détecteurs de mesures par le biais d'une calibration par rapport à un détecteur de référence. L'objectif étant de réaliser des mesures dans des milieux hétérogènes, la calibration a été réalisée dans des fantômes hétérogènes à différentes densités.

3.2.1. Mise en œuvre d'un protocole de calibration de diodes en milieux hétérogènes

Les diodes à semi-conducteur QEDTM de Sun Nuclear, dédiées à la dosimétrie in vivo, ont été utilisées comme détecteurs de mesure. Les détecteurs consistent en une série de cinq modèles de diodes utilisés pour les différentes gammes d'énergies en modes photon et électron, ils possèdent les mêmes propriétés physiques à savoir qu'ils sont de type N dopés avec un matériau en platine et la jonction PN est fabriquée en silicium, ils se présentent comme étant des détecteurs plats avec une forme circulaire et la diode est localisée au centre du cercle [69].

Un build up avec différentes épaisseurs et/ou différents matériaux, est monté au dessus de chaque diode pour prendre en considération chaque type de diode selon l'énergie utilisée (Figure 3.2). Du faite que ce build up a une forme hémisphérique, la réponse angulaire obtenue est conique et symétrique. La dégradation de la lecture vis-à-vis du cumul de dose est de 1 %/kGy à 10 MeV pour un faisceau d'électron, et < 0,5 %/kGy pour un faisceau de photon de 6MV. Pour une distance source-peau (DSP) variant de 80 cm à 130 cm la variation de la lecture est estimée à \pm 1,5 % pour les faisceaux de photons de 6 MV et 18 MV. La variation de la lecture en fonction de la température est de l'ordre de 0,6 %/°C [69].

Le facteur d'étalonnage F_{cal} est défini comme étant le rapport de la dose mesurée (D_W) par le détecteur de référence à la lecture (R) de la diode déposée à la surface du fantôme de calibration à une distance de 100 cm [69] :

$$F_{cal} = \frac{D_{W}(100 + d_{max})}{R(100)}$$
 Eq 3.1

Ce facteur est mesuré à la profondeur d_{max} du maximum de l'énergie utilisée. Il doit être vérifié périodiquement pour un suivi de la variation de la réponse de la diode par rapport au cumule de dose [69]. Il est corrigé par d'autres facteurs qui peuvent influencer les résultats, notamment la distance source peau (DSP), la taille du champ, le débit de dose et l'obliquité du faisceau [70-74].

Ces facteurs peuvent influencer les résultats et induire des erreurs s'ils sont ignorés dépendamment des conditions de mesure, ainsi ils doivent être pris en considération si les conditions de mesures diffèrent de ceux des conditions géométriques de la calibration [74]. Pour les deux énergies utilisées 6 MV et 18 MV, ces facteurs ont été déterminés [72].

Figure 3.2 : Schéma d'une diode QEDTM de Sun Nuclear, les valeurs des distances h et D valent respectivement pour la gamme d'énergie de 6-12 MV 2 mm et 7,9 mm et 3,4 mm 7,6 mm pour la gamme d'énergie 15-25 MV. Le matériau de build-up pour les deux gammes d'énergie est en cuivre et mesure (en équivalent eau) respectivement pour les gammes d'énergie 6-12 MV et 15-25 MV 1,85 cm et 3,04 cm [69].

Dans le cadre de ce travail, cinq diodes relatives à une utilisation dans la gamme d'énergie 6-12 MV (jaune), et cinq autres pour la gamme d'énergie 15-25 MV (rouge) ont été utilisées. Ces diodes ont été étiquetées selon le bouton d'énergie utilisé et le canal associé.

Habituellement, l'utilisation des détecteurs de dosimétrie in vivo se restreint à la profondeur du maximum de l'énergie utilisée par le biais d'un seul facteur d'étalonnage

déterminé dans un milieu homogène. La particularité de notre travail réside en la détermination de courbes de calibration dans un milieu hétérogène impliquant plusieurs points de mesure en profondeur.

3.2.1.1. Détermination de profils de dose dans des milieux hétérogènes

La préparation donc des détecteurs de mesures (détermination du facteur d'étalonnage) nécessite d'effectuer d'abord des mesures en termes de doses absolues par un détecteur de référence. A cet effet, une chambre d'ionisation de volume 0,6 cm³ de type Farmer NE2571, de Nuclear Entreprise, caractérisée par une tension de polarisation de - 250 V et d'un facteur d'étalonnage N de -4,542 $10^7 \pm 1,1\%$ Gy/C a été utilisée. Les lectures ont été relevées par le biais d'un électromètre de type UNIDOS de PTW.

Pour les deux énergies utilisées 6 MV et 18 MV, trois profils de dose dans le sens de la profondeur ont été acquis pour un faisceau de dimensions 10X10 cm². Le fantôme de calibration étant placé à une DSP de 100 cm, ce dernier est composé de plaques de PMMA (polyméthacrylate de méthyle) de densité 1,19 g/cm³ et de plaques de polystyrène expansé, trois densités ont été utilisées ; 0,15 g/cm³, 0,20 g/cm³ et 0,25 g/cm³.

Afin de simuler grossièrement la cage thoracique des plaques de PMMA dont l'épaisseur totale est de 3 cm, ont été disposées dans les parties supérieure et inférieure du dispositif, le reste étant des plaques de polystyrène expansé. Quant à la mesure de la dose, une plaque de PMMA dédiée à l'emplacement de la chambre Farmer a été placée à différentes profondeurs pour obtenir un profil de dose (Figure 3.3).

Figure 3.3 : Schéma du fantôme de calibration. A gauche, mesures avec la diode et à droite, mesures avec la chambre d'ionisation.

Pour chaque profondeur, cinq lectures (L) ont été prises et moyennées (L_{moy}). La dose D_w (Figure 3.4) est obtenue par le biais du facteur d'étalonnage de la chambre d'ionisation N,

elle est également corrigée par des facteurs liés à la température et pression (K_{TP}), à la polarisation (K_{POL}) et à la recombinaison (K_S). En outre, il faut prendre en considération la qualité d'énergie de mesure qui est différente de celle de la calibration de la chambre d'ionisation, K_Q étant un facteur tabulé en fonction de la qualité d'énergie et le type de chambre d'ionisation intervient dans cette correction [75].

$$D_{W} = L_{moy}. N. K_{TP}. K_{Pol}. K_{S}. K_{Q}$$
 Eq 3.2

Où [75]:
$$K_{TP} = \frac{(273,2+T)P_0}{(273,2+T_0)P}$$
 Eq 3.3

- \circ P₀ = 1013,25 hPa
- $\circ T_0 = 20^{\circ}C.$
- P et T respectivement la pression et la température relevées.

$$K_{pol} = \frac{|M_+| + |M_-|}{2M}$$
 Eq 3.4

- \circ M₊ la lecture de la chambre pour une tension de polarisation positive (+250V).
- M_la lecture de la chambre pour une tension de polarisation négative (-250V).
- M la lecture de la chambre correspondante à sa tension de polarisation (-250V).

$$K_{S} = a_{0} + a_{1} \left(\frac{M_{1}}{M_{2}}\right) + a_{2} \left(\frac{M_{1}}{M_{2}}\right)^{2}$$
 Eq 3.5

- \circ a₀, a₁ et a₂ des constantes : a₀=2,337 / a₁=-3,636 / a₂=2,299.
- \circ M₁ la lecture de la chambre correspondante à sa tension de polarisation.
- M₂ la lecture de la chambre correspondante à sa valeur de tension de polarisation réduite de moitié. L'électromètre ne permet pas de programmer une tension de -125V, une tension de 100V a été utilisée.

Les profondeurs hétérogènes Z_H ont été converties en profondeurs équivalentes à l'eau ; Z_{eau} égale à la somme de chaque épaisseur Z_{Hi} du milieu i multipliée par la densité du milieu ρ_i , au total six profils de dose ont été tracés.

$$Z_{eau} = \sum Z_{Hi} \rho_i$$
 Eq 3.6

3.2.1.2. Détermination des courbes d'étalonnage

Le fantôme de calibration a été repris, pour chaque densité, pour des mesures avec les diodes placées à la surface et dans les mêmes conditions que pour les mesures de dose absolues. La plaque de la chambre d'ionisation à été remplacée par une plaque de PMMA pleine, pour chaque mesure elle est déplacée dans le sens parallèle du faisceau. Afin de distinguer les différentes diodes nous allons appeler D_{1-6} , D_{2-6} , D_{3-6} , D_{4-6} , D_{5-6} les cinq diodes utilisées pour l'énergie du 6MV et D_{1-18} , D_{2-18} , D_{3-18} , D_{4-18} , D_{5-18} les cinq diodes utilisées pour l'énergie du 18MV.

La lecture de la diode R correspond à une dose au maximum de l'énergie utilisée, les rendements en profondeurs (PDD) des deux énergies ont été utilisés pour avoir les lectures des diodes à différentes profondeurs R_Z . Et ainsi le facteur d'étalonnage F_{cal} a été obtenu à différentes profondeurs (Figure 3.5 et Figure 3.6).

$$R_Z = R \times PDD$$
 Eq 3.7

$$F_{cal} = D_w / R_Z$$
 Eq 3.8

Figure 3.4 : Doses absolues en fonction des profondeurs hétérogènes.

Figure 3.5 : Facteurs de calibration des diodes pour l'énergie du 6MV.

6,5

Zeau(cm)

8,5

9

9,5

8

7,5

7

24,000

22,000

4,5

5

5,5

6

Figure 3.6 : Facteurs de calibration des diodes pour l'énergie du 18MV.

3.2.2. Evaluation du AAA dans des fantômes hétérogènes

Des fantômes hétérogènes à deux densités (PMMA et polystyrène expansé) de géométrie parallélépipédique ont été fabriqués (Figure 3.7). Un bloc de polystyrène expansé d'épaisseur 16 cm est placé entre deux couches de PMMA d'épaisseur 3 cm. Des inserts de forme cylindrique en PMMA de diamètre 2 cm et longueur 3 cm, ayant pour objectif de simuler des tumeurs, ont été introduits au niveau du bloc à des profondeurs Z_P de 4 cm, 8 cm et 12 cm ayant des profondeurs hétérogènes totales Z_F de 7 cm, 11 cm et 15 cm. Les trois densités de polystyrènes ont été utilisées.

Figure 3.7 : Fantôme d'évaluation du AAA à gauche, et sa confection à droite.

3.2.2.1. Planification sur TPS Eclipse et irradiation des fantômes hétérogènes

Les fantômes ont été scannés avec un scanner dédié à la radiothérapie de marque Philips et de type Big Bore. Il est relié au système de planification de traitement via un système réseau. Il comprend des fonctionnalités conçues pour automatiser les taches cliniques, simplifier le post-traitement et la reconstruction des images 3D, parmi ses spécificités on citera :

- Une ouverture de 85cm.
- Une connexion bidirectionnelle entre le statif et la console.
- Un générateur caractérisé par une puissance de 60kW, des tensions de 90, 120 et 140kV et une intensité de courant pouvant varier de 20 à 500mA.
- Une table en fibre de carbone.
- Un système de détection en matériel semi-conducteur.
- Disponibilité de plusieurs applications au niveau de la station de travail.
- Un temps de rotation de 0,44s.

- Des modes d'acquisition multi-coupes 16x0,75 mm, 16x1,5 mm, 8x3 mm, 4x4,5 mm, et 2x0,6mm.
- Des lasers mobiles pour le repérage des portes d'entrées des faisceaux sur les patients.

Les séries de coupes ont été reprises au TPS Eclipse (Figure 3.8) avec la version 13.6. Un calcul de dose au centre des inserts a été effectué avec la version 13.6 du AAA et pour un champ de $10X10cm^2$. Pour chaque énergie et pour chaque fantôme deux plans ont été créés, l'un à DSP 100cm (Plan 1) et l'autre à DSP 100cm-Z_F (Plan 2). Les plans calculés ont été irradiés sous l'accélérateur, la dose au centre des inserts D_M a été mesurée à partir des lectures des diodes R_M déposées à la surface des fantômes et corrigées par le PDD. Les profondeurs hétérogènes de mesure ont été converties en épaisseurs équivalent eau Z_M. Le facteur d'étalonnage F_{cal} pour chaque profondeur de mesure est tiré à partir des courbes d'étalonnage par interpolation. Pour le deuxième plan les lectures ont été également corrigées par les facteurs correctifs F_{DSP} liés à la DSP. Les doses calculée D_C et mesurée D_M ont été comparées en calculant la déviation δ .

$$Z_{M} = (4 \times 1,19) + (Z_{P} \times \rho)$$
 Eq 3.7

$$D_{M} = R_{M} \times PDD \times F_{cal} \times F_{DSP}$$
 Eq 3.8

 $\delta = (\frac{D_{\rm C} - D_{\rm M}}{D_{\rm M}}) \times 100$

Figure 3.8 : Planification des plans sur Eclipse à gauche et mesures sur fantômes à droite.

Eq 3.9

Pour les trois profondeurs hétérogènes et l'ensemble des mesures, quelques données statistiques ont été calculées, notamment la moyenne, l'écarte moyen, l'écart type et l'intervalle de confiance pour les indices de confiance de 95 %, 99 % et 99,9 %. Des diagrammes statistiques ont été tracés selon l'énergie, la densité du polystyrène expansé et la profondeur hétérogène (Figure 3.9, Figure 3.10 et Figure 3.11). Une représentation de probabilité (Loi Normale) pour l'ensemble des mesures a été déterminée (Figure 3.12). Une représentation en pourcentage de l'ensemble des déviations est indiquée (Figure 3.13).

 \circ Fantôme Z_F = 7 cm, les indices 1 et 2 sont relatifs aux plan 1 et plan 2 respectivement.

		F _{cal}	R _{M1}	D _{M1}	δ_1	R _{M2}	Enge	D _{M2}	δ_2
		(mGy/nC)	(nC)	(Gy)	(%)	(nC)	1 DSP	(Gy)	(%)
PDD = 0,85	D ₁₋₆	28,38	42,40	1,02	-2,00	41,20	1,00	0,99	1,16
$Z_M = 5,21 \text{ cm}$	D ₂₋₆	27,20	44,40	1,02	-2,35	43,10	1,00	0,99	0,69
$D_{C1}=1$ Gy	D ₃₋₆	28,55	42,30	1,02	-2,35	41,20	1,00	0,99	0,56
$D_{C2}=1$ Gy	D ₄₋₆	28,40	42,30	1,02	-1,84	41,20	1,00	0,98	1,60
$\rho = 0,15 \text{g/cm}^3$	D ₅₋₆	29,00	41,30	1,02	-1,54	40,20	1,00	0,99	1,36
PDD = 0,96	D ₁₋₁₈	23,70	46,10	1,04	-4,16	46,70	0,99	1,05	-4,82
Z _M = 5,21 cm	D ₂₋₁₈	23,60	46,20	1,04	-3,96	46,90	0,99	1,05	-4,82
$D_{C1}=1$ Gy	D ₃₋₁₈	24,50	44,00	1,03	-2,86	45,20	0,99	1,05	-4,87
$D_{C2}=1$ Gy	D ₄₋₁₈	23,65	45,80	1,03	-3,33	46,60	0,99	1,05	-4,32
$\rho = 0,15 \text{g/cm}^3$	D ₅₋₁₈	23,50	45,20	1,01	-1,42	46,10	0,99	1,03	-2,76
PDD = 0,84	D ₁₋₆	29,50	40,70	1,01	-1,08	40,90	1,00	1,01	-1,27
$Z_M = 5,36 \text{ cm}$	D ₂₋₆	28,00	42,40	1,00	0,04	42,60	1,00	1,00	-0,33
$D_{C1}=1$ Gy	D ₃₋₆	29,50	40,90	1,02	-1,57	40,80	1,00	1,01	-1,03
$D_{C2}=1$ Gy	D4-6	29,40	40,70	1,01	-0,75	40,80	1,00	1,00	-0,19
$\rho = 0,20 \text{g/cm}^3$	D5-6	30,00	39,70	1,00	-0,28	39,80	1,00	1,00	-0,33
PDD = 0,95	D ₁₋₁₈	24,70	44,90	1,06	-5,28	45,50	0,99	1,06	-5,97
Z_{M} = 5,36 cm	D ₂₋₁₈	24,60	45,20	1,06	-5,53	46,10	0,99	1,07	-6,82
$D_{C1}=1$ Gy	D ₃₋₁₈	25,40	43,80	1,06	-5,58	44,00	0,99	1,06	-5,44
$D_{C2}=1$ Gy	D ₄₋₁₈	24,50	44,80	1,04	-4,30	45,40	0,99	1,05	-4,90
$\rho = 0,20 \text{g/cm}^3$	D ₅₋₁₈	25,40	44,20	1,07	-6,44	44,80	0,99	1,08	-7,13
PDD = 0,84	D ₁₋₆	29,60	83,40	2,07	-3,21	85,30	1,00	2,11	-5,08
Z _M = 5,51 cm	D ₂₋₆	28,20	90,90	2,15	-6,78	89,60	1,00	2,11	-5,34
$D_{C1} = 2 \; Gy$	D ₃₋₆	29,70	83,40	2,07	-3,53	85,30	1,00	2,11	-5,40
$D_{C2}=2$ Gy	D ₄₋₆	29,60	83,80	2,08	-3,67	85,50	1,00	2,10	-4,82
$\rho = 0,25 \text{g/cm}^3$	D ₅₋₆	30,40	81,30	2,07	-3,32	83,40	1,00	2,12	-5,56
PDD = 0, 94	D ₁₋₁₈	25,00	90,60	2,13	-6,06	92,40	0,99	2,16	-7,34
Z _M = 5,51 cm	D ₂₋₁₈	24,82	90,60	2,11	-5,38	92,40	0,99	2,14	-6,67
$D_{C1} = 2 \; Gy$	D ₃₋₁₈	25,60	88,00	2,12	-5,55	88,20	0,99	2,11	-5,20
$D_{C2}=2 Gy$	D ₄₋₁₈	24,80	91,20	2,13	-5,93	92,10	0,99	2,13	-6,19
$\rho = 0,25 \text{g/cm}^3$	D ₅₋₁₈	25,60	90,00	2,17	-7,65	91,40	0,99	2,19	-8,52

Tableau 3.1 : Résultats obtenus pour le fantôme Z_{F} = 7 cm.

 \circ Fantôme Z_F = 11 cm, les indices 1 et 2 sont relatifs aux plan 1 et plan 2 respectivement.

Fcal R_{M1} D_{M1} δ_1 R_{M2} D_{M2} δ_2 F_{DSP} (mGy/nC) (nC)(Gy) (nC)(Gy) (%) (%) D_{1-6} PDD = 0.8344,30 0,96 2,25 26,20 4,06 45,40 0,99 0,98 $Z_{M} = 5,81 \text{ cm}$ D₂₋₆ 46,00 0,95 5,02 47,40 25,00 1,00 0,98 2,12 $D_{C1}=1$ Gy D₃₋₆ 26,32 44,30 0,97 3,58 45,30 1,00 0,98 1,70 $D_{C2}=1$ Gy D₄₋₆ 26,20 44,60 0,97 3,36 45,40 0,99 0,97 2,66 $\rho = 0,15 \text{g/cm}^3$ D₅₋₆ 26,74 43,20 0.96 4,55 44,20 0.99 0,97 2,60 D₁₋₁₈ PDD = 0.9349,20 51,20 20,75 0,95 4,87 0,99 0,98 2,00 $Z_{M} = 5,81 \text{ cm}$ D₂₋₁₈ 20,64 48,90 0,94 6,08 50,90 0,99 0,97 2,84 $D_{C1}=1$ Gy D₃₋₁₈ 21,40 47,40 0,95 5,55 49,20 0,99 0,97 2,72 $D_{C2}=1$ Gy D₄₋₁₈ 20,70 48,80 0,94 5,99 50.80 0,99 0.97 2,95 $\rho = 0,15 \text{g/cm}^3$ D₅₋₁₈ 21,40 48,10 0,96 4,01 50,00 0,99 0,99 0,97 D₁₋₆ 0,99 PDD = 0.8127,30 90,30 2,00 - 0,09 92,90 2,04 -2,20D₂₋₆ $Z_{M} = 6,16 \text{ cm}$ 93,90 1,98 0,89 -2,24 26,00 97,10 1,00 2,05 $D_{C1}=2 Gy$ D_{3-6} 27,40 90,70 2,02 -0,89 92,90 1,00 -2,85 2,06 $D_{C2}=2$ Gy D4-6 27,21 91,40 2,02 -0,96 93,10 0,99 2,03 -1,69 $\rho = 0,20 \text{g/cm}^3$ D5-6 1,99 0,99 27,82 88,10 0,49 91,10 2,05 -2,42 D_{1-18} PDD = 0.9299,80 2,01 -0,28 0,99 -2,96 21,75 103,80 2,06 D₂₋₁₈ $Z_{M} = 6,16 \text{ cm}$ 21,67 100,10 2,00 -0,22 104,00 0.99 2,06 -3,08 $D_{C1}=2 Gy$ D₃₋₁₈ 22,40 96,70 2,00 -0,07 100,80 0,99 -3,17 2,07 $D_{C2}=2$ Gy D₄₋₁₈ 21,70 99,40 1,99 103,60 0,99 0,35 2,05 -2,65 $\rho = 0,20 \text{g/cm}^3$ D₅₋₁₈ 22,40 98,30 2,03 0,99 -4,78 -1,70 102,40 2,10 D₁₋₆ PDD = 0.8089,50 1,98 1,02 0,99 -1,35 27,65 92,3 2,03 D₂₋₆ $Z_{M} = 6,51 \text{ cm}$ 94,10 1,99 1,00 26,42 0,56 96,4 2,03 -1,64 $D_{C1}=2$ Gy D₃₋₆ 27,80 89,80 2,00 0,14 91,9 1,00 2,04 -1,75 $D_{C2}=2$ Gy D₄₋₆ 27,65 89,30 1,98 1,25 92,2 0,99 2,02 -0,84 $\rho = 0.25 \text{g/cm}^3$ D5-6 88,30 2,01 -0,38 90.5 0.99 2,05 -2,41 28,42 D₁₋₁₈ PDD = 0,9199,00 22,00 1,99 0,69 102,50 0,99 2,03 -1,57 D₂₋₁₈ $Z_{M} = 6,51 \text{ cm}$ 22,00 99,60 2,00 0,08 103,00 0,99 2,05 -2,34 $D_{C1}=2$ Gy D₃₋₁₈ 1,99 0,99 -2,40 22,65 96,30 0,54 100,20 2,05 $D_{C2}=2$ Gy D₄₋₁₈ 99,70 0,99 -2,08 21,90 1,99 0,44 103,40 2,04 $\rho = 0.25 \text{g/cm}^3$ D₅₋₁₈ 22,65 97,20 2,01 -0,39 101,00 0,99 2,07 -3,27

Tableau 3.2 : Résultats obtenus pour le fantôme Z_F = 11 cm.

 \circ Fantôme Z_F = 15 cm, les indices 1 et 2 sont relatifs aux plan 1 et plan 2 respectivement.

		F _{cal}	R _{M1}	D _{M1}	δ_1	R _{M2}	Enge	D _{M2}	δ_2
		(mGy/nC)	(nC)	(Gy)	(%)	(nC)	TDSP	(Gy)	(%)
PDD = 0,80	D ₁₋₆	24,40	47,60	0,93	7,63	50,20	0,99	0,97	2,77
$Z_M = 6,41 \text{ cm}$	D ₂₋₆	23,20	50,10	0,93	7,54	52,40	1,00	0,97	3,13
$D_{C1}=1 \text{ Gy}$	D ₃₋₆	24,40	47,80	0,93	7,17	50,20	1,00	0,98	2,46
$D_{C2}=1$ Gy	D ₄₋₆	24,30	47,70	0,93	7,84	50,10	0,99	0,96	3,82
$\rho = 0,15 \text{g/cm}^3$	D ₅₋₆	24,80	46,90	0,93	7,47	49,20	1,00	0,97	2,86
PDD = 0,92	D ₁₋₁₈	18,40	53,60	0,91	10,21	56,50	0,98	0,94	6,26
Z_{M} = 6,41 cm	D ₂₋₁₈	18,30	53,70	0,90	10,61	56,70	0,98	0,94	6,57
$D_{C1}{=}\;1\;Gy$	D ₃₋₁₈	19,00	51,70	0,90	10,65	54,60	0,98	0,94	6,59
$D_{C2}=1 \text{ Gy}$	D ₄₋₁₈	18,30	53,40	0,90	11,23	56,40	0,99	0,94	6,92
$\rho = 0,15 \text{g/cm}^3$	D ₅₋₁₈	19,00	52,60	0,92	8,76	55,30	0,99	0,95	5,03
PDD = 0,78	D ₁₋₆	25,60	47,80	0,95	4,77	51,40	0,99	1,02	-1,88
Z_{M} = 6,96 cm	D ₂₋₆	24,40	49,80	0,95	5,51	54,20	1,00	1,03	-2,77
$D_{C1}=1$ Gy	D ₃₋₆	25,70	47,70	0,96	4,58	51,80	1,00	1,03	-3,31
$D_{C2}=1$ Gy	D ₄₋₆	25,50	47,50	0,94	5,85	51,40	0,99	1,01	-1,10
$\rho = 0,20 \text{g/cm}^3$	D ₅₋₆	26,10	46,40	0,94	5,86	50,30	1,00	1,02	-1,95
PDD = 0,90	D ₁₋₁₈	19,35	53,70	1,04	-3,76	57,30	0,98	0,98	2,30
Z_{M} = 6,96 cm	D ₂₋₁₈	19,30	53,60	1,03	-3,33	57,50	0,98	0,98	2,31
$D_{C1}=1 \text{ Gy}$	D ₃₋₁₈	20,00	51,60	1,03	-3,10	55,10	0,98	0,97	3,03
$D_{C2}=1$ Gy	D ₄₋₁₈	19,30	53,70	1,04	-3,51	56,80	0,99	0,97	3,36
$\rho = 0,20 \text{g/cm}^3$	D ₅₋₁₈	20,00	52,60	1,05	-4,94	56,40	0,99	1,00	0,45
PDD = 0,76	D ₁₋₆	26,40	97,20	1,95	2,55	102,40	0,99	2,04	-1,97
Z_{M} = 7,51 cm	D ₂₋₆	25,13	100,90	1,93	3,78	106,70	1,00	2,03	-1,56
$D_{C1} = 2 \ Gy$	D ₃₋₆	26,50	97,10	1,96	2,27	102,20	1,00	2,05	-2,44
$D_{C2}=2$ Gy	D ₄₋₆	26,40	97,30	1,95	2,45	102,50	0,99	2,03	-1,67
$\rho = 0,25 \text{g/cm}^3$	D ₅₋₆	27,00	94,70	1,94	2,92	99,60	1,00	2,04	-1,75
PDD = 0,87	D ₁₋₁₈	20,00	108,30	1,90	5,41	114,60	0,98	1,98	1,23
$Z_{M} = 7,51 \text{ cm}$	D ₂₋₁₈	20,00	108,30	1,90	5,41	114,50	0,98	1,97	1,42
$D_{C1} = 2 \ Gy$	D ₃₋₁₈	20,60	104,80	1,89	5,75	110,80	0,98	1,97	1,76
$D_{C2}=2 Gy$	D ₄₋₁₈	20,00	108,00	1,89	5,70	115,00	0,99	1,98	0,78
$\rho = 0,25 \text{g/cm}^3$	D ₅₋₁₈	20,60	106,60	1,92	3,97	112,90	0,99	2,01	-0,34

Tableau 3.3 : Résultats obtenus pour le fantôme $Z_F = 15 \text{ cm}$.

Tableau 3.4: Données statistiques relatives aux résultats obtenus selon les profondeurs hétérogènes Z_F , et pour l'ensemble des résultats (total). La moyenne (Moy), l'écart moyen (E moy), l'écart type (E type) et l'intervalle de confiance (IC) sont indiqués dans le tableau.

	Moy (%)	E moy (%)	E type	IC 95 %	IC 99 %	IC 99,9 %
Z _F 7 cm		(/*/				(,*)
Plan 1	3,591	1,733	2,044	[2,860 : 4,323]	[2,630 : 4,553]	[2,363 : 4,819]
Plan 2	4,016	2,193	2,467	[3,134 : 4,899]	[2,856 : 5,176]	[2,535 : 5,498]
Z _F 11 cm						-
Plan 1	1,950	1,838	2,049	[1,217 : 2,683]	[0,986 : 2,914]	[0,719 : 2,669]
Plan 2	2,350	0,567	0,761	[2,078 : 2,622]	[1,992 : 2,708]	[1,893 : 2,807]
Z _F 15 cm						
Plan 1	5,818	2,067	2,556	[4,903 : 6,732]	[4,616 : 7,020]	[4,282 : 7,353]
Plan 2	2,793	1,344	1,781	[2,156 : 3,430]	[1,955 : 3,631]	[1,723 : 3,863]
Total	3,420	1,973	2,401	[3,069 : 3,770]	[2,958 : 3,880]	[2,831 : 4,009]

Figure 3.9 : Diagrammes statistiques des résultats obtenus en fonction des énergies.

Figure 3.10 : Diagrammes statistiques des résultats obtenus en fonction des densités.

Figure 3.11 : Diagrammes statistiques des résultats obtenus en fonction des profondeurs hétérogènes.

Figure 3.12 : Représentation statistique en termes de probabilité (Loi Normale) de l'ensemble des résultats obtenus.

Figure 3.13 : Représentation statistique en pourcentage de l'ensemble des résultats obtenus. Majoritairement, 19% des déviations obtenues possèdent des valeurs autour de 2%.

3.3. Mesures expérimentales dans des milieux hétérogènes pour des géométries de faisceaux complexes

Cette partie expérimentale a été réalisée au Centre Anti Cancer de Sétif au service radiothérapie-oncologie, le service est équipé d'un accélérateur linéaire de la société VARIAN de type Clinac iX doté de deux énergies photons 6 MV et 18 MV, d'un collimateur MLC de 120 lames, d'un débit de dose maximal de 400 UM/min et d'une ouverture maximale des mâchoires X et Y de 40x40 cm².

En suivant la même méthodologie de travail que la partie réalisée à Blida, nous avons réalisé des mesures dans des fantômes hétérogènes avec des configurations de faisceau différentes à celle relative aux conditions de la calibration des diodes. Une seule densité de polystyrène expansé a été utilisée (0,25 g/cm³), quant aux détecteurs de mesure utilisés, il s'agit des sondes semi-conductrices de mesure in vivo de PTW.

3.3.1. Les diodes PTW

Les sondes semi-conductrices de PTW sont des diodes dédiées à la dosimétrie in vivo pour les faisceaux d'électrons et de photons de haute énergie. La réponse de ces détecteurs dépend de l'énergie, la DSP, la taille du champ, le filtre en coin, l'angle d'incidence, la température, la dose par impulsion, la dose accumulée et la corpulence du patient. Le facteur d'étalonnage est déterminé de la même façon que pour les diodes QEDTM. La lecture des diodes doit être corrigée par les facteurs correctifs liés aux conditions de mesure [76].

Dans cette partie expérimentale, nous avons utilisé respectivement pour le faisceau du 6 MV et le faisceau 18 MV, une diode (code de couleur jaune) dédiée à la plage de mesure pour les photons entre 5 et 13 MV avec un matériau de build-up en plomb et une diode (code de couleur rouge) dédiée à la plage de mesure pour les photons entre 13 et 25 MV avec un matériau de build-up en tungstène. L'épaisseur (en équivalent eau) du build-up vaut 2 cm et 3 cm respectivement pour la diode jaune et la diode rouge [76].

Une étude caractéristique des facteurs correctifs des diodes PTW (pour les gammes d'énergie précédemment citées) à montré que pour une angulation de 10° le facteur correctif vaut 0,97. Quant aux variations de la taille du champ, l'étude a révélé pour les dimensions 4X4, 15X15 et 20X20 cm² respectivement pour l'énergie 6 MV Les facteurs 0,99, 1,006 et 1,012 et les valeurs 0,97, 1,012 et 1,02 pour l'énergie 18 MV [77].

3.3.2. Détermination de profils de dose

Dans cette partie, il s'agit de déterminer la dose en termes absolu avec un détecteur de référence. Pour ce faire, une chambre d'ionisation PTW, de type semiflex de volume 0,3 cm³ et dont le facteur d'étalonnage N vaut 0,095025278 Gy/nC a été utilisée. La chambre d'ionisation est relié à un électromètre de PTW de type Webline, les lectures obtenues étant en nC.

Le fantôme de calibration est un fantôme homogène, il est composé de plaques équivalentes à l'eau de type RW3 de PTW d'épaisseur totale de 30 cm, il est irradié par un faisceau de 10X10 cm², à une DSP de 100 cm, avec un débit de 400 UM/min et 100 UM.

Comme pour la partie précédente, les lectures obtenues sont corrigées par les facteurs liés à la pression/température, à la polarisation, à la recombinaison et au facteur lié à la qualité du faisceau et au type de chambre d'ionisation. La dose (Figure 3.14) est donnée par l'équation Eq 3.2.

Figure 3.14 : Courbes de doses absolues en fonction de la profondeur pour les deux énergies 6MV et 18MV.

3.3.3. Détermination des courbes de calibration

Le dispositif précédent a été repris pour des mesures avec les diodes. Le facteur de calibration F_{cal} a été déterminé pour chaque profondeur de mesure à partir des lectures des diodes R (sans introduction des PDD) et des doses absolues (Figure 3.15).

$$F_{cal} = D_w/R$$
 Eq 3.10

Figure 3.15 : Fantôme homogène de calibration. À gauche, mesure avec la chambre d'ionisation, et à droite, mesure avec les diodes.

Figure 3.16 : Courbes des facteurs de calibration des deux diodes.

3.3.4. Evaluation du AAA dans des fantômes hétérogènes

Des fantômes hétérogènes (en nombre de trois) à deux densités ont été utilisés, ils sont composés alternativement de plaques RW3 et de plaques de polystyrène expansé (Figure 3.17). L'épaisseur totale de chaque fantôme étant de 25 cm, 4 cm de plaques RW3 ont été placées au dessus et au dessous, le reste étant des plaques de polystyrène expansé. Une plaque RW3 d'épaisseur 1 cm est placée entre les plaques de polystyrène expansé à trois profondeurs hétérogènes (Z_F) 8 cm, 12 cm et 16 cm. Nous appelons respectivement Z_{RW3} et Z_P les épaisseurs totales des plaques RW3 et celles du polystyrène expansé.

Figure 3.17 : Fantôme hétérogène d'évaluation du AAA.

3.3.4.1. Planification sur TPS Eclipse et irradiation des fantômes hétérogènes

Les fantômes hétérogènes ont été simulés sur le TPS Eclipse (version 13.6) en attribuant la densité d'eau aux plaques RW3 et la densité air aux plaques de polystyrène expansé (Figure 3.18). Cinq plans ont été calculés avec le AAA (version 13.6) pour les deux énergies 6MV et 18MV en variant la taille du champ (CH), l'angulation (A) et le point de calcul dans le plan XY. Quant à la profondeur Z, quatre valeurs ont été considérées dépendamment de chaque configuration des fantômes.

Les fantômes physiques ont été irradiés sous l'accélérateur linéaire avec un nombre d'UM de 100 identique à celui de la planification du TPS. La mesure est effectuée par le biais des diodes, les lectures R_M de ces dernières ont été corrigées par les facteurs correctifs liés à a taille du champ F_C et à l'angulation du bras F_A . Les valeurs des facteurs correctifs F_C et F_A ont été prises de l'étude précédemment citée, soit directement tirée à partir des courbes soit par extrapolation [77].

Les profondeurs hétérogènes Z ont été converties en profondeurs équivalentes à l'eau Z_W . Les doses mesurées D_M sont obtenues à partir des lectures des diodes R_M et des facteurs de calibration F_{cal} tirés par interpolation à partir des courbes de calibrations. Les doses calculée D_C et mesurée D_M ont été comparées en calculant les déviations δ .

$$Z_W = Z_{RW3} + (Z_P \times 0.25)$$
 Eq 3.11

$$D_{M} = R_{M} \times F_{cal} \times F_{C} \times F_{A}$$
 Eq 3.12

$$\delta = \left(\frac{D_{\rm C} - D_{\rm M}}{D_{\rm M}}\right) \times 100 \qquad \qquad \text{Eq 3.13}$$

Figure 3.18: Planification sur Eclipse à droite et irradiation des fantômes à gauche.

3.3.4.2. Résultats et analyse

Les résultats obtenus sont affichés dans des tableaux séparément par rapport au type de fantôme hétérogène d'évaluation, quatre points de mesure en profondeur ont été considérés pour chaque fantôme. Quelques données statistiques ont été calculées pour chaque fantôme et pour l'ensemble des résultats, notamment la moyenne, l'écart moyen, l'écart type et l'intervalle de confiance pour les indices de confiance de 95%, 99% et 99,9%. Des courbes comparatives de dose calculée et de dose mesurée tracées à partir des quatre points de mesure ont été illustrées (Figure 3.19, Figure 3.20 et Figure 3.21). Des diagrammes statistiques de l'ensemble des résultats en fonction de l'énergie, des plans de calcul et des profondeurs équivalentes à l'eau ont été tracés (Figure 3.22, Figure 3.23 et Figure 3.24). Une représentation graphique en termes de probabilité (Loi Normale) de l'ensemble des déviations a été déterminée (Figure 3.25). Une représentation en termes de pourcentage de l'ensemble des déviations est indiquée (Figure 3.26).

Tableau 3.5 : Paramètre des plans calculés et lectures (R_M) des diodes pour les deux énergies. F_A et F_C sont respectivement les facteurs correctifs liés à l'angulation du bras et à la taille du champ.

					E	= 6 MV	T	E = 18 MV			
	CH	Α	Х	Y	R _M	F.	Fa	R _M	F.	Fa	
	(cm^2)	(°)	(cm)	(cm)	(nC)	ГA	тс	(nC)	ГA	тс	
Plan 1	3X3	0	0	0	9,490	1,000	0,980	13,950	1,000	0,960	
Plan 2	15X15	0	3	3	10,520	1,000	1,006	15,560	1,000	1,012	
Plan 3	25X25	0	-3	-3	10,990	1,000	1,020	16,200	1,000	1,030	
Plan 4	20X20	0	0	0	10,570	1,000	1,012	15,450	1,000	1,020	
Plan 5	10X10	10	0	0	10,230	0,970	1,000	15,000	0,970	1,000	

Fontâm	0]	E = 6MV		E = 18MV			
$Z_F = 8 \text{ cm}$		D _M	D _C	δ	D _M	D _C	δ	
		(cGy)	(cGy)	(%)	(cGy)	(cGy)	(%)	
Fcal (cGy/nC			9,20			6,60		
	Plan 1	85,56	84,50	-1,24	88,39	85,40	-3,38	
7_2 am	Plan 2	97,36	99,00	1,68	103,93	114,20	9,88	
Z=5 cm $Z_{\rm m}=3$ cm	Plan 3	103,13	103,90	0,75	110,13	112,30	1,97	
$\Sigma_W = 5 \text{ cm}$	Plan 4	98,41	99,60	1,21	104,01	106,40	2,30	
	Plan 5	91,29	94,60	3,62	96,03	100,10	4,24	
Fcal (cGy/	'nC		8,50			6,30		
	Plan 1	79,05	73,60	-6,90	84,37	80,60	-4,47	
	Plan 2	89,96	87,30	-2,95	99,20	107,30	8,16	
Z=0 cm	Plan 3	95,28	92,40	-3,03	105,12	104,60	-0,50	
ZW = 4,30 CIII	Plan 4	90,92	89,50	-1,57	99,28	99,60	0,32	
	Plan 5	84,35	81,00	-3,97	91,67	93,10	1,57	
Fcal (cGy/	'nC	8,10			6,10			
	Plan 1	75,33	71,10	-5,62	81,69	76,70	-6,11	
7 9 50	Plan 2	85,72	84,30	-1,66	96,05	101,40	5,56	
Z=8,50 cm	Plan 3	90,80	88,10	-2,97	101,78	98,60	-3,13	
$\Sigma_W = 3,30$ cm	Plan 4	86,64	85,30	-1,55	96,13	94,10	-2,11	
	Plan 5	80,38	79,40	-1,22	88,76	88,50	-0,29	
Fcal (cGy/	'nC		7,50			5,80		
	Plan 1	69,75	62,40	-10,54	77,67	70,20	-9,62	
7 12 50	Plan 2	79,37	74,80	-5,76	91,33	93,30	2,16	
Z=12,50 cm	Plan 3	84,07	78,80	-6,27	96,78	90,50	-6,49	
Zw- 0,00 CIII	Plan 4	80,23	77,00	-4,02	91,40	86,70	-5,14	
	Plan 5	74,42	68,90	-7,42	84,39	80,20	-4,97	

Tableau 3.6 : Résultats obtenus du fantôme hétérogène $Z_F = 8$ cm.

Fantôme $Z_F = 12 \text{ cm}$]	E = 6MV		E	E = 18MV			
		D _M	D _C	δ	D _M	D _C	δ		
		(cGy)	(cGy)	(%)	(cGy)	(cGy)	(%)		
Fcal (cGy/	nC		9,20			6,60			
	Plan 1	85,56	84,50	-1,24	88,39	85,40	-3,38		
7-2 om	Plan 2	97,36	99,00	1,68	103,93	106,60	2,57		
Z=3 cm $Z_{\rm w}=3$ cm	Plan 3	103,13	103,90	0,75	110,13	112,30	1,97		
$\Sigma_W = 5 \text{ cm}$	Plan 4	98,41	99,60	1,21	104,01	106,40	2,30		
	Plan 5	91,29	94,60	3,62	96,03	100,10	4,24		
F _{cal} (cGy/	nC		8,50			6,25			
	Plan 1	79,05	72,50	-8,29	83,70	79,10	-5,50		
77	Plan 2	89,96	85,50	-4,95	98,42	98,20	-0,22		
Z = / cm	Plan 3	95,28	90,40	-5,13	104,29	102,50	-1,71		
ZW=4,73 CIII	Plan 4	90,92	87,60	-3,65	98,49	97,60	-0,91		
	Plan 5	84,35	79,80	-5,39	90,94	91,50	0,62		
Fcal (cGy/	nC		7,70		5,90				
	Plan 1	71,61	66,20	-7,56	79,01	71,60	-9,38		
7 10 50	Plan 2	81,49	78,30	-3,91	92,91	87,70	-5,60		
Z=12,50 cm	Plan 3	86,32	81,50	-5,58	98,45	91,00	-7,56		
$Z_W = 0,30$ CIII	Plan 4	82,37	79,10	-3,96	92,98	87,50	-5,89		
	Plan 5	76,41	73,00	-4,46	85,85	81,80	-4,71		
Fcal (cGy/	nC		7,20			5,60			
	Plan 1	66,96	58,90	-12,04	75,00	66,30	-11,59		
7 16	Plan 2	76,20	70,20	-7,87	88,18	81,60	-7,46		
L=16 cm	Plan 3	80,71	74,10	-8,19	93,44	84,80	-9,25		
$\Delta W = 1,13 \text{ cm}$	Plan 4	77,02	72,50	-5,87	88,25	81,50	-7,65		
	Plan 5	71,45	64,70	-9,44	81,48	75,80	-6,97		

Tableau 3.7 : Résultats obtenus du fantôme hétérogène Z_F =12 cm.

Fantôme $Z_F = 16 \text{ cm}$]	E = 6MV		E = 18MV				
		D _M	D _C	δ	D _M	D _C	δ		
		(cGy)	(cGy)	(%)	(cGy)	(cGy)	(%)		
F _{cal} (cGy/	'nC		9,20			6,60			
	Plan 1	85,56	84,50	-1,24	88,39	85,40	-3,38		
7-2 om	Plan 2	97,36	99,00	1,68	103,93	106,60	2,57		
Z=3 cm	Plan 3	103,13	103,90	0,75	110,13	112,30	1,97		
$\Sigma_W = 5 \text{ cm}$	Plan 4	98,41	99,60	1,21	104,01	106,40	2,30		
	Plan 5	91,29	94,60	3,62	96,03	100,10	4,24		
F _{cal} (cGy/	'nC		8,50			6,25			
	Plan 1	78,12	72,10	-7,71	83,70	79,20	-5,38		
7.7	Plan 2	88,90	85,50	-3,82	98,42	98,20	-0,22		
Z = / cm	Plan 3	94,16	90,50	-3,89	104,29	102,50	-1,71		
$Z_W = 4,75$ CIII	Plan 4	89,85	87,70	-2,40	98,49	97,70	-0,81		
	Plan 5	83,35	79,80	-4,26	90,94	91,50	0,62		
Fcal (cGy/	'nC	7,30			5,65				
	Plan 1	67,89	61,30	-9,71	75,66	66,30	-12,38		
7 16 50	Plan 2	77,26	72,90	-5,64	88,97	82,00	-7,83		
Z=16,50 cm	Plan 3	81,83	76,20	-6,88	94,28	85,40	-9,41		
$Z_W = 7,50$ cm	Plan 4	78,09	73,40	-6,00	89,04	80,90	-9,14		
	Plan 5	72,44	67,90	-6,27	82,21	76,90	-6,46		
Fcal (cGy/	'nC		6,90			5,45			
	Plan 1	64,17	56,00	-12,73	72,99	63,30	-13,27		
7 10	Plan 2	73,02	67,20	-7,97	85,82	77,80	-9,34		
Z=19 cm	Plan 3	77,35	70,30	-9,11	90,94	80,80	-11,15		
$\Delta W = 0,3 \text{ cm}$	Plan 4	73,81	68,50	-7,19	85,89	77,10	-10,23		
	Plan 5	68,47	62,00	-9,45	79,30	72,40	-8,70		

Tableau 3.8 : Résultats obtenus du fantôme hétérogène $Z_F = 16$ cm.

Tableau 3.9 : Données statistiques relatives aux résultats obtenus pour chaque fanôme, et pour l'ensemble de résultats (total). La moyenne (Moy), l'écart moyen (E moy), l'écart type (E type) et l'intervalle de confiance (IC) sont indiqués dans le tableau.

	Moy	E moy	E type	IC 95 %	IC 99 %	IC 99,9 %
	(%)	(%)	(%)	(%)	(%)	(%)
Z _F 8 cm						
	3 908	2,240	2,706	[3,069 :	[2,805 :	[2,499 :
	3,700	2,210	2,700	4,746]	5,009]	5,315]
Z _F 12 cm						
	5 107	2 503	3 044	[4,163 :	[3,867 :	[1,583 :
	5,107	2,303	3,044	6,050]	6,347]	6,691]
Z _F 16 cm						
	5.916	2 221	2 717	[4,664 :	[4,302 :	[3,882 :
	3,810	5,251	5,717	6,968]	7,329]	7,749]
Total	4.044	2762	2 270	[4,356 :	[4,172 :	[3,958 :
Total	4,944	2,705	5,279	5,530]	5,714]	5,928]

Figure 3.19 : Courbes de doses ; calculée (DC) et mesurée (DM) du fantôme Z_F 8 cm en fonction des profondeurs hétérogènes pour les deux énergies 6MV et 18MV.

Figure 3.20 : Courbes de doses ; calculée (DC) et mesurée (DC) du fantôme Z_F 12 cm en fonction des profondeurs hétérogènes pour les deux énergies 6MV et 18MV.

Figure 3.21 : Courbes de doses ; calculée (DC) et mesurée (DC) du fantôme Z_F 16 cm en fonction des profondeurs hétérogènes pour les deux énergies 6MV et 18MV.

Figure 3.22 : Diagramme statistique des résultats obtenus en fonction des énergies.

Figure 3.23 : Diagramme statistique des résultats obtenus en fonction des plans calculés.

Figure 3.24 : Diagramme statistique des résultats obtenus en fonction des profondeurs équivalentes à l'eau.

Figure 3.25 : Représentation statistique en termes de probabilité (Loi Normale) de l'ensemble des résultats obtenus.

Figure 3.26 : Représentation statistique en pourcentage de l'ensemble des résultats obtenus. Majoritairement, 16% des déviations obtenues possèdent des valeurs autour de 1%.

3.4. Discussion

L'évaluation des algorithmes de calcul de dose en présence d'hétérogénéités et La confection de fantômes hétérogènes et/ou leurs simulations virtuelles en utilisant différents matériaux a toujours fait preuve d'investigations de plusieurs études [79 94].

Le principe de la géométrie des fantômes hétérogènes de faible densité qu'ils soient confectionnés, simulés ou commercialisés est le même, il est basé sur la disposition de couche de faible densité en sandwich entre des couches équivalentes à l'eau [79 81], [83 85], [88-94]. Le but étant la simulation d'un milieu hétérogène visant à se rapprocher le plus possible de l'architecture tissulaire des localisations pulmonaires au sein d'une cage thoracique. Le liège a été souvent utilisé [78, 79, 81, 83, 88] pour simuler la faible densité

du poumon, le bois a été également testé [92]. Dans notre travail, la région pulmonaire a été simulée avec trois densités 0.15 g/cm³, 0.20 g/cm³ et 0.25 g/cm³ en utilisant des couches et des blocs de polystyrène expansé placés entre des plaques de PMMA ou RW3, avec un supplément, pour la première partie de mesure, celui d'introduire un petit insert en forme cylindrique en PMMA dans la région de faible densité visant à simuler une tumeur thoracique créant ainsi plus d'hétérogénéités.

Le calcul de dose en milieu hétérogène est complexe, les versions des algorithmes ont connu des améliorations visant à optimiser leurs modélisations dans le but de minimiser les écarts entre leurs calculs et les données de traitement sur machines. Leur validation ou évaluation est souvent basé sur une comparaison de leur calcul avec la mesure ou la simulation Monte Carlo tel qu'on le retrouve dans plusieurs études [78 81], [83 90], [92 94]. La mesure est réalisée avec des chambres d'ionisations [79, 93], [81 87], des films [78, 79, 92], [81 83] ou des détecteurs thermoluminescents TLD [88].

Dans notre évaluation du AAA nous avons utilisé la chambre d'ionisation comme étant le détecteur de référence et les diodes dédiées à la dosimétrie in vivo pour les comparaisons entre les doses calculées et mesurées. La calibration des diodes ne s'est pas restreinte qu'à la profondeur du maximum d'énergie mais à plusieurs points en profondeur mettant en évidence des courbes de calibration à travers lequel le facteur de calibration est tiré par interpolation.

Il s'agissait en premier lieu de déterminer la dose à plusieurs profondeurs, la configuration du fantôme de calibration utilisé dans la première partie est hétérogène et dans la seconde, elle est homogène, cette façon de calibrer a influencé les résultats de la seconde partie avec des déviations plus importantes. Par ailleurs, nous avons constaté une différence entre les profils de dose obtenus dans les deux parties. En effet, dans la première partie, il apparait dans les courbes un inversement de situation, l'énergie 6MV prend le dessus par rapport au 18MV à partir d'une certaine profondeur, ce qui n'apparait pas dans les courbes de la seconde partie. Ce changement d'amplitudes de dose indique que la dose collectée est majorée par la dose cumulée du rayonnement rétrodiffusé. En effet l'énergie du faisceau 18MV est plus pénétrante comparativement à celle du 6MV et spécialement dans un milieu de faible densité, de ce fait l'interaction avec le milieu en fin de parcours devient plus importante pour l'énergie du 6MV, ce qui engendre plus de rayonnement rétrodiffusé.

Pour le calcul des facteurs de calibration des diodes, nous avons tenté deux approches différentes, l'une faisant intervenir le PDD utilisé pour corriger la lecture des diodes, et l'autre par calcul direct entre les doses absolues et les lectures des diodes. Nous avons abouti à deux raisonnements distincts pour la détermination de ces facteurs à plusieurs points en profondeur et nous avons choisi de les aborder dans deux parties différentes. Par ailleurs, et pour les deux parties de mesures (Blida et Sétif), les facteurs de calibration ont été déterminés par les deux méthodes et la dose mesurée a été effectuée par les deux méthodes, les résultats obtenus étaient presque identiques, nous avons choisi d'exposer les deux méthodes séparément.

Dans la partie expérimentale réalisée à Blida, un seul point de mesure à différentes profondeurs a été étudié correspondant à la dose au centre de l'insert cylindrique. Dans une configuration semblable à la notre Engelsman [95] a mesuré la dose en trois points à l'intérieur d'une sphère simulant une tumeur et en deux points dans la région de faible densité, c'est la raison qui nous a conduit à pousser notre investigation et d'entamer une deuxième partie de mesures (réalisée à Sétif) en s'intéressant à plusieurs points de mesures faisant apparaître au final des profils de dose entre le calcul et la mesure.

Plusieurs études (ancienne et ressentes) ont porté un intérêt particulier à l'évaluation du AAA en milieu hétérogène [78 88], [90 94]. La différence entre le calcul de l'algorithme et la mesure (et/ou le calcul Monte Carlo) diffère d'une étude à une autre. Bragg [79] a obtenu sur des fantômes fabriqués des écarts de 2.4% et 2.3% respectivement pour les énergies 6MV et 10MV à 10 cm de profondeur pour un champ de 10x10 cm², un maximum de 2.1% a été obtenu sur le fantôme CIRS pour une planification à plusieurs faisceaux. Tillikainen [80] a obtenus des déviations inférieures à 2% pour plusieurs tailles de champ pour les énergies 6MV et 18MV en utilisant le calcul Monte Carlo comme référence, un maximum de 8% a été constaté pour les petit faisceaux, les courbes PDD pour la taille de faisceau 10x10cm² ont indiqués une sous estimation de la dose par le AAA après la région de rehaussement.

Van Esch [81] a obtenu pour les deux énergies 6MV et 18MV et la taille du champ $10x10 \text{ cm}^2$ un bon accord des PDD entre le calcul du AAA et les mesures avec la chambre d'ionisation, ainsi que pour les profils de dose dont des comparaisons ont été réalisées entre le calcul du AAA et les mesures avec films, des déviations inférieures à 5% ont été obtenues sur fantôme CIRS. Dans une étude récente Chopra [83] a procédé à l'évaluation de plusieurs algorithmes dont le AAA pour l'énergie 6MV, un bon accord (<3%) a été

constaté pour les PDD et profils pour les tailles de faisceaux $6x6 \text{ cm}^2$, $12x12\text{cm}^2$ et 24x24 cm² en comparant le calcul du AAA avec des mesures réalisées avec une chambre d'ionisation et des films et le calcul Monte Carlo. Rana [84] a procédé à une évaluation du AAA en effectuant des mesures et des calculs pour trois épaisseurs (2 cm, 4 cm et 6 cm) de gap de faible densité, les comparaisons entre la mesure et le calcul pour le faisceau 10x10 cm² ont conduit à des écarts de plus de 6%. Les écarts obtenus par Rosa [88] entre le calcul du AAA et des mesures effectuées par TLD ont montré sur les courbes de PDD des sous estimations de doses après la zone de rehaussement. Singh [92] a étudié des PDD pour l'énergie 15MV, pour le champ $10x10\text{cm}^2$ un bon accord a été constaté entre le calcul du AAA, la mesure avec films et la simulation Monte Carlo. Robinson [93] a conclu dans son étude que le AAA avait tendance à surestimer la dose en région de faible densité.

Toutes ces études démontrent bien la diversification des résultats obtenus entre le calcul et la mesure, des résultats qui restent tributaires des conditions de mesure.

Les résultats obtenus dans ce travail ont abouti à des déviations variées entre le calcul et la mesure. Néanmoins, majoritairement les déviations tournent autour de 2% et 1% respectivement pour la première et deuxième partie de mesure avec des quotas de 64% inférieur à 3% pour la première partie et 53% inférieur à 4% pour la seconde.

L'écart moyen et l'écart type des mesures indiquent une légère dispersion des déviations obtenues autour de leurs moyennes totales. Ceci étant visible sur la distribution de la loi normale. Quant aux intervalles de confiances obtenus pour les indices de confiance considérés, et pour des mesures réalisées en présence d'hétérogénéités, ils restent dans un ordre de grandeur acceptable qui ne dépasse pas les 4% pour la première partie de mesure ce qui n'est pas le cas pour la seconde partie de mesure en raison des quelques points de mesures profonds qui ont influencé le résultat total.

Les diagrammes statistiques ont montré une prédominance des déviations du 18MV pour les énergies, et le 0,15 g/cm³ pour les densités. Aussi, par rapports aux points de mesure, les déviations les plus importantes sont relatives aux points les plus profonds. Quant aux plans considérés dans la seconde partie de mesure, le diagramme statistique indique que les déviations croient avec la complexité de la géométrie considérée.

Les courbes comparatives de doses calculées et doses mesurées ont montré un bon rapprochement pour l'énergie du 6MV bien que la zone de rehaussement ne soit pas visible sur les courbes de doses mesurées, en revanche les écarts sont remarquables pour l'énergie du 18MV ce que les diagrammes statistiques ont déjà montré.

Dans la première partie de mesures, et vu la conception des fantômes considérée, il n'est pas aisé de conclure pour tous les points considérés que le AAA sous-estime ou surestime la dose dans des milieux simulant la région pulmonaire en matière de densité, l'insert de petites dimensions baignant dans des milieux de faibles densités ne nous permet de situer ce cas de figure, bien que 55% des déviations indiquent une sous-estimation de la dose du AAA.

Dans la seconde partie de mesures, un bon accord entre la mesure et le calcul est obtenu à 3 cm de profondeur en milieu homogène, par ailleurs, les déviations ont tendance à croitre en termes absolu avec la profondeur, la méthode de mesure trouve ses limites aux profondeurs importantes. Les déviations excédant les 5% pour la taille du champ de 3x3 cm² s'expliquent par le fait que les diodes PTW sont utilisables à partir de la taille du champ de 5x5 cm² [76]. 92% des déviations indiquent une sous-estimation de la dose du AAA pour les trois autres points de mesure considérés, le deuxième et quatrième point sont situés en milieu à faible densité quant au troisième il est au milieu de la plaque RW3 prise entre les plaques de polystyrène expansé.

CHAPITRE IV

SIMULATION DU MOUVEMENT RESPIRATOIRE ET IMPACT DOSIMÉTRIQUE

4.1. Introduction

Nous avons vu qu'en radiothérapie la complexité de la dosimétrie dans la région thoracique implique son hétérogénéité mais aussi l'amplitude de son mouvement respiratoire. La dynamique de cette région anatomique induit un déplacement d'organes et un changement de la densité pulmonaire, ces deux paramètres impactent inévitablement le déroulement du traitement déphasé des conditions dosimétriques, une dosimétrie basée sur des coupes CT conditionnées souvent par une respiration libre du patient, il en résulte que le plan de traitement ne sera pas forcément délivré au cycle respiratoire identique à celui de l'acquisition des coupes CT sur laquelle s'effectuera la dosimétrie.

En l'absence d'un fantôme ou d'un système dynamique semblable au thorax, nous avons essayé de reproduire sur TPS ces situations caractéristiques de la cage thoracique afin d'évaluer l'impact dosimétrique sur la région à traiter mais aussi sur les organes à risque avoisinant. Il s'agit d'effectuer une étude dosimétrique sur des fantômes hétérogènes simulant grossièrement la cage thoracique mais aussi sur de réels plans de traitement de patients.

Nous avons traité les deux aspects séparément, à savoir le déplacement de la cage thoracique d'une part et le changement de la densité pulmonaire d'une autre part. L'étude est réalisée sur le TPS Eclipse (version 13.6) avec les algorithmes de calcul de dose AAA (version 13.623) et Acuros XB (version 13.623) dans deux centres de radiothérapie différents. Pour le déplacement de la cage thoracique l'étude a été réalisée au service de radiothérapie-oncologie du Centre Anti Cancer de Sétif, quant au changement de la densité pulmonaire, l'étude a été réalisée au service de radiothérapie-oncologie du Centre Pierre et Marie Curie d'Alger, deux services qui travaillent sous environnement ARIA, un système réseau de Varian dans lequel Eclipse est connecté.

Afin de rendre plus aisé la lecture de ce chapitre, certains tableaux et courbes ont été classés dans l'appendice à la fin de cet ouvrage.

4.2. Simulation du mouvement respiratoire dans des fantômes hétérogènes à géométries simples

Des fantômes hétérogènes à géométries simples, au nombre de trois, ont été créés dans Eclipse, les dimensions de chacun, dans le repère tridimensionnel XYZ, sont 30x30x22 cm³. Chaque fantôme est composé de 3 cm de couche externe de tissu adipeux de densité massique égale à 0,92 g/cm³ (115UH) et de densité électronique 0,909, le reste étant un milieu équivalent au poumon, de densité massique égale à 0,26 g/cm³ (-749UH) et de densité électronique 0,2498, défini comme étant le contour externe englobant l'ensemble des structures. Un PTV et quatre organes à risques de différentes densités de formes cylindriques baignent dans le milieu équivalent au poumon. La différence entre les trois fantômes réside dans le choix de l'emplacement du PTV et des OAR avoisinant, trois profondeurs ont été considérées pour le PTV ; antérieur, milieu et postérieur respectivement pour le fantôme 1, le fantôme 2 et le fantôme 3.

Tableau 4.1 : Données relatives aux structures composant les fantômes hétérogènes, les positions de ces derniers sont données par les coordonnées X, Y et Z.

		PTV	OAR 1	OAR 2	OAR 3	OAR 4
	Densité massique (g/cm ³)	1,0608 50UH	1,1000 134UH	1,0500 33UH	1,0500 33UH	1,0500 33UH
	Densité électronique	1,0525	1,0780	1,0358	1,0358	1,0358
	Dimensions (cm ³)	5x6x5	2x2x2	3x3,5x3	7x7x7	4x4x4
e 1	X (cm)	0,0	-3,0	-3,5	+4,5	+6,5
ıtôm	Y (cm)	0,0	-3,0	+3,5	+4,5	+3,5
Far	Z (cm)	+5,0	-2,0	0,0	-4,5	+5,0
e 2	X (cm)	0,0	-7,0	-6,0	-7,0	-6,0
ıtôm	Y (cm)	0,0	-5,0	+6,0	+8,0	+4,7
Fai	Z (cm)	0,0	-2,0	0,0	-4,0	+4,0
e 3	X (cm)	0,0	-4,0	-3,5	+5,5	+6,0
ıtôm	Y (cm)	0,0	-3,0	+2,5	+4,5	-5,0
Fat	Z (cm)	-4,0	-2,0	0,0	-0,5	-4,0

4.2.1. Planification et simulation du mouvement respiratoire sur Eclipse

Pour chaque fantôme une dosimétrie conformationnelle a été planifiée, six faisceaux d'énergie 6MV ont été créés avec des angulations différentes du bras ; 120°, 90°, 40°, 320°, 270° et 240°. La taille de chaque faisceau ainsi que son ouverture du MLC ont été adoptées selon le volume du PTV. 2 Gy ont été délivrées et les plans ont été calculés en utilisant le AAA de façon à obtenir un PTV couvert par 95% de la dose de prescription (Figure 4.1).

Figure 4.1 : Dosimétrie 3D conformationnelle dans Eclipse sur un fantôme hétérogène et simulation du mouvement respiratoire.

A partir de la position initiale du plan dosimétrique matérialisé par les coordonnées de l'isocentre à (0,0,0), les mouvements d'inspiration et d'expiration ont été simulés en variant les coordonnées de ce dernier.

Nous avons vu (chapitre I) qu'à la phase d'inspiration nous avons une augmentation des diamètres vertical et antéro-postérieur avec un déplacement caudal du diaphragme, il en résulte que l'isocentre de traitement subira, en phase d'inspiration, un déplacement crânial dans le sens longitudinal et dorsal dans le sens antéro-postérieur, à l'inverse, en phase d'expiration, l'isocentre se déplacera dans le sens caudal et ventral.

Partant de cela, nous avons varié les coordonnées de l'isocentre dans ces deux directions (Y et Z) de sa position initiale jusqu'à 2 cm, et nous avons observé la variation de quelques paramètres dosimétriques donnés par Eclipse au niveau de l'espace HDV notamment la dose maximale D_{max} pour le PTV et les OAR et V₉₅ pour le PTV qui représente le volume de ce dernier couvert par 95% de la dose de prescription.
Nous avons étudié la variation Δ de ces paramètres en évaluant la différence entre la valeur d'arrivée (A) et la valeur de départ (0) en termes de valeurs absolues, mais aussi en termes de pourcentages (δ). Une moyenne est prise de chaque paramètre pour les valeurs des trois fantômes ; $\Delta_m D_{max}$, $\Delta_m V_{95}$, $\delta_m D_{max}$ et $\delta_m V_{95}$.

$$\Delta D_{\max} = |D_{\max}(A) - D_{\max}(0)| \qquad Eq 4.1$$

$$\Delta V_{95} = |(V_{95}(A) - V_{95}(0))|$$
 Eq 4.2

$$\delta D_{max} = D_{max}(A)/D_{max}(0)$$
 Eq 4.3

$$\delta V_{95} = V_{95}(A) / V_{95}(0)$$
 Eq 4.4

4.2.2. Résultats et analyse

Les moyennes en termes absolus (Δ_m) et en termes de pourcentages (δ_m) des variations des paramètres dosimétriques sont données dans des tableaux et sous forme de diagrammes statistiques (Figure 4.2, Figure 4.3 et Figure 4.4).

		PT	V	OAR1	OAR2	OAR3	OAR4
	d	$\Delta_m D_{max}$	$\Delta_m V_{95}$	$\Delta_m D_{max}$	$\Delta_m D_{max}$	$\Delta_m D_{max}$	$\Delta_m D_{max}$
	-20	0,02	54,19	0,51	1,04	1,04	0,33
	-15	0,02	35,96	0,35	0,92	0,99	0,27
	-10	0,02	20,07	0,46	0,85	0,92	0,29
	-9	0,02	16,20	0,49	0,82	0,88	0,29
uc	-8	0,02	12,63	0,50	0,79	0,84	0,31
catio	-7	0,02	9,52	0,50	0,75	0,80	0,33
spiı	-6	0,02	6,40	0,49	0,70	0,75	0,35
In:	-5	0,02	3,69	0,49	0,67	0,69	0,37
	-4	0,01	1,72	0,47	0,61	0,66	0,36
	-3	0,01	0,57	0,44	0,54	0,63	0,38
	-2	0,01	0,00	0,41	0,43	0,59	0,36
	-1	0,00	0,00	0,36	0,29	0,56	0,36
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,01	0,15	0,36	0,25	0,52	0,45
	2	0,01	0,78	0,41	0,30	0,52	0,54
	3	0,01	1,80	0,50	0,32	0,53	0,60
	4	0,01	3,07	0,60	0,32	0,53	0,65
uc	5	0,02	4,94	0,69	0,34	0,53	0,68
atio	6	0,02	7,04	0,77	0,34	0,53	0,68
tpiı	7	0,02	9,76	0,82	0,34	0,52	0,70
Ey	8	0,03	12,69	0,85	0,33	0,51	0,71
	9	0,03	16,15	0,87	0,30	0,50	0,73
	10	0,03	19,74	0,88	0,28	0,49	0,74
	15	0,05	37,52	0,91	0,42	0,49	0,89
	20	0,07	53,74	0,87	0,50	0,35	1,11

Tableau 4.2 : Les variations moyennes des données dosimétriques en termes absolu des trois fantômes hétérogènes, d étant la position de l'isocentre en mm, $\Delta_m V_{95}$ étant en pourcentages et $\Delta_m D_{max}$ en Gy.

_		PT	V	OAR1	OAR2	OAR3	OAR4
	d	$\delta_m D_{max}$	$\delta_m V_{95}$	$\delta_m D_{max}$	$\delta_m D_{max}$	$\delta_m D_{max}$	$\delta_m D_{max}$
	-20	0,99	0,46	0,18	2,29	2,71	1,21
	-15	1,00	0,64	0,38	2,15	2,69	1,24
	-10	1,00	0,80	0,92	2,06	2,69	1,42
	-9	1,00	0,84	0,99	2,03	2,71	1,49
uo	-8	1,00	0,87	1,03	1,99	2,72	1,60
rati	-7	1,00	0,90	1,07	1,94	2,72	1,76
spiı	-6	1,01	0,94	1,11	1,89	2,74	1,94
In	-5	1,00	0,96	1,13	1,84	2,75	2,19
	-4	1,00	0,98	1,16	1,77	2,75	2,30
	-3	1,00	0,99	1,19	1,67	2,75	2,48
	-2	1,00	1,00	1,23	1,53	2,75	2,67
	-1	1,00	1,00	1,29	1,37	2,71	2,89
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	1,44	1,19	2,62	3,19
	2	1,00	0,99	1,54	1,12	2,58	3,43
	3	1,00	0,98	1,71	1,08	2,57	3,61
	4	0,99	0,97	1,89	1,02	2,55	3,62
uc	5	0,99	0,95	2,08	0,98	2,53	3,65
rati	6	0,99	0,93	2,22	0,99	2,50	3,61
kpiı	7	0,99	0,90	2,32	0,94	2,46	3,58
E	8	0,99	0,87	2,38	0,90	2,42	3,53
	9	0,99	0,84	2,43	0,86	2,35	3,46
	10	0,99	0,80	2,46	0,82	2,31	3,38
	15	0,98	0,62	2,53	0,54	2,15	3,23
	20	0,97	0,46	2,51	0,40	1,75	3,07

Tableau 4.3 : Les variations moyennes des données dosimétriques en pourcentage des trois fantômes hétérogènes, d étant la position de l'isocentre en mm, 1 fait référence à 100%.

Figure 4.2 : Diagramme statistique relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation de la dose maximale du PTV en fonction du déplacement d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 4.3 : Diagramme statistique relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation du volume du PTV couvert par 95% de la dose de prescription en fonction du déplacement d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 4.4 : Diagramme statistique relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation la dose maximale des quatre OAR en fonction du déplacement d en mm pour les deux phases d'inhalation et d'exhalation.

4.3. Simulation du mouvement respiratoire dans un fantôme hétérogène (fantôme thoracique) simulant la cage thoracique

Un fantôme hétérogène (fantôme thoracique) simulant l'architecture tissulaire d'une cage thoracique a été créé dans Eclipse (Figure 4.5), les dimensions du fantôme, dans le repère tridimensionnel XYZ, sont 30x30x26 cm³. Le fantôme est composé d'une couche externe de tissu adipeux TA (3 cm latéralement et vers l'antérieur et 7 cm du coté postérieur). Un volume cible et des OAR ont été créés avec leurs caractéristiques physiques ; le poumon (PM), le cœur (CR) de forme cylindrique, la moelle épinière (ML) de forme circulaire, le PTV de forme cylindrique et l'ossature (OS) composée des côtes, des vertèbres et des scapulas.

Figure 4.5 : Création du fantôme thoracique dans Eclipse.

Tableau 4.4 : Caractéristiques physiques des structures composant le fantôme thoracique et leurs positions X, Y et Z.

	PTV	TA	CR	PM	ML	OS
Densité massique	1,0000	0,9200	1,0608	0,2600	1,0591	1,8500
(g/cm^3)	-6UH	-115UH	50UH	-749UH	40UH	1560UH
Densité électronique	1,0069	0,9090	1,0525	0,2498	1,0423	1,7139
Dimensions (cm ³)	4x8x4		4x15x10	22x30x15	2x15x2	
X (cm)	-5		0	0	0	
Y (cm)	-2		+0,5	0	0	
Z (cm)	+1		+3	+1,5	-10	

4.3.1. Planification et simulation du mouvement respiratoire sur Eclipse

Pour chaque énergie (6MV et 18MV), une dosimétrie conformationnelle a été planifiée avec six faisceaux dont les angulations du bras sont ; 120°, 90°, 40°, 320°, 270° et 240°. La taille de chaque faisceau ainsi que son ouverture du MLC ont été adoptées selon le volume du PTV. 2 Gy ont été délivrées et les plans ont été calculés en utilisant le AAA de façon à obtenir un PTV couvert par 95% de la dose de prescription.

Nous avons vu (chapitre I) que le mouvement respiratoire induit une variation du volume dans les trois directions, partant de cela, la phase d'inspiration a été simulée en augmentant le volume du fantôme et l'expiration en diminuant ce dernier et ceci dans les trois directions X, Y et Z ce qui implique un déplacement du PTV et des OAR.

L'augmentation ou la diminution d a été variée jusqu'à 2 cm pour les deux phases respiratoires, à partir de la série de coupe sur laquelle la dosimétrie a été réalisée. Nous avons observé la variation de quelques paramètres dosimétriques donnés par Eclipse au niveau de l'espace HDV notamment D_{max} pour le PTV est les OAR (Figure 4.6), V₉₅ pour le PTV représentant le volume de ce dernier couvert par 95% de la dose de prescription et V_{1.2} pour les OAR qui représente le volume de l'OAR couvert par 1,2 Gy.

Comme précédemment, nous avons étudié la variation Δ de ces paramètres en évaluant la différence entre la valeur d'arrivée (A) et la valeur de départ (0) en termes de valeurs absolues (Δ), mais aussi en termes de pourcentages (δ). Une moyenne (Δ_m et δ_m) est prise de chaque paramètre pour les valeurs des deux énergies. ΔD_{max} et ΔV_{95} sont calculées de la même façon que précédemment.

$$\Delta V_{2.1} = |(V_{2.1}(A) - V_{2.1}(0))|$$
 Eq 4.5

$$\delta D_{\max} = \left(\frac{|D_{\max}(A) - D_{\max}(0)|}{D_{\max}(0)}\right) \times 100$$
 Eq 4.6

$$\delta V_{95} = \left(\frac{|V_{95}(A) - V_{95}(0)|}{V_{95}(0)}\right) \times 100$$
 Eq 4.7

$$\delta V_{2.1} = \left(\frac{|V_{2.1}(A) - V_{2.1}(0)|}{V_{2.1}(0)}\right) \times 100$$
 Eq 4.8

Figure 4.6 : Dosimétrie 3D conformationnelle dans Eclipse sur le fantôme thoracique et simulation du mouvement respiratoire.

4.3.2. Résultats et analyse

Les moyennes des résultats obtenus pour les deux énergies en termes absolus (Δ_m) et en termes de pourcentages (δ_m) de la variation de la dose maximale, du volume du PTV

couvert par 95% de la dose de prescription et du volume des OAR couvert par 1,2 Gy sont données dans des tableaux et sous forme de diagrammes statistiques (Figure 4.7, Figure 4.8, Figure 4.9 et Figure 4.10).

Tableau 4.5 : Moyennes des variations des données dosimétriques en termes absolus des résultats obtenus pour le fantôme thoracique, $\Delta_m D_{max}$ étant en Gy, $\Delta_m V_{95}$ et $\Delta_m V_{1.2}$ sont en pourcentage et d en mm.

		PT	Ϋ́V	C	R	PN	M	ML	OS	TA
	d	$\Delta_m D_{max}$	$\Delta_m V_{95}$	$\Delta_m D_{max}$	$\Delta_m V_{1.2}$	$\Delta_m D_{max}$	$\Delta_{m}V_{1.2}$	$\Delta_m D_{max}$	$\Delta_m D_{max}$	$\Delta_m D_{max}$
	-20	0,09	54,25	0,02	4,89	0,09	1,86	0,03	0,14	0,41
uc	-15	0,06	36,26	0,03	5,00	0,06	1,37	0,02	0,08	0,08
rati	-10	0,03	17,82	0,01	3,23	0,03	1,02	0,02	0,06	0,06
spii	-7	0,04	9,19	0,01	2,77	0,04	0,78	0,01	0,04	0,04
In	-5	0,01	4,11	0,01	1,91	0,01	0,56	0,01	0,03	0,06
	-2	0,02	1,48	0,00	0,91	0,02	0,24	0,01	0,01	0,01
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2	0,00	3,87	0,09	0,65	0,00	0,24	0,00	0,02	0,13
uc	5	0,00	3,74	0,04	2,29	0,00	0,51	0,01	0,06	0,09
atic	7	0,01	10,05	0,09	3,41	0,01	0,75	0,01	0,07	0,08
kpii	10	0,00	19,27	0,05	4,17	0,00	1,02	0,02	0,09	0,11
E	15	0,01	36,32	0,09	5,67	0,01	1,61	0,04	0,11	0,09
	20	0,01	50,35	0,21	8,06	0,01	2,45	0,06	0,13	0,11

Tableau 4.6 : Moyennes des variations des données dosimétriques en pourcentage des résultats obtenus pour le fantôme thoracique, d étant en mm.

		PT	Ϋ́	C	R	PI	M	ML	OS	TA
	d	$\delta_m D_{max}$	$\delta_m V_{95}$	$\delta_m D_{max}$	$\delta_m V_{1.2}$	$\delta_m D_{max}$	$\delta_m V_{1.2}$	$\delta_m D_{max}$	$\delta_m D_{max}$	$\delta_m D_{max}$
	-20	3,58	54,36	1,17	40,66	3,58	43,22	8,98	8,69	26,76
uc	-15	2,51	36,34	1,47	41,45	2,51	31,93	6,91	5,14	5,05
ati	-10	1,33	17,86	0,53	26,53	1,33	23,89	6,15	3,61	3,53
spiı	-7	1,53	9,21	0,50	22,60	1,53	18,19	4,06	2,74	2,78
In	-5	0,57	4,12	0,35	15,61	0,57	13,20	2,10	1,93	4,14
	-2	0,83	1,48	0,25	7,50	0,83	5,56	2,56	0,81	0,81
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2	0,12	3,87	4,56	4,49	0,12	8,55	1,45	1,11	8,43
uc	5	0,08	3,74	1,78	15,45	0,08	18,10	2,88	3,72	5,59
atic	7	0,48	10,06	4,54	23,12	0,48	26,63	3,71	4,47	5,19
xpiı	10	0,08	19,29	2,51	28,09	0,08	36,18	5,46	5,58	7,31
Ey	15	0,22	36,35	4,38	38,07	0,22	57,28	12,70	6,82	5,53
	20	0,48	50,39	9,88	54,14	0,48	86,65	18,56	8,01	7,42

Figure 4.7 : Diagramme statistique de la moyenne des résultats des deux énergies des variations de la dose maximale du PTV en fonction de d (en mm) pour les deux phases de respiration.

Figure 4.8 : Diagramme statistique de la moyenne des résultats des deux énergies des variations de V_{95} du PTV en fonction de d (en mm) pour les deux phases de respiration.

Figure 4.9 : Diagramme statistique de la moyenne des résultats des deux énergies des variations de la dose maximale des OAR en fonction de d (en mm) pour les deux phases de respiration.

Figure 4.10 : Diagramme statistique de la moyenne des résultats des deux énergies des variations de $V_{1,2}$ des OAR en fonction de d (en mm) pour les deux phases de respiration.

4.4. Simulation du mouvement respiratoire dans des plans de traitement réels

Dans cette partie nous avons évalué l'impact dosimétrique sur des plans réels, pour cet objectif, nous avons sélectionné vingt plans de patients ayant bénéficié d'un traitement de radiothérapie externe, les pathologies choisies concernent les cancers de poumon, les lymphomes non hodgkinien (LNH), la maladie d'Hodgkin (HDK) et le cancer de l'œsophage. Le volume cible (PTV) est localisé dans la cage thoracique et traité par la technique tridimensionnelle conformationnelle, le calcul est effectué avec le AAA avec un objectif dosimétrique celui de couvrir le PTV par la 95% de la dose de prescription (Figure 4.11).

Figure 4.11 : Fenêtre Eclipse du patient 4 montrant la balistique de traitement, la couverture du PTV par la 95% de la dose de prescription et l'histogramme HDV.

Tableau 4.7 : Données relatives aux plans de traitement des vingt patients, FX fait référence au nombre de faisceaux et ST et DY font référence au MLC statique et dynamique.

Patient	Localisation	FX	MLC	Dose (Gy)	Energie (MV)
P1	Poumon	5	ST+DY	46	6 et 18
P2	LNH	3	ST	30	6 et 18
P3	Poumon	4	ST	30	6 et 18
P4	Poumon	2	ST	30	6 et 18
P5	Poumon	5	ST+DY	30	6 et 18
P6	HDK	8	DY	20	6 et 18
P7	HDK	2	ST	30	6
P8	Poumon	2	ST	10	6 et 18
P9	Poumon	4	ST	25	18
P10	Poumon	3	ST+DY	30	6 et 18
P11	HDK	2	ST	30	18
P12	HDK	3	SR	6	6
P13	Esophage	6	ST+DY	14,4	6
P14	HDK	2	ST	4	6
P15	Poumon	3	ST	30	6 et 18
P16	Poumon	2	DY	30	6
P17	Poumon	6	ST	10	18
P18	HDK	2	SR	30	6 et 18
P19	Poumon	3	ST	12	6
P20	Poumon	3	ST+DY	30	6 et 18

4.4.1. Simulation du mouvement respiratoire dans Eclipse

A partir des coordonnées initiales de l'isocentre de chaque plan, le mouvement respiratoire a été simulé en variant les coordonnées de ce dernier dans les directions Y et Z, l'augmentation ou la diminution d selon la phase respiratoire a été modifiée jusqu'à 2 cm, et les variations de quelques paramètres dosimétriques ont été relevées notamment la dose maximale D_{max} pour le PTV, la moelle (ML) et l'œsophage (PH), V₉₅ pour le PTV qui représente le volume de ce dernier couvert par 95% de la dose de prescription, V₃₀ et V₂₀ représentant les volumes du cœur et du poumon respectivement recevant 30 Gy et 20 Gy.

Toujours de la même manière que précédemment, nous avons déterminé les variations des paramètres dosimétriques entre le point de dé part (0) et le point d'arrivée (A) en valeurs absolues (Δ) et en relatif (δ). Une moyenne est prise pour chaque déplacement sur les résultats des vingt patients (Δ_m et δ_m). ΔD_{max} et ΔV_{95} sont calculées de la même façon que précédemment, δD_{max} et δV_{95} sont indiqués par les équations Eq 5.6 et Eq 5.7. ΔV_{20} , δV_{20} , ΔV_{30} et δV_{30} sont calculés de la même manière que dans les équations Eq 4.5 et Eq 4.8 en remplaçant 2.1 par 20 ou 30.

4.4.2. Résultats et analyse

Les moyennes des variations en termes absolus (Δ) et en relatif (δ) des données dosimétriques des vingt patients sont indiquées dans des tableaux et sous forme de diagrammes statistiques (Figure 4.12, Figure 4.13, Figure 4.14 et Figure 4.15).

		PT	V	CR	PM	ML	PH
	d (mm)	$\Delta_m D_{max}$	$\Delta_{\rm m} V_{95}$	$\Delta_m V_{30}$	$\Delta_m V_{20}$	$\Delta_m D_{max}$	$\Delta_m D_{max}$
	-20	0,48	20,78	10,18	3,49	3,33	1,09
	-15	0,37	13,75	7,11	2,62	2,82	0,92
uo	-10	0,26	7,50	4,24	1,71	2,50	0,73
rati	-5	0,13	3,17	1,82	0,87	1,90	0,38
spiı	-4	0,10	2,03	1,40	1,01	1,56	0,31
In	-3	0,08	1,27	1,04	0,79	1,24	0,22
	-2	0,06	0,82	0,71	0,64	0,92	0,15
	-1	0,03	0,41	0,28	0,15	0,55	0,10
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,04	0,38	0,33	0,22	0,48	0,04
	2	0,07	0,77	0,59	0,48	0,90	0,12
uc	3	0,11	1,36	0,82	0,62	1,26	0,16
atic	4	0,16	1,93	1,21	0,78	1,70	0,22
kpiı	5	0,21	2,62	1,38	0,93	2,00	0,25
Ey	10	0,40	7,28	2,59	1,71	3,05	0,45
	15	0,51	12,67	3,77	2,46	3,52	0,53
	20	1,51	19,72	4,41	2,93	3,89	0,58

Tableau 4.8 : Moyennes des variations des données dosimétriques des résultats obtenus pour les vingt patients, $\Delta_m D_{max}$ étant en Gy, $\Delta_m V_{95}$, $\Delta_m V_{20}$ et $\Delta_m V_{30}$ sont en pourcentage.

		PT	V	CR	PM	ML	PH
	d (mm)	$\delta_m D_{max}$	$\delta_m V_{95}$	$\delta_m V_{30}$	$\delta_m V_{20}$	$\delta_m D_{max}$	$\delta_m D_{max}$
	-20	1,89	23,37	1287,10	20,41	20,55	5,86
	-15	1,52	15,49	867,39	16,73	16,77	4,40
uo	-10	1,01	8,46	480,00	11,38	14,73	3,19
rati	-5	0,58	3,62	176,45	5,76	11,92	1,61
spiı	-4	0,42	2,33	130,49	7,88	10,08	1,44
In	-3	0,33	1,48	90,63	6,71	8,23	1,13
	-2	0,22	0,96	53,55	5,59	6,14	0,66
	-1	0,14	0,48	25,75	0,89	3,48	0,64
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,17	0,44	24,91	1,22	3,14	0,21
	2	0,32	0,88	32,37	3,26	6,22	0,79
uc	3	0,45	1,54	35,93	4,06	8,91	0,66
atic	4	0,66	2,16	43,69	4,96	12,44	0,96
kpir	5	0,85	2,91	46,31	6,15	14,59	1,18
Ey	10	1,61	7,98	69,35	11,38	23,07	1,90
	15	2,17	13,91	79,41	15,36	26,26	2,48
	20	2,78	21,66	83,65	18,11	28,63	2,83

Tableau 4.9 : Moyennes des variations en pourcentage des données dosimétriques des résultats obtenus pour les vingt patients.

Figure 4.12 : Diagramme statistique de la moyenne des variations de la dose maximale du PTV en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration.

Figure 4.13 : Diagramme statistique de la moyenne des variations de V_{95} du PTV en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration.

Figure 4.14 : Diagramme statistique de la moyenne des variations de V_{30} pour le cœur et V_{20} pour le poumon en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration.

Figure 4.15 : Diagramme statistique de la moyenne des variations de la dose maximale pour la moelle et l'œsophage en fonction de d (en mm) des résultats obtenus pour les vingt patients pour les deux phases de respiration.

4.5. La ventilation pulmonaire et le changement de la densité

Cette partie de notre travail consiste à évaluer l'impact dosimétrique du changement de densité pulmonaire entre les deux phases du cycle respiratoire, pour cela un fantôme hétérogène, que nous appelons fantôme H, simulant une cage thoracique a été créé dans Eclipse. Le fantôme est de dimensions 30x30x22 cm³ et composé des structures suivantes :

- Le tissu adipeux de densité massique 0,92 g/cm³ (-98,28 UH).
- La structure osseuse composée de vertèbre et de côtes, de densité massique 1,85 g/cm³ (1355,38 UH).
- \circ Le cœur de densité massique 1,05 g/cm³ (33,62 UH).
- La région pulmonaire de densité massique en inhalation 0,26 g/cm³ (-700 UH) et 0,504 g/cm³ (-480 UH) en exhalation.
- Le volume cible PTV de forme cylindrique, de dimensions 2x2x5 cm³, situé à 8 cm de profondeur baignant dans la région pulmonaire et de densité massique 1 g/cm³ (0 UH).

Figure 4.16 : Création du fantôme H dans Eclipse.

4.5.1. Planification dans Eclipse et changement de la densité

Des plans de traitement de prescription de dose de 40 Gy ont été créés dans Eclipse en utilisant quatre techniques différentes à savoir ; un faisceau direct T_1 (10x10 cm²), la technique conformationnelle T_2 (six faisceaux), l'IMRT T_3 (six faisceaux) et le VMAT T_4 (un arc). Dépendamment de la technique, les plans ont été calculés avec les énergies 6MV et 18MV et en utilisant les deux algorithmes le AAA et Acuros XB.

Le fantôme H est supposé simulé un patient dont les coupes CT ont été acquises en phase d'inspiration, de ce faite les plans ont été calculés initialement avec une densité pulmonaire en phase d'inhalation, le mode de normalisation consiste à délivrer les 40 Gy au centre géométrique du PTV (P) ou à couvrir le PTV par 95% de la dose de prescription. Pour le même nombre d'UM, le calcul est relancé en changeant la densité pulmonaire en une valeur correspondante à la phase d'exhalation, la dose au point P D(P) ainsi que quelques paramètres dosimétriques donnés ou déduits à partir de l'histogramme HDV sont évalués après le changement de la densité.

Figure 4.17 : Planification VMAT dans Eclipse.

4.5.2. Résultats et analyse

La variation Δ de chaque paramètre dosimétrique est calculée en termes de pourcentage, elle est déterminée à partir des valeurs d'inspiration (V_I) et d'expiration (V_E) :

$$\Delta = ((V_{\rm E} - V_{\rm I})/V_{\rm I}) \times 100 \qquad \text{Eq 4.9}$$

Les données dosimétriques et leurs variations entre les deux phases d'inspiration et d'expiration sont présentées dans tableaux. Des diagrammes statistiques sont tracés mettant en évidence la variation de chaque paramètre dosimétrique dépendamment de la technique planifiée (Figure 4.18, Figure 4.19, Figure 4.20 et Figure 4.21).

Tableau 4.10 : Valeurs des paramètres dosimétriques obtenues pour les phases d'inspiration et d'expiration relatives aux quatre techniques. D₉₅ est la dose reçue par 95% du volume du PTV, D_{moyCR} est la dose moyenne du cœur, D_{moyOS} est la dose moyenne de l'os et D_{moyTA} est la dose moyenne du tissu adipeux.

			Inspir	ration			Expi	ration	
		A	AA	Acur	os XB	A	AA	Acur	os XB
		6MV	18MV	6MV	18MV	6MV	18MV	6MV	18MV
	D(P)(Gy)	40,00	40,00	40,00	40,00	38,93	41,48	38,81	40,55
	D ₉₅ (Gy)	36,51	34,84	36,86	33,48	36,89	37,64	37,07	36,92
T1	D _{moyCR} (Gy)	2,54	3,43	2,72	3,33	2,53	3,34	2,65	3,02
	D _{moyOS} (Gy)	0,48	0,48	0,44	0,44	0,44	0,48	0,44	0,44
	D _{moyTA} (Gy)	1,04	1,08	1,04	0,96	1,00	1,04	0,96	0,92
	D(P)(Gy)	40,00	40,00	40,00	40,00	36,75	40,62	36,74	39,99
	D ₉₅ (Gy)	35,72	34,20	36,65	33,40	34,73	36,32	35,42	36,05
T2	D _{moyCR} (Gy)	9,64	10,39	9,47	9,72	8,98	10,19	8,85	9,42
	D _{moyOS} (Gy)	0,96	0,99	0,92	0,91	0,92	0,95	0,89	0,88
	D _{moyTA} (Gy)	0,90	0,92	0,92	0,88	0,86	0,88	0,88	0,85
		61	ЛV	61	ЛV	61	ЛV	61	ЛV
	D(P)(Gy)	40	,74	40	,48	37	',51	37	,35
	D ₉₅ (Gy)	38	,01	39	,11	37	',47	37	,24
Т3	D _{moyCR} (Gy)	11	,26	10	,65	10	,46	9,	,93
	D _{moyOS} (Gy)	1,	22	0,	,72	1,	,16	1,	.09
	D _{moyTA} (Gy)	0,	96	1,	,42	0,	,92	0,	.92
	D(P)(Gy)	40	,81	40	,64	37	,70	37	,63
	D ₉₅ (Gy)	38	,20	38	5,69	37	,27	37	,28
T4	D _{moyCR} (Gy)	7,	36	7,	,20	6,	,88	6,	,72
	D _{moyOS} (Gy)	0,	88	0,	,84	0,84		0,80	
	D _{moyTA} (Gy)	0,	80	0,	,80	0,	,80	0,	76

		A	AA	Acur	os XB	
		6MV	18MV	6MV	18MV	
	$\Delta D(P)$	-2,68	3,69	-2,98	1,375	
	ΔD_{95}	1,05	8,01	0,56	10,28	
T1	ΔD_{moyCR}	-0,43	-2,71	-2,54	-9,20	
	ΔD_{moyOS}	-8,33	0,00	0,00	0,00	
	ΔD_{moyTA}	-3,85	-3,70	-7,69	-4,17	
	$\Delta D(P)$	-8,14	1,54	-8,16	-0,03	
	ΔD_{95}	-2,77	6,21	-3,35	7,92	
T2	ΔD_{moyCR}	-6,79	-1,96	-6,49	-3,07	
	ΔD_{moyOS}	-4,05	-3,83	-3,79	-3,31	
	ΔD_{moyTA}	-4,99 -4,66		-4,56	-3,40	
		61	ЛV	61	МV	
	$\Delta D(P)$	-7	,91	-7	,71	
	ΔD_{95}	-1	,43	-4,78		
T3	ΔD_{moyCR}	-7	,10	-6	,76	
	ΔD_{moyOS}	-5	,16	51	,60	
	ΔD_{moyTA}	-4	,36	-35	5,40	
	$\Delta D(P)$	-7	,60	-7	,43	
	ΔD_{95}	-2	,44	-3	,63	
T4	$\Delta \overline{D_{moyCR}}$	-6	,52	-6	,67	
	ΔD_{moyOS}	-4	,55	-4	,76	
	ΔD_{moyTA}	0	,00	-5	,00	

Tableau 4.11 : Valeurs des variations en termes de pourcentage des paramètres dosimétriques pour les phases d'inspiration et d'expiration relatives aux quatre techniques.

Figure 4.18 : Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec le AAA et l'énergie 6MV.

Figure 4.19 : Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec le AAA et l'énergie 18MV.

Figure 4.20 : Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec Acuros XB et l'énergie 6MV.

Figure 4.21 : Diagramme statistique des variations des paramètres dosimétriques entre les deux phases d'inspiration et d'expiration dépendamment de la technique planifiée calculée avec Acuros XB et l'énergie 18MV.

4.6. Discussion

L'évaluation de l'impact dosimétrique des conséquences du mouvement respiratoire en radiothérapie externe pour les cancers thoraciques a fait l'objectif de plusieurs travaux de recherches, en général, les études consistent à comparer les différentes modalités de traitement, à savoir la respiration libre, la respiration bloquée et l'asservissement respiratoire [96 101]. Dans notre étude nous avons abordé le problème de la respiration sous deux aspects ; la mobilité de la cage thoracique et le changement de la densité pulmonaire, deux phénomènes conséquents du cycle respiratoire.

Le mouvement respiratoire a été d'abord modélisé sur Eclipse dans des fantômes hétérogènes simulant la cage thoracique avant d'entamer l'évaluation sur des plans réels de patients. La mobilité de la région a été simulée de deux façons pour les fantômes hétérogènes, une fois en variant les coordonnées de l'isocentre et une autre fois en variant le volume total du fantôme, quant aux plans des patients le déplacement de l'isocentre a été considéré.

En clinique, la validation d'un plan de traitement est basée sur des critères dosimétriques qui définissent des contraintes de dose relatives aux volumes cible et aux OAR. Le choix des paramètres dosimétriques dans notre étude est inspiré à partir de ces contraintes. Le guide des procédures de radiothérapie externe 2007 recommande une dose maximale de 45 Gy pour la moelle épinière, un volume V_{20} inférieur à 35% pour le poumon et une dose maximale de 40 Gy pour le l'œsophage, quant au cœur une dose maximale de 35 Gy est recommandée et un volume V_{30} inférieur à 20% est considérée dans certains cancers thoraciques [63, 102].

La notion d'effets secondaires déterministes, après un traitement par rayonnements, indique l'apparition de lésions à partir d'une dose-seuil (variable selon le tissu ou l'organe). À titre d'exemple ; à long terme (effets tardifs), le risque pour le poumon étant la fibrose, une myélite radique pour la moelle épinière, une dysphagie pour l'œsophage et des troubles du rythme cardiaque pour le cœur [103].

Les résultats des variations des paramètres dosimétriques sur les trois fantômes hétérogènes ont montré une variation relativement faible de la dose maximale du PTV, la plus grande valeur étant de 1%, pour le volume V_{95} on a une variation de 4% dès les 5 mm, 20% à 1 cm et plus de 50% à 2 cm. Par ailleurs pour les OAR les variations sont significatives dès les premiers millimètres.

Le fantôme thoracique a révélé une variation faible de la dose maximale du PTV, jusqu'à 1% à 1 cm et un maximum de 3,5% est atteint à 2 cm. La variation du volume V_{95} montre une variation symétrique avec une valeur de plus de 3% à 5 mm et on observe une variation de plus de 50% à 2 cm. Quand aux OAR les variations prennent de l'ampleur à partir de 5 mm avec des valeurs de plus de 15% pour le cœur et le poumon.

Les résultats de la simulation du mouvement respiratoire sur les vingt patients considérés, ont montré, en terme absolu, une variation non significative de la dose maximale du PTV par contre, plus de 7% de variation du volume V_{95} à 1 cm. Pour les OAR la variation est significative à partir de 1 cm avec plus de 4% pour le volume V_{30} du cœur et plus de 3 Gy pour la dose maximale de la moelle. La variation importante de V30 est influencée par les résultats du patient 10 dont la valeur est passée de 0,29% à 17% en inspiration, et de 0,29% à 0% en expiration soit une variation de 100%.

Sur les trois résultats, on constate une variation modérée de la couverture du PTV, le changement est remarquable à partir de 1 cm, en revanche, les OAR ont été affectés par des variations importantes dès les premiers millimètres dû à leur proximité du volume cible.

L'étude de l'impact dosimétrique dû au changement de la densité pulmonaire a été effectuée dans Eclipse en supposant que les coupes CT acquises du patient (modélisé par le fantôme H) en phase d'inspiration mais que l'irradiation est effectuée en phase d'expiration. Le calcul par les deux algorithmes et les différentes techniques ont montré des valeurs de variations des paramètres dosimétriques variés sans afficher une linéarité par rapport à un paramètre (énergie ou technique par exemple), néanmoins les plus grandes valeurs sont constatées pour la technique d'IMRT et avec un calcul effectué avec Acuros XB. Le changement de densité à impacté considérablement et d'une manière aléatoire la distribution de dose pour le volume cible et les OAR.

A l'issue de ces quatre applications, nous constatons un impact dosimétrique important conséquent du mouvement respiratoire en quantifiant la variation des paramètres dosimétriques dont la validation d'un plan de traitement peut en dépendre. Le mouvement a été considéré que selon deux directions (excepté pour le fantôme thoracique), ce qui laisse supposer que l'impact sera plus important, en outre si on additionne les conséquences des deux aspects (mouvement et changement de densité) la dose au volume cible et aux OAR seront affectées en particulier à partir d'un déplacement de 5 mm.

CONCLUSION GÉNÉRALE

Notre travail a porté sur le traitement des tumeurs thoracique en radiothérapie externe par des faisceaux de photons de hautes énergies, nous avons essayé d'aborder et de traiter la problématique sous différents angles en tenant compte des différents paramètres qui peuvent influencer le traitement, ces paramètres découlent de l'aspect complexe de la région thoracique et des limites de l'algorithme de calcul de dose.

Bien que notre intérêt dans cette étude se soit focalisé sur l'aspect dosimétrique d'un traitement en radiothérapie externe relatif aux tumeurs thoraciques, mais globalement, nous avons séparé notre travail en deux grands volets. Dans un premier temps, nous avons évalué le AAA en milieux hétérogènes afin de traiter à la fois l'une des caractéristiques de la cage thoracique qui implique son hétérogénéité en particulier la présence massive d'une faible densité constituant les poumons, mais aussi dans un but d'étudier la réponse d'un algorithme de calcul de dose en milieux hétérogènes complexes, un algorithme fortement utilisé dans les services de radiothérapie en Algérie. Par la suite nous nous sommes intéressés à la mobilité de la cage thoracique et au changement de la densité pulmonaire, et à leur impact dosimétrique conséquent du cycle respiratoire.

Partant du principe que chaque algorithme de calcul de dose possède ses limites, nous avons effectué des mesures dans des fantômes hétérogènes simulant la cage thoracique par le biais de détecteurs dédiés à la dosimétrie in vivo, et nous avons comparé ces mesures aux calculs du AAA. Nous avons effectué deux séries de mesures l'une en utilisant une géométrie simple et avec un seul point de mesure à chaque fois, et dans l'autre série nous avons varié les paramètres des faisceaux et avions pris plusieurs points de mesures en profondeur. La calibration des détecteurs en termes de courbes de calibration nous a permis de remonter à plusieurs points de mesures, par ailleurs, nous avons constaté que la calibration dans un fantôme hétérogène a influencé les résultats de la première partie, nous avons obtenu des profils de dose du 6MV et 18MV avec des réponses qui s'inversent, entre ces deux énergies, à l'extrémité postérieure des fantômes de calibration, engendrant un rayonnement rétrodiffusé pour le 6MV.

Les déviations obtenues entre la mesure et le calcul du AAA dans les deux parties expérimentales indiquent majoritairement des déviations acceptables à l'exception de quelques points de mesures, et une sous estimation de la dose du AAA en milieux hétérogènes avec la présence d'une faible densité équivalente à celle du poumon.

A l'issus de ces deux parties expérimentales, nous estimons que l'évaluation d'un algorithme de calcul de dose ne peut se limiter qu'à une géométrie simple à la fois du faisceau et du fantôme, des écarts peuvent apparaître pour des situations plus complexes (simulation du mouvement respiratoire, techniques innovantes...etc). Une caractérisation de l'algorithme de calcul de dose incluant son évaluation et sa validation en variant les conditions de mesure est d'une importance capitale dans un service de radiothérapie.

Le deuxième volet a été consacré à la simulation du mouvement respiratoire. Principalement, nous avons deux conséquences de la ventilation pulmonaire; le déplacement et le changement de la densité, nous avons étudié l'impact dosimétrique des deux conséquences séparément. La simulation s'est faite exclusivement sur Eclipse par la création de fantômes hétérogènes et sur des plans réels de patients.

La simulation du déplacement de la cage thoracique a globalement indiqué une variation modérée des paramètres dosimétriques de la couverture du volume cible, néanmoins la proximité des OAR a influencé les doses reçues par ces derniers en particulier à partir d'un déplacement égal à 5 mm. D'un autre coté, le changement de la densité et le calcul avec le AAA et Acuros XB pour les différentes techniques de traitement a montré des déviations importantes, la plus grande est relative à la technique d'IMRT.

L'addition de ces deux conséquences relatives au mouvement respiratoire pour un traitement en radiothérapie externes et pour des tumeurs thoraciques peuvent mener à des dépassements des doses de tolérances aux OAR qui peuvent mener à l'apparition d'autres cancers ou à d'autres pathologies (problème cardiaque pour le cœur, fibrose ou insuffisance respiratoire pour le poumon, paralysie pour la moelle...etc).

A l'issue de ce travail, nous constatons que l'impact dosimétrique du mouvement respiratoire est plus important que celui de l'hétérogénéité. En effet, les algorithmes de calcul de dose ne cessent de se développer pour prendre en charge de mieux en mieux l'aspect de la diversification de l'architecture tissulaire. Par ailleurs, il est plus difficile de prendre en considération le mouvement respiratoire en radiothérapie externe, cela demande une coopération du patient et parfois plusieurs séances de préparation même pour appliquer les techniques les plus innovantes de l'asservissement respiratoire. En Algérie, le mouvement respiratoire et souvent non pris en charge pour les traitements thoraciques en radiothérapie, nous espérons que ce modeste travail attira l'attention afin d'améliorer les techniques de traitement des tumeurs thoracique dans notre pays.

REFERENCES

- 1. Abdeslame, H., Abid, M., Afiane, M., et al., "Plan national cancer 2015 2019", nouvelle vision stratégique centrée sur le malade, Octobre 2014, 13-19.
- Kashmiri, L., Chopra, P.L., Christopher, K., et al., "Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities", Therapeutic radiology and oncology 2018;2:28, 1-12.
- Carrasco, P., Jornet, N., Duch, M.A., et al., "Comparaison of dose calculation algorithm in phantom with lung equivalent heterogeneities under conditions of lateral electronic disequilibrum", Med. Phys. 31, Am. Assoc 2004, 2899-2911.
- 4. Yusuke, T., Manabu, N., Mitsuhiro, N., et al., "Dosimetric comparison of Acuros XB, AAA and XVMC in stereotactic body radiotherapy for lung cancer", Med. Phys. 41, Am. Assoc 2014, 1-9.
- 5. El Barouky, J., "Evaluation des algorithmes de calcul de dose pour les faisceaux d'électrons utilisés en radiothérapie : Comparaison aux mesures par films radiochromiques", Ingénierie biomédicale, Université Paris Sud 2012, 40-162.
- 6. Ojala, J.J., Kapanen, M.K., Hyodynmaa, S.J., et al., "Performance of dose calculation algorithms from three generations in lung SBRT: Comparaison with full Monte Carlo-based dose distributions", Journal of applied clinical medical physics, volume 15, Number 2 2014, 4-17.
- 7. Yeh, F.J., "Comparison of AAA and Acuros XB dose calculation algorithms for SRS", Graduate school of Duke University 2020, 1-42.
- 8. Paulu, D., Alaei, P., "Evaluation of dose calculation accuracy of treatment planning systemes at hip prothesis interfaces", Journal of applied clinical medical physiscs, American association of physicists in medecine 2017, 9-14.
- Soltys, B., Aubignac, L., Périchon, N., et al., "Etude du différentiel volumétrique et géométriques des différents lobes pulmonaires entre blocage volentaire de la respiration et respiration libre ", Cancer Radiothérapie, Volume 18, Issue 5-6, Octobre 2014, 620 p.
- 10. Babu Alagar, A.G., Kadirampatti Mani, G., Karunakaran, K., "Percentage depth dose calculation accuracy of medel based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry", Journal of applied clinical medical physics, Vol 17, Nà 1 2016, 132-141.
- 11. Abdul Ghani, M.N.H., Ng, W.L., "Management of respiratory motion for lung raditherapy : a reviw", Journal of Xiangya Medicine 2018, 1-13.

- 12. Wang, Y., Bao, Y., Zhang, L., et al., "Assessment of respiration-induced motion and its impact on treatment outcume for lung cancer", BioMed Research International, Vol 2013, 1-8.
- 13. Keall, P.J., Mageras, G.S., Balter, J.M., "The management of respiratory motion in radiation oncology", AAPM Report NO.91 2006, 1-57.
- Emert, F., Missimer, J., Eichenberger, P.A., et al., "Enhanced deep-inspiration breath hold superior to high-frequency percussive ventilation for respiratory motion mitigation : a physiology-driven, MRI-guided assessment toward optimized lung cancer treatment with proton therapy", Frontiers in oncology, Vol 11, April 2021, 1-15.
- 15. Kuo, C.C., Chang, C.C., Cheng, H.W., et al., "Impact of respiratory motion in dosimetric and clinical advantages for adjuvant left-sided breast raditherapy", Journal of radiation research, Vol.62 No.6 2021, 1105-1113.
- 16. Song, T., Suh, C.O., Lee, I., et al., "The effect of respiratory motion on forword intensity modulated radiotherapy for breast cancer", Technology in cancer research and treatment, Volume 7, Number 3, June 2008, 207-213.
- 17. Sarudis, S., Karlsson, A., Nyman, J., et al., "Dosimetric effects of respiratory motion during stereotactic body radiation therapy of lung tumors", Acta oncologica, Vol. 61 NO. 8 2022, 1004-1011.
- 18. Ficheux, G., "Anatomie du thorax", Université catholique de Lille, Faculté de médecine maïeutique, Laboratoire d'anatomie, 3-67.
- 19. Ficheux, G., "Anatomie du rachis", Université catholique de Lille, Faculté de médecine maïeutique, Laboratoire d'anatomie, 3-21.
- 20. Colonne vertébrale, Javier 2021 : https://fr.wikipedia.org/wiki/Colonne_vertébrale#:~:text=Elle%20présente%20deu x%20courbures%20primaires,des%20rachis%20cervical%20et%20lombaire.
- 21. Marchand, E. et Decramer, M., "Les muscles respiratoires", La lettre du pneumologue-Vol. II N°6 Décembre 1999, 214-215.
- 22. Boukabache, L., "Muscles moteurs de la ventilation", Faculté de médecine CHU de Constantine, Laboratoire d'anatomie 2016, 6-7.
- 23. Ficheux, G., "Anatomie du thorax, Anatomie descriptive des parois et généralités sur les viscères", PACES-UE5, Université catholique de Lille, Faculté de médecine maïeutique, Laboratoire d'anatomie, 2019-2020, 8-9.
- 24. THORAX, squelette et articulations 2019 : http://univ.encyeducation.com/uploads/1/3/1/0/13102001/anatomie2an-thorax2019.
- 25. Medicine key, Fastest medecine insight engine, Système digestif : https://clemedicine.com/systeme-digestif-2/.

- 26. Darke, R.L., Vogl, W., Mitchell, A.W.M. et al., "Anatomie pour les étudiants", Elsevier Masson SAS 2006, 2-192.
- 27. L'appareil respiratoire : http://compusport.univ-lille2.fr/fabre/Varepos_fabre.
- 28. Physiologie respiratoire : http://pneumocourlancy.fr/popup/physiologie-.
- 29. Launois-Rolinat, S. "Ventilation pulmonaire : mécanique ventilatoire", physiologie du système respiratoire, Faculté de médicine de Grenoble, 2006/2007, 9 p.
- 30. Physiologie de la respiration:https://sofia.medicalistes.fr/spip/IMG/pdf/physiologie _de_la_respiration_pcem_1.
- 31. Mécanique ventilatoire : http://univ.ency-education.com/uploads/1/3/1/0/13102001/ Physiologie2an-mecanique_ventilatoire.
- 32. Lafarge, S.I. "Principes, indications et mise en œuvre pratique de l'oxygénothérapie chez les carnivores domestiques ", Ecole nationale vétérinaire d'Alfort, La faculté de médecine de Créteil, 2001, 7 p.
- Villard, P.F., "Simulation du mouvement pulmonaire pour un traitement oncologique", Traitement du signal et de l'image [eess.SP], Université Claude Bernard – Lyon I, 2006, 27 p.
- 34. Physiologie de la respiration : https://docplayer.fr/19959237-Physiologie-de-la-respiration.html.
- 35. Fagevik Olsén, M., Lindstrand, H., Lind Broberg, J., et al., "Measuring chest expansion; A study comparing two different instrucions", Informa healthcare, Advances in radiotheapy 2011; 13, 128-131.
- 36. İleez Memetoglu, Ö., Butun, B., Sezer, İ., "Chest expansion and modified Schober measurement values in a healthy, adult population", Turkish league against rheumatism 2016, Arch Rheumatol 2016;31(2), 145-148.
- Reheem, A.H., Dakhil, H.R., Jabbar, M.T., "Reference range of chest expansion in healthy adult linving in al-Muthanna Governorate", Medico-legal Update, October-December 2020, Vol.20, No.4, 1-2.
- 38. Gouilly, P., Reggiori, B., Louis Gnos, P., et al., "À propos de la mesure de l'ampliation thoracique", Kinesitherapie la revue, 2009;(88), 51-53.
- 39. Debouche, S., Pitance, L., Rbert, A., et al., "Reliability and reproducibility of chest wall expansion measurement in young healthy adults", Journal of manipulative and physiological therapeutics 0161-4754, 2016, 1-4.
- 40. Moll, J.M.H. et Wright, V, "An objective clinical study of chest expansion", Ann. Rheum. Dis. (1971), 31, 1, 2-3.

- 41. Craighero, S., "Étude de faisabilité d'acquisition IRM dynamique du diaphragme au cours du cycle respiratoire", Université Joseph Fourier, Octobre 2002, 3-21.
- 42. Batin, E., "Influence de la composition chimique des tissus humains sur les dépôts de dose en hadronthérapie", Université de Caen, Basse Normandie, U.F.R de sciences, Ecole doctorale Simem 2008, 90-180.
- 43. Hadid, L., "Optimisation de la radioprotection en médecine nucléaire", Université Paris Diderot Paris7, UFR de physique, Ecole doctorale particules noyaux et cosmos ED 517 2011, 97 p.
- 44. Miola, C., "Impact de la fibrose myocardique diffuse sur la fonction ventriculaire gauche dans l'insuffisance aortique et l'insuffisance mitrale", Faculté des sciences médicales et paramédicales, Aix Marseille Université 2019, 12 p.
- 45. Dynamic thorax phantom, Mode 008A, CIRS tissue simulation & phantom technology, www.CIRSINC.com, 5 p.
- 46. Electron density phantom, Mode 062M, CIRS tissue simulation & phantom technology, www.CIRSINC.com, 2 p.
- 47. Johnston, N., "Dosimétrie interfractionnelle sur base de l'imagerie CBCT", CHU de Liège, Faculté des sciences, Département de physique 2020, 25-27.
- 48. Hubert-Tremblay, V., "Elaboration des éléments d'une simulation Monte Carlo permettant l'évaluation d'une planification de traitement en radiothérapie externe", Université Leval, Faculté des sciences et génie, Québec 2006, 2-4.
- 49. Bases physiques de radiobiologie, Institut des sciences vétérinaires, Département de préclinique, Biophysique 2021 : https://fac.umc.edu.dz/vet/Cours_Ligne/cours_20_21/Physique/SERIE5_RAY3_20-21.pdf, 1 p.
- 50. Concours agronomiques et vétérinaires, Concours A-BCPST, Epreuve argumentati on échange, <u>https://www.concours-agro-veto.net/</u>IMG/pdf_Exemple_sujet_Argum entation-Echange_Physique_2015.pdf, 3 p.
- 51. Garnier, N., "Simulation d'un accélérateur linéaire d'électrons à l'aide du code Monte Carlo PENELOPE", Université Côte d'Azur, Ecole doctorale, sciences fondamentales et appliquées, Institut de physique de Nice 2018, 59-151.
- 52. Tumeurs thoraciques, Service de chirurgie thoracique Centre Hospitalier Universitaire Vaudois : https://www.chuv.ch/fr/chirurgie-thoracique/chthome/patients-et-famille/affections-du-thorax/tumeurs-thoraciques.
- 53. Collège de cancérologie digestive, "Cancer de l'œsophage", CHU de Bordeaux Cancer, www.chu-bordeau.fr, 2013, 1 p.

- 54. Cardin-Changizi, P., "Cancer secondaire : symptômes, traitement, quelle espérance de vie ?" : https://sante.journaldesfemmes.fr/fiches-maladies/2651843-cancer-secondaire-foie-poumon-symptomes-cause-diagnostic-traitement-esperance-de-vie-pronostic/.
- 55. Le Guen, B., "Les cancers radio-induits", https://www.sfrp.asso.fr/medias/sfrp/d ocuments/ ST3-LeGuen.pdf, 6 p.
- 56. Lewandowski, C., "Cancer de l'œsophage : stades, symptômes, traitements" : https://sante.journaldesfemmes.fr/fiches-maladies/2544754-cancer-de-oesophagesymptomes-age-cause-chirurgie.
- 57. Seguin, A., Radu, D., Destable, M.D., et al, "Tumeurs malignes de la trachée", Oncologie thoracique, Springer-Verlag France 2011, 247 p.
- 58. Collège de cancérologie digestive, "Cancer de l'œsophage", CHU de Bordeaux Cancer, www.chu-bordeau.fr, 2013, 1 p.
- 59. Beilla, S., "Modélisation Monte-Carlo d'un accélérateur linéaire pour la prise en compte des densités pulmonaires dans le calcul de la dose absorbée en radiothérapie stéréotaxique", Université de Toulouse 2016, 10-24.
- 60. Fabro, R., "Modélisation d'un accélérateur linéaire clinique en vue de l'exploitation d'un accélérateur à transmission dédié au contrôle de qualité en radiothérapie", Physique médicale, Université de Grenoble Alpes, 2017, 9-12.
- 61. De Conto, C., "Evaluation dosimétrique des algorithmes implémentés dans les systèmes de planification en présence d'hétérogénéités de forte densité : cas de la sphère ORL en radiothérapie externe", Imagerie médicale, Université de Franche-Comté. Français, 2014, 26-114.
- 62. Berkani, Y., "Assurance qualité d'un algorithme de calcul de dose en radiothérapie conformationnelle", Université Saad Dahlab de Blida, Faculté des sciences, Département de physique, 2013, 32-47.
- 63. Costa, A., Gerard, J.P., et al., "Guide des procédures de radiothérapie 2007", Société Française de radiothérapie oncologique, 2007, 64 p.
- 64. Gimmarile, F., "TEP et optimisation de la radiothérapie : comment ? quels raceurs ? pourquoi faire ?", Imagerie fonctionnelle et métabolique, Médecine Nucléaire 31, 2007, 517 p.
- 65. Yang, M.C., "Optimisation des plans de traitement en radiothérapie grâce aux dernières techniques de calcul de dose rapide", Médecine nucléaire, Université Paris Sud, Paris XI, 2014, 25-29.
- 66. Varian medical system, "Manuel de référence des algorithmes de photonthérapie et d'électronthérapie Eclipse", P1011205-002-B, Finlande 2014, 17-135.

- 67. Mijnheer, B., Olszewska, A., Fiorino, C., et al., "Quality assurance of traitment planning systems practical examples for non-imrt photon beams", 2004 by ESTRO, 1-20.
- 68. St-Pierre, C, "Evaluation des impacts anatomique et dosimétrique des mouvements induits par la respiration", Faculté des sciences et de génie, Université Laval, Québec 2012, 8-19.
- 69. "User's Guide QEDTM Detector Model 1112 through 1116", Sun Nuclear corportation, Document 1112011, Rev C 10 Nov 2005.
- 70. Goyet, D., et al., "Guide pour la mise en œuvre en radiothérapie externe de l'assurance de qualité par mesures in vivo par dosimètres thermoluminescents et semi-conducteurs", Société Française De Physique Médicale, Rapport S.F.P.M n° 18-2000.
- 71. Beauvais March, H., et al., "Guide pour la pratique quotidienne de la dosimétrie in vivo en radiothérapie externe", L'Institut National du Cancer avec la collaboration, la Société Française de Physique Médicale, Autorité de Sûreté Nucléaire..Octobre 2008.
- 72. Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., et al., Radiochromic film dosimetry", AAPM-55-, Med Phys, 1998. **25**(11), 2093-115.
- 73. Bjarngard, B.E., Tsai, J.S., Rice, R.K., "Doses on the central axes of narrow 6-MV xray beams", Med Phys, 1990. 17(5), 794-9.
- 74. Ulmer, W., Harder, D., "Applications of Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning", Z. Med. Phys. 5 (1995), 25-74.
- 75. "Absorbed dose determination in external beam radiotherapy", an international code of practice for dosimetry based on standards of absorbed dose to water, technical reports series No. 398, 69-83.
- 76. "Sonde semi-conductrice de mesure in vivo T60010MP, TP0010HP, T60010L, T60010RO et T600EP à partir du numéro de série 200", Instruction d'utilisation, D215.175.01/04 fr 2015-10 Hn/Her, PTW, 6-22.
- 77. Farah, S.R., Mostaar, A., Ameri, A., et al., "Evaluation of given dose accuracy in radiation therapy of patient with breast cancer using diode in vivo dosimetry", Int J Cancer Manag, June 2021, 6-7.
- 78. Cai Xiang Soh, R., Heng Tay, G., Siang Lew, W., et al., "A depth dose study between AAA and AXB algorithm against Monte Carlo simulation using AIP CT of a 4D dataset from a moving phantom", Reports of practical oncology and radiotherapy 2 3, 2018, 413-424.
- 79. Bragg, C.M., Conway, J., 'Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning', Radiotherapy and Oncology 81, 2006, 315-323.

- Tillikainen, L., Helminen1, H., Torsti, T., et al., "A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media", Phys. Med. Biol. 53 2008, 3821-3839.
- 81. Van Esch, A., Tillikainen, L., Pyykkonen, J., et al., "Testing of the analytical anisotropic algorithm for photon dose calculation", AAPM 2006, 4130-4147.
- 82. S. Ronde, H., Hoffmann, L., "Validation of Varian's AAA algorithm with focus on lung treatments", Acta Oncologica, 2009; 48, 209-215.
- 83. Chopra, L.K., Leo, P., Kabat, C., et al., "Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities", Ther Radiol Oncol 2018; 2:28, 1-12.
- 84. Rana, S., Rogers, K., "Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes", Journal of Medical Physics, Vol. 38, No. 1, 2013, 9-14.
- 85. Rana, S., Roger, K., Pokharel, S., et al., "Acuros XB Algorithm vs. Anisotropic Analytical Algorithm: A Dosimetric Study Using Heterogeneous Phantom and Computed Tomography (CT) Data Sets of Esophageal Cancer Patients", Journal of Cancer Therapy, 2013, 4, 138-144.
- 86. Dubey, S., Bagdare, P., Ghosh, S.K., "Design and study of a heterogeneous cost effective thorax phantom for dosimetric evaluation of analytic anisotropic algorithm (AAA) and acuros XB algorithm (AXB)", International Journal of Radiology & Radiation Therapy Volume 7 Issue 2, 2020, 48-54.
- Saleh, A.M., Hassan, G.S., Elshahat, K.M., "Evaluation of Calculation Algorithms for photon Beam dose in Heterogeneous Medium", Global Journal of Physics Vol. 1, No 1, June 18, 2015, 10-17.
- 88. Da Rosa, L.A.R., Cardoso, S.C., Campos, L.T., et al., "Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry", Journal of applied clinical medical physics, Volume 11, Number1, Winter 2010, 117-126.
- 89. Fogliata, A., Nicolini, G., Clivio, A., et al., "Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media", Fogliata et al. Radiation Oncology 2011, 1-14.
- 90. Zaman, A., Kakakhel, M.B., Hussain, A., "A comparison of Monte Carlo, anisotropic analytical algorithm (AAA) and Acuros XB algorithms in assessing dosimetric perturbations during enhanced dynamic wedged radiotherapy deliveries in heterogeneous media", Journal of Radiotherapy in Practice 2018, 1-6.
- 91. Kim1, Y.L., Suh, T.S., Choe, B.Y., et al., "Dose distribution evaluation of various dose calculation algorithms in inhomogeneous media", International Journal of Radiation Research, Volume 14, No 4 October 2016, 269-277.

- 92. Singh, N., Painuly, N.K., Chaudhari, L.N., et al., "Evaluation of AAA and XVMC Algorithms for Dose Calculation in Lung Equivalent Heterogeneity in Photon Fields: A Comparison of Calculated Results with Measurements", J Biomed Phys Eng 2018; 8(3), 223-229.
- 93. Robinson, D., "Inhomogeneity correction and the analytic anisotropic algorithm", Journal of clinical medical physics, Volume 9, Number 2, Spring 2008, 1-13.
- 94. Gagné, I.M., Zavgorodni, S., "Evaluation of the analytical anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations", Journal of applied clinical medical physics, Volume 8, Number 1, Winter 2007, 33-45.
- 95. Engelsman, M., Damen, E.M., Koken, P.W., et al., "Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours", Radiotherapy and Oncology. 2001 Sep 1;60(3), 299-309.
- 96. Frazier, R.C., Vicini, F.A., Sharpe, M.B., et al., "Impact of breathing motion on whole breast raditherapy : a dosimetric analysis using avtive breathing control", Int. J. Radiation oncology biol phys, Vol 58, No. 4, 2004, 1041-1047.
- 97. Reboul, F., Mineur, L., Paoli, J.B., et al., "Radiothérapie thoracique et contrôle de la respiration : perspective actuelle", Cancer radiothérapie 6, 2002, 135-139.
- 98. Kuo, C.C., Chang, C.C., Cheng, H.W., et al., "Impact of active breathing control deep inspiration breath hold (ABC-DIBH) on the dose to surrounding normal structures in tangencial field left breast raditherapy", Therapeutic radiology and oncology, 2020, 1-11.
- 99. Lorchel, F., "Etude de mobilité organique et impact dosimétrique de l'asservissement respiratoire dans la radiothérapie des cancers de l'œsophage", Institut national polytechnique de Lorraine, 56-110.
- 100. Richter, A., Sweeney, A., Baier, K., et al., "Effect of breathing motion in raditherpay of breast cancer", Strahlenther onkol, 2009, 425-430.
- 101. Morsy, M.A., Attalla, E.M., Attia, W.M., "A comparative study of 3-D conformal radiotherapy treatment plans with and without deep inspiration breath-hold technique for lefet sided breast cancer", Iranian journal of medical physics, Vol. 17 No . 2, March 2020, 90-98.
- 102. Noel, J., Antoni, D., Barillot, I., et al., "Délinéation des organes à risque et contraintes dosimétriques", Cancer radiothérapie, 2016, 3-7.
- 103. Azria, D., "Notions radiobiologiques; principaux effets secondaires", MIB-Cancérologie, Item 141 Radiothérapie-Montpellier, 9-11.

APPENDICE

A. Données relatives au chapitre 3 (partie expérimentale réalisée à Blida)

Tableau 1 : Lectures, températures et pressions en fonction des profondeurs hétérogènes pour l'énergie 6MV.

Densité		E=0	5MV, K _s	=1,006,	K _{pol} =0,9	99, K _Q =	0,994	
Densite	Z _H (cm)	$L_1(nC)$	$L_2(nC)$	$L_3(nC)$	$L_4(nC)$	$L_5(nC)$	T(°C)	P(hPa)
	5,800	18,890	18,910	18,920	18,920	18,900	21,200	1011,950
	7,900	17,830	17,810	17,810	17,820	17,820	20,600	1011,810
	10,000	16,810	16,810	16,810	16,820	16,780	20,400	1011,660
$\rho = 0,15 \text{g/cm}^3$	12,100	15,860	15,850	15,860	15,870	15,860	21,000	1011,550
	14,100	14,950	14,970	14,970	14,970	14,980	21,300	1011,450
	16,200	14,240	14,250	14,270	14,270	14,260	20,700	1011,340
	18,300	13,530	13,600	13,610	13,600	13,620	20,500	1011,310
	5,100	18,98	18,990	18,980	18,980	19,000	20,200	1011,990
	7,400	17,84	17,860	17,840	17,880	17,880	21,200	1012,150
$\rho = 0,20$ g/cm ³	9,600	16,79	16,780	16,990	16,790	16,790	20,500	1012,280
	11,900	15,76	15,750	15,780	15,770	15,790	20,400	1012,300
	14,100	14,9	14,890	14,900	14,910	14,910	21,200	1012,340
	16,200	14,08	14,090	14,100	14,100	14,100	20,400	1012,440
	18,500	13,43	13,420	13,420	13,430	13,440	20,800	1012,410
	4,400	19,240	19,230	19,230	19,230	19,240	20,500	1010,990
	5,700	18,560	18,560	18,560	18,570	18,570	20,400	1010,900
	7,000	17,860	17,840	17,860	17,880	17,840	21,100	1010,850
	8,300	17,200	17,210	17,210	17,210	17,210	21,000	1010,810
	9,600	16,590	16,590	16,610	16,620	16,600	20,300	1010,800
	10,900	15,930	15,950	15,960	15,960	15,950	20,700	1010,760
	12,200	15,460	15,470	15,470	15,480	15,480	21,200	1010,770
$\rho = 0.25 g/cm^3$	13,600	14,950	14,960	14,960	14,960	14,970	21,000	1010,740
p 0,208,0	14,900	14,480	14,470	14,480	14,480	14,490	20,500	1010,800
	16,200	14,040	14,040	14,030	14,050	14,050	20,400	1010,790
	17,500	13,600	13,620	13,620	13,630	13,620	21,100	1010,780
	18,800	13,240	13,240	13,250	13,250	13,270	21,300	1010,750
	20,100	12,870	12,890	12,890	12,890	12,890	20,500	1010,700
	21,300	12,560	12,560	12,560	12,580	12,570	20,400	1010,750
	22,600	12,270	12,270	12,280	12,290	12,290	21,100	1010,730

Densité		E=1	8MV, K	_s =1,012,	K _{pol} =0,9	999, K _Q =	=0,975	
Demone	Z _H (cm)	$L_1(nC)$	$L_2(nC)$	$L_3(nC)$	$L_4(nC)$	$L_5(nC)$	T(°C)	P(hPa)
	5,800	20,800	20,780	20,780	20,780	20,780	21,200	1011,950
	7,900	19,450	19,440	19,440	19,440	19,450	20,600	1011,810
	10,000	17,980	17,980	17,970	17,970	17,970	20,400	1011,660
$\rho = 0.15 \text{g/cm}^3$	12,100	16,560	16,560	16,550	16,550	16,550	21,000	1011,550
	14,100	15,180	15,170	15,160	15,160	15,160	21,300	1011,450
	16,200	14,180	14,170	14,170	14,180	14,170	20,700	1011,340
	18,300	13,230	13,230	13,230	13,220	13,220	20,500	1011,310
	5,100	20,880	20,870	20,860	20,870	20,870	20,200	1011,990
	7,400	19,520	19,520	19,520	19,520	19,520	21,200	1012,150
	9,600	17,990	17,980	17,970	17,970	17,980	20,500	1012,280
$\rho=0,20g/cm^3$	11,900	16,450	16,440	16,450	16,450	16,450	20,400	1012,300
	14,100	15,190	15,180	15,180	15,190	15,180	21,200	1012,340
	16,200	14,050	14,050	14,040	14,040	14,030	20,400	1012,440
	18,500	13,120	13,110	13,110	13,110	13,110	20,800	1012,410
	4,400	21,130	21,130	21,120	21,120	21,130	20,500	1010,990
	5,700	20,390	20,390	20,360	20,360	20,380	20,400	1010,900
	7,000	19,560	19,550	19,540	19,550	19,540	21,100	1010,850
	8,300	18,670	18,660	18,660	18,660	18,660	21,000	1010,810
	9,600	17,790	17,790	17,780	17,790	17,780	20,300	1010,800
	10,900	16,670	16,650	16,650	16,650	16,650	20,700	1010,760
	12,200	16,110	16,100	16,100	16,100	16,100	21,200	1010,770
$\rho = 0.25 \mathrm{g/cm^3}$	13,600	15,360	15,340	15,340	15,340	15,350	21,000	1010,740
p – 0,23g/cm	14,900	14,660	14,650	14,650	14,650	14,650	20,500	1010,800
	16,200	14,040	14,030	14,030	14,030	14,040	20,400	1010,790
	17,500	13,460	13,460	13,460	13,460	13,460	21,100	1010,780
	18,800	12,960	12,960	12,960	12,950	12,960	21,300	1010,750
	20,100	12,490	12,490	12,490	12,480	12,480	20,500	1010,700
	21,300	12,080	12,080	12,070	12,070	12,070	20,400	1010,750
	22,600	11,690	11,690	11,690	11,690	11,680	21,100	1010,730

Tableau 2 : Lectures, températures et pressions en fonction des profondeurs hétérogènes pour l'énergie 18MV.

Donaitá	E=6MV, K _s =1,006, K _{pol} =0,999, K _Q =0,994					
Densite	Z _H (cm)	Zeau(cm)	L _{moy} (nC)	K _{TP}	D _w (mGy)	
$\rho = 0,15g/cm^3$	5,800	4,718	18,908	1,005	862,535	
	7,900	5,033	17,818	1,003	811,267	
	10,000	5,348	16,806	1,003	764,783	
	12,100	5,663	15,86	1,005	723,287	
	14,100	5,963	14,968	1,006	683,372	
	16,200	6,278	14,258	1,004	649,701	
	18,300	6,593	13,592	1,004	618,950	
	5,100	4,823	18,986	1,002	863,117	
	7,400	5,283	17,860	1,005	814,567	
	9,600	5,723	16,828	1,003	765,575	
$\rho = 0.20 \text{g/cm}^3$	11,900	6,183	15,770	1,002	717,184	
	14,100	6,623	14,902	1,005	679,529	
	16,200	7,043	14,094	1,002	640,875	
	18,500	7,503	13,428	1,004	611,441	
	4,400	4,753	19,234	1,004	876,151	
	5,700	5,078	18,564	1,004	845,418	
	7,000	5,403	17,856	1,006	815,155	
	8,300	5,728	17,208	1,006	785,336	
	9,600	6,053	16,602	1,003	755,885	
$\rho = 0,25 \text{g/cm}^3$	10,900	6,378	15,950	1,005	727,218	
	12,200	6,703	15,472	1,007	706,617	
	13,600	7,053	14,960	1,006	682,790	
	14,900	7,378	14,480	1,004	659,720	
	16,200	7,703	14,042	1,004	639,553	
	17,500	8,028	13,618	1,006	621,726	
	18,800	8,353	13,250	1,007	605,354	
	20,100	8,678	12,886	1,004	587,154	
	21,300	8,978	12,566	1,004	572,350	
	22,600	9,303	12,280	1,006	560,668	

Tableau 3 : Doses absolues en fonction des profondeurs pour l'énergie 6MV.

Densitá	E=18MV, K _s =1,012, K _{pol} =0,999, K _Q =0,975					
Densite	Z _H (cm)	Zeau(cm)	L _{moy} (nC)	K _{TP}	D _w (mGy)	
	5,800	4,718	20,784	1,005	934,617	
	7,900	5,033	19,444	1,003	872,698	
	10,000	5,348	17,974	1,003	806,291	
$\rho = 0.15 \text{g/cm}^3$	12,100	5,663	16,554	1,005	744,190	
	14,100	5,963	15,166	1,006	682,555	
	16,200	6,278	14,174	1,004	636,679	
	18,300	6,593	13,226	1,004	593,709	
	5,100	4,823	20,87	1,002	935,259	
	7,400	5,283	19,52	1,005	877,604	
	9,600	5,723	17,978	1,003	806,251	
$\rho = 0.20 \text{g/cm}^3$	11,900	6,183	16,448 1,002		737,370	
	14,100	6,623	15,184	1,005	682,533	
	16,200	7,043	14,042	1,002	629,421	
	18,500	7,503	13,112	1,004	588,553	
	4,400	4,753	21,126	1,004	948,637	
	5,700	5,078	20,376	1,004	914,729	
	7,000	5,403	19,548	1,006	879,694	
$\rho = 0,25g/cm^3$	8,300	5,728	18,662	1,006	839,570	
	9,600	6,053	17,786	1,003	798,265	
	10,900	6,378	16,654	1,005	748,507	
	12,200	6,703	16,102	1,007	724,922	
	13,600	7,053	15,346	1,006	690,437	
	14,900	7,378	14,652	1,004	658,054	
	16,200	7,703	14,034	1,004	630,090	
	17,500	8,028	13,46	1,006	605,765	
	18,800	8,353	12,958	1,007	583,587	
	20,100	8,678	12,486	1,004	560,829	
	21,300	8,978	12,074	1,004	542,112	
	22,600	9,303	11,688	1,006	526,043	

Tableau 4 : Doses absolues en fonction des profondeurs pour l'éneergie 18MV.

Tableau 5 : Lectures des diodes à la profondeur du maximum de l'énergie.

$\rho = 0.15 \text{g/cm}^3$										
Diode	D ₁₋₆	D ₂₋₆	D ₃₋₆	D4-6	D ₅₋₆	D ₁₋₁₈	D ₂₋₁₈	D ₃₋₁₈	D ₄₋₁₈	D ₅₋₁₈
R(nC)	32,600	28,362	34,100	29,667	32,400	36,900	35,793	37,100	35,987	35,800
$\rho = 0.20 \text{g/cm}^3$										
Diode	D ₁₋₆	D ₂₋₆	D ₃₋₆	D ₄₋₆	D ₅₋₆	D ₁₋₁₈	D ₂₋₁₈	D ₃₋₁₈	D ₄₋₁₈	D ₅₋₁₈
R(nC)	32,500	28,113	34,100	29,497	32,400	36,900	35,719	37,000	35,816	35,800
$\rho = 0.25 \text{g/cm}^3$										
Diode	D ₁₋₆	D ₂₋₆	D ₃₋₆	D ₄₋₆	D ₅₋₆	D ₁₋₁₈	D ₂₋₁₈	D ₃₋₁₈	D ₄₋₁₈	D ₅₋₁₈
R(nC)	32,600	28,297	34,100	29,599	32,400	36,800	35,696	36,900	35,793	35,800

Figure 1 : Rendements en profondeur de l'accélérateur de Blida.

					R _Z (nC)		
	Zeau(cm)	PDD	D ₁₋₆	D ₂₋₆	D ₃₋₆	D4-6	D5-6
	4,718	0,870	28,362	34,100	29,667	32,400	28,188
	5,033	0,860	28,036	34,100	29,326	32,400	27,864
	5,348	0,840	27,384	34,100	28,644	32,400	27,216
$\rho = 0.15 \text{g/cm}^3$	5,663	0,830	27,058	34,100	28,303	32,400	26,892
	5,963	0,820	26,732	34,100	27,962	32,400	26,568
	6,278	0,810	26,406	34,100	27,621	32,400	26,244
	6,593	0,800	26,080	34,100	27,280	32,400	25,920
	4,823	0,865	28,113	34,100	29,497	32,400	28,026
	5,283	0,845	27,463	34,100	28,815	32,400	27,378
	5,723	0,830	26,975	34,100	28,303	32,400	26,892
$\rho = 0.20 \text{g/cm}^3$	6,183	0,810	26,325	34,100	27,621	32,400	26,244
	6,623	0,795	25,838	34,100	27,110	32,400	25,758
	7,043	0,775	25,188	34,100	26,428	32,400	25,110
	7,503	0,758	24,635	34,100	25,848	32,400	24,559
	4,753	0,868	28,297	34,100	29,599	32,400	28,123
	5,078	0,855	27,873	34,100	29,156	32,400	27,702
	5,403	0,840	27,384	34,100	28,644	32,400	27,216
	5,728	0,830	27,058	34,100	28,303	32,400	26,892
	6,053	0,817	26,634	34,100	27,860	32,400	26,471
	6,378	0,803	26,178	34,100	27,382	32,400	26,017
	6,703	0,790	25,754	34,100	26,939	32,400	25,596
$\rho = 0.25 \text{g/cm}^3$	7,053	0,775	25,265	34,100	26,428	32,400	25,110
	7,378	0,762	24,841	34,100	25,984	32,400	24,689
	7,703	0,750	24,450	34,100	25,575	32,400	24,300
	8,028	0,737	24,026	34,100	25,132	32,400	23,879
	8,353	0,725	23,635	34,100	24,723	32,400	23,490
	8,678	0,712	23,211	34,100	24,279	32,400	23,069
	8,978	0,701	22,853	34,100	23,904	32,400	22,712
	9,303	0,690	22,494	34,100	23,529	32,400	22,356

Tableau 6 : Lectures des diodes à différentes profondeurs pour l'énergie 6MV.

					R _Z (nC)		
	Zeau(cm)	PDD	D ₁₋₁₈	D ₂₋₁₈	D ₃₋₁₈	D ₄₋₁₈	D ₅₋₁₈
	4,718	0,970	35,793	37,100	35,987	35,800	34,726
	5,033	0,960	35,424	37,100	35,616	35,800	34,368
	5,348	0,950	35,055	37,100	35,245	35,800	34,010
$\rho = 0.15 \text{g/cm}^3$	5,663	0,935	34,502	37,100	34,689	35,800	33,473
	5,963	0,930	34,317	37,100	34,503	35,800	33,294
	6,278	0,920	33,948	37,100	34,132	35,800	32,936
	6,593	0,910	33,579	37,100	33,761	35,800	32,578
	4,823	0,968	35,719	37,000	35,816	35,800	34,654
	5,283	0,954	35,203	37,000	35,298	35,800	34,153
	5,723	0,937	34,575	37,000	34,669	35,800	33,545
$\rho = 0.20 \text{g/cm}^3$	6,183	0,923	34,059	37,000	34,151	35,800	33,043
	6,623	0,907	33,468	37,000	33,559	35,800	32,471
	7,043	0,893	32,952	37,000	33,041	35,800	31,969
	7,503	0,977	36,051	37,000	36,149	35,800	34,977
	4,753	0,970	35,696	36,900	35,793	35,800	34,726
	5,078	0,960	35,328	36,900	35,424	35,800	34,368
	5,403	0,950	34,960	36,900	35,055	35,800	34,010
	5,728	0,936	34,445	36,900	34,538	35,800	33,509
	6,053	0,927	34,114	36,900	34,206	35,800	33,187
	6,378	0,915	33,672	36,900	33,764	35,800	32,757
	6,703	0,905	33,304	36,900	33,395	35,800	32,399
$\rho = 0.25 \text{g/cm}^3$	7,053	0,892	32,826	36,900	32,915	35,800	31,934
	7,378	0,880	32,384	36,900	32,472	35,800	31,504
	7,703	0,870	32,016	36,900	32,103	35,800	31,146
	8,028	0,860	31,648	36,900	31,734	35,800	30,788
	8,353	0,846	31,133	36,900	31,217	35,800	30,287
	8,678	0,837	30,802	36,900	30,885	35,800	29,965
	8,978	0,828	30,470	36,900	30,553	35,800	29,642
	9,303	0,815	29,992	36,900	30,074	35,800	29,177

Tableau 7 : Lectures des diodes à différentes profondeurs pour l'énergie 18MV.

				F _{cal} (m	Gy/nC)	
	Zeau(cm)	D ₁₋₆	D ₂₋₆	D ₃₋₆	D ₄₋₆	D ₅₋₆
	4,718	30,412	29,667	29,074	28,188	30,599
	5,033	28,937	29,326	27,664	27,864	29,115
	5,348	27,928	28,644	26,700	27,216	28,100
$\rho = 0.15 \text{g/cm}^3$	5,663	26,731	28,303	25,555	26,892	26,896
	5,963	25,564	27,962	24,439	26,568	25,722
	6,278	24,604	27,621	23,522	26,244	24,756
	6,593	23,733	27,280	22,689	25,920	23,879
	4,823	30,702	29,497	29,262	28,026	30,797
	5,283	29,661	28,815	28,269	27,378	29,753
	5,723	28,381	28,303	27,049	26,892	28,469
$\rho = 0.20 \text{g/cm}^3$	6,183	27,243	27,621	25,965	26,244	27,328
	6,623	26,300	27,110	25,066	25,758	26,381
	7,043	25,444	26,428	24,250	25,110	25,523
	7,503	24,820	25,848	23,655	24,559	24,897
	4,753	30,963	29,599	29,601	28,123	31,154
	5,078	30,331	29,156	28,997	27,702	30,518
	5,403	29,768	28,644	28,458	27,216	29,951
	5,728	29,024	28,303	27,747	26,892	29,203
	6,053	28,380	27,860	27,132	26,471	28,555
	6,378	27,780	27,382	26,558	26,017	27,951
	6,703	27,437	26,939	26,230	25,596	27,607
$\rho = 0.25 \text{g/cm}^3$	7,053	27,025	26,428	25,836	25,110	27,192
	7,378	26,557	25,984	25,389	24,689	26,721
	7,703	26,158	25,575	25,007	24,300	26,319
	8,028	25,877	25,132	24,739	23,879	26,037
	8,353	25,613	24,723	24,486	23,490	25,771
	8,678	25,296	24,279	24,183	23,069	25,452
	8,978	25,045	23,904	23,944	22,712	25,200
	9,303	24,925	23,529	23,829	22,356	25,079

Tableau 8 : Facteurs de calibration des diodes l'énergie 6MV.

				F _{cal} (m	Gy/nC)	
	Zeau(cm)	D ₁₋₁₈	D ₂₋₁₈	D ₃₋₁₈	D ₄₋₁₈	D ₅₋₁₈
	4,718	26,112	35,987	25,971	34,726	26,914
	5,033	24,636	35,616	24,503	34,368	25,393
	5,348	23,001	35,245	22,877	34,010	23,707
$\rho = 0.15 \text{g/cm}^3$	5,663	21,570	34,689	21,454	33,473	22,233
	5,963	19,890	34,503	19,782	33,294	20,501
	6,278	18,755	34,132	18,653	32,936	19,331
	6,593	17,681	33,761	17,586	32,578	18,224
	4,823	26,184	35,816	26,113	34,654	26,988
	5,283	24,930	35,298	24,863	34,153	25,696
	5,723	23,319	34,669	23,256	33,545	24,035
$\rho = 0,20 \text{g/cm}^3$	6,183	21,650	34,151	21,591	33,043	22,315
	6,623	20,393	33,559	20,338	32,471	21,020
	7,043	19,101	33,041	19,050	31,969	19,688
	7,503	16,325	36,149	16,281	34,977	16,827
	4,753	26,575	35,793	26,503	34,726	27,318
	5,078	25,892	35,424	25,822	34,368	26,616
	5,403	25,163	35,055	25,095	34,010	25,866
	5,728	24,374	34,538	24,308	33,509	25,055
	6,053	23,400	34,206	23,337	33,187	24,054
	6,378	22,229	33,764	22,169	32,757	22,850
	6,703	21,767	33,395	21,708	32,399	22,375
$\rho = 0.25 \text{g/cm}^3$	7,053	21,033	32,915	20,976	31,934	21,621
	7,378	20,320	32,472	20,265	31,504	20,888
	7,703	19,680	32,103	19,627	31,146	20,230
	8,028	19,141	31,734	19,089	30,788	19,675
	8,353	18,745	31,217	18,694	30,287	19,269
	8,678	18,208	30,885	18,158	29,965	18,716
	8,978	17,791	30,553	17,743	29,642	18,288
	9,303	17,539	30,074	17,492	29,177	18,029

Tableau 9 : Facteurs de calibration des diodes l'énergie 18MV.

B. Données relatives au chapitre 3 (partie expérimentale réalisée à Sétif)

	Z (cm)	L(nC)	T(°C)	P(hPa)	KTP	D _w (cGy)
	2,000	9,016	20,300	886,600	1,144	97,716
	4,000	8,256	20,400	886,700	1,144	89,500
E=6MV	6,000	7,468	20,400	886,700	1,144	80,957
K _s =1,003	10,000	6,039	20,500	886,800	1,145	65,481
K _{pol} =1,002 K _Q =0,992	15,000	4,555	20,600	886,700	1,145	49,412
	20,000	3,432	20,700	886,600	1,146	37,247
	25,000	2,573	20,700	886,700	1,145	27,921
	4,000	9,053	20,400	886,700	1,144	95,765
	6,000	8,514	20,400	886,700	1,144	90,063
E=18MV K=1.002	10,000	7,256	20,500	886,800	1,145	76,774
$K_{s}=1,003$ $K_{pol}=1,002$ $K_{o}=0.968$	15,000	5,917	20,600	886,700	1,145	62,634
	20,000	4,805	20,700	886,600	1,146	50,886
	25,000	3,915	20,700	886,700	1,145	41,456

Tableau 10 : Valeurs des doses absolues pour les faisceaux 6MV et 18MV.

Tableau 11 : Valeurs des facteurs de calibrations des diodes pour les deux faisceaux 6MV et 18MV.

E	= 6 M V F	R = 10,26	E = 18MV $R = 15,03$				
Z (cm)	D _w (cGy)	Fcal(cGy/nC)	Z (cm)	D _w (cGy)	Fcal(cGy/nC)		
2,000	97,716	9,524	4,000	95,765	6,372		
4,000	89,500	8,723	6,000	90,063	5,992		
6,000	80,957	7,891	10,000	76,774	5,108		
10,000	65,481	6,382	15,000	62,634	4,167		
15,000	49,412	4,816	20,000	50,886	3,386		
20,000	37,247	3,630	25,000	41,456	2,758		
25,000	27,921	2,721					

C. Données relatives au chapitre 4 (partie réalisée à Sétif)

Fantôme 1		Р	TV	OAR1	OAR2	OAR3	OAR4
Tantonic T	d	D _{max}	V ₉₅	D _{max}	D _{max}	D _{max}	D _{max}
	0	2,64	100,00	0,46	0,96	1,58	1,56
	1	2,64	100,00	0,44	0,95	1,57	1,59
	2	2,66	100,00	0,43	0,92	1,56	1,62
_	3	2,66	100,00	0,41	0,91	1,54	1,65
	4	2,67	99,17	0,40	0,91	1,51	1,67
tion	5	2,67	97,39	0,39	0,90	1,47	1,69
pira	6	2,68	95,00	0,37	0,90	1,37	1,72
lsu	7	2,67	92,00	0,36	0,89	1,30	1,73
	8	2,68	88,89	0,34	0,89	1,23	1,73
	9	2,67	85,56	0,33	0,88	1,17	1,74
	10	2,66	81,44	0,30	0,89	1,10	1,74
	15	2,65	63,56	0,10	0,88	0,97	1,71
	20	2,65	47,28	0,06	0,86	0,94	1,67
	0	2,64	100,00	0,00	0,96	1,58	1,56
	1	2,63	100,00	0,00	0,95	1,59	1,55
	2	2,63	100,00	0,00	0,99	1,59	1,55
	3	2,63	99,00	0,00	1,08	1,61	1,57
_	4	2,63	97,56	0,00	1,10	1,62	1,59
tior	5	2,62	95,89	0,00	1,16	1,65	1,61
oira	6	2,62	93,61	1,44	1,25	1,67	1,59
Exp	7	2,62	91,83	4,06	1,25	1,67	1,58
	8	2,61	89,06	7,44	1,23	1,70	1,56
	9	2,61	85,89	12,06	1,15	1,74	1,50
	10	2,60	82,50	17,06	1,08	1,78	1,46
	15	2,57	64,44	46,39	0,41	1,99	1,03
	20	2,54	47,78	75,00	0,20	1,74	0,42

Tableau 12 : Données dosimétriques relatives au fantôme 1, d étant le déplacement de l'isocentre en mm, V_{95} étant en pourcentage et D_{max} en Gy.

Fantôme 2		Р	TV	OAR1	OAR2	OAR3	OAR4
1 untonic 2	d	D _{max}	V ₉₅	D _{max}	D _{max}	D _{max}	D _{max}
	0	2,46	100,00	0,58	0,75	2,11	0,95
	1	2,45	100,00	0,47	0,96	2,09	1,10
	2	2,45	100,00	0,38	1,33	2,06	1,21
	3	2,46	99,11	0,32	1,64	1,96	1,34
с.	4	2,46	98,00	0,27	1,84	1,93	1,38
tion	5	2,46	95,83	0,23	1,98	1,89	1,46
oira	6	2,46	93,56	0,21	2,06	1,83	1,48
lsuj	7	2,45	90,00	0,18	2,15	1,76	1,51
	8	2,45	86,94	0,16	2,21	1,71	1,52
	9	2,45	83,33	0,14	2,24	1,67	1,53
	10	2,45	79,44	0,13	2,27	1,64	1,55
	15	2,44	61,89	0,08	2,31	1,58	1,60
	20	2,42	45,56	0,06	2,29	1,50	1,78
	0	2,46	100,00	0,58	0,75	2,11	0,95
	1	2,46	100,00	0,72	0,60	2,12	0,73
	2	2,45	99,06	0,90	0,44	2,14	0,60
	3	2,45	97,83	1,18	0,38	2,16	0,52
-	4	2,45	96,56	1,48	0,32	2,17	0,41
tion	5	2,45	94,28	1,77	0,25	2,18	0,36
oira	6	2,44	92,50	1,96	0,26	2,19	0,31
Exp	7	2,44	89,44	2,09	0,21	2,19	0,24
	8	2,44	86,39	2,16	0,19	2,19	0,19
	9	2,44	82,94	2,24	0,17	2,20	0,16
	10	2,43	79,00	2,27	0,15	2,19	0,14
	15	2,41	61,39	2,35	0,10	2,15	0,09
	20	2,38	45,28	2,38	0,07	1,93	0,06

Tableau 13 : Données dosimétriques relatives au fantôme 2, d étant le déplacement de l'isocentre en mm, V₉₅ étant en pourcentage et D_{max} en Gy.

Fantôme 3		Р	TV	OAR1	OAR2	OAR3	OAR4
1 antonic 5	d	D _{max}	V ₉₅	D _{max}	D _{max}	D _{max}	D _{max}
	0	2,36	100,00	0,89	0,77	0,32	0,16
	1	2,36	100,00	1,86	1,42	1,98	1,06
	2	2,36	100,00	1,88	1,43	2,02	0,93
	3	2,37	99,17	1,90	1,44	2,03	0,81
с	4	2,37	97,67	1,91	1,47	2,05	0,71
tion	5	2,37	95,72	1,92	1,49	2,06	0,64
oira	6	2,37	92,24	1,92	1,52	2,08	0,52
lsu	7	2,37	89,44	1,90	1,55	2,09	0,42
	8	2,37	86,28	1,86	1,61	2,11	0,34
	9	2,37	82,50	1,80	1,67	2,12	0,29
	10	2,37	78,89	1,68	1,72	2,12	0,25
	15	2,35	66,67	0,70	1,88	2,16	0,15
	20	2,35	44,61	0,29	2,24	2,19	0,11
	0	2,36	100,00	0,89	0,77	0,32	0,16
	1	2,35	99,56	1,80	1,37	1,88	1,27
	2	2,35	98,61	1,75	1,34	1,83	1,41
	3	2,35	97,78	1,70	1,24	1,82	1,51
-	4	2,34	96,67	1,66	1,14	1,79	1,53
tior	5	2,34	95,00	1,60	1,07	1,77	1,55
oira	6	2,34	92,78	1,58	1,01	1,73	1,55
Exp	7	2,33	89,44	1,54	0,96	1,70	1,55
	8	2,33	86,50	1,53	0,91	1,65	1,53
	9	2,33	82,72	1,51	0,89	1,58	1,51
	10	2,33	79,28	1,49	0,87	1,53	1,48
	15	2,34	61,61	1,43	0,81	1,34	1,46
	20	2,33	45,72	1,22	0,70	1,04	1,45

Tableau 14 : Données dosimétriques relatives au fantôme 3, d étant le déplacement de l'isocentre en mm, V₉₅ étant en pourcentage et D_{max} en Gy.

Fantôma 1		PT	V	OAR1	OAR2	OAR3	OAR4
Pantonie 1	d	ΔD_{max}	ΔV_{95}	ΔD_{max}	ΔD_{max}	ΔD_{max}	ΔD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,00	0,00	0,02	0,01	0,01	0,03
	2	0,01	0,00	0,03	0,04	0,02	0,06
	3	0,02	0,00	0,05	0,05	0,04	0,09
-	4	0,02	0,83	0,06	0,05	0,08	0,11
tior	5	0,03	2,61	0,08	0,06	0,11	0,13
oira	6	0,04	5,00	0,09	0,06	0,22	0,16
lsu	7	0,03	8,00	0,10	0,07	0,29	0,17
	8	0,03	11,11	0,12	0,07	0,35	0,17
	9	0,03	14,44	0,14	0,07	0,41	0,18
	10	0,02	18,56	0,16	0,07	0,48	0,18
	15	0,01	36,44	0,36	0,08	0,61	0,15
	20	0,01	52,72	0,40	0,10	0,64	0,11
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,01	0,00	0,02	0,00	0,00	0,01
	2	0,01	0,00	0,04	0,03	0,01	0,01
	3	0,01	1,00	0,08	0,12	0,03	0,01
_	4	0,01	2,44	0,12	0,15	0,04	0,03
tion	5	0,02	4,11	0,18	0,20	0,06	0,05
ira	6	0,02	6,39	0,22	0,29	0,08	0,03
Exp	7	0,02	8,17	0,29	0,29	0,09	0,02
	8	0,03	10,94	0,31	0,27	0,12	0,01
	9	0,03	14,11	0,33	0,20	0,16	0,06
	10	0,04	17,50	0,35	0,12	0,19	0,10
	15	0,07	35,56	0,42	0,55	0,41	0,53
	20	0,10	52,22	0,48	0,76	0,16	1,14

Tableau 15 : Variation en termes absolu des données dosimétriques relatives au fantôme 1, d étant le déplacement de l'isocentre en mm, ΔV_{95} étant en pourcentage et ΔD_{max} en Gy.

Fantôme 2		РТ	'V	OAR1	OAR2	OAR3	OAR4
Tantonic 2	d	ΔD_{max}	ΔV_{95}	ΔD_{max}	ΔD_{max}	ΔD_{max}	ΔD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,01	0,00	0,10	0,21	0,02	0,16
	2	0,01	0,00	0,20	0,58	0,05	0,26
	3	0,01	0,89	0,25	0,89	0,15	0,39
	4	0,01	2,00	0,31	1,09	0,18	0,43
tion	5	0,01	4,17	0,35	1,23	0,22	0,51
oira	6	0,01	6,44	0,37	1,31	0,28	0,53
lsu	7	0,01	10,00	0,40	1,40	0,35	0,56
Ι	8	0,01	13,06	0,42	1,46	0,40	0,57
	9	0,01	16,67	0,44	1,49	0,44	0,58
	10	0,02	20,56	0,45	1,52	0,47	0,60
	15	0,02	38,11	0,49	1,56	0,53	0,65
	20	0,04	54,44	0,52	1,54	0,61	0,84
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,01	0,00	0,14	0,15	0,01	0,22
	2	0,01	0,94	0,32	0,31	0,03	0,35
	3	0,01	2,17	0,60	0,37	0,05	0,43
-	4	0,01	3,44	0,91	0,43	0,06	0,54
tion	5	0,01	5,72	1,19	0,50	0,07	0,59
oira	6	0,02	7,50	1,38	0,49	0,08	0,64
Exp	7	0,02	10,56	1,51	0,54	0,08	0,71
	8	0,02	13,61	1,59	0,57	0,08	0,76
	9	0,03	17,06	1,66	0,59	0,09	0,79
	10	0,03	21,00	1,69	0,61	0,08	0,81
	15	0,06	38,61	1,78	0,65	0,04	0,86
	20	0,08	54,72	1,80	0,68	0,18	0,89

Tableau 16 : Variation en termes absolu des données dosimétriques relatives au fantôme 2, d étant le déplacement de l'isocentre en mm, ΔV_{95} étant en pourcentage et ΔD_{max} en Gy.

Fantôme 3		РТ	Ϋ́	OAR1	OAR2	OAR3	OAR4
Pantonic 5	d	ΔD_{max}	ΔV_{95}	ΔD_{max}	ΔD_{max}	ΔD_{max}	ΔD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,00	0,00	0,97	0,65	1,66	0,89
	2	0,00	0,00	0,99	0,66	1,70	0,77
	3	0,01	0,83	1,01	0,68	1,71	0,65
C.	4	0,01	2,33	1,02	0,70	1,73	0,55
tion	5	0,01	4,28	1,03	0,72	1,74	0,48
oira	6	0,01	7,76	1,03	0,75	1,76	0,35
lsu	7	0,01	10,56	1,01	0,79	1,77	0,26
	8	0,01	13,72	0,97	0,84	1,79	0,18
	9	0,01	17,50	0,91	0,90	1,80	0,12
	10	0,01	21,11	0,79	0,95	1,80	0,08
	15	0,01	33,33	0,20	1,12	1,83	0,01
	20	0,01	55,39	0,61	1,47	1,87	0,05
	0	0,00	0,00	0,00	0,00	0,00	0,00
	1	0,00	0,44	0,91	0,60	1,56	1,11
	2	0,01	1,39	0,86	0,57	1,51	1,25
	3	0,01	2,22	0,81	0,47	1,50	1,35
-	4	0,02	3,33	0,76	0,38	1,47	1,37
tion	5	0,02	5,00	0,71	0,31	1,45	1,39
oira	6	0,02	7,22	0,69	0,25	1,41	1,38
Exp	7	0,02	10,56	0,65	0,19	1,38	1,38
	8	0,03	13,50	0,64	0,14	1,33	1,37
	9	0,03	17,28	0,62	0,12	1,25	1,35
	10	0,03	20,72	0,60	0,10	1,21	1,32
	15	0,02	38,39	0,53	0,05	1,02	1,29
	20	0,03	54,28	0,33	0,066	0,72	1,28

Tableau 17 : Variation en termes absolu des données dosimétriques relatives au fantôme 3, d étant le déplacement de l'isocentre en mm, ΔV_{95} étant en pourcentage et ΔD_{max} en Gy.

Fantôme 1		PT	V	OAR1	OAR2	OAR3	OAR4
T antonic T	d	δD_{max}	δV ₉₅	δD_{max}	δD_{max}	δD_{max}	δD_{max}
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	0,96	0,99	0,99	1,02
	2	1,01	1,00	0,93	0,96	0,99	1,04
	3	1,01	1,00	0,89	0,95	0,97	1,06
-	4	1,01	0,99	0,86	0,95	0,95	1,07
tion	5	1,01	0,97	0,83	0,94	0,93	1,08
oira	6	1,01	0,95	0,81	0,94	0,86	1,10
dsu	7	1,01	0,92	0,79	0,93	0,82	1,11
Ι	8	1,01	0,89	0,74	0,93	0,78	1,11
	9	1,01	0,86	0,71	0,92	0,74	1,11
	10	1,01	0,81	0,66	0,93	0,70	1,11
	15	1,01	0,64	0,22	0,91	0,61	1,09
	20	1,00	0,47	0,13	0,89	0,59	1,07
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	1,05	1,00	1,00	0,99
	2	1,00	1,00	1,10	1,03	1,01	0,99
	3	1,00	0,99	1,18	1,13	1,02	1,01
_	4	0,99	0,98	1,25	1,15	1,03	1,02
tion	5	0,99	0,96	1,38	1,21	1,04	1,03
irat	6	0,99	0,94	1,48	1,31	1,05	1,02
Exp	7	0,99	0,92	1,62	1,30	1,06	1,01
	8	0,99	0,89	1,66	1,28	1,08	1,00
	9	0,99	0,86	1,72	1,20	1,10	0,96
	10	0,99	0,83	1,76	1,12	1,12	0,93
	15	0,97	0,64	1,90	0,43	1,26	0,66
	20	0,96	0,48	2,03	0,21	1,10	0,27

Tableau 18 : Variation en termes de pourcentage des données dosimétriques relatives au fantôme 1, d étant le déplacement de l'isocentre en mm, 1 fait référence à 100%.

Fantôme 2		PT	V	OAR1	OAR2	OAR3	OAR4
Pantonic 2	d	δD_{max}	δV ₉₅	δD_{max}	δD_{max}	δD_{max}	δD_{max}
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	0,82	1,27	0,99	1,17
	2	1,00	1,00	0,66	1,77	0,98	1,28
	3	1,00	0,99	0,56	2,19	0,93	1,41
-	4	1,00	0,98	0,46	2,45	0,91	1,46
tior	5	1,00	0,96	0,39	2,63	0,89	1,54
oira	6	1,00	0,94	0,36	2,74	0,87	1,56
lsu	7	1,00	0,90	0,31	2,87	0,83	1,59
Ι	8	1,00	0,87	0,28	2,94	0,81	1,60
	9	0,99	0,83	0,25	2,98	0,79	1,61
	10	0,99	0,79	0,22	3,02	0,78	1,63
	15	0,99	0,62	0,14	3,08	0,75	1,69
	20	0,98	0,46	0,10	3,05	0,71	1,88
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	1,25	0,80	1,01	0,77
	2	1,00	0,99	1,56	0,59	1,01	0,63
	3	1,00	0,98	2,05	0,50	1,02	0,55
_	4	1,00	0,97	2,57	0,43	1,03	0,43
tion	5	0,99	0,94	3,07	0,34	1,03	0,38
ira	6	0,99	0,93	3,40	0,34	1,04	0,33
Exp	7	0,99	0,89	3,62	0,28	1,04	0,25
_	8	0,99	0,86	3,75	0,25	1,04	0,20
	9	0,99	0,83	3,87	0,22	1,04	0,16
	10	0,99	0,79	3,93	0,19	1,04	0,15
	15	0,98	0,61	4,08	0,13	1,02	0,09
	20	0,97	0,45	4,12	0,09	0,91	0,06

Tableau 19 : Variation en termes de pourcentage des données dosimétriques relatives au fantôme 2, d étant le déplacement de l'isocentre en mm, 1 fait référence à 100%.

Fantôme 3		PT	V	OAR1	OAR2	OAR3	OAR4
T antonic 5	d	δD_{max}	δV ₉₅	δD_{max}	δD_{max}	δD_{max}	δD_{max}
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	2,09	1,85	6,16	6,48
	2	1,00	1,00	2,11	1,86	6,29	5,70
	3	1,00	0,99	2,13	1,88	6,34	4,99
-	4	1,00	0,98	2,14	1,92	6,39	4,38
tion	5	1,01	0,96	2,16	1,94	6,42	3,94
oira	6	1,01	0,92	2,15	1,98	6,49	3,17
lsu	7	1,00	0,89	2,13	2,02	6,50	2,59
Ι	8	1,00	0,86	2,08	2,10	6,57	2,09
	9	1,00	0,83	2,02	2,18	6,61	1,75
	10	1,00	0,79	1,88	2,24	6,60	1,50
	15	1,00	0,67	0,78	2,46	6,71	0,93
	20	0,99	0,45	0,32	2,92	6,83	0,69
	0	1,00	1,00	1,00	1,00	1,00	1,00
	1	1,00	1,00	2,02	1,78	5,85	7,82
	2	1,00	0,99	1,96	1,74	5,71	8,67
	3	0,99	0,98	1,90	1,61	5,67	9,28
_	4	0,99	0,97	1,86	1,49	5,58	9,40
tion	5	0,99	0,95	1,80	1,40	5,51	9,53
ira	6	0,99	0,93	1,77	1,32	5,40	9,49
Exp	7	0,99	0,89	1,73	1,25	5,29	9,48
	8	0,99	0,87	1,72	1,18	5,14	9,38
	9	0,99	0,83	1,70	1,16	4,91	9,26
	10	0,99	0,79	1,67	1,13	4,75	9,07
	15	0,99	0,62	1,60	1,06	4,17	8,93
	20	0,99	0,46	1,37	0,91	3,25	8,88

Tableau 20 : Variation en termes de pourcentage des données dosimétriques relatives au fantôme 3, d étant le déplacement de l'isocentre en mm, 1 fait référence à 100%.

Figure 21 : Diagramme statistique, en termes de pourcentages, relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation de la dose maximale du PTV en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 22 : Diagramme statistique, en termes de pourcentages, relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation du volume du PTV couvert par 95% de la dose de prescription en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 23 : Diagramme statistique, en termes de pourcentages, relatif à la moyenne obtenue pour les résultats des trois fantômes hétérogènes de la variation la dose maximale des quatre OAR en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

		P	ΤV	C	CR	PI	М	ML	OS	TA
	d	D _{max}	V ₉₅	D _{max}	V _{1.2}	D _{max}	V _{1.2}	D _{max}	D _{max}	D _{max}
	0	2,30	100,00	1,98	10,54	2,30	4,03	0,32	1,63	1,61
-	2	2,27	98,66	1,97	11,29	2,27	3,87	0,31	1,62	1,60
tion	5	2,28	95,91	1,97	12,04	2,28	3,50	0,32	1,60	1,56
oira	7	2,26	90,75	1,96	12,69	2,26	3,33	0,31	1,59	1,55
lsu	10	2,26	82,04	1,96	13,23	2,26	3,07	0,30	1,58	1,53
Γ	15	2,24	63,17	1,93	15,00	2,24	2,85	0,30	1,56	1,47
	20	2,22	45,00	2,01	15,00	2,22	2,42	0,29	1,50	1,18
	0	2,35	100,00	2,01	13,17	2,35	2,69	0,30	1,65	1,55
_	2	2,34	96,29	1,90	12,42	2,34	2,90	0,30	1,66	1,49
tior	5	2,34	96,45	1,99	11,08	2,34	3,17	0,31	1,71	1,59
ira	7	2,33	90,00	1,92	10,00	2,33	3,39	0,31	1,71	1,66
Exp	10	2,34	80,38	1,98	9,46	2,34	3,66	0,31	1,74	1,69
_	15	2,35	63,07	1,94	8,33	2,35	4,30	0,34	1,75	1,71
	20	2,36	48,76	1,82	6,29	2,36	5,00	0,35	1,76	1,73

Tableau 21 : Valeurs des données dosimétriques du fantôme thoracique avec l'énergie 6MV, d étant l'augmentation ou diminution 3D du volume thoracique en mm, D_{max} est en Gy et les volumes V_{95} et $V_{1,2}$ sont en %.

Tableau 22 : Valeurs des données dosimétriques du fantôme thoracique avec l'énergie 18MV, d étant l'augmentation ou diminution 3D du volume thoracique en mm, D_{max} est en Gy et les volumes V_{95} et $V_{1,2}$ sont en %.

		P	ГV	C	CR	PI	М	ML	OS	TA
	d	D _{max}	V ₉₅	D _{max}	V _{1.2}	D _{max}	V _{1.2}	D _{max}	D _{max}	D _{max}
	0	2,44	99,57	2,10	13,66	2,44	4,52	0,35	1,59	1,49
_	2	2,43	97,96	2,10	14,73	2,43	4,19	0,34	1,57	1,47
tior	5	2,43	95,43	2,11	15,97	2,43	3,93	0,34	1,55	1,41
oira	7	2,41	90,43	2,10	17,04	2,41	3,66	0,33	1,54	1,52
lsu	10	2,41	81,88	2,10	17,42	2,41	3,44	0,33	1,52	1,52
Γ	15	2,38	63,87	2,09	19,19	2,38	2,96	0,32	1,50	1,47
	20	2,35	46,08	2,12	18,98	2,35	2,42	0,31	1,43	1,09
	0	2,50	99,84	2,16	16,51	2,50	2,96	0,33	1,53	1,52
_	2	2,50	95,81	2,09	15,97	2,50	3,23	0,34	1,55	1,33
tior	5	2,50	95,91	2,12	14,03	2,50	3,50	0,34	1,59	1,39
ira	7	2,50	89,73	2,07	12,85	2,50	3,76	0,34	1,61	1,48
Exp	10	2,50	80,91	2,09	11,88	2,50	4,03	0,35	1,62	1,61
_	15	2,49	64,14	2,05	10,00	2,49	4,57	0,37	1,64	1,52
	20	2,49	50,38	1,94	7,26	2,49	5,54	0,39	1,67	1,57

		РТ	'V	C	CR PM ML		OS	TA		
	d	ΔD_{max}	ΔV_{95}	ΔD_{max}	$\Delta V_{1.2}$	ΔD_{max}	$\Delta V_{1.2}$	ΔD_{max}	ΔD_{max}	ΔD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,63	0,00
-	2	0,02	1,34	0,01	0,75	0,02	0,16	0,01	1,62	0,01
tior	5	0,02	4,09	0,01	1,51	0,02	0,54	0,01	1,60	0,05
oira	7	0,04	9,25	0,02	2,15	0,04	0,70	0,02	1,59	0,06
lsu	10	0,03	17,96	0,02	2,69	0,03	0,97	0,02	1,58	0,08
	15	0,06	36,83	0,04	4,46	0,06	1,18	0,03	1,56	0,14
	20	0,08	55,00	0,03	4,46	0,08	1,61	0,03	1,50	0,43
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,65	0,00
_	2	0,00	3,71	0,11	0,75	0,00	0,22	0,01	1,66	0,06
tior	5	0,00	3,55	0,03	2,10	0,00	0,48	0,01	1,71	0,04
oira.	7	0,02	10,00	0,10	3,17	0,02	0,70	0,01	1,71	0,11
Exp	10	0,00	19,62	0,03	3,71	0,00	0,97	0,02	1,74	0,14
_	15	0,00	36,94	0,07	4,84	0,00	1,61	0,04	1,75	0,16
	20	0,01	51,24	0,19	6,88	0,01	2,31	0,06	1,76	0,19

Tableau 23 : Valeurs des variations des données dosimétriques du fantôme thoracique avec l'énergie 6MV, d étant l'augmentation ou diminution 3D du volume thoracique en mm, ΔD_{max} est en Gy et les volumes ΔV_{95} et $\Delta V_{1,2}$ sont en %.

Tableau 24 : Valeurs des variations des données dosimétriques du fantôme thoracique avec l'énergie 18MV, d étant l'augmentation ou diminution 3D du volume thoracique en mm, ΔD_{max} est en Gy et les volumes ΔV_{95} et $\Delta V_{1.2}$ sont en %.

	PTV		'V	CR		PI	PM		OS	TA
	d	ΔD_{max}	ΔV_{95}	ΔD_{max}	$\Delta V_{1.2}$	ΔD_{max}	$\Delta V_{1.2}$	ΔD_{max}	ΔD_{max}	ΔD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0	0,00	0,00	0,00
ſ	2	0,02	1,61	0,00	1,08	0,02	0,322	0,01	0,02	0,01
tion	5	0,01	4,14	0,01	2,31	0,01	0,591	0,01	0,03	0,08
oira	7	0,03	9,14	0,00	3,39	0,03	0,86	0,01	0,04	0,03
lsu	10	0,03	17,69	0,00	3,76	0,03	1,075	0,02	0,06	0,03
Π	15	0,06	35,70	0,01	5,54	0,06	1,559	0,02	0,09	0,02
	20	0,09	53,50	0,02	5,32	0,09	2,097	0,03	0,15	0,40
	0	0,00	0,00	0,00	0,00	0,00	0	0,00	0,00	0,00
_	2	0,00	4,03	0,08	0,54	0,00	0,269	0,00	0,02	0,20
tior	5	0,00	3,93	0,05	2,47	0,00	0,538	0,01	0,06	0,13
ira	7	0,00	10,11	0,09	3,66	0,00	0,806	0,01	0,08	0,05
Exp	10	0,00	18,93	0,07	4,62	0,00	1,075	0,02	0,09	0,09
	15	0,01	35,70	0,11	6,51	0,01	1,613	0,04	0,11	0,01
	20	0,01	49,46	0,22	9,25	0,01	2,581	0,06	0,14	0,04

	PTV		TV	CR		PI	М	ML	OS	TA
	d	δD_{max}	δV_{95}	δD_{max}	$\delta V_{1.2}$	δD_{max}	$\delta V_{1.2}$	δD_{max}	δD_{max}	δD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
-	2	1,00	1,34	0,40	7,14	1,00	3,99	3,10	0,61	0,62
tior	5	0,65	4,09	0,40	14,28	0,65	13,32	2,17	1,78	3,04
oira	7	1,74	9,25	0,91	20,40	1,74	17,34	4,64	2,76	3,54
lsu	10	1,44	17,96	0,91	25,51	1,44	23,98	6,50	3,13	4,84
Γ	15	2,57	36,83	2,28	42,34	2,57	29,34	7,74	4,60	8,75
	20	3,40	55,00	1,57	42,34	3,40	40,00	8,98	7,73	26,51
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
_	2	0,13	3,71	5,61	5,72	0,13	8,00	1,69	0,85	3,94
tior	5	0,04	3,55	1,44	15,92	0,04	18,01	3,04	3,65	2,46
ira	7	0,77	10,00	4,92	24,08	0,77	26,00	4,39	3,65	7,30
Exp	10	0,13	19,62	1,69	28,17	0,13	36,01	6,08	5,41	8,99
	15	0,13	36,94	3,62	36,74	0,13	60,01	14,53	6,50	10,60
	20	0,55	51,24	9,53	52,25	0,55	86,01	19,59	6,87	11,96

Tableau 25 : Valeurs des variations en pourcentages des données dosimétriques du fantôme thoracique avec l'énergie 6MV, d étant l'augmentation ou diminution 3D du volume thoracique en mm.

Tableau 26 : Valeurs des variations en pourcentages des données dosimétriques du fantôme thoracique avec l'énergie 18MV, d étant l'augmentation ou diminution 3D du volume thoracique en mm.

		PTV		CR		P	М	ML	OS	TA
	d	δD_{max}	δV_{95}	δD_{max}	$\delta V_{1.2}$	δD_{max}	$\delta V_{1.2}$	δD_{max}	δD_{max}	δD_{max}
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
_	2	0,65	1,62	0,10	7,87	0,65	7,13	2,03	1,01	1,01
tior	5	0,49	4,16	0,29	16,93	0,49	13,09	2,03	2,08	5,24
oira	7	1,31	9,18	0,10	24,80	1,31	19,04	3,48	2,71	2,02
lsu	10	1,23	17,76	0,14	27,56	1,23	23,80	5,80	4,10	2,22
Ι	15	2,46	35,85	0,67	40,55	2,46	34,52	6,09	5,68	1,34
	20	3,77	53,73	0,76	38,97	3,77	46,43	8,99	9,65	27,02
	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
_	2	0,12	4,04	3,52	3,25	0,12	9,10	1,21	1,37	12,93
lior	5	0,12	3,93	2,13	14,98	0,12	18,19	2,72	3,80	8,73
ira	7	0,20	10,12	4,16	22,15	0,20	27,26	3,02	5,30	3,08
Exp	10	0,04	18,96	3,33	28,01	0,04	36,35	4,83	5,76	5,64
	15	0,32	35,76	5,14	39,41	0,32	54,55	10,88	7,13	0,46
	20	0,40	49,54	10,23	56,03	0,40	87,28	17,52	9,16	2,89

Figure 24 : Diagramme statistique, en pourcentages, relatif à la moyenne obtenue pour les deux énergies du fantôme thoracique de la variation la dose maximale du PTV en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 25 : Diagramme statistique, en pourcentages, relatif à la moyenne obtenue pour les deux énergies du fantôme thoracique de la variation de V_{95} du PTV en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 26 : Diagramme statistique, en pourcentages, relatif à la moyenne obtenue pour les deux énergies du fantôme thoracique de la variation de la dose maximale des OAR en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

Figure 27 : Diagramme statistique, en pourcentages, relatif à la moyenne obtenue pour les deux énergies du fantôme thoracique de la variation de $V_{1,2}$ des OAR en fonction de d en mm pour les deux phases d'inhalation et d'exhalation.

D1		PT	V	CR	PM	ML	PH
PI	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	49,69	92,93	17,50	30,00	40,92	46,84
	1	49,63	92,66	18,10	30,00	39,50	46,70
_	2	49,70	92,21	18,79	30,00	38,58	46,55
tior	3	49,54	91,48	19,48	30,00	37,67	46,32
oira	4	49,54	90,00	20,00	30,59	37,05	46,07
lsu	5	49,43	88,86	20,86	30,86	36,73	45,71
	10	49,37	78,31	24,31	31,62	35,71	44,93
	15	49,84	64,66	28,00	32,52	36,06	44,54
	20	49,99	53,90	31,72	33,28	36,42	44,67
	0	49,69	92,93	17,50	30,00	40,92	46,84
	1	49,70	93,00	16,55	29,35	42,10	46,90
ſ	2	49,76	92,93	15,86	28,97	43,59	47,00
tior	3	49,79	92,65	15,00	28,90	45,10	47,09
oira	4	49,99	92,07	14,31	28,62	46,28	47,27
Exp	5	50,08	91,28	13,69	28,28	46,84	47,40
I	10	50,76	84,14	10,00	26,45	47,94	47,81
	15	50,00	74,21	6,21	25,00	47,78	47,62
	20	50,08	63,59	3,72	28,10	47,69	47,36

Tableau 27 : Données dosimétriques relatives au plan du patient 1.

D		PT	V	CR	PM	ML	PH
P2	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,00	93,25		9,37	30,25	31,08
	1	31,96	92,97		9,55	30,24	31,01
J	2	31,93	92,52		5,00	30,13	30,99
tior	3	32,08	93,32		5,00	30,24	31,10
oira	4	31,96	91,92		5,00	30,08	30,98
lsu	5	32,01	92,10		10,49	30,13	31,06
Ι	10	32,06	90,00		11,40	30,16	31,03
	15	32,22	86,15		12,38	30,12	31,17
	20	32,24	80,87		13,50	30,01	31,20
	0	32,00	93,25		9,37	30,25	31,08
	1	32,07	93,25		9,02	30,32	31,08
-	2	32,06	92,55		8,95	30,30	31,08
tior	3	32,11	91,85		8,74	30,31	31,00
ira	4	32,09	91,29		8,57	30,28	30,99
Exp	5	32,24	90,91		8,39	30,33	31,00
	10	32,15	81,22		7,52	30,34	31,01
	15	32,05	80,00		6,68	30,42	31,08
	20	31,93	72,10		5,94	30,69	31,08

Tableau 28 : Données dosimétriques relatives au plan du patient 2.

Tableau 29 : Données dosimétriques relatives au plan du patient 3.

D2		PT	V	CR	PM	ML	PH
P3	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	31,77	94,20	3,15	37,27	20,15	
	1	31,81	94,27	3,57	37,17	20,01	
	2	31,83	94,09	4,02	36,99	19,97	
tior	3	31,89	93,57	4,55	36,75	19,91	
oira	4	31,94	92,69	5,00	36,64	19,81	
dsu	5	31,97	92,69	5,35	36,47	19,71	
Ι	10	32,18	85,87	7,90	35,35	19,11	
	15	32,35	77,27	11,05	34,02	18,53	
	20	32,52	68,50	14,02	32,45	18,36	
	0	31,77	94,20	3,15	37,27	20,15	
	1	31,75	93,85	2,80	37,45	20,16	
_	2	31,73	93,32	2,38	37,45	20,14	
tion	3	31,71	92,45	2,10	37,62	20,12	
irat	4	31,74	91,15	1,57	37,62	20,05	
Exp	5	31,68	89,83	1,40	37,69	20,11	
I	10	31,78	79,83	0,35	37,90	20,95	
	15	31,79	70,35	0,00	37,55	21,26	
	20	31,87	61,19	0,00	36,92	21,60	

D4		PT	V	CR	PM	ML	PH
P4	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,24	95,87			31,23	
	1	32,20	96,57			31,20	
J	2	32,18	96,92			31,15	
tior	3	32,17	97,38			31,13	
oira	4	32,14	97,73			31,15	
lsu	5	32,34	96,12			31,00	
Ι	10	32,42	91,92			30,86	
	15	32,42	91,82			30,86	
	20	32,50	85,94			30,21	
	0	32,24	95,87			31,23	
	1	32,22	95,46			31,26	
-	2	32,28	94,69			31,29	
tior	3	32,24	93,74			31,29	
Expirat	4	32,26	93,04			31,30	
	5	32,27	92,17			31,35	
	10	32,42	86,47			31,38	
	15	32,60	79,72			31,47	
	20	32,69	72,80			31,50	

Tableau 30 : Données dosimétriques relatives au plan du patient 4.

Tableau 31 : Données dosimétriques relatives au plan du patient 5.

D5		PT	V	CR	PM	ML	PH
PJ	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,10	87,52	0,87	15,35	17,92	30,76
	1	32,12	86,82	0,98	15,63	17,53	30,72
-	2	32,14	86,40	0,98	15,94	17,27	30,69
tior	3	32,19	85,87	1,05	16,29	17,11	30,71
oira	4	32,20	85,46	1,12	16,57	16,98	30,66
dsu	5	32,29	83,74	1,22	16,82	16,77	30,65
Ι	10	32,42	78,32	1,85	18,32	16,32	30,57
	15	32,65	70,87	2,45	21,05	15,51	30,49
	20	32,92	61,99	3,08	22,55	13,30	30,33
	0	32,10	87,52	0,87	15,35	17,92	30,76
	1	32,03	87,38	0,80	15,00	18,42	30,71
_	2	32,04	87,62	0,63	13,74	19,19	30,72
tion	3	32,07	87,80	0,59	13,60	20,42	30,75
Expirat	4	32,11	87,62	0,49	13,29	21,98	30,77
	5	32,18	87,52	0,46	13,04	23,43	30,76
	10	32,49	83,85	0,00	11,92	27,85	30,85
	15	32,59	77,62	0,00	10,80	28,61	30,80
	20	32,50	70,00	0,00	10,00	28,84	30,62

DC		PT	V	CR	PM	ML	PH
P6	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	22,06	73,67		2,27	14,57	21,30
_	1	22,07	72,97		2,27	14,35	21,02
	2	22,03	72,45		2,34	14,07	20,79
tior	3	22,06	71,75		2,45	14,09	20,54
oira	4	22,07	71,05		2,45	14,07	20,29
lsu	5	22,05	70,00		2,52	14,00	19,96
Ι	10	22,21	65,00		2,80	13,72	18,52
	15	22,35	58,85		2,87	13,85	17,98
	20	22,41	52,62		2,52	13,65	17,20
	0	22,06	73,67		2,27	14,57	21,30
	1	22,25	75,00		2,27	15,10	21,45
-	2	22,46	75,70		2,10	15,61	21,72
tior	3	22,67	76,22		2,10	15,97	21,96
Expirat	4	22,90	76,75		2,10	16,31	22,12
	5	23,08	77,27		1,99	16,80	22,20
	10	23,94	78,67		1,75	18,11	22,76
	15	24,56	78,15		1,85	20,33	23,03
	20	25,28	76,40		1,99	21,81	22,97

Tableau 32 : Données dosimétriques relatives au plan du patient 6.

Tableau 33 : Données dosimétriques relatives au plan du patient 7.

P7		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,20	86,22	10,00	24,37	31,08	30,80
	1	32,09	85,63	10,00	24,37	31,06	30,70
ſ	2	32,02	84,44	9,37	24,37	31,08	30,60
tior	3	31,90	83,85	9,44	24,37	31,06	30,46
oira	4	31,85	82,34	9,20	24,30	31,01	30,41
lsu	5	31,79	81,12	9,02	24,27	31,00	30,32
Ι	10	31,58	71,12	7,45	24,55	30,83	29,95
	15	31,37	60,87	5,59	24,79	31,00	29,88
	20	31,23	49,20	3,15	25,00	31,14	29,87
	0	32,20	86,22	10,00	24,37	31,08	30,80
	1	32,33	86,05	10,00	24,20	31,05	30,83
_	2	32,35	86,12	10,00	24,20	31,06	30,94
tion	3	32,45	86,05	10,00	24,20	31,07	31,07
irat	4	32,64	86,05	9,37	24,09	31,01	31,16
Exp	5	32,69	85,87	9,37	24,02	31,15	31,21
	10	32,96	83,85	8,50	23,67	31,59	31,57
	15	33,16	80,52	6,75	22,97	31,83	32,04
	20	33,37	76,85	6,05	21,92	32,12	32,43

DO		PT	V	CR	PM	ML	PH
P8	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	10,70	95,00			9,72	
	1	10,70	95,08			9,70	
J	2	10,68	95,08			9,69	
tior	3	10,66	95,40			9,67	
oira	4	10,65	95,40			9,65	
lsu	5	10,63	95,40			9,63	
Ι	10	10,63	94,76			9,53	
	15	10,66	92,86			9,50	
	20	10,72	90,95			9,49	
	0	10,70	95,00			9,72	
	1	10,72	94,29			9,73	
-	2	10,73	93,97			9,74	
tior	3	10,74	93,49			9,75	
Expirat	4	10,75	93,18			9,76	
	5	10,76	92,38			9,76	
	10	10,82	88,73			9,77	
	15	10,89	86,03			9,77	
	20	10,98	81,27			9,79	

Tableau 34 : Données dosimétriques relatives au plan du patient 8.

Tableau 35 : Données dosimétriques relatives au plan du patient 9.

DO		PT	V	CR	PM	ML	PH
P9	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	26,55	94,82		24,26	17,02	
	1	26,54	94,63		24,19	12,23	
-	2	26,53	94,26		24,19	9,90	
tioı	3	26,55	93,59		24,07	7,95	
oira	4	26,58	92,78		24,00	6,11	
lsu	5	26,72	87,22		23,89	2,88	
Ι	10	26,76	79,70		24,00	1,72	
	15	26,84	71,78		24,52	1,16	
	20	26,91	64,64		25,05	0,78	
	0	26,55	94,82		24,26	17,02	
	1	26,55	94,52		24,26	19,03	
_	2	26,55	94,07		24,33	21,15	
tior	3	26,56	93,15		24,33	21,93	
ira	4	26,55	92,22		24,33	22,83	
Exp	5	26,55	90,63		24,33	23,26	
	10	26,59	82,78		24,33	24,92	
	15	26,62	74,63		24,07	25,57	
	20	26,62	66,67		23,44	25,87	

P10		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,14	95,25	0,29	21,23	18,98	
	1	32,18	95,34	0,59	21,52	17,65	
-	2	32,19	95,17	0,92	21,64	16,32	
tior	3	32,26	94,71	1,39	21,80	15,07	
oira	4	32,21	94,33	1,89	21,89	14,06	
lsu	5	32,23	93,49	2,48	22,05	13,12	
Ι	10	32,40	89,08	6,39	22,62	11,39	
	15	32,60	83,15	11,47	23,03	10,70	
	20	32,82	76,60	17,02	23,16	10,25	
	0	32,14	95,25	0,29	21,23	18,98	
	1	32,19	94,87	0,00	21,15	21,10	
_	2	32,15	94,83	0,00	21,03	22,18	
tior	3	32,14	94,12	0,00	20,82	22,98	
Expirat	4	32,14	93,24	0,00	20,62	24,54	
	5	32,10	92,31	0,00	20,49	25,78	
	10	32,22	86,89	0,00	19,43	28,68	
	15	32,33	81,05	0,00	18,44	29,58	
	20	32,41	75,25	0,00	17,46	30,34	

Tableau 36 : Données dosimétriques relatives au plan du patient 10.

Tableau 37 : Données dosimétriques relatives au plan du patient 11.

P11		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	$V_{95}(\%)$	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,201	95,410			30,295	
	1	32,200	95,410			30,311	
	2	32,214	95,656			30,322	
tior	3	32,207	95,697			30,331	
oira	4	32,200	95,820			30,363	
dsu	5	32,208	95,861			30,396	
Ι	10	32,181	95,328			30,568	
	15	32,145	93,770			30,792	
	20	32,035	91,762			30,951	
	0	32,201	95,410			30,295	
	1	32,193	95,246			30,252	
_	2	32,197	95,041			30,230	
tior	3	32,255	94,836			30,220	
Expirat	4	32,304	94,508			30,190	
	5	32,360	94,180			30,175	
	10	32,665	92,541			30,027	
	15	32,869	90,533			30,057	
	20	32,997	88,402			29,919	

P12		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	6,27	91,12			6,16	5,91
	1	6,28	91,48			6,15	5,89
ı	2	6,26	91,40			6,14	5,88
tior	3	6,25	90,80			6,14	5,86
oira	4	6,25	89,68			6,13	5,85
lsu	5	6,23	84,00			6,13	5,84
Ι	10	6,26	82,00			6,06	5,80
	15	6,15	70,68			6,03	5,76
	20	6,11	57,80			6,02	5,75
	0	6,27	91,12			6,16	5,91
	1	6,28	90,72			6,16	5,92
I	2	6,30	90,00			6,17	5,94
tior	3	6,29	89,00			6,18	5,95
Expirat	4	6,31	87,88			6,19	5,97
	5	6,32	87,00			6,19	5,98
	10	6,33	80,00			6,22	6,06
	15	6,37	70,80			6,24	6,13
	20	6,42	60,00			6,26	6,18

Tableau 38 : Données dosimétriques relatives au plan du patient 12.

Tableau 39 : Données dosimétriques relatives au plan du patient 13.

P13		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	$V_{95}(\%)$	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	15,32	83,48				
	1	15,35	81,39				
_	2	15,38	79,22				
tior	3	15,43	76,96				
oira.	4	15,50	74,13				
dsu	5	15,60	71,52				
Ι	10	15,77	74,57				
	15	15,94	77,74				
	20	16,12	81,04				
	0	15,32	83,48				
	1	15,32	84,78				
_	2	15,36	85,65				
tion	3	15,38	86,87				
irat	4	15,40	87,39				
Exp	5	15,43	87,61				
	10	15,50	80,44				
	15	15,58	67,48				
	20	15,62	52,74				

P14		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	4,18	83,13			3,59	
	1	4,17	83,33			3,46	
ı	2	4,17	83,54			3,41	
tior	3	4,16	83,54			3,26	
oira	4	4,15	83,75			3,18	
lsu	5	4,12	83,54			3,17	
Ι	10	4,12	79,17			3,04	
	15	4,12	65,00			2,49	
	20	4,13	48,13			1,58	
	0	4,18	83,13			3,59	
	1	4,19	83,13			3,65	
T	2	4,20	83,13			3,69	
Expiration	3	4,21	82,71			3,73	
	4	4,21	82,50			3,70	
	5	4,21	81,67			3,72	
	10	4,25	76,67			3,84	
	15	4,27	68,54			4,01	
	20	4,28	60,00			4,09	

Tableau 40 : Données dosimétriques relatives au plan du patient 14.

Tableau 41 : Données dosimétriques relatives au plan du patient 15.

P15		PT	V	CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	$V_{95}(\%)$	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	32,27	81,92		26,92	22,56	
	1	32,19	81,07		26,58	22,59	
_	2	32,13	79,49		26,15	22,58	
tior	3	32,05	78,42		25,77	22,57	
ira	4	32,01	77,56		25,43	22,57	
dsu	5	32,02	76,28		25,00	22,57	
Ι	10	32,14	70,00		23,21	22,52	
	15	32,19	63,21		21,50	22,51	
	20	32,29	56,07		19,70	22,71	
	0	32,27	81,92		26,92	22,56	
	1	32,37	82,56		27,35	22,57	
_	2	32,51	83,21		27,69	22,61	
tion	3	32,63	83,63		27,99	22,66	
Expirat	4	32,84	84,27		28,42	22,68	
	5	32,94	84,36		28,63	22,72	
	10	33,76	83,63		30,00	22,88	
	15	34,39	81,07		31,71	24,40	
	20	35,00	77,35		32,99	25,66	

P16		PTV		CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
tion	0	32,65	95,00		12,32	30,05	
	1	32,60	95,00		12,52	29,82	
	2	32,55	94,80		12,72	29,77	
	3	32,67	94,68		12,96	29,62	
oira	4	32,73	94,28		13,60	29,62	
Insp	5	32,74	93,68		13,40	29,62	
	10	33,55	89,60		14,40	29,39	
	15	34,13	85,60		15,00	28,87	
	20	32,65	95,00		12,32	30,05	
	0	32,68	94,48		12,12	30,25	
	1	32,79	94,00		11,92	30,41	
-	2	32,82	93,20		11,76	30,67	
tior	3	32,95	92,40		11,48	30,89	
Expirat	4	33,01	91,36		11,32	31,05	
	5	33,02	85,32		10,00	32,05	
	10	33,29	78,48		9,08	32,70	
	15	33,50	72,80		7,80	33,56	
	20						

Tableau 42 : Données dosimétriques relatives au plan du patient 16.

Tableau 43 : Données dosimétriques relatives au plan du patient 17.

P17		PTV		CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	$V_{95}(\%)$	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	10,77	91,19			5,13	9,75
	1	10,77	90,51			4,86	9,75
_	2	10,78	90,17			4,64	9,74
tior	3	10,79	89,15			4,43	9,74
oira	4	10,79	88,14			4,19	9,74
dsu	5	10,79	86,61			4,07	9,73
Ι	10	10,84	79,66			3,93	9,64
	15	10,90	70,85			3,86	9,40
	20	10,93	61,86			3,81	8,88
	0	10,77	91,19			5,13	9,75
	1	10,75	91,02			5,42	9,75
_	2	10,75	90,17			5,72	9,75
tior	3	10,75	89,49			6,19	9,75
Expirat	4	10,73	88,14			6,67	9,74
	5	10,72	87,12			7,15	9,74
	10	10,68	77,97			8,90	9,88
	15	10,63	74,24			9,40	9,97
	20	10,54	60,68			9,60	10,01

P18		PTV		CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	V ₉₅ (%)	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	31,50	90,98		18,15	31,83	30,69
	1	31,46	91,25		18,26	31,82	30,66
	2	31,44	91,09		17,99	31,84	30,63
tior	3	31,42	90,71		17,99	31,80	30,62
oira	4	31,42	90,54		17,83	31,80	30,60
lsu	5	31,42	90,00		17,72	31,81	30,57
I	10	31,36	86,36		16,79	31,85	30,41
	15	31,25	81,63		15,82	31,98	30,35
	20	31,17	76,63		14,57	32,14	30,41
	0	31,50	90,98		18,15	31,83	30,69
	1	31,53	90,71		18,26	31,85	30,74
-	2	31,50	90,27		18,48	31,81	30,75
tior	3	31,59	89,73		18,48	31,86	30,79
Expirat	4	31,59	89,19		18,48	31,84	30,82
	5	31,59	88,42		18,48	31,84	30,81
	10	31,73	85,00		18,21	31,81	31,07
	15	31,83	79,73		17,72	31,75	31,24
	20	31,93	71,36		16,96	31,72	31,37

Tableau 44 : Données dosimétriques relatives au plan du patient 18.

Tableau 45 : Données dosimétriques relatives au plan du patient 19.

P19		PTV		CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	$V_{95}(\%)$	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	12,96	83,74			4,45	6,71
	1	12,94	83,74			4,07	6,50
_	2	12,94	83,74			3,47	6,64
tior	3	12,94	83,74			3,27	6,51
oira	4	12,92	83,55			3,26	6,49
dsu	5	12,94	82,80			3,32	6,57
I	10	13,07	78,51			3,66	6,43
	15	13,17	72,15			3,94	6,19
	20	13,10	63,74			3,55	5,94
	0	12,96	83,74			4,45	6,71
	1	12,96	83,74			4,98	6,68
_	2	12,98	83,55			5,76	6,48
tior	3	13,02	82,99			6,42	6,70
Expirat	4	13,07	82,80			7,60	6,65
	5	13,10	82,24			7,83	6,58
	10	13,30	79,07			9,70	6,70
	15	13,45	75,70			9,81	6,74
	20	13,56	70,28			10,10	6,79

P20		PTV		CR	PM	ML	PH
	d(mm)	D _{max} (Gy)	$V_{95}(\%)$	V ₃₀ (%)	V ₂₀ (Gy)	D _{max} (Gy)	D _{max} (Gy)
	0	31,73	95,96		15,79	22,10	
	1	31,81	96,04		16,04	21,20	
_	2	31,87	96,00		16,33	20,29	
tior	3	31,93	95,92		16,54	19,22	
oira	4	31,97	95,54		16,79	17,36	
lsu	5	32,03	95,17		17,00	16,07	
Γ	10	32,33	91,38		18,21	10,63	
	15	32,58	86,67		19,29	7,95	
	20	32,79	81,75		20,00	6,88	
	0	31,73	95,96		15,79	22,10	
	1	31,70	95,75		15,63	23,57	
_	2	31,73	95,58		15,38	24,30	
tior	3	31,73	95,29		15,00	24,91	
oira	4	31,74	95,17		14,88	25,59	
Exp	5	31,75	94,50		14,58	26,24	
	10	31,84	91,38		13,33	28,37	
	15	31,94	87,29		12,00	29,24	
	20	32,12	82,00		10,75	29,72	

Tableau 46 : Données dosimétriques relatives au plan du patient 20.

Figure 28 : Diagramme statistique, en pourcentages, des moyennes des variations de la dose maximales du PTV en fonction de d (en mm) pour les deux phases d'inhalation et d'exhalation.

Figure 29 : Diagramme statistique, en pourcentages, des moyennes des variations de V_{95} du PTV en fonction de d (en mm) pour les deux phases d'inhalation et d'exhalation.

Figure 30 : Diagramme statistique, en pourcentages, des moyennes des variations de V_{20} du poumon en fonction de d (en mm) pour les deux phases d'inhalation et d'exhalation.

Figure 31 : Diagramme statistique, en pourcentages, des moyennes des variations de V_{30} du cœur en fonction de d (en mm) pour les deux phases d'inhalation et d'exhalation.

Figure 32 : Diagramme statistique, en pourcentages, des moyennes des variations de la dose maximale de la moelle et de l'œsophage en fonction de d (en mm) pour les deux phases d'inhalation et d'exhalation.