
Chimie moléculaire des éléments de transition

Un dialogue entre théorie et expérience

Table des matières

1	Brè	ve histoire de la chimie organométallique	5			
2	Les notions fondamentales					
	2.a	Les différents types de ligands et le décompte des électrons dans les				
		complexes	11			
	2.b	Orbitales atomiques (OA) des métaux de transition	16			
	2.c	Les principaux types de réactions de la chimie des métaux de transition	37			
	2.d	Compléments théoriques sur l'addition oxydante et l'élimination réduc-				
		trice	50			
	2.e	Addition d'un ligand coordonné (R ⁻) à un CO ou à un alcène : aspects	10,750			
		théoriques	56			
			0.			
3	Les	principales fonctions de la chimie organométallique	65			
	3.a	Les hydrures	65			
	3.b	Les métaux carbonyles	74			
	3.c	La liaison σ métal-carbone	85			
	3.d	Les complexes de carbènes	100			
	3.e	Les complexes de carbynes	124 129			
	3.f	La coordination π , aspects théoriques	143			
	3.g	La liaison métal-métal	164			
	3.h	Les complexes phosphorés	.104			
4	Que	elques applications en synthèse organique	193			
	4.a	Le zirconium en synthèse : hydrozirconation, complexes η^2 -benzynes .	193			
		4.a.1 L'hydrozirconation des alcènes	193			
		4.a.2 Les complexes benzyne-zirconocène en synthèse	199			
	4.b		s200			
		4.b.1 Les carbonylations par le réactif de Collman	200			
		4.b.2 La cyclopropanation des alcènes par les complexes de carbènes	203			
		4.b.3 Les η^4 -diène-fer-tricarbonyles en synthèse organique	206			
	4.c		212			
	4.d	Le samarium (II) comme réducteur monoélectronique	218			
5	Qu	elques applications en catalyse homogène	227			
	5.a		228			
		L'hydrogénation asymétrique	234			

	5.c	L'hydroformylation des alcènes					239
	5.d	Synthèses de l'acide acétique et du glycol	,				245
		Polymérisation et oligomérisation des alcènes et des diènes					
	5.f	La métathèse des alcènes					254
	5.g	Quelques applications catalytiques du palladium					260
	5.h	Époxydation et dihydroxylation asymétriques des alcènes					
A	OM	de complexes modèles					279