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ABSTRACT 

The main objective of this thesis is to use artificial intelligence to support the large 

number of IoT devices used in fast-growing fields such as automotive and healthcare. We 

will explore how artificial intelligence can address some of the limitations of IoT 

technology and how it can boost the deployment of IoT technology in human lives. This is 

useful in existing automated monitoring systems to provide comprehensive, real-time, 

reliable, and automated IoT monitoring based on artificial intelligence solutions. It is a 

strategic area for IoT in general and embedded systems, but more specifically for 

autonomous vehicles, healthcare, and smart cities. Another objective is to carry out studies 

and analyses on IoT in a Big Data context. Additionally, we will provide an AI-based 

security method that automatically includes the growing security aspects related to the IoT 

domain. In this thesis, we propose four frameworks that classify IoT data by utilizing 

hybrid deep learning models and ensemble learning methods. Two road datasets have been 

created and labeled in real-time, providing the necessary resources for the evaluation of our 

proposed models. The first three frameworks demonstrate the effectiveness of hybrid 

models and ensemble techniques in improving road surface anomaly detection. Also, we 

propose a big data framework that employs Apache Spark and ensemble learning to 

improve IoT network intrusion detection. The fourth framework passes through extensive 

testing using the BoT-IoT dataset, proving its ability to handle traffic imbalances and 

detect various IoT network threats with high accuracy. The experimental results clearly 

show the effectiveness and reliability of the four frameworks. 

Keywords: Artificial Intelligence, Big Data, IoT Technology, IoT Security. 

 

 

 



 

RÉSUMÉ 

L'objectif principal de cette thèse est d'utiliser l'intelligence artificielle pour prendre en 

charge le grand nombre d'appareils IoT utilisés dans les domaines en forte croissance tel 

que l’automobile et la santé. Nous étudierons comment l'intelligence artificielle peut 

résoudre certaines limitations de la technologie IoT et comment elle peut stimuler le 

déploiement de la technologie IoT dans la vie de l’homme. Ceci est utile dans les systèmes 

de surveillance automatisé existant afin de fournir une surveillance complète en temps réel, 

fiable et automatisée des IoT basée sur des solutions d'intelligence artificielle. C’est un 

domaine stratégique pour les IoT en général et les systèmes embarqués, mais plus 

particulièrement pour les véhicules autonomes, les soins de santé et les villes intelligentes. 

Un autre objectif est de réaliser des études et analyses sur l'IoT  dans un contexte Big Data. 

En plus, nous allons proposer une méthode de sécurité basée sur l'intelligence artificielle 

qui inclut automatiquement les aspects de sécurité croissants liés au domaine de l'IoT.  

Dans cette thèse, nous proposons quatre structures visant à classer les données IoT en 

utilisant des modèles hybrides d'apprentissage profond et des méthodes d'apprentissage 

ensembliste. Pour évaluer nos modèles, deux ensembles de données routières ont été créés 

et étiquetés en temps réel, fournissant les ressources nécessaires à l'évaluation de nos 

modèles proposés. Les trois premières structures démontrent l'efficacité des modèles 

hybrides et des techniques ensemblistes pour améliorer la détection des anomalies sur les 

surfaces routières. En outre, nous proposons un structure de big data qui utilise Apache 

Spark et l'apprentissage ensembliste pour renforcer la détection des intrusions dans les 

réseaux IoT. La quatrième structure passe par des tests approfondis en utilisant l'ensemble 

de données BoT-IoT, prouvant sa capacité à gérer les déséquilibres de trafic et à détecter 

diverses menaces sur le réseau IoT avec une grande précision. Les résultats expérimentaux 

confirment l'efficacité et la fiabilité des quatre structures proposés. 

Mots clés : Intelligence Artificielle, Big Data, Technologie IoT, Sécurité IoT. 

 



 

 الملخص

الهدف الرئيسي من هذه الأطروحة هو استخدام الذكاء الاصطناعي لدعم العدد الكبير من أجهزة إنترنت الأشياء 

المستخدمة في المجالات سريعة النمو مثل السيارات والرعاية الصحية. سنستكشف كيف يمكن للذكاء الاصطناعي أن 

ي وكيف يمكن أن يعزز نشر تكنولوجيا إنترنت الأشياء فيعالج بعض القيود المفروضة على تكنولوجيا إنترنت الأشياء 

حياة الإنسان. وهذا مفيد في أنظمة المراقبة الآلية الحالية لتوفير مراقبة إنترنت الأشياء الشاملة والموثوقة والآلية في 

ة كل عام والأنظمالوقت الفعلي بناءً على حلول الذكاء الاصطناعي. يعد هذا مجالًا استراتيجياً لإنترنت الأشياء بش

المدمجة، ولكن بشكل أكثر تحديدًا للمركبات ذاتية القيادة والرعاية الصحية والمدن الذكية. الهدف الآخر هو إجراء 

دراسات وتحليلات حول إنترنت الأشياء في سياق البيانات الضخمة. بالإضافة إلى ذلك، سنوفر طريقة أمان قائمة على 

نقترح  في هذه الأطروحة،يًا الجوانب الأمنية المتنامية المتعلقة بمجال إنترنت الأشياء. الذكاء الاصطناعي تتضمن تلقائ

أربعة أطر عمل لتصنيف بيانات إنترنت الأشياء من خلال الاستفادة من نماذج التعلم العميق الهجينة وطرق التعلم 

ت الفعلي، مما يوفر الموارد اللازمة الجماعي. تم إنشاء مجموعتين من بيانات الطرق ووضع علامات عليها في الوق

لتقييم النماذج المقترحة. توضح الأطر الثلاثة الأولى فعالية النماذج الهجينة وتقنيات التعلم الجماعي في تحسين اكتشاف 

والتعلم الجماعي لتحسين  Apache Sparkشذوذ سطح الطريق. كما نقترح إطار عمل للبيانات الضخمة يستخدم 

، مما BoT-IoTاكتشاف اختراق شبكة إنترنت الأشياء. يمر الإطار الرابع باختبارات مكثفة باستخدام مجموعة بيانات 

يثبت قدرته على التعامل مع اختلالات حركة المرور واكتشاف تهديدات شبكة إنترنت الأشياء المختلفة بدقة عالية. 

 بوضوح فعالية وموثوقية الأطر الأربعة.تظهر النتائج التجريبية 

 الذكاء الاصطناعي، البيانات الضخمة، تكنولوجيا إنترنت الأشياء، أمن إنترنت الأشياء. : الكلمات المفتاحية
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GENERAL INTRODUCTION 

The Internet of Things (IoT) involves most physical things or devices that can connect 

to the Internet, including manufacturing equipment and machinery, household items, and 

automobiles. Specifically, the concept of IoT today refers to a network of networked devices 

that share data with other devices and incorporate software, sensors, and processing power. 

The Internet and the IoT are two different concepts. It would be reasonable to say that the 

Internet of Things is more intelligent than the Internet since it has the ability to generate, 

evaluate, and make decisions based on data from connected devices. IoT is changing 

numerous applications, and the data created by IoT devices has the potential to significantly 

enhance company profits after the analysis of the data [1, 2]. 

Through the use of modern wireless technologies like actuators, sensors, and 

smartphones, businesses embrace IoT to incorporate every task and assist in achieving their 

objectives. The implementation of IoT benefits businesses, since it can reinforce a company 

strategy based on technology and social networks. The current and next generation of IoT 

technologies have significant potential for enhancing the overall quality of people's lives 

through automation, productivity, and user convenience over a variety of application fields 

[3]. Smart cities, smart industries, smart transportation, healthcare, and water monitoring are 

some of the best examples of IoT applications. 

Any object in the world with the technological features needed to allow it to connect to 

the Internet via a wireless or wired connection can be considered an IoT device. Users of 

IoT may be machines, people, or both. IoT is a combination of various technologies that 

enable the networking of many things, not a single device or technology [4]. IoT collects 

data from a variety of sources, including environmental sensors, smart devices, and smart 

cars. After that, the data can be transferred to the edge gateway and cloud via the internet 

using widely used standard protocols like HTTP, XMPP, WebSocket, and MQTT. 

Functionalities like preprocessing the data, protecting cloud connectivity, and collecting 

sensor data are all provided by the edge gateway. Several database management systems 

designed for IoT applications are available in the cloud. To provide meaningful information, 

the data are analyzed using artificial intelligence, and fundamental computing methods. With 
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the usage of this data, businesses may improve activities, interact with consumers more, 

automate process control, and make the best decisions possible based on the insights 

obtained from the data [5]. 

Artificial intelligence (AI) is the term used to describe the imitation of human 

intelligence in robots that are designed to think and behave like people. Machines with AI 

are able to learn and respond to a variety of scenarios and problems. Due to its enormous 

flexibility, AI can be used in combination with the IoT. For instance, smart home devices or 

microcontroller chips can form several IoT networks to collect, analyze, and exchange 

various types of data flows over the internet [1, 2]. 

The exponential increase in the amount of data transferred between IoT devices is the 

main obstacle in implementing IoT systems. Moreover, a thorough analysis of all this data 

is required. IoT data is consequently analyzed using a large number of big data methods. 

Since the data collected by IoT devices is unstructured, big data uses multiple storage 

approaches to analyze and store the collected data in real time. These massive amounts of 

data are known as big data when artificial intelligence is employed to provide useful 

information [5-7]. 

The main concern when implementing IoT technology is security. IoT devices that do 

not have protection pose a risk to the overall IoT infrastructure. In general, the processing 

capacity of IoT devices is limited. Due to these limitations, they are unable to secure their 

information as well as interact with other devices using fundamental security features like 

firewalls or robust cryptosystems. Numerous factors contribute to IoT safety concerns, 

including a lack of hardware safety features, poorly written software with wide limits on 

vulnerabilities, and various errors in safety design [4, 8]. 

Research Contribution 

The main goal of this thesis is to use AI to assist the enormous number of IoT devices 

employed in the field of IoT. The first phase includes collecting IoT data and sending it to a 

server for storage. In the second phase, data preprocessing is utilized to reduce the amount 

of computation required by cleaning, transforming, and organizing the data to boost the 

reliability of the final decision. The final part is an AI-based classification phase that uses 
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machine learning (ML), deep learning (DL), hybrid deep learning, and ensemble learning 

algorithms. 

Artificial intelligence is a critical field for embedded systems and the IoT in general, but 

especially for smart cities, healthcare, and self-driving cars. The ability to use IoT sensor 

data is getting a lot of attention in this field. The data will become incredibly large, so we 

will need to adopt big data solutions. This thesis also looks into how AI might help overcome 

the security concerns associated with IoT technology in order to expand its acceptance in 

daily life. Our solution includes four frameworks designed to enhance the precision and 

reliability of IoT data analysis. Three frameworks are focused on monitoring road surface 

conditions, which detect road anomalies by analyzing vibrations from motion sensors in 

moving vehicles, and one is designed to detect IoT network attacks. In order to classify road 

surface anomalies, the first proposed framework employed smartphone motion sensors to 

create a new road dataset. Then, hybrid deep learning models were designed to classify road 

surface anomalies. The second framework included another road dataset collected using an 

IoT device to enable the proposed 3D hybrid deep learning models for identifying road 

surface conditions. For further improvement of 3D hybrid deep learning models, the third 

framework employed data augmentation techniques on the road dataset. The efficiency of 

these techniques was investigated through the application of ensemble learning methods. 

Finally, the fourth framework implemented a machine learning approach within a Big Data 

environment to detect intrusions in the BoT-IoT dataset. It effectively addressed data 

imbalance challenges by integrating oversampling techniques with ensemble resampling 

methods. The following briefly describes the primary contributions of our work: 

 Create road datasets to monitor road surface conditions based on motion sensors 

embedded in IoT devices or smartphones. The problem of class imbalance in road 

data is addressed via data augmentation techniques. 

 Develop hybrid deep learning models for classifying road surface anomalies. We also 

evaluate the efficacy of using spatiotemporal features as inputs. 

 Develop a Big Data framework based on Apache Spark for network traffic 

monitoring. The methodology uses an ensemble learning approach and an 

oversampling technique to improve classification performance and address the issue 

of class imbalance. 
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Thesis Structure 

There are four chapters in this thesis, arranged as follows: 

In the first chapter, we will provide a description of the protocols, applications, and 

architectures of the Internet of Things. We will also discuss various AI approaches, IoT 

security, and big data solutions. 

The second chapter discusses some common techniques for road data analysis and road 

surface conditions monitoring. In addition, we will provide IoT-based architectures for 

monitoring road surface conditions, as well as AI models for detecting road anomalies.  

The third chapter will be devoted on creating a big data architecture using Apache Spark 

to identify IoT network intrusions. In this chapter, we will investigate how ensemble learning 

methods and machine learning approaches can help to enhance the accuracy of IoT network 

intrusion detection. 

The fourth chapter will cover the experiments conducted to evaluate IoT data using AI 

algorithms. In these experiments, various hybrid deep learning models that were created for 

the classification of road surface anomalies are evaluated. Furthermore, the BoT-IoT dataset 

will be used in the intrusion detection experiments. 
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CHAPTER 1: STATE OF THE ART 

1.1 Introduction  

Modern technological advancements have improved and facilitated people's lives while 

offering numerous advantages. This progress is seen in the community, medical, academic, 

and economic areas among others. These days, the Internet is nearly everywhere, has 

impacted almost every region of the world, and is having unthinkable effects on human 

life. However, a very wide range of devices can be connected to the Internet, resulting in 

an era of everywhere connectivity called the Internet of Things (IoT). The term "IoT" 

describes the widespread smart devices equipped with Internet connections [5, 9]. 

There is an ongoing increase in the quantity of IoT devices. The total amount of IoT 

devices is predicted to increase from 500 million in 2003 to 24.1 billion by the end of 

2030, representing approximately 3.47 IoT devices for each user. Around 5.8 billion of the 

24.1 billion devices are expected to be reserved for business and industrial use. These facts 

demonstrate the significance of IoT since it indicates how individuals and devices are 

fundamentally changing the way connected environments are measured, sensed, and 

communicated with [10]. 

IoT devices have embedded transceivers, CPUs, actuators, and sensors to enable this 

intelligence and connectivity. IoT is a combination of multiple technologies that operate in 

harmony rather than being a single technology. Devices that provide interaction with the 

physical world include sensors and actuators. To extract significant information from the 

sensor data, it needs to be intelligently stored and analyzed [5]. 

IoT has become a popular topic in news articles and marketing trends. Sensor networks, 

embedded systems, and computer science are some of the earlier techniques that gave rise 

to IoT. In addition, IoT emerged as an effective way to interact with machines across many 

areas. Although a lot of IoT devices are networked together to create systems for 

specialized purposes, they rarely serve as public access devices in the global internet [7]. 

In IoT applications, artificial intelligence (AI) is becoming more and more important. 

The ability of AI to swiftly extract insights from data is what makes it valuable in the IoT 

field. The IoT environment can benefit from the use of AI in a number of ways to improve 
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its efficiency and create more intelligent and effective IoT applications. Indeed, AI 

algorithms enable the identification of patterns in data that might be challenging for 

humans to recognize. This can be helpful in identifying anomalies, allowing companies to 

make better decisions [11-13]. 

Like all technology, IoT has been predicted to have both positive and negative effects 

on modern life. Advocates of the Internet of Things argue that it represents the first true 

advancement in the Internet and could improve people's lives in a variety of ways, 

including employment, education, and entertainment. The biggest issues with IoT in terms 

of disadvantages are security and privacy risks. Devices connected to the Internet of 

Things produce, transfer, and preserve important data on the routines, pursuits, traits, and 

personalities of their users as well as details about their immediate surroundings. The issue 

at hand is that IoT devices are vulnerable to security flaws, and privacy rules are unable to 

mitigate the risks posed by this growing problem [9]. 

In this chapter, we give an overview of IoT architecture, applications, and protocols. 

We also cover big data, IoT security systems, and potential AI techniques. 

1.2 Internet of Things (IoT)  

The integration of communication features into everyday objects and utilizing new 

Internet technologies created the Internet of Things (IoT). This revolutionary networking 

framework that is called IoT enables communication over the Internet between various 

physical devices [14]. The term IoT describes an interconnected system of smart devices that 

are capable of collecting and sharing data since they include internet connection, software, 

and sensors. Almost every physical thing that has the ability to be connected to the internet 

and transmit data has the potential to become an IoT device. These devices may include 

anything from connected streetlights, smart thermostats, driverless trucks, and children's 

toys [15, 16]. The IoT system's goal is to enhance people's quality of life through allowing 

people to respond effectively to changes in the environment and by offering services that are 

customized for the individual needs of users [4]. 

In the 1980s and 1990s, there was discussion about integrating sensors and intelligence 

into everyday things. Although there were a few initial initiatives, such as a vending machine 
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linked to the Internet, advancement remained slow due to the unavailability of necessary 

technologies [16]. At first, the manufacturing and business sectors were the areas where the 

IoT was the most fascinating due to its machine-to-machine (M2M) applications. As a subset 

of the IoT, M2M solutions employ wireless technologies to connect devices to the Internet 

and each other, requiring limited human involvement for providing services that satisfy the 

demands of a variety of companies [17]. Present internet connections have been utilized to 

enable M2M networks and their services. These types of networks are frequently connected 

by various protocols [14]. IoT may support companies with solutions that enhance 

productivity and decision-making in a variety of industries. However, the focus these days 

is on bringing as many smart devices into our homes and workplaces as possible, making it 

something that practically everyone can use.   

Additionally, IoT services will boost the economy by generating new business 

opportunities for equipment suppliers, and other participants in the wireless industry. The 

IoT services, backed by cross-industry cooperation, are expected to benefit billions of people 

worldwide by improving various economic areas, including transportation, healthcare, and 

energy [17]. A technology research company anticipates that by 2030, there will be 24.1 

billion connected IoT objects worldwide. The report additionally indicates that the largest 

market for connected devices is expected to be found in the industrial and automobile sectors 

[16, 18]. In fact, the IoT is still in its earliest stages, but in the end it will have a significant 

effect on businesses, customers, and society in general [17]. 

The Internet of things has many practical uses in daily life, ranging from industrial to 

consumer and business. IoT provides companies with the means to enhance their business 

strategy and challenges them to reconsider how they run business. On the other hand, 

customers may benefit from improved connectivity that is caused by the Internet of Things 

in a number of ways, including increased security and energy efficiency. The usage of IoT 

technology in an industrial environment is known by several names, including Industry 4.0, 

the Fourth Industrial Revolution, and the Industrial Internet of Things (IIoT) [16]. 

Although managing IoT devices can be difficult and demanding, there are certain 

standard procedures that companies are able to follow to make sure that these devices are 

safe, reliable, and performing at their best [4]. Through the help of sensors and software, 
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mobile IoT devices are capable of collecting and analyzing user data and interacting with 

their users to improve and simplify their lives. 

1.3 IOT Architecture  

The structure that describes how systems and devices interact and communicate inside 

the IoT environment is known as IoT architecture. An architecture represents a framework 

that specifies the physical elements of a network, together with their functional arrangement 

and configuration [19]. Building and deploying IoT solutions is guided by a framework 

known as the IoT standard architecture, which describes the essential elements, methods of 

functioning, and recommended practices for IoT implementations [20]. However, IoT 

architecture can be seen in a multitude of ways, and each IoT system is unique [19]. The IoT 

architecture consists of four primary components, and it is designed in layers, as shown in 

Figure 1.1. 

 

Figure 1. 1: The four-layer architecture for IOT [19]. 

Regarding the architecture of the IoT, there is not an official worldwide perspective 

shared by academics and the general public. Researchers have proposed many different 

kinds of architectures. Some researchers claim that the architecture of the Internet of 

Things consists of three layers, while other experts advocate for a five-layer architecture. 

They believe that the three and four-layer architectures can not satisfy application needs 

because of the IoT security and privacy concerns [21]. The five-layer architecture is an 

expansion of the IoT's four-layer architecture since it includes an additional layer (Business 

Layer). The business layer controls the entire IoT system, which includes applications, 
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revenue, and the security of users. Figure 1.2 depicts IoT layer architectures that include 

three and five layers.                                                                                    

 

Figure 1. 2: IoT architectures: (A) three layers, (B) five layers [21]. 

These architectures are composed of many layers and components that work together to 

smoothly transmit data between devices and applications [22]. The following describes the 

functioning of the common layers of the IoT architecture. 

1.3.1. Perception Layer 

The Perception Layer, sometimes referred to as the sensor layer, is the same in the three 

architectures. It consists of devices, sensors, and actuators that monitor the environment and 

acquire important data about things like humidity, air quality, temperature, velocity, 

humidity, pressure, and movement. This layer serves as an interface between the information 

and physical worlds [4]. Sensors can be utilized to measure physical properties and translate 

them into signals that IoT devices can handle [14]. The requirements of the sensor determine 

whether the relationship between environmental factors and the electrical signals is linear or 

non-linear. Actuators are devices that convert electrical signals into physical actions. They 

function in the opposite way of sensors, enabling things to take action [23]. Like sensors, the 

actuator's requirements determine the relationship between the electrical signals and the 

actuator's function. IoT actuators and sensors are often small, inexpensive, simple, and 
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energy-saving [4]. The cost and component specifications are crucial factors to take into 

account while developing an IoT system. 

1.3.2. Network Layer   

The Network Layer is responsible for transporting data obtained from the gateway node 

across the entire IoT network. In the context of communication technology, a gateway is a 

component that connects two networks with dissimilar transmission protocols. In simple 

terms, a gateway enables connectivity between two protocols by acting as a protocol 

converter [21]. There are various types of gateways, including VoIP trunk gateways, Email 

security gateways, media gateways, XML gateways, Cloud storage gateways, and IoT 

gateways. An IoT gateway is an access point in which a variety of sensors and different 

components are able to communicate with applications through standardized protocols found 

in wireless technologies such as WiFi and mobile networks [22].  

1.3.3. Data Processing Layer   

The processing layer receives data delivered by the network layer. Data preparation and 

analysis are the primary tasks of the data processing layer. The task given to this layer is to 

remove unnecessary data and extract the relevant data. Additionally, it solves the big data 

issue in IoT. Big data refers to the huge quantity of information received, which might have 

an impact on IoT performance [21]. Through the utilization of artificial intelligence (AI) 

methods, the processing layer may extract important features from raw data in IoT systems 

and utilize them for automatic decision making [22]. This layer makes use of a variety of 

technologies, including big data processing tools, cloud computing, and databases [5]. 

1.3.4. Application Layer  

In an IoT architecture, the application layer provides an essential interface for users to 

communicate with the system and perform particular functions. It is responsible for 

providing services to the applications. Services might differ depending on the data that is 

gathered by sensors, hence they might change for every application [21]. This layer provides 

control functions, user interfaces, and insightful information by interpreting and using data 

from IoT devices. Some of its uses include smart cities, manufacturing, healthcare, and smart 

agriculture [19, 22]. 
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1.4 IoT Gateways  

An IoT gateway is a hardware component or software program that connects end devices 

to the IoT application server [24]. A gateway usually serves as a bridge between M2M 

devices. However, Traditional gateways do not include any intelligent control features. Due 

to M2M devices' low processing and memory capacities, these features are critical to IoT 

systems [25]. Furthermore, incorporating intelligent control features into gateways could 

make IoT device design easier by offering access to common computing resources [26]. 

Depending on the application, there are two main methods for building an IoT gateway: the 

basic gateway and the embedded control gateway.  

A basic gateway typically arranges and packetizes information for transmission through 

the Internet, while an embedded control gateway enhances its capabilities by offering 

processing power and intelligence to manage local applications. For instance, the embedded 

control gateway might perform high-level administration functions in addition to analyzing 

and filtering sensor input. Endpoint complications and costs can be decreased with the help 

of the intelligent embedded control IoT gateway [26]. The IoT gateway includes a number 

of features, including: Wireless Connections, RAM, Processor, I/O (GPIO), Operating 

system (OS), and Security module. Microcontrollers could easily design embedded control 

gateways by interacting with endpoint devices like actuators and sensors. There are several 

instances of building IoT gateways with microcontrollers in the published works [27]. 

Because of its flexibility, compact size, and low energy usage, the microcontroller is a 

perfect choice for IoT gateway applications. Table 1.1 provides a comparison of the most 

widely used microcontrollers. 

Table 1. 1: A comparison of different microcontrollers. 

      Name         CPU 
     CPU       

Frequency 

       

RAM 

     

Wireless 
Cost 

Operating 

Voltage 

Raspberry 

Pi3 Model B   

Quad Cortex 

A53 
1.2 GHZ 1 GB 

WIFI, 

Bluetooth 
low 5 V  

BeagleBone 

Black 

Sitara AM3358-

BZCZ100 
1 GHz  512 MB No low 3.3 V 

Arduino Uno ATMega328 16 MHz 2 KB No low 5 V 
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Table 1.1 (continued) 

STM32WBA 
Arm Cortex-

M33  
100 MHz 128 KB Bluetooth low 3.6 V 

ESP8266 Xtensa L106 80 MHz 160 KB WIFI low 3.3 V 

ESP32 Xtensa LX6 160 MHz 512 KB 
WIFI, 

Bluetooth 
low 3.3 V 

 

In a dynamic environment with high user movement, a mobile gateway could be useful 

[28]. Since they can connect to a variety of IoT devices using different protocols, mobile 

devices like tablets and smartphones are able to operate as central communication hubs and 

serve as IoT gateways. The cost of installing external IoT gateways might be minimized 

when smartphones and tablets are utilized as gateways. With its diverse range of connectivity 

features, including Bluetooth, WIFI, and cellular, the smartphone can communicate and 

work with different IoT devices. The smartphone is thus the user's ultimate tool for 

controlling and interacting with the IoT systems [29]. A smartphone-based IOT gateway 

architecture is shown in Figure 1.3. 

             

                          

Figure 1. 3: The architecture of an IOT gateway using a smartphone [28].   
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1.5 IoT Communication Protocols 

Connectivity is essential to the Internet of Things' effectiveness and benefits since it 

facilitates the transfer of data from endpoint devices to central servers via the IoT network. 

IoT protocols are what make it possible for IoT devices to communicate with each other and 

share data. Network protocols are utilized for communication between different devices, 

such as computers and smartphones. However, the standard protocols used by these devices 

may not be able to match cover distance, latency, and the bandwidth requirements of IoT 

technology. Despite the simplicity of deployment, IoT devices' communication protocols 

need to overcome the limitations of current Internet systems in terms of reliability, range, 

and processing power [30]. Numerous IoT protocols have been developed for various 

purposes and applications [31]. IoT devices support wireless as well as wired connections 

for communication [30]. For the three-layer architecture, IoT communication protocols are 

explained at each layer below, according to the type of connection. 

1.5.1. Perception Layer Protocols  

Perception Layer protocols facilitate the connection between devices that have limited 

power and specific requirements in order to deliver services using sensors. 

IEEE 802.15: A comprehensive standard protocol known as IEEE 802.15 was created 

for enabling wireless connectivity in personal area networks, supporting both high-speed 

multimedia and low-energy IoT devices. It includes a variety of subgroups and standards 

that address a wide range of wireless communication requirements. Additionally, IEEE 

802.15 provides strong network security by encrypting data to guarantee secure connection 

between devices on the network [30]. 

Ethernet (IEEE 802.3): The Ethernet network, which was defined by the IEEE in 

standard 802.3, has been the most successful between local area network (LAN) protocols 

that utilize wired connections of network devices. Ethernet is a classic protocol used to 

connect devices in a wired LAN. Thanks to the advancement of technology, data may now 

be transmitted up to 1000 times faster than when Ethernet first started to appear [32]. 

LTE: The technology known as LTE, or Long-Term Evolution, is used by cellular 

service providers to send wireless data to a customer's phone for mobile internet 
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connectivity. LTE offered flexible bandwidth and frequency, improved effectiveness, peak 

rate of data transfer, and fast speeds. The speeds that a user may experience at home on a 

fast cable connection today will be comparable to those of LTE. Due to its unequal 

modulation and varying data speeds for uplink and downlink, the LTE physical layer is 

different from others [33]. 

1.5.2. Network Layer Protocols   

The following types of network layer protocols enable communication between devices 

in an IoT network: 

LoRaWAN: LoRaWAN is an LPWAN protocol that is intended for usage with low-

power IoT devices. LPWAN (Low Power Wide Area Network) offers a few kilometers of 

additional range, although most have low data rates [30]. The LoRaWAN protocol is freely 

available, allowing anyone to establish and run a LoRa network. LoRa is an unlicensed 

wireless radio frequency technology based on a radio frequency spectrum. Because of its 

ease of use, energy efficiency, and security, LoRaWAN is widely employed in IoT 

applications [34]. 

ZigBee: ZigBee is a solution for low-power, short-range wireless communication, 

primarily for low-rate sensors in the IoT systems. The ZigBee standard networking protocol 

is designed specifically for the wireless control field and is focused on wireless control and 

monitoring. Devices may easily exchange data using very little power across a range of 

network topologies thanks to the Zigbee protocol. Zigbee enables compatible 

communication between devices made by different companies [35]. 

Bluetooth and BLE: Bluetooth is a short-range wireless technology that communicates 

via radio waves. It allows for communication with multiple devices simultaneously without 

the need for an interface. It is an accessible protocol that supports multiplier-to-point and 

point-to-point data transfer. Bluetooth Low Energy (BLE) is an enhanced Bluetooth version 

that is designed specifically for IoT connectivity. In many IoT applications, BLE is 

especially desirable since, as its name suggests, it works with  less power than traditional 

Bluetooth [36].   
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Z-Wave: The Z-Wave protocol is a radio frequency based wireless communication 

technology that is specifically intended for home application control and state monitoring. 

This protocol works well for short communication in IoT applications because it is made for 

small data packets at slow rates [37]. 

WiFi: Based on the IEEE 802.11 standard, Wi-Fi is a widely used IOT communication 

technology for wireless local area networks (WLANs). It is constantly being improved to 

become more responsive, suitable for a variety of devices, and more fast. Security has been 

improved to satisfy the needs of availability, data privacy, and authentication, while also 

protecting WiFi connections based on WiFi generation [30]. 

1.5.3. Application Layer Protocols  

Analysis and processing of the information data coming from the lower layers are the 

responsibilities of the application layer. The following describes four different application 

layer protocols: 

HTTP: The most widely used protocol nowadays is Hypertext Transfer Protocol 

(HTTP). The primary application of HTTP is as one of the supporting technologies for web 

browser functionality. HTTP is an application protocol which utilizes the TCP/IP protocol 

stack, serving as the internet's foundation. The most common use of HTTP in an IoT scenario 

is to allow devices to POST to a resource on the IoT service which provides the device status 

[38]. Figure 1.4 displays the HTTP architecture. 

                                              

Figure 1. 4: HTTP Architecture [38].   
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XMPP: Extensible Messaging and Presence Protocol, or XMPP, is an open 

communication protocol used for real-time applications. XMPP facilitates the decentralized 

exchange of XML-based communications between clients and servers. It uses a federated 

framework, allowing people or companies to run their own XMPP server and connect with 

other users via server-side communication. XMPP utilizes the XML text format and operates 

on the TCP (Transmission Control Protocol) stack. It works well for closer communications 

since it includes both request-response and publish-subscribe architectures [39]. Figure 1.5 

illustrates the architecture of XMPP. 

                   

 

Figure 1. 5: XMPP Architecture [39].   

 

WebSocket: WebSocket is a client-server protocol built on top of TCP. It has less 

overhead than HTTP and can handle full duplex, two-way communications between the web 

server and the client. Because of this, WebSocket is effective at transferring little data 

packets regularly which is particularly helpful for real-time applications. The WebSocket 

protocol is still quite heavy and overloaded for IoT applications, even though it might be 

considered an advancement compared to HTTP connection. WebSocket can not 

automatically provide quality of service guarantees [40]. The architecture of WebSocket is 

illustrated in Figure 1.6. 
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Figure 1. 6: WebSocket Architecture [40].  

 

MQTT: Message Queuing Telemetry Transport, or MQTT, is an exchange messaging 

protocol that transfers data between clients and servers using the publish-subscribe standard. 

It is a particular lightweight IoT protocol for environments with limited resources. Via 

TCP/IP, MQTT is able to operate over network protocols that offer bidirectional, and ordered 

connections. It is made to communicate effectively between machines (M2M) using a 

publish-subscribe pattern. When using the publish-subscribe pattern at MQTT, a server 

known as the broker facilitates the exchange of messages between multiple clients (IoT 

devices). The messages are distributed to the clients by the broker after being filtered based 

on the topic and unique identification assigned to each message [41]. MQTT can function 

and provide sophisticated security services in highly confidential applications and critical 

systems. As depicted in Figure 1.7 Subscribers are unaware of the source of communications 

they receive, and publishers are unaware of the destination of messages they send. MQTT 

uses less electricity, has less overhead, and is faster than HTTP. 
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Figure 1. 7: MQTT Architecture [41].   

1.6 Comparison of Communication Protocols in IoT  

A number of messaging protocols may be chosen, according to the messaging 

requirements of IoT applications. To decide which protocols are most suited for a given 

application, it is crucial to know both the advantages and disadvantages of each one. Various 

parameters are applied to measure the differences among the communication protocols [31]. 

Comparisons between the IoT communication protocols covered in this chapter are 

presented in Tables 1.2 and 1.3. 

Table 1. 2: A comparison of different application layer protocols. 

Protocol 
Base 

Protocol 
Standard Paradigm Licensing 

HTTP TCP 
IETF and 

W3C 
Request/Response Free 

XMPP TCP XSF 
Request/Response 

Publish/Subscribe 
Open Source 

WebSocket TCP IETF Bidirectional 

Open Source 

and 

commercial 

MQTT TCP 

OASIS, 

Eclipse 

Foundations 

Publish/Subscribe Open Source  
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Table 1. 3: A comparison of different network layer protocols. 

Protocol Standard 
Data Transfer                 

Rate 

Frequency 

Bands 
Range 

LoRaWAN LoRaWAN 50 kbps 

415 MHz 

868 MHz 

915 MHz 

Depends on 

geographical 

location 

Up to 15 km 

ZigBee IEEE 802.15.4 250 kbps 2.4 GHz 10-100 m 

Bluetooth IEEE 802.15.1 1-3 Mbps 2.4 GHz 15-30 m 

Z-Wave IEEE 802.15.4 Up to 100 kbps 

908.42 MHz 

(US) 

Depends on 

geographical 

location 

30 m 

WiFi IEEE 802.11 Up to 1 Gbps 
2.4 GHz 

5 GHz 
50 to 100 m 

 

1.7 IoT Data Storage and Analytics  

1.7.1. Databases in IoT Applications  

The data generated from various IoT devices is stored in an updateable, queryable dataset 

called an IoT database. Massive amounts of time series data are normally generated by IoT 

devices, which are typically dispersed around both physical and digital spaces. These factors 

dictate that the optimal database for IoT applications needs to receive and store large 

amounts of data in real time. Effective real-time data solutions with flexible data modeling, 

fault tolerance, access to the cloud, and scalability are required to run a real-time IoT 

application at volume with velocity and minimal latency communications [42]. 

There are numerous methods for storing captured IoT data. The most popular method is 

to use non-relational and relational databases. Relational databases include data rows and 
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columns in tables that are very consistent. Standard database systems were relational 

databases that used structured query language (SQL) [43]. The most commonly utilized 

relational databases are: 

MySQL: MySQL is the most widely utilized open source relational database 

management system (DBMS). It is an effective choice for IoT applications due to its many 

advantages such as availability, open source, flexibility, high performance, scalability, and 

data security [44]. MySQL is adaptable enough to meet the needs of an IoT technology in 

any way that is required. It is able to efficiently handle the data processing requirements of 

the IoT and offers outstanding performance for complex applications. MySQL has 

demonstrated its ability to manage the massive volumes of data produced by IoT systems. 

Additionally, MySQL is a good solution when there is demand for many select queries. 

Numerous well-known websites use MySQL, which is widely recognized as an incredibly 

safe database technology [45].  

PostgreSQL: With fantastic IoT-related capabilities including geospatial support, 

adaptable data types, query power, and an exciting ecosystem, PostgreSQL is among the 

most sophisticated databases available. Usually called Postgres, it is a very scalable, 

extensible database system. PostgreSQL is widely used by businesses worldwide to handle 

their important information. PostgreSQL is a multiplatform application that runs on Unix, 

Linux, macOS, and Windows. It supports a wide range of programming languages. 

Moreover, PostgreSQL adheres to the SQL standard and provides a wide range of extensions 

that let users improve and personalize the features of their databases. Advanced features 

available in PostgreSQL include views, triggers, concurrency control, full-text search, and 

support for JSON [46]. 

There is now an alternative to relational databases called non-relational databases 

(NOSQL). NOSQL is not dependent on predefined table configurations or inflexible 

schemas. There is no need for a special procedure to add columns or records to the collection 

at any moment. As a result, the number of records in each column does not need to match 

[44]. The most commonly utilized non-relational databases are: 

MongoDB: MongoDB is a scalable and highly performant document-oriented database. 

In contrast to existing NoSQL databases, its data architecture is built as a document unit, 
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hence no schema specification is required. Additionally, MongoDB employs a scale-out 

architecture that allows auto-sharding and is adaptable to hardware evolution. This makes it 

easier to distribute data automatically among several servers [47]. Data is stored as 

documents in its binary form known as BSON (Binary JSON) objects, which are JSON-like 

objects that have been binary encoded. When a document requires an additional field to be 

added, it may be added without putting the system down, changing the main catalog, or 

affecting the other documents in the collection. As a result, MongoDB functions better 

compared to other databases when handling massive volumes of IoT sensor data with regard 

to resource consumption and long-term storage [48]. 

Cassandra: Cassandra is a decentralized storage platform which maintains enormous 

volumes of data on multiple servers. A variety of popular methods are combined by 

Cassandra to provide availability and scalability. Through indexing, Cassandra's data 

structure offers fast processing speeds when writing data. Data in Cassandra is indexed with 

a key, which is a distinct description of the row containing the data. Every row has columns, 

that carry features, and these columns together constitute a column family. Due to its 

scalability and capacity to manage real-time data flow, Cassandra is a great option for IoT 

applications [49]. 

Every database, whether relational or non-relational, has advantages and disadvantages 

of its own. So, the most commonly executed query and the application requirements 

determine which type of database is best for IoT [43]. 

Data storage is only one component of the Internet of Things environment, which also 

includes collecting data, transmission, storage, processing, analysis, and applications. Thus, 

computing systems that are fast, reliable, and effective are becoming more and more 

necessary. The rapid growth of smart devices and IoT applications has presented novel 

obstacles for standard cloud computing systems. New methods of real-time data processing 

and analysis are provided by edge computing and fog computing, which are now recognized 

as possible solutions to these obstacles [48]. 
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1.7.2. Fog Computing   

Fog computing is a network architecture in which data, storage, computation, and 

applications circulate between the data source and the cloud. The fog node is a crucial part 

of the architecture utilized in fog computing. There are two types of fog nodes: virtual 

cloudlets and virtual switches, and physical ones like switches, servers, gateways, and 

routers. Through processing data on the fog node, fog computing extends the cloud to the 

edge of the network and makes decentralized computing possible. Every device that may be 

utilized for computing, storage, and internet access can serve as a fog node in this case [50, 

51]. 

1.7.3. Edge Computing  

Edge computing is a relatively recent distributed computing architecture which advocates 

for data processing and storage near the data source, which was developed in response to the 

weaknesses of cloud computing's centralized architecture. Devices are necessary for IoT 

edge computing in order to acquire, analyze, and produce IoT data. In addition, the 

networking system depends on IoT devices. Edge computing's main benefit is its ability to 

lower latency, which results in enhanced real-time data processing. This standard solution 

satisfies the very low latency and bandwidth usage requirements of IoT applications. Edge 

computing capabilities can be employed to assure fast user response times, network 

scalability, and big data preprocessing. But in order to fully reap the advantages of edge 

computing for the IoT, a thorough investigation into processing power and data storage at 

the network edge is necessary, particularly for IoT applications associated with the next 

generation [50, 52].  

1.7.4. Cloud Computing  

Cloud computing is probably the most computationally sophisticated tool currently 

available. It is a centralized infrastructure technology that provides accessibility to a 

multitude of resources, such as software services, computers, servers, and databases. The 

main objective of cloud computing is to offer customers a variety of services in the cloud. 

There are various cloud deployment options available, like private, public, hybrid, and 

community. The benefits of cloud computing include cost-effectiveness, streaming services, 
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scalability, flexibility, and management [52,53]. The growth of IoT has been supported by 

cloud computing, which provides specialized infrastructure, tools for data analysis, and the 

ability to store and process enormous amounts of IoT data. Clouds are employed in four 

different contexts, depending on the kind of capability they provide [54]: 

Storage as a Service (StaaS): Cloud applications are permitted to expand outside their 

restricted servers thanks to StaaS. It enables customers to store their data on distant drives 

and retrieve it from any location at any time. 

Software as a Service (SaaS): Cloud-hosted services have the potential to be beneficial 

to a wide range of customers. This is a substitute for applications that are executed locally. 

Platform as a Service (PaaS): Rather than providing a virtualized infrastructure, cloud 

systems might offer an extra layer of abstraction by offering the software platform that hosts 

systems. Everything needed for developers to create, execute, and oversee applications is 

included in PaaS. 

Infrastructure as a Service (IaaS): IaaS is a type of cloud computing which utilizes 

internet connections to deliver virtualized machine resources. It provides access to a variety 

of cloud computing resources, such as servers, hardware, network items, and large amounts 

of storage. 

The location, timing, and method of processing and storing data from endpoint devices 

are the primary differences among edge, fog, and cloud computing. Although less common 

than cloud, fog and edge computing offer several advantages for enterprises, especially 

Internet of Things enterprises. The decentralized data storage is customized to specific 

requirements by these systems, which address numerous problems that IoT cloud computing 

services are unable to address [51]. Figure 1.8 illustrates the relationship between the edge, 

fog, and cloud computing concepts. 
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Figure 1. 8: Relation between edge, fog, and cloud computing [50].  

1.8 Applications of IoT  

Many applications have been touched by the emerging IoT, these applications are 

categorized according to their size, scope, influence, reliability, customer experience, 

variation, and availability. There are now a huge number of IoT applications accessible, and 

there are plenty more in development that should enhance our quality of life. Some of these 

applications are: 

1.8.1. Smart Transportation  

A key indicator of how well life is going in today's cities is smart transportation. The IoT 

improves transportation systems by giving significant real-time data to ensure that machines, 

managers, and customers may decide on specific actions at the appropriate time. Challenges 

of the transportation systems involve traffic jams, dangerous driving environments, 

pollution, and safety. One of the primary challenges facing society is traffic congestion. The 

traffic condition and the road quality will both be improved by predicting or planning for 

traffic. An intelligent road surface monitoring system can collect enough data about the 
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condition of the road from a variety of IoT devices and sensors. This will consequently 

provide intelligence and reliability to the system [55]. 

1.8.2. Smart Farming  

The farming industry needs technologies such as robotics, automation, drones, artificial 

intelligence (AI), and IoT in order to satisfy the increasing demands for food. Agricultural 

IoT (AIoT) has several fundamental elements, including wireless communication 

technologies, internet access, sensors, detected and transferred data, etc [56]. 

1.8.3. Healthcare   

The primary uses of IoT in healthcare are in situations involving assisted living. Medical 

equipment management, inventory tracking, and patient monitoring are all possible with IoT 

devices in healthcare environments like hospitals. In addition to monitoring environmental 

parameters like air quality, humidity, and temperature, IoT sensors also have the ability to 

stop the spread of infections. It is possible to put sensors on patients' health monitoring 

equipment. The data obtained from these sensors can be made accessible to doctors, and 

family members via web pages in order to enhance therapy [57]. 

1.8.4. Smart Home  

The IoT growth is driving increased interest in home automation research and 

implementation. Since automated homes and smart connectivity have become inexpensive 

and easy, smart homes have become more and more popular in recent years. Smart homes 

provide increased elegance, safety, conserving energy, and comfort [55]. 

1.8.5. Manufacturing   

Manufacturing experiences a tremendous technological change driven by the integration 

of IoT. The IoT is being used by all industries to automate operations, utilize edge 

processing, and obtain useful data across the internet. Due to its ability to monitor and 

optimize the manufacturing process through a network of interconnected devices, sensors, 

and software, the IoT is significantly contributing to the transformation of traditional 

manufacturers into intelligent manufacturing in Industry 4.0. In fact, Industrial Internet of 
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Things (IIoT) technologies open up possibilities for Industry 4.0. In Industry 4.0, IoT sensors 

allow machines to exchange data, coordinate actions, and interact with each other. IoT 

devices increase robotic productivity and efficiency by allowing machines to share data, 

which also increases safety and lowers the need for unexpected repairs [58, 59]. 

1.9 Artificial Intelligence for IoT Data Analytics  

The term artificial intelligence (AI) describes a machine's capacity for learning and 

making decisions without human involvement.  With the help of data and intelligence 

embedded in devices connected to the network, IoT technologies interact with environment 

to assist people in going about their daily lives in a simple and natural way. AI has the 

potential to enhance efficiency and simplify operations in the IoT by introducing human-like 

decision-making and intelligence [60]. 

AI techniques include machine learning (ML) and deep learning (DL). ML can operate 

in dynamic networks without the need for humans or complex mathematical equations. To 

identify and react to human action, ML approaches such as supervised, unsupervised, and 

reinforcement learning can be utilized [11]. 

1.9.1. Machine Learning (ML)  

In ML, supervised learning is the most popular approach. It involves utilizing a trained 

dataset, to classify the output depending on the input. Regression and classification learning 

are two categories of supervised learning. The following examples present various types of 

classification learning. 

Decision Tree (DT): The DT is a typical supervised learning technique, similar to a tree 

with leaves and branches. It is a hierarchical model which includes leaf nodes, internal nodes, 

branches, and a root node. Every node in the leaf indicates the final prediction, and every 

branch relates to a feature value. Compared to other ML techniques, DT offers the 

advantages of being transparent, having an easy-to-implement design, and handling big data 

samples [11]. 

Random Forest (RF): Known for its ability to address regression and classification 

problems in ML, RF is a common ML algorithm classified under the supervised learning 
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technique. The performance of many DT algorithms is combined by the RF algorithm for 

classification. This technique is a useful tool for a variety of ML predictive tasks because of 

its strength in handling complicated datasets and mitigating overfitting [61].  

K-nearest Neighbor (KNN): The KNN algorithm is a supervised ML approach 

developed for dealing with regression and classification problems. It is predicated on the 

concept that comparable data points typically have comparable labels or values. To make 

predictions, KNN uses a selected distance metric, like Euclidean distance, to determine the 

distance between each instance of training and the input data point [11].  

Support Vector Machines (SVM): SVM is a sophisticated ML technique that may be 

utilized for regression, linear or nonlinear classification, and identifying outliers. The SVM 

algorithm's primary goal is to identify the best hyperplane in a space with N dimensions 

which may be used to divide data points into various feature space categories [61]. 

Naive Bayes (NB): The NB is a probabilistic ML algorithm that utilizes Bayes' theorem. 

To be able to use Bayesian probability and predict the probable results, this type of 

supervised learning technique requires prior data. Based on a given set of evidence (𝐸), 

Bayes Theory determines a hypothesis (𝐻). It is related to two factors: the probability 𝑃(𝐻) 

of the hypothesis prior to the evidence and the probability 𝑃(𝐻|𝐸) following the evidence 

[11]. The following formula explains the Bayes Theory: 

            𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
            (1.1) 

 𝑃(𝐻|𝐸) indicates how event H transpires in the context of event E. 

 𝑃(𝐸|𝐻) is the rate of event E when event H occurs first. 

 𝑃(𝐻) represents the previous probability of class. 

 𝑃(𝐸) indicates the predictor's previous probability. 

K-mean Clustering: K-means clustering is an unsupervised learning method that uses 

unlabeled data, as opposed to supervised learning. It is a popular cluster analysis technique 

which aims to divide a set of items into K clusters in order to minimize the sum of the squared 

distances among each item and the chosen cluster mean. This method divides the provided 

data samples into smaller groups so that they can be categorized as a cluster. The centroid 
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of the cluster is first randomly assigned to the space. Next, data points are assigned to one 

of the K clusters based on their proximity to the cluster center. Following the assignment of 

each point to a cluster, new cluster centroids are created. Repeatedly, this procedure 

continues until it finds an acceptable cluster [62]. 

Reinforcement Learning (RL): Through RL, a machine can learn from interacting with 

the environment by taking behaviors that optimize the overall feedback, just like humans do. 

Feedback may take the form of an award that is dependent on completing the assigned task. 

The system learns by trial and error in reinforcement learning, where no predefined 

behaviors are assigned to any specific task. The agent can find and use the most effective 

strategy based on its expertise to obtain the most reward via trial and error [11]. 

Deep Neural Networks (DNNs): DNN is widely employed in the area of automated 

classification due to their precision and flexibility. In general, a DNN is an ML technique 

built on an artificial neural network (ANN), which imitates the architecture and workings of 

a human neural network. A DNN is composed of mathematically related layers, such as 

edges and nodes. It offers a major benefit over typical ML algorithms in that they can extract 

features at many levels of abstraction, which allows them to learn deeper patterns. Three 

layers make up an ANN: input, hidden, and output. The system is referred to be a DNN if 

the total number of hidden layers is three or more [11, 63]. 

1.9.2. Deep Learning (DL) 

The DL, which is a branch of ML, includes methods and computer models that imitate 

the structure of the biological neural networks found in the brain. The brain attempts to make 

sense of new information by comparing it to previously learned knowledge. DL uses the 

same method that the brain uses to interpret information by labeling and classifying the 

objects [12]. The most often used techniques are listed below: 

Convolutional Neural Networks (CNNs): The most widely used DL is CNN due to its 

ease of training and robustness. There are various structural elements in the CNN 

architecture, including convolution layers, pooling layers, and fully connected layers. A 

basic architecture comprises multiple repeats of a collection of convolution layers and a 

pooling layer, then several fully connected layers. It works by using a series of basic 
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convolution and deconvolution operators at various scales. Convolution is the process of 

applying several filters to aggregate data from pixels that have been clustered together. The 

filters vary from the current layer to the ones that follow, and their function provides the 

input for the following layer [64]. 

Recurrent Neural Networks (RNNs): An RNN is a form of ANN that processes 

sequential or time series data. It derives its name from the fact that it executes a single task 

for each element in a sequence, with the final result depending on prior calculations. A 

different means to conceptualize RNNs is as having an internal memory that stores data 

about previous calculations. RNN works on the basic principle of creating a prediction based 

on both the input data and the previous outputs. The idea makes a lot of sense to create neural 

networks that can advance values over time [65]. 

Long Short-Term Memory (LSTM): LSTM networks are a particular kind of RNN 

that may learn order dependence in predicted sequence tasks. LSTMs are made to solve the 

vanishing gradient issue that RNNs encounter. Since LSTMs use specialized memory cells 

including input, forget, and output gates, they are capable of capturing long-term 

dependencies in time series data. LSTMs are especially useful for forecasting tasks because 

of their capacity to retain relevant data over extended periods of time [65]. Figure 1.9 

provides an illustration of the LSTM.     

                            

Figure 1. 9: The illustrations of LSTM model [65].   
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Gated Recurrent Unit (GRU): GRU is defined as a variant of the LSTM since they are 

designed similarly and under certain situations, produce equally superior results. The key 

distinction among GRU and LSTM is how they handle memory cell state. A candidate 

activation vector is used in GRU to replace the memory cell state, and it is changed via the 

update and reset gates. When updating the hidden state, the update gate decides the amount 

of the new input that can be utilized, and the reset gate decides how much of the prior hidden 

state should be forgotten. Based on the new hidden state, the GRU calculates its output [66]. 

The GRU illustration is shown in Figure 1.10. 

                            

Figure 1. 10: The illustrations of GRU model [66].    

1.9.3. Ensemble Learning (EL)  

The main idea behind EL is to train a number of base models to be ensemble participants, 

then combine their predictions to produce one final result which should perform more 

effectively than all other individual models [67]. Bias and variance are two fundamental 

ideas in EL, which allow learners to acquire information with poor accuracy and enhance 

accuracy.  A bad balance between variance and bias could result from insufficient accuracy 

improvements. The bias can be defined as the variation among the predicted and actual 

values. In contrast, variance refers to the amount of variation between the predicted values 

[68]. The following is a list of the most popular EL methods: 
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Averaging: Averaging involves making numerous predictions for every data point. This 

approach uses an average of predictions from all models to generate the final prediction. 

Weighted Average: This is an extension of the averaging approach. The Weighted 

Average approach assigns various weights to each model, indicating the importance of each 

individual model for prediction. 

Max Voting: The max voting approach is commonly employed for classification issues. 

Several models are employed in this approach to generate predictions for every data point. 

A vote is taken based on every model's prediction. The final prediction is obtained using the 

predictions generated by most of the models. 

Boosting: Boosting is a sequential procedure in which each subsequent model attempts 

to rectify or correct the mistakes of the previous model. Every subsequent model is 

dependent on the model that came before it. Boosting strategies combine numerous weak 

learners to create a powerful learner. Though they are performing effectively for a portion 

of the dataset, the individual models may not improve the accuracy of the whole dataset. 

Hence, every individual model significantly boosts (enhances) the ensemble's performance. 

CatBoost, Light GBM, XGBM, GBM, and AdaBoost are some popular boosting algorithms. 

Bagging: Bagging, also known as bootstrap aggregation, is the process of integrating the 

results of many models to produce a more generalized result. It uses bootstrapping-sampling 

methods to generate several bags (subsets) from the training data set via replacement. An 

independent base model is trained with every subset. Since the subsets are varied, the models 

are able to learn unique patterns from the data. 

Stacking: Stacking is an EL approach that combines predictions from multiple models 

to create a new model, which is then used to produce predictions using the testing data set. 

It aims to improve a classifier's capacity for prediction. 

Blending: Blending is similar to stacking, except it only makes predictions based on the 

holdout (validation) set from the training dataset. In other words, predictions are made 

exclusively on the validation dataset, not the training dataset. The final model is built using 

the validation dataset and the predictions, and it is then applied to the test dataset. 
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1.10 Big Data  

Big data refers to extraordinarily large and complex data collections that may be 

processed faster than traditional data storage and analysis systems. It is just a term used to 

describe larger, more complex data collections, especially those that come from new data 

sources. These data volumes are so large that traditional data processing methods cannot 

manage them. The IoT is widely recognized as a primary source of big data due to its ability 

to connect an extensive amount of intelligent devices to the Internet and provide information 

about the condition of their environments on a regular basis. The main benefit of big data 

analytics is its ability to identify and extract significant patterns from massive amounts of 

raw data, which leads to deeper kinds of knowledge for trend prediction and making 

decisions [6, 69]. 

Big data tools refer to the technologies or methods used for processing data that can be 

categorized as big data in an efficient manner. Numerous academic papers have discussed 

the broad characteristics of big data from various angles including volume, velocity, and 

variety. Big data is typically described by six characteristics, called the 6V's [70]. The 6Vs, 

or the fundamental characteristics of big data, are depicted in Figure 1.11. 

                         

Figure 1. 11: The 6V’s of big data [70].    
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Given that they help us comprehend the nature of big data, these six fundamental 

components are crucial starting points when using big data. The 6 V's are defined as follows: 

Volume: Volume is an indicator of the data that is available. It is similar to the foundation 

of big data since it represents the original size and quantity of data acquired. Big data can be 

defined as data that has a sufficiently high volume. Despite this, the definition of big data is 

inflexible and prone to change in response to changes in the market for processing power. 

Velocity: The speed at which IoT big data is produced and processed is sufficient to 

support real time availability. This is a crucial component for companies which require their 

data to move rapidly and be accessible when needed to enable optimal business decisions. 

Variety: Variety describes the wide range of data kinds. IoT can generate a range of data 

kinds, including unstructured, semi-structured, and structured data. 

Veracity: Veracity relates to the data's quality, consistency, and reliability, which results 

in precise analytics. It is especially important for IoT systems that use crowd-sensing data to 

maintain this characteristic. 

Variability: Variability describes differences in the use or flow of big data. Different 

components that generate data may have irregular data flows, based on the type of IoT 

application. Further, a data source may have varying data load rates depending on particular 

periods. 

Value: Value is the converting of big data into useful insights and data that offer 

companies a competitive advantage. Big data gets much more valuable based on the 

information that can be obtained from it, therefore being able to extract value from it is 

essential. 

Massive amounts of data processing are currently possible and supported with the help 

of specialized Big Data frameworks. They facilitate the rapid analysis and organization of 

large amounts of real time data. Apache Hadoop, Flink, Storm, and Spark are some examples 

of big data frameworks [70]. 
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Apache Hadoop: Apache Hadoop is a batch processing platform which offers fault 

tolerance and fault scalability. Hadoop allows programs to run on numerous nodes and 

manages petabytes of data. Additionally, before being transferred to the Hadoop cluster's 

nodes, the log data is divided into chunks [13]. 

Apache Flink: Flink is an open source framework that can process data in both batch 

and real time modes. It has various advantages, including fault tolerance and massive scale 

processing [71]. 

Apache Storm: Storm is an open source platform that processes enormous amounts of 

structured and unstructured data. It is a fault tolerant framework designed for ML, iterative 

and sequential calculation, and real time data processing. A million tuples can be processed 

by a node of Storm every second [71]. 

Apache Spark: The Apache Spark framework will be described in detail in Chapter 3. 

1.11 IoT Security  

IoT security is a field of research that focuses on protecting IoT networks and connected 

devices. IoT devices need a special set of cybersecurity requirements due to the ways in 

which they differ from traditional mobile devices in terms of functionality. IoT devices have 

become widely available to users since they can be utilized for a variety of tasks across a 

public network. IoT advances human life by making it easier, but it also increases the risk to 

users' privacy by posing various dangers and attacks. Since some IoT devices can be 

accessed by everyone, anywhere, without the owner's consent, the security of IoT devices 

has emerged as a critical concern. The IoT devices need to be protected by a variety of 

security systems [11, 70, 72]. While building IoT security solutions, a number of features 

have to be taken into account. The following aspects should be addressed when building 

security protocols for preventing attacks against IoT systems. 

Identification: Every entity in an IoT system has to be able to recognize other 

participants and be informed about other entities inside the network. Additionally, entities 

should be able to differentiate between benign and possibly malicious entities. The IoT 

system needs an efficient identifying mechanism that can offer robust security with system 

limitations [72]. 
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Authorization: Authorization refers to the user's accessibility within an IoT system, 

allowing access to authorized clients who can enter, track, and utilize data contained in the 

network. The clients with authorization on the system may also give instructions to it [11]. 

Availability: Availability is the likelihood that a system will function at any moment in 

time. The system has to be accessible when needed, as well as its services. Data availability 

is crucial for surveillance and safety applications. Lack of knowledge can cause problems 

with home and workplace automation as well as economic damage in commercial 

applications [13]. 

Integrity: The integrity attribute guarantees that, when utilizing a wireless network for 

communication, only users with permission can change the data on IoT devices. The long-

term functionality of IoT devices will be impacted if this feature is harmed in any way due 

to unusual examination during data storage [11]. 

Privacy: Ensuring that the rights users have over their utilization of personal information 

are properly respected is vital while managing, analyzing, storing, and deleting data. Since 

attackers may detect an IoT device's physical position and decode the data, it is challenging 

to protect most data from unknown users [72]. 

Intrusion detection systems (IDS) have been associated with the main problems of IoT 

security. Generally, IDS are used to identify anomalies in the network. An anomaly is a 

malfunction in the IoT device network that can be produced by an attack, intrusion, or just a 

simple flaw. In AI based anomaly detection, significant factors influencing IDS reliability 

include IDS methodologies, data preprocessing, feature extraction, and appropriate feature 

selection [11]. 

1.12 IoT Search Engine  

Large volumes of data are produced by IoT systems because they share more data 

amongst smart devices than they do between humans and devices. In comparison to old static 

data, this data is updated frequently and may dynamically characterize the state of the 

associated systems to give a more accurate and precise representation of a system's 

condition. Hence, there is a pressing need for an IoT search engine that offers query 

resolution services to help consumers locate pertinent IoT data rapidly, similar to the way 
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online search engines do [73, 74]. The management and search problems associated with 

IoT systems are addressed by Internet of Things search engines (IoTSE). IoTSE is designed 

to function similarly to a standard web browser, except that all of the IoT data could be 

transformed into URL links so that users may access and examine the data in response to 

their requests. IoTSE can perform data collection, indexing, and organization functions, 

similar to web search engines [75]. Figure 1.12 illustrates the IoTSE's framework in detail. 

                                   

Figure 1. 12: An overall framework for the IoTSE [76]. 

An IoTSE is intended to look through a variety of IoT resources, such as devices and 

data. IoTSE functions similarly to web search engines in that they provide the necessary IoT 

data, IoT resources, or combinations of both in response to user queries [74]. The key 

elements of the IoTSE are shown below. 

IoT Resources: IoT transforms physical things with embedded technology (computing 

and networking elements) into digitally flexible smart resources, including networking 

devices, storage, actuators, and smart sensors. The IoT search procedure abstracts each IoT 

device as an IoT resource [74]. 
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IoT Data: The IoTSE's fundamental component is the IoT data, which serves as its 

primary search target. Typically, gathered data is used to build a digital model that depicts 

the state or past of the associated environment [74]. 

Search Space: A search space is required for IoT search, just like it is for web search 

engines. The search space consists of a collection of IoT resources with clearly defined data 

structures. Because IoT resources are dynamic and update significantly faster than web 

content, the search space available for IoT search is far larger than for standard web search 

[74]. 

IoT Query: Both humans and IoT devices can submit queries in an IoT search. Data 

interchange and communication between IoT devices from different planes are required. 

However, to accomplish intelligence and automation, IoT devices should specifically send 

queries [74]. 

Edge Computing Nodes: Computational activities from cloud infrastructures may be 

transferred to edge and fog nodes located near IoT devices through distributed computing. 

The search functions can be carried out by the edge computing nodes, which can be easily 

expanded. In addition, edge nodes are employed in the IoTSE to harvest IoT data and refresh 

the search space index [74]. 

Middleware: As intermediary between applications and IoT resources, IoT middleware 

is another crucial part of the IoTSE. middleware offers a basic query operating platform 

while hiding diverse IoT resources. Furthermore, because the middleware acts as an IoT 

service provider, it may be placed anywhere there is sufficient processing capacity to 

perform the required calculations, such as edge computing nodes, cloud servers, and IoT 

gateways [74]. 

1.13 Conclusion 

There will probably be a lot more things connected in the near future due to the rapid 

growth of the Internet of things (IoT). It is very likely that the world will become extremely 

connected in the future. The architecture of the IoT system and its supporting network were 

covered in this chapter. We demonstrated a few IoT application areas. Various methods and 

protocols have been discussed for the aim of connecting IoT devices. Additionally, we gave 
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a brief description of the machine learning and deep learning approaches that are utilized in 

IoT data processing. Then an overview of big data, IoT security, and IoT search engines was 

presented. 
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CHAPTER 2: IOT BASED ROAD SURFACE CONDITION (RSC) MONITORING 
USING HYBRID DEEP LEARNING MODELS 

2.1 Introduction 

Intelligent transportation systems (ITS) offer creative applications concerning traffic 

management and many forms of transportation. This enables road users to utilize 

transportation networks in a safer, more effective, and intelligent manner. The application 

of Internet of Things (IoT) in the transportation sector has gained popularity recently as a 

consequence of present challenges and technological advancements. The use of IoT in 

transportation applications is being driven by technological advancements, which make 

cities smarter and their systems easier to manage. In addition, IoT in transportation refers to 

a vast network of embedded smart devices, like actuators and sensors. These sensors capture 

data about the external physical environment, which is then transmitted to specialist software 

to provide meaningful information, thus improving infrastructure design and maintenance 

as well as safety [77, 78]. 

In recent years, monitoring of road anomalies has grown to become a major topic in 

driving safety studies. Every day, around 3,700 people lose their lives in road accidents, for 

a total of 1.35 million deaths worldwide each year. Actually, the number of vehicles on the 

road is increasing, which has led to additional damage to the road surface. This might result 

in significant vehicle damage and an increase in traffic accidents. Many people have 

complaints about the state of the roads in their hometowns or places of work due to damages 

caused by poor road surfaces. However, maintaining top-quality road infrastructure is 

expensive since it has to be continuously monitored and repaired [79, 80]. 

Detecting anomalies in the road surface is crucial for road maintenance, improving 

automated driving, and reducing the rate of accidents. Here, road surface anomalies refer to 

speed bumps, speed humps, manholes, potholes, cracks, etc. In this context, researchers have 

been trying to detect road surface anomalies by creating various methodologies and building 

road surface condition (RSC) monitoring systems. 

The term artificial intelligence (AI) is used to describe a variety of algorithms and 

concept solutions that may be used to accurately identify anomalies on the road. These AI 

methods include machine learning (ML) and deep learning (DL), which are used to train 
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classifiers that discover correlations and patterns between the input features and 

corresponding road types [78, 81, 82]. 

This chapter will cover some of the most common approaches for road data analysis and 

RSC monitoring. In addition, we will propose architectures for RSC monitoring and 

frameworks for detecting road anomalies. 

2.2 Background  

For the related work, we start with providing an overview of road surface condition 

(RSC) monitoring approaches. Afterward, we present techniques for detecting road 

anomalies using the vibration-based approach. Finally, we highlight some of the most 

important RSC monitoring research contributions. 

2.2.1. Road Surface Condition Monitoring Approaches  

Several studies have been carried out in the literature to monitor road surface conditions 

(RSC). These studies can be divided into three major approaches: vision-based, laser-

scanning-based, and vibration-based. 

A vision-based approach primarily employs vehicle-mounted cameras to capture 2D 

images or videos of the road surface. This approach detects road defects using image 

processing analysis. However, a number of external factors such as lighting and the influence 

of shadows, have a negative impact on the vision-based approach [83]. 

With a laser-scanning-based approach, the road conditions are assessed using specialized 

cars equipped with laser sensors. This approach employs 3D laser scanning to generate 

precise road surface models. To identify road surface anomalies, a base model is compared 

with these 3D digital models. Nevertheless, when it comes to monitoring vast road networks, 

the laser-scanning-based method is very expensive and time consuming [84]. 

A vibration-based approach allows for the detection of road anomalies through analyzing 

a moving vehicle's vibration rate acquired by motion sensors. Unlike the first two methods, 

which are both expensive, the vibration-based approach is widely available and low-cost 

[85]. 
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2.2.2. Road Anomalies Classification Approaches  

The studies of road surface condition (RSC) monitoring focus on the identification of 

anomalies in the road surface through time series information collected with sensors. As 

shown in Figure 2.1, road surface anomalies can be classified as real or man-made. The 

vibration-based approach detects road anomalies in three stages. Firstly, the condition of the 

road surface data have to be collected using wearable sensors, which are popular IoT devices 

and they are easily able to be embedded in modern vehicles. Secondly, the collected data are 

then preprocessed to smooth the sensor data and remove the noise. Preprocessing also aims 

to organize data by transforming sensor signals into a format that is more appropriate for the 

input data. Finally, road surface anomalies are detected by classifying the preprocessed 

sensor signals based on the pattern of signals. Typically, thresholding, dynamic time warping 

(DTW), machine learning (ML), and deep learning (DL) techniques have been utilized to 

identify any unusual variations in sensor values [86, 87]. 

 

 

Figure 2. 1: Types of anomalies on the road surface. 
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2.2.3. A Review of RSC Studies  

Several research studies on road surface condition (RSC) monitoring have been 

published in the literature. Some of the recent RSC studies that have been published are 

summarized in Table 2.1. 

Table 2. 1: A summary of related work in RSC monitoring. 

Reference Approach Contributions Objective 

S. Sattar et al. [88] Vibration-based  

-Smartphone-

based data 

collection. 

-Unsupervised ML 

algorithm (GMM) 

for road surface 

anomaly detection. 

Building a near-

real-time method 

for classifying 

road surface 

anomalies into two 

categories 

according to the 

degree of anomaly 

severity. 

Allouch et al. [89] Vibration-based 

-Automatic 

collecting and 

labeling of 

gyroscope and 

accelerometer 

data. 

- A low-pass filter 

to eliminate sensor 

noise and FFT for 

feature extraction 

- ML algorithm for 

road segment 

classification. 

Developing a real-

time Android 

application that 

plots the road 

surface anomaly 

location on a map 

to automatically 

determine the 

quality of the road. 

Zhou et al. [90] 
Vision-based and 

Vibration-based  

-Smartphones were 

employed to 

collect road image 

and motion sensor 

data. 

- A DL model for 

detecting manhole 

covers from a road 

images and ML 

model for 

classifying the 

detected manhole 

covers. 

Detecting and 

classifying road 

manhole cover 

subsidence into 

three levels: poor, 

average, and good. 
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Table 2.1 (continued) 

Yang et al. [83] Vision-based 

-Collecting road 

image via a digital 

camera that has a 

polarization filter 

attached. 

- A wavelet packet 

transform for 

feature extraction 

and ML algorithm 

(SVM) for road 

surface anomaly 

detection. 

Determining if the 

road surface is 

wet, dry, snowy, or 

ice-covered. 

Higashimoto et al. 

[84] 

Laser-scanning-

based 

-Extraction of road 

surface 

environments 

using LiDAR point 

cloud data. 

-A ray ground 

filter to separate 

point cloud data 

into ground and 

non-ground. 

-Utilizing the point 

cloud data's 

standard deviation 

of the reflection 

intensity to 

identify the road 

surface. 

Developing a real 

time road surface 

environment 

detection system 

based on LiDAR 

to enable self-

driving cars to 

teleoperate in 

undeveloped areas. 

Varona et al. [85] Vibration-based 

-Data collecting 

via smartphones. 

-Classifying road 

segments using DL 

algorithms. 

-Data 

augmentation 

approaches for 

maintaining the 

dataset balanced. 

Automatically 

differentiating 

between a vehicle's 

instabilities 

generated by 

potholes and that 

generated on by 

speed bumps or 

driving behavior. 
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Table 2.1 (continued) 

Setiawan et al. [91] Vibration-based 

-Data collecting 

through 

smartphone and 

data labeling via 

video camera. 

- Classifying road 

segments using DL 

model (DCCN). 

Proposing an 

approach to 

balance the 

training of an 

autonomous road 

surface evaluation 

system by 

augmenting 

smartphone sensor 

data using an 

unrolled GAN. 

Du et al. [92] Vibration-based 

- A Gaussian 

background model 

for feature 

extraction and ML 

algorithm (kNN) 

for classifying 

abnormal 

pavement types. 

Employing a 

smartphone's 

acceleration sensor 

to easily and 

cheaply identify 

abnormal road 

surfaces 

Wu et al. [93] Vibration-based 

-Feature extraction 

using wavelet 

decomposition, 

frequency domain, 

and temporal 

domain 

- ML algorithm for 

road pothole 

detection. 

Utilizing vibration 

data from 

smartphones to 

develop an 

automatic pothole 

detecting system. 

Baldini et al. [81] Vibration-based 

-Data collecting 

via inertial 

measurement unit 

(IMU). 

-Time-frequency 

features are put 

into the CNN. 

Detecting and 

identifying 

anomalies in the 

road surface by 

combining CNN 

and time-

frequency 

transform. 

 

2.3 Proposed Methodology for Road Anomalies Detection  

The proposed frameworks for detecting road surface anomalies aim to distinguish three 

types of road surfaces: Real anomalies (potholes and cracks), man-made anomalies (speed 
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bumps and speed humps), and smooth roads. This methodology generally consists mainly 

of three phases: (1) data collection, (2) data preprocessing, and (3) classification. 

As opposed to previous vibration-based approach studies, which primarily employ 

cameras for sensor data labeling and machine learning or deep learning for data 

classification. Furthermore, they rarely distinguished between man-made road anomalies 

(which cannot be considered as road defects) and real road anomalies. The novelty of our 

work comes from the use of hybrid deep learning models to improve classification 

performance in three types of road surfaces, namely smooth road, real road anomalies, and 

man-made road anomalies. In addition, we proposed novel labeling techniques that allow 

us to label sensor data in real time utilizing a smartphone application. These new 

techniques of data labeling are more effective than using images from cameras since they 

are not impacted by light conditions or weather. 

2.3.1. Data Collection  

In general, a vehicle vibrates more while traveling over road surface anomalies, like 

speed bumps, speed humps, potholes, or cracks, than when moving over flat road surfaces. 

Therefore, the vibration-based method is an excellent option for collecting road data. With 

the goal of collecting road data using a low-cost technology that is unaffected by light 

conditions or weather, we utilized motion sensors embedded in IoT devices or 

smartphones. Motion sensors like accelerometers, gyroscopes, and magnetometers are 

excellent choices for obtaining vibration data from vehicles since they are capable of 

measuring vibration, rotation, and movement of devices. The Global Positioning System 

(GPS) is the best option for determining the location of road anomalies since it offers 

current location information such as latitude, longitude, altitude, and speed. To establish 

the ground truth, an adequate data sampling rate should be chosen to capture all road 

surface information [86]. 

Here, we employed the three axes (X, Y, and Z) of gyroscope and accelerometer 

sensors, as well as orientation angles, namely Azimuth, Pitch, and Roll which are 

computed by using an accelerometer in conjunction with a magnetometer. The HTTP 

protocol is used to send the sensor data to the MySQL dataset for IoT data storage. Table 

2.2 contains a description of the sensors utilized. However, these sensors are sensitive to 
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the location of the device in the vehicle. Usually the device is attached near the gearbox, 

near the gearshift, dashboard, or windshield. In the data collection phase, data labeling was 

done in real time, with two people in the car, one driving and the other labeling. Road data 

have been collected as a time series, due to the timestamp included in each raw sensor data 

[85, 88]. 

Table 2. 2: A description of the sensors utilized to detect road surface anomalies. 

Sensor Name Units of measure Description 

Accelerometer 𝑚 𝑠2⁄  

Acceleration force over the 

X-axis 

Acceleration force over the 

Y-axis 

Acceleration force over the 

Z-axis 

Gyroscope 𝑟𝑎𝑑 𝑠⁄  

Rotation rate around the X-

axis 

Rotation rate around the Y-

axis 

Rotation rate around the Z-

axis 

Magnetometer µƬ 

Strength of the geomagnetic 

field through the X-axis 

Strength of the geomagnetic 

field through the Y-axis 

Strength of the geomagnetic 

field through the Z-axis 

Accelerometer and 

Magnetometer (orientation 

angles) 
Degrees 

Pitch (angle around the X-

axis) 

Roll (angle around the Y-

axis) 

Azimuth (angle around the 

Z-axis) 

GPS 
Degrees 

Current latitude value 

Current longitude value 

Current altitude value 

𝑚 𝑠⁄  Current  Speed value  

2.3.2. Data Preprocessing  

Several data preprocessing techniques were done to transform the acquired sensor 

readings into clean and organized data, which could enhance the success rate of road 

surface anomalies detection. The preprocessing techniques that utilized for transforming 

road data are presented in the following. 
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2.3.2.1 Data Filtering  

Longitudinal vibration peaks are considered by road engineers to be road surface 

anomalies. They all produce vibrations with different frequencies depending on the 

vehicle's speed. When passing through the same anomaly, not all vehicles produce the 

same longitudinal peak (depending on the vehicle's mechanical features). Driving speed 

also has significant effects on vehicle vibrations. Therefore, eliminating noise from the 

sensor data in order to smooth the signals and remove the speed dependency is critical [89, 

93]. The main techniques of filtering and smoothing are outlined below:  

Low-pass filtering: eliminate the high-frequency elements using a predefined 

frequency cut. 

High-pass filtering: eliminate the low-frequency elements using a predefined 

frequency cut. 

Band-pass filtering: A specific range of frequencies is used to pass some parts of the 

signals, while the other parts that are outside of that range are removed. 

Moving average filtering: A low pass filter where information about the sensor data 

does not need to be known before. 

 Median filtering: comes in the forms of high pass and low pass filters where 

information about the sensor data does not need to be known before. 

2.3.2.2 Resampling  

Time series readings from motion sensors have to be obtained to produce road data. 

Unfortunately, IoT devices have a built-in problem with irregular and inconsistent cross 

timestamps, which prevents them from providing a regular sampling rate. The analysis of 

every detected event is significantly affected by data sampling rates. Therefore, we 

resampled the time series data at a regular rate, utilizing the resampling function to 

increase and decrease the sampling rate of the time series data [93]. 
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2.3.2.3 Reorientation   

The orientation of motion sensors affects the results of road anomaly detection. 

Consequently, reorientation is commonly implemented to transfer motion sensors data 

from the IoT device's coordinates to the coordinates of the vehicle in order to maintain the 

research's logic and compactness [94]. Figure 2.2 illustrates the orientation of motion 

sensors inside the vehicle. 

                                             

Figure 2. 2: Motion sensors orientation inside the vehicle. 

To provide an approach that is not dependent on IoT device orientation, the n samples 

of motion sensors in which (𝑘𝑥(𝑛); 𝑘𝑦(𝑛); 𝑘𝑧(𝑛)) are combined into a single magnitude: 

                                     𝑚(𝑛) = √𝑘𝑥(𝑛)2 + 𝑘𝑦(𝑛)2 + 𝑘𝑧(𝑛)2             (2.1) 

In addition, Euler angles can be utilized to transform motion sensors’ signals from IoT 

device coordinates to a different geometric coordinate. 

2.3.2.4 Segmentation   

The motion sensors vibration signals need to be split into segments by applying a 

sliding window to facilitate time series data analysis. Each segment should offer accurate 

data on the condition of the road surface. Hence, experiments are carried out in which the 

window size is varied in order to identify which size provides the best performance. Data 

segmentation step is essential since the convolutional layer is used as the input layer for 

classifier models [91]. 
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2.3.2.5 Feature Extraction    

Feature extraction techniques are thought to be advantageous for RSC monitoring since 

they allow for the extraction of more valuable data from each segment. The extracted 

features from road vibration signals are often generated using wavelet decomposition, 

frequency domain transformation, and time domain computation [81, 95] (see Table 2.3). 

Table 2. 3: A presentation of the extracted features utilized in RSC monitoring. 

Input features Description Feature types 

Time-domain features 

Extract statistical variables 

that automatically reflect 

the signals' vibrations. 

-Standard deviation 

-Variance 

-Maximum value 

-Minimum value 

-Peak to peak 

-Root mean square 

-Mean of absolute value 

-Mean 

-Median 

Frequency-domain features 

Provides the frequency 

spectrum of the motion 

sensor signal by 

transforming it from the 

time domain to the 

frequency domain. 

-Fast Fourier Transform 

(FFT) 

-power spectral density 

(PSD) 

Wavelet decomposition 

It is a frequency transform 

with the advantage of being 

defined in both spatial 

frequency and spatial 

location. 

-Discrete Wavelet 

Transform (DWT) 

-Continuous Wavelet 

Transform (CWT) 

2.3.2.6 Feature Selection  

The features obtained from multiple domains are typically correlated, which may result 

in overfitting of the road surface anomalies detection classifier model. In many instances, 

feature selection comes after feature extraction in order to remove redundant features and 

enhance computing performance. To determine whether the features are correlated, we 

proposed three widely recognized correlation methods, namely Pearson, Spearman, and 

Kendall [96]. 

The Pearson correlation coefficient (𝑟) is an index of the strength of the linear 

relationship between two different variables (𝑎 and 𝑏). 
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                              𝑟 =
𝑛(∑ 𝑎𝑏)−(∑ 𝑎)(∑ 𝑏)

√[𝑛 ∑ 𝑎2−(∑ 𝑎)
2

][𝑛 ∑ 𝑏2−(∑ 𝑏)
2

]

             (2.2) 

The Spearman's rank correlation (𝑟𝑠 ) assesses both the strength and the direction of the 

relationship between two variables. Where 𝐷 is the rank difference and 𝑚 is a number of 

data pairs. 

                                                𝑟𝑠 = 1 −
6 ∑ 𝐷2

𝑚(𝑚2−1)
              (2.3) 

The equations above return values that range from -1 to 1, where: 

 A value between 0 and ± 0.39 indicates a Low correlation 

 A value between ± 0.4 and ± 0.59 indicates a Moderate correlation 

 A value between ± 0.6 and ± 1 indicates a High correlation 

Kendall's rank correlation (𝜏) offers an indicator of the strength of dependence based on 

the pattern of concordance and discordance among two variables. 

                          𝜏 =
2

𝑛(𝑛−1)
∑ 𝑠𝑔𝑛(𝑎𝑖𝑖<𝑗 − 𝑎𝑗) 𝑠𝑔𝑛(𝑏𝑖 − 𝑏𝑗)              (2.4) 

Kendall's rank correlation (𝜏) returns a value that ranges from 0 to 1, where: 

 0 indicates that there is no relationship. 

 1 is a perfect relationship. 

2.3.2.7 Feature Scaling     

The features extracted from road data have different distributions, resulting in a 

dominance of features with higher values and variance. Feature scaling addresses this issue 

by transforming the values of features to a similar scale, so that each feature is equally 

important. Normalization and Standardization are the two most commonly utilized 

methods for feature scaling [97, 98]. 
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Normalization, often referred to as Min-Max scaling, is a method that shifts and 

rescales features with a distribution range between 0 and 1. Here’s the general equation for 

Normalization: 

                                       𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑓− 𝑓𝑚𝑖𝑛 

𝑓𝑚𝑎𝑥− 𝑓𝑚𝑖𝑛 
              (2.5) 

The feature's maximum and minimum values are represented by 𝑓𝑚𝑎𝑥  and 𝑓𝑚𝑖𝑛  

respectively. 

Standardization, also known as Z-score normalization, is a method that rescales the 

features so that their standard deviation becomes 1 and their mean is 0. Here’s the general 

equation for Standardization: 

                                        𝑓𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =  
𝑓𝑟𝑎𝑤− 𝜇

𝜎
               (2.6) 

Where σ and µ refer for the standard deviation and mean, respectively.  

2.3.3. Classification  

Monitoring the road condition is a classification problem in which segment features are 

the inputs and road surface types are the outputs. Deep learning (DL) is commonly utilized 

as a classification approach in RSC monitoring due to its ability to find patterns and 

relationships among inputs features and the labels of classes. However, recent approaches 

in human activity recognition (HAR) [99], medical image analysis [100], machine 

condition monitoring [96, 101], and electric energy forecasting domain [102] have 

combined different DL models to design hybrid deep learning models for enhancing the 

classification performance. The hybrid deep learning models that were utilized in this work 

are presented below. 

2.3.3.1 Proposed CNN-LSTM and CNN-GRU Models      

In this work, we proposed hybrid deep learning models that combine CNN with LSTM 

or GRU layers. The proposed architecture uses CNN to extract spatial features, whereas 

long-term temporal dependencies are extracted by LSTM/GRU layers [99, 101, 103]. In 
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this way, the CNN layers were used on the front end of the CNN-LSTM and CNN-GRU 

models for obtaining spatial features from the input data, while the CNN outputs were used 

by the LSTM/GRU layers for learning temporal features. 

2.3.3.2 Proposed ConvLSTM Model       

ConvLSTM is an LSTM variant that utilizes a convolution operation within the LSTM 

cell to detect spatial features in data. In comparison to CNN-LSTM, ConvLSTM is 

designed to utilize 3D data as input and reduce spatial data redundancy; it has achieved 

significant success in video frame classification. ConvLSTM captures fundamental spatial 

features from multi-dimensional data by using convolution operations at each gate in the 

LSTM cell rather than matrix multiplication [104, 105]. Figure 2.3 illustrates the structure 

of the ConvLSTM cell. 

 

Figure 2. 3: ConvLSTM cell structure. 

2.4 First Proposed Framework  

The goal of this framework is to develop hybrid deep learning models for RSC 

monitoring, which employ a combination of FFT and DWT features as input. Indeed, 

sensor data from a smartphone's gyroscope, accelerometer, and orientation angles are used 

to make it easier to distinguish between road anomalies that cause two front wheels to hit 
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them at the same time and road anomalies that cause one front wheel to hit them at the first 

time. Also, we introduce a new technique for data labeling based on TCP/IP sockets that 

allow us to use a smartphone application to label sensor data in real time. 

2.4.1. First Architecture   

The first proposed framework's architecture is as follows: acquiring data related to road 

surface anomaly detection using motion sensors, preprocessing the collected data, dividing 

the dataset into train and test datasets, developing hybrid deep learning models for road 

surface anomaly classification, and evaluating the models through several evaluation 

metrics. Figure 2.4 depicts the architecture of the proposed framework. 

 

Figure 2. 4: The First proposed framework for road anomalies detection. 

2.4.2. Data Acquisition    

Our framework begins with the creation of the RSC dataset, which includes three 

different types of road surfaces: smooth road, man-made anomaly (speed humps and speed 

bumps), and real anomaly (potholes and cracks). A smartphone (Samsung, Galaxy J6+) 

was used to create the RSC dataset by employing accelerometer, gyroscope, and 

magnetometer sensors embedded into it. Further, we utilized the Android platform due to 

its status as the most common operating system for mobile devices [106]. After a thorough 

investigation, the GPS frequency sampling was fixed to 1Hz, while the sampling rate of the 

motion sensors was set to 50Hz. Inside the Renault Clio 4 vehicle, the smartphone was 

attached near the gear lever, where the y-axis was pointing forward and the z-axis was 

vertically orientated, while the x-axis was positive through the vehicle’s right side. A pair 
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of smartphones were utilized to collect data, as illustrated in Figure 2.5. The first 

smartphone was utilized to collect sensor data, while the other one was utilized for labeling 

the data in real time. When the first smartphone receives the road data label from the 

second smartphone (IRIS, Vox Fortis), it begins to send the device's current timestamp 

values, GPS data, and the three-axis motion sensors data to the database. 

 

 

Figure 2. 5: Data labeling approach via TCP/IP sockets. 

As shown in Figure 2.6, the two smartphones were communicating via a local network 

using a TCP/IP socket (client/server) [107]. Every smartphone has a socket, and each socket 

has been linked to a certain port number that it utilizes during the connection. In socket 1, a 

server runs on the first smartphone and just listens to socket 2 for a connection request from 

a client on the second smartphone. In socket 2, the client is aware of the first smartphone's 

IP address and port number, and it has to identify itself to the server. In the end, the road 

data label can be sent from socket 2 to socket 1 if the connection is established. 
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Figure 2. 6: TCP/IP Server–Client communication. 

The RSC dataset was created when we were traveling from the University of Blida 1 to 

Boufarik city via four separate itineraries namely: "via Parallel N1", "via A1/N1", "via N29 

and A1/N1", and "via Parallel N1". According to Google Maps, the distance is around 11-

15 km. The first and fourth Google Maps itineraries have the same name but differing 

itineraries, reflecting the road trip from the University of Blida 1 to Boufarik city. During 

the ride, we collected data for classifying three types of roads: class 1 (pothole or crack), 

class 2 (speed hump or speed bump), and class 3 (smooth road). In total, we collected 1 114 

062 data samples. All data were obtained by utilizing a Renault Clio 4 vehicle equipped with 

a MacPherson strut suspension, to ensure that the motion sensors measure in identical 

conditions on all itineraries. Table 2.4 shows the number of road anomalies, the distance, 

driving duration for each itinerary. 
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Table 2. 4: Distribution of road anomalies in the RSC dataset. 

Google maps path 

name  

speed 

bumps and 

speed 

humps 

potholes and 

cracks 
Distance 

Driving 

Time 

via Parallel N1       34          18  13.6 Km    40 min 

via A1/N1       14            7  13.3 Km    18 min 

via N29 and 

A1/N1 
      10          17  13.4 Km     33 min 

via Parallel N1       35          16  11.4 Km     37 min 

2.4.3. Preprocessing of Data   

After data acquisition, time series measurements from motion sensors need to pass 

several steps of preprocessing in order to make the input data clear and simple. First, we 

resampled the time series data to 50 Hz because the motion sensors data sampling rate was 

irregular, as illustrated in Figure 2.7a. In the Android app, the sampling rate for the motion 

sensors was set to 50 Hz. However, Android is unable to preserve regular motion sensors 

sampling because the sensors sampling is prevented by the Android operating system and 

background apps, which take priority over system resources [108].   

 

Figure 2. 7: Illustration of the resampling process showing (a) the original sensor 

sampling rate and (b) the new sampling rate. 

As shown in Figure 2.7b, the irregular time series data of the original measurements was 

converted to a regular rate utilizing the resampling functionality. The missing values can 
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then be interpolated to this new rate via a polynomial interpolation technique that tries to fit 

a polynomial curve to these missing data values. By doing so, we got 388 250 data samples 

after resampling.  

Second, data filtering is a prerequisite since motion sensors typically produce highly 

noisy signals, making the data unreliable. Therefore, we smoothed the sensor signals and 

eliminated noise using the moving average filter. A moving average filter is the simplest 

form of the low-pass filter which generates a new sample by averaging 𝐿 samples from the 

input signal [109]. Here’s the equation for the moving average filter: 

                                        𝑠[𝑖] =
1

𝐿
∑ 𝑒[𝑖 − 𝑗]𝐿−1

𝑗=0                (2.7) 

Where the average length is 𝐿, and the input and output signals are represented by 𝑒 and 

𝑠, respectively. 

Here, we set the length to three, which means that the new sample is the average of the 

last two data points and the present data point. Figure 2.8 depicts z-axis acceleration data 

before and after the use of the moving average filter. 

 

Figure 2. 8: Moving average filter of order L=3. 
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Third, the vibration data from the motion sensors were segmented using a sliding window 

of 1 second (50 samples), which is enough for representing any type of road anomaly when 

traveling at low speeds. In order to achieve this, we examined three overlapping factors: 

66%, 50%, and 33%, which indicates that portions of the sensor's data will show in multiple 

windows, as can be seen in Figure 2.9. 

 

Figure 2. 9: Sliding window with 50% overlap. 

Since some segments included samples with different road surface types (class labels), 

we deleted them all and labeled the remaining segments with the road data label that was 

present. When there was a traffic jam, we utilized the GPS data to delete smooth segments 

that had speeds below a certain threshold. Additionally, we used threshold-based filters to 

eliminate any segments with a road anomaly label and a speed above a certain threshold to 

deal with the effect of vehicle speed on motion sensors’ signals. The distribution of the new 

segmented datasets is given in Table 2.5. 

Table 2. 5: Distribution of the new segmented datasets. 

classes 66% overlap   50% overlap  33% overlap 

Smooth 6426 4105 3022 

Man-mad 

anomaly 
709 454 340 

Real anomaly 675 434 321 

All 7810 4993 3683 
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Fourth, the data were transformed using a multi-level 1D DWT combined with FFT to 

obtain information that is more useful from each segment, as illustrated in Figure 2.10. FFT 

provides spectral information, whereas the temporal location of the spectral components is 

given by DWT, that offers signal representations in the time-frequency plane. Specifically, 

we have employed the one-level coefficients of the Haar wavelet and the amplitude of FFT. 

The new segments have (50 × 9 wavelet coefficients + 50 × 9 FFT component amplitudes) 

= 900 samples. Compared to the original time-domain representation, these extracted 

features offer better classification performance.  

 

Figure 2. 10: Feature extraction using DWT and FFT. 

Fifth, feature selection is carried out on segment data (DWT and FFT) to eliminate 

redundant features and keep only those that are important. From a random segment, we 

calculate the correlation coefficient between 50 wavelet coefficients and 50 FFT component 

amplitudes in the same sensor and axis (see Table 2.6). As can be seen, all correlation 

coefficients of Kendall, Pearson, and Spearman are lower than 38%, indicating that there is 

a low correlation between DWT and FFT features. So, we selected all features in the segment 

as input. 

Finally, the features mentioned above have different value ranges. For instance, FFT 

provides a high amplitude at the first frequency and then drops to near zero. Every feature 

in the segment can be considered as noisy if its range of values is different. Consequently, 

the segment's features were standardized by subtracting the mean of every value and dividing 

by the standard deviation. 
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Table 2. 6: Correlation between DWT and FFT features. 

Features Kendall Pearson Spearman 

DWT1+ FFT1 0.01731 -0.18856 0.02335 

DWT2+ FFT2 -0.00577 0.10409 -0.01216 

DWT3+ FFT3 0.09646 0.14134 0.13232 

DWT4+ FFT4 0.18220 0.37227 0.23961 

DWT5+ FFT5 -0.02226 -0.13672 -0.02450 

DWT6+ FFT6 0.00412 0.02325 0.00879 

DWT7+ FFT7 0.03050 -0.13746 0.05136 

DWT8+ FFT8 0.01072 -0.10586 0.03186 

DWT9+ FFT9 -0.00907 0.19077 -0.01936 

2.4.4. Classifier Models   

Here, the CNN-GRU, CNN-LSTM, and CNN classifier models were employed to 

evaluate the proposed framework. The CNN employed in the experiment was a multi-

channel 1D CNN with convolution kernels that moved in one direction, as shown in Figure 

2.11. The following were the 1D CNN parameter settings: the kernel size of the 

convolutional layers was (1 x 3), the pooling layer was set at (1 x 2), the activation function 

employed was ReLU, the optimization algorithm employed was Adam, and the dropout 

function was employed at a rate of 0.1. 

 

Figure 2. 11: Structure of a multi-channel 1D CNN model. 
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The hybrid deep learning models combined multi-channel 1D CNN with GRU or LSTM 

layers, in which the CNN features were inserted into the LSTM/GRU layers, as illustrated 

in Figure 2.12. This allows the combined model to swiftly determine spatial and temporal 

features, which can prevent the loss of some important data during CNN training [110]. 

Further, Table 2.7 provides the parameter settings for the CNN-GRU and CNN-LSTM.    

 

Figure 2. 12: The architecture of the proposed CNN-LSTM and CNN-GRU models. 

 

Table 2. 7: The structure of the CNN- LSTM and CNN-GRU models. 

Parameter Parameter Settings 

Input data size 1×100 

Input channels 9 

Convolutional 

layers 
2 Conv2D 

Filters 32-64 

Filter size [1 x 3] - [1 x 3] 

Pooling size [1 x 2] 

LSTM/GRU 64-32 

Dropout 0.1  

Dense 128-64 

Activation 

function 
ReLU 

Optimizer adam 

Dropout 0.1 
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2.5 Second Proposed Framework  

The main idea of this framework is to develop 3D hybrid deep learning models to classify 

a vehicle’s vibration data from an IoT device. This idea is inspired by video frame 

classification [111], which tests the effectiveness of spatiotemporal feature learning. 

2.5.1. Second Architecture   

The architecture of the second proposed framework is as follows: building a new RSC-

IoT dataset and offering an explanation of the data labeling technique, performing a number 

of data preprocessing operations, and combining 3D hybrid deep learning models into two 

ensemble methods (see Figure 2.13). 

 

Figure 2. 13: The second proposed framework for road anomalies detection.    

2.5.2. RSC-IoT Dataset  

The RSC-IoT dataset was built for road surface condition monitoring, where a low-cost 

MPU-6050 with ESP32 microcontroller were used to record accelerometer and gyroscope 

data. Additionally, we used a smartphone that communicates with the ESP32 chip via 

Bluetooth to label raw sensor data in real time, as can be seen in Figure 2.14. The ESP32 

chip, recognized for its integrated Wi-Fi and Bluetooth, is an excellent choice for IoT devices 

due to its low cost and power efficiency. During driving on three road surface types, namely 

"Man-made anomalies" (speed bumps), "Real anomalies" (potholes or cracks), and 

"Smooth" (flat road), the IoT device was attached to the top of the vehicle dashboard. Motion 

sensor data is transmitted to a local server using the HTTP protocol for IoT data storage. 
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Eventually, since every raw sensor data has a timestamp, 16669 data samples were acquired 

as time series.   

              

Figure 2. 14: Data labeling approach via Bluetooth. 

2.5.3. Data Transformation   

Four major steps were used in preprocessing to make the collected data clean and 

structured before the classification phase. At first, the time series data were resampled to 20 

Hz because the motion sensors data sampling rate was below average (3-5 Hz). Secondly, in 

order to minimize noise in motion sensors data, the median filter [112] was used. Thirdly, a 

2 second sliding window (40 samples) with a 66% overlap was used to segment the data, 

where every window has 240 components, as shown in Figure 2.15. Finally, in order to 

obtain a sufficient amount of samples from minority classes, the RSC-IoT dataset was 

manually split into train and test segments after the data segments had been standardized 

(see Table 2.8).  
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Figure 2. 15: Segmentation of sensors data with a 2 seconds and 66% overlap. 

 

Table 2. 8: Distribution of data before and after preprocessing. 

Step         Smooth 
Man-made          

anomalies                        
   Real anomalies 

Data collection          13139            783             2747 

Resampling         77473          6103           15607 

Segmentation  
Train Test Train Test Train Test 

 4771 1006  313  107   918  176  

2.5.4. The Hybrid 3D Models   

Time series classification problems were well-suited for recurrent neural network (RNN) 

models such as LSTM and GRU because of their ability to identify long-term dependencies 

in the data. Since 3D models are typically used to learn spatiotemporal features from video 

frames, and as this study is inspired by video frame classification [113], both LSTM and 

GRU are not appropriate due to the one-dimensional format of their input data, which 

prevents the extraction of spatial features. To extract spatial features from multi-dimensional 
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input data, we built three hybrid deep learning models in which all CNN layers are wrapped 

by the TimeDistributed (TD) function [114]. The hybrid deep learning models are as follows: 

TD-CNN-GRU, TD-CNN-LSTM, and ConvLSTM. In order to provide a fair comparison 

between ConvLstm and standard CNN-LSTM results, the ConvLSTM model was not 

wrapped with a TD function. The structures of the three hybrid deep learning models are 

shown in Tables 2.9 and 2.10. The input was reshaped to the form (4, 10, 6, 1) before 

applying the 3D models, meaning that every frame of data represents 0.5 seconds of road 

data. 

Table 2. 9: The structure of the ConvLSTM model. 

Layer Parameter Settings 

ConvLSTM2D filters: 32, filter size: [3 x 3], tanh activation 

MaxPooling3D Pooling size: [1 x 2 x 2], padding: same  

Dropout 0.25  

ConvLSTM2D filters: 64, filter size: [2 x 2], tanh activation 

Dropout 0.25  

Flatten -  

Dense n_neurons : 1024, relu activation 

Dropout 0.25 

Dense n_neurons : 1024, relu activation 

Dropout 0.25 

Dense n_neurons : 3, softmax activation, adam Optimizer 

 

Table 2. 10: The structure of the TD-CNN-GRU and TD-CNN-LSTM models. 

Layer Parameter Settings 

Conv2D filters: 32, filter size: [3 x 3], relu activation 

Conv2D filters: 32, filter size: [3 x 3], relu activation 

MaxPooling2D Pooling size: [2 x 2] 

Dropout 0.25   

Conv2D filters: 64, filter size: [3 x 3], relu activation 

Conv2D filters: 64, filter size: [3 x 3], relu activation 

Dropout 0.25  

Flatten -  

GRU/LSTM units: 64, relu activation, return sequences: True 

GRU/LSTM units: 32, relu activation, return sequences: False 

Dropout 0.1   

Dense n_neurons : 1024, relu activation 



83 

 

        Table 2.10 (continued) 

Dropout 0.25 

Dense n_neurons : 1024, relu activation 

Dropout 0.25 

Dense n_neurons : 3, softmax activation, adam Optimizer 

 

2.5.5. Ensemble Learning Methods    

The 3D models were combined to perform the averaging and weighted average 

ensembles. Here, ensemble learning involves combining the outputs of the three 3D models 

to achieve more accurate predictions than the individual models. 

2.6 Third Proposed Framework  

The overall goal of this framework is to identify road surface anomalies using 3D hybrid 

deep learning models with synthetic time-series data to achieve peak performance. This 

framework is critical in demonstrating the benefit of data augmentation approaches in 

diversifying accessible information and keeping dataset balance. 

2.6.1. Third Architecture     

The third proposed framework shares the same architecture as the second, with the 

exception that it uses data augmentation to create synthetic time series training data for 3D 

hybrid deep learning models (see Figure 2.16), which enable the models to reliably and 

accurately identify anomalies in the road surface. 
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Figure 2. 16: The third proposed framework for road anomalies detection. 

 

Based on the RSC dataset obtained from the first framework, we trained TD-CNN-GRU, 

TD-CNN-LSTM, and ConvLSTM models to classify road anomalies. The RSC dataset 

exhibits imbalance, as demonstrated in Table 2.11. Consequently, data augmentation 

approaches were employed to address the problem of imbalanced classification. 

Table 2. 11: RSC dataset description. 

classes Road Anomalies Number of Samples 

Man-mad anomaly 
Speed bump 

                50354 
Speed hump 

Real anomaly 
Rough 

                 41722  
Pothole 

Smooth Smooth              1021986 

In comparison to the second framework's data segmentation step, the data were 

segmented here using a sliding window of 3 seconds (150 samples) with 66% overlap. Each 

segment, as illustrated in Figure 2.17, consists of 3-axis accelerometer data, 3-axis gyroscope 

data, and orientation angles (1350 samples). After the segmentation, we obtained 2234 data 

segments, including 2028 segments of "Smooth" label, 133 segments of "Real anomalies" 

label, and 73 segments of “Man-made anomalies” label.   
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Figure 2. 17: Sensor data segmentation of 3 seconds and 66% overlap. 

2.6.2. Data Augmentation     

In RSC monitoring, it is well-known that driving over a road surface anomaly is an 

uncommon event, hence the quantity of speed bumps, speed humps, potholes, and cracks 

data is frequently considerably smaller than that of smooth roads. Data augmentation is an 

approach that handles the class imbalance problem by transforming the original data 

samples into synthetic data without affecting the data labels. Contrary to image data, it is 

challenging to confirm by human observation that the augmented data's label information 

has been preserved in the case of motion sensors data. Therefore, usually, the augmented 

data are only added to the training data to determine whether label information is preserved 

during data augmentation. To investigate the impact of data augmentation on road anomaly 

classification, classifier models were built in order to compare the results of models trained 

with the unbalanced and balanced training data using traditional time series data 

augmentation approaches[115-117], SMOTE algorithm [118, 119], and a GAN-based 

synthetic time series data generator called DoppelGANger [120].  

Traditional data augmentation techniques have been successfully used to generate 

synthetic data in computer vision. However, changes caused by traditional time series data 
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augmentation techniques such as jittering, scaling, and rotation have no effect on the 

sensor data labels as shown in Figure 2.18. These techniques are as follows. 

Jittering: Jittering is a technique that simulates additive sensors noise.  

Scaling: Scaling is a technique that modifies the magnitude of data in a window 

through multiplying it with a random scalar. 

Rotation: Rotation is a technique that simulates different sensor positions. 

 

Figure 2. 18: Traditional time series data augmentation techniques. 

SMOTE (Synthetic Minority Oversampling Technique) is a data augmentation 

technique that generates synthetic data for the minority class based on existing data points. 

The main idea behind SMOTE is to generate synthetic data between every minority class 

sample and its k nearest neighbors. The SMOTE algorithm works as follows: 

 Selecting the data points from the minority class. 
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 Identifying the 𝑘 nearest neighbors of the minority class data points. 

 Generating new synthetic data points at random locations among all the neighbors 

until the problem of data imbalance is rectified. 

Traditionally, generative adversarial networks (GANs) have had difficulty with the 

characteristics of time-series data. To overcome this problem, DoppelGANger was created 

by modifying a GAN to better suit the objective of time series data generation. The 

DoppelGANger's generator includes an LSTM to capture long-term temporal correlations 

and generate synthetic time series data, while the discriminator tries to differentiate 

between real and synthetic data [121]. 

For each of these data augmentation approaches, raw sensor data from the RSC dataset 

were selected randomly to generate synthetic data. Then, the augmented data were 

preprocessed, segmented, and combined with the training data for the classification phase. 

Table 2.12 shows the distribution of training data segments by road condition class labels.  

Table 2. 12: Distribution of training data segments before and after data               

augmentation. 

Data Aug. approaches Real anomalies 
Man-made 

anomalies 
      Smooth  

No augmentation             89            51         1423 

Traditional 

approaches 
         686          778          1423 

SMOTE          836          798          1423 

DoppelGANger           683          752         1423 

2.7 Proposed RSC Monitoring Architecture using IoT Search Engine  

As more smart cars are being used, more IoT data are being generated, making it 

difficult for RSC monitoring systems to find specific IoT data. Therefore, there is a need 

for an IoT search engine to provide query resolution services to aid RSC monitoring 

systems efficiently find relevant IoT data. The Internet of Things has had a significant 

impact on advanced manufacturing, healthcare, smart cities, and intelligent transportation. 

In intelligent transportation, smart cars are equipped with IoT devices. These IoT devices 

contain sensors such as cameras, GPS, proximity sensors, vibration sensors, etc, which 

detect changes in the external physical world and record them. Thanks to GPS sensor, 
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smart cars are capable of offering the shortest route to the destination, as well as 

anticipated traffic and travel time. However, since it depends on the preferences of the 

drivers, such as comfort and ease of driving, the best path may not always mean the 

shortest trip time or distance. The optimal path is defined as the one with the shortest trip 

time, the shortest travel distance, and the fewest road surface anomalies. This means the 

road condition should be considered as an additional factor in determining the best path. In 

this work, we focused on the design of an IoT-based road surface condition monitoring 

system that continuously provides road anomalies locations for drivers that prefer the path 

with the fewest road surface anomalies. Figure 2.19 depicts the overall workflow of the 

proposed IoT-based RSC monitoring system using the IoT search engine (IoTSE). 

 

Figure 2. 19: The architecture of the proposed RSC monitoring using IoT search engine 

(IoTSE). 

The proposed system recommends self-driving cars to the destination using the path 

with the fewest road surface anomalies. Our framework of the IoT search engine (IoTSE) 

is inspired by the studies [74, 75] and is as follows:  
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Step 1: A self-driving car sends queries to a third-party service provider to find the 

path with the fewest road surface anomalies.  

Step 2: The third-party service sends again the queries to the IoT search engine 

(IoTSE). 

Step 3: Based on the user's location, the IoTSE utilizes an IoT crawling algorithm to 

collect GPS and vibration sensors data from IoT devices embedded in smart cars on the 

road. 

Step 4: The sensor's data are again transmitted to the third party service provider for 

collecting and preprocessing.  

Step 5: The third-party service provider detects road surface anomalies using pre-

trained hybrid deep learning models.  

Step 6: Finally, the self-driving car can find the most convenient path to the destination 

with the fewest road surface anomalies. 

2.8 Proposed RSC Monitoring Architecture using Cloud Computing 

The trend of combining cloud computing and IoT technology has gained popularity in 

the past decade. Cloud computing is a component that helps the Internet of Things succeed 

by addressing the problem of collecting and analyzing sensor data that can be utilized later 

to monitor any system. The overall workflow of the proposed IoT-based RSC monitoring 

system using cloud computing is detailed in Figure 2.20. 
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Figure 2. 20: The architecture of the proposed RSC monitoring using cloud computing.  

The proposed system provides drivers with the geographical location of detected road 

anomalies. This work has several steps that can be summarized as follows:  

Step 1: GPS and vibration sensors data are continuously captured by IoT devices 

embedded in smart cars on the road. 

Step 2: The data are transmitted to the cloud computing platform over the internet via 

cellular networks. 

Step 3: The sensors data are continuously received in the cloud for collecting and 

preprocessing. 

Step 4: The preprocessed data are again transmitted to a third party service provider. 

Step 5: The third-party service provider detects road surface anomalies using pre-

trained hybrid deep learning models.  

Step 6: Finally, using smartphones or tablets, drivers are able to show the geographic 

location of the detected road surface anomalies on a street map offered by the third-party 

service provider. 
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2.9 Conclusion  

In this chapter, we presented road surface condition monitoring systems that detect road 

anomalies using hybrid deep learning models. The systems are based on motion sensors 

from smartphones and IoT devices. These systems include data collecting, preprocessing, 

and classification, where the vibration-based method is used to collect time series data. 

Further, two datasets, RSC-IoT and RSC dataset, were created and labeled in real time 

utilizing a smartphone via Bluetooth and a TCP/IP socket, respectively. We also proposed 

RSC monitoring architectures based on cloud computing and the IoT Search Engine 

(IoTSE). 
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CHAPTER 3: BIG DATA AND MACHINE LEARNING FOR IOT INTRUSION 
DETECTION SYSTEM 

3.1 Introduction 

The Internet of Things (IoT) is an innovative framework for the future internet in which 

interconnected structures of devices connect to the internet in order to enable smooth data 

exchange. IoT devices can be controlled and monitored remotely. Some of these devices 

include smart washing machines, self-driving cars, smart toothbrushes, industrial robots, 

smart lights, medical and healthcare equipment [122]. Due to the extensive growth of IoT 

networks and the constantly expanding applications they support, hackers are now able to 

target these networks with a variety of security threats [123]. 

Intrusion detection systems (IDS) served as an essential means for protecting 

information systems and IoT networks for many years. IDS includes software or hardware 

that detects unlicensed usage on IoT systems. Through monitoring all traffic that enters and 

exits the network, the IDS is a highly effective tool for network security. IDS technology 

has developed for traditional networks, however existing solutions are insufficient for IoT 

since they are not sufficiently adaptable to handle the diverse and complicated IoT 

environment [124].  

In fact, artificial intelligence (AI) techniques could be employed to solve the need for 

the creation of advanced security technologies adapted to the IoT. These days, intrusion 

detection systems (IDS), have been using ML and DL algorithms as novel tools to improve 

their effectiveness in securing IoT networks. In addition, efforts have been made to 

enhance threat detection and avoidance with ML and DL based solutions, with a focus on 

identifying dangerous IoT traffic flow through pattern recognition of ordinary and irregular 

traffic during the training stage [125, 126]. 

Big amounts of data are generally generated by IoT devices and are transmitted over 

networks. Network attacks might modify data that flows via a network. Combining big 

data and artificial intelligence technology can help secure the IoT network by identifying 

and classifying attacks [70]. 
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A variety of datasets are employed in the fields of IoT security, big data, and the 

experimental research of ML and DL. IoT security can be described as protecting the IoT 

network infrastructure and its components from attacks. The tools required for efficiently 

analyzing data that have been defined as big data are known as big data technologies. 

Further, to process IoT network data, algorithms based on ML and DL are useful in order 

to identify zero-day attacks and anomalies in network traffic [125]. 

IDS experiments have been lately conducted using numerous publicly available IoT 

datasets. Nevertheless, there is an underlying class imbalance problem with these datasets 

that can lead to low performance in minority classes. Various data sampling approaches, 

such as oversampling, undersampling, and ensemble resampling, are typically employed 

since achieving high accuracy in detecting intrusions requires balancing the dataset [127, 

128]. 

In this chapter, we introduced a big data architecture that applies ML to perform multi-

class classification on an imbalanced dataset for monitoring IoT network traffic. The 

primary objective of this study is to address the issue of class imbalance and enhance 

classification performance through the use of an ensemble resampling technique in 

conjunction with oversampling. Furthermore, the final predictions are computed utilizing 

the ensemble learning methodology. 

3.2 Literature Review  

In the field of computer science, there has been a lot of interest in the research and 

development of intrusion detection systems (IDS) due to the growing number of networks 

and security threats. The IDS is a tool that analyzes network traffic to identify any 

suspicious patterns or known attacks. This section covers the main approaches and selected 

datasets utilized in IDS solutions. Also, some recently published papers on IDS 

publications are presented. 

3.2.1. IDS Approaches    

In the context of IoT security, various attacks against IoT networks have been 

discovered in the literature. In order to identify these attacks, several features can be 
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extracted from the network traffic flow and stored in a dataset [129]. In general, three main 

types exist for intrusion detection approaches [130]:  

 The signature-based detection: is based on databases that comprise patterns or 

attack signatures to detect well-known attacks. 

 The anomaly-based detection: analyzes the behavior of users, networks, and system 

hosts which then alerts the administrator whenever the behavior deviates from the 

expected behavior. 

 The hybrid-based detection: combines the signature-based detection approach with 

the anomaly-based detection approach. 

However, each intrusion detection approach has strengths and limitations [122, 131]. A 

summary of intrusion detection approaches' pros and cons is provided in Table 3.1.  

Table 3. 1: The advantages and disadvantages of intrusion detection approaches. 

Detection methods Pros Cons 

Signature-based detection 

-Easiest and more 

successful in identifying 

known attacks. 

-Design is simple. 

-Identifies the intrusions 

quickly. 

-Highly effective in 

detecting intrusions with 

minimal false alarms. 

-Incapable of identifying 

novel attacks and variations 

on known attacks. 

-New signatures should be 

added on regularly. 

-Inappropriate for 

identifying multi-step 

attacks. 

Anomaly-based detection 

-Efficient at finding 

unexpected and novel 

vulnerabilities. 

-Finding new attacks is the 

main goal of it. 

-Make it easier to identify 

incidents of privilege abuse. 

-Possibility of generating an 

intrusion signature. 

-Initial training is required. 

-Setting off alarms at the 

proper time is challenging. 

-There are a lot of false 

positive alarms. 

-Not classified alerts. 

Hybrid-based detection 

-Recognize both known and 

unknown attacks. 

-Reliability and 

confirmation of alerts. 

-Increase the complexity 

and resource requirements 

of the system. 

- Detecting attacks takes 

quite a while. 

 

Security technology has recently seen a trend toward the employment of popular ML 

and DL classifiers for building IDS to monitor IoT network traffic. The goal is to use 
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binary and multiclass classification to detect cyberattacks. These classifier algorithms 

analyze and detect patterns in IoT network traffic data. In fact, a huge quantity of data is 

continuously produced by IoT devices which are used more and more in our daily lives. 

Thus, big data processing is required in order to extract useful information from such data. 

Because some data are imperfect, data cleaning, transformation, normalization, and 

dimensionality reduction are frequently performed to reduce the complexity of data and 

minimize processing time [132]. In order to improve final predictions, ML or DL 

algorithms are often combined using ensemble learning methods [133, 134]. 

3.2.2. IDS Datasets    

The hackers aimed to utilize malicious activities to weaken the resources of the targeted 

IoT network, necessitating the usage of intrusion detection systems (IDSs). In order to train 

and evaluate IDS in IoT networks, anomaly detection datasets are required, which could 

also be used for the evaluation of ML and DL algorithms' performance. However, because 

there are insufficient organized IoT datasets for intrusion detection, IoT networks are 

challenging to analyze and evaluate. The following is a description of some popular 

datasets that contain IoT traffic: 

MQTTset: The dataset MQTTset was created by Vaccari et al. [135]. This dataset 

contains 541,071 instances for training and testing. In order to simulate a smart IoT 

environment, the MQTT protocol was used to communicate between multiple IoT devices. 

MQTTset dataset class categories consist of SlowITe, Malformed Data, MQTT Publish 

Flood, Flooding DoS, Bruteforce Authentication, and Normal. 

MQTT-IoT-IDS2020: The dataset MQTT-IoT-IDS2020 was created by Hindy et al. 

[136]. This dataset has 3,654,006 data instances. The most typical MQTT attacks are 

included, along with scenarios for real-life tests equipment. The class categories of the 

MQTT-IoT-IDS2020 dataset include Sparta, Scan-U, Scan-A, MQTT-Bruteforce, and 

Normal. 

IoT Network Intrusion: The IoT Network Intrusion dataset was generated by Kang et 

al. [137]. This dataset was processed using a typical smart home design that included an 

EZVIZ Wi-Fi camera and a smart home SKT NGU. There are 625783 data instances in the 



96 

 

IoT Network Intrusion dataset. It comprises the following class categories: Normal, 

Scanning, Mirai Botnet, MITM, and DoS. 

IoT-23: This dataset is based on network traffic that was collected by IoT devices 

using three benign and twenty malicious captures. The Stratosphere Laboratory of Czech 

Technical University (CTU) created the IoT-23 dataset. The IoT-23 dataset includes 10 

class categories and 106,542,182 data instances [138]. 

TON_IoT: The TON_IoT Telemetry dataset is the next generation of IoT and 

Industrial IoT datasets designed to evaluate the effectiveness and accuracy of various AI-

based cybersecurity systems. This dataset was provided by Moustafa et al, IoT Laboratory 

at UNSW Canberra, Australian Defence Force Academy (ADFA) [139]. 

UNSW-NB15: The UNSW-NB 15 dataset was produced using the UNSW Canberra 

Cyber Range Lab's IXIA PerfectStorm tool. The aim is creating a combination of fake 

contemporary attack behaviors and realistic modern daily activities. This dataset contains 

175,341 instances for training and 82,332 instances for testing [140]. 

BoT-IoT: The BoT-IoT dataset will be described in detail in the next section. 

3.2.3. A Review of IDS Studies    

A substantial amount of research has been done in recent years on the Internet of 

Things security. The security of the IoT is more susceptible to vulnerabilities and attacks. 

IoT security is entirely dependent on the functionality of the Intrusion Detection System 

(IDS) [141]. Table 3.2 provides an overview of some recent IDS studies that made use of 

IoT traffic datasets. 
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Table 3. 2: Summary of studies that used IoT traffic datasets. 

Reference Datasets Detection Approach Contributions 

Saheed et al. [142] UNSW-NB15 Signature-based 

Applying an 

intelligent 

combination of 

feature 

dimensionality 

reduction and ML 

techniques, which 

created an 

intelligent IDS that 

can identify 

suspicious behavior 

on insecure IoT 

networks. 

Saba et al. [143] BoT-IoT Anomaly-based 

Presenting an 

anomaly-based IDS 

based on CNN that 

exploits the 

potential of the IoT 

by offering 

capabilities to 

effectively analyze 

all traffic passing 

through it. 

Albulayhi et al. 

[144] 
IoTID20 Anomaly-based 

-Developing a 

hybrid feature 

selection method by 

utilizing the theory 

of mathematical 

sets. 

-Combining a 

majority voting 

system and a variety 

of ML methods to 

build an intelligent 

intrusion detection 

system that achieves 

the highest rate of 

detection 
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Table 3.2 (continued) 

Simon et al. [145] NSL-KDD Signature-based 

Employing a 

classifier that 

combines CNN and 

DT algorithms to 

identify attacks in 

the Internet of 

Things network. 

Sahu et al. [146] IoT-23 Signature-based 

-Employing a 

hybrid deep learning 

model called CNN-

LSTM to identify 

attacks and monitor 

IoT networks. 

-A comparison of 

the CNN-LSTM 

model with other 

recent, related 

research studies. 

Zhang et al. [147] 

CSE-CIC-IDS2018 

CIC-IDS2017 

NSL-KDD 

Signature-based 

Applying the 

ICVAE-BSM 

method to 

efficiently identify 

minority intrusions 

from unbalanced 

IoT samples. 

Ferrag et al. [148] 

TON_IoT 

MQTTset 

Bot-IoT 

Signature-based 

Developing 

federated learning 

models using three 

DL algorithms, 

which are RNN, 

CNN, and DNN to 

provide more 

accurate results and 

assure the privacy of 

IoT device data. 

Demirpolat et al. 

[149] 

UNSW-NB15 

Bot-IoT 
Signature-based 

Software defined 

networking (SDN), 

which used a few-

shot learning 

classifier to address 

the problem of 

building ML models 

with few training 

samples. 
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Table 3.2 (continued) 

Ramadan et al. 

[150] 
NSL-KDD Anomaly-based 

- Presenting a 

hybrid IDS for 

detecting IoT 

network attacks. 

- Using the ESFL 

algorithm for 

feature extraction. 

-Applying a hybrid 

classification 

algorithm called the 

LCNN-GRNN. 

Abushwereb et al. 

[151] 
Bot-IoT Signature-based 

-Using Apache 

Spark to create a big 

data framework for 

classifying IoT 

network intrusions. 

- Utilizing the entire 

dataset as well as 

the shorter version 

of the BoT-IoT 

dataset. 

Manzano S et al. 

[152] 
Bot-IoT Signature-based 

-Developing a 

Hadoop-Spark 

cluster-based 

platform for big 

data analysis and 

processing. 

-Using One-Class 

SVM to assess if the 

flow of traffic is 

malicious or benign, 

and an RF Multi-

class model to 

define the attack 

type. 
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Table 3.2 (continued) 

Manzano et al. 

[153] 
Bot-IoT Signature-based 

-Introducing a big 

data architecture 

that employs 

Hadoop-Spark for 

classification of 

multiple classes 

using a one-vs-rest 

technique. 

-Evaluating the 

effectiveness of 

three oversampling 

techniques: 

CTGAN, SMOTE, 

and ADASYN in 

producing additional 

instances from 

minority classes. 

 

This study aims to employ a signature-based detection approach for IoT intrusion 

detection using the full BoT-IoT dataset in the Apache Spark environment. In fact, a 

number of solutions have been created to deal with the issue of imbalanced classification in 

the BoT-IoT dataset. As far as we are aware, there are just three researches [151–153] that 

employed multi-class classification using the whole BoT-IoT dataset in a big data 

environment. In this case, we perform more accurate classification studies in a big data 

environment using the BoT-IoT dataset. Our methodology is original in comparison to 

previous studies because it employs a novel technique that combines ensemble resampling 

and oversampling to address the issue of class imbalance. Additionally, in order to achieve 

superior prediction results, we combine 𝑛 separate ML models built on Apache Spark 

using a weighted average ensemble. 

3.3 Proposed Methodology for IoT Network Intrusion Detection  

The proposed intrusion detection methodology is described in extensive detail here. 

The first step in this process is to load the BoT-IoT dataset, following which data 

preprocessing is necessary to put the data in a format that is easier for analysis. The next 

phase involves using an ensemble resampling method in combination with oversampling to 
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address the problem of the imbalanced dataset. The Decision Tree ML algorithm is then 

employed in order to identify patterns in network traffic that could lead to the detection of 

attacks on the data features. It is essential to implement forensic analytics that employ big 

data and ML. After that, the ensemble learning method is used to incorporate the 

predictions for obtaining the final result. This approach has similarities to the bagging 

method, with the exception that we manually pick the data points and resample the data via 

oversampling, and the weighted average ensemble is used to obtain the final predictions 

instead of selecting random data with replacement then incorporating the results using the 

averaging ensemble. However, data analysis is done using a Big Data environment called 

Apache Spark because of the size of the BoT-IoT dataset. Figure 3.1 shows the architecture 

of the proposed methodology. 

 

Figure 3. 1: Process of the proposed methodology. 

3.3.2. Data Description      

The creation of a realistic dataset is still a critical field of research when it comes to 

develop intrusion detection systems that detect cyberattacks. Numerous datasets have been 



102 

 

created in recent years, each with particular advantages and disadvantages. To successfully 

create a dataset of botnet traffic in IoT networks, Koroniotis et al [154] employed both real 

and simulated IoT network traffic. The dataset is known as Bot-IoT, and it includes a 

variety of attack types. The development of the Bot-IoT dataset involved the use of a 

realistic testbed, and a variety of tools to execute various botnet scenarios, as depicted in 

Figure 3.2. In order to guarantee the reliability of the dataset labeling procedure, a packet 

filtering firewall was employed.   

 

Figure 3. 2: The Bot-IoT dataset testbed environment [154]. 

Data features were generated by the Argus tool during the process of extracting 

network flow. These features were statistically examined via the joint entropy and 

correlation coefficient approaches. Given the huge quantity of data generated by IoT 

networks, big data analytics is necessary for the BoT-IoT dataset, which has over 73 

million data samples. However, the BoT-IoT dataset is available in two formats: the short 

version and the full dataset. The datasets are extremely unbalanced, as Tables 3.3 and 3.4 

demonstrate. Moreover, there are four attack types and one benign category. Each 

cyberattack type has a different collection of attack subcategories. The full BoT-IoT 

dataset was used in this study, which includes 32 network traffic features, as seen in Table 
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3.5. It is extremely unbalanced because the normal traffic and theft attack represent only 

0.01% and 0.002% of the total data samples. 

Table 3. 3: The full BoT-IoT dataset description. 

Category Subcategory  Number of records Ratio (%) 

Distributed Denial 

of Service (DDoS) 

TCP 

38532480 52.52  UDP 

HTTP 

Denial of Service 

(DoS) 

TCP 

33005194 44.98 UDP 

HTTP 

Reconnaissance 
OS Fingerprinting 

1821639 2.48 
Service Scanning 

Information Theft 
Keylogging 

1587 0.002 
Data Exfiltration 

Normal Normal 9543 0.01 

 

Table 3. 4: The short version BoT-IoT dataset description. 

Category Subcategory  Number of records Ratio (%) 

Distributed Denial 

of Service (DDoS) 

TCP 

1926624 52.52  UDP 

HTTP 

Denial of Service 

(DoS) 

TCP 

1650260 44.98 UDP 

HTTP 

Reconnaissance 
OS Fingerprinting 

91082 2.48 
Service Scanning 

Information Theft 
Keylogging 

79 0.002 
Data Exfiltration 

Normal Normal 477 0.01 

 

Table 3. 5: BoT-IoT dataset features description. 

Features Description 

drate Destination to source packets per second 

srate Source to destination packets per second 

rate Total packets per second in transaction 

dbytes Destination to source byte count 

sbytes Source to destination byte count 

dpkts Destination to source packet count 

spkts Source to destination packet count 
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Table 3.5 (continued) 

max Maximum duration of aggregated records 

min Minimum duration of aggregated records 

sum Total duration of aggregated records 

stddev Standard deviation of aggregated records 

mean Average duration of aggregated records 

dur Record total duration 

seq Argus sequence number 

ltime Record last time 

state Transaction state 

bytes Total number of bytes in transaction 

pkts Total count of packets in transaction 

dport Destination port number 

daddr Destination IP address 

sport Source port number 

saddr Source IP address 

Proto 
Textual representation of transaction 

protocols present in network flow 

flgs Flow state flags seen in transactions 

Stime Record start time 

pkSeqID Row Identifier 

 

3.3.2. Data Preprocessing    

3.3.2.1 Data Cleaning    

To simplify and clean the input data, several data preprocessing procedures must be 

used after loading the dataset. Data cleaning was carried out in the first step of data 

preprocessing by eliminating features that contained null data and those that were invalid 

(see Table 3.6). Following the removal of undesired features, we eliminated any record that 

had missing values. In the next step, we converted all string values corresponding to the 

attack types and features "flgs", "proto" and "state" into integer values. Several times, the 

'sport' and 'dport' features had hexadecimal values. Therefore, we transformed the values to 

0 to indicate that their port value is invalid [155]. 
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Table 3. 6: BoT-IoT features selection.  

     selected features  invalid features null data 

flgs dur dpkts pkSeqID smac 

proto mean sbytes saddr dmac 

sport stddev dbytes ltime soui 

dport sum rate stime doui 

pkts min srate daddr sco 

bytes max drate seq dco 

state spkts    

 

3.3.2.2 Train-Test Split     

The BoT-IoT dataset is extremely unbalanced, as was previously highlighted. 

Therefore, to ensure that there were a sufficient number of instances from Information 

Theft class and Normal class (minority classes) in train and test datasets, the dataset was 

manually split into train and test. This means that, as Table 3.7 explains, we select different 

proportions of data instances from each class. 

Table 3. 7: Distribution of instances in the training and testing datasets. 

Categories Train data Test data 

Normal 7314 (80.88%) 1758 (19.12%)   

Theft 1029 (65.34%) 549 (34.66%) 

Reconnaissance 1532782 (84.16%) 288409 (15.84%) 

DoS 32150808 (97.42%) 852288 (2.58%) 

DDoS 37342475 (96.92%) 1186516 (3.08%) 

All 71034408 (96.82%) 2329520 (3.18%) 

 

3.3.2.3 Handling Imbalanced Class Distribution      

In general, when an unbalanced dataset is classified, the majority classes are favored, 

which leads to the problem of misclassifying the minority classes. In order to improve the 

accuracy of predictions of the unbalanced classification, we employed a combination of 

oversampling and ensemble resampling in the aim to reduce the bias between classes. The 

training dataset is used by the ensemble resampling approach to generate 𝑛 training subsets 

from the majority classes (DoS, DDoS), which are then concatenated with the minority 

classes (Normal, Theft, and Reconnaissance). Figure 3.3 illustrates how all attack 
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subcategories are included on each of the 𝑛 training subsets and the test set, despite the fact 

that our work is limited to classifying only the attack classes. 

 

Figure 3. 3: Attack subcategory distribution in testing dataset and training subsets for n 

= 3. 

From the Train data, we replicated 7314 data instances from the Normal category to 

produce 300,000 extra data instances during the oversampling approach. In a similar way, 

we generated 200,000 additional data instances by replicating 1029 data instances taken 

from the Information Theft class. Subsequently, we combined each of the n training 

subsets with the newly generated data instances. Tables 3.8 and 3.9 show the new training 

subset distribution per class category. Finally, we compared the results of the SMOTE 

oversampling approach and the data duplication approach. Through the following process, 

SMOTE creates artificial samples for the minority class [127]: 

 The number of synthetic instances for each minority class is determined. 

 A random instance of the minority class is chosen. 

 The KNN algorithm is utilized to determine the 𝐾 nearest neighbors of the chosen 

instance. 

 One of the 𝐾 instances is chosen at random. 

 Through random interpolation, a new synthetic instance is created from the 

minority class instance and the chosen neighbor minority class instance. 
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 The operations in the previous four steps are repeated until the required amount of 

synthetic instances is achieved. 

Table 3. 8: Distribution of instances in the training subsets when n=3. 

Categories Train 1 Train 2 Train 3 

DDoS 12676809 12676720 12676683 

DoS 12153172 12153335 12153367 

Reconnaissance 1532782 1532782 1532782 

Theft 201029   201029 201029 

Normal 305881   305748 305687  

All 26869673 26869614 26869548 

 

Table 3. 9: Distribution of instances in the training subsets when n=6. 

Categories Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 

Normal 305462 305385 305357 305361 305334 305317 

Theft 201029 201029 201029 201029 201029 201029 

Reconnaissance 1532782 1532782 1532782 1532782 1532782 1532782 

DoS 6483181 6483984 6483028 6483251 6483612 6483823 

DDoS 6677066 6677468 6677435 6676859 6676470 6677343 

All 15199520 15200648 15199631 15199282 15199227 15200294 

3.3.3. Classification    

Predicting whether the flow of network traffic is malicious or benign is the objective of 

the classification process. For big data classification, Spark machine learning (ML) offers a 

set of tools and algorithms for effectively completing the classification task at scale, by 

utilizing Apache Spark's distributed computing capabilities. 

4.6.2.1 Apache Spark      

Apache Spark is the most commonly utilized framework for managing big data 

applications. The main advantage of Spark is its in-memory processing, which enables 

swift data processing. Additionally, it has proven to be incredibly scalable, maintaining 

performance even when several nodes are active. Spark works at a rate much faster than 

datasets working on hard drives because it is built on the Resilient Distributed Dataset 

(RDD), which is able to be kept in memory on cluster working nodes and is separated into 

various partitions [156]. For every program, a slave process named an executor is 
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established in each worker node. Its job is to run the tasks and cache the data in memory or 

drive. Task scheduling is performed by a master process known as driver that is created by 

each Spark program [157].  In order to run their Spark programs, Different cluster modes 

enable driver processes to establish connections with their standalone cluster manager or 

other popular cluster managers such as YARN [158], Mesos [159]. A diagram of Spark's 

cluster architecture is shown in Figure 3.4.  

 

Figure 3. 4: The spark cluster architecture 

3.3.3.2 Apache Spark MLlib      

As one of the most popular open-source libraries for big-data ML, Apache Spark MLlib 

provides classification algorithms that make writing implementations considerably easier. 

It includes a variety of ML tools for performing various tasks like: managing data, saving 

and load models, tuning ML pipelines, feature selection, feature extraction, etc. Several 

algorithms for multiclass and binary classification are available in MLlib [160]. The 

following is a list of supported algorithms for both scenarios. 

Multiclass Classification:  Naive Bayes, Random Forests, Decision Trees, Logistic 

Regression. 

Binary Classification:  Naive Bayes, Gradient-Boosted Trees, Random Forests, 

Decision Trees, Logistic Regression, linear SVMs. 
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3.3.3.3 Classifier      

Machine learning ML algorithms exhibit a bias towards the majority classes when 

performing an unbalanced Big Data classification task. In the full BoT-IoT dataset, the 

decision tree (DT) provided superior classification results than other Apache Spark ML 

algorithms [151]. On the other hand, Spark is obviously unsuitable for DL because 

algorithms such as RNN, CNN, and ANN are computationally expensive and challenging 

to integrate with Apache Spark. As a result, we used a decision tree, which is like most ML 

algorithms, is vulnerable to the imbalanced problem. In this work, the results of DT models 

that had been trained on 𝑛 training subsets were combined using a weighted average 

ensemble. The main idea is that every training subset produces a different result from the 

DT algorithm. As a consequence, the model's outputs balance each other out when 

combined. In the end, we utilized the averaging ensemble method to compare the weighted 

average results. 

3.4 Conclusion   

This chapter introduced a new big data architecture based on Apache Spark for 

detecting IoT network intrusions. To achieve this, oversampling and ensemble resampling 

techniques were combined in the first step to solve the issue of class imbalance. After that, 

we built a number of DT models for multiclass classification. In the end, the final 

predictions were obtained by applying a weighted average ensemble. After converting the 

Bot-IoT dataset into a suitable format during the data preprocessing phase, we tested the 

effectiveness of our methodology. 

 

 

 

 

 

 



110 

 

CHAPTER 4: EXPERIMENTAL EVALUATION AND RESULTS 

4.1 Introduction 

The experiments carried out to analyze Internet of Things data using artificial 

intelligence (AI) technologies are covered in Chapter 4. Our approach involves monitoring 

road surface conditions utilizing the RSC and RSC-IoT datasets. Further, we utilized the 

BoT-IoT dataset to detect IoT network intrusions. Through RSC and RSC-IoT datasets, 

hybrid deep learning models were trained to detect road surface anomalies in a multi-class 

classification problem with three classes. Likewise, the BoT-IoT dataset was used to train 

ML models in Apache Spark for detecting IoT network intrusions in a five-class 

classification situation. Google Colaboratory [161] was utilized to execute our 

methodology and evaluate the models that we created. All AI algorithms were written in 

Python, and graphical plots and performance metrics have been employed to evaluate the 

results. Based on the comparisons, the proposed algorithm's efficiency is verified. 

4.2 Performance Metrics  

Since our datasets suffer from class imbalance, some metrics can be misleading [162]. 

For this, we utilized metrics, namely Precision, Sensitivity (or Recall), Specificity, F1-

score, and Geometric Mean to assess the classification performance. These metrics treat 

majority classes and minority classes equally, which means that poor performance of 

minority classes will reduce the overall performance [163]. As demonstrated in Figure 4.1 

and Table 4.1, the metrics are based on the confusion matrix.   

A confusion matrix has become frequently utilized to visualize the reliability of AI 

classification algorithms. A confusion matrix is a table that offers an extensive look at the 

classification results and is composed of the following four components [164]: 

 True Positive (TP): A count of positive events accurately predicted to be positive 

by the AI algorithm. 

 True Negative (TN): A count of negative events accurately predicted to be negative 

by the AI algorithm.  

 False Positive (FP): A count of negative events wrongly predicted to be positive by 

the AI algorithm.  
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 False Negative (FN): A count of positive events wrongly predicted to be negative 

by the AI algorithm. 

Since errors have unique effects, it is crucial to distinguish between false positives and 

negatives. Usually, columns display the predicted classes and rows display the actual 

classes. 

 

Figure 4. 1: The confusion matrix's structure 

Table 4. 1: Performance metrics based on confusion matrix. 

                         Metrics                          Formula 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (Sensitivity) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1-score 
2 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

G-Mean √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  Specificity  

4.3 RSC Monitoring Experiments using the RSC Dataset   

As mentioned earlier, several hybrid deep learning models were developed for road 

surface anomaly classification. The RSC dataset was utilized in the first and third proposed 

frameworks that were described in Chapter 2. This section covers the experiments carried 

out in the first proposed framework [165]. Additionally, we randomly assigned 70% of our 

dataset to be utilized for training and the rest 30% to test purposes for each experiment. 

4.3.1. Performance for Different Input Domains and Data Types      

This part covers the experiments that were carried out to determine the most suitable 

combination of sensors and input features. By utilizing CNN and DNN models with 50% 



112 

 

overlap, we examine the effects of the input data that was used for monitoring road surface 

conditions. This means that selecting the appropriate type of sensor has a considerable 

impact on road anomaly detection ability. Three different sensor combinations were used 

to classify the road data, as shown in Table 4.2. The abbreviations Azimuth, Pitch, Roll, 

Gx, Gy, Gz, Ax, Ay, and Az corresponded to the orientation angles, three-axis gyroscope, 

and three-axis accelerometer, respectively. 

Table 4. 2: Performance for different sensor combinations using DNN and CNN 

models. 

Input Model Shape F1 Score Recall Precision Accuracy 

Ax, Ay, Az 
DNN (None,150) 0.7519 0.7146 0.8075 0.9012 

CNN (None,1,50,3) 0.8068 0.7814 0.8445 0.9186 

Ax, Ay, Az, Gx, Gy, Gz 
DNN (None,300) 0.7863 0.7460 0.8426 0.9186 

CNN (None,1,50,6) 0.8504 0.8130 0.8980 0.9406 

Ax, Ay, Az, Gx, Gy, Gz, 

Azimuth, Pitch, Roll 

DNN (None,450) 0.8243 0.7991 0.8539 0.9259 

CNN (None,1,50,9) 0.8678 0.8515 0.8857 0.9459 

In fact, the F1 score, recall, precision, and accuracy were used for evaluating these 

sensors' performance. Orientation, gyroscope, and Accelerometer are used in combination 

to provide DNN and CNN classifiers with 92% and 94% accuracy, respectively. This is a 

2% and 3% increase in accuracy over the employment of the accelerometer individually. 

Furthermore, when compared to the gyroscope and accelerometer combination, which 

produced 74%, 81% recall and 78%, 85% F1 score, the orientation, gyroscope, and 

accelerometer combination achieved much higher results with 79%, 85% recall, and 82%, 

86% F1 score. The 4% recall increase demonstrates the importance of employing 

orientation angles for enhancing the efficiency of recognition, particularly when 

distinguishing between man-made and real road anomalies. 

The study presented here additionally examines the results of transforming the original 

sensor signals (input data) from the time domain into the frequency domain and wavelet 

transformation. Table 4.3 below shows the results of multiple experiments using FFT 

amplitude components and various wavelet families, like Daubechies 6 (Db 6), Daubechies 

10 (Db10), Symlets 5, Haar, and Reverse Biorthogonal 3.1. Additionally, when using the 

Haar wavelets and FFT amplitude components, the CNN F1 score and accuracy are 87% 

and 95%, respectively, whereas for all other wavelet families, the results are F1 score of 
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86% and 94% accuracy. The table makes it clear that, in comparison to the time-domain 

input, the FFT-DWT combination offers better classification results. 

Table 4. 3: Performance for multiple features using DNN and CNN models. 

Input Model Shape F1 Score Recall Precision Accuracy 

FFT (amplitude) 
(None,450) DNN 0.8563 0.8408 0.8738 0.9453 

(None,1,50,9) CNN 0.8765 0.8608 0.8936 0.9519 

Db10 
(None,612) DNN 0.7542 0.7235 0.7933 0.8979 

(None,1,68,9) CNN 0.8610 0.8340 0.8965 0.9419 

Db6 
(None,540) DNN 0.7751 0.7298 0.8388 0.9085 

(None,1,60,9) CNN 0.8682 0.8503 0.8878 0.9459 

Sym5 
(None,522) DNN 0.7590 0.7192 0.8272 0.9052 

(None,1,58,9) CNN 0.8634 0.8346 0.8975 0.9453 

haar 
(None,450) DNN 0.7934 0.7735 0.8162 0.9166 

(None,1,50,9) CNN    0.8775           0.8561 0.9015  0.9526 

bior3.1 
(None,468) DNN 0.7758 0.7360 0.8298 0.9052 

(None,1,52,9) CNN 0.8686 0.8432 0.8990 0.9439 

FFT(amplitude)+h

aar 

(None,900) DNN 0.8689 0.8548 0.8868 0.9466 

(None,900) CNN 0.8805 0.8655 0.8968 0.9546 

 

4.3.2. A Comparison of Hybrid Classification Models     

Following the implementation of the proposed models, we discovered that both the 

CNN-LSTM and CNN-GRU models performed better than the CNN model. The hybrid 

model's performance was improved as a result of GRU and LSTM's ability to capture 

certain feature dependencies [166]. 

With three different overlapping factors, Table 4.4 displays the classification 

performance results. The results clearly demonstrated that the best performance was 

achieved with a 66% overlap. Achieving an F1 score of 92.41% and an accuracy of 

97.06%, the CNN-GRU model performed slightly better than the CNN-LSTM model, 

which achieved a 91.37% F1 score and a 96.67% accuracy. 

Figures 4.2, 4.3, and 4.4 display the confusion matrices for the classification results of 

the three models, in which we employed overlaps of 33%, 50%, and 66%. According to the 

confusion matrices, we can see that the majority of the smooth road segments were 

accurately identified. Furthermore, it seems that the models experienced several challenges 

when it came to distinguishing between man-made road anomalies like speed bump and 
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speed hump and real road anomalies like pothole and crack.  On the other hand, compared 

to the CNN-LSTM model, the CNN-GRU model achieves better results, this validates 

earlier results in the fields of human activity recognition [99] and electric energy 

forecasting [102]. 

Table 4. 4: Evaluation of the presented models using multiple overlap factors. 

overlap Model F1 Score Recall Precision Accuracy 

33% 

CNN-GRU 0.8857 0.8763 0.8972 0.9566 

CNN-LSTM 0.8888 0.8794 0.9002 0.9566 

CNN 0.8772 0.8625 0.8933 0.9520 

50% 

CNN-GRU 0.8879 0.8833 0.8935 0.9579 

CNN-LSTM 0.8920 0.8816 0.9030 0.9586 

CNN 0.8805 0.8655 0.8968 0.9546 

66% 

CNN-GRU 0.9241 0.9167 0.9318 0.9706 

CNN-LSTM 0.9137 0.9048 0.9230 0.9667 

CNN 0.9077 0.8977 0.9181 0.9620 

 

 

Figure 4. 2: Normalized confusion matrices of 33% overlaps for the (a) CNN, (b) 

CNN-LSTM, (c) and CNN-GRU classifiers. 
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Figure 4. 3: Normalized confusion matrices of 50% overlaps for the (a) CNN, (b) 

CNN-LSTM, (c) and CNN-GRU classifiers. 

 

Figure 4. 4: Normalized confusion matrices of 66% overlaps for the (a) CNN, (b) 

CNN-LSTM, (c) and CNN-GRU classifiers. 

4.4 RSC Monitoring Experiments using the RSC-IoT Dataset   

This section presents the performance evaluation of the experiments carried out for 

RSC monitoring utilizing the RSC-IoT dataset. A comparative analysis is conducted 

between the standard hybrid deep learning models and the 3D hybrid deep learning models 

that have been presented in the second proposed framework (Chapter 2). Table 4.5 and 

Figures 4.5, 4.6, 4.7, 4.8, and 4.9, show that TD-CNN-GRU and TD-CNN-LSTM 

performed better than the standard CNN-GRU and CNN-LSTM, whereas the ConvLSTM 

outperformed the standard models slightly. The results of the prediction highlight the 

benefits of using the TimeDistributed layer for analyzing time series data in RSC 

monitoring. In addition, the advantage of ConvLSTM over CNN-LSTM demonstrates that 

convolution operation, as an alternative to matrix multiplication [167, 168], produces better 

results in RSC monitoring. 
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Table 4. 5: A comparative evaluation of the proposed models. 

   Method Input shape   F1 Score Recall Precision Accuracy 

ConvLSTM (4,10,6,1) 0.8998 0.8611 0.9475 0.9449 

TD-CNN-GRU (4,10,6,1) 0.9202 0.9002 0.9427 0.9535 

TD-CNN-LSTM (4,10,6,1) 0.9300 0.9201 0.9404 0.9573 

CNN-GRU (10,6,4) 0.8933 0.8556 0.9405 0.9410 

CNN-LSTM (10,6,4) 0.8887 0.8536 0.9318 0.9426 

 

 

Figure 4. 5: Confusion matrices of the standard CNN-LSTM. 

 

Figure 4. 6: Confusion matrices of the standard CNN-GRU. 



117 

 

 

Figure 4. 7: Confusion matrices of the TD-CNN-LSTM. 

 

Figure 4. 8: Confusion matrices of the TD-CNN-GRU. 

 

Figure 4. 9: Confusion matrices of the ConvLSTM. 
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In order to lower the variance in the prediction errors, the predicted results obtained 

from TD-CNN-LSTM, TD-CNN-GRU, and ConvLSTM have been combined to build a 

weighted average ensemble and an averaging ensemble. A comparison of the weighted 

average ensemble with the averaging ensemble is presented in Table 4.6 and Figures 4.10, 

and 4.11. The results indicate that the weighted average ensemble outperformed the 

averaging ensemble. This is because the performance of the averaging ensemble was 

negatively impacted by the ConvLSTM model's inferiority to the TD models. When the 

weighted average ensemble is used, the weights of the ConvLSTM, TD-CNN-GRU, and 

TD-CNN-LSTM are obtained as follows: 𝑤1= 0.1,  𝑤2= 0.1, and  𝑤3= 0.2. Because we 

are dealing with an imbalanced dataset, we employed grid search to find the most effective 

combination of 𝑤1, 𝑤2, 𝑤3 that results in the highest F1-score, which is the right metric 

for imbalanced data. 

Table 4. 6: Performance evaluation of the ensemble methods.    

Method  F1 Score Recall Precision Accuracy 

Averaging 0.9293 0.9049 0.9567 0.9589 

Weighted Average 0.9335  0.9143 0.9546 0.9604 

 

Figure 4. 10: Confusion matrices of the averaging ensemble. 
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Figure 4. 11: Confusion matrices of the weighted average ensemble.   

4.5 RSC Monitoring Experiments using Data Augmentation   

The performance of the experiments conducted for the third proposed framework that 

was presented in Chapter 2 is shown in this section. We selected at random 70% of the 

RSC dataset to be used for training and the remaining 30% for testing. The results of each 

evaluated model for classifying road surfaces are displayed in Table 4.7. As we can see, 

the 3D models generated the best results. The 3D models significantly outperformed both 

of the standard hybrid deep learning models. Furthermore, the TD-CNN-GRU model 

achieved the best performance with an F1 score of 94.86%. In contrast to the second 

proposed framework, the ConvLSTM model had the lowest performance, with an F1 score 

of 87.15 %. 

Table 4. 7: Performance evaluation of the proposed models without data augmentation.   

Model Input shape F1 Score Recall Precision Accuracy 

CNN-LSTM (25,18,3) 0.8972 0.8712 0.9306 0.9791 

CNN-GRU (25,18,3) 0.8806 0.8328 0.9440 0.9747 

TD-CNN-LSTM (3,25,18,1) 0.9248 0.9091 0.9417 0.9866 

TD-CNN-GRU (3,25,18,1) 0.9486 0.9394 0.9603 0.9896 

ConvLSTM  (3,25,18,1) 0.8715 0.8409 0.9132 0.9747 

In order to determine the effect of data augmentation on the model's performance, three 

different data augmentation techniques have been proposed for the training dataset, as 

indicated in Table 4.8. It is important to remember that the test data used for evaluating the 

3D hybrid deep learning models had been separated before applying data augmentation. 
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This makes comparing the 3D models and evaluating the effect of data augmentation 

easier.  

Table 4.8 makes it clear that adding augmented data to the set of training data improves 

the performance of the 3D models. To determine the most effective data augmentation 

technique, we looked into the averaging ensemble of TD-CNN-LSTM, TD-CNN-GRU, 

and ConvLSTM, which combines the results obtained from these 3D models. As we can 

see, the DoppelGANger technique achieved the highest F1 Score, Recall, and Accuracy at 

96.20%, 96.21%, and 99.40%, respectively. Whereas the SMOTE technique achieved the 

highest precision of 96.75%. Figures 4.12, 4.13, and 4.14 depict the confusion matrices of 

the averaging ensemble for each data augmentation technique. In these figures, we can see 

that all smooth road segments were correctly classified, while only a small percentage of 

man-made and real road anomalies misclassified.  

Table 4. 8: Performance evaluation of the proposed models with data augmentation.   

Model Input shape F1 Score Recall Precision Accuracy 

                                                       Traditional approaches 

TD-CNN-LSTM (3,25,18,1) 0.9475  0.9313 0.9705 0.9911 

TD-CNN-GRU (3,25,18,1) 0.9472 0.9540 0.9419 0.9911 

ConvLSTM  (3,25,18,1) 0.9045 0.8923 0.9201 0.9791 

Averaging  (3,25,18,1) 0.9493 0.9394 0.9599 0.9911 

                                                               SMOTE  

TD-CNN-LSTM (3,25,18,1) 0.9376 0.9313 0.9442 0.9881 

TD-CNN-GRU (3,25,18,1) 0.9613 0.9545 0.9684 0.9940 

ConvLSTM  (3,25,18,1) 0.8985 0.8561 0.9497 0.9791 

Averaging  (3,25,18,1) 0.9570 0.9470 0.9675 0.9925 

                                                         DoppelGANger 

TD-CNN-LSTM (3,25,18,1) 0.9644 0.9545 0.9751 0.9925 

TD-CNN-GRU (3,25,18,1) 0.9510 0.9610 0.9423 0.9911 

ConvLSTM  (3,25,18,1) 0.8795 0.8625 0.8992 0.9791 

Averaging  (3,25,18,1) 0.9620 0.9621 0.9625 0.9940 
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Figure 4. 12: Confusion matrices of the averaging ensemble using Traditional 

approaches. 

 

Figure 4. 13: Confusion matrices of the averaging ensemble using SMOTE technique. 

Figure 4. 14: Confusion matrices of the averaging ensemble using DoppelGANger 

technique. 
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4.6 IoT Intrusion Detection Experiments using the BoT-IoT Dataset    

The performance analysis of the intrusion detection experiments using the BoT-IoT 

dataset is presented in this section. The experiments were conducted on Google 

Colaboratory utilizing the Apache Spark environment, which minimizes memory use and 

keeps the system from becoming overloaded. 

4.6.2. Importance of using Oversampling on the BoT-IoT Dataset      

The impact of oversampling techniques on the BoT-IoT dataset is demonstrated by the 

classification results seen in Table 4.9. We classified attack categories using the DT 

algorithm during the big data classification phase. As anticipated, in the majority of 

evaluation metrics, the experimental results with the resampled datasets performed better 

than those obtained with the non-resampled datasets. Additionally, two stages of 

investigation were done on the impact of oversampling. In the beginning, data instances 

from the Theft attack class and the Normal network traffic class were duplicated to 

resample the training dataset. After that, we utilized the data replication technique to 

duplicate data instances from the Theft attack class and SMOTE to create new synthetic 

data from the Normal class to resample the training dataset. The experiment demonstrated 

that using the SMOTE technique in conjunction with data duplication resulted in lower 

classification results than using data duplication individually. This is a result of SMOTE 

producing artificial data without taking neighboring instances of other classes into account. 

Large datasets typically result in less successful outcomes from SMOTE, which increases 

noise and classes overlapping [163]. Even so, just 45% of DoS attack class were properly 

recognized, whereas the most accurate results identified 12% of the normal class as 

attacks. Therefore, in order to enhance the classification performance, more sophisticated 

techniques must be used. 
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Table 4. 9: Classification results using multiple oversampling techniques on the BoT-

IoT dataset. 

 Precision Sensitivity specificity F1 Score G-Mean 

                                                       no resampling                  

DDoS 0.85 0.81 0.85 0.83 0.83 

DoS 0.90 0.81 0.95 0.85 0.88 

Reconnaissance 0.65 0.97 0.93 0.78 0.95 

Theft 0.00 0.00 1.00 0.00 0.00 

Normal 1.00 0.02 1.00 0.04 0.15 

macro avg 0.68 0.52 0.95 0.50 0.70 

                                         resampling with data duplication 

DDoS 0.71 0.95 0.59 0.81 0.75 

DoS 0.88 0.45 0.96 0.60 0.66 

Reconnaissance 0.99 0.95 1.00 0.97 0.98 

Theft 0.12 0.91 1.00 0.21 0.96 

Normal 0.20 0.88 1.00 0.33 0.94 

macro avg 0.58 0.83 0.91 0.58 0.87 

                                  resampling with smote and data duplication   

DDoS 0.83 0.87 0.81 0.85 0.84 

DoS 0.81 0.76 0.90 0.78 0.82 

Reconnaissance 1.00 0.95 1.00 0.97 0.97 

Theft 0.07 0.92 1.00 0.13 0.96 

Normal 0.50 0.08 1.00 0.13 0.28 

macro avg 0.64 0.71 0.94 0.57 0.82 

4.6.2. Performance Evaluation of Ensemble Learning Methods      

4.6.2.1 Averaging Ensemble      

The approach we propose to detect intrusions depends on an ensemble resampling 

technique and uses DT models. The training dataset was split into n separate training 

subsets at the beginning of the studies, and these subsets were then resampled via data 

duplication technique. After that, DT models were trained on the Apache Spark 

environment using the training subsets. At last, the final predictions have been determined 

by taking the average of the models' class probability predictions. Tables 4.10 and 4.11 

show the results obtained by all DT models and the averaging ensemble method with 𝑛 = 3 

and 𝑛 = 6, respectively. The performance metrics show that the results produced by 

averaging ensemble with 𝑛 = 3 outperformed the results obtained with 𝑛 = 6. Unlike the 

case of 𝑛 =3, some individual models performed better than the averaging ensemble 

of 𝑛 =6. This was because some models in the ensemble like model 1 and model 2 were 
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very bad which negatively affected the performance of the averaging ensemble. In the case 

of 𝑛 =3 the classification results obtained using the averaging ensemble were good for all 

the class categories except the Theft attack class.  

Figures 4.15 and 4.16 display the confusion matrices of averaging ensemble when 𝑛 =

 3 and 𝑛 = 6. As can be shown, the minority classes for 𝑛 = 3 and 𝑛 = 6 got excellent 

Sensitivity scores, with the exception of the Theft attack class at 𝑛 = 6. Therefore, we can 

say that the imbalance problem affects more on Theft attack class. 

Table 4. 10: Performance comparison of the three DT models and the averaging 

ensemble method 

 Precision Sensitivity specificity F1 Score G-Mean 

model 1 0.62 0.66 0.92 0.62 0.78 

model 2 0.61 0.85 0.93 0.62 0.89 

model 3 0.54 0.81 0.88 0.59 0.85 

                                                      Averaging ensemble 

DDoS 0.86 0.83 0.86 0.85 0.85 

DoS 0.78 0.83 0.86 0.81 0.85 

Reconnaissance 1.00 0.94 1.00 0.97 0.97 

Theft 0.33 0.91 1.00 0.49 0.95 

Normal 0.79 0.97 1.00 0.87 0.99 

macro avg 0.75 0.90 0.95 0.80 0.92 

 

Table 4. 11: Performance comparison of the six DT models and the averaging ensemble 

method 

 Precision Sensitivity specificity F1 Score G-Mean 

model 1 0.56 0.72 0.95 0.57 0.83 

model 2 0.53 0.84 0.92 0.54 0.88 

model 3 0.56 0.63 0.94 0.52 0.77 

model 4 0.66 0.76 0.87 0.68 0.81 

model 5 0.74 0.63 0.87 0.60 0.74 

model 6 0.67 0.82 0.88 0.69 0.85 

                                                  Averaging ensemble 

DDoS 0.82 0.75 0.82 0.78 0.79 

DoS 0.69 0.76 0.80 0.72 0.78 

Reconnaissance 1.00 0.99 1.00 0.99 0.99 

Theft 0.54 0.10 1.00 0.17 0.32 

Normal 0.25 0.97 1.00 0.40 0.99 

macro avg 0.66 0.71 0.92 0.61 0.81 
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Figure 4. 15: Confusion matrices of averaging ensemble when 𝑛 = 3. 

 

Figure 4. 16: Confusion matrices of averaging ensemble when 𝑛 = 6. 

4.6.2.2 Weighted Average       

The models with excellent scores for classification in the weighted average ensemble 

contribute the largest proportion of the final predictions, and the other way around. In this 

case, to discover the best combination of weights that enhances the F1-score (the most 

significant metric in imbalanced data) a grid search method was applied. Table 4.12 

presents a comparison of the results derived from the weighted average of 𝑛 = 3 and 𝑛 = 

6 over every category found in the BoT-IoT dataset. In contrast to the averaging ensemble, 

the weighted average ensemble technique worked more effectively with 𝑛 = 6, resulting 
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in the best F1-score in the tests we performed. Given that the F1 Score of Theft was 0.57%, 

the overall results for the Theft attack category were unsatisfactory despite the fact that the 

weighted average performed better than the averaging ensemble. This can be caused by the 

fact that the test data also have the class imbalance problem, making minority classes more 

vulnerable to false positive rates [162]. When False Negatives are more significant, 

sensitivity and G-Mean metrics are better suited to evaluate the weighted average ensemble 

approach. The Theft attack class performed highly in the situation of 𝑛 = 3, scoring 0.91 

and 0.95 for Sensitivity and G-Mean, respectively. 

Figures 4.17 and 4.18 show the confusion matrices of a weighted average ensemble 

with 𝑛 = 3 and 𝑛 = 6. It is evident that, for 𝑛 = 6, each of the five categories had 

excellent Sensitivity scores, with the exception of the DoS class categories, which did not 

do so well because 24% of DoS attacks were mistakenly identified as DDoS attacks. On 

the other hand, as false negatives and false positives are equally important to us in our 

work, we can say that the weighted average with 𝑛 = 6 is the most effective intrusion 

detection technique. 

Table 4. 12: The evaluation results of weighted average ensemble method 

 Precision Sensitivity Specificity F1 Score G-Mean 

Weights:                    w1= 0.4, w2= 0.9,  and w3= 0.8 

DDoS 0.86 0.99 0.83 0.92 0.91 

DoS 0.98 0.78 0.99 0.87 0.88 

Reconnaissance 0.99 0.99 1.00 0.99 0.99 

Theft 0.34 0.91 1.00 0.49 0.95 

Normal 0.79 0.97 1.00 0.87 0.99 

macro avg 0.79 0.93 0.96 0.83 0.95 

Weights : 
w1= 0.1, w2= 0.1,  w3= 0.6, w4= 0.1, w5= 0.1,   

                              and w6= 0.8  

DDoS 0.85 0.98 0.82 0.91 0.90 

DoS 0.96 0.76 0.98 0.85 0.86 

Reconnaissance 1.00 0.99 1.00 0.99 0.99 

Theft 0.41 0.89 1.00 0.57 0.94 

Normal 0.86 0.97 1.00 0.91 0.99 

macro avg 0.82 0.92 0.96 0.85 0.94 
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Figure 4. 17: Confusion matrices of weighted average ensemble when 𝑛 = 3. 

 

Figure 4. 18: Confusion matrices of weighted average ensemble when 𝑛 = 6. 

4.7 Discussion    

The present section discusses our studies and their results for monitoring the condition 

of the road surface for three different types of roads: Real anomalies, man-made 

anomalies, and smooth roads. We also clarify the results of a big data system based on 

Apache Spark that was used to analyze network traffic. 

Since every study used a private dataset with a variety of road types, it is impractical to 

compare performance with similar relevant studies in the area of RSC monitoring. 

However, we compare the best result from the three proposed frameworks to other 
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previous works that utilized DL models to demonstrate that our frameworks enhance the 

identification of anomalies on road surfaces. 

Table 4.13 shows how our frameworks performed versus the studies  [85, 91, 169] 

through the use of recall metric. The comparison shows that the three proposed 

frameworks outperform the other studies for recognizing smooth road surfaces, while Refs. 

[85] (Which identifies just potholes) and [169] achieved the best recall scores for 

recognizing real and man-made anomalies, respectively. As mentioned earlier, we contrast 

the results we obtained with the works that have been conducted using DL algorithms that 

had no training on smooth roads or real anomalies. Due to the fact that the authors of the 

present work used three types of road surfaces, they can compare reasonably only with 

Ref. [91]. As a result, we can say that it is evident that the three proposed frameworks 

detect every type of road surface condition better than Ref. [91]. 

Table 4. 13: Detection rate comparison with previous studies. 

Reference smooth road  real anomalies man-made anomalies 

Varona et al. [85]            - 
          pothole S. Hump S. Gutter 

            0.98      0.78     0.93 

Setiawan et al. [91] 
        0.98 

 

pothole B. road            S. Bump 

0.86 0.62               0.67 

Kumar et al. [169] 
        0.96 

 
               - 

R. Strip S. Bump 

     0.97     0.98 

First framework         0.99             0.88               0.88 

Second framework         0.98             0.85               0.93 

Third framework         1.00             0.93               0.95 

Additionally, in order to detect intrusions in IoT networks, a new big data framework 

was proposed by this research. Table 4.14 compares our best results with those of earlier 

studies that used the entire BoT-IoT dataset in a big data environment. Although reference 

[151] included all features, even invalid ones, our method surpassed it in detecting 

Reconnaissance attacks, Theft, and Normal traffic. Since the authors in [152] skipped the 

assessment of theft attacks, did not disclose the accuracy of DDoS and DoS identification, 

and only used 10,000 DDoS and 10,000 DoS samples to evaluate normal traffic, we are 

unable to objectively compare our findings to the accuracy of reconnaissance attacks and 

normal traffic. In reference [153], the entire dataset was augmented, resulting in various 

augmented samples being included in both the training and testing sets. This led to 
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extremely high accuracy across all data classes, which is explained by the inflating of test 

accuracy. To avoid data leakage in the area of network traffic classification, test data must 

not be augmented. As a result, we assume that the findings found in reference [153] are not 

reliable. Through the use of the entire BoT-IoT dataset in the Apache Spark environment, 

this work aims to deliver trustworthy results for intrusion detection. 

Table 4. 14: A comparison of the proposed approach with other related works using F1 

Score metric. 

Ref DDoS DoS Reconnaissance Theft Normal 

Manzano Sanchez et al.[153] 0.94 0.93           0.99 0.99 0.98 

Abushwereb et al. [151] 0.999 0.991           0.888 0.232 0.718 

Manzano S et al. [152]     -    -           0.999     - 0.983 

Our approach 0.91 0.85           0.99  0.57 0.91 

4.8 Conclusions    

In this chapter, we presented our experimental evaluation and results for the proposed 

IoT frameworks, which we described in Chapters 2 and 3. The first proposed framework 

classified road anomalies into three types using hybrid deep learning models. The results of 

the experiments demonstrated that, when it came to predicting road anomalies the CNN-

GRU model scored highest overall. By employing a combination of 3D hybrid deep 

learning models, the second proposed framework employed ensemble learning techniques 

to detect anomalies in road surfaces. The results of the experiments indicate that, when 

compared to the averaging ensemble and the other models, the weighted average ensemble 

provided the best overall performance. 

The imbalance problem on the road data was resolved by the third proposed framework 

using multiple data augmentation methods. Comparing the DoppelGANger technique to 

SMOTE and Traditional techniques, it produced the best results with the 3D models. The 

class imbalance issue in the Bot-IoT dataset was solved in the fourth proposed framework 

through the combination of ensemble resampling and oversampling approaches. The final 

predictions were generated via the weighted average ensemble that showed good results 

and improved the results in minority classes. 

The comparisons prove that the frameworks we have proposed in this thesis enhance 

the reliability of IoT data analysis while also increasing the accuracy of the results. 
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CONCLUSION AND FUTURE WORK 

The Internet of Things (IoT) and artificial intelligence (AI) have opened up previously 

unthinkable possibilities by radically changing how we interact with the world and by 

utilizing the enormous potential of data. IoT applications are typically constructed using 

sensors that monitor the environment and then initiate actions to respond. Frequently, these 

actions involve changing external conditions. An IoT application with AI inference makes 

an effort to collect as much data as it can, simulating human senses. By combining AI with 

IoT, better and more effective systems are being created, revolutionizing our daily lives. 

This thesis presents architectures for analyzing IoT data via AI algorithms. The main 

aim of the architectures that have been proposed is to analyze the vast amounts of valuable 

data that IoT devices generate. The thesis provides an architecture for an IoT intrusion 

detection system in an attempt to reduce the security threats that IoT devices face. 

The architecture of the IoT system and its associated network were presented in 

Chapter 1. A summary of big data, IoT security, and IoT search engines was also provided. 

This chapter provided a quick introduction of the ML and DL algorithms used in IoT data 

classification. 

Chapter 2 discussed three vibration-based RSC monitoring architectures that use hybrid 

deep learning algorithms for detecting anomalies in road surfaces. Moreover, the RSC-IoT 

and RSC datasets have been built and labeled in real time using Bluetooth and TCP/IP 

socket protocol. Then, we presented two architectures for RSC monitoring that take 

advantage of the IoT Search Engine (IoTSE) and cloud computing. 

In Chapter 3, a novel Apache Spark-based big data architecture for detecting IoT 

network intrusions has been introduced. In order to do this, we first addressed the problem 

of class imbalance before using machine learning (ML) to classify data from the Bot-IoT 

dataset. Next, we utilize ensemble learning techniques to enhance the final predictions. 

The proposed IoT architectures that were presented in Chapters 2 and 3 were examined 

in Chapter 4. The comparisons demonstrated that the hybrid deep learning and ensemble 

learning algorithms proposed in this thesis improved the reliability of IoT data analysis.  

Meanwhile, data augmentation techniques enhance the accuracy of results. 
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In this thesis, we have examined various IoT architectures, new and traditional 

approaches, and compared hybrid deep learning and ensemble learning methods with ML 

and DL techniques. The work in this thesis enabled us to present a multi-view assessment 

of IoT data analysis. In contrast to previous experimental methods, the results were 

satisfactory. 

Although the applied algorithms employed in this thesis showed promising results, 

there is room for development in both IoT data collection and analysis in future work. In 

our future work, we intend to consider the following points: 

 Evaluating the effectiveness of different hybrid deep learning models for 

identifying anomalies in the road surface.  

 Employing more sophisticated ensemble learning techniques to enhance IoT data 

experiment results. 

 Applying DL algorithms in a big data environment to identify intrusions on IoT 

networks.  

 Implementing more advanced methods of data augmentation in order to achieve 

class balance in the IoT datasets. 

 Examining the effect of vehicle velocity on road anomaly recognition using a 

dynamic sliding window technique. 
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APPENDIX A 

ESP32/Smartphone Insert Data into MySQL Database using PHP 

 

Using the approach depicted above, the ESP32/Smartphone establishes a connection with 

a web server using the HTTP protocol before moving on to a MySQL server. This approach 

steps are as follows: 

 The ESP32/Smartphone makes an HTTP request to the web server, including the 

data. 

 A PHP script on the web server handles this request. 

 Once the HTTP request has been processed, the PHP script gathers data and transfers 

it to MySQL. 

 The PHP script uses an HTTP response to confirm whether or not the data has been 

received. 
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This is the interface of the Android smartphone application: 
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APPENDIX B 

Real Time Data Labeling using TCP/IP socket/Bluetooth 

The interfaces of the Android smartphone applications for data labeling utilizing (a) 

TCP/IP socket and (b) Bluetooth are as follows: 
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APPENDIX C 

Extraction of CSV file for Road Surface Conditions from the RSC Dataset
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APPENDIX D 

Extraction of CSV file for Road Surface Conditions from the RSC-IoT Dataset 
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