

DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND RESEARCH

SAAD DAHLAB UNIVERSITY, BLIDA 1

Faculty of Technology

Electronics Department

LATSI Laboratory

DOCTORAL THESIS OF THE THIRD CYCLE

Option: Embedded Systems

APPLICATION OF ARTIFICIAL INTELLIGENCE FOR IOT DATA ANALYSIS

By

Abdelkader HADJ-ATTOU

In front of the jury:

Zoubir BENSELAMA Professor, University of Blida 1 President

Merouane MEHDI MC-A, University of Blida 1 Examiner

Abdessalem BENAMMAR Research Director, CRTI-Cheraga Examiner

Farid YKHLEF Professor, University of Blida 1 Supervisor

Yacine KABIR MA-A, University of Blida 1 Invited

Blida, December, 2024

ABSTRACT

The main objective of this thesis is to use artificial intelligence to support the large

number of IoT devices used in fast-growing fields such as automotive and healthcare. We

will explore how artificial intelligence can address some of the limitations of IoT

technology and how it can boost the deployment of IoT technology in human lives. This is

useful in existing automated monitoring systems to provide comprehensive, real-time,

reliable, and automated IoT monitoring based on artificial intelligence solutions. It is a

strategic area for IoT in general and embedded systems, but more specifically for

autonomous vehicles, healthcare, and smart cities. Another objective is to carry out studies

and analyses on IoT in a Big Data context. Additionally, we will provide an AI-based

security method that automatically includes the growing security aspects related to the IoT

domain. In this thesis, we propose four frameworks that classify IoT data by utilizing

hybrid deep learning models and ensemble learning methods. Two road datasets have been

created and labeled in real-time, providing the necessary resources for the evaluation of our

proposed models. The first three frameworks demonstrate the effectiveness of hybrid

models and ensemble techniques in improving road surface anomaly detection. Also, we

propose a big data framework that employs Apache Spark and ensemble learning to

improve IoT network intrusion detection. The fourth framework passes through extensive

testing using the BoT-IoT dataset, proving its ability to handle traffic imbalances and

detect various IoT network threats with high accuracy. The experimental results clearly

show the effectiveness and reliability of the four frameworks.

Keywords: Artificial Intelligence, Big Data, IoT Technology, IoT Security.

RÉSUMÉ

L'objectif principal de cette thèse est d'utiliser l'intelligence artificielle pour prendre en

charge le grand nombre d'appareils IoT utilisés dans les domaines en forte croissance tel

que l’automobile et la santé. Nous étudierons comment l'intelligence artificielle peut

résoudre certaines limitations de la technologie IoT et comment elle peut stimuler le

déploiement de la technologie IoT dans la vie de l’homme. Ceci est utile dans les systèmes

de surveillance automatisé existant afin de fournir une surveillance complète en temps réel,

fiable et automatisée des IoT basée sur des solutions d'intelligence artificielle. C’est un

domaine stratégique pour les IoT en général et les systèmes embarqués, mais plus

particulièrement pour les véhicules autonomes, les soins de santé et les villes intelligentes.

Un autre objectif est de réaliser des études et analyses sur l'IoT dans un contexte Big Data.

En plus, nous allons proposer une méthode de sécurité basée sur l'intelligence artificielle

qui inclut automatiquement les aspects de sécurité croissants liés au domaine de l'IoT.

Dans cette thèse, nous proposons quatre structures visant à classer les données IoT en

utilisant des modèles hybrides d'apprentissage profond et des méthodes d'apprentissage

ensembliste. Pour évaluer nos modèles, deux ensembles de données routières ont été créés

et étiquetés en temps réel, fournissant les ressources nécessaires à l'évaluation de nos

modèles proposés. Les trois premières structures démontrent l'efficacité des modèles

hybrides et des techniques ensemblistes pour améliorer la détection des anomalies sur les

surfaces routières. En outre, nous proposons un structure de big data qui utilise Apache

Spark et l'apprentissage ensembliste pour renforcer la détection des intrusions dans les

réseaux IoT. La quatrième structure passe par des tests approfondis en utilisant l'ensemble

de données BoT-IoT, prouvant sa capacité à gérer les déséquilibres de trafic et à détecter

diverses menaces sur le réseau IoT avec une grande précision. Les résultats expérimentaux

confirment l'efficacité et la fiabilité des quatre structures proposés.

Mots clés : Intelligence Artificielle, Big Data, Technologie IoT, Sécurité IoT.

 الملخص

الهدف الرئيسي من هذه الأطروحة هو استخدام الذكاء الاصطناعي لدعم العدد الكبير من أجهزة إنترنت الأشياء

المستخدمة في المجالات سريعة النمو مثل السيارات والرعاية الصحية. سنستكشف كيف يمكن للذكاء الاصطناعي أن

ي وكيف يمكن أن يعزز نشر تكنولوجيا إنترنت الأشياء فيعالج بعض القيود المفروضة على تكنولوجيا إنترنت الأشياء

حياة الإنسان. وهذا مفيد في أنظمة المراقبة الآلية الحالية لتوفير مراقبة إنترنت الأشياء الشاملة والموثوقة والآلية في

ة كل عام والأنظمالوقت الفعلي بناءً على حلول الذكاء الاصطناعي. يعد هذا مجالًا استراتيجياً لإنترنت الأشياء بش

المدمجة، ولكن بشكل أكثر تحديدًا للمركبات ذاتية القيادة والرعاية الصحية والمدن الذكية. الهدف الآخر هو إجراء

دراسات وتحليلات حول إنترنت الأشياء في سياق البيانات الضخمة. بالإضافة إلى ذلك، سنوفر طريقة أمان قائمة على

نقترح في هذه الأطروحة،يًا الجوانب الأمنية المتنامية المتعلقة بمجال إنترنت الأشياء. الذكاء الاصطناعي تتضمن تلقائ

أربعة أطر عمل لتصنيف بيانات إنترنت الأشياء من خلال الاستفادة من نماذج التعلم العميق الهجينة وطرق التعلم

ت الفعلي، مما يوفر الموارد اللازمة الجماعي. تم إنشاء مجموعتين من بيانات الطرق ووضع علامات عليها في الوق

لتقييم النماذج المقترحة. توضح الأطر الثلاثة الأولى فعالية النماذج الهجينة وتقنيات التعلم الجماعي في تحسين اكتشاف

والتعلم الجماعي لتحسين Apache Sparkشذوذ سطح الطريق. كما نقترح إطار عمل للبيانات الضخمة يستخدم

، مما BoT-IoTاكتشاف اختراق شبكة إنترنت الأشياء. يمر الإطار الرابع باختبارات مكثفة باستخدام مجموعة بيانات

يثبت قدرته على التعامل مع اختلالات حركة المرور واكتشاف تهديدات شبكة إنترنت الأشياء المختلفة بدقة عالية.

 بوضوح فعالية وموثوقية الأطر الأربعة.تظهر النتائج التجريبية

 الذكاء الاصطناعي، البيانات الضخمة، تكنولوجيا إنترنت الأشياء، أمن إنترنت الأشياء. : الكلمات المفتاحية

DEDICATIONS

I dedicate my thesis work to my wonderful parents, for all their sacrifices, love,

support, and prayers during my studies,

To my professors at the Electronics Department of Saad Dahlab University,

To my family and friends for their support during my university career,

To the challenges that made me stronger,

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and Merciful, Alhamdulillah, thanks to Allah

for the strength and blessing in completing this thesis.

I have had a lot of help and support while I have been writing my thesis. Thus, with these

few lines, I would like to express my gratitude to everyone who helped to complete my

thesis, whether directly or indirectly.

I would like to express my sincere gratitude to my supervisor, Farid Ykhlef, a professor

at the University of Blida 1. He directed my thesis, kindly helped me along every step, and

gave me a foundation that was really useful.

I am grateful to Mr. Yacine Kabir, a professor at Blida University, for his help over the

past six years. You were incredibly approachable, gave excellent research suggestions, and

had a lot of patience in teaching me how to establish ideas and gain an understanding of the

work we were doing.

Also, I extend my heartfelt gratitude to the entire LATSI Laboratory team, I wish you

luck in your future projects.

Lastly, I just wanted to thank everyone again for helping me to complete this thesis. The

final aim is that others may find this research valuable.

Abdelkader Hadj-Attou

2024

CONTENTS

 ABSTRACT .. 1

RÉSUMÉ .. 2

 3 ... الملخص

DEDICATIONS ... 4

ACKNOWLEDGEMENTS ... 5

LIST OF FIGURES .. 11

LIST OF TABLES ... 14

LIST OF ABBREVIATIONS .. 16

GENERAL INTRODUCTION .. 18

Chapter 1 : STATE OF THE ART ... 22

1.1 Introduction .. 22

1.2 Internet of Things (IoT) ... 23

1.3 IOT Architecture .. 25

1.3.1. Perception Layer .. 26

1.3.2. Network Layer ... 27

1.3.3. Data Processing Layer .. 27

1.3.4. Application Layer ... 27

1.4 IoT Gateways ... 28

1.5 IoT Communication Protocols ... 30

1.5.1. Perception Layer Protocols .. 30

1.5.2. Network Layer Protocols ... 31

1.5.3. Application Layer Protocols .. 32

1.6 Comparison of Communication Protocols in IoT .. 35

 1.7 IoT Data Storage and Analytics ... 36

1.7.1. Databases in IoT Applications ... 36

1.7.2. Fog Computing... 39

1.7.3. Edge Computing... 39

1.7.4. Cloud Computing ... 39

1.8 Applications of IoT .. 41

1.8.1. Smart Transportation .. 41

1.8.2. Smart Farming .. 42

1.8.3. Healthcare .. 42

1.8.4. Smart Home ... 42

1.8.5. Manufacturing .. 42

1.9 Artificial Intelligence for IoT Data Analytics .. 43

1.9.1. Machine Learning (ML) ... 43

1.9.2. Deep Learning (DL) ... 45

1.9.3. Ensemble Learning (EL) .. 47

1.10 Big Data ... 49

1.11 IoT Security ... 51

1.12 IoT Search Engine ... 52

1.13 Conclusion ... 54

 Chapter 2 : IOT BASED ROAD SURFACE CONDITION (RSC)
MONITORING USING HYBRID DEEP LEARNING MODELS 56

2.1 Introduction .. 56

2.2 Background .. 57

2.2.1. Road Surface Condition Monitoring Approaches 57

2.2.2. Road Anomalies Classification Approaches .. 58

 2.2.3. A Review of RSC Studies .. 59

2.3 Proposed Methodology for Road Anomalies Detection 61

2.3.1. Data Collection ... 62

2.3.2. Data Preprocessing ... 63

2.3.2.1 Data Filtering ... 64

2.3.2.2 Resampling ... 64

2.3.2.3 Reorientation .. 65

2.3.2.4 Segmentation .. 65

2.3.2.5 Feature Extraction .. 66

2.3.2.6 Feature Selection .. 66

2.3.2.7 Feature Scaling ... 67

2.3.3. Classification .. 68

2.3.3.1 Proposed CNN-LSTM and CNN-GRU Models .. 68

2.3.3.2 Proposed ConvLSTM Model ... 69

2.4 First Proposed Framework ... 69

2.4.1. First Architecture ... 70

2.4.2. Data Acquisition ... 70

2.4.3. Preprocessing of Data .. 73

2.4.4. Classifier Models ... 77

2.5 Second Proposed Framework .. 79

2.5.1. Second Architecture ... 79

2.5.2. RSC-IoT Dataset .. 79

2.5.3. Data Transformation .. 80

2.5.4. The Hybrid 3D Models .. 81

 2.5.5. Ensemble Learning Methods .. 83

2.6 Third Proposed Framework ... 83

2.6.1. Third Architecture .. 83

2.6.2. Data Augmentation .. 85

2.7 Proposed RSC Monitoring Architecture using IoT Search Engine 87

2.8 Proposed RSC Monitoring Architecture using Cloud Computing 89

2.9 Conclusion ... 91

 Chapter 3 : BIG DATA AND MACHINE LEARNING FOR IOT INTRUSION
DETECTION SYSTEM ... 92

3.1 Introduction .. 92

3.2 Literature Review .. 93

3.2.1. IDS Approaches ... 93

3.2.2. IDS Datasets ... 95

3.2.3. A Review of IDS Studies ... 96

3.3 Proposed Methodology for IoT Network Intrusion Detection 100

3.3.2. Data Description ... 101

3.3.2. Data Preprocessing ... 104

3.3.2.1 Data Cleaning ... 104

3.3.2.2 Train-Test Split .. 105

3.3.2.3 Handling Imbalanced Class Distribution ... 105

3.3.3. Classification .. 107

4.6.2.1 Apache Spark ... 107

3.3.3.2 Apache Spark MLlib .. 108

3.3.3.3 Classifier .. 109

3.4 Conclusion ... 109

 Chapter 4 : EXPERIMENTAL EVALUATION AND RESULTS 110

4.1 Introduction .. 110

4.2 Performance Metrics .. 110

4.3 RSC Monitoring Experiments using the RSC Dataset 111

4.3.1. Performance for Different Input Domains and Data Types 111

4.3.2. A Comparison of Hybrid Classification Models 113

4.4 RSC Monitoring Experiments using the RSC-IoT Dataset 115

4.5 RSC Monitoring Experiments using Data Augmentation 119

4.6 IoT Intrusion Detection Experiments using the BoT-IoT Dataset 122

4.6.2. Importance of using Oversampling on the BoT-IoT Dataset 122

4.6.2. Performance Evaluation of Ensemble Learning Methods 123

4.6.2.1 Averaging Ensemble .. 123

4.6.2.2 Weighted Average .. 125

4.7 Discussion .. 127

4.8 Conclusions .. 129

CONCLUSION AND FUTURE WORK ... 130

APPENDIX A .. 132

APPENDIX B .. 134

APPENDIX C .. 135

APPENDIX D .. 136

REFERENCES ... 137

LIST OF FIGURES

Figure 1. 1: The four-layer architecture for IOT. ... 25

Figure 1. 2: IoT architectures: (A) three layers, (B) five layers. 26

Figure 1. 3: The architecture of an IOT gateway using a smartphone. 29

Figure 1. 4: HTTP Architecture. .. 32

Figure 1. 5: XMPP Architecture. ... 33

Figure 1. 6: WebSocket Architecture. .. 34

Figure 1. 7: MQTT Architecture. ... 35

Figure 1. 8: Relation between edge, fog, and cloud computing. 41

Figure 1. 9: The illustrations of LSTM model. .. 46

Figure 1. 10: The illustrations of GRU model. .. 47

Figure 1. 11: The 6V’s of big data. .. 49

Figure 1. 12: An overall framework for the IoTSE . .. 53

Figure 2. 1: Types of anomalies on the road surface. .. 58

Figure 2. 2: Motion sensors orientation inside the vehicle. 65

Figure 2. 3: ConvLSTM cell structure. .. 69

Figure 2. 4: The First proposed framework for road anomalies detection. 70

Figure 2. 5: Data labeling approach via TCP/IP sockets.. 71

Figure 2. 6: TCP/IP Server–Client communication. .. 72

Figure 2. 7: Illustration of the resampling process showing (a) the original sensor

sampling rate and (b) the new sampling rate. .. 73

Figure 2. 8: Moving average filter of order L=3. ... 74

Figure 2. 9: Sliding window with 50% overlap. .. 75

Figure 2. 10: Feature extraction using DWT and FFT. .. 76

Figure 2. 11: Structure of a multi-channel 1D CNN model. 77

Figure 2. 12: The architecture of the proposed CNN-LSTM and CNN-GRU

models. ... 78

Figure 2. 13: The second proposed framework for road anomalies detection. 79

Figure 2. 14: Data labeling approach via Bluetooth... 80

Figure 2. 15: Segmentation of sensors data with a 2 seconds and 66% overlap. 81

Figure 2. 16: The third proposed framework for road anomalies detection. 84

Figure 2. 17: Sensor data segmentation of 3 seconds and 66% overlap. 85

Figure 2. 18: Traditional time series data augmentation techniques. 86

Figure 2. 19: The architecture of the proposed RSC monitoring using IoT search

engine (IoTSE). .. 88

Figure 2. 20: The architecture of the proposed RSC monitoring using cloud

computing. ... 90

Figure 3. 1: Process of the proposed methodology. ... 101

Figure 3. 2: The Bot-IoT dataset testbed environment .. 102

Figure 3. 3: Attack subcategory distribution in testing dataset and training subsets for

n = 3. .. 106

Figure 3. 4: The spark cluster architecture ... 108

Figure 4. 1: The confusion matrix's structure ... 111

Figure 4. 2: Normalized confusion matrices of 33% overlaps for the (a) CNN, (b)

CNN-LSTM, (c) and CNN-GRU classifiers. ... 114

Figure 4. 3: Normalized confusion matrices of 50% overlaps for the (a) CNN, (b)

CNN-LSTM, (c) and CNN-GRU classifiers. ... 115

Figure 4. 4: Normalized confusion matrices of 66% overlaps for the (a) CNN, (b)

CNN-LSTM, (c) and CNN-GRU classifiers. ... 115

Figure 4. 5: Confusion matrices of the standard CNN-LSTM. 116

Figure 4. 6: Confusion matrices of the standard CNN-GRU. 116

Figure 4. 7: Confusion matrices of the TD-CNN-LSTM. 117

Figure 4. 8: Confusion matrices of the TD-CNN-GRU. .. 117

Figure 4. 9: Confusion matrices of the ConvLSTM... 117

Figure 4. 10: Confusion matrices of the averaging ensemble. 118

Figure 4. 11: Confusion matrices of the weighted average ensemble. 119

Figure 4. 12: Confusion matrices of the averaging ensemble using Traditional

approaches. .. 121

Figure 4. 13: Confusion matrices of the averaging ensemble using SMOTE

technique. ... 121

Figure 4. 14: Confusion matrices of the averaging ensemble using DoppelGANger

technique. ... 121

Figure 4. 15: Confusion matrices of averaging ensemble when 𝑛 = 3. 125

Figure 4. 16: Confusion matrices of averaging ensemble when 𝑛 = 6. 125

Figure 4. 17: Confusion matrices of weighted average ensemble when 𝑛 = 3. 127

Figure 4. 18: Confusion matrices of weighted average ensemble when 𝑛 = 6. 127

LIST OF TABLES

Table 1. 1: A comparison of different microcontrollers. .. 28

Table 1. 2: A comparison of different application layer protocols. 35

Table 1. 3: A comparison of different network layer protocols. 36

Table 2. 1: A summary of related work in RSC monitoring. 59

Table 2. 2: A description of the sensors utilized to detect road surface anomalies. 63

Table 2. 3: A presentation of the extracted features utilized in RSC monitoring. ... 66

Table 2. 4: Distribution of road anomalies in the RSC dataset. 73

Table 2. 5: Distribution of the new segmented datasets. .. 75

Table 2. 6: Correlation between DWT and FFT features. .. 77

Table 2. 7: The structure of the CNN- LSTM and CNN-GRU models. 78

Table 2. 8: Distribution of data before and after preprocessing. 81

Table 2. 9: The structure of the ConvLSTM model. .. 82

Table 2. 10: The structure of the TD-CNN-GRU and TD-CNN-LSTM models. 82

Table 2. 11: RSC dataset description. .. 84

Table 2. 12: Distribution of training data segments before and after data

augmentation. ... 87

Table 3. 1: The advantages and disadvantages of intrusion detection approaches. . 94

Table 3. 2: Summary of studies that used IoT traffic datasets. 97

Table 3. 3: The full BoT-IoT dataset description. .. 103

Table 3. 4: The short version BoT-IoT dataset description.................................... 103

Table 3. 5: BoT-IoT dataset features description. .. 103

Table 3. 6: BoT-IoT features selection... 105

 Table 3. 7: Distribution of instances in the training and testing datasets. 105

Table 3. 8: Distribution of instances in the training subsets when n=3. 107

Table 3. 9: Distribution of instances in the training subsets when n=6. 107

Table 4. 1: Performance metrics based on confusion matrix. 111

Table 4. 2: Performance for different sensor combinations using DNN and CNN

models. ... 112

Table 4. 3: Performance for multiple features using DNN and CNN models. 113

Table 4. 4: Evaluation of the presented models using multiple overlap factors. ... 114

Table 4. 5: A comparative evaluation of the proposed models. 116

Table 4. 6: Performance evaluation of the ensemble methods. 118

Table 4. 7: Performance evaluation of the proposed models without data

augmentation. ... 119

Table 4. 8: Performance evaluation of the proposed models with data

augmentation. ... 120

Table 4. 9: Classification results using multiple oversampling techniques on the BoT-

IoT dataset. ... 123

Table 4. 10: Performance comparison of the three DT models and the averaging

ensemble method ... 124

Table 4. 11: Performance comparison of the six DT models and the averaging

ensemble method ... 124

Table 4. 12: The evaluation results of weighted average ensemble method 126

Table 4. 13: Detection rate comparison with previous studies. 128

Table 4. 14: A comparison of the proposed approach with other related works using

F1 Score metric. ... 129

LIST OF ABBREVIATIONS

IoT Internet of Things

AI Artificial Intelligence

IDS Intrusion Detection Systems

ML Machine Learning

DL Deep Learning

M2M Machine-to-Machine

IIoT Industrial Internet of Things

GPIO General Purpose Input Output

LAN Local Area Network

LTE Long-Term Evolution

LPWAN Low Power Wide Area Network

BLE Bluetooth Low Energy

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

HTTP Hypertext Transfer Protocol

XMPP Extensible Messaging and Presence Protocol

XML eXtensible Markup Language

TCP Transmission Control Protocol

MQTT Message Queuing Telemetry Transport

IETF Internet Engineering Task Force

W3C World Wide Web Consortium

XSF XMPP Standards Foundation

SQL Structured Query Language

DBMS Database Management System

BSON Binary Javascript Object Notation

StaaS Storage as a Service

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

AIoT Agricultural IoT

DT Decision Tree

RF Random Forest

KNN K-nearest Neighbor

SVM Support Vector Machines

NB Naive Bayes

RL Reinforcement Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

EL Ensemble Learning

GBM Gradient Boosting Machine

XGBM Extreme Gradient Boosting Machine

ITS Intelligent Transportation Systems

RSC Road Surface Condition

DTW Dynamic Time Warping

GMM Gaussian Mixture Model

IMU Inertial Measurement Unit

GPS Global Positioning System

FFT Fast Fourier Transform

PSD Power Spectral Density

DWT Discrete Wavelet Transform

CWT Continuous Wavelet Transform

HAR Human Activity Recognition

TD TimeDistributed

SMOTE Synthetic Minority Oversampling Technique

GAN Generative Adversarial Network

RDD Resilient Distributed Dataset

DDoS Distributed Denial of Service

DoS Denial of Service

18

GENERAL INTRODUCTION

The Internet of Things (IoT) involves most physical things or devices that can connect

to the Internet, including manufacturing equipment and machinery, household items, and

automobiles. Specifically, the concept of IoT today refers to a network of networked devices

that share data with other devices and incorporate software, sensors, and processing power.

The Internet and the IoT are two different concepts. It would be reasonable to say that the

Internet of Things is more intelligent than the Internet since it has the ability to generate,

evaluate, and make decisions based on data from connected devices. IoT is changing

numerous applications, and the data created by IoT devices has the potential to significantly

enhance company profits after the analysis of the data [1, 2].

Through the use of modern wireless technologies like actuators, sensors, and

smartphones, businesses embrace IoT to incorporate every task and assist in achieving their

objectives. The implementation of IoT benefits businesses, since it can reinforce a company

strategy based on technology and social networks. The current and next generation of IoT

technologies have significant potential for enhancing the overall quality of people's lives

through automation, productivity, and user convenience over a variety of application fields

[3]. Smart cities, smart industries, smart transportation, healthcare, and water monitoring are

some of the best examples of IoT applications.

Any object in the world with the technological features needed to allow it to connect to

the Internet via a wireless or wired connection can be considered an IoT device. Users of

IoT may be machines, people, or both. IoT is a combination of various technologies that

enable the networking of many things, not a single device or technology [4]. IoT collects

data from a variety of sources, including environmental sensors, smart devices, and smart

cars. After that, the data can be transferred to the edge gateway and cloud via the internet

using widely used standard protocols like HTTP, XMPP, WebSocket, and MQTT.

Functionalities like preprocessing the data, protecting cloud connectivity, and collecting

sensor data are all provided by the edge gateway. Several database management systems

designed for IoT applications are available in the cloud. To provide meaningful information,

the data are analyzed using artificial intelligence, and fundamental computing methods. With

19

the usage of this data, businesses may improve activities, interact with consumers more,

automate process control, and make the best decisions possible based on the insights

obtained from the data [5].

Artificial intelligence (AI) is the term used to describe the imitation of human

intelligence in robots that are designed to think and behave like people. Machines with AI

are able to learn and respond to a variety of scenarios and problems. Due to its enormous

flexibility, AI can be used in combination with the IoT. For instance, smart home devices or

microcontroller chips can form several IoT networks to collect, analyze, and exchange

various types of data flows over the internet [1, 2].

The exponential increase in the amount of data transferred between IoT devices is the

main obstacle in implementing IoT systems. Moreover, a thorough analysis of all this data

is required. IoT data is consequently analyzed using a large number of big data methods.

Since the data collected by IoT devices is unstructured, big data uses multiple storage

approaches to analyze and store the collected data in real time. These massive amounts of

data are known as big data when artificial intelligence is employed to provide useful

information [5-7].

The main concern when implementing IoT technology is security. IoT devices that do

not have protection pose a risk to the overall IoT infrastructure. In general, the processing

capacity of IoT devices is limited. Due to these limitations, they are unable to secure their

information as well as interact with other devices using fundamental security features like

firewalls or robust cryptosystems. Numerous factors contribute to IoT safety concerns,

including a lack of hardware safety features, poorly written software with wide limits on

vulnerabilities, and various errors in safety design [4, 8].

Research Contribution

The main goal of this thesis is to use AI to assist the enormous number of IoT devices

employed in the field of IoT. The first phase includes collecting IoT data and sending it to a

server for storage. In the second phase, data preprocessing is utilized to reduce the amount

of computation required by cleaning, transforming, and organizing the data to boost the

reliability of the final decision. The final part is an AI-based classification phase that uses

20

machine learning (ML), deep learning (DL), hybrid deep learning, and ensemble learning

algorithms.

Artificial intelligence is a critical field for embedded systems and the IoT in general, but

especially for smart cities, healthcare, and self-driving cars. The ability to use IoT sensor

data is getting a lot of attention in this field. The data will become incredibly large, so we

will need to adopt big data solutions. This thesis also looks into how AI might help overcome

the security concerns associated with IoT technology in order to expand its acceptance in

daily life. Our solution includes four frameworks designed to enhance the precision and

reliability of IoT data analysis. Three frameworks are focused on monitoring road surface

conditions, which detect road anomalies by analyzing vibrations from motion sensors in

moving vehicles, and one is designed to detect IoT network attacks. In order to classify road

surface anomalies, the first proposed framework employed smartphone motion sensors to

create a new road dataset. Then, hybrid deep learning models were designed to classify road

surface anomalies. The second framework included another road dataset collected using an

IoT device to enable the proposed 3D hybrid deep learning models for identifying road

surface conditions. For further improvement of 3D hybrid deep learning models, the third

framework employed data augmentation techniques on the road dataset. The efficiency of

these techniques was investigated through the application of ensemble learning methods.

Finally, the fourth framework implemented a machine learning approach within a Big Data

environment to detect intrusions in the BoT-IoT dataset. It effectively addressed data

imbalance challenges by integrating oversampling techniques with ensemble resampling

methods. The following briefly describes the primary contributions of our work:

 Create road datasets to monitor road surface conditions based on motion sensors

embedded in IoT devices or smartphones. The problem of class imbalance in road

data is addressed via data augmentation techniques.

 Develop hybrid deep learning models for classifying road surface anomalies. We also

evaluate the efficacy of using spatiotemporal features as inputs.

 Develop a Big Data framework based on Apache Spark for network traffic

monitoring. The methodology uses an ensemble learning approach and an

oversampling technique to improve classification performance and address the issue

of class imbalance.

21

Thesis Structure

There are four chapters in this thesis, arranged as follows:

In the first chapter, we will provide a description of the protocols, applications, and

architectures of the Internet of Things. We will also discuss various AI approaches, IoT

security, and big data solutions.

The second chapter discusses some common techniques for road data analysis and road

surface conditions monitoring. In addition, we will provide IoT-based architectures for

monitoring road surface conditions, as well as AI models for detecting road anomalies.

The third chapter will be devoted on creating a big data architecture using Apache Spark

to identify IoT network intrusions. In this chapter, we will investigate how ensemble learning

methods and machine learning approaches can help to enhance the accuracy of IoT network

intrusion detection.

The fourth chapter will cover the experiments conducted to evaluate IoT data using AI

algorithms. In these experiments, various hybrid deep learning models that were created for

the classification of road surface anomalies are evaluated. Furthermore, the BoT-IoT dataset

will be used in the intrusion detection experiments.

List of Publications

 Journal paper: Hadj-Attou, Abdelkader, Yacine Kabir, and Farid Ykhlef. "Hybrid

deep learning models for road surface condition monitoring." Measurement 220

(2023): 113267.

 Conference paper: Hadj-Attou, Abdelkader, Yacine Kabir, and Farid Ykhlef. "IoT

Based Road Surface Condition Monitoring Using Spatiotemporal Feature Learning."

International Conference on Computing Systems and Applications. Cham: Springer

Nature Switzerland, 2024.

 Conference paper: Hadj-Attou, Abdelkader, Yacine Kabir, and Farid Ykhlef. "A

Big Data Security Framework for IoT Networks using Weighted Average

Ensemble." 2024 2nd International Conference on Electrical Engineering and

Automatic Control (ICEEAC). IEEE, 2024.

22

CHAPTER 1: STATE OF THE ART

1.1 Introduction

Modern technological advancements have improved and facilitated people's lives while

offering numerous advantages. This progress is seen in the community, medical, academic,

and economic areas among others. These days, the Internet is nearly everywhere, has

impacted almost every region of the world, and is having unthinkable effects on human

life. However, a very wide range of devices can be connected to the Internet, resulting in

an era of everywhere connectivity called the Internet of Things (IoT). The term "IoT"

describes the widespread smart devices equipped with Internet connections [5, 9].

There is an ongoing increase in the quantity of IoT devices. The total amount of IoT

devices is predicted to increase from 500 million in 2003 to 24.1 billion by the end of

2030, representing approximately 3.47 IoT devices for each user. Around 5.8 billion of the

24.1 billion devices are expected to be reserved for business and industrial use. These facts

demonstrate the significance of IoT since it indicates how individuals and devices are

fundamentally changing the way connected environments are measured, sensed, and

communicated with [10].

IoT devices have embedded transceivers, CPUs, actuators, and sensors to enable this

intelligence and connectivity. IoT is a combination of multiple technologies that operate in

harmony rather than being a single technology. Devices that provide interaction with the

physical world include sensors and actuators. To extract significant information from the

sensor data, it needs to be intelligently stored and analyzed [5].

IoT has become a popular topic in news articles and marketing trends. Sensor networks,

embedded systems, and computer science are some of the earlier techniques that gave rise

to IoT. In addition, IoT emerged as an effective way to interact with machines across many

areas. Although a lot of IoT devices are networked together to create systems for

specialized purposes, they rarely serve as public access devices in the global internet [7].

In IoT applications, artificial intelligence (AI) is becoming more and more important.

The ability of AI to swiftly extract insights from data is what makes it valuable in the IoT

field. The IoT environment can benefit from the use of AI in a number of ways to improve

23

its efficiency and create more intelligent and effective IoT applications. Indeed, AI

algorithms enable the identification of patterns in data that might be challenging for

humans to recognize. This can be helpful in identifying anomalies, allowing companies to

make better decisions [11-13].

Like all technology, IoT has been predicted to have both positive and negative effects

on modern life. Advocates of the Internet of Things argue that it represents the first true

advancement in the Internet and could improve people's lives in a variety of ways,

including employment, education, and entertainment. The biggest issues with IoT in terms

of disadvantages are security and privacy risks. Devices connected to the Internet of

Things produce, transfer, and preserve important data on the routines, pursuits, traits, and

personalities of their users as well as details about their immediate surroundings. The issue

at hand is that IoT devices are vulnerable to security flaws, and privacy rules are unable to

mitigate the risks posed by this growing problem [9].

In this chapter, we give an overview of IoT architecture, applications, and protocols.

We also cover big data, IoT security systems, and potential AI techniques.

1.2 Internet of Things (IoT)

The integration of communication features into everyday objects and utilizing new

Internet technologies created the Internet of Things (IoT). This revolutionary networking

framework that is called IoT enables communication over the Internet between various

physical devices [14]. The term IoT describes an interconnected system of smart devices that

are capable of collecting and sharing data since they include internet connection, software,

and sensors. Almost every physical thing that has the ability to be connected to the internet

and transmit data has the potential to become an IoT device. These devices may include

anything from connected streetlights, smart thermostats, driverless trucks, and children's

toys [15, 16]. The IoT system's goal is to enhance people's quality of life through allowing

people to respond effectively to changes in the environment and by offering services that are

customized for the individual needs of users [4].

In the 1980s and 1990s, there was discussion about integrating sensors and intelligence

into everyday things. Although there were a few initial initiatives, such as a vending machine

24

linked to the Internet, advancement remained slow due to the unavailability of necessary

technologies [16]. At first, the manufacturing and business sectors were the areas where the

IoT was the most fascinating due to its machine-to-machine (M2M) applications. As a subset

of the IoT, M2M solutions employ wireless technologies to connect devices to the Internet

and each other, requiring limited human involvement for providing services that satisfy the

demands of a variety of companies [17]. Present internet connections have been utilized to

enable M2M networks and their services. These types of networks are frequently connected

by various protocols [14]. IoT may support companies with solutions that enhance

productivity and decision-making in a variety of industries. However, the focus these days

is on bringing as many smart devices into our homes and workplaces as possible, making it

something that practically everyone can use.

Additionally, IoT services will boost the economy by generating new business

opportunities for equipment suppliers, and other participants in the wireless industry. The

IoT services, backed by cross-industry cooperation, are expected to benefit billions of people

worldwide by improving various economic areas, including transportation, healthcare, and

energy [17]. A technology research company anticipates that by 2030, there will be 24.1

billion connected IoT objects worldwide. The report additionally indicates that the largest

market for connected devices is expected to be found in the industrial and automobile sectors

[16, 18]. In fact, the IoT is still in its earliest stages, but in the end it will have a significant

effect on businesses, customers, and society in general [17].

The Internet of things has many practical uses in daily life, ranging from industrial to

consumer and business. IoT provides companies with the means to enhance their business

strategy and challenges them to reconsider how they run business. On the other hand,

customers may benefit from improved connectivity that is caused by the Internet of Things

in a number of ways, including increased security and energy efficiency. The usage of IoT

technology in an industrial environment is known by several names, including Industry 4.0,

the Fourth Industrial Revolution, and the Industrial Internet of Things (IIoT) [16].

Although managing IoT devices can be difficult and demanding, there are certain

standard procedures that companies are able to follow to make sure that these devices are

safe, reliable, and performing at their best [4]. Through the help of sensors and software,

25

mobile IoT devices are capable of collecting and analyzing user data and interacting with

their users to improve and simplify their lives.

1.3 IOT Architecture

The structure that describes how systems and devices interact and communicate inside

the IoT environment is known as IoT architecture. An architecture represents a framework

that specifies the physical elements of a network, together with their functional arrangement

and configuration [19]. Building and deploying IoT solutions is guided by a framework

known as the IoT standard architecture, which describes the essential elements, methods of

functioning, and recommended practices for IoT implementations [20]. However, IoT

architecture can be seen in a multitude of ways, and each IoT system is unique [19]. The IoT

architecture consists of four primary components, and it is designed in layers, as shown in

Figure 1.1.

Figure 1. 1: The four-layer architecture for IOT [19].

Regarding the architecture of the IoT, there is not an official worldwide perspective

shared by academics and the general public. Researchers have proposed many different

kinds of architectures. Some researchers claim that the architecture of the Internet of

Things consists of three layers, while other experts advocate for a five-layer architecture.

They believe that the three and four-layer architectures can not satisfy application needs

because of the IoT security and privacy concerns [21]. The five-layer architecture is an

expansion of the IoT's four-layer architecture since it includes an additional layer (Business

Layer). The business layer controls the entire IoT system, which includes applications,

26

revenue, and the security of users. Figure 1.2 depicts IoT layer architectures that include

three and five layers.

Figure 1. 2: IoT architectures: (A) three layers, (B) five layers [21].

These architectures are composed of many layers and components that work together to

smoothly transmit data between devices and applications [22]. The following describes the

functioning of the common layers of the IoT architecture.

1.3.1. Perception Layer

The Perception Layer, sometimes referred to as the sensor layer, is the same in the three

architectures. It consists of devices, sensors, and actuators that monitor the environment and

acquire important data about things like humidity, air quality, temperature, velocity,

humidity, pressure, and movement. This layer serves as an interface between the information

and physical worlds [4]. Sensors can be utilized to measure physical properties and translate

them into signals that IoT devices can handle [14]. The requirements of the sensor determine

whether the relationship between environmental factors and the electrical signals is linear or

non-linear. Actuators are devices that convert electrical signals into physical actions. They

function in the opposite way of sensors, enabling things to take action [23]. Like sensors, the

actuator's requirements determine the relationship between the electrical signals and the

actuator's function. IoT actuators and sensors are often small, inexpensive, simple, and

27

energy-saving [4]. The cost and component specifications are crucial factors to take into

account while developing an IoT system.

1.3.2. Network Layer

The Network Layer is responsible for transporting data obtained from the gateway node

across the entire IoT network. In the context of communication technology, a gateway is a

component that connects two networks with dissimilar transmission protocols. In simple

terms, a gateway enables connectivity between two protocols by acting as a protocol

converter [21]. There are various types of gateways, including VoIP trunk gateways, Email

security gateways, media gateways, XML gateways, Cloud storage gateways, and IoT

gateways. An IoT gateway is an access point in which a variety of sensors and different

components are able to communicate with applications through standardized protocols found

in wireless technologies such as WiFi and mobile networks [22].

1.3.3. Data Processing Layer

The processing layer receives data delivered by the network layer. Data preparation and

analysis are the primary tasks of the data processing layer. The task given to this layer is to

remove unnecessary data and extract the relevant data. Additionally, it solves the big data

issue in IoT. Big data refers to the huge quantity of information received, which might have

an impact on IoT performance [21]. Through the utilization of artificial intelligence (AI)

methods, the processing layer may extract important features from raw data in IoT systems

and utilize them for automatic decision making [22]. This layer makes use of a variety of

technologies, including big data processing tools, cloud computing, and databases [5].

1.3.4. Application Layer

In an IoT architecture, the application layer provides an essential interface for users to

communicate with the system and perform particular functions. It is responsible for

providing services to the applications. Services might differ depending on the data that is

gathered by sensors, hence they might change for every application [21]. This layer provides

control functions, user interfaces, and insightful information by interpreting and using data

from IoT devices. Some of its uses include smart cities, manufacturing, healthcare, and smart

agriculture [19, 22].

28

1.4 IoT Gateways

An IoT gateway is a hardware component or software program that connects end devices

to the IoT application server [24]. A gateway usually serves as a bridge between M2M

devices. However, Traditional gateways do not include any intelligent control features. Due

to M2M devices' low processing and memory capacities, these features are critical to IoT

systems [25]. Furthermore, incorporating intelligent control features into gateways could

make IoT device design easier by offering access to common computing resources [26].

Depending on the application, there are two main methods for building an IoT gateway: the

basic gateway and the embedded control gateway.

A basic gateway typically arranges and packetizes information for transmission through

the Internet, while an embedded control gateway enhances its capabilities by offering

processing power and intelligence to manage local applications. For instance, the embedded

control gateway might perform high-level administration functions in addition to analyzing

and filtering sensor input. Endpoint complications and costs can be decreased with the help

of the intelligent embedded control IoT gateway [26]. The IoT gateway includes a number

of features, including: Wireless Connections, RAM, Processor, I/O (GPIO), Operating

system (OS), and Security module. Microcontrollers could easily design embedded control

gateways by interacting with endpoint devices like actuators and sensors. There are several

instances of building IoT gateways with microcontrollers in the published works [27].

Because of its flexibility, compact size, and low energy usage, the microcontroller is a

perfect choice for IoT gateway applications. Table 1.1 provides a comparison of the most

widely used microcontrollers.

Table 1. 1: A comparison of different microcontrollers.

 Name CPU
 CPU

Frequency

RAM

Wireless
Cost

Operating

Voltage

Raspberry

Pi3 Model B

Quad Cortex

A53
1.2 GHZ 1 GB

WIFI,

Bluetooth
low 5 V

BeagleBone

Black

Sitara AM3358-

BZCZ100
1 GHz 512 MB No low 3.3 V

Arduino Uno ATMega328 16 MHz 2 KB No low 5 V

29

Table 1.1 (continued)

STM32WBA
Arm Cortex-

M33
100 MHz 128 KB Bluetooth low 3.6 V

ESP8266 Xtensa L106 80 MHz 160 KB WIFI low 3.3 V

ESP32 Xtensa LX6 160 MHz 512 KB
WIFI,

Bluetooth
low 3.3 V

In a dynamic environment with high user movement, a mobile gateway could be useful

[28]. Since they can connect to a variety of IoT devices using different protocols, mobile

devices like tablets and smartphones are able to operate as central communication hubs and

serve as IoT gateways. The cost of installing external IoT gateways might be minimized

when smartphones and tablets are utilized as gateways. With its diverse range of connectivity

features, including Bluetooth, WIFI, and cellular, the smartphone can communicate and

work with different IoT devices. The smartphone is thus the user's ultimate tool for

controlling and interacting with the IoT systems [29]. A smartphone-based IOT gateway

architecture is shown in Figure 1.3.

Figure 1. 3: The architecture of an IOT gateway using a smartphone [28].

30

1.5 IoT Communication Protocols

Connectivity is essential to the Internet of Things' effectiveness and benefits since it

facilitates the transfer of data from endpoint devices to central servers via the IoT network.

IoT protocols are what make it possible for IoT devices to communicate with each other and

share data. Network protocols are utilized for communication between different devices,

such as computers and smartphones. However, the standard protocols used by these devices

may not be able to match cover distance, latency, and the bandwidth requirements of IoT

technology. Despite the simplicity of deployment, IoT devices' communication protocols

need to overcome the limitations of current Internet systems in terms of reliability, range,

and processing power [30]. Numerous IoT protocols have been developed for various

purposes and applications [31]. IoT devices support wireless as well as wired connections

for communication [30]. For the three-layer architecture, IoT communication protocols are

explained at each layer below, according to the type of connection.

1.5.1. Perception Layer Protocols

Perception Layer protocols facilitate the connection between devices that have limited

power and specific requirements in order to deliver services using sensors.

IEEE 802.15: A comprehensive standard protocol known as IEEE 802.15 was created

for enabling wireless connectivity in personal area networks, supporting both high-speed

multimedia and low-energy IoT devices. It includes a variety of subgroups and standards

that address a wide range of wireless communication requirements. Additionally, IEEE

802.15 provides strong network security by encrypting data to guarantee secure connection

between devices on the network [30].

Ethernet (IEEE 802.3): The Ethernet network, which was defined by the IEEE in

standard 802.3, has been the most successful between local area network (LAN) protocols

that utilize wired connections of network devices. Ethernet is a classic protocol used to

connect devices in a wired LAN. Thanks to the advancement of technology, data may now

be transmitted up to 1000 times faster than when Ethernet first started to appear [32].

LTE: The technology known as LTE, or Long-Term Evolution, is used by cellular

service providers to send wireless data to a customer's phone for mobile internet

31

connectivity. LTE offered flexible bandwidth and frequency, improved effectiveness, peak

rate of data transfer, and fast speeds. The speeds that a user may experience at home on a

fast cable connection today will be comparable to those of LTE. Due to its unequal

modulation and varying data speeds for uplink and downlink, the LTE physical layer is

different from others [33].

1.5.2. Network Layer Protocols

The following types of network layer protocols enable communication between devices

in an IoT network:

LoRaWAN: LoRaWAN is an LPWAN protocol that is intended for usage with low-

power IoT devices. LPWAN (Low Power Wide Area Network) offers a few kilometers of

additional range, although most have low data rates [30]. The LoRaWAN protocol is freely

available, allowing anyone to establish and run a LoRa network. LoRa is an unlicensed

wireless radio frequency technology based on a radio frequency spectrum. Because of its

ease of use, energy efficiency, and security, LoRaWAN is widely employed in IoT

applications [34].

ZigBee: ZigBee is a solution for low-power, short-range wireless communication,

primarily for low-rate sensors in the IoT systems. The ZigBee standard networking protocol

is designed specifically for the wireless control field and is focused on wireless control and

monitoring. Devices may easily exchange data using very little power across a range of

network topologies thanks to the Zigbee protocol. Zigbee enables compatible

communication between devices made by different companies [35].

Bluetooth and BLE: Bluetooth is a short-range wireless technology that communicates

via radio waves. It allows for communication with multiple devices simultaneously without

the need for an interface. It is an accessible protocol that supports multiplier-to-point and

point-to-point data transfer. Bluetooth Low Energy (BLE) is an enhanced Bluetooth version

that is designed specifically for IoT connectivity. In many IoT applications, BLE is

especially desirable since, as its name suggests, it works with less power than traditional

Bluetooth [36].

32

Z-Wave: The Z-Wave protocol is a radio frequency based wireless communication

technology that is specifically intended for home application control and state monitoring.

This protocol works well for short communication in IoT applications because it is made for

small data packets at slow rates [37].

WiFi: Based on the IEEE 802.11 standard, Wi-Fi is a widely used IOT communication

technology for wireless local area networks (WLANs). It is constantly being improved to

become more responsive, suitable for a variety of devices, and more fast. Security has been

improved to satisfy the needs of availability, data privacy, and authentication, while also

protecting WiFi connections based on WiFi generation [30].

1.5.3. Application Layer Protocols

Analysis and processing of the information data coming from the lower layers are the

responsibilities of the application layer. The following describes four different application

layer protocols:

HTTP: The most widely used protocol nowadays is Hypertext Transfer Protocol

(HTTP). The primary application of HTTP is as one of the supporting technologies for web

browser functionality. HTTP is an application protocol which utilizes the TCP/IP protocol

stack, serving as the internet's foundation. The most common use of HTTP in an IoT scenario

is to allow devices to POST to a resource on the IoT service which provides the device status

[38]. Figure 1.4 displays the HTTP architecture.

Figure 1. 4: HTTP Architecture [38].

33

XMPP: Extensible Messaging and Presence Protocol, or XMPP, is an open

communication protocol used for real-time applications. XMPP facilitates the decentralized

exchange of XML-based communications between clients and servers. It uses a federated

framework, allowing people or companies to run their own XMPP server and connect with

other users via server-side communication. XMPP utilizes the XML text format and operates

on the TCP (Transmission Control Protocol) stack. It works well for closer communications

since it includes both request-response and publish-subscribe architectures [39]. Figure 1.5

illustrates the architecture of XMPP.

Figure 1. 5: XMPP Architecture [39].

WebSocket: WebSocket is a client-server protocol built on top of TCP. It has less

overhead than HTTP and can handle full duplex, two-way communications between the web

server and the client. Because of this, WebSocket is effective at transferring little data

packets regularly which is particularly helpful for real-time applications. The WebSocket

protocol is still quite heavy and overloaded for IoT applications, even though it might be

considered an advancement compared to HTTP connection. WebSocket can not

automatically provide quality of service guarantees [40]. The architecture of WebSocket is

illustrated in Figure 1.6.

34

Figure 1. 6: WebSocket Architecture [40].

MQTT: Message Queuing Telemetry Transport, or MQTT, is an exchange messaging

protocol that transfers data between clients and servers using the publish-subscribe standard.

It is a particular lightweight IoT protocol for environments with limited resources. Via

TCP/IP, MQTT is able to operate over network protocols that offer bidirectional, and ordered

connections. It is made to communicate effectively between machines (M2M) using a

publish-subscribe pattern. When using the publish-subscribe pattern at MQTT, a server

known as the broker facilitates the exchange of messages between multiple clients (IoT

devices). The messages are distributed to the clients by the broker after being filtered based

on the topic and unique identification assigned to each message [41]. MQTT can function

and provide sophisticated security services in highly confidential applications and critical

systems. As depicted in Figure 1.7 Subscribers are unaware of the source of communications

they receive, and publishers are unaware of the destination of messages they send. MQTT

uses less electricity, has less overhead, and is faster than HTTP.

35

Figure 1. 7: MQTT Architecture [41].

1.6 Comparison of Communication Protocols in IoT

A number of messaging protocols may be chosen, according to the messaging

requirements of IoT applications. To decide which protocols are most suited for a given

application, it is crucial to know both the advantages and disadvantages of each one. Various

parameters are applied to measure the differences among the communication protocols [31].

Comparisons between the IoT communication protocols covered in this chapter are

presented in Tables 1.2 and 1.3.

Table 1. 2: A comparison of different application layer protocols.

Protocol
Base

Protocol
Standard Paradigm Licensing

HTTP TCP
IETF and

W3C
Request/Response Free

XMPP TCP XSF
Request/Response

Publish/Subscribe
Open Source

WebSocket TCP IETF Bidirectional

Open Source

and

commercial

MQTT TCP

OASIS,

Eclipse

Foundations

Publish/Subscribe Open Source

36

Table 1. 3: A comparison of different network layer protocols.

Protocol Standard
Data Transfer

Rate

Frequency

Bands
Range

LoRaWAN LoRaWAN 50 kbps

415 MHz

868 MHz

915 MHz

Depends on

geographical

location

Up to 15 km

ZigBee IEEE 802.15.4 250 kbps 2.4 GHz 10-100 m

Bluetooth IEEE 802.15.1 1-3 Mbps 2.4 GHz 15-30 m

Z-Wave IEEE 802.15.4 Up to 100 kbps

908.42 MHz

(US)

Depends on

geographical

location

30 m

WiFi IEEE 802.11 Up to 1 Gbps
2.4 GHz

5 GHz
50 to 100 m

1.7 IoT Data Storage and Analytics

1.7.1. Databases in IoT Applications

The data generated from various IoT devices is stored in an updateable, queryable dataset

called an IoT database. Massive amounts of time series data are normally generated by IoT

devices, which are typically dispersed around both physical and digital spaces. These factors

dictate that the optimal database for IoT applications needs to receive and store large

amounts of data in real time. Effective real-time data solutions with flexible data modeling,

fault tolerance, access to the cloud, and scalability are required to run a real-time IoT

application at volume with velocity and minimal latency communications [42].

There are numerous methods for storing captured IoT data. The most popular method is

to use non-relational and relational databases. Relational databases include data rows and

37

columns in tables that are very consistent. Standard database systems were relational

databases that used structured query language (SQL) [43]. The most commonly utilized

relational databases are:

MySQL: MySQL is the most widely utilized open source relational database

management system (DBMS). It is an effective choice for IoT applications due to its many

advantages such as availability, open source, flexibility, high performance, scalability, and

data security [44]. MySQL is adaptable enough to meet the needs of an IoT technology in

any way that is required. It is able to efficiently handle the data processing requirements of

the IoT and offers outstanding performance for complex applications. MySQL has

demonstrated its ability to manage the massive volumes of data produced by IoT systems.

Additionally, MySQL is a good solution when there is demand for many select queries.

Numerous well-known websites use MySQL, which is widely recognized as an incredibly

safe database technology [45].

PostgreSQL: With fantastic IoT-related capabilities including geospatial support,

adaptable data types, query power, and an exciting ecosystem, PostgreSQL is among the

most sophisticated databases available. Usually called Postgres, it is a very scalable,

extensible database system. PostgreSQL is widely used by businesses worldwide to handle

their important information. PostgreSQL is a multiplatform application that runs on Unix,

Linux, macOS, and Windows. It supports a wide range of programming languages.

Moreover, PostgreSQL adheres to the SQL standard and provides a wide range of extensions

that let users improve and personalize the features of their databases. Advanced features

available in PostgreSQL include views, triggers, concurrency control, full-text search, and

support for JSON [46].

There is now an alternative to relational databases called non-relational databases

(NOSQL). NOSQL is not dependent on predefined table configurations or inflexible

schemas. There is no need for a special procedure to add columns or records to the collection

at any moment. As a result, the number of records in each column does not need to match

[44]. The most commonly utilized non-relational databases are:

MongoDB: MongoDB is a scalable and highly performant document-oriented database.

In contrast to existing NoSQL databases, its data architecture is built as a document unit,

38

hence no schema specification is required. Additionally, MongoDB employs a scale-out

architecture that allows auto-sharding and is adaptable to hardware evolution. This makes it

easier to distribute data automatically among several servers [47]. Data is stored as

documents in its binary form known as BSON (Binary JSON) objects, which are JSON-like

objects that have been binary encoded. When a document requires an additional field to be

added, it may be added without putting the system down, changing the main catalog, or

affecting the other documents in the collection. As a result, MongoDB functions better

compared to other databases when handling massive volumes of IoT sensor data with regard

to resource consumption and long-term storage [48].

Cassandra: Cassandra is a decentralized storage platform which maintains enormous

volumes of data on multiple servers. A variety of popular methods are combined by

Cassandra to provide availability and scalability. Through indexing, Cassandra's data

structure offers fast processing speeds when writing data. Data in Cassandra is indexed with

a key, which is a distinct description of the row containing the data. Every row has columns,

that carry features, and these columns together constitute a column family. Due to its

scalability and capacity to manage real-time data flow, Cassandra is a great option for IoT

applications [49].

Every database, whether relational or non-relational, has advantages and disadvantages

of its own. So, the most commonly executed query and the application requirements

determine which type of database is best for IoT [43].

Data storage is only one component of the Internet of Things environment, which also

includes collecting data, transmission, storage, processing, analysis, and applications. Thus,

computing systems that are fast, reliable, and effective are becoming more and more

necessary. The rapid growth of smart devices and IoT applications has presented novel

obstacles for standard cloud computing systems. New methods of real-time data processing

and analysis are provided by edge computing and fog computing, which are now recognized

as possible solutions to these obstacles [48].

39

1.7.2. Fog Computing

Fog computing is a network architecture in which data, storage, computation, and

applications circulate between the data source and the cloud. The fog node is a crucial part

of the architecture utilized in fog computing. There are two types of fog nodes: virtual

cloudlets and virtual switches, and physical ones like switches, servers, gateways, and

routers. Through processing data on the fog node, fog computing extends the cloud to the

edge of the network and makes decentralized computing possible. Every device that may be

utilized for computing, storage, and internet access can serve as a fog node in this case [50,

51].

1.7.3. Edge Computing

Edge computing is a relatively recent distributed computing architecture which advocates

for data processing and storage near the data source, which was developed in response to the

weaknesses of cloud computing's centralized architecture. Devices are necessary for IoT

edge computing in order to acquire, analyze, and produce IoT data. In addition, the

networking system depends on IoT devices. Edge computing's main benefit is its ability to

lower latency, which results in enhanced real-time data processing. This standard solution

satisfies the very low latency and bandwidth usage requirements of IoT applications. Edge

computing capabilities can be employed to assure fast user response times, network

scalability, and big data preprocessing. But in order to fully reap the advantages of edge

computing for the IoT, a thorough investigation into processing power and data storage at

the network edge is necessary, particularly for IoT applications associated with the next

generation [50, 52].

1.7.4. Cloud Computing

Cloud computing is probably the most computationally sophisticated tool currently

available. It is a centralized infrastructure technology that provides accessibility to a

multitude of resources, such as software services, computers, servers, and databases. The

main objective of cloud computing is to offer customers a variety of services in the cloud.

There are various cloud deployment options available, like private, public, hybrid, and

community. The benefits of cloud computing include cost-effectiveness, streaming services,

40

scalability, flexibility, and management [52,53]. The growth of IoT has been supported by

cloud computing, which provides specialized infrastructure, tools for data analysis, and the

ability to store and process enormous amounts of IoT data. Clouds are employed in four

different contexts, depending on the kind of capability they provide [54]:

Storage as a Service (StaaS): Cloud applications are permitted to expand outside their

restricted servers thanks to StaaS. It enables customers to store their data on distant drives

and retrieve it from any location at any time.

Software as a Service (SaaS): Cloud-hosted services have the potential to be beneficial

to a wide range of customers. This is a substitute for applications that are executed locally.

Platform as a Service (PaaS): Rather than providing a virtualized infrastructure, cloud

systems might offer an extra layer of abstraction by offering the software platform that hosts

systems. Everything needed for developers to create, execute, and oversee applications is

included in PaaS.

Infrastructure as a Service (IaaS): IaaS is a type of cloud computing which utilizes

internet connections to deliver virtualized machine resources. It provides access to a variety

of cloud computing resources, such as servers, hardware, network items, and large amounts

of storage.

The location, timing, and method of processing and storing data from endpoint devices

are the primary differences among edge, fog, and cloud computing. Although less common

than cloud, fog and edge computing offer several advantages for enterprises, especially

Internet of Things enterprises. The decentralized data storage is customized to specific

requirements by these systems, which address numerous problems that IoT cloud computing

services are unable to address [51]. Figure 1.8 illustrates the relationship between the edge,

fog, and cloud computing concepts.

41

Figure 1. 8: Relation between edge, fog, and cloud computing [50].

1.8 Applications of IoT

Many applications have been touched by the emerging IoT, these applications are

categorized according to their size, scope, influence, reliability, customer experience,

variation, and availability. There are now a huge number of IoT applications accessible, and

there are plenty more in development that should enhance our quality of life. Some of these

applications are:

1.8.1. Smart Transportation

A key indicator of how well life is going in today's cities is smart transportation. The IoT

improves transportation systems by giving significant real-time data to ensure that machines,

managers, and customers may decide on specific actions at the appropriate time. Challenges

of the transportation systems involve traffic jams, dangerous driving environments,

pollution, and safety. One of the primary challenges facing society is traffic congestion. The

traffic condition and the road quality will both be improved by predicting or planning for

traffic. An intelligent road surface monitoring system can collect enough data about the

42

condition of the road from a variety of IoT devices and sensors. This will consequently

provide intelligence and reliability to the system [55].

1.8.2. Smart Farming

The farming industry needs technologies such as robotics, automation, drones, artificial

intelligence (AI), and IoT in order to satisfy the increasing demands for food. Agricultural

IoT (AIoT) has several fundamental elements, including wireless communication

technologies, internet access, sensors, detected and transferred data, etc [56].

1.8.3. Healthcare

The primary uses of IoT in healthcare are in situations involving assisted living. Medical

equipment management, inventory tracking, and patient monitoring are all possible with IoT

devices in healthcare environments like hospitals. In addition to monitoring environmental

parameters like air quality, humidity, and temperature, IoT sensors also have the ability to

stop the spread of infections. It is possible to put sensors on patients' health monitoring

equipment. The data obtained from these sensors can be made accessible to doctors, and

family members via web pages in order to enhance therapy [57].

1.8.4. Smart Home

The IoT growth is driving increased interest in home automation research and

implementation. Since automated homes and smart connectivity have become inexpensive

and easy, smart homes have become more and more popular in recent years. Smart homes

provide increased elegance, safety, conserving energy, and comfort [55].

1.8.5. Manufacturing

Manufacturing experiences a tremendous technological change driven by the integration

of IoT. The IoT is being used by all industries to automate operations, utilize edge

processing, and obtain useful data across the internet. Due to its ability to monitor and

optimize the manufacturing process through a network of interconnected devices, sensors,

and software, the IoT is significantly contributing to the transformation of traditional

manufacturers into intelligent manufacturing in Industry 4.0. In fact, Industrial Internet of

43

Things (IIoT) technologies open up possibilities for Industry 4.0. In Industry 4.0, IoT sensors

allow machines to exchange data, coordinate actions, and interact with each other. IoT

devices increase robotic productivity and efficiency by allowing machines to share data,

which also increases safety and lowers the need for unexpected repairs [58, 59].

1.9 Artificial Intelligence for IoT Data Analytics

The term artificial intelligence (AI) describes a machine's capacity for learning and

making decisions without human involvement. With the help of data and intelligence

embedded in devices connected to the network, IoT technologies interact with environment

to assist people in going about their daily lives in a simple and natural way. AI has the

potential to enhance efficiency and simplify operations in the IoT by introducing human-like

decision-making and intelligence [60].

AI techniques include machine learning (ML) and deep learning (DL). ML can operate

in dynamic networks without the need for humans or complex mathematical equations. To

identify and react to human action, ML approaches such as supervised, unsupervised, and

reinforcement learning can be utilized [11].

1.9.1. Machine Learning (ML)

In ML, supervised learning is the most popular approach. It involves utilizing a trained

dataset, to classify the output depending on the input. Regression and classification learning

are two categories of supervised learning. The following examples present various types of

classification learning.

Decision Tree (DT): The DT is a typical supervised learning technique, similar to a tree

with leaves and branches. It is a hierarchical model which includes leaf nodes, internal nodes,

branches, and a root node. Every node in the leaf indicates the final prediction, and every

branch relates to a feature value. Compared to other ML techniques, DT offers the

advantages of being transparent, having an easy-to-implement design, and handling big data

samples [11].

Random Forest (RF): Known for its ability to address regression and classification

problems in ML, RF is a common ML algorithm classified under the supervised learning

44

technique. The performance of many DT algorithms is combined by the RF algorithm for

classification. This technique is a useful tool for a variety of ML predictive tasks because of

its strength in handling complicated datasets and mitigating overfitting [61].

K-nearest Neighbor (KNN): The KNN algorithm is a supervised ML approach

developed for dealing with regression and classification problems. It is predicated on the

concept that comparable data points typically have comparable labels or values. To make

predictions, KNN uses a selected distance metric, like Euclidean distance, to determine the

distance between each instance of training and the input data point [11].

Support Vector Machines (SVM): SVM is a sophisticated ML technique that may be

utilized for regression, linear or nonlinear classification, and identifying outliers. The SVM

algorithm's primary goal is to identify the best hyperplane in a space with N dimensions

which may be used to divide data points into various feature space categories [61].

Naive Bayes (NB): The NB is a probabilistic ML algorithm that utilizes Bayes' theorem.

To be able to use Bayesian probability and predict the probable results, this type of

supervised learning technique requires prior data. Based on a given set of evidence (𝐸),

Bayes Theory determines a hypothesis (𝐻). It is related to two factors: the probability 𝑃(𝐻)

of the hypothesis prior to the evidence and the probability 𝑃(𝐻|𝐸) following the evidence

[11]. The following formula explains the Bayes Theory:

 𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
 (1.1)

 𝑃(𝐻|𝐸) indicates how event H transpires in the context of event E.

 𝑃(𝐸|𝐻) is the rate of event E when event H occurs first.

 𝑃(𝐻) represents the previous probability of class.

 𝑃(𝐸) indicates the predictor's previous probability.

K-mean Clustering: K-means clustering is an unsupervised learning method that uses

unlabeled data, as opposed to supervised learning. It is a popular cluster analysis technique

which aims to divide a set of items into K clusters in order to minimize the sum of the squared

distances among each item and the chosen cluster mean. This method divides the provided

data samples into smaller groups so that they can be categorized as a cluster. The centroid

45

of the cluster is first randomly assigned to the space. Next, data points are assigned to one

of the K clusters based on their proximity to the cluster center. Following the assignment of

each point to a cluster, new cluster centroids are created. Repeatedly, this procedure

continues until it finds an acceptable cluster [62].

Reinforcement Learning (RL): Through RL, a machine can learn from interacting with

the environment by taking behaviors that optimize the overall feedback, just like humans do.

Feedback may take the form of an award that is dependent on completing the assigned task.

The system learns by trial and error in reinforcement learning, where no predefined

behaviors are assigned to any specific task. The agent can find and use the most effective

strategy based on its expertise to obtain the most reward via trial and error [11].

Deep Neural Networks (DNNs): DNN is widely employed in the area of automated

classification due to their precision and flexibility. In general, a DNN is an ML technique

built on an artificial neural network (ANN), which imitates the architecture and workings of

a human neural network. A DNN is composed of mathematically related layers, such as

edges and nodes. It offers a major benefit over typical ML algorithms in that they can extract

features at many levels of abstraction, which allows them to learn deeper patterns. Three

layers make up an ANN: input, hidden, and output. The system is referred to be a DNN if

the total number of hidden layers is three or more [11, 63].

1.9.2. Deep Learning (DL)

The DL, which is a branch of ML, includes methods and computer models that imitate

the structure of the biological neural networks found in the brain. The brain attempts to make

sense of new information by comparing it to previously learned knowledge. DL uses the

same method that the brain uses to interpret information by labeling and classifying the

objects [12]. The most often used techniques are listed below:

Convolutional Neural Networks (CNNs): The most widely used DL is CNN due to its

ease of training and robustness. There are various structural elements in the CNN

architecture, including convolution layers, pooling layers, and fully connected layers. A

basic architecture comprises multiple repeats of a collection of convolution layers and a

pooling layer, then several fully connected layers. It works by using a series of basic

46

convolution and deconvolution operators at various scales. Convolution is the process of

applying several filters to aggregate data from pixels that have been clustered together. The

filters vary from the current layer to the ones that follow, and their function provides the

input for the following layer [64].

Recurrent Neural Networks (RNNs): An RNN is a form of ANN that processes

sequential or time series data. It derives its name from the fact that it executes a single task

for each element in a sequence, with the final result depending on prior calculations. A

different means to conceptualize RNNs is as having an internal memory that stores data

about previous calculations. RNN works on the basic principle of creating a prediction based

on both the input data and the previous outputs. The idea makes a lot of sense to create neural

networks that can advance values over time [65].

Long Short-Term Memory (LSTM): LSTM networks are a particular kind of RNN

that may learn order dependence in predicted sequence tasks. LSTMs are made to solve the

vanishing gradient issue that RNNs encounter. Since LSTMs use specialized memory cells

including input, forget, and output gates, they are capable of capturing long-term

dependencies in time series data. LSTMs are especially useful for forecasting tasks because

of their capacity to retain relevant data over extended periods of time [65]. Figure 1.9

provides an illustration of the LSTM.

Figure 1. 9: The illustrations of LSTM model [65].

47

Gated Recurrent Unit (GRU): GRU is defined as a variant of the LSTM since they are

designed similarly and under certain situations, produce equally superior results. The key

distinction among GRU and LSTM is how they handle memory cell state. A candidate

activation vector is used in GRU to replace the memory cell state, and it is changed via the

update and reset gates. When updating the hidden state, the update gate decides the amount

of the new input that can be utilized, and the reset gate decides how much of the prior hidden

state should be forgotten. Based on the new hidden state, the GRU calculates its output [66].

The GRU illustration is shown in Figure 1.10.

Figure 1. 10: The illustrations of GRU model [66].

1.9.3. Ensemble Learning (EL)

The main idea behind EL is to train a number of base models to be ensemble participants,

then combine their predictions to produce one final result which should perform more

effectively than all other individual models [67]. Bias and variance are two fundamental

ideas in EL, which allow learners to acquire information with poor accuracy and enhance

accuracy. A bad balance between variance and bias could result from insufficient accuracy

improvements. The bias can be defined as the variation among the predicted and actual

values. In contrast, variance refers to the amount of variation between the predicted values

[68]. The following is a list of the most popular EL methods:

48

Averaging: Averaging involves making numerous predictions for every data point. This

approach uses an average of predictions from all models to generate the final prediction.

Weighted Average: This is an extension of the averaging approach. The Weighted

Average approach assigns various weights to each model, indicating the importance of each

individual model for prediction.

Max Voting: The max voting approach is commonly employed for classification issues.

Several models are employed in this approach to generate predictions for every data point.

A vote is taken based on every model's prediction. The final prediction is obtained using the

predictions generated by most of the models.

Boosting: Boosting is a sequential procedure in which each subsequent model attempts

to rectify or correct the mistakes of the previous model. Every subsequent model is

dependent on the model that came before it. Boosting strategies combine numerous weak

learners to create a powerful learner. Though they are performing effectively for a portion

of the dataset, the individual models may not improve the accuracy of the whole dataset.

Hence, every individual model significantly boosts (enhances) the ensemble's performance.

CatBoost, Light GBM, XGBM, GBM, and AdaBoost are some popular boosting algorithms.

Bagging: Bagging, also known as bootstrap aggregation, is the process of integrating the

results of many models to produce a more generalized result. It uses bootstrapping-sampling

methods to generate several bags (subsets) from the training data set via replacement. An

independent base model is trained with every subset. Since the subsets are varied, the models

are able to learn unique patterns from the data.

Stacking: Stacking is an EL approach that combines predictions from multiple models

to create a new model, which is then used to produce predictions using the testing data set.

It aims to improve a classifier's capacity for prediction.

Blending: Blending is similar to stacking, except it only makes predictions based on the

holdout (validation) set from the training dataset. In other words, predictions are made

exclusively on the validation dataset, not the training dataset. The final model is built using

the validation dataset and the predictions, and it is then applied to the test dataset.

49

1.10 Big Data

Big data refers to extraordinarily large and complex data collections that may be

processed faster than traditional data storage and analysis systems. It is just a term used to

describe larger, more complex data collections, especially those that come from new data

sources. These data volumes are so large that traditional data processing methods cannot

manage them. The IoT is widely recognized as a primary source of big data due to its ability

to connect an extensive amount of intelligent devices to the Internet and provide information

about the condition of their environments on a regular basis. The main benefit of big data

analytics is its ability to identify and extract significant patterns from massive amounts of

raw data, which leads to deeper kinds of knowledge for trend prediction and making

decisions [6, 69].

Big data tools refer to the technologies or methods used for processing data that can be

categorized as big data in an efficient manner. Numerous academic papers have discussed

the broad characteristics of big data from various angles including volume, velocity, and

variety. Big data is typically described by six characteristics, called the 6V's [70]. The 6Vs,

or the fundamental characteristics of big data, are depicted in Figure 1.11.

Figure 1. 11: The 6V’s of big data [70].

50

Given that they help us comprehend the nature of big data, these six fundamental

components are crucial starting points when using big data. The 6 V's are defined as follows:

Volume: Volume is an indicator of the data that is available. It is similar to the foundation

of big data since it represents the original size and quantity of data acquired. Big data can be

defined as data that has a sufficiently high volume. Despite this, the definition of big data is

inflexible and prone to change in response to changes in the market for processing power.

Velocity: The speed at which IoT big data is produced and processed is sufficient to

support real time availability. This is a crucial component for companies which require their

data to move rapidly and be accessible when needed to enable optimal business decisions.

Variety: Variety describes the wide range of data kinds. IoT can generate a range of data

kinds, including unstructured, semi-structured, and structured data.

Veracity: Veracity relates to the data's quality, consistency, and reliability, which results

in precise analytics. It is especially important for IoT systems that use crowd-sensing data to

maintain this characteristic.

Variability: Variability describes differences in the use or flow of big data. Different

components that generate data may have irregular data flows, based on the type of IoT

application. Further, a data source may have varying data load rates depending on particular

periods.

Value: Value is the converting of big data into useful insights and data that offer

companies a competitive advantage. Big data gets much more valuable based on the

information that can be obtained from it, therefore being able to extract value from it is

essential.

Massive amounts of data processing are currently possible and supported with the help

of specialized Big Data frameworks. They facilitate the rapid analysis and organization of

large amounts of real time data. Apache Hadoop, Flink, Storm, and Spark are some examples

of big data frameworks [70].

51

Apache Hadoop: Apache Hadoop is a batch processing platform which offers fault

tolerance and fault scalability. Hadoop allows programs to run on numerous nodes and

manages petabytes of data. Additionally, before being transferred to the Hadoop cluster's

nodes, the log data is divided into chunks [13].

Apache Flink: Flink is an open source framework that can process data in both batch

and real time modes. It has various advantages, including fault tolerance and massive scale

processing [71].

Apache Storm: Storm is an open source platform that processes enormous amounts of

structured and unstructured data. It is a fault tolerant framework designed for ML, iterative

and sequential calculation, and real time data processing. A million tuples can be processed

by a node of Storm every second [71].

Apache Spark: The Apache Spark framework will be described in detail in Chapter 3.

1.11 IoT Security

IoT security is a field of research that focuses on protecting IoT networks and connected

devices. IoT devices need a special set of cybersecurity requirements due to the ways in

which they differ from traditional mobile devices in terms of functionality. IoT devices have

become widely available to users since they can be utilized for a variety of tasks across a

public network. IoT advances human life by making it easier, but it also increases the risk to

users' privacy by posing various dangers and attacks. Since some IoT devices can be

accessed by everyone, anywhere, without the owner's consent, the security of IoT devices

has emerged as a critical concern. The IoT devices need to be protected by a variety of

security systems [11, 70, 72]. While building IoT security solutions, a number of features

have to be taken into account. The following aspects should be addressed when building

security protocols for preventing attacks against IoT systems.

Identification: Every entity in an IoT system has to be able to recognize other

participants and be informed about other entities inside the network. Additionally, entities

should be able to differentiate between benign and possibly malicious entities. The IoT

system needs an efficient identifying mechanism that can offer robust security with system

limitations [72].

52

Authorization: Authorization refers to the user's accessibility within an IoT system,

allowing access to authorized clients who can enter, track, and utilize data contained in the

network. The clients with authorization on the system may also give instructions to it [11].

Availability: Availability is the likelihood that a system will function at any moment in

time. The system has to be accessible when needed, as well as its services. Data availability

is crucial for surveillance and safety applications. Lack of knowledge can cause problems

with home and workplace automation as well as economic damage in commercial

applications [13].

Integrity: The integrity attribute guarantees that, when utilizing a wireless network for

communication, only users with permission can change the data on IoT devices. The long-

term functionality of IoT devices will be impacted if this feature is harmed in any way due

to unusual examination during data storage [11].

Privacy: Ensuring that the rights users have over their utilization of personal information

are properly respected is vital while managing, analyzing, storing, and deleting data. Since

attackers may detect an IoT device's physical position and decode the data, it is challenging

to protect most data from unknown users [72].

Intrusion detection systems (IDS) have been associated with the main problems of IoT

security. Generally, IDS are used to identify anomalies in the network. An anomaly is a

malfunction in the IoT device network that can be produced by an attack, intrusion, or just a

simple flaw. In AI based anomaly detection, significant factors influencing IDS reliability

include IDS methodologies, data preprocessing, feature extraction, and appropriate feature

selection [11].

1.12 IoT Search Engine

Large volumes of data are produced by IoT systems because they share more data

amongst smart devices than they do between humans and devices. In comparison to old static

data, this data is updated frequently and may dynamically characterize the state of the

associated systems to give a more accurate and precise representation of a system's

condition. Hence, there is a pressing need for an IoT search engine that offers query

resolution services to help consumers locate pertinent IoT data rapidly, similar to the way

53

online search engines do [73, 74]. The management and search problems associated with

IoT systems are addressed by Internet of Things search engines (IoTSE). IoTSE is designed

to function similarly to a standard web browser, except that all of the IoT data could be

transformed into URL links so that users may access and examine the data in response to

their requests. IoTSE can perform data collection, indexing, and organization functions,

similar to web search engines [75]. Figure 1.12 illustrates the IoTSE's framework in detail.

Figure 1. 12: An overall framework for the IoTSE [76].

An IoTSE is intended to look through a variety of IoT resources, such as devices and

data. IoTSE functions similarly to web search engines in that they provide the necessary IoT

data, IoT resources, or combinations of both in response to user queries [74]. The key

elements of the IoTSE are shown below.

IoT Resources: IoT transforms physical things with embedded technology (computing

and networking elements) into digitally flexible smart resources, including networking

devices, storage, actuators, and smart sensors. The IoT search procedure abstracts each IoT

device as an IoT resource [74].

54

IoT Data: The IoTSE's fundamental component is the IoT data, which serves as its

primary search target. Typically, gathered data is used to build a digital model that depicts

the state or past of the associated environment [74].

Search Space: A search space is required for IoT search, just like it is for web search

engines. The search space consists of a collection of IoT resources with clearly defined data

structures. Because IoT resources are dynamic and update significantly faster than web

content, the search space available for IoT search is far larger than for standard web search

[74].

IoT Query: Both humans and IoT devices can submit queries in an IoT search. Data

interchange and communication between IoT devices from different planes are required.

However, to accomplish intelligence and automation, IoT devices should specifically send

queries [74].

Edge Computing Nodes: Computational activities from cloud infrastructures may be

transferred to edge and fog nodes located near IoT devices through distributed computing.

The search functions can be carried out by the edge computing nodes, which can be easily

expanded. In addition, edge nodes are employed in the IoTSE to harvest IoT data and refresh

the search space index [74].

Middleware: As intermediary between applications and IoT resources, IoT middleware

is another crucial part of the IoTSE. middleware offers a basic query operating platform

while hiding diverse IoT resources. Furthermore, because the middleware acts as an IoT

service provider, it may be placed anywhere there is sufficient processing capacity to

perform the required calculations, such as edge computing nodes, cloud servers, and IoT

gateways [74].

1.13 Conclusion

There will probably be a lot more things connected in the near future due to the rapid

growth of the Internet of things (IoT). It is very likely that the world will become extremely

connected in the future. The architecture of the IoT system and its supporting network were

covered in this chapter. We demonstrated a few IoT application areas. Various methods and

protocols have been discussed for the aim of connecting IoT devices. Additionally, we gave

55

a brief description of the machine learning and deep learning approaches that are utilized in

IoT data processing. Then an overview of big data, IoT security, and IoT search engines was

presented.

56

CHAPTER 2: IOT BASED ROAD SURFACE CONDITION (RSC) MONITORING
USING HYBRID DEEP LEARNING MODELS

2.1 Introduction

Intelligent transportation systems (ITS) offer creative applications concerning traffic

management and many forms of transportation. This enables road users to utilize

transportation networks in a safer, more effective, and intelligent manner. The application

of Internet of Things (IoT) in the transportation sector has gained popularity recently as a

consequence of present challenges and technological advancements. The use of IoT in

transportation applications is being driven by technological advancements, which make

cities smarter and their systems easier to manage. In addition, IoT in transportation refers to

a vast network of embedded smart devices, like actuators and sensors. These sensors capture

data about the external physical environment, which is then transmitted to specialist software

to provide meaningful information, thus improving infrastructure design and maintenance

as well as safety [77, 78].

In recent years, monitoring of road anomalies has grown to become a major topic in

driving safety studies. Every day, around 3,700 people lose their lives in road accidents, for

a total of 1.35 million deaths worldwide each year. Actually, the number of vehicles on the

road is increasing, which has led to additional damage to the road surface. This might result

in significant vehicle damage and an increase in traffic accidents. Many people have

complaints about the state of the roads in their hometowns or places of work due to damages

caused by poor road surfaces. However, maintaining top-quality road infrastructure is

expensive since it has to be continuously monitored and repaired [79, 80].

Detecting anomalies in the road surface is crucial for road maintenance, improving

automated driving, and reducing the rate of accidents. Here, road surface anomalies refer to

speed bumps, speed humps, manholes, potholes, cracks, etc. In this context, researchers have

been trying to detect road surface anomalies by creating various methodologies and building

road surface condition (RSC) monitoring systems.

The term artificial intelligence (AI) is used to describe a variety of algorithms and

concept solutions that may be used to accurately identify anomalies on the road. These AI

methods include machine learning (ML) and deep learning (DL), which are used to train

57

classifiers that discover correlations and patterns between the input features and

corresponding road types [78, 81, 82].

This chapter will cover some of the most common approaches for road data analysis and

RSC monitoring. In addition, we will propose architectures for RSC monitoring and

frameworks for detecting road anomalies.

2.2 Background

For the related work, we start with providing an overview of road surface condition

(RSC) monitoring approaches. Afterward, we present techniques for detecting road

anomalies using the vibration-based approach. Finally, we highlight some of the most

important RSC monitoring research contributions.

2.2.1. Road Surface Condition Monitoring Approaches

Several studies have been carried out in the literature to monitor road surface conditions

(RSC). These studies can be divided into three major approaches: vision-based, laser-

scanning-based, and vibration-based.

A vision-based approach primarily employs vehicle-mounted cameras to capture 2D

images or videos of the road surface. This approach detects road defects using image

processing analysis. However, a number of external factors such as lighting and the influence

of shadows, have a negative impact on the vision-based approach [83].

With a laser-scanning-based approach, the road conditions are assessed using specialized

cars equipped with laser sensors. This approach employs 3D laser scanning to generate

precise road surface models. To identify road surface anomalies, a base model is compared

with these 3D digital models. Nevertheless, when it comes to monitoring vast road networks,

the laser-scanning-based method is very expensive and time consuming [84].

A vibration-based approach allows for the detection of road anomalies through analyzing

a moving vehicle's vibration rate acquired by motion sensors. Unlike the first two methods,

which are both expensive, the vibration-based approach is widely available and low-cost

[85].

58

2.2.2. Road Anomalies Classification Approaches

The studies of road surface condition (RSC) monitoring focus on the identification of

anomalies in the road surface through time series information collected with sensors. As

shown in Figure 2.1, road surface anomalies can be classified as real or man-made. The

vibration-based approach detects road anomalies in three stages. Firstly, the condition of the

road surface data have to be collected using wearable sensors, which are popular IoT devices

and they are easily able to be embedded in modern vehicles. Secondly, the collected data are

then preprocessed to smooth the sensor data and remove the noise. Preprocessing also aims

to organize data by transforming sensor signals into a format that is more appropriate for the

input data. Finally, road surface anomalies are detected by classifying the preprocessed

sensor signals based on the pattern of signals. Typically, thresholding, dynamic time warping

(DTW), machine learning (ML), and deep learning (DL) techniques have been utilized to

identify any unusual variations in sensor values [86, 87].

Figure 2. 1: Types of anomalies on the road surface.

59

2.2.3. A Review of RSC Studies

Several research studies on road surface condition (RSC) monitoring have been

published in the literature. Some of the recent RSC studies that have been published are

summarized in Table 2.1.

Table 2. 1: A summary of related work in RSC monitoring.

Reference Approach Contributions Objective

S. Sattar et al. [88] Vibration-based

-Smartphone-

based data

collection.

-Unsupervised ML

algorithm (GMM)

for road surface

anomaly detection.

Building a near-

real-time method

for classifying

road surface

anomalies into two

categories

according to the

degree of anomaly

severity.

Allouch et al. [89] Vibration-based

-Automatic

collecting and

labeling of

gyroscope and

accelerometer

data.

- A low-pass filter

to eliminate sensor

noise and FFT for

feature extraction

- ML algorithm for

road segment

classification.

Developing a real-

time Android

application that

plots the road

surface anomaly

location on a map

to automatically

determine the

quality of the road.

Zhou et al. [90]
Vision-based and

Vibration-based

-Smartphones were

employed to

collect road image

and motion sensor

data.

- A DL model for

detecting manhole

covers from a road

images and ML

model for

classifying the

detected manhole

covers.

Detecting and

classifying road

manhole cover

subsidence into

three levels: poor,

average, and good.

60

Table 2.1 (continued)

Yang et al. [83] Vision-based

-Collecting road

image via a digital

camera that has a

polarization filter

attached.

- A wavelet packet

transform for

feature extraction

and ML algorithm

(SVM) for road

surface anomaly

detection.

Determining if the

road surface is

wet, dry, snowy, or

ice-covered.

Higashimoto et al.

[84]

Laser-scanning-

based

-Extraction of road

surface

environments

using LiDAR point

cloud data.

-A ray ground

filter to separate

point cloud data

into ground and

non-ground.

-Utilizing the point

cloud data's

standard deviation

of the reflection

intensity to

identify the road

surface.

Developing a real

time road surface

environment

detection system

based on LiDAR

to enable self-

driving cars to

teleoperate in

undeveloped areas.

Varona et al. [85] Vibration-based

-Data collecting

via smartphones.

-Classifying road

segments using DL

algorithms.

-Data

augmentation

approaches for

maintaining the

dataset balanced.

Automatically

differentiating

between a vehicle's

instabilities

generated by

potholes and that

generated on by

speed bumps or

driving behavior.

61

Table 2.1 (continued)

Setiawan et al. [91] Vibration-based

-Data collecting

through

smartphone and

data labeling via

video camera.

- Classifying road

segments using DL

model (DCCN).

Proposing an

approach to

balance the

training of an

autonomous road

surface evaluation

system by

augmenting

smartphone sensor

data using an

unrolled GAN.

Du et al. [92] Vibration-based

- A Gaussian

background model

for feature

extraction and ML

algorithm (kNN)

for classifying

abnormal

pavement types.

Employing a

smartphone's

acceleration sensor

to easily and

cheaply identify

abnormal road

surfaces

Wu et al. [93] Vibration-based

-Feature extraction

using wavelet

decomposition,

frequency domain,

and temporal

domain

- ML algorithm for

road pothole

detection.

Utilizing vibration

data from

smartphones to

develop an

automatic pothole

detecting system.

Baldini et al. [81] Vibration-based

-Data collecting

via inertial

measurement unit

(IMU).

-Time-frequency

features are put

into the CNN.

Detecting and

identifying

anomalies in the

road surface by

combining CNN

and time-

frequency

transform.

2.3 Proposed Methodology for Road Anomalies Detection

The proposed frameworks for detecting road surface anomalies aim to distinguish three

types of road surfaces: Real anomalies (potholes and cracks), man-made anomalies (speed

62

bumps and speed humps), and smooth roads. This methodology generally consists mainly

of three phases: (1) data collection, (2) data preprocessing, and (3) classification.

As opposed to previous vibration-based approach studies, which primarily employ

cameras for sensor data labeling and machine learning or deep learning for data

classification. Furthermore, they rarely distinguished between man-made road anomalies

(which cannot be considered as road defects) and real road anomalies. The novelty of our

work comes from the use of hybrid deep learning models to improve classification

performance in three types of road surfaces, namely smooth road, real road anomalies, and

man-made road anomalies. In addition, we proposed novel labeling techniques that allow

us to label sensor data in real time utilizing a smartphone application. These new

techniques of data labeling are more effective than using images from cameras since they

are not impacted by light conditions or weather.

2.3.1. Data Collection

In general, a vehicle vibrates more while traveling over road surface anomalies, like

speed bumps, speed humps, potholes, or cracks, than when moving over flat road surfaces.

Therefore, the vibration-based method is an excellent option for collecting road data. With

the goal of collecting road data using a low-cost technology that is unaffected by light

conditions or weather, we utilized motion sensors embedded in IoT devices or

smartphones. Motion sensors like accelerometers, gyroscopes, and magnetometers are

excellent choices for obtaining vibration data from vehicles since they are capable of

measuring vibration, rotation, and movement of devices. The Global Positioning System

(GPS) is the best option for determining the location of road anomalies since it offers

current location information such as latitude, longitude, altitude, and speed. To establish

the ground truth, an adequate data sampling rate should be chosen to capture all road

surface information [86].

Here, we employed the three axes (X, Y, and Z) of gyroscope and accelerometer

sensors, as well as orientation angles, namely Azimuth, Pitch, and Roll which are

computed by using an accelerometer in conjunction with a magnetometer. The HTTP

protocol is used to send the sensor data to the MySQL dataset for IoT data storage. Table

2.2 contains a description of the sensors utilized. However, these sensors are sensitive to

63

the location of the device in the vehicle. Usually the device is attached near the gearbox,

near the gearshift, dashboard, or windshield. In the data collection phase, data labeling was

done in real time, with two people in the car, one driving and the other labeling. Road data

have been collected as a time series, due to the timestamp included in each raw sensor data

[85, 88].

Table 2. 2: A description of the sensors utilized to detect road surface anomalies.

Sensor Name Units of measure Description

Accelerometer 𝑚 𝑠2⁄

Acceleration force over the

X-axis

Acceleration force over the

Y-axis

Acceleration force over the

Z-axis

Gyroscope 𝑟𝑎𝑑 𝑠⁄

Rotation rate around the X-

axis

Rotation rate around the Y-

axis

Rotation rate around the Z-

axis

Magnetometer µƬ

Strength of the geomagnetic

field through the X-axis

Strength of the geomagnetic

field through the Y-axis

Strength of the geomagnetic

field through the Z-axis

Accelerometer and

Magnetometer (orientation

angles)
Degrees

Pitch (angle around the X-

axis)

Roll (angle around the Y-

axis)

Azimuth (angle around the

Z-axis)

GPS
Degrees

Current latitude value

Current longitude value

Current altitude value

𝑚 𝑠⁄ Current Speed value

2.3.2. Data Preprocessing

Several data preprocessing techniques were done to transform the acquired sensor

readings into clean and organized data, which could enhance the success rate of road

surface anomalies detection. The preprocessing techniques that utilized for transforming

road data are presented in the following.

64

2.3.2.1 Data Filtering

Longitudinal vibration peaks are considered by road engineers to be road surface

anomalies. They all produce vibrations with different frequencies depending on the

vehicle's speed. When passing through the same anomaly, not all vehicles produce the

same longitudinal peak (depending on the vehicle's mechanical features). Driving speed

also has significant effects on vehicle vibrations. Therefore, eliminating noise from the

sensor data in order to smooth the signals and remove the speed dependency is critical [89,

93]. The main techniques of filtering and smoothing are outlined below:

Low-pass filtering: eliminate the high-frequency elements using a predefined

frequency cut.

High-pass filtering: eliminate the low-frequency elements using a predefined

frequency cut.

Band-pass filtering: A specific range of frequencies is used to pass some parts of the

signals, while the other parts that are outside of that range are removed.

Moving average filtering: A low pass filter where information about the sensor data

does not need to be known before.

 Median filtering: comes in the forms of high pass and low pass filters where

information about the sensor data does not need to be known before.

2.3.2.2 Resampling

Time series readings from motion sensors have to be obtained to produce road data.

Unfortunately, IoT devices have a built-in problem with irregular and inconsistent cross

timestamps, which prevents them from providing a regular sampling rate. The analysis of

every detected event is significantly affected by data sampling rates. Therefore, we

resampled the time series data at a regular rate, utilizing the resampling function to

increase and decrease the sampling rate of the time series data [93].

65

2.3.2.3 Reorientation

The orientation of motion sensors affects the results of road anomaly detection.

Consequently, reorientation is commonly implemented to transfer motion sensors data

from the IoT device's coordinates to the coordinates of the vehicle in order to maintain the

research's logic and compactness [94]. Figure 2.2 illustrates the orientation of motion

sensors inside the vehicle.

Figure 2. 2: Motion sensors orientation inside the vehicle.

To provide an approach that is not dependent on IoT device orientation, the n samples

of motion sensors in which (𝑘𝑥(𝑛); 𝑘𝑦(𝑛); 𝑘𝑧(𝑛)) are combined into a single magnitude:

 𝑚(𝑛) = √𝑘𝑥(𝑛)2 + 𝑘𝑦(𝑛)2 + 𝑘𝑧(𝑛)2 (2.1)

In addition, Euler angles can be utilized to transform motion sensors’ signals from IoT

device coordinates to a different geometric coordinate.

2.3.2.4 Segmentation

The motion sensors vibration signals need to be split into segments by applying a

sliding window to facilitate time series data analysis. Each segment should offer accurate

data on the condition of the road surface. Hence, experiments are carried out in which the

window size is varied in order to identify which size provides the best performance. Data

segmentation step is essential since the convolutional layer is used as the input layer for

classifier models [91].

66

2.3.2.5 Feature Extraction

Feature extraction techniques are thought to be advantageous for RSC monitoring since

they allow for the extraction of more valuable data from each segment. The extracted

features from road vibration signals are often generated using wavelet decomposition,

frequency domain transformation, and time domain computation [81, 95] (see Table 2.3).

Table 2. 3: A presentation of the extracted features utilized in RSC monitoring.

Input features Description Feature types

Time-domain features

Extract statistical variables

that automatically reflect

the signals' vibrations.

-Standard deviation

-Variance

-Maximum value

-Minimum value

-Peak to peak

-Root mean square

-Mean of absolute value

-Mean

-Median

Frequency-domain features

Provides the frequency

spectrum of the motion

sensor signal by

transforming it from the

time domain to the

frequency domain.

-Fast Fourier Transform

(FFT)

-power spectral density

(PSD)

Wavelet decomposition

It is a frequency transform

with the advantage of being

defined in both spatial

frequency and spatial

location.

-Discrete Wavelet

Transform (DWT)

-Continuous Wavelet

Transform (CWT)

2.3.2.6 Feature Selection

The features obtained from multiple domains are typically correlated, which may result

in overfitting of the road surface anomalies detection classifier model. In many instances,

feature selection comes after feature extraction in order to remove redundant features and

enhance computing performance. To determine whether the features are correlated, we

proposed three widely recognized correlation methods, namely Pearson, Spearman, and

Kendall [96].

The Pearson correlation coefficient (𝑟) is an index of the strength of the linear

relationship between two different variables (𝑎 and 𝑏).

67

 𝑟 =
𝑛(∑ 𝑎𝑏)−(∑ 𝑎)(∑ 𝑏)

√[𝑛 ∑ 𝑎2−(∑ 𝑎)
2

][𝑛 ∑ 𝑏2−(∑ 𝑏)
2

]

 (2.2)

The Spearman's rank correlation (𝑟𝑠) assesses both the strength and the direction of the

relationship between two variables. Where 𝐷 is the rank difference and 𝑚 is a number of

data pairs.

 𝑟𝑠 = 1 −
6 ∑ 𝐷2

𝑚(𝑚2−1)
 (2.3)

The equations above return values that range from -1 to 1, where:

 A value between 0 and ± 0.39 indicates a Low correlation

 A value between ± 0.4 and ± 0.59 indicates a Moderate correlation

 A value between ± 0.6 and ± 1 indicates a High correlation

Kendall's rank correlation (𝜏) offers an indicator of the strength of dependence based on

the pattern of concordance and discordance among two variables.

 𝜏 =
2

𝑛(𝑛−1)
∑ 𝑠𝑔𝑛(𝑎𝑖𝑖<𝑗 − 𝑎𝑗) 𝑠𝑔𝑛(𝑏𝑖 − 𝑏𝑗) (2.4)

Kendall's rank correlation (𝜏) returns a value that ranges from 0 to 1, where:

 0 indicates that there is no relationship.

 1 is a perfect relationship.

2.3.2.7 Feature Scaling

The features extracted from road data have different distributions, resulting in a

dominance of features with higher values and variance. Feature scaling addresses this issue

by transforming the values of features to a similar scale, so that each feature is equally

important. Normalization and Standardization are the two most commonly utilized

methods for feature scaling [97, 98].

68

Normalization, often referred to as Min-Max scaling, is a method that shifts and

rescales features with a distribution range between 0 and 1. Here’s the general equation for

Normalization:

 𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑓− 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥− 𝑓𝑚𝑖𝑛
 (2.5)

The feature's maximum and minimum values are represented by 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛

respectively.

Standardization, also known as Z-score normalization, is a method that rescales the

features so that their standard deviation becomes 1 and their mean is 0. Here’s the general

equation for Standardization:

 𝑓𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑓𝑟𝑎𝑤− 𝜇

𝜎
 (2.6)

Where σ and µ refer for the standard deviation and mean, respectively.

2.3.3. Classification

Monitoring the road condition is a classification problem in which segment features are

the inputs and road surface types are the outputs. Deep learning (DL) is commonly utilized

as a classification approach in RSC monitoring due to its ability to find patterns and

relationships among inputs features and the labels of classes. However, recent approaches

in human activity recognition (HAR) [99], medical image analysis [100], machine

condition monitoring [96, 101], and electric energy forecasting domain [102] have

combined different DL models to design hybrid deep learning models for enhancing the

classification performance. The hybrid deep learning models that were utilized in this work

are presented below.

2.3.3.1 Proposed CNN-LSTM and CNN-GRU Models

In this work, we proposed hybrid deep learning models that combine CNN with LSTM

or GRU layers. The proposed architecture uses CNN to extract spatial features, whereas

long-term temporal dependencies are extracted by LSTM/GRU layers [99, 101, 103]. In

69

this way, the CNN layers were used on the front end of the CNN-LSTM and CNN-GRU

models for obtaining spatial features from the input data, while the CNN outputs were used

by the LSTM/GRU layers for learning temporal features.

2.3.3.2 Proposed ConvLSTM Model

ConvLSTM is an LSTM variant that utilizes a convolution operation within the LSTM

cell to detect spatial features in data. In comparison to CNN-LSTM, ConvLSTM is

designed to utilize 3D data as input and reduce spatial data redundancy; it has achieved

significant success in video frame classification. ConvLSTM captures fundamental spatial

features from multi-dimensional data by using convolution operations at each gate in the

LSTM cell rather than matrix multiplication [104, 105]. Figure 2.3 illustrates the structure

of the ConvLSTM cell.

Figure 2. 3: ConvLSTM cell structure.

2.4 First Proposed Framework

The goal of this framework is to develop hybrid deep learning models for RSC

monitoring, which employ a combination of FFT and DWT features as input. Indeed,

sensor data from a smartphone's gyroscope, accelerometer, and orientation angles are used

to make it easier to distinguish between road anomalies that cause two front wheels to hit

70

them at the same time and road anomalies that cause one front wheel to hit them at the first

time. Also, we introduce a new technique for data labeling based on TCP/IP sockets that

allow us to use a smartphone application to label sensor data in real time.

2.4.1. First Architecture

The first proposed framework's architecture is as follows: acquiring data related to road

surface anomaly detection using motion sensors, preprocessing the collected data, dividing

the dataset into train and test datasets, developing hybrid deep learning models for road

surface anomaly classification, and evaluating the models through several evaluation

metrics. Figure 2.4 depicts the architecture of the proposed framework.

Figure 2. 4: The First proposed framework for road anomalies detection.

2.4.2. Data Acquisition

Our framework begins with the creation of the RSC dataset, which includes three

different types of road surfaces: smooth road, man-made anomaly (speed humps and speed

bumps), and real anomaly (potholes and cracks). A smartphone (Samsung, Galaxy J6+)

was used to create the RSC dataset by employing accelerometer, gyroscope, and

magnetometer sensors embedded into it. Further, we utilized the Android platform due to

its status as the most common operating system for mobile devices [106]. After a thorough

investigation, the GPS frequency sampling was fixed to 1Hz, while the sampling rate of the

motion sensors was set to 50Hz. Inside the Renault Clio 4 vehicle, the smartphone was

attached near the gear lever, where the y-axis was pointing forward and the z-axis was

vertically orientated, while the x-axis was positive through the vehicle’s right side. A pair

71

of smartphones were utilized to collect data, as illustrated in Figure 2.5. The first

smartphone was utilized to collect sensor data, while the other one was utilized for labeling

the data in real time. When the first smartphone receives the road data label from the

second smartphone (IRIS, Vox Fortis), it begins to send the device's current timestamp

values, GPS data, and the three-axis motion sensors data to the database.

Figure 2. 5: Data labeling approach via TCP/IP sockets.

As shown in Figure 2.6, the two smartphones were communicating via a local network

using a TCP/IP socket (client/server) [107]. Every smartphone has a socket, and each socket

has been linked to a certain port number that it utilizes during the connection. In socket 1, a

server runs on the first smartphone and just listens to socket 2 for a connection request from

a client on the second smartphone. In socket 2, the client is aware of the first smartphone's

IP address and port number, and it has to identify itself to the server. In the end, the road

data label can be sent from socket 2 to socket 1 if the connection is established.

72

Figure 2. 6: TCP/IP Server–Client communication.

The RSC dataset was created when we were traveling from the University of Blida 1 to

Boufarik city via four separate itineraries namely: "via Parallel N1", "via A1/N1", "via N29

and A1/N1", and "via Parallel N1". According to Google Maps, the distance is around 11-

15 km. The first and fourth Google Maps itineraries have the same name but differing

itineraries, reflecting the road trip from the University of Blida 1 to Boufarik city. During

the ride, we collected data for classifying three types of roads: class 1 (pothole or crack),

class 2 (speed hump or speed bump), and class 3 (smooth road). In total, we collected 1 114

062 data samples. All data were obtained by utilizing a Renault Clio 4 vehicle equipped with

a MacPherson strut suspension, to ensure that the motion sensors measure in identical

conditions on all itineraries. Table 2.4 shows the number of road anomalies, the distance,

driving duration for each itinerary.

73

Table 2. 4: Distribution of road anomalies in the RSC dataset.

Google maps path

name

speed

bumps and

speed

humps

potholes and

cracks
Distance

Driving

Time

via Parallel N1 34 18 13.6 Km 40 min

via A1/N1 14 7 13.3 Km 18 min

via N29 and

A1/N1
 10 17 13.4 Km 33 min

via Parallel N1 35 16 11.4 Km 37 min

2.4.3. Preprocessing of Data

After data acquisition, time series measurements from motion sensors need to pass

several steps of preprocessing in order to make the input data clear and simple. First, we

resampled the time series data to 50 Hz because the motion sensors data sampling rate was

irregular, as illustrated in Figure 2.7a. In the Android app, the sampling rate for the motion

sensors was set to 50 Hz. However, Android is unable to preserve regular motion sensors

sampling because the sensors sampling is prevented by the Android operating system and

background apps, which take priority over system resources [108].

Figure 2. 7: Illustration of the resampling process showing (a) the original sensor

sampling rate and (b) the new sampling rate.

As shown in Figure 2.7b, the irregular time series data of the original measurements was

converted to a regular rate utilizing the resampling functionality. The missing values can

74

then be interpolated to this new rate via a polynomial interpolation technique that tries to fit

a polynomial curve to these missing data values. By doing so, we got 388 250 data samples

after resampling.

Second, data filtering is a prerequisite since motion sensors typically produce highly

noisy signals, making the data unreliable. Therefore, we smoothed the sensor signals and

eliminated noise using the moving average filter. A moving average filter is the simplest

form of the low-pass filter which generates a new sample by averaging 𝐿 samples from the

input signal [109]. Here’s the equation for the moving average filter:

 𝑠[𝑖] =
1

𝐿
∑ 𝑒[𝑖 − 𝑗]𝐿−1

𝑗=0 (2.7)

Where the average length is 𝐿, and the input and output signals are represented by 𝑒 and

𝑠, respectively.

Here, we set the length to three, which means that the new sample is the average of the

last two data points and the present data point. Figure 2.8 depicts z-axis acceleration data

before and after the use of the moving average filter.

Figure 2. 8: Moving average filter of order L=3.

75

Third, the vibration data from the motion sensors were segmented using a sliding window

of 1 second (50 samples), which is enough for representing any type of road anomaly when

traveling at low speeds. In order to achieve this, we examined three overlapping factors:

66%, 50%, and 33%, which indicates that portions of the sensor's data will show in multiple

windows, as can be seen in Figure 2.9.

Figure 2. 9: Sliding window with 50% overlap.

Since some segments included samples with different road surface types (class labels),

we deleted them all and labeled the remaining segments with the road data label that was

present. When there was a traffic jam, we utilized the GPS data to delete smooth segments

that had speeds below a certain threshold. Additionally, we used threshold-based filters to

eliminate any segments with a road anomaly label and a speed above a certain threshold to

deal with the effect of vehicle speed on motion sensors’ signals. The distribution of the new

segmented datasets is given in Table 2.5.

Table 2. 5: Distribution of the new segmented datasets.

classes 66% overlap 50% overlap 33% overlap

Smooth 6426 4105 3022

Man-mad

anomaly
709 454 340

Real anomaly 675 434 321

All 7810 4993 3683

76

Fourth, the data were transformed using a multi-level 1D DWT combined with FFT to

obtain information that is more useful from each segment, as illustrated in Figure 2.10. FFT

provides spectral information, whereas the temporal location of the spectral components is

given by DWT, that offers signal representations in the time-frequency plane. Specifically,

we have employed the one-level coefficients of the Haar wavelet and the amplitude of FFT.

The new segments have (50 × 9 wavelet coefficients + 50 × 9 FFT component amplitudes)

= 900 samples. Compared to the original time-domain representation, these extracted

features offer better classification performance.

Figure 2. 10: Feature extraction using DWT and FFT.

Fifth, feature selection is carried out on segment data (DWT and FFT) to eliminate

redundant features and keep only those that are important. From a random segment, we

calculate the correlation coefficient between 50 wavelet coefficients and 50 FFT component

amplitudes in the same sensor and axis (see Table 2.6). As can be seen, all correlation

coefficients of Kendall, Pearson, and Spearman are lower than 38%, indicating that there is

a low correlation between DWT and FFT features. So, we selected all features in the segment

as input.

Finally, the features mentioned above have different value ranges. For instance, FFT

provides a high amplitude at the first frequency and then drops to near zero. Every feature

in the segment can be considered as noisy if its range of values is different. Consequently,

the segment's features were standardized by subtracting the mean of every value and dividing

by the standard deviation.

77

Table 2. 6: Correlation between DWT and FFT features.

Features Kendall Pearson Spearman

DWT1+ FFT1 0.01731 -0.18856 0.02335

DWT2+ FFT2 -0.00577 0.10409 -0.01216

DWT3+ FFT3 0.09646 0.14134 0.13232

DWT4+ FFT4 0.18220 0.37227 0.23961

DWT5+ FFT5 -0.02226 -0.13672 -0.02450

DWT6+ FFT6 0.00412 0.02325 0.00879

DWT7+ FFT7 0.03050 -0.13746 0.05136

DWT8+ FFT8 0.01072 -0.10586 0.03186

DWT9+ FFT9 -0.00907 0.19077 -0.01936

2.4.4. Classifier Models

Here, the CNN-GRU, CNN-LSTM, and CNN classifier models were employed to

evaluate the proposed framework. The CNN employed in the experiment was a multi-

channel 1D CNN with convolution kernels that moved in one direction, as shown in Figure

2.11. The following were the 1D CNN parameter settings: the kernel size of the

convolutional layers was (1 x 3), the pooling layer was set at (1 x 2), the activation function

employed was ReLU, the optimization algorithm employed was Adam, and the dropout

function was employed at a rate of 0.1.

Figure 2. 11: Structure of a multi-channel 1D CNN model.

78

The hybrid deep learning models combined multi-channel 1D CNN with GRU or LSTM

layers, in which the CNN features were inserted into the LSTM/GRU layers, as illustrated

in Figure 2.12. This allows the combined model to swiftly determine spatial and temporal

features, which can prevent the loss of some important data during CNN training [110].

Further, Table 2.7 provides the parameter settings for the CNN-GRU and CNN-LSTM.

Figure 2. 12: The architecture of the proposed CNN-LSTM and CNN-GRU models.

Table 2. 7: The structure of the CNN- LSTM and CNN-GRU models.

Parameter Parameter Settings

Input data size 1×100

Input channels 9

Convolutional

layers
2 Conv2D

Filters 32-64

Filter size [1 x 3] - [1 x 3]

Pooling size [1 x 2]

LSTM/GRU 64-32

Dropout 0.1

Dense 128-64

Activation

function
ReLU

Optimizer adam

Dropout 0.1

79

2.5 Second Proposed Framework

The main idea of this framework is to develop 3D hybrid deep learning models to classify

a vehicle’s vibration data from an IoT device. This idea is inspired by video frame

classification [111], which tests the effectiveness of spatiotemporal feature learning.

2.5.1. Second Architecture

The architecture of the second proposed framework is as follows: building a new RSC-

IoT dataset and offering an explanation of the data labeling technique, performing a number

of data preprocessing operations, and combining 3D hybrid deep learning models into two

ensemble methods (see Figure 2.13).

Figure 2. 13: The second proposed framework for road anomalies detection.

2.5.2. RSC-IoT Dataset

The RSC-IoT dataset was built for road surface condition monitoring, where a low-cost

MPU-6050 with ESP32 microcontroller were used to record accelerometer and gyroscope

data. Additionally, we used a smartphone that communicates with the ESP32 chip via

Bluetooth to label raw sensor data in real time, as can be seen in Figure 2.14. The ESP32

chip, recognized for its integrated Wi-Fi and Bluetooth, is an excellent choice for IoT devices

due to its low cost and power efficiency. During driving on three road surface types, namely

"Man-made anomalies" (speed bumps), "Real anomalies" (potholes or cracks), and

"Smooth" (flat road), the IoT device was attached to the top of the vehicle dashboard. Motion

sensor data is transmitted to a local server using the HTTP protocol for IoT data storage.

80

Eventually, since every raw sensor data has a timestamp, 16669 data samples were acquired

as time series.

Figure 2. 14: Data labeling approach via Bluetooth.

2.5.3. Data Transformation

Four major steps were used in preprocessing to make the collected data clean and

structured before the classification phase. At first, the time series data were resampled to 20

Hz because the motion sensors data sampling rate was below average (3-5 Hz). Secondly, in

order to minimize noise in motion sensors data, the median filter [112] was used. Thirdly, a

2 second sliding window (40 samples) with a 66% overlap was used to segment the data,

where every window has 240 components, as shown in Figure 2.15. Finally, in order to

obtain a sufficient amount of samples from minority classes, the RSC-IoT dataset was

manually split into train and test segments after the data segments had been standardized

(see Table 2.8).

81

Figure 2. 15: Segmentation of sensors data with a 2 seconds and 66% overlap.

Table 2. 8: Distribution of data before and after preprocessing.

Step Smooth
Man-made

anomalies
 Real anomalies

Data collection 13139 783 2747

Resampling 77473 6103 15607

Segmentation
Train Test Train Test Train Test

 4771 1006 313 107 918 176

2.5.4. The Hybrid 3D Models

Time series classification problems were well-suited for recurrent neural network (RNN)

models such as LSTM and GRU because of their ability to identify long-term dependencies

in the data. Since 3D models are typically used to learn spatiotemporal features from video

frames, and as this study is inspired by video frame classification [113], both LSTM and

GRU are not appropriate due to the one-dimensional format of their input data, which

prevents the extraction of spatial features. To extract spatial features from multi-dimensional

82

input data, we built three hybrid deep learning models in which all CNN layers are wrapped

by the TimeDistributed (TD) function [114]. The hybrid deep learning models are as follows:

TD-CNN-GRU, TD-CNN-LSTM, and ConvLSTM. In order to provide a fair comparison

between ConvLstm and standard CNN-LSTM results, the ConvLSTM model was not

wrapped with a TD function. The structures of the three hybrid deep learning models are

shown in Tables 2.9 and 2.10. The input was reshaped to the form (4, 10, 6, 1) before

applying the 3D models, meaning that every frame of data represents 0.5 seconds of road

data.

Table 2. 9: The structure of the ConvLSTM model.

Layer Parameter Settings

ConvLSTM2D filters: 32, filter size: [3 x 3], tanh activation

MaxPooling3D Pooling size: [1 x 2 x 2], padding: same

Dropout 0.25

ConvLSTM2D filters: 64, filter size: [2 x 2], tanh activation

Dropout 0.25

Flatten -

Dense n_neurons : 1024, relu activation

Dropout 0.25

Dense n_neurons : 1024, relu activation

Dropout 0.25

Dense n_neurons : 3, softmax activation, adam Optimizer

Table 2. 10: The structure of the TD-CNN-GRU and TD-CNN-LSTM models.

Layer Parameter Settings

Conv2D filters: 32, filter size: [3 x 3], relu activation

Conv2D filters: 32, filter size: [3 x 3], relu activation

MaxPooling2D Pooling size: [2 x 2]

Dropout 0.25

Conv2D filters: 64, filter size: [3 x 3], relu activation

Conv2D filters: 64, filter size: [3 x 3], relu activation

Dropout 0.25

Flatten -

GRU/LSTM units: 64, relu activation, return sequences: True

GRU/LSTM units: 32, relu activation, return sequences: False

Dropout 0.1

Dense n_neurons : 1024, relu activation

83

 Table 2.10 (continued)

Dropout 0.25

Dense n_neurons : 1024, relu activation

Dropout 0.25

Dense n_neurons : 3, softmax activation, adam Optimizer

2.5.5. Ensemble Learning Methods

The 3D models were combined to perform the averaging and weighted average

ensembles. Here, ensemble learning involves combining the outputs of the three 3D models

to achieve more accurate predictions than the individual models.

2.6 Third Proposed Framework

The overall goal of this framework is to identify road surface anomalies using 3D hybrid

deep learning models with synthetic time-series data to achieve peak performance. This

framework is critical in demonstrating the benefit of data augmentation approaches in

diversifying accessible information and keeping dataset balance.

2.6.1. Third Architecture

The third proposed framework shares the same architecture as the second, with the

exception that it uses data augmentation to create synthetic time series training data for 3D

hybrid deep learning models (see Figure 2.16), which enable the models to reliably and

accurately identify anomalies in the road surface.

84

Figure 2. 16: The third proposed framework for road anomalies detection.

Based on the RSC dataset obtained from the first framework, we trained TD-CNN-GRU,

TD-CNN-LSTM, and ConvLSTM models to classify road anomalies. The RSC dataset

exhibits imbalance, as demonstrated in Table 2.11. Consequently, data augmentation

approaches were employed to address the problem of imbalanced classification.

Table 2. 11: RSC dataset description.

classes Road Anomalies Number of Samples

Man-mad anomaly
Speed bump

 50354
Speed hump

Real anomaly
Rough

 41722
Pothole

Smooth Smooth 1021986

In comparison to the second framework's data segmentation step, the data were

segmented here using a sliding window of 3 seconds (150 samples) with 66% overlap. Each

segment, as illustrated in Figure 2.17, consists of 3-axis accelerometer data, 3-axis gyroscope

data, and orientation angles (1350 samples). After the segmentation, we obtained 2234 data

segments, including 2028 segments of "Smooth" label, 133 segments of "Real anomalies"

label, and 73 segments of “Man-made anomalies” label.

85

Figure 2. 17: Sensor data segmentation of 3 seconds and 66% overlap.

2.6.2. Data Augmentation

In RSC monitoring, it is well-known that driving over a road surface anomaly is an

uncommon event, hence the quantity of speed bumps, speed humps, potholes, and cracks

data is frequently considerably smaller than that of smooth roads. Data augmentation is an

approach that handles the class imbalance problem by transforming the original data

samples into synthetic data without affecting the data labels. Contrary to image data, it is

challenging to confirm by human observation that the augmented data's label information

has been preserved in the case of motion sensors data. Therefore, usually, the augmented

data are only added to the training data to determine whether label information is preserved

during data augmentation. To investigate the impact of data augmentation on road anomaly

classification, classifier models were built in order to compare the results of models trained

with the unbalanced and balanced training data using traditional time series data

augmentation approaches[115-117], SMOTE algorithm [118, 119], and a GAN-based

synthetic time series data generator called DoppelGANger [120].

Traditional data augmentation techniques have been successfully used to generate

synthetic data in computer vision. However, changes caused by traditional time series data

86

augmentation techniques such as jittering, scaling, and rotation have no effect on the

sensor data labels as shown in Figure 2.18. These techniques are as follows.

Jittering: Jittering is a technique that simulates additive sensors noise.

Scaling: Scaling is a technique that modifies the magnitude of data in a window

through multiplying it with a random scalar.

Rotation: Rotation is a technique that simulates different sensor positions.

Figure 2. 18: Traditional time series data augmentation techniques.

SMOTE (Synthetic Minority Oversampling Technique) is a data augmentation

technique that generates synthetic data for the minority class based on existing data points.

The main idea behind SMOTE is to generate synthetic data between every minority class

sample and its k nearest neighbors. The SMOTE algorithm works as follows:

 Selecting the data points from the minority class.

87

 Identifying the 𝑘 nearest neighbors of the minority class data points.

 Generating new synthetic data points at random locations among all the neighbors

until the problem of data imbalance is rectified.

Traditionally, generative adversarial networks (GANs) have had difficulty with the

characteristics of time-series data. To overcome this problem, DoppelGANger was created

by modifying a GAN to better suit the objective of time series data generation. The

DoppelGANger's generator includes an LSTM to capture long-term temporal correlations

and generate synthetic time series data, while the discriminator tries to differentiate

between real and synthetic data [121].

For each of these data augmentation approaches, raw sensor data from the RSC dataset

were selected randomly to generate synthetic data. Then, the augmented data were

preprocessed, segmented, and combined with the training data for the classification phase.

Table 2.12 shows the distribution of training data segments by road condition class labels.

Table 2. 12: Distribution of training data segments before and after data

augmentation.

Data Aug. approaches Real anomalies
Man-made

anomalies
 Smooth

No augmentation 89 51 1423

Traditional

approaches
 686 778 1423

SMOTE 836 798 1423

DoppelGANger 683 752 1423

2.7 Proposed RSC Monitoring Architecture using IoT Search Engine

As more smart cars are being used, more IoT data are being generated, making it

difficult for RSC monitoring systems to find specific IoT data. Therefore, there is a need

for an IoT search engine to provide query resolution services to aid RSC monitoring

systems efficiently find relevant IoT data. The Internet of Things has had a significant

impact on advanced manufacturing, healthcare, smart cities, and intelligent transportation.

In intelligent transportation, smart cars are equipped with IoT devices. These IoT devices

contain sensors such as cameras, GPS, proximity sensors, vibration sensors, etc, which

detect changes in the external physical world and record them. Thanks to GPS sensor,

88

smart cars are capable of offering the shortest route to the destination, as well as

anticipated traffic and travel time. However, since it depends on the preferences of the

drivers, such as comfort and ease of driving, the best path may not always mean the

shortest trip time or distance. The optimal path is defined as the one with the shortest trip

time, the shortest travel distance, and the fewest road surface anomalies. This means the

road condition should be considered as an additional factor in determining the best path. In

this work, we focused on the design of an IoT-based road surface condition monitoring

system that continuously provides road anomalies locations for drivers that prefer the path

with the fewest road surface anomalies. Figure 2.19 depicts the overall workflow of the

proposed IoT-based RSC monitoring system using the IoT search engine (IoTSE).

Figure 2. 19: The architecture of the proposed RSC monitoring using IoT search engine

(IoTSE).

The proposed system recommends self-driving cars to the destination using the path

with the fewest road surface anomalies. Our framework of the IoT search engine (IoTSE)

is inspired by the studies [74, 75] and is as follows:

89

Step 1: A self-driving car sends queries to a third-party service provider to find the

path with the fewest road surface anomalies.

Step 2: The third-party service sends again the queries to the IoT search engine

(IoTSE).

Step 3: Based on the user's location, the IoTSE utilizes an IoT crawling algorithm to

collect GPS and vibration sensors data from IoT devices embedded in smart cars on the

road.

Step 4: The sensor's data are again transmitted to the third party service provider for

collecting and preprocessing.

Step 5: The third-party service provider detects road surface anomalies using pre-

trained hybrid deep learning models.

Step 6: Finally, the self-driving car can find the most convenient path to the destination

with the fewest road surface anomalies.

2.8 Proposed RSC Monitoring Architecture using Cloud Computing

The trend of combining cloud computing and IoT technology has gained popularity in

the past decade. Cloud computing is a component that helps the Internet of Things succeed

by addressing the problem of collecting and analyzing sensor data that can be utilized later

to monitor any system. The overall workflow of the proposed IoT-based RSC monitoring

system using cloud computing is detailed in Figure 2.20.

90

Figure 2. 20: The architecture of the proposed RSC monitoring using cloud computing.

The proposed system provides drivers with the geographical location of detected road

anomalies. This work has several steps that can be summarized as follows:

Step 1: GPS and vibration sensors data are continuously captured by IoT devices

embedded in smart cars on the road.

Step 2: The data are transmitted to the cloud computing platform over the internet via

cellular networks.

Step 3: The sensors data are continuously received in the cloud for collecting and

preprocessing.

Step 4: The preprocessed data are again transmitted to a third party service provider.

Step 5: The third-party service provider detects road surface anomalies using pre-

trained hybrid deep learning models.

Step 6: Finally, using smartphones or tablets, drivers are able to show the geographic

location of the detected road surface anomalies on a street map offered by the third-party

service provider.

91

2.9 Conclusion

In this chapter, we presented road surface condition monitoring systems that detect road

anomalies using hybrid deep learning models. The systems are based on motion sensors

from smartphones and IoT devices. These systems include data collecting, preprocessing,

and classification, where the vibration-based method is used to collect time series data.

Further, two datasets, RSC-IoT and RSC dataset, were created and labeled in real time

utilizing a smartphone via Bluetooth and a TCP/IP socket, respectively. We also proposed

RSC monitoring architectures based on cloud computing and the IoT Search Engine

(IoTSE).

92

CHAPTER 3: BIG DATA AND MACHINE LEARNING FOR IOT INTRUSION
DETECTION SYSTEM

3.1 Introduction

The Internet of Things (IoT) is an innovative framework for the future internet in which

interconnected structures of devices connect to the internet in order to enable smooth data

exchange. IoT devices can be controlled and monitored remotely. Some of these devices

include smart washing machines, self-driving cars, smart toothbrushes, industrial robots,

smart lights, medical and healthcare equipment [122]. Due to the extensive growth of IoT

networks and the constantly expanding applications they support, hackers are now able to

target these networks with a variety of security threats [123].

Intrusion detection systems (IDS) served as an essential means for protecting

information systems and IoT networks for many years. IDS includes software or hardware

that detects unlicensed usage on IoT systems. Through monitoring all traffic that enters and

exits the network, the IDS is a highly effective tool for network security. IDS technology

has developed for traditional networks, however existing solutions are insufficient for IoT

since they are not sufficiently adaptable to handle the diverse and complicated IoT

environment [124].

In fact, artificial intelligence (AI) techniques could be employed to solve the need for

the creation of advanced security technologies adapted to the IoT. These days, intrusion

detection systems (IDS), have been using ML and DL algorithms as novel tools to improve

their effectiveness in securing IoT networks. In addition, efforts have been made to

enhance threat detection and avoidance with ML and DL based solutions, with a focus on

identifying dangerous IoT traffic flow through pattern recognition of ordinary and irregular

traffic during the training stage [125, 126].

Big amounts of data are generally generated by IoT devices and are transmitted over

networks. Network attacks might modify data that flows via a network. Combining big

data and artificial intelligence technology can help secure the IoT network by identifying

and classifying attacks [70].

93

A variety of datasets are employed in the fields of IoT security, big data, and the

experimental research of ML and DL. IoT security can be described as protecting the IoT

network infrastructure and its components from attacks. The tools required for efficiently

analyzing data that have been defined as big data are known as big data technologies.

Further, to process IoT network data, algorithms based on ML and DL are useful in order

to identify zero-day attacks and anomalies in network traffic [125].

IDS experiments have been lately conducted using numerous publicly available IoT

datasets. Nevertheless, there is an underlying class imbalance problem with these datasets

that can lead to low performance in minority classes. Various data sampling approaches,

such as oversampling, undersampling, and ensemble resampling, are typically employed

since achieving high accuracy in detecting intrusions requires balancing the dataset [127,

128].

In this chapter, we introduced a big data architecture that applies ML to perform multi-

class classification on an imbalanced dataset for monitoring IoT network traffic. The

primary objective of this study is to address the issue of class imbalance and enhance

classification performance through the use of an ensemble resampling technique in

conjunction with oversampling. Furthermore, the final predictions are computed utilizing

the ensemble learning methodology.

3.2 Literature Review

In the field of computer science, there has been a lot of interest in the research and

development of intrusion detection systems (IDS) due to the growing number of networks

and security threats. The IDS is a tool that analyzes network traffic to identify any

suspicious patterns or known attacks. This section covers the main approaches and selected

datasets utilized in IDS solutions. Also, some recently published papers on IDS

publications are presented.

3.2.1. IDS Approaches

In the context of IoT security, various attacks against IoT networks have been

discovered in the literature. In order to identify these attacks, several features can be

94

extracted from the network traffic flow and stored in a dataset [129]. In general, three main

types exist for intrusion detection approaches [130]:

 The signature-based detection: is based on databases that comprise patterns or

attack signatures to detect well-known attacks.

 The anomaly-based detection: analyzes the behavior of users, networks, and system

hosts which then alerts the administrator whenever the behavior deviates from the

expected behavior.

 The hybrid-based detection: combines the signature-based detection approach with

the anomaly-based detection approach.

However, each intrusion detection approach has strengths and limitations [122, 131]. A

summary of intrusion detection approaches' pros and cons is provided in Table 3.1.

Table 3. 1: The advantages and disadvantages of intrusion detection approaches.

Detection methods Pros Cons

Signature-based detection

-Easiest and more

successful in identifying

known attacks.

-Design is simple.

-Identifies the intrusions

quickly.

-Highly effective in

detecting intrusions with

minimal false alarms.

-Incapable of identifying

novel attacks and variations

on known attacks.

-New signatures should be

added on regularly.

-Inappropriate for

identifying multi-step

attacks.

Anomaly-based detection

-Efficient at finding

unexpected and novel

vulnerabilities.

-Finding new attacks is the

main goal of it.

-Make it easier to identify

incidents of privilege abuse.

-Possibility of generating an

intrusion signature.

-Initial training is required.

-Setting off alarms at the

proper time is challenging.

-There are a lot of false

positive alarms.

-Not classified alerts.

Hybrid-based detection

-Recognize both known and

unknown attacks.

-Reliability and

confirmation of alerts.

-Increase the complexity

and resource requirements

of the system.

- Detecting attacks takes

quite a while.

Security technology has recently seen a trend toward the employment of popular ML

and DL classifiers for building IDS to monitor IoT network traffic. The goal is to use

95

binary and multiclass classification to detect cyberattacks. These classifier algorithms

analyze and detect patterns in IoT network traffic data. In fact, a huge quantity of data is

continuously produced by IoT devices which are used more and more in our daily lives.

Thus, big data processing is required in order to extract useful information from such data.

Because some data are imperfect, data cleaning, transformation, normalization, and

dimensionality reduction are frequently performed to reduce the complexity of data and

minimize processing time [132]. In order to improve final predictions, ML or DL

algorithms are often combined using ensemble learning methods [133, 134].

3.2.2. IDS Datasets

The hackers aimed to utilize malicious activities to weaken the resources of the targeted

IoT network, necessitating the usage of intrusion detection systems (IDSs). In order to train

and evaluate IDS in IoT networks, anomaly detection datasets are required, which could

also be used for the evaluation of ML and DL algorithms' performance. However, because

there are insufficient organized IoT datasets for intrusion detection, IoT networks are

challenging to analyze and evaluate. The following is a description of some popular

datasets that contain IoT traffic:

MQTTset: The dataset MQTTset was created by Vaccari et al. [135]. This dataset

contains 541,071 instances for training and testing. In order to simulate a smart IoT

environment, the MQTT protocol was used to communicate between multiple IoT devices.

MQTTset dataset class categories consist of SlowITe, Malformed Data, MQTT Publish

Flood, Flooding DoS, Bruteforce Authentication, and Normal.

MQTT-IoT-IDS2020: The dataset MQTT-IoT-IDS2020 was created by Hindy et al.

[136]. This dataset has 3,654,006 data instances. The most typical MQTT attacks are

included, along with scenarios for real-life tests equipment. The class categories of the

MQTT-IoT-IDS2020 dataset include Sparta, Scan-U, Scan-A, MQTT-Bruteforce, and

Normal.

IoT Network Intrusion: The IoT Network Intrusion dataset was generated by Kang et

al. [137]. This dataset was processed using a typical smart home design that included an

EZVIZ Wi-Fi camera and a smart home SKT NGU. There are 625783 data instances in the

96

IoT Network Intrusion dataset. It comprises the following class categories: Normal,

Scanning, Mirai Botnet, MITM, and DoS.

IoT-23: This dataset is based on network traffic that was collected by IoT devices

using three benign and twenty malicious captures. The Stratosphere Laboratory of Czech

Technical University (CTU) created the IoT-23 dataset. The IoT-23 dataset includes 10

class categories and 106,542,182 data instances [138].

TON_IoT: The TON_IoT Telemetry dataset is the next generation of IoT and

Industrial IoT datasets designed to evaluate the effectiveness and accuracy of various AI-

based cybersecurity systems. This dataset was provided by Moustafa et al, IoT Laboratory

at UNSW Canberra, Australian Defence Force Academy (ADFA) [139].

UNSW-NB15: The UNSW-NB 15 dataset was produced using the UNSW Canberra

Cyber Range Lab's IXIA PerfectStorm tool. The aim is creating a combination of fake

contemporary attack behaviors and realistic modern daily activities. This dataset contains

175,341 instances for training and 82,332 instances for testing [140].

BoT-IoT: The BoT-IoT dataset will be described in detail in the next section.

3.2.3. A Review of IDS Studies

A substantial amount of research has been done in recent years on the Internet of

Things security. The security of the IoT is more susceptible to vulnerabilities and attacks.

IoT security is entirely dependent on the functionality of the Intrusion Detection System

(IDS) [141]. Table 3.2 provides an overview of some recent IDS studies that made use of

IoT traffic datasets.

97

Table 3. 2: Summary of studies that used IoT traffic datasets.

Reference Datasets Detection Approach Contributions

Saheed et al. [142] UNSW-NB15 Signature-based

Applying an

intelligent

combination of

feature

dimensionality

reduction and ML

techniques, which

created an

intelligent IDS that

can identify

suspicious behavior

on insecure IoT

networks.

Saba et al. [143] BoT-IoT Anomaly-based

Presenting an

anomaly-based IDS

based on CNN that

exploits the

potential of the IoT

by offering

capabilities to

effectively analyze

all traffic passing

through it.

Albulayhi et al.

[144]
IoTID20 Anomaly-based

-Developing a

hybrid feature

selection method by

utilizing the theory

of mathematical

sets.

-Combining a

majority voting

system and a variety

of ML methods to

build an intelligent

intrusion detection

system that achieves

the highest rate of

detection

98

Table 3.2 (continued)

Simon et al. [145] NSL-KDD Signature-based

Employing a

classifier that

combines CNN and

DT algorithms to

identify attacks in

the Internet of

Things network.

Sahu et al. [146] IoT-23 Signature-based

-Employing a

hybrid deep learning

model called CNN-

LSTM to identify

attacks and monitor

IoT networks.

-A comparison of

the CNN-LSTM

model with other

recent, related

research studies.

Zhang et al. [147]

CSE-CIC-IDS2018

CIC-IDS2017

NSL-KDD

Signature-based

Applying the

ICVAE-BSM

method to

efficiently identify

minority intrusions

from unbalanced

IoT samples.

Ferrag et al. [148]

TON_IoT

MQTTset

Bot-IoT

Signature-based

Developing

federated learning

models using three

DL algorithms,

which are RNN,

CNN, and DNN to

provide more

accurate results and

assure the privacy of

IoT device data.

Demirpolat et al.

[149]

UNSW-NB15

Bot-IoT
Signature-based

Software defined

networking (SDN),

which used a few-

shot learning

classifier to address

the problem of

building ML models

with few training

samples.

99

Table 3.2 (continued)

Ramadan et al.

[150]
NSL-KDD Anomaly-based

- Presenting a

hybrid IDS for

detecting IoT

network attacks.

- Using the ESFL

algorithm for

feature extraction.

-Applying a hybrid

classification

algorithm called the

LCNN-GRNN.

Abushwereb et al.

[151]
Bot-IoT Signature-based

-Using Apache

Spark to create a big

data framework for

classifying IoT

network intrusions.

- Utilizing the entire

dataset as well as

the shorter version

of the BoT-IoT

dataset.

Manzano S et al.

[152]
Bot-IoT Signature-based

-Developing a

Hadoop-Spark

cluster-based

platform for big

data analysis and

processing.

-Using One-Class

SVM to assess if the

flow of traffic is

malicious or benign,

and an RF Multi-

class model to

define the attack

type.

100

Table 3.2 (continued)

Manzano et al.

[153]
Bot-IoT Signature-based

-Introducing a big

data architecture

that employs

Hadoop-Spark for

classification of

multiple classes

using a one-vs-rest

technique.

-Evaluating the

effectiveness of

three oversampling

techniques:

CTGAN, SMOTE,

and ADASYN in

producing additional

instances from

minority classes.

This study aims to employ a signature-based detection approach for IoT intrusion

detection using the full BoT-IoT dataset in the Apache Spark environment. In fact, a

number of solutions have been created to deal with the issue of imbalanced classification in

the BoT-IoT dataset. As far as we are aware, there are just three researches [151–153] that

employed multi-class classification using the whole BoT-IoT dataset in a big data

environment. In this case, we perform more accurate classification studies in a big data

environment using the BoT-IoT dataset. Our methodology is original in comparison to

previous studies because it employs a novel technique that combines ensemble resampling

and oversampling to address the issue of class imbalance. Additionally, in order to achieve

superior prediction results, we combine 𝑛 separate ML models built on Apache Spark

using a weighted average ensemble.

3.3 Proposed Methodology for IoT Network Intrusion Detection

The proposed intrusion detection methodology is described in extensive detail here.

The first step in this process is to load the BoT-IoT dataset, following which data

preprocessing is necessary to put the data in a format that is easier for analysis. The next

phase involves using an ensemble resampling method in combination with oversampling to

101

address the problem of the imbalanced dataset. The Decision Tree ML algorithm is then

employed in order to identify patterns in network traffic that could lead to the detection of

attacks on the data features. It is essential to implement forensic analytics that employ big

data and ML. After that, the ensemble learning method is used to incorporate the

predictions for obtaining the final result. This approach has similarities to the bagging

method, with the exception that we manually pick the data points and resample the data via

oversampling, and the weighted average ensemble is used to obtain the final predictions

instead of selecting random data with replacement then incorporating the results using the

averaging ensemble. However, data analysis is done using a Big Data environment called

Apache Spark because of the size of the BoT-IoT dataset. Figure 3.1 shows the architecture

of the proposed methodology.

Figure 3. 1: Process of the proposed methodology.

3.3.2. Data Description

The creation of a realistic dataset is still a critical field of research when it comes to

develop intrusion detection systems that detect cyberattacks. Numerous datasets have been

102

created in recent years, each with particular advantages and disadvantages. To successfully

create a dataset of botnet traffic in IoT networks, Koroniotis et al [154] employed both real

and simulated IoT network traffic. The dataset is known as Bot-IoT, and it includes a

variety of attack types. The development of the Bot-IoT dataset involved the use of a

realistic testbed, and a variety of tools to execute various botnet scenarios, as depicted in

Figure 3.2. In order to guarantee the reliability of the dataset labeling procedure, a packet

filtering firewall was employed.

Figure 3. 2: The Bot-IoT dataset testbed environment [154].

Data features were generated by the Argus tool during the process of extracting

network flow. These features were statistically examined via the joint entropy and

correlation coefficient approaches. Given the huge quantity of data generated by IoT

networks, big data analytics is necessary for the BoT-IoT dataset, which has over 73

million data samples. However, the BoT-IoT dataset is available in two formats: the short

version and the full dataset. The datasets are extremely unbalanced, as Tables 3.3 and 3.4

demonstrate. Moreover, there are four attack types and one benign category. Each

cyberattack type has a different collection of attack subcategories. The full BoT-IoT

dataset was used in this study, which includes 32 network traffic features, as seen in Table

103

3.5. It is extremely unbalanced because the normal traffic and theft attack represent only

0.01% and 0.002% of the total data samples.

Table 3. 3: The full BoT-IoT dataset description.

Category Subcategory Number of records Ratio (%)

Distributed Denial

of Service (DDoS)

TCP

38532480 52.52 UDP

HTTP

Denial of Service

(DoS)

TCP

33005194 44.98 UDP

HTTP

Reconnaissance
OS Fingerprinting

1821639 2.48
Service Scanning

Information Theft
Keylogging

1587 0.002
Data Exfiltration

Normal Normal 9543 0.01

Table 3. 4: The short version BoT-IoT dataset description.

Category Subcategory Number of records Ratio (%)

Distributed Denial

of Service (DDoS)

TCP

1926624 52.52 UDP

HTTP

Denial of Service

(DoS)

TCP

1650260 44.98 UDP

HTTP

Reconnaissance
OS Fingerprinting

91082 2.48
Service Scanning

Information Theft
Keylogging

79 0.002
Data Exfiltration

Normal Normal 477 0.01

Table 3. 5: BoT-IoT dataset features description.

Features Description

drate Destination to source packets per second

srate Source to destination packets per second

rate Total packets per second in transaction

dbytes Destination to source byte count

sbytes Source to destination byte count

dpkts Destination to source packet count

spkts Source to destination packet count

104

Table 3.5 (continued)

max Maximum duration of aggregated records

min Minimum duration of aggregated records

sum Total duration of aggregated records

stddev Standard deviation of aggregated records

mean Average duration of aggregated records

dur Record total duration

seq Argus sequence number

ltime Record last time

state Transaction state

bytes Total number of bytes in transaction

pkts Total count of packets in transaction

dport Destination port number

daddr Destination IP address

sport Source port number

saddr Source IP address

Proto
Textual representation of transaction

protocols present in network flow

flgs Flow state flags seen in transactions

Stime Record start time

pkSeqID Row Identifier

3.3.2. Data Preprocessing

3.3.2.1 Data Cleaning

To simplify and clean the input data, several data preprocessing procedures must be

used after loading the dataset. Data cleaning was carried out in the first step of data

preprocessing by eliminating features that contained null data and those that were invalid

(see Table 3.6). Following the removal of undesired features, we eliminated any record that

had missing values. In the next step, we converted all string values corresponding to the

attack types and features "flgs", "proto" and "state" into integer values. Several times, the

'sport' and 'dport' features had hexadecimal values. Therefore, we transformed the values to

0 to indicate that their port value is invalid [155].

105

Table 3. 6: BoT-IoT features selection.

 selected features invalid features null data

flgs dur dpkts pkSeqID smac

proto mean sbytes saddr dmac

sport stddev dbytes ltime soui

dport sum rate stime doui

pkts min srate daddr sco

bytes max drate seq dco

state spkts

3.3.2.2 Train-Test Split

The BoT-IoT dataset is extremely unbalanced, as was previously highlighted.

Therefore, to ensure that there were a sufficient number of instances from Information

Theft class and Normal class (minority classes) in train and test datasets, the dataset was

manually split into train and test. This means that, as Table 3.7 explains, we select different

proportions of data instances from each class.

Table 3. 7: Distribution of instances in the training and testing datasets.

Categories Train data Test data

Normal 7314 (80.88%) 1758 (19.12%)

Theft 1029 (65.34%) 549 (34.66%)

Reconnaissance 1532782 (84.16%) 288409 (15.84%)

DoS 32150808 (97.42%) 852288 (2.58%)

DDoS 37342475 (96.92%) 1186516 (3.08%)

All 71034408 (96.82%) 2329520 (3.18%)

3.3.2.3 Handling Imbalanced Class Distribution

In general, when an unbalanced dataset is classified, the majority classes are favored,

which leads to the problem of misclassifying the minority classes. In order to improve the

accuracy of predictions of the unbalanced classification, we employed a combination of

oversampling and ensemble resampling in the aim to reduce the bias between classes. The

training dataset is used by the ensemble resampling approach to generate 𝑛 training subsets

from the majority classes (DoS, DDoS), which are then concatenated with the minority

classes (Normal, Theft, and Reconnaissance). Figure 3.3 illustrates how all attack

106

subcategories are included on each of the 𝑛 training subsets and the test set, despite the fact

that our work is limited to classifying only the attack classes.

Figure 3. 3: Attack subcategory distribution in testing dataset and training subsets for n

= 3.

From the Train data, we replicated 7314 data instances from the Normal category to

produce 300,000 extra data instances during the oversampling approach. In a similar way,

we generated 200,000 additional data instances by replicating 1029 data instances taken

from the Information Theft class. Subsequently, we combined each of the n training

subsets with the newly generated data instances. Tables 3.8 and 3.9 show the new training

subset distribution per class category. Finally, we compared the results of the SMOTE

oversampling approach and the data duplication approach. Through the following process,

SMOTE creates artificial samples for the minority class [127]:

 The number of synthetic instances for each minority class is determined.

 A random instance of the minority class is chosen.

 The KNN algorithm is utilized to determine the 𝐾 nearest neighbors of the chosen

instance.

 One of the 𝐾 instances is chosen at random.

 Through random interpolation, a new synthetic instance is created from the

minority class instance and the chosen neighbor minority class instance.

107

 The operations in the previous four steps are repeated until the required amount of

synthetic instances is achieved.

Table 3. 8: Distribution of instances in the training subsets when n=3.

Categories Train 1 Train 2 Train 3

DDoS 12676809 12676720 12676683

DoS 12153172 12153335 12153367

Reconnaissance 1532782 1532782 1532782

Theft 201029 201029 201029

Normal 305881 305748 305687

All 26869673 26869614 26869548

Table 3. 9: Distribution of instances in the training subsets when n=6.

Categories Train 1 Train 2 Train 3 Train 4 Train 5 Train 6

Normal 305462 305385 305357 305361 305334 305317

Theft 201029 201029 201029 201029 201029 201029

Reconnaissance 1532782 1532782 1532782 1532782 1532782 1532782

DoS 6483181 6483984 6483028 6483251 6483612 6483823

DDoS 6677066 6677468 6677435 6676859 6676470 6677343

All 15199520 15200648 15199631 15199282 15199227 15200294

3.3.3. Classification

Predicting whether the flow of network traffic is malicious or benign is the objective of

the classification process. For big data classification, Spark machine learning (ML) offers a

set of tools and algorithms for effectively completing the classification task at scale, by

utilizing Apache Spark's distributed computing capabilities.

4.6.2.1 Apache Spark

Apache Spark is the most commonly utilized framework for managing big data

applications. The main advantage of Spark is its in-memory processing, which enables

swift data processing. Additionally, it has proven to be incredibly scalable, maintaining

performance even when several nodes are active. Spark works at a rate much faster than

datasets working on hard drives because it is built on the Resilient Distributed Dataset

(RDD), which is able to be kept in memory on cluster working nodes and is separated into

various partitions [156]. For every program, a slave process named an executor is

108

established in each worker node. Its job is to run the tasks and cache the data in memory or

drive. Task scheduling is performed by a master process known as driver that is created by

each Spark program [157]. In order to run their Spark programs, Different cluster modes

enable driver processes to establish connections with their standalone cluster manager or

other popular cluster managers such as YARN [158], Mesos [159]. A diagram of Spark's

cluster architecture is shown in Figure 3.4.

Figure 3. 4: The spark cluster architecture

3.3.3.2 Apache Spark MLlib

As one of the most popular open-source libraries for big-data ML, Apache Spark MLlib

provides classification algorithms that make writing implementations considerably easier.

It includes a variety of ML tools for performing various tasks like: managing data, saving

and load models, tuning ML pipelines, feature selection, feature extraction, etc. Several

algorithms for multiclass and binary classification are available in MLlib [160]. The

following is a list of supported algorithms for both scenarios.

Multiclass Classification: Naive Bayes, Random Forests, Decision Trees, Logistic

Regression.

Binary Classification: Naive Bayes, Gradient-Boosted Trees, Random Forests,

Decision Trees, Logistic Regression, linear SVMs.

109

3.3.3.3 Classifier

Machine learning ML algorithms exhibit a bias towards the majority classes when

performing an unbalanced Big Data classification task. In the full BoT-IoT dataset, the

decision tree (DT) provided superior classification results than other Apache Spark ML

algorithms [151]. On the other hand, Spark is obviously unsuitable for DL because

algorithms such as RNN, CNN, and ANN are computationally expensive and challenging

to integrate with Apache Spark. As a result, we used a decision tree, which is like most ML

algorithms, is vulnerable to the imbalanced problem. In this work, the results of DT models

that had been trained on 𝑛 training subsets were combined using a weighted average

ensemble. The main idea is that every training subset produces a different result from the

DT algorithm. As a consequence, the model's outputs balance each other out when

combined. In the end, we utilized the averaging ensemble method to compare the weighted

average results.

3.4 Conclusion

This chapter introduced a new big data architecture based on Apache Spark for

detecting IoT network intrusions. To achieve this, oversampling and ensemble resampling

techniques were combined in the first step to solve the issue of class imbalance. After that,

we built a number of DT models for multiclass classification. In the end, the final

predictions were obtained by applying a weighted average ensemble. After converting the

Bot-IoT dataset into a suitable format during the data preprocessing phase, we tested the

effectiveness of our methodology.

110

CHAPTER 4: EXPERIMENTAL EVALUATION AND RESULTS

4.1 Introduction

The experiments carried out to analyze Internet of Things data using artificial

intelligence (AI) technologies are covered in Chapter 4. Our approach involves monitoring

road surface conditions utilizing the RSC and RSC-IoT datasets. Further, we utilized the

BoT-IoT dataset to detect IoT network intrusions. Through RSC and RSC-IoT datasets,

hybrid deep learning models were trained to detect road surface anomalies in a multi-class

classification problem with three classes. Likewise, the BoT-IoT dataset was used to train

ML models in Apache Spark for detecting IoT network intrusions in a five-class

classification situation. Google Colaboratory [161] was utilized to execute our

methodology and evaluate the models that we created. All AI algorithms were written in

Python, and graphical plots and performance metrics have been employed to evaluate the

results. Based on the comparisons, the proposed algorithm's efficiency is verified.

4.2 Performance Metrics

Since our datasets suffer from class imbalance, some metrics can be misleading [162].

For this, we utilized metrics, namely Precision, Sensitivity (or Recall), Specificity, F1-

score, and Geometric Mean to assess the classification performance. These metrics treat

majority classes and minority classes equally, which means that poor performance of

minority classes will reduce the overall performance [163]. As demonstrated in Figure 4.1

and Table 4.1, the metrics are based on the confusion matrix.

A confusion matrix has become frequently utilized to visualize the reliability of AI

classification algorithms. A confusion matrix is a table that offers an extensive look at the

classification results and is composed of the following four components [164]:

 True Positive (TP): A count of positive events accurately predicted to be positive

by the AI algorithm.

 True Negative (TN): A count of negative events accurately predicted to be negative

by the AI algorithm.

 False Positive (FP): A count of negative events wrongly predicted to be positive by

the AI algorithm.

111

 False Negative (FN): A count of positive events wrongly predicted to be negative

by the AI algorithm.

Since errors have unique effects, it is crucial to distinguish between false positives and

negatives. Usually, columns display the predicted classes and rows display the actual

classes.

Figure 4. 1: The confusion matrix's structure

Table 4. 1: Performance metrics based on confusion matrix.

 Metrics Formula

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall (Sensitivity)
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

F1-score
2 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

G-Mean √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × Specificity

4.3 RSC Monitoring Experiments using the RSC Dataset

As mentioned earlier, several hybrid deep learning models were developed for road

surface anomaly classification. The RSC dataset was utilized in the first and third proposed

frameworks that were described in Chapter 2. This section covers the experiments carried

out in the first proposed framework [165]. Additionally, we randomly assigned 70% of our

dataset to be utilized for training and the rest 30% to test purposes for each experiment.

4.3.1. Performance for Different Input Domains and Data Types

This part covers the experiments that were carried out to determine the most suitable

combination of sensors and input features. By utilizing CNN and DNN models with 50%

112

overlap, we examine the effects of the input data that was used for monitoring road surface

conditions. This means that selecting the appropriate type of sensor has a considerable

impact on road anomaly detection ability. Three different sensor combinations were used

to classify the road data, as shown in Table 4.2. The abbreviations Azimuth, Pitch, Roll,

Gx, Gy, Gz, Ax, Ay, and Az corresponded to the orientation angles, three-axis gyroscope,

and three-axis accelerometer, respectively.

Table 4. 2: Performance for different sensor combinations using DNN and CNN

models.

Input Model Shape F1 Score Recall Precision Accuracy

Ax, Ay, Az
DNN (None,150) 0.7519 0.7146 0.8075 0.9012

CNN (None,1,50,3) 0.8068 0.7814 0.8445 0.9186

Ax, Ay, Az, Gx, Gy, Gz
DNN (None,300) 0.7863 0.7460 0.8426 0.9186

CNN (None,1,50,6) 0.8504 0.8130 0.8980 0.9406

Ax, Ay, Az, Gx, Gy, Gz,

Azimuth, Pitch, Roll

DNN (None,450) 0.8243 0.7991 0.8539 0.9259

CNN (None,1,50,9) 0.8678 0.8515 0.8857 0.9459

In fact, the F1 score, recall, precision, and accuracy were used for evaluating these

sensors' performance. Orientation, gyroscope, and Accelerometer are used in combination

to provide DNN and CNN classifiers with 92% and 94% accuracy, respectively. This is a

2% and 3% increase in accuracy over the employment of the accelerometer individually.

Furthermore, when compared to the gyroscope and accelerometer combination, which

produced 74%, 81% recall and 78%, 85% F1 score, the orientation, gyroscope, and

accelerometer combination achieved much higher results with 79%, 85% recall, and 82%,

86% F1 score. The 4% recall increase demonstrates the importance of employing

orientation angles for enhancing the efficiency of recognition, particularly when

distinguishing between man-made and real road anomalies.

The study presented here additionally examines the results of transforming the original

sensor signals (input data) from the time domain into the frequency domain and wavelet

transformation. Table 4.3 below shows the results of multiple experiments using FFT

amplitude components and various wavelet families, like Daubechies 6 (Db 6), Daubechies

10 (Db10), Symlets 5, Haar, and Reverse Biorthogonal 3.1. Additionally, when using the

Haar wavelets and FFT amplitude components, the CNN F1 score and accuracy are 87%

and 95%, respectively, whereas for all other wavelet families, the results are F1 score of

113

86% and 94% accuracy. The table makes it clear that, in comparison to the time-domain

input, the FFT-DWT combination offers better classification results.

Table 4. 3: Performance for multiple features using DNN and CNN models.

Input Model Shape F1 Score Recall Precision Accuracy

FFT (amplitude)
(None,450) DNN 0.8563 0.8408 0.8738 0.9453

(None,1,50,9) CNN 0.8765 0.8608 0.8936 0.9519

Db10
(None,612) DNN 0.7542 0.7235 0.7933 0.8979

(None,1,68,9) CNN 0.8610 0.8340 0.8965 0.9419

Db6
(None,540) DNN 0.7751 0.7298 0.8388 0.9085

(None,1,60,9) CNN 0.8682 0.8503 0.8878 0.9459

Sym5
(None,522) DNN 0.7590 0.7192 0.8272 0.9052

(None,1,58,9) CNN 0.8634 0.8346 0.8975 0.9453

haar
(None,450) DNN 0.7934 0.7735 0.8162 0.9166

(None,1,50,9) CNN 0.8775 0.8561 0.9015 0.9526

bior3.1
(None,468) DNN 0.7758 0.7360 0.8298 0.9052

(None,1,52,9) CNN 0.8686 0.8432 0.8990 0.9439

FFT(amplitude)+h

aar

(None,900) DNN 0.8689 0.8548 0.8868 0.9466

(None,900) CNN 0.8805 0.8655 0.8968 0.9546

4.3.2. A Comparison of Hybrid Classification Models

Following the implementation of the proposed models, we discovered that both the

CNN-LSTM and CNN-GRU models performed better than the CNN model. The hybrid

model's performance was improved as a result of GRU and LSTM's ability to capture

certain feature dependencies [166].

With three different overlapping factors, Table 4.4 displays the classification

performance results. The results clearly demonstrated that the best performance was

achieved with a 66% overlap. Achieving an F1 score of 92.41% and an accuracy of

97.06%, the CNN-GRU model performed slightly better than the CNN-LSTM model,

which achieved a 91.37% F1 score and a 96.67% accuracy.

Figures 4.2, 4.3, and 4.4 display the confusion matrices for the classification results of

the three models, in which we employed overlaps of 33%, 50%, and 66%. According to the

confusion matrices, we can see that the majority of the smooth road segments were

accurately identified. Furthermore, it seems that the models experienced several challenges

when it came to distinguishing between man-made road anomalies like speed bump and

114

speed hump and real road anomalies like pothole and crack. On the other hand, compared

to the CNN-LSTM model, the CNN-GRU model achieves better results, this validates

earlier results in the fields of human activity recognition [99] and electric energy

forecasting [102].

Table 4. 4: Evaluation of the presented models using multiple overlap factors.

overlap Model F1 Score Recall Precision Accuracy

33%

CNN-GRU 0.8857 0.8763 0.8972 0.9566

CNN-LSTM 0.8888 0.8794 0.9002 0.9566

CNN 0.8772 0.8625 0.8933 0.9520

50%

CNN-GRU 0.8879 0.8833 0.8935 0.9579

CNN-LSTM 0.8920 0.8816 0.9030 0.9586

CNN 0.8805 0.8655 0.8968 0.9546

66%

CNN-GRU 0.9241 0.9167 0.9318 0.9706

CNN-LSTM 0.9137 0.9048 0.9230 0.9667

CNN 0.9077 0.8977 0.9181 0.9620

Figure 4. 2: Normalized confusion matrices of 33% overlaps for the (a) CNN, (b)

CNN-LSTM, (c) and CNN-GRU classifiers.

115

Figure 4. 3: Normalized confusion matrices of 50% overlaps for the (a) CNN, (b)

CNN-LSTM, (c) and CNN-GRU classifiers.

Figure 4. 4: Normalized confusion matrices of 66% overlaps for the (a) CNN, (b)

CNN-LSTM, (c) and CNN-GRU classifiers.

4.4 RSC Monitoring Experiments using the RSC-IoT Dataset

This section presents the performance evaluation of the experiments carried out for

RSC monitoring utilizing the RSC-IoT dataset. A comparative analysis is conducted

between the standard hybrid deep learning models and the 3D hybrid deep learning models

that have been presented in the second proposed framework (Chapter 2). Table 4.5 and

Figures 4.5, 4.6, 4.7, 4.8, and 4.9, show that TD-CNN-GRU and TD-CNN-LSTM

performed better than the standard CNN-GRU and CNN-LSTM, whereas the ConvLSTM

outperformed the standard models slightly. The results of the prediction highlight the

benefits of using the TimeDistributed layer for analyzing time series data in RSC

monitoring. In addition, the advantage of ConvLSTM over CNN-LSTM demonstrates that

convolution operation, as an alternative to matrix multiplication [167, 168], produces better

results in RSC monitoring.

116

Table 4. 5: A comparative evaluation of the proposed models.

 Method Input shape F1 Score Recall Precision Accuracy

ConvLSTM (4,10,6,1) 0.8998 0.8611 0.9475 0.9449

TD-CNN-GRU (4,10,6,1) 0.9202 0.9002 0.9427 0.9535

TD-CNN-LSTM (4,10,6,1) 0.9300 0.9201 0.9404 0.9573

CNN-GRU (10,6,4) 0.8933 0.8556 0.9405 0.9410

CNN-LSTM (10,6,4) 0.8887 0.8536 0.9318 0.9426

Figure 4. 5: Confusion matrices of the standard CNN-LSTM.

Figure 4. 6: Confusion matrices of the standard CNN-GRU.

117

Figure 4. 7: Confusion matrices of the TD-CNN-LSTM.

Figure 4. 8: Confusion matrices of the TD-CNN-GRU.

Figure 4. 9: Confusion matrices of the ConvLSTM.

118

In order to lower the variance in the prediction errors, the predicted results obtained

from TD-CNN-LSTM, TD-CNN-GRU, and ConvLSTM have been combined to build a

weighted average ensemble and an averaging ensemble. A comparison of the weighted

average ensemble with the averaging ensemble is presented in Table 4.6 and Figures 4.10,

and 4.11. The results indicate that the weighted average ensemble outperformed the

averaging ensemble. This is because the performance of the averaging ensemble was

negatively impacted by the ConvLSTM model's inferiority to the TD models. When the

weighted average ensemble is used, the weights of the ConvLSTM, TD-CNN-GRU, and

TD-CNN-LSTM are obtained as follows: 𝑤1= 0.1, 𝑤2= 0.1, and 𝑤3= 0.2. Because we

are dealing with an imbalanced dataset, we employed grid search to find the most effective

combination of 𝑤1, 𝑤2, 𝑤3 that results in the highest F1-score, which is the right metric

for imbalanced data.

Table 4. 6: Performance evaluation of the ensemble methods.

Method F1 Score Recall Precision Accuracy

Averaging 0.9293 0.9049 0.9567 0.9589

Weighted Average 0.9335 0.9143 0.9546 0.9604

Figure 4. 10: Confusion matrices of the averaging ensemble.

119

Figure 4. 11: Confusion matrices of the weighted average ensemble.

4.5 RSC Monitoring Experiments using Data Augmentation

The performance of the experiments conducted for the third proposed framework that

was presented in Chapter 2 is shown in this section. We selected at random 70% of the

RSC dataset to be used for training and the remaining 30% for testing. The results of each

evaluated model for classifying road surfaces are displayed in Table 4.7. As we can see,

the 3D models generated the best results. The 3D models significantly outperformed both

of the standard hybrid deep learning models. Furthermore, the TD-CNN-GRU model

achieved the best performance with an F1 score of 94.86%. In contrast to the second

proposed framework, the ConvLSTM model had the lowest performance, with an F1 score

of 87.15 %.

Table 4. 7: Performance evaluation of the proposed models without data augmentation.

Model Input shape F1 Score Recall Precision Accuracy

CNN-LSTM (25,18,3) 0.8972 0.8712 0.9306 0.9791

CNN-GRU (25,18,3) 0.8806 0.8328 0.9440 0.9747

TD-CNN-LSTM (3,25,18,1) 0.9248 0.9091 0.9417 0.9866

TD-CNN-GRU (3,25,18,1) 0.9486 0.9394 0.9603 0.9896

ConvLSTM (3,25,18,1) 0.8715 0.8409 0.9132 0.9747

In order to determine the effect of data augmentation on the model's performance, three

different data augmentation techniques have been proposed for the training dataset, as

indicated in Table 4.8. It is important to remember that the test data used for evaluating the

3D hybrid deep learning models had been separated before applying data augmentation.

120

This makes comparing the 3D models and evaluating the effect of data augmentation

easier.

Table 4.8 makes it clear that adding augmented data to the set of training data improves

the performance of the 3D models. To determine the most effective data augmentation

technique, we looked into the averaging ensemble of TD-CNN-LSTM, TD-CNN-GRU,

and ConvLSTM, which combines the results obtained from these 3D models. As we can

see, the DoppelGANger technique achieved the highest F1 Score, Recall, and Accuracy at

96.20%, 96.21%, and 99.40%, respectively. Whereas the SMOTE technique achieved the

highest precision of 96.75%. Figures 4.12, 4.13, and 4.14 depict the confusion matrices of

the averaging ensemble for each data augmentation technique. In these figures, we can see

that all smooth road segments were correctly classified, while only a small percentage of

man-made and real road anomalies misclassified.

Table 4. 8: Performance evaluation of the proposed models with data augmentation.

Model Input shape F1 Score Recall Precision Accuracy

 Traditional approaches

TD-CNN-LSTM (3,25,18,1) 0.9475 0.9313 0.9705 0.9911

TD-CNN-GRU (3,25,18,1) 0.9472 0.9540 0.9419 0.9911

ConvLSTM (3,25,18,1) 0.9045 0.8923 0.9201 0.9791

Averaging (3,25,18,1) 0.9493 0.9394 0.9599 0.9911

 SMOTE

TD-CNN-LSTM (3,25,18,1) 0.9376 0.9313 0.9442 0.9881

TD-CNN-GRU (3,25,18,1) 0.9613 0.9545 0.9684 0.9940

ConvLSTM (3,25,18,1) 0.8985 0.8561 0.9497 0.9791

Averaging (3,25,18,1) 0.9570 0.9470 0.9675 0.9925

 DoppelGANger

TD-CNN-LSTM (3,25,18,1) 0.9644 0.9545 0.9751 0.9925

TD-CNN-GRU (3,25,18,1) 0.9510 0.9610 0.9423 0.9911

ConvLSTM (3,25,18,1) 0.8795 0.8625 0.8992 0.9791

Averaging (3,25,18,1) 0.9620 0.9621 0.9625 0.9940

121

Figure 4. 12: Confusion matrices of the averaging ensemble using Traditional

approaches.

Figure 4. 13: Confusion matrices of the averaging ensemble using SMOTE technique.

Figure 4. 14: Confusion matrices of the averaging ensemble using DoppelGANger

technique.

122

4.6 IoT Intrusion Detection Experiments using the BoT-IoT Dataset

The performance analysis of the intrusion detection experiments using the BoT-IoT

dataset is presented in this section. The experiments were conducted on Google

Colaboratory utilizing the Apache Spark environment, which minimizes memory use and

keeps the system from becoming overloaded.

4.6.2. Importance of using Oversampling on the BoT-IoT Dataset

The impact of oversampling techniques on the BoT-IoT dataset is demonstrated by the

classification results seen in Table 4.9. We classified attack categories using the DT

algorithm during the big data classification phase. As anticipated, in the majority of

evaluation metrics, the experimental results with the resampled datasets performed better

than those obtained with the non-resampled datasets. Additionally, two stages of

investigation were done on the impact of oversampling. In the beginning, data instances

from the Theft attack class and the Normal network traffic class were duplicated to

resample the training dataset. After that, we utilized the data replication technique to

duplicate data instances from the Theft attack class and SMOTE to create new synthetic

data from the Normal class to resample the training dataset. The experiment demonstrated

that using the SMOTE technique in conjunction with data duplication resulted in lower

classification results than using data duplication individually. This is a result of SMOTE

producing artificial data without taking neighboring instances of other classes into account.

Large datasets typically result in less successful outcomes from SMOTE, which increases

noise and classes overlapping [163]. Even so, just 45% of DoS attack class were properly

recognized, whereas the most accurate results identified 12% of the normal class as

attacks. Therefore, in order to enhance the classification performance, more sophisticated

techniques must be used.

123

Table 4. 9: Classification results using multiple oversampling techniques on the BoT-

IoT dataset.

 Precision Sensitivity specificity F1 Score G-Mean

 no resampling

DDoS 0.85 0.81 0.85 0.83 0.83

DoS 0.90 0.81 0.95 0.85 0.88

Reconnaissance 0.65 0.97 0.93 0.78 0.95

Theft 0.00 0.00 1.00 0.00 0.00

Normal 1.00 0.02 1.00 0.04 0.15

macro avg 0.68 0.52 0.95 0.50 0.70

 resampling with data duplication

DDoS 0.71 0.95 0.59 0.81 0.75

DoS 0.88 0.45 0.96 0.60 0.66

Reconnaissance 0.99 0.95 1.00 0.97 0.98

Theft 0.12 0.91 1.00 0.21 0.96

Normal 0.20 0.88 1.00 0.33 0.94

macro avg 0.58 0.83 0.91 0.58 0.87

 resampling with smote and data duplication

DDoS 0.83 0.87 0.81 0.85 0.84

DoS 0.81 0.76 0.90 0.78 0.82

Reconnaissance 1.00 0.95 1.00 0.97 0.97

Theft 0.07 0.92 1.00 0.13 0.96

Normal 0.50 0.08 1.00 0.13 0.28

macro avg 0.64 0.71 0.94 0.57 0.82

4.6.2. Performance Evaluation of Ensemble Learning Methods

4.6.2.1 Averaging Ensemble

The approach we propose to detect intrusions depends on an ensemble resampling

technique and uses DT models. The training dataset was split into n separate training

subsets at the beginning of the studies, and these subsets were then resampled via data

duplication technique. After that, DT models were trained on the Apache Spark

environment using the training subsets. At last, the final predictions have been determined

by taking the average of the models' class probability predictions. Tables 4.10 and 4.11

show the results obtained by all DT models and the averaging ensemble method with 𝑛 = 3

and 𝑛 = 6, respectively. The performance metrics show that the results produced by

averaging ensemble with 𝑛 = 3 outperformed the results obtained with 𝑛 = 6. Unlike the

case of 𝑛 =3, some individual models performed better than the averaging ensemble

of 𝑛 =6. This was because some models in the ensemble like model 1 and model 2 were

124

very bad which negatively affected the performance of the averaging ensemble. In the case

of 𝑛 =3 the classification results obtained using the averaging ensemble were good for all

the class categories except the Theft attack class.

Figures 4.15 and 4.16 display the confusion matrices of averaging ensemble when 𝑛 =

 3 and 𝑛 = 6. As can be shown, the minority classes for 𝑛 = 3 and 𝑛 = 6 got excellent

Sensitivity scores, with the exception of the Theft attack class at 𝑛 = 6. Therefore, we can

say that the imbalance problem affects more on Theft attack class.

Table 4. 10: Performance comparison of the three DT models and the averaging

ensemble method

 Precision Sensitivity specificity F1 Score G-Mean

model 1 0.62 0.66 0.92 0.62 0.78

model 2 0.61 0.85 0.93 0.62 0.89

model 3 0.54 0.81 0.88 0.59 0.85

 Averaging ensemble

DDoS 0.86 0.83 0.86 0.85 0.85

DoS 0.78 0.83 0.86 0.81 0.85

Reconnaissance 1.00 0.94 1.00 0.97 0.97

Theft 0.33 0.91 1.00 0.49 0.95

Normal 0.79 0.97 1.00 0.87 0.99

macro avg 0.75 0.90 0.95 0.80 0.92

Table 4. 11: Performance comparison of the six DT models and the averaging ensemble

method

 Precision Sensitivity specificity F1 Score G-Mean

model 1 0.56 0.72 0.95 0.57 0.83

model 2 0.53 0.84 0.92 0.54 0.88

model 3 0.56 0.63 0.94 0.52 0.77

model 4 0.66 0.76 0.87 0.68 0.81

model 5 0.74 0.63 0.87 0.60 0.74

model 6 0.67 0.82 0.88 0.69 0.85

 Averaging ensemble

DDoS 0.82 0.75 0.82 0.78 0.79

DoS 0.69 0.76 0.80 0.72 0.78

Reconnaissance 1.00 0.99 1.00 0.99 0.99

Theft 0.54 0.10 1.00 0.17 0.32

Normal 0.25 0.97 1.00 0.40 0.99

macro avg 0.66 0.71 0.92 0.61 0.81

125

Figure 4. 15: Confusion matrices of averaging ensemble when 𝑛 = 3.

Figure 4. 16: Confusion matrices of averaging ensemble when 𝑛 = 6.

4.6.2.2 Weighted Average

The models with excellent scores for classification in the weighted average ensemble

contribute the largest proportion of the final predictions, and the other way around. In this

case, to discover the best combination of weights that enhances the F1-score (the most

significant metric in imbalanced data) a grid search method was applied. Table 4.12

presents a comparison of the results derived from the weighted average of 𝑛 = 3 and 𝑛 =

6 over every category found in the BoT-IoT dataset. In contrast to the averaging ensemble,

the weighted average ensemble technique worked more effectively with 𝑛 = 6, resulting

126

in the best F1-score in the tests we performed. Given that the F1 Score of Theft was 0.57%,

the overall results for the Theft attack category were unsatisfactory despite the fact that the

weighted average performed better than the averaging ensemble. This can be caused by the

fact that the test data also have the class imbalance problem, making minority classes more

vulnerable to false positive rates [162]. When False Negatives are more significant,

sensitivity and G-Mean metrics are better suited to evaluate the weighted average ensemble

approach. The Theft attack class performed highly in the situation of 𝑛 = 3, scoring 0.91

and 0.95 for Sensitivity and G-Mean, respectively.

Figures 4.17 and 4.18 show the confusion matrices of a weighted average ensemble

with 𝑛 = 3 and 𝑛 = 6. It is evident that, for 𝑛 = 6, each of the five categories had

excellent Sensitivity scores, with the exception of the DoS class categories, which did not

do so well because 24% of DoS attacks were mistakenly identified as DDoS attacks. On

the other hand, as false negatives and false positives are equally important to us in our

work, we can say that the weighted average with 𝑛 = 6 is the most effective intrusion

detection technique.

Table 4. 12: The evaluation results of weighted average ensemble method

 Precision Sensitivity Specificity F1 Score G-Mean

Weights: w1= 0.4, w2= 0.9, and w3= 0.8

DDoS 0.86 0.99 0.83 0.92 0.91

DoS 0.98 0.78 0.99 0.87 0.88

Reconnaissance 0.99 0.99 1.00 0.99 0.99

Theft 0.34 0.91 1.00 0.49 0.95

Normal 0.79 0.97 1.00 0.87 0.99

macro avg 0.79 0.93 0.96 0.83 0.95

Weights :
w1= 0.1, w2= 0.1, w3= 0.6, w4= 0.1, w5= 0.1,

 and w6= 0.8

DDoS 0.85 0.98 0.82 0.91 0.90

DoS 0.96 0.76 0.98 0.85 0.86

Reconnaissance 1.00 0.99 1.00 0.99 0.99

Theft 0.41 0.89 1.00 0.57 0.94

Normal 0.86 0.97 1.00 0.91 0.99

macro avg 0.82 0.92 0.96 0.85 0.94

127

Figure 4. 17: Confusion matrices of weighted average ensemble when 𝑛 = 3.

Figure 4. 18: Confusion matrices of weighted average ensemble when 𝑛 = 6.

4.7 Discussion

The present section discusses our studies and their results for monitoring the condition

of the road surface for three different types of roads: Real anomalies, man-made

anomalies, and smooth roads. We also clarify the results of a big data system based on

Apache Spark that was used to analyze network traffic.

Since every study used a private dataset with a variety of road types, it is impractical to

compare performance with similar relevant studies in the area of RSC monitoring.

However, we compare the best result from the three proposed frameworks to other

128

previous works that utilized DL models to demonstrate that our frameworks enhance the

identification of anomalies on road surfaces.

Table 4.13 shows how our frameworks performed versus the studies [85, 91, 169]

through the use of recall metric. The comparison shows that the three proposed

frameworks outperform the other studies for recognizing smooth road surfaces, while Refs.

[85] (Which identifies just potholes) and [169] achieved the best recall scores for

recognizing real and man-made anomalies, respectively. As mentioned earlier, we contrast

the results we obtained with the works that have been conducted using DL algorithms that

had no training on smooth roads or real anomalies. Due to the fact that the authors of the

present work used three types of road surfaces, they can compare reasonably only with

Ref. [91]. As a result, we can say that it is evident that the three proposed frameworks

detect every type of road surface condition better than Ref. [91].

Table 4. 13: Detection rate comparison with previous studies.

Reference smooth road real anomalies man-made anomalies

Varona et al. [85] -
 pothole S. Hump S. Gutter

 0.98 0.78 0.93

Setiawan et al. [91]
 0.98

pothole B. road S. Bump

0.86 0.62 0.67

Kumar et al. [169]
 0.96

 -

R. Strip S. Bump

 0.97 0.98

First framework 0.99 0.88 0.88

Second framework 0.98 0.85 0.93

Third framework 1.00 0.93 0.95

Additionally, in order to detect intrusions in IoT networks, a new big data framework

was proposed by this research. Table 4.14 compares our best results with those of earlier

studies that used the entire BoT-IoT dataset in a big data environment. Although reference

[151] included all features, even invalid ones, our method surpassed it in detecting

Reconnaissance attacks, Theft, and Normal traffic. Since the authors in [152] skipped the

assessment of theft attacks, did not disclose the accuracy of DDoS and DoS identification,

and only used 10,000 DDoS and 10,000 DoS samples to evaluate normal traffic, we are

unable to objectively compare our findings to the accuracy of reconnaissance attacks and

normal traffic. In reference [153], the entire dataset was augmented, resulting in various

augmented samples being included in both the training and testing sets. This led to

129

extremely high accuracy across all data classes, which is explained by the inflating of test

accuracy. To avoid data leakage in the area of network traffic classification, test data must

not be augmented. As a result, we assume that the findings found in reference [153] are not

reliable. Through the use of the entire BoT-IoT dataset in the Apache Spark environment,

this work aims to deliver trustworthy results for intrusion detection.

Table 4. 14: A comparison of the proposed approach with other related works using F1

Score metric.

Ref DDoS DoS Reconnaissance Theft Normal

Manzano Sanchez et al.[153] 0.94 0.93 0.99 0.99 0.98

Abushwereb et al. [151] 0.999 0.991 0.888 0.232 0.718

Manzano S et al. [152] - - 0.999 - 0.983

Our approach 0.91 0.85 0.99 0.57 0.91

4.8 Conclusions

In this chapter, we presented our experimental evaluation and results for the proposed

IoT frameworks, which we described in Chapters 2 and 3. The first proposed framework

classified road anomalies into three types using hybrid deep learning models. The results of

the experiments demonstrated that, when it came to predicting road anomalies the CNN-

GRU model scored highest overall. By employing a combination of 3D hybrid deep

learning models, the second proposed framework employed ensemble learning techniques

to detect anomalies in road surfaces. The results of the experiments indicate that, when

compared to the averaging ensemble and the other models, the weighted average ensemble

provided the best overall performance.

The imbalance problem on the road data was resolved by the third proposed framework

using multiple data augmentation methods. Comparing the DoppelGANger technique to

SMOTE and Traditional techniques, it produced the best results with the 3D models. The

class imbalance issue in the Bot-IoT dataset was solved in the fourth proposed framework

through the combination of ensemble resampling and oversampling approaches. The final

predictions were generated via the weighted average ensemble that showed good results

and improved the results in minority classes.

The comparisons prove that the frameworks we have proposed in this thesis enhance

the reliability of IoT data analysis while also increasing the accuracy of the results.

130

CONCLUSION AND FUTURE WORK

The Internet of Things (IoT) and artificial intelligence (AI) have opened up previously

unthinkable possibilities by radically changing how we interact with the world and by

utilizing the enormous potential of data. IoT applications are typically constructed using

sensors that monitor the environment and then initiate actions to respond. Frequently, these

actions involve changing external conditions. An IoT application with AI inference makes

an effort to collect as much data as it can, simulating human senses. By combining AI with

IoT, better and more effective systems are being created, revolutionizing our daily lives.

This thesis presents architectures for analyzing IoT data via AI algorithms. The main

aim of the architectures that have been proposed is to analyze the vast amounts of valuable

data that IoT devices generate. The thesis provides an architecture for an IoT intrusion

detection system in an attempt to reduce the security threats that IoT devices face.

The architecture of the IoT system and its associated network were presented in

Chapter 1. A summary of big data, IoT security, and IoT search engines was also provided.

This chapter provided a quick introduction of the ML and DL algorithms used in IoT data

classification.

Chapter 2 discussed three vibration-based RSC monitoring architectures that use hybrid

deep learning algorithms for detecting anomalies in road surfaces. Moreover, the RSC-IoT

and RSC datasets have been built and labeled in real time using Bluetooth and TCP/IP

socket protocol. Then, we presented two architectures for RSC monitoring that take

advantage of the IoT Search Engine (IoTSE) and cloud computing.

In Chapter 3, a novel Apache Spark-based big data architecture for detecting IoT

network intrusions has been introduced. In order to do this, we first addressed the problem

of class imbalance before using machine learning (ML) to classify data from the Bot-IoT

dataset. Next, we utilize ensemble learning techniques to enhance the final predictions.

The proposed IoT architectures that were presented in Chapters 2 and 3 were examined

in Chapter 4. The comparisons demonstrated that the hybrid deep learning and ensemble

learning algorithms proposed in this thesis improved the reliability of IoT data analysis.

Meanwhile, data augmentation techniques enhance the accuracy of results.

131

In this thesis, we have examined various IoT architectures, new and traditional

approaches, and compared hybrid deep learning and ensemble learning methods with ML

and DL techniques. The work in this thesis enabled us to present a multi-view assessment

of IoT data analysis. In contrast to previous experimental methods, the results were

satisfactory.

Although the applied algorithms employed in this thesis showed promising results,

there is room for development in both IoT data collection and analysis in future work. In

our future work, we intend to consider the following points:

 Evaluating the effectiveness of different hybrid deep learning models for

identifying anomalies in the road surface.

 Employing more sophisticated ensemble learning techniques to enhance IoT data

experiment results.

 Applying DL algorithms in a big data environment to identify intrusions on IoT

networks.

 Implementing more advanced methods of data augmentation in order to achieve

class balance in the IoT datasets.

 Examining the effect of vehicle velocity on road anomaly recognition using a

dynamic sliding window technique.

132

APPENDIX A

ESP32/Smartphone Insert Data into MySQL Database using PHP

Using the approach depicted above, the ESP32/Smartphone establishes a connection with

a web server using the HTTP protocol before moving on to a MySQL server. This approach

steps are as follows:

 The ESP32/Smartphone makes an HTTP request to the web server, including the

data.

 A PHP script on the web server handles this request.

 Once the HTTP request has been processed, the PHP script gathers data and transfers

it to MySQL.

 The PHP script uses an HTTP response to confirm whether or not the data has been

received.

133

This is the interface of the Android smartphone application:

134

APPENDIX B

Real Time Data Labeling using TCP/IP socket/Bluetooth

The interfaces of the Android smartphone applications for data labeling utilizing (a)

TCP/IP socket and (b) Bluetooth are as follows:

135

APPENDIX C

Extraction of CSV file for Road Surface Conditions from the RSC Dataset

136

APPENDIX D

Extraction of CSV file for Road Surface Conditions from the RSC-IoT Dataset

137

REFERENCES

[1] Y. Ismail, Internet of Things (IoT) for Automated and Smart Applications. BoD –

Books on Demand, 2019.

[2] A. Kapoor, Hands-On Artificial Intelligence for IoT: Expert machine learning and

deep learning techniques for developing smarter IoT systems. Packt Publishing Ltd,

2019.

[3] S. M. Ali et al., « Drivers for Internet of Things (IoT) adoption in supply chains:

Implications for sustainability in the post-pandemic era », Computers & Industrial

Engineering, vol. 183, p. 109515, sept. 2023, doi: 10.1016/j.cie.2023.109515.

[4] R. Ande, B. Adebisi, M. Hammoudeh, et J. Saleem, « Internet of Things: Evolution

and technologies from a security perspective », Sustainable Cities and Society, vol. 54,

p. 101728, mars 2020, doi: 10.1016/j.scs.2019.101728.

[5] P. Sethi et S. R. Sarangi, « Internet of Things: Architectures, Protocols, and

Applications », Journal of Electrical and Computer Engineering, vol. 2017, p.

e9324035, janv. 2017, doi: 10.1155/2017/9324035.

[6] M. Mohammadi, A. Al-Fuqaha, S. Sorour, et M. Guizani, « Deep Learning for IoT Big

Data and Streaming Analytics: A Survey », IEEE Communications Surveys &

Tutorials, vol. 20, no 4, p. 2923‑2960, 2018, doi: 10.1109/COMST.2018.2844341.

[7] R. A. Mouha, « Internet of Things (IoT) », Journal of Data Analysis and Information

Processing, vol. 9, no 2, Art. no 2, mars 2021, doi: 10.4236/jdaip.2021.92006.

[8] W. Ejaz et A. Anpalagan, Internet of Things for Smart Cities: Technologies, Big Data

and Security. Springer, 2021.

[9] S. M. Sidi Ahmed et S. Zulhuda, « The Concept of Internet of Things and its

Challenges to Privacy ». Rochester, NY, 2015.

[10] C. Xenofontos, I. Zografopoulos, C. Konstantinou, A. Jolfaei, M. K. Khan, et K.-K.

R. Choo, « Consumer, Commercial, and Industrial IoT (In)Security: Attack Taxonomy

and Case Studies », IEEE Internet of Things Journal, vol. 9, no 1, p. 199‑221, janv.

2022, doi: 10.1109/JIOT.2021.3079916.

[11] S. M. Tahsien, H. Karimipour, et P. Spachos, « Machine learning based solutions

for security of Internet of Things (IoT): A survey », Journal of Network and Computer

Applications, vol. 161, p. 102630, juill. 2020, doi: 10.1016/j.jnca.2020.102630.

[12] D. Jakhar et I. Kaur, « Artificial intelligence, machine learning and deep learning:

definitions and differences », Clinical and Experimental Dermatology, vol. 45, no 1, p.

131‑132, janv. 2020, doi: 10.1111/ced.14029.

138

[13] A. Dobson, K. Roy, X. Yuan, et J. Xu, « Performance Evaluation of Machine

Learning Algorithms in Apache Spark for Intrusion Detection », in 2018 28th

International Telecommunication Networks and Applications Conference (ITNAC),

nov. 2018, p. 1‑6. doi: 10.1109/ATNAC.2018.8615314.

[14] K. K. Patel, S. M. Patel, et P. Scholar, « Internet of Things-IOT: Definition,

Characteristics, Architecture, Enabling Technologies, Application & Future

Challenges », 2016.

[15] Alexander S. Gillis, « What is IoT (Internet of Things) and How Does it Work? |

Definition from TechTarget », IoT Agenda. Consulté le: 15 avril 2024. [Online].

Available on: https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

[16] Steve Ranger, « What is the IoT? Everything you need to know about the Internet

of Things right now », ZDNET. Consulté le: 15 avril 2024. [Online]. Available on:

https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-

know-about-the-iot-right-now/

[17] « Understanding the Internet of Things (IoT) - GSMA / understanding-the-internet-

of-things-iot-gsma.pdf / PDF4PRO », PDF4PRO. Consulté le: 15 avril 2024. [Online].

Available on: https://pdf4pro.com/view/understanding-the-internet-of-things-iot-gsma-

735ca4.html

[18] A. Malik, T. Magar, H. Verma, M. Singh, et P. Sagar, « A Detailed Study Of An

Internet Of Things (Iot) », International Journal of Scientific & Technology Research,

vol. 8, p. 2989‑2994, janv. 2020.

[19] R. Heredia, « 4 Layers of IoT Architecture Explained ». Consulté le: 16 avril 2024.

[Online]. Available on: https://www.zipitwireless.com/blog/4-layers-of-iot-

architecture-explained

[20] A. Raj, « IoT Architecture - Detailed Explanation with Examples », AlmaBetter.

Consulté le: 16 avril 2024. [Online]. Available on:

https://www.almabetter.com/bytes/articles/iot-architecture

[21] M. Burhan, R. A. Rehman, B. Khan, et B.-S. Kim, « IoT Elements, Layered

Architectures and Security Issues: A Comprehensive Survey », Sensors, vol. 18, no 9,

Art. no 9, sept. 2018, doi: 10.3390/s18092796.

[22] L. José, « Unpacking IoT Architecture: Layers and Components Explained »,

Device Authority Ltd. Consulté le: 16 avril 2024. [Online]. Available on:

https://www.deviceauthority.com/blog/unpacking-iot-architecture-layers-and-

components-explained/

[23] Talal Sultan, « INTERNET OF THINGS-IOT: DEFINITION, ARCHITECTURE

AND APPLICATIONS », Egyptian Journal of Applied Science, vol. 34, no 1, p.

81‑95, févr. 2019, doi: 10.21608/ejas.2019.151723.

139

[24] A. Chandel, « IoT Gateway Architecture and Selection - SenseGrow ». Consulté le:

16 avril 2024. [Online]. Available on: https://www.sensegrow.com/blog/industrial-

iot/iot-gateway-architecture-and-selection

[25] Z. Wu, K. Qiu, et J. Zhang, « A Smart Microcontroller Architecture for the Internet

of Things », Sensors, vol. 20, no 7, Art. no 7, janv. 2020, doi: 10.3390/s20071821.

[26] J. Folkens, « Building a Gateway to the Internet of Things », Texas, 2014.

[27] A. Grygoruk et J. Legierski, « IoT gateway - implementation proposal based on

Arduino board », in 2016 Federated Conference on Computer Science and Information

Systems (FedCSIS), sept. 2016, p. 1011‑1014.

[28] J. Santos, J. J. P. C. Rodrigues, B. M. C. Silva, J. Casal, K. Saleem, et V. Denisov,

« An IoT-based mobile gateway for intelligent personal assistants on mobile health

environments », Journal of Network and Computer Applications, vol. 71, p. 194‑204,

août 2016, doi: 10.1016/j.jnca.2016.03.014.

[29] N. Mohamudally, Smartphones from an Applied Research Perspective. BoD –

Books on Demand, 2017.

[30] A. Gerodimos, L. Maglaras, M. A. Ferrag, N. Ayres, et I. Kantzavelou, « IoT:

Communication protocols and security threats », Internet of Things and Cyber-

Physical Systems, vol. 3, p. 1‑13, janv. 2023, doi: 10.1016/j.iotcps.2022.12.003.

[31] R. Vahidnia et F. J. Dian, Cellular Internet of Things for Practitioners. BRITISH

COLUMBIA INSTITUTE OF TECHNOLOGY VANCOUVER, 2021.

[32] D. Law, D. Dove, J. D’Ambrosia, M. Hajduczenia, M. Laubach, et S. Carlson,

« Evolution of ethernet standards in the IEEE 802.3 working group », IEEE

Communications Magazine, vol. 51, no 8, p. 88‑96, août 2013, doi:

10.1109/MCOM.2013.6576344.

[33] S. R. Borkar, « 7 - Long-term evolution for machines (LTE-M) », in LPWAN

Technologies for IoT and M2M Applications, B. S. Chaudhari et M. Zennaro, Éd.,

Academic Press, 2020, p. 145‑166. doi: 10.1016/B978-0-12-818880-4.00007-7.

[34] A. Lavric et A. I. Petrariu, « LoRaWAN communication protocol: The new era of

IoT », in 2018 International Conference on Development and Application Systems

(DAS), mai 2018, p. 74‑77. doi: 10.1109/DAAS.2018.8396074.

[35] M. Gupta et S. Singh, « A Survey on the ZigBee Protocol, It’s Security in Internet

of Things (IoT) and Comparison of ZigBee with Bluetooth and Wi-Fi », in

Applications of Artificial Intelligence in Engineering, X.-Z. Gao, R. Kumar, S.

Srivastava, et B. P. Soni, Éd., Singapore: Springer, 2021, p. 473‑482. doi:

10.1007/978-981-33-4604-8_38.

140

[36] M. Sofi, « Bluetooth Protocol in Internet of Things (IoT), Security Challenges and a

Comparison with Wi-Fi Protocol: A Review », International Journal of Engineering

Research and, vol. V5, nov. 2016, doi: 10.17577/IJERTV5IS110266.

[37] S. Al-Sarawi, M. Anbar, K. Alieyan, et M. Alzubaidi, « Internet of Things (IoT)

communication protocols: Review », in 2017 8th International Conference on

Information Technology (ICIT), mai 2017, p. 685‑690. doi:

10.1109/ICITECH.2017.8079928.

[38] Ian Craggs, « MQTT Vs. HTTP for IoT ». Consulté le: 16 avril 2024. [Online].

Available on: https://www.hivemq.com/blog/mqtt-vs-http-protocols-in-iot-iiot/

[39] J. Norman et P. Joseph, « Security in Application Layer Protocols of IoT: Threats

and Attacks », in Security Breaches and Threat Prevention in the Internet of Things,

IGI Global, 2017, p. 76‑95. doi: 10.4018/978-1-5225-2296-6.ch004.

[40] A. Ludovici et A. Calveras, « A Proxy Design to Leverage the Interconnection of

CoAP Wireless Sensor Networks with Web Applications », Sensors, vol. 15, no 1, Art.

no 1, janv. 2015, doi: 10.3390/s150101217.

[41] G. M. B. Oliveira et al., « Comparison Between MQTT and WebSocket Protocols

for IoT Applications Using ESP8266 », in 2018 Workshop on Metrology for Industry

4.0 and IoT, avr. 2018, p. 236‑241. doi: 10.1109/METROI4.2018.8428348.

[42] R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, et B. Qureshi, « An

Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques », Sensors,

vol. 20, no 21, Art. no 21, janv. 2020, doi: 10.3390/s20216076.

[43] S. Rautmare et D. M. Bhalerao, « MySQL and NoSQL database comparison for

IoT application », in 2016 IEEE International Conference on Advances in Computer

Applications (ICACA), oct. 2016, p. 235‑238. doi: 10.1109/ICACA.2016.7887957.

[44] G. Kiraz et C. Toğay, « IoT Data Storage: Relational & Non-Relational Database

Management Systems Performance Comparison ».

[45] C. Asiminidis, G. Kokkonis, et S. Kontogiannis, « Database Systems Performance

Evaluation for IoT Applications ». Rochester, NY, 1 décembre 2018. doi:

10.2139/ssrn.3360886.

[46] R. Alonso, R. Locci, et D. Reforgiato Recupero, « Improving digital twin

experience through big data, IoT and social analysis: An architecture and a case

study », Heliyon, vol. 10, no 2, p. e24741, janv. 2024, doi:

10.1016/j.heliyon.2024.e24741.

[47] Y.-S. Kang, I.-H. Park, J. Rhee, et Y.-H. Lee, « MongoDB-Based Repository

Design for IoT-Generated RFID/Sensor Big Data », IEEE Sensors Journal, vol. 16, no

2, p. 485‑497, janv. 2016, doi: 10.1109/JSEN.2015.2483499.

141

[48] M. M. Eyada, W. Saber, M. M. El Genidy, et F. Amer, « Performance Evaluation

of IoT Data Management Using MongoDB Versus MySQL Databases in Different

Cloud Environments », IEEE Access, vol. 8, p. 110656‑110668, 2020, doi:

10.1109/ACCESS.2020.3002164.

[49] A. Duarte et J. Bernardino, « Cassandra for Internet of Things: An Experimental

Evaluation », présenté à International Conference on Internet of Things and Big Data,

SCITEPRESS, avr. 2016, p. 49‑56. doi: 10.5220/0005846400490056.

[50] S. Achari et R. Johari, « FOG-EE Computing: Fog, Edge and Elastic Computing,

New Age Cloud Computing Paradigms », in International Conference on Innovative

Computing and Communications, A. Khanna, D. Gupta, S. Bhattacharyya, A. E.

Hassanien, S. Anand, et A. Jaiswal, Éd., Singapore: Springer, 2022, p. 579‑589. doi:

10.1007/978-981-16-3071-2_47.

[51] P. J. Escamilla-Ambrosio, A. Rodríguez-Mota, E. Aguirre-Anaya, R. Acosta-

Bermejo, et M. Salinas-Rosales, « Distributing Computing in the Internet of Things:

Cloud, Fog and Edge Computing Overview », in NEO 2016: Results of the Numerical

and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016

Workshop held on September 20-24, 2016 in Tlalnepantla, Mexico, Y. Maldonado, L.

Trujillo, O. Schütze, A. Riccardi, et M. Vasile, Éd., Cham: Springer International

Publishing, 2018, p. 87‑115. doi: 10.1007/978-3-319-64063-1_4.

[52] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, et M. Guizani, « Edge and

fog computing for IoT: A survey on current research activities & future directions »,

Computer Communications, vol. 180, p. 210‑231, déc. 2021, doi:

10.1016/j.comcom.2021.09.003.

[53] M. De Donno, K. Tange, et N. Dragoni, « Foundations and Evolution of Modern

Computing Paradigms: Cloud, IoT, Edge, and Fog », IEEE Access, vol. 7, p.

150936‑150948, 2019, doi: 10.1109/ACCESS.2019.2947652.

[54] J. Wu, L. Ping, X. Ge, Y. Wang, et J. Fu, « Cloud Storage as the Infrastructure of

Cloud Computing », in 2010 International Conference on Intelligent Computing and

Cognitive Informatics, juin 2010, p. 380‑383. doi: 10.1109/ICICCI.2010.119.

[55] K. Perumal et M. Manohar, « A Survey on Internet of Things: Case Studies,

Applications, and Future Directions », in Internet of Things: Novel Advances and

Envisioned Applications, D. P. Acharjya et M. K. Geetha, Éd., Cham: Springer

International Publishing, 2017, p. 281‑297. doi: 10.1007/978-3-319-53472-5_14.

[56] N. Islam, M. M. Rashid, F. Pasandideh, B. Ray, S. Moore, et R. Kadel, « A Review

of Applications and Communication Technologies for Internet of Things (IoT) and

Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming », Sustainability,

vol. 13, no 4, Art. no 4, janv. 2021, doi: 10.3390/su13041821.

142

[57] C. Li, J. Wang, S. Wang, et Y. Zhang, « A review of IoT applications in

healthcare », Neurocomputing, vol. 565, p. 127017, janv. 2024, doi:

10.1016/j.neucom.2023.127017.

[58] Vitaly Kurduban, « IoT in Manufacturing: Applications and Benefits of Smart

Factories ». Consulté le: 17 avril 2024. [Online]. Available on:

https://www.digi.com/blog/post/iot-in-manufacturing

[59] M. Soori, B. Arezoo, et R. Dastres, « Internet of things for smart factories in

industry 4.0, a review », Internet of Things and Cyber-Physical Systems, vol. 3, p. 192

‑204, janv. 2023, doi: 10.1016/j.iotcps.2023.04.006.

[60] M. Muntjir, M. Rahul, et H. A. Alhumyani, « An Analysis of Internet of Things

(IoT): Novel Architectures, Modern Applications, Security Aspects and Future Scope

with Latest Case Studies », International Journal of Engineering Research, vol. 6, no

06, 2017.

[61] V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, et M. Chica-Rivas,

« Machine learning predictive models for mineral prospectivity: An evaluation of

neural networks, random forest, regression trees and support vector machines », Ore

Geology Reviews, vol. 71, p. 804‑818, déc. 2015, doi:

10.1016/j.oregeorev.2015.01.001.

[62] T. S. Madhulatha, « Comparison between K-Means and K-Medoids Clustering

Algorithms », in Advances in Computing and Information Technology, D. C. Wyld, M.

Wozniak, N. Chaki, N. Meghanathan, et D. Nagamalai, Éd., Berlin, Heidelberg:

Springer, 2011, p. 472‑481. doi: 10.1007/978-3-642-22555-0_48.

[63] C. Joo, H. Kwon, J. Kim, H. Cho, et J. Lee, « Machine-learning-based optimization

of operating conditions of naphtha cracking furnace to maximize plant profit », in

Computer Aided Chemical Engineering, vol. 52, A. C. Kokossis, M. C. Georgiadis, et

E. Pistikopoulos, Éd., in 33 European Symposium on Computer Aided Process

Engineering, vol. 52. , Elsevier, 2023, p. 1397‑1402. doi: 10.1016/B978-0-443-15274-

0.50222-5.

[64] G. Chassagnon, M. Vakalopolou, N. Paragios, et M.-P. Revel, « Deep learning:

definition and perspectives for thoracic imaging », Eur Radiol, vol. 30, no 4, p.

2021‑2030, avr. 2020, doi: 10.1007/s00330-019-06564-3.

[65] J. P. Bharadiya, « Exploring the Use of Recurrent Neural Networks for Time Series

Forecasting », vol. 8, no 5, 2023.

[66] R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen, et J. Wang, « Machine Health

Monitoring Using Local Feature-Based Gated Recurrent Unit Networks », IEEE

Transactions on Industrial Electronics, vol. 65, no 2, p. 1539‑1548, févr. 2018, doi:

10.1109/TIE.2017.2733438.

143

[67] I. K. Nti, A. F. Adekoya, et B. A. Weyori, « A comprehensive evaluation of

ensemble learning for stock-market prediction », J Big Data, vol. 7, no 1, p. 20, mars

2020, doi: 10.1186/s40537-020-00299-5.

[68] Y. Matsuzaka et Y. Uesawa, « Ensemble Learning, Deep Learning-Based and

Molecular Descriptor-Based Quantitative Structure–Activity Relationships »,

Molecules, vol. 28, no 5, Art. no 5, janv. 2023, doi: 10.3390/molecules28052410.

[69] Z. A. Al-Sai et al., « Explore Big Data Analytics Applications and Opportunities: A

Review », Big Data and Cognitive Computing, vol. 6, no 4, Art. no 4, déc. 2022, doi:

10.3390/bdcc6040157.

[70] M. A. Amanullah et al., « Deep learning and big data technologies for IoT

security », Computer Communications, vol. 151, p. 495‑517, févr. 2020, doi:

10.1016/j.comcom.2020.01.016.

[71] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, et E. Mephu Nguifo, « An

experimental survey on big data frameworks », Future Generation Computer Systems,

vol. 86, p. 546‑564, sept. 2018, doi: 10.1016/j.future.2018.04.032.

[72] E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen, et B. Stiller, « Landscape of

IoT security », Computer Science Review, vol. 44, p. 100467, mai 2022, doi:

10.1016/j.cosrev.2022.100467.

[73] C. Qian, W. Gao, W. G. Hatcher, W. Liao, C. Lu, et W. Yu, « Search Engine for

Heterogeneous Internet of Things Systems and Optimization », in 2020 IEEE Intl Conf

on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence

and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), août 2020,

p. 475‑482. doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00089.

[74] F. Liang, C. Qian, W. G. Hatcher, et W. Yu, « Search Engine for the Internet of

Things: Lessons From Web Search, Vision, and Opportunities », IEEE Access, vol. 7,

p. 104673‑104691, 2019, doi: 10.1109/ACCESS.2019.2931659.

[75] H. Liang, L. Burgess, W. Liao, E. Blasch, et W. Yu, « Deep Learning Assist IoT

Search Engine for Disaster Damage Assessment », Cyber-Physical Systems, vol. 9, no

4, p. 313‑337, oct. 2023, doi: 10.1080/23335777.2022.2051210.

[76] W. G. Hatcher, C. Qian, W. Gao, F. Liang, K. Hua, et W. Yu, « Towards Efficient

and Intelligent Internet of Things Search Engine », IEEE Access, vol. 9, p. 15778‑
15795, 2021, doi: 10.1109/ACCESS.2021.3052759.

[77] H. V. Chand et J. Karthikeyan, « Survey on the Role of IoT in Intelligent

Transportation System », vol. 11, no 3, 2018.

144

[78] Jayna Locke, « IoT in Transportation: Solutions and Applications ». Consulté le: 18

avril 2024. [Online]. Available on: https://www.digi.com/blog/post/iot-solutions-for-

transportation

[79] H. E. Hareru et al., « The epidemiology of road traffic accidents and associated

factors among drivers in Dilla Town, Southern Ethiopia », Front Public Health, vol.

10, p. 1007308, nov. 2022, doi: 10.3389/fpubh.2022.1007308.

[80] J. Ng, « Road accidents, is there a solution? », thesun.my. Consulté le: 18 avril

2024. [Online]. Available on: https://thesun.my/local_news/road-accidents-is-there-a-

solution-HA10985460

[81] G. Baldini, R. Giuliani, et F. Geib, « On the Application of Time Frequency

Convolutional Neural Networks to Road Anomalies’ Identification with

Accelerometers and Gyroscopes », Sensors, vol. 20, no 22, Art. no 22, janv. 2020, doi:

10.3390/s20226425.

[82] V. Toral, T. Krushangi, et V. H. R, « Automated potholes detection using vibration

and vision-based techniques », World Journal of Advanced Engineering Technology

and Sciences, vol. 10, no 1, p. 157‑176, 2023, doi: 10.30574/wjaets.2023.10.1.0276.

[83] H.-J. Yang, H. Jang, et D.-S. Jeong, « Detection algorithm for road surface

condition using wavelet packet transform and SVM », in The 19th Korea-Japan Joint

Workshop on Frontiers of Computer Vision, janv. 2013, p. 323‑326. doi:

10.1109/FCV.2013.6485514.

[84] K. Higashimoto, H. Fukushima, K. Kamitani, et N. Chujo, « Identification of Road

Surface Condition on Undeveloped Roads : — Aiming for Remote Car Driving — »,

in 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), oct. 2021, p.

777‑781. doi: 10.1109/GCCE53005.2021.9621967.

[85] B. Varona, A. Monteserin, et A. Teyseyre, « A deep learning approach to automatic

road surface monitoring and pothole detection », Pers Ubiquit Comput, vol. 24, no 4, p.

519‑534, août 2020, doi: 10.1007/s00779-019-01234-z.

[86] N. Silva, V. Shah, J. Soares, et H. Rodrigues, « Road Anomalies Detection System

Evaluation », Sensors, vol. 18, no 7, Art. no 7, juill. 2018, doi: 10.3390/s18071984.

[87] J. Dib, K. Sirlantzis, et G. Howells, « A Review on Negative Road Anomaly

Detection Methods », IEEE Access, vol. 8, p. 57298‑57316, 2020, doi:

10.1109/ACCESS.2020.2982220.

[88] S. Sattar, S. Li, et M. Chapman, « Developing a near real-time road surface

anomaly detection approach for road surface monitoring », Measurement, vol. 185, p.

109990, nov. 2021, doi: 10.1016/j.measurement.2021.109990.

[89] A. Allouch, A. Koubâa, T. Abbes, et A. Ammar, « RoadSense: Smartphone

Application to Estimate Road Conditions Using Accelerometer and Gyroscope », IEEE

145

Sensors Journal, vol. 17, no 13, p. 4231‑4238, juill. 2017, doi:

10.1109/JSEN.2017.2702739.

[90] B. Zhou et al., « Smartphone-based road manhole cover detection and

classification », Automation in Construction, vol. 140, p. 104344, août 2022, doi:

10.1016/j.autcon.2022.104344.

[91] B. D. Setiawan, U. I. Serdült, et V. Kryssanov, « Smartphone Sensor Data

Augmentation for Automatic Road Surface Assessment Using a Small Training

Dataset », in 2021 IEEE International Conference on Big Data and Smart Computing

(BigComp), janv. 2021, p. 239‑245. doi: 10.1109/BigComp51126.2021.00052.

[92] R. Du, G. Qiu, K. Gao, L. Hu, et L. Liu, « Abnormal Road Surface Recognition

Based on Smartphone Acceleration Sensor », Sensors, vol. 20, no 2, Art. no 2, janv.

2020, doi: 10.3390/s20020451.

[93] C. Wu et al., « An Automated Machine-Learning Approach for Road Pothole

Detection Using Smartphone Sensor Data », Sensors, vol. 20, no 19, Art. no 19, janv.

2020, doi: 10.3390/s20195564.

[94] S. Sattar, S. Li, et M. Chapman, « Road Surface Monitoring Using Smartphone

Sensors: A Review », Sensors, vol. 18, no 11, Art. no 11, nov. 2018, doi:

10.3390/s18113845.

[95] Ankita, S. Rani, H. Babbar, S. Coleman, A. Singh, et H. M. Aljahdali, « An

Efficient and Lightweight Deep Learning Model for Human Activity Recognition

Using Smartphones », Sensors, vol. 21, no 11, Art. no 11, janv. 2021, doi:

10.3390/s21113845.

[96] M. Jalayer, C. Orsenigo, et C. Vercellis, « Fault detection and diagnosis for rotating

machinery: A model based on convolutional LSTM, Fast Fourier and continuous

wavelet transforms », Computers in Industry, vol. 125, p. 103378, févr. 2021, doi:

10.1016/j.compind.2020.103378.

[97] M. Farooq et E. Sazonov, « Detection of chewing from piezoelectric film sensor

signals using ensemble classifiers », in 2016 38th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), août 2016, p. 4929‑
4932. doi: 10.1109/EMBC.2016.7591833.

[98] A. Prasad, A. K. Tyagi, M. M. Althobaiti, A. Almulihi, R. F. Mansour, et A. M.

Mahmoud, « Human Activity Recognition Using Cell Phone-Based Accelerometer and

Convolutional Neural Network », Applied Sciences, vol. 11, no 24, Art. no 24, janv.

2021, doi: 10.3390/app112412099.

[99] N. Dua, S. N. Singh, et V. B. Semwal, « Multi-input CNN-GRU based human

activity recognition using wearable sensors », Computing, vol. 103, no 7, p. 1461‑
1478, juill. 2021, doi: 10.1007/s00607-021-00928-8.

146

[100] H. Kutlu et E. Avcı, « A Novel Method for Classifying Liver and Brain Tumors

Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-

Term Memory Networks », Sensors, vol. 19, no 9, Art. no 9, janv. 2019, doi:

10.3390/s19091992.

[101] K. Lee, J.-K. Kim, J. Kim, K. Hur, et H. Kim, « CNN and GRU combination

scheme for Bearing Anomaly Detection in Rotating Machinery Health Monitoring », in

2018 1st IEEE International Conference on Knowledge Innovation and Invention

(ICKII), juill. 2018, p. 102‑105. doi: 10.1109/ICKII.2018.8569155.

[102] M. Sajjad et al., « A Novel CNN-GRU-Based Hybrid Approach for Short-Term

Residential Load Forecasting », IEEE Access, vol. 8, p. 143759‑143768, 2020, doi:

10.1109/ACCESS.2020.3009537.

[103] Md. Z. Islam, Md. M. Islam, et A. Asraf, « A combined deep CNN-LSTM network

for the detection of novel coronavirus (COVID-19) using X-ray images », Informatics

in Medicine Unlocked, vol. 20, p. 100412, janv. 2020, doi: 10.1016/j.imu.2020.100412.

[104] X. Chen, X. Xie, et D. Teng, « Short-term Traffic Flow Prediction Based on

ConvLSTM Model », in 2020 IEEE 5th Information Technology and Mechatronics

Engineering Conference (ITOEC), juin 2020, p. 846‑850. doi:

10.1109/ITOEC49072.2020.9141783.

[105] A. Zekry, A. Sayed, M. Moussa, et M. Elhabiby, « Anomaly Detection using IoT

Sensor-Assisted ConvLSTM Models for Connected Vehicles », in 2021 IEEE 93rd

Vehicular Technology Conference (VTC2021-Spring), avr. 2021, p. 1‑6. doi:

10.1109/VTC2021-Spring51267.2021.9449086.

[106] S. Garg et N. Baliyan, « Comparative analysis of Android and iOS from security

viewpoint », Computer Science Review, vol. 40, p. 100372, mai 2021, doi:

10.1016/j.cosrev.2021.100372.

[107] W. Gomolka, « The concept of Sockets and basic Function Blocks for

communication over Ethernet Part 2 TCP Server and TCP Client », juill. 2014.

[108] M. Malekzadeh, R. G. Clegg, A. Cavallaro, et H. Haddadi, « Mobile sensor data

anonymization », in Proceedings of the International Conference on Internet of Things

Design and Implementation, in IoTDI ’19. New York, NY, USA: Association for

Computing Machinery, avr. 2019, p. 49‑58. doi: 10.1145/3302505.3310068.

[109] M. Chauhan, P. Thorwe, M. J. Mukherjee, et Y. S. Rao, « Sensor Data Analysis

Using Moving Average Filter and 256-Point FFT for Wireless Sensor Networks », in

2018 9th International Conference on Computing, Communication and Networking

Technologies (ICCCNT), juill. 2018, p. 1‑7. doi: 10.1109/ICCCNT.2018.8493974.

[110] W. Liu, S. Liu, Y. Wang, G. Li, et L. Yu, « Research on Grain Pile Temperature

Prediction Based on CNN-GRU Neural Network », in Advances in Intelligent Systems,

Computer Science and Digital Economics III, Z. Hu, S. Gavriushin, S. Petoukhov, et

147

M. He, Éd., Cham: Springer International Publishing, 2022, p. 214‑226. doi:

10.1007/978-3-030-97057-4_19.

[111] J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, et W. Liu, « Self-Supervised Spatio-

Temporal Representation Learning for Videos by Predicting Motion and Appearance

Statistics », présenté à Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2019, p. 4006‑4015.

[112] W. Saadeh, S. A. Butt, et M. A. B. Altaf, « A Patient-Specific Single Sensor IoT-

Based Wearable Fall Prediction and Detection System », IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 27, no 5, p. 995‑1003, mai 2019, doi:

10.1109/TNSRE.2019.2911602.

[113] H. Qiao, T. Wang, P. Wang, S. Qiao, et L. Zhang, « A Time-Distributed

Spatiotemporal Feature Learning Method for Machine Health Monitoring with Multi-

Sensor Time Series », Sensors, vol. 18, no 9, Art. no 9, sept. 2018, doi:

10.3390/s18092932.

[114] S. Montaha, S. Azam, A. K. M. R. H. Rafid, Md. Z. Hasan, A. Karim, et A. Islam,

« TimeDistributed-CNN-LSTM: A Hybrid Approach Combining CNN and LSTM to

Classify Brain Tumor on 3D MRI Scans Performing Ablation Study », IEEE Access,

vol. 10, p. 60039‑60059, 2022, doi: 10.1109/ACCESS.2022.3179577.

[115] J. Wang, T. Zhu, J. Gan, L. L. Chen, H. Ning, et Y. Wan, « Sensor Data

Augmentation by Resampling in Contrastive Learning for Human Activity

Recognition », IEEE Sensors Journal, vol. 22, no 23, p. 22994‑23008, déc. 2022, doi:

10.1109/JSEN.2022.3214198.

[116] C. Oh, S. Han, et J. Jeong, « Time-Series Data Augmentation based on

Interpolation », Procedia Computer Science, vol. 175, p. 64‑71, janv. 2020, doi:

10.1016/j.procs.2020.07.012.

[117] K. M. Rashid et J. Louis, « Times-series data augmentation and deep learning for

construction equipment activity recognition », Advanced Engineering Informatics, vol.

42, p. 100944, oct. 2019, doi: 10.1016/j.aei.2019.100944.

[118] J. A. Sáez, J. Luengo, J. Stefanowski, et F. Herrera, « SMOTE–IPF: Addressing the

noisy and borderline examples problem in imbalanced classification by a re-sampling

method with filtering », Information Sciences, vol. 291, p. 184‑203, janv. 2015, doi:

10.1016/j.ins.2014.08.051.

[119] A. Fernandez, S. Garcia, F. Herrera, et N. V. Chawla, « SMOTE for Learning from

Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary »,

Journal of Artificial Intelligence Research, vol. 61, p. 863‑905, avr. 2018, doi:

10.1613/jair.1.11192.

[120] Y. Yang, X. Yang, W. Tang, et L. Li, « A Undersampling-DoppelGANger based

Data Generation Method for Unbalanced BGP Data », in 2023 IEEE 9th International

148

Conference on Cloud Computing and Intelligent Systems (CCIS), août 2023, p. 100‑
105. doi: 10.1109/CCIS59572.2023.10263221.

[121] X. Cai et al., « Data Self-Expansion and DoppelGANger-Based Time-Series

Modeling for Realistic Steam Data Generation », in 2023 8th International Conference

on Power and Renewable Energy (ICPRE), sept. 2023, p. 1969‑1974. doi:

10.1109/ICPRE59655.2023.10353886.

[122] A. Khraisat et A. Alazab, « A critical review of intrusion detection systems in the

internet of things: techniques, deployment strategy, validation strategy, attacks, public

datasets and challenges », Cybersecur, vol. 4, no 1, p. 18, mars 2021, doi:

10.1186/s42400-021-00077-7.

[123] J. Lansky et al., « Deep Learning-Based Intrusion Detection Systems: A Systematic

Review », IEEE Access, vol. 9, p. 101574‑101599, 2021, doi:

10.1109/ACCESS.2021.3097247.

[124] T. Cruz et P. Simoes, ECCWS 2019 18th European Conference on Cyber Warfare

and Security. Academic Conferences and publishing limited, 2019.

[125] G. De La Torre Parra, P. Rad, K.-K. R. Choo, et N. Beebe, « Detecting Internet of

Things attacks using distributed deep learning », Journal of Network and Computer

Applications, vol. 163, p. 102662, août 2020, doi: 10.1016/j.jnca.2020.102662.

[126] L. Santos, C. Rabadão, et R. Gonçalves, « Flow Monitoring System for IoT

Networks », in New Knowledge in Information Systems and Technologies, Á. Rocha,

H. Adeli, L. P. Reis, et S. Costanzo, Éd., Cham: Springer International Publishing,

2019, p. 420‑430. doi: 10.1007/978-3-030-16184-2_40.

[127] S. Feng, J. Keung, X. Yu, Y. Xiao, et M. Zhang, « Investigation on the stability of

SMOTE-based oversampling techniques in software defect prediction », Information

and Software Technology, vol. 139, p. 106662, nov. 2021, doi:

10.1016/j.infsof.2021.106662.

[128] I. Jung, J. Ji, et C. Cho, « EmSM: Ensemble Mixed Sampling Method for

Classifying Imbalanced Intrusion Detection Data », Electronics, vol. 11, no 9, Art. no 9,

janv. 2022, doi: 10.3390/electronics11091346.

[129] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, et J. K. Kalita, « Packet and Flow

Based Network Intrusion Dataset », in Contemporary Computing, M. Parashar, D.

Kaushik, O. F. Rana, R. Samtaney, Y. Yang, et A. Zomaya, Éd., Berlin, Heidelberg:

Springer, 2012, p. 322‑334. doi: 10.1007/978-3-642-32129-0_34.

[130] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, et M. K. A. A. Khan, « Performance

Analysis of Machine Learning Algorithms in Intrusion Detection System: A Review »,

Procedia Computer Science, vol. 171, p. 1251‑1260, janv. 2020, doi:

10.1016/j.procs.2020.04.133.

149

[131] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, et K.-Y. Tung, « Intrusion detection

system: A comprehensive review », Journal of Network and Computer Applications,

vol. 36, no 1, p. 16‑24, janv. 2013, doi: 10.1016/j.jnca.2012.09.004.

[132] S. García, S. Ramírez-Gallego, J. Luengo, J. M. Benítez, et F. Herrera, « Big data

preprocessing: methods and prospects », Big Data Anal, vol. 1, no 1, p. 9, nov. 2016,

doi: 10.1186/s41044-016-0014-0.

[133] S. A. Abdulkareem, C. H. Foh, H. Lee, F. Carrez, et K. Moessner, « IoT Network

Intrusion Detection with Ensemble Learners », in 2022 13th International Conference

on Information and Communication Technology Convergence (ICTC), oct. 2022, p.

510‑514. doi: 10.1109/ICTC55196.2022.9952376.

[134] J. L. Leevy, J. Hancock, T. M. Khoshgoftaar, et J. M. Peterson, « IoT information

theft prediction using ensemble feature selection », J Big Data, vol. 9, no 1, p. 6, janv.

2022, doi: 10.1186/s40537-021-00558-z.

[135] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, et E. Cambiaso, « MQTTset, a New

Dataset for Machine Learning Techniques on MQTT », Sensors, vol. 20, no 22, Art. no

22, janv. 2020, doi: 10.3390/s20226578.

[136] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, et X. Bellekens,

« Machine Learning Based IoT Intrusion Detection System: An MQTT Case Study

(MQTT-IoT-IDS2020 Dataset) », in Selected Papers from the 12th International

Networking Conference, B. Ghita et S. Shiaeles, Éd., Cham: Springer International

Publishing, 2021, p. 73‑84. doi: 10.1007/978-3-030-64758-2_6.

[137] H. Kang, Ahn, Dong Hyun, Lee, Gyung Min, Yoo, Jeong Do, Park, Kyung Ho, et

Kim, Huy Kang, « IoT network intrusion dataset ». IEEE, 27 septembre 2019. doi:

10.21227/q70p-q449.

[138] S. Garcia, A. Parmisano, et M. J. Erquiaga, « IoT-23: A labeled dataset with

malicious and benign IoT network traffic ». Zenodo, 20 janvier 2020. doi:

10.5281/zenodo.4743746.

[139] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, et A. Anwar, « TON_IoT

Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven

Intrusion Detection Systems », IEEE Access, vol. 8, p. 165130‑165150, 2020, doi:

10.1109/ACCESS.2020.3022862.

[140] N. Moustafa et J. Slay, « UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set) », in 2015 Military

Communications and Information Systems Conference (MilCIS), nov. 2015, p. 1‑6.

doi: 10.1109/MilCIS.2015.7348942.

[141] S. Choudhary et N. Kesswani, « A Survey: Intrusion Detection Techniques for

Internet of Things », IJISP, vol. 13, no 1, p. 86‑105, janv. 2019, doi:

10.4018/IJISP.2019010107.

150

[142] Y. Kayode Saheed, A. Idris Abiodun, S. Misra, M. Kristiansen Holone, et R.

Colomo-Palacios, « A machine learning-based intrusion detection for detecting internet

of things network attacks », Alexandria Engineering Journal, vol. 61, no 12, p. 9395‑
9409, déc. 2022, doi: 10.1016/j.aej.2022.02.063.

[143] T. Saba, A. Rehman, T. Sadad, H. Kolivand, et S. A. Bahaj, « Anomaly-based

intrusion detection system for IoT networks through deep learning model », Computers

and Electrical Engineering, vol. 99, p. 107810, avr. 2022, doi:

10.1016/j.compeleceng.2022.107810.

[144] K. Albulayhi, Q. Abu Al-Haija, S. A. Alsuhibany, A. A. Jillepalli, M.

Ashrafuzzaman, et F. T. Sheldon, « IoT Intrusion Detection Using Machine Learning

with a Novel High Performing Feature Selection Method », Applied Sciences, vol. 12,

no 10, Art. no 10, janv. 2022, doi: 10.3390/app12105015.

[145] J. Simon, N. Kapileswar, P. K. Polasi, et M. A. Elaveini, « Hybrid intrusion

detection system for wireless IoT networks using deep learning algorithm »,

Computers and Electrical Engineering, vol. 102, p. 108190, sept. 2022, doi:

10.1016/j.compeleceng.2022.108190.

[146] A. K. Sahu, S. Sharma, M. Tanveer, et R. Raja, « Internet of Things attack

detection using hybrid Deep Learning Model », Computer Communications, vol. 176,

p. 146‑154, août 2021, doi: 10.1016/j.comcom.2021.05.024.

[147] Y. Zhang et Q. Liu, « On IoT intrusion detection based on data augmentation for

enhancing learning on unbalanced samples », Future Generation Computer Systems,

vol. 133, p. 213‑227, août 2022, doi: 10.1016/j.future.2022.03.007.

[148] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, et L. Shu, « Federated Deep

Learning for Cyber Security in the Internet of Things: Concepts, Applications, and

Experimental Analysis », IEEE Access, vol. 9, p. 138509‑138542, 2021, doi:

10.1109/ACCESS.2021.3118642.

[149] A. Demirpolat, A. K. Sarica, et P. Angin, « ProtÉdge: A few-shot ensemble

learning approach to software-defined networking-assisted edge security »,

Transactions on Emerging Telecommunications Technologies, vol. 32, no 6, p. e4138,

2021, doi: 10.1002/ett.4138.

[150] R. A. Ramadan et K. Yadav, « A Novel Hybrid Intrusion Detection System (IDS)

for the Detection of Internet of Things (IoT) Network Attacks ». Rochester, NY, 20

décembre 2020.

[151] M. Abushwereb, M. Alkasassbeh, M. Almseidin, et M. Mustafa, « An accurate IoT

Intrusion Detection Framework using Apache Spark ». arXiv, 21 février 2022. doi:

10.48550/arXiv.2203.04347.

[152] R. Manzano S., N. Goel, M. Zaman, R. Joshi, et K. Naik, « Design of a Machine

Learning Based Intrusion Detection Framework and Methodology for IoT Networks »,

151

in 2022 IEEE 12th Annual Computing and Communication Workshop and Conference

(CCWC), janv. 2022, p. 0191‑0198. doi: 10.1109/CCWC54503.2022.9720857.

[153] R. A. Manzano Sanchez, M. Zaman, N. Goel, K. Naik, et R. Joshi, « Towards

Developing a Robust Intrusion Detection Model Using Hadoop–Spark and Data

Augmentation for IoT Networks », Sensors, vol. 22, no 20, Art. no 20, janv. 2022, doi:

10.3390/s22207726.

[154] N. Koroniotis, N. Moustafa, E. Sitnikova, et B. Turnbull, « Towards the

development of realistic botnet dataset in the Internet of Things for network forensic

analytics: Bot-IoT dataset », Future Generation Computer Systems, vol. 100, p. 779‑
796, nov. 2019, doi: 10.1016/j.future.2019.05.041.

[155] J. M. Peterson, J. L. Leevy, et T. M. Khoshgoftaar, « A Review and Analysis of the

Bot-IoT Dataset », in 2021 IEEE International Conference on Service-Oriented System

Engineering (SOSE), août 2021, p. 20‑27. doi: 10.1109/SOSE52839.2021.00007.

[156] S. Salloum, R. Dautov, X. Chen, P. X. Peng, et J. Z. Huang, « Big data analytics on

Apache Spark », Int J Data Sci Anal, vol. 1, no 3, p. 145‑164, nov. 2016, doi:

10.1007/s41060-016-0027-9.

[157] K. Wang et M. M. H. Khan, « Performance Prediction for Apache Spark

Platform », in 2015 IEEE 17th International Conference on High Performance

Computing and Communications, 2015 IEEE 7th International Symposium on

Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on

Embedded Software and Systems, août 2015, p. 166‑173. doi: 10.1109/HPCC-CSS-

ICESS.2015.246.

[158] J. P.S. et P. Samuel, « Analysis and Modeling of Resource Management Overhead

in Hadoop YARN Clusters », in 2017 IEEE 15th Intl Conf on Dependable, Autonomic

and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd

Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology

Congress(DASC/PiCom/DataCom/CyberSciTech), nov. 2017, p. 957‑964. doi:

10.1109/DASC-PICom-DataCom-CyberSciTec.2017.159.

[159] R. DelValle, P. Kaushik, A. Jain, J. Hartog, et M. Govindaraju, « Electron:

Towards Efficient Resource Management on Heterogeneous Clusters with Apache

Mesos », in 2017 IEEE 10th International Conference on Cloud Computing (CLOUD),

juin 2017, p. 262‑269. doi: 10.1109/CLOUD.2017.41.

[160] X. Meng et al., « MLlib: Machine Learning in Apache Spark », Journal of Machine

Learning Research, vol. 17, no 34, p. 1‑7, 2016.

[161] E. Bisong, « Google Colaboratory », in Building Machine Learning and Deep

Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners,

E. Bisong, Éd., Berkeley, CA: Apress, 2019, p. 59‑64. doi: 10.1007/978-1-4842-4470-

8_7.

152

[162] V. H. Alves Ribeiro et G. Reynoso-Meza, « Ensemble learning by means of a

multi-objective optimization design approach for dealing with imbalanced data sets »,

Expert Systems with Applications, vol. 147, p. 113232, juin 2020, doi:

10.1016/j.eswa.2020.113232.

[163] S. Bagui et K. Li, « Resampling imbalanced data for network intrusion detection

datasets », J Big Data, vol. 8, no 1, p. 6, janv. 2021, doi: 10.1186/s40537-020-00390-x.

[164] arvindpdmn Pawan_Dubey, « Confusion Matrix », Devopedia. Consulté le: 19

avril 2024. [Online]. Available on: https://devopedia.org/confusion-matrix

[165] A. Hadj-Attou, Y. Kabir, et F. Ykhlef, « Hybrid deep learning models for road

surface condition monitoring », Measurement, vol. 220, p. 113267, oct. 2023, doi:

10.1016/j.measurement.2023.113267.

[166] S. Y. Yerima, M. K. Alzaylaee, A. Shajan, et V. P, « Deep Learning Techniques for

Android Botnet Detection », Electronics, vol. 10, no 4, Art. no 4, janv. 2021, doi:

10.3390/electronics10040519.

[167] T. Wang, J. Li, M. Zhang, A. Zhu, H. Snoussi, et C. Choi, « An enhanced 3DCNN-

ConvLSTM for spatiotemporal multimedia data analysis », Concurrency and

Computation: Practice and Experience, vol. 33, no 2, p. e5302, 2021, doi:

10.1002/cpe.5302.

[168] H.-X. Gao, S. Kuenzel, et X.-Y. Zhang, « A Hybrid ConvLSTM-Based Anomaly

Detection Approach for Combating Energy Theft », IEEE Transactions on

Instrumentation and Measurement, vol. 71, p. 1‑10, 2022, doi:

10.1109/TIM.2022.3201569.

[169] T. Kumar, D. Acharya, et D. Lohani, « Modeling IoT Enabled Classification

System for Road Surface Monitoring », in 2022 14th International Conference on

COMmunication Systems & NETworkS (COMSNETS), janv. 2022, p. 836‑841. doi:

10.1109/COMSNETS53615.2022.9668507.

